

Lecture Notes in Computer Science 3827
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Xiaotie Deng Dingzhu Du (Eds.)

Algorithms
and Computation

16th International Symposium, ISAAC 2005
Sanya, Hainan, China, December 19-21, 2005
Proceedings

13

Volume Editors

Xiaotie Deng
City University of Hong Kong, Department of Computer Science
83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
E-mail: csdeng@cityu.edu.hk

Dingzhu Du
University of Minnesota, Department of Computer Science and Engineering
4-192 EE/CS Building, 200 Union Street S.E., Minneapolis, MN 55455, USA
E-mail: dzd@cs.umn.edu

Library of Congress Control Number: 2005937163

CR Subject Classification (1998): F.2, C.2, G.2-3, I.3.5, C.2.4, E.5

ISSN 0302-9743
ISBN-10 3-540-30935-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30935-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11602613 06/3142 5 4 3 2 1 0

Preface

ISAAC 2005, the 16th International Symposium on Algorithms and Computation,
took place in Hainan, China, December 19-21, 2005. The symposium provided a
forum for researchers working in algorithms and the theory of computation from all
over the world. The final count of electronic submissions was 549, of which 112 were
accepted. Among them, the submitting authors’ emails are: 18 from edu (USA) ac-
counts, 14 from de (Germany), 10 from jp (Japan), 8 from fr (France), 8 from hk
(Hong Kong), 7 from ca (Canada), 6 from cn (China), 5 from gr (Greece), 4 from
gmail, 3 from tw (Taiwan), 3 from it (Italy), 3 from se (Sweden), 3 from sg (Singa-
pore), 2 from cz (Czech Republic), 2 from ch (Switzerland), 2 from 163.com, and 1
each from no (Norway), uk (United Kingdom), be (Belgium), au (Australia), es
(Spain), nl (The Netherlands), kr (Korea), in (India), il (Israel), cy (Cyprus), cl
(Chile), pl (Poland), ie (Ireland), and net. This represents a total of 30 countries or
regions, including 3 Internet dot coms.

We would like to thank the two invited speaker, Mihalis Yannakakis and Frances Y.
Yao, for their insightful speeches and new directions in algorithms and computation.

We received 6 nominations for the best paper and 6 nominations for the best stu-
dent paper. Only papers with all co-authors students could qualify for the latter.
Unlike previous years, this year we made a decision after the authors made their pres-
entation. We hope this change allowed the Program Committee to make the most
informed decision.

We would like to thank the conference Co-chairs, Francis Chin and Frances Yao,
for their leadership, advice and help on crucial matters concerning the conference. We
would like to thank the International Program Committee for spending their valuable
time and effort in the review process. We would also like to thank the Organizing
Committee, led by Xiaodong Hu, for their contribution to making this conference a
success.

In addition, we would like to thank those who spoke out on matters regarding the
program and the organization, as well as other important ISAAC matters, and have
provided invaluable feedback to ISAAC 2005.

Finally, we would like to thank our sponsors, the Academy of Mathematics and
System Sciences of the Chinese Academy of Sciences, and to thank the Department
of Computer Science, City University of Hong Kong, for the clerical support in han-
dling the enormous amount of submissions and registrations.

December 2005 Xiaotie Deng
Dingzhu Du

Organization

ISAAC 2005 was jointly organized by the Academy of Mathematics and System
Sciences of the Chinese Academy of Sciences, City University of Hong Kong, and the
University of Hong Kong.

Conference Co-chairs

Francis Chin The University of Hong Kong
Frances Yao City University of Hong Kong

Organizing Committee

Xiaodong Hu (Chair) Chinese Academy of Sciences
Anthony Yingjie Fu City University of Hong Kong

Treasurer

Xiaohua Jia City University of Hong Kong

Program Co-chairs

Xiaotie Deng City University of Hong Kong
Dingzhu Du University of Minnesota

Invited Speakers

Mihalis Yannakakis Columbia University
Frances Yao City University of Hong Kong

Program Committee

Sanjeev Arora Princeton University
Tetsuo Asano JAIST
G. Ausiello Università di Roma
Carlo Blundo Università di Salerno
Franz J. Brandenburg Universität Passau
Leizhen Cai Chinese University of Hong Kong
Mao-Cheng Cai Chinese Academy of Sciences
Jianer Chen University of Texas A&M
ZhiZhong Chen Tokyo Denki University
Frank Dehne Griffith University
Josep Diaz Universitat Politècnica de Catalunya
Qizhi Fang Shandong University
Haodi Feng Shandong University
Rudolf Fleischer Fudan University

VIII Organization

Philippe Golle Palo Alto Research Center
Monika Rauch Henzinger Google Corp.
Toshihide Ibaraki Kwansei Gakuin University
Markus Jakobsson Indiana University
Elias Koutsoupias University of Athens
Hao Li Laboratoire de Recherche en Informatique
Jianping Li Yunnan University
Hsueh-I Lu National Taiwan University
Bin Ma University of Western Ontario
Subhas C. Nandy Indian Statistical Institute
Koji Nakano Hiroshima University
Rolf Niedermeier Universität Jena
Christos Papadimitriou University of California, Berkeley
Kunihiko Sadakane Kyushu University
Yaoyun Shi University of Michigan
Xiaoming Sun Tsinghua University
Caoan Wang Memorial University of Newfoundland
Xiaofeng Wang Indiana University
Mihalis Yannakakis Columbia University
Yinyu Ye Stanford University
Mingsheng Ying Tsinghua University
Guochuan Zhang Zhejiang University
Li Zhang HP Corp.
Binhai Zhu Montana State University

List of Subreferees

Marcos Aguilera Susanne Albers
Helmut Alt Arne Andersson
Arijit Bishnu Andreas Brandstädt
Ching-Lueh Chang Hsun-Wen Chang
Ning Chen Xi Chen
Ming-Yang Chen Jian-Jia Chen
Tien-Ren Chen Kuan-Lin Chen
Hsueh-Yi Chen Ho-Lin Chen
Shirley H.C. Cheung Hung Chim
Kai-min Chung Sandip Das
Vinay Deolalikar Michael Dom
Stefan Dziembowsk Thomas Erlebach
Jia-Hao Grant Fan Henning Fernau
Anthony Yingjie Fu Hiroshi Fujiwara
Jens Gramm Jiong Guo
Falk Hüffner Harald Hempel
Jin-Ju Hong Chun-Hung Hsiao
Yu-Hao Huang Jesper Jansson
Yien-Lin Jyu Ton Kloks
Ming-Tat Ko Dieter Kratsch

 Organization IX

Chien-Chih Liao Hong-Yiu Lin
Wan-Chen Lu Guanfeng Lv
Daniel Mölle Haiko Müller
Daniel Marx Krishnendu Mukhopadhyaya
Hiro-taka Ono Md. Saidur Rahman
Mindos Siskerodir Andreas Spillner
Douglas R. Stinson Susmita Sur-Kolay
Zuowen Tan Salil Vadhan
Jörg Vogel Lusheng Wang
Yin Wang Zhikui Wang
Hsin-Wen Bertha Wei Sebastian Wernicke
Deshi Ye Hai Yu
Yunlei Zhao Yunhong Zhou
Feng Zou

Sponsors

Academy of Mathematics and System Sciences,
Chinese Academy of Sciences
Department of Computer Science, City University of Hong Kong

X Organization

Best Paper Nominations

Embedding Point Sets Into Plane Graphs of Small Dilation
Annette Ebbers-Baumann, Ansgar Gruene, Marek Karpinski, Rolf Klein, Christian
Knauer, Andrzej Lingas

Almost Optimal Solutions for Bin Coloring Problems
Mingen Lin, Zhiyong Lin, Jinhui Xu

Complexity and Approximation of the Minimum Recombination Haplotype
Configuration Problem
Lan Liu, Xi Chen, Jing Xiao,Tao Jiang

A 1.5-Approximation of the Minimal Manhattan Network Problem
Sebastian Seibert,Walter Unger

Space Efficient Algorithms for Ordered Tree Comparison
Lusheng Wang, Kaizhong Zhang

The Layered Net Surface Problems in Discrete Geometry and Medical Image
Segmentation
Xiaodong Wu, Danny Chen, Kang Li, Milan Sonka

Best Student Paper Nominations

Longest Increasing Subsequences in Windows Based on Canonical Antichain
Partition
Erdong Chen, Hao Yuan, Linji Yang

On the Complexity of the G-Reconstruction Problem
Zdenek Dvorak,Vit Jelinek

A Practical Algorithm for the Computation of Market Equilibrium with
Logarithmic Utility Functions
Li-Sha Huang

An Improved Õ(1.234m)-Time Deterministic Algorithm for SAT
Masaki Yamamoto

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem
Hao Yuan, Linji Yang, Erdong Chen

Algorithms for Local Forest Similarity
PENG, Zeshan

Table of Contents

Algorithmic Problems in Wireless Ad Hoc Networks
Frances F. Yao . 1

Probability and Recursion
Kousha Etessami, Mihalis Yannakakis . 2

Embedding Point Sets into Plane Graphs of Small Dilation
Annette Ebbers-Baumann, Ansgar Grüne, Marek Karpinski,
Rolf Klein, Christian Knauer, Andrzej Lingas . 5

The Layered Net Surface Problems in Discrete Geometry and Medical
Image Segmentation

Xiaodong Wu, Danny Z. Chen, Kang Li, Milan Sonka 17

Separability with Outliers
Sariel Har-Peled, Vladlen Koltun . 28

Casting an Object with a Core
Hee-Kap Ahn, Sang Won Bae, Siu-Wing Cheng,
Kyung-Yong Chwa . 40

Sparse Geometric Graphs with Small Dilation
Boris Aronov, Mark de Berg, Otfried Cheong,
Joachim Gudmundsson, Herman Haverkort, Antoine Vigneron 50

Multiple Polyline to Polygon Matching
Mirela Tănase, Remco C. Veltkamp, Herman Haverkort 60

Minimizing a Monotone Concave Function with Laminar Covering
Constraints

Mariko Sakashita, Kazuhisa Makino, Satoru Fujishige 71

Almost Optimal Solutions for Bin Coloring Problems
Mingen Lin, Zhiyong Lin, Jinhui Xu . 82

GEN-LARAC: A Generalized Approach to the Constrained Shortest
Path Problem Under Multiple Additive Constraints

Ying Xiao, Krishnaiyan Thulasiraman, Guoliang Xue 92

Simultaneous Matchings
Khaled Elbassioni, Irit Katriel, Martin Kutz, Meena Mahajan 106

XII Table of Contents

An Optimization Problem Related to VoD Broadcasting
Tsunehiko Kameda, Yi Sun, Luis Goddyn . 116

A Min-Max Relation on Packing Feedback Vertex Sets
Xujin Chen, Guoli Ding, Xiaodong Hu, Wenan Zang 126

Average Case Analysis for Tree Labelling Schemes
Ming-Yang Kao, Xiang-Yang Li, WeiZhao Wang 136

Revisiting T. Uno and M. Yagiura’s Algorithm
Binh-Minh Bui Xuan, Michel Habib, Christophe Paul 146

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs
Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni,
Vladimir Gurvich, Kazuhisa Makino . 156

Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends
Xiao Zhou, Takao Nishizeki . 166

Bisecting a Four-Connected Graph with Three Resource Sets
Toshimasa Ishii, Kengo Iwata, Hiroshi Nagamochi 176

Laminar Structure of Ptolemaic Graphs and Its Applications
Ryuhei Uehara, Yushi Uno . 186

On the Complexity of the G-Reconstruction Problem
Zdeněk Dvořák, Vı́t Jeĺınek . 196

Hybrid Voting Protocols and Hardness of Manipulation
Edith Elkind, Helger Lipmaa . 206

On the Complexity of Rocchio’s Similarity-Based Relevance Feedback
Algorithm

Zhixiang Chen, Bin Fu . 216

Correlation Clustering and Consensus Clustering
Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi,
Tao Jiang . 226

An Approximation Algorithm for Scheduling Malleable Tasks Under
General Precedence Constraints

Klaus Jansen, Hu Zhang . 236

A 1.5-Approximation of the Minimal Manhattan Network Problem
Sebastian Seibert, Walter Unger . 246

Table of Contents XIII

Hardness and Approximation of Octilinear Steiner Trees
Matthias Müller–Hannemann, Anna Schulze . 256

Dense Subgraph Problems with Output-Density Conditions
Akiko Suzuki, Takeshi Tokuyama . 266

A Complete Characterization of Tolerable Adversary Structures for
Secure Point-to-Point Transmissions Without Feedback

Yvo Desmedt, Yongge Wang, Mike Burmester . 277

Network Game with Attacker and Protector Entities
Marios Mavronicolas, Vicky Papadopoulou, Anna Philippou,
Paul Spirakis . 288

SkipTree: A Scalable Range-Queryable Distributed Data Structure for
Multidimensional Data

Saeed Alaei, Mohammad Toossi, Mohammad Ghodsi 298

The Phase Matrix
Peter Høyer . 308

ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour
Alexis Kaporis, Christos Makris, George Mavritsakis,
Spyros Sioutas, Athanasios Tsakalidis, Kostas Tsichlas,
Christos Zaroliagis . 318

External Data Structures for Shortest Path Queries on Planar Digraphs
Lars Arge, Laura Toma . 328

Improved Approximate String Matching Using Compressed Suffix Data
Structures

Tak-Wah Lam, Wing-Kin Sung, Swee-Seong Wong 339

Monitoring Continuous Band-Join Queries over Dynamic Data
Pankaj K. Agarwal, Junyi Xie, Jun Yang, Hai Yu 349

Approximate Colored Range Queries
Ying Kit Lai, Chung Keung Poon, Benyun Shi . 360

Complexity and Approximation of the Minimum Recombination
Haplotype Configuration Problem

Lan Liu, Xi Chen, Jing Xiao, Tao Jiang . 370

Space Efficient Algorithms for Ordered Tree Comparison
Lusheng Wang, Kaizhong Zhang . 380

XIV Table of Contents

A 1.75-Approximation Algorithm for Unsigned Translocation Distance
Yun Cui, Lusheng Wang, Daming Zhu . 392

Fast Algorithms for Computing the Tripartition-Based Distance
Between Phylogenetic Networks

Nguyen Bao Nguyen, Cam Thach Nguyen, Wing-Kin Sung 402

Improved Algorithms for Largest Cardinality 2-Interval Pattern
Problem

Hao Yuan, Linji Yang, Erdong Chen . 412

Preemptive Semi-online Scheduling on Parallel Machines with Inexact
Partial Information

Yong He, Yiwei Jiang . 422

On-Line Computation and Maximum-Weighted Hereditary Subgraph
Problems

Marc Demange, Bernard Kouakou, Éric Soutif . 433

A Novel Adaptive Learning Algorithm for Stock Market Prediction
Lean Yu, Shouyang Wang, Kin Keung Lai . 443

Uniformization of Discrete Data
Lei Yang . 453

A Practical Algorithm for the Computation of Market Equilibrium
with Logarithmic Utility Functions

Li-Sha Huang . 463

Boosting Spectral Partitioning by Sampling and Iteration
Joachim Giesen, Dieter Mitsche . 473

Smoothed Analysis of Binary Search Trees
Bodo Manthey, Rüdiger Reischuk . 483

Simple and Efficient Greedy Algorithms for Hamilton Cycles in
Random Intersection Graphs

Christoforos Raptopoulos, Paul Spirakis . 493

Counting Distinct Items over Update Streams
Sumit Ganguly . 505

Randomized Algorithm for the Sum Selection Problem
Tien-Ching Lin, D.T. Lee . 515

Table of Contents XV

An Improved Interval Routing Scheme for Almost All Networks Based
on Dominating Cliques

Martin Nehéz, Daniel Olejár . 524

Basic Computations in Wireless Networks
Ioannis Caragiannis, Clemente Galdi, Christos Kaklamanis 533

A Simple Optimal Randomized Algorithm for Sorting on the PDM
Sanguthevar Rajasekaran, Sandeep Sen . 543

Efficient Parallel Algorithms for Constructing a k-Tree Center and a
k-Tree Core of a Tree Network

Yan Wang, Deqiang Wang, Wei Liu, Baoyu Tian 553

A Tight Bound on the Number of Mobile Servers to Guarantee the
Mutual Transferability Among Dominating Configurations

Satoshi Fujita . 563

Bounding the Number of Minimal Dominating Sets: A Measure and
Conquer Approach

Fedor V. Fomin, Fabrizio Grandoni, Artem V. Pyatkin,
Alexey A. Stepanov . 573

Collective Tree Spanners in Graphs with Bounded Genus, Chordality,
Tree-Width, or Clique-Width

Feodor F. Dragan, Chenyu Yan . 583

Sampling Unlabeled Biconnected Planar Graphs
Manuel Bodirsky, Clemens Gröpl, Mihyun Kang 593

Configurations with Few Crossings in Topological Graphs
Christian Knauer, Étienne Schramm, Andreas Spillner,
Alexander Wolff . 604

On Bounded Load Routings for Modeling k-Regular Connection
Topologies

Adrian Kosowski, Micha�l Ma�lafiejski,
Pawe�l Żyliński . 614

On the Complexity of Global Constraint Satisfaction
Cristina Bazgan, Marek Karpinski . 624

Polynomial Space Suffices for Deciding Nash Equilibria Properties for
Extensive Games with Large Trees

Carme Àlvarez, Joaquim Gabarró, Maria Serna . 634

XVI Table of Contents

An Improved Õ(1.234m)-Time Deterministic Algorithm for SAT
Masaki Yamamoto . 644

Solving Minimum Weight Exact Satisfiability in Time O(20.2441n)
Stefan Porschen . 654

Efficient Algorithms for Finding a Longest Common Increasing
Subsequence

Wun-Tat Chan, Yong Zhang, Stanley P.Y. Fung,
Deshi Ye, Hong Zhu . 665

Decision Making Based on Approximate and Smoothed Pareto Curves
Heiner Ackermann, Alantha Newman, Heiko Röglin,
Berthold Vöcking . 675

Computing Optimal Solutions for the min 3-set covering Problem
Federico Della Croce, Vangelis Th. Paschos . 685

Efficient Algorithms for the Weighted 2-Center Problem in a Cactus
Graph

Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi 693

Algorithms for Local Forest Similarity
Zeshan Peng . 704

Fast Algorithms for Finding Disjoint Subsequences with Extremal
Densities

Anders Bergkvist, Peter Damaschke . 714

A Polynomial Space and Polynomial Delay Algorithm for Enumeration
of Maximal Motifs in a Sequence

Hiroki Arimura, Takeaki Uno . 724

5-th Phylogenetic Root Construction for Strictly Chordal Graphs
William Kennedy, Guohui Lin . 738

Recursion Theoretic Operators for Function Complexity Classes
Kenya Ueno . 748

From Balls and Bins to Points and Vertices
Ralf Klasing, Zvi Lotker, Alfredo Navarra, Stephane Perennes 757

Simulating Undirected st-Connectivity Algorithms on Uniform JAGs
and NNJAGs

Pinyan Lu, Jialin Zhang, Chung Keung Poon, Jin-Yi Cai 767

Table of Contents XVII

Upper Bounds on the Computational Power of an Optical Model of
Computation

Damien Woods . 777

Complexity of the Min-Max (Regret) Versions of Cut Problems
Hassene Aissi, Cristina Bazgan, Daniel Vanderpooten 789

Improved Algorithms for the k Maximum-Sums Problems
Chih-Huai Cheng, Kuan-Yu Chen, Wen-Chin Tien,
Kun-Mao Chao . 799

Network Load Games
Ioannis Caragiannis, Clemente Galdi, Christos Kaklamanis 809

Minimum Entropy Coloring
Jean Cardinal, Samuel Fiorini, Gwenaël Joret . 819

Algorithms for Max Hamming Exact Satisfiability
Vilhelm Dahllöf . 829

Counting Stable Strategies in Random Evolutionary Games
Spyros Kontogiannis, Paul Spirakis . 839

Exact and Approximation Algorithms for Computing the Dilation
Spectrum of Paths, Trees, and Cycles

Rolf Klein, Christian Knauer, Giri Narasimhan,
Michiel Smid . 849

On the Computation of Colored Domino Tilings of Simple and
Non-simple Orthogonal Polygons

Chris Worman, Boting Yang . 859

Optimal Paths for Mutually Visible Agents
Joel Fenwick, Vlad Estivill-Castro . 869

Stacking and Bundling Two Convex Polygons
Hee-Kap Ahn, Otfried Cheong . 882

Algorithms for Range-Aggregate Query Problems Involving Geometric
Aggregation Operations

Prosenjit Gupta . 892

A (2 − c 1√
N

)–Approximation Algorithm for the Stable Marriage
Problem

Kazuo Iwama, Shuichi Miyazaki, Naoya Yamauchi 902

XVIII Table of Contents

Approximating the Traffic Grooming Problem
Michele Flammini, Luca Moscardelli, Mordechai Shalom,
Shmuel Zaks . 915

Scheduling to Minimize Makespan with Time-Dependent Processing
Times

L.Y. Kang, T.C.E. Cheng, C.T. Ng, M. Zhao . 925

On Complexity and Approximability of the Labeled Maximum/Perfect
Matching Problems

Jérôme Monnot . 934

Finding a Weight-Constrained Maximum-Density Subtree in a Tree
Sun-Yuan Hsieh, Ting-Yu Chou . 944

Finding Two Disjoint Paths in a Network with Normalized
α+-MIN-SUM Objective Function

Bing Yang, S.Q. Zheng, Enyue Lu . 954

Sensitivity Analysis of Minimum Spanning Trees in
Sub-inverse-Ackermann Time

Seth Pettie . 964

Approximation Algorithms for Layered Multicast Scheduling
Qingbo Cai, Vincenzo Liberatore . 974

Minimum Weight Triangulation by Cutting Out Triangles
Magdalene Grantson, Christian Borgelt, Christos Levcopoulos 984

Multi-directional Width-Bounded Geometric Separator and Protein
Folding

Bin Fu, Sorinel A Oprisan, Lizhe Xu . 995

Shortest Paths and Voronoi Diagrams with Transportation Networks
Under General Distances

Sang Won Bae, Kyung-Yong Chwa . 1007

Approximation Algorithms for Computing the Earth Mover’s Distance
Under Transformations

Oliver Klein, Remco C. Veltkamp . 1019

Fast k-Means Algorithms with Constant Approximation
Mingjun Song, Sanguthevar Rajasekaran . 1029

On Efficient Weighted Rectangle Packing with Large Resources
Aleksei V. Fishkin, Olga Gerber, Klaus Jansen . 1039

Table of Contents XIX

On Routing in VLSI Design and Communication Networks
Tamás Terlaky, Anthony Vannelli, Hu Zhang . 1051

The Capacitated Traveling Salesman Problem with Pickups and
Deliveries on a Tree

Andrew Lim, Fan Wang, Zhou Xu . 1061

Distance Labeling in Hyperbolic Graphs
Cyril Gavoille, Olivier Ly . 1071

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics
Paraskevi Fragopoulou, Stavros D. Nikolopoulos,
Leonidas Palios . 1080

Edge-Pancyclicity of Twisted Cubes
Jianxi Fan, Xiaola Lin, Xiaohua Jia, Rynson W.H. Lau 1090

Combinatorial Network Abstraction by Trees and Distances
Stefan Eckhardt, Sven Kosub, Moritz G. Maaß, Hanjo Täubig,
Sebastian Wernicke . 1100

Drawing Phylogenetic Trees
Christian Bachmaier, Ulrik Brandes,
Barbara Schlieper . 1110

Localized and Compact Data-Structure for Comparability Graphs
Fabrice Bazzaro, Cyril Gavoille . 1122

Representation of Graphs by OBDDs
Robin Nunkesser, Philipp Woelfel . 1132

Space-Efficient Construction of LZ-Index
Diego Arroyuelo, Gonzalo Navarro . 1143

Longest Increasing Subsequences in Windows Based on Canonical
Antichain Partition

Erdong Chen, Hao Yuan, Linji Yang . 1153

Errata from ISAAC 2004 (LNCS 3341)

Pareto Optimality in House Allocation Problems
David J. Abraham, Kataŕına Cechlárová, David F. Manlove,
Kurt Mehlhorn . 1163

XX Table of Contents

Generalized Geometric Approaches for Leaf Sequencing Problems in
Radiation Therapy

Danny Z. Chen, Xiaobo S. Hu, Shuang Luan, Shahid A. Naqvi,
Chao Wang, Cedric X. Yu . 1176

Author Index . 1187

Algorithmic Problems in Wireless Ad Hoc
Networks

Frances F. Yao

Department of Computer Science, City University of Hong Kong,
Hong Kong SAR., China
csfyao@cityu.edu.hk

Abstract. A wireless ad hoc network is a collection of geographically
distributed radio nodes which communicate with each other without the
support of fixed infrastructure. Wireless ad hoc networks have gained
much attention in recent years because their potential wide applications
such as environmental monitoring and emergency disaster relief. Some of
the key design issues for wireless ad hoc networks include power manage-
ment, network connectivity and routing. These problems require different
formulations and solutions from the classical setting. In this talk, we will
look at some sample problems, their mathematical modelling and solu-
tions. It will be seen that graph theory and computational geometry can
play a role in the design and analysis of ad hoc networks.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probability and Recursion

Kousha Etessami1 and Mihalis Yannakakis2

1 LFCS, School of Informatics, University of Edinburgh
2 Department of Computer Science, Columbia University

In this talk we will discuss recent work on the modeling and algorithmic analysis
of systems involving recursion and probability. There has been intense activity
recently in the study of such systems [2,3,10,11,13,14,15,16,17]. The primary
motivation comes from the analysis of probabilistic programs with procedures.
Probability can arise either due to randomizing steps in the program, or it may
reflect statistical assumptions on the behaviour of the program, under which we
want to investigate its properties.

Discrete-time, finite state Markov chains have been used over the years in a
broad range of applications to model the evolution of a variety of probabilistic
systems. Markov Decision Processes are a useful model for control optimiza-
tion problems in a sequential stochastic environment that combines probabilistic
and nonprobabilistic aspects of system behavior [28,19,18]. These models have
also been used extensively in particular to model probabilistic programs with-
out procedures and to analyze their properties [7,8,24,27,33]. In the presence
of recursive procedures, a natural model for probabilistic programs is Recur-
sive Markov Chains (RMCs): Informally, a RMC consists of a collection of finite
state component Markov chains that can call each other in a potentially recursive
manner [13]. An equivalent model is probabilistic Pushdown Automata (pPDA)
[10]. These models are essentially a succinct, finite representation of an infinite
state Markov chain, which captures the global evolution of the system.

More generally, if some steps of the program/system are probabilistic while
other steps are not, but rather are controllable by the designer or the envi-
ronment, then such a system can be naturally modeled by a Recursive Markov
Decision Process (RMDP) or a Recursive Simple Stochastic Game (RSSG)[15].
In a RMDP all the nonprobabilistic actions are controlled by the same agent
(the controller or the environment), while in a RSSG, different nonprobabilistic
actions are controlled by two opposing agents (eg. some by the designer and
some by the environment).

Some types of recursive probabilistic models arise naturally in other contexts
and have been studied earlier, some even before the advent of computer science.
Branching processes are an important class of such processes [21], introduced first
by Galton and Watson in the 19th century to study population dynamics, and
generalized later on in the mid 20th century to the case of multitype branching
processes by Kolmogorov and developed further by Sevastyanov [23,31]. They
have been applied in a wide variety of contexts such as population genetics [22],
models in molecular biology for RNA [30], and nuclear chain reactions [12]. An-
other related model is that of stochastic context-free grammars which have been

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 2–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probability and Recursion 3

studied extensively since the 1970’s especially in the Natural Language Process-
ing community (see eg. [25]). In a certain formal sense, multitype branching
processes and stochastic context-free grammars correspond to a subclass of re-
cursive Markov chains (the class of “single-exit RMCs”, where each component
Markov chain has a single exit state where it can terminate and return control
to the component that called it).

Recursive Markov chains, and their extension to Recursive Markov Decision
Processes and Simple Stochastic Games, have a rich theory. Their analysis in-
volves combinatorial, algebraic, and numerical aspects, with connections to a
variety of areas, such as the existential theory of the reals [5,29,4], multidimen-
sional Newton’s method, matrix theory, and many others. There are connections
also with several well-known open problems, such as the square root sum prob-
lem [20,32] (a 30-year old intriguing, simple problem that arises often in the
numerical complexity of geometric computations, and which is known to be in
PSPACE, but it is not known even whether it is in NP), and the value of simple
stochastic games [6] and related games, which are in NP∩coNP, but it is not
known whether they are in P.

In this talk we will survey some of this theory, the algorithmic results so far,
and remaining challenges.

Acknowledgement. Work partially supported by NSF Grant CCF-04-30946.

References

1. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yannakakis.
Analysis of recursive state machines. In ACM Trans. Progr. Lang. Sys., 27:786-818,
2005.

2. T. Brázdil, A. Kučera, and J. Esparza. Analysis and prediction of the long-run
behavior of probabilistic sequential programs with recursion. In Proc. of FOCS’05,
2005.

3. T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal properties of
probabilistic pushdown automata. In Proc. of STACS’05, 2005.

4. S. Basu, R. Pollack, and M. F. Roy. On the combinatorial and algebraic complexity
of quantifier elimination. J. ACM, 43(6):1002–1045, 1996.

5. J. Canny. Some algebraic and geometric computations in PSPACE. In Prof. of
20th ACM STOC, pages 460–467, 1988.

6. A. Condon. The complexity of stochastic games. Inf. & Comp., 96(2):203–224,
1992.

7. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

8. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events.
IEEE Trans. on Automatic Control, 43(10):1399–1418, 1998.

9. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of probabilistic processes using MTBDDs and the kronecker rep-
resentation. In Proc. of 6th TACAS, pages 395–410, 2000.

10. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown
automata. In Proc. of 19th IEEE LICS’04, 2004.

4 K. Etessami and M. Yannakakis

11. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic push-
down automata: expectations and variances. Proc. of 20th IEEE LICS, 2005.

12. C. J. Everett and S. Ulam. Multiplicative systems, part i., ii, and iii. Technical
Report 683,690,707, Los Alamos Scientific Laboratory, 1948.

13. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of non-linear equations. In Proc. of 22nd STACS’05.
Springer, 2005. (Tech. Report, U. Edinburgh, June 2004).

14. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
state machines. In Proc. 11th TACAS, vol. 3440 of LNCS, 2005.

15. K. Etessami and M. Yannakakis. Recursive Markov Decision Processes and Recur-
sive Stochastic Games. In Proc. ICALP, pp. 891-903, Springer, 2005.

16. K. Etessami and M. Yannakakis. Checking LTL Properties of Recursive Markov
Chains. In Proc. 2nd Intl. Conf. on Quantitative Evaluation of Systems, IEEE,
2005.

17. K. Etessami and M. Yannakakis. Efficient Analysis of Classes of Recursive Markov
Decision Processes and Stochastic Games, submitted.

18. E. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Processes.
Kluwer, 2002.

19. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
20. M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric

problems. In 8th ACM Symp. on Theory of Computing, pages 10–22, 1976.
21. T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
22. P. Jagers. Branching Processes with Biological Applications. Wiley, 1975.
23. A. N. Kolmogorov and B. A. Sevastyanov. The calculation of final probabilities for

branching random processes. Dokl. Akad. Nauk SSSR, 56:783–786, 1947. (Russian).
24. M. Kwiatkowska. Model checking for probability and time: from theory to practice.

In 18th IEEE LICS, pages 351–360, 2003.
25. C. Manning and H. Schütze. Foundations of Statistical Natural Language Process-

ing. MIT Press, 1999.
26. A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
27. A. Pnueli and L. D. Zuck. Probabilistic verification. Inf. and Comp., 103(1):1–29,

1993.
28. M. L. Puterman. Markov Decision Processes. Wiley, 1994.
29. J. Renegar. On the computational complexity and geometry of the first-order

theory of the reals, parts I-III. J. Symb. Comp., 13(3):255–352, 1992.
30. Y. Sakakibara, M. Brown, R Hughey, I.S. Mian, K. Sjolander, R. Underwood, and

D. Haussler. Stochastic context-free grammars for tRNA modeling. Nucleic Acids
Research, 22(23):5112–5120, 1994.

31. B. A. Sevastyanov. The theory of branching processes. Uspehi Mathemat. Nauk,
6:47–99, 1951. (Russian).

32. P. Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. Journal
of Complexity, pages 393–397, 1992.

33. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proc. of 26th IEEE FOCS, pages 327–338, 1985.

Embedding Point Sets into Plane Graphs
of Small Dilation

Annette Ebbers-Baumann1, Ansgar Grüne1, Marek Karpinski2, Rolf Klein1,
Christian Knauer3, and Andrzej Lingas4

1 University of Bonn, Institute of Computer Science I, D-53117 Bonn, Germany
{ebbers, gruene, rolf.klein}@cs.uni-bonn.de

2 University of Bonn, Institute of Computer Science V, D-53117 Bonn, Germany
marek@cs.uni-bonn.de

3 FU Berlin, Institute of Computer Science, D-14195 Berlin, Germany
christian.knauer@inf.fu-berlin.de

4 Lund University, Department of Computer Science, 22100 Lund, Sweden
andrzej.lingas@cs.lth.se

Abstract. Let S be a set of points in the plane. What is the minimum
possible dilation of all plane graphs that contain S? Even for a set S as
simple as five points evenly placed on the circle, this question seems hard
to answer; it is not even clear if there exists a lower bound > 1. In this
paper we provide the first upper and lower bounds for the embedding
problem.

1. Each finite point set can be embedded into the vertex set of a finite
triangulation of dilation ≤ 1.1247.

2. Each embedding of a closed convex curve has dilation ≥ 1.00157.
3. Let P be the plane graph that results from intersecting n infinite

families of equidistant, parallel lines in general position. Then the
vertex set of P has dilation ≥ 2/

√
3 ≈ 1.1547.

Keywords: Dilation, geometric network, lower bound, plane graph,
spanning ratio, stretch factor.

1 Introduction

Transportation networks like railway systems can be modeled by geometric
graphs: stations correspond to vertices, and the tracks between stations are rep-
resented by arcs. One measure of the performance of such a network P is given
by its vertex-to-vertex dilation. For any two vertices, p and q, let π(p, q) be a
shortest path from p to q in P . Then,

δP (p, q) :=
|π(p, q)|

|pq|
measures the detour one encounters in using P , in order to get from p to q,
instead of traveling straight; here |.| denotes the Euclidean length. The dilation
of P is given by

δ(P) := sup
p,q vertices of P

δP (p, q).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 5–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 A. Ebbers-Baumann et al.

1.1 Problem Statement

Suppose we are given a set of stations, and we want to build a network connecting
them whose dilation is as low as possible. In this work we are assuming that
bridges cannot be used. That is, where two or more tracks cross each other, a
station is required, that must also be considered in evaluating the dilation of the
network.

More precisely, we are given a set S of points in the plane, and we are inter-
ested in plane graphs P = (V,E) whose vertex set V contains S, such that the
dilation δ(P) is as small as possible. At this point we are not concerned with
the algorithmic cost of computing P , nor with its building cost in terms of the
total length of all edges in E, or the size of V—only the dilation of P matters.
However, to rule out degenerate solutions like the complete graph over all points
in the real plane, we require that the vertex set V of P contains only a finite
number of vertices in addition to S. This leads to the following definition.

Definition 1. Let S be a set of points in the plane. Then the dilation of S is
given by

∆(S) = inf { δ(P);P = (V,E) plane graph & S ⊆ V & V \ S finite } .

The challenge is in computing the dilation of a given point set. Even for a
set as simple as S5, the vertices of a regular 5-gon, ∆(S5) is not known. It is
not even clear if ∆(S5) > 1 holds.1 Figure 1 depicts some attempts to find good
embeddings for S5.

(i) (ii) (iii)

Fig. 1. Embedding five points in regular position into the vertex set of a plane graph
of low dilation. (i) Constructing the complete graph results in a new 5-gon. (ii) A star
yields dilation ≈ 1.05146. (iii) Using a 4-gon around an off-center point gives dilation
≈ 1.02046, as was shown by Lorenz [17].

1 While S5 is not contained in the vertex set of any plane graph of dilation 1, according
to the characterization of dilation-free graphs given by D. Eppstein [12], there could
be a sequence of plane graphs, each containing S5, whose dilation shrinks towards 1.

Embedding Point Sets into Plane Graphs of Small Dilation 7

1.2 Related Work

In the context of spanners, the dilation is often called the stretch factor or the
spanning ratio of a graph P ; see Eppstein’s handbook chapter [11], Arikati et
al. [3], or the forthcoming monograph [18] by Narasimhan and Smid. However,
spanners are usually allowed to contain edge crossings, unlike the plane graphs
considered here.

Substantial work has been done on proving upper bounds to the dilation of
certain plane graphs. For example, Dobkin et al. [5] and Keil and Gutwin [16]
have shown that the Delaunay triangulation of a finite point set has a dilation
bounded from above by a small constant. The best upper bound known is 2.42,
but a better bound of π/2 is conjectured to hold. Moreover, there are structural
properties of plane graphs, like the good polygon and diamond properties, which
imply that the dilation is bounded from above, see Das and Joseph [4]. This
result implies that the minimum weight and the greedy triangulations also have
a dilation bounded by a constant. Our approach differs from this work, in that
the use of extra vertices is allowed. This will lead to an upper bound considerably
smaller than π/2.

Quite recently, a related measure called geometric dilation has been intro-
duced, see [10,8,1,6,9,7], where all points of the graph, vertices and interior edge
points alike, are considered. The small difference in definition leads to rather dif-
ferent results which do not apply here. For example, plane graphs of minimum
geometric dilation tend to have curved edges, whereas for the vertex-to-vertex
dilation, straight edges work best.

1.3 New Results

In this paper we provide the first lower and upper bounds to the dilation of point
sets, as defined in Definition 1. First, in Section 2, we prove a structural property
similar in spirit to the good polygon and diamond properties mentioned above.
If a plane graph P contains a face R whose diameter is a weak local maximum,
so that each face in a certain neighborhood of R has a diameter at most a few
percents larger than R, then the dilation of P can be bounded away from 1. We
will derive the following consequence. If C denotes a closed convex curve then
∆(C) > 1.00157 holds for the set of points on C, i.e., each point on curve C is
considered a degree 2 vertex; see Figure 2 (i). Another consequence: If P is a
plane graph whose faces have diameters bounded from above by some constant
then δ(P) > 1.00156 holds.

When looking for plane graphs of low dilation that can accommodate a set of
given points, grids come to mind. Even the simple quadratic grid consisting of
equidistant vertical and horizontal lines has a vertex-to-vertex dilation of only√

2 ≈ 1.414, and we can force its vertex set to contain any finite number of
points with rational coordinates, by choosing the cell size appropriately. How to
accommodate points with real coordinates is discussed in the full paper. If we
use three families of lines, as in the tiling of the plane by equilateral triangles, a
smaller dilation of only 2/

√
3 ≈ 1.1547 can be achieved; see Figure 3.

8 A. Ebbers-Baumann et al.

(i) (ii) (iii)

Fig. 2. Results. (i) Each embedding of a closed convex curve has dilation > 1.00157.
(ii) Each such arrangement has dilation > 1.1547. (iii) Each finite point set has dilation
< 1.1247.

An interesting question is if the dilation can be decreased even further by using
lines of more than three different slopes. The answer is somewhat surprising,
because parallel highways, a mile apart, for each orientation 2πi/n, would in fact
provide very low dilation to long distance traffic. But there are always vertices
relatively close to each other, for which the dilation is at least 2/

√
3 as we shall

prove in Section 3.
Yet in Section 4 we introduce a way of getting below the 2/

√
3 bound offered

by the equitriangular tiling depicted in Figure 3. One can modify this tiling by
replacing each vertex with a triangle, and by connecting neighboring triangles
as shown in Figure 2 (iii). The resulting graph has a dilation less than 1.1247.
We can scale, and slightly deform this graph, so that its vertex set contains any
given finite set of points; then we cut off the unbounded part which does not
host any point. These operations increase the dilation by some factor that can
be made arbitrarily small. Thus we obtain that ∆(S) < 1.1247 holds, for every
finite point set S.

Finally, in Section 5, we address some of the questions left open and discuss
future work.

2 A Lower Bound

First, we introduce some notations. Let P be a plane graph, and let R be a face
of P with boundary ∂(R). As usual, let

diam(R) = sup{ |ef | ; e, f vertices of R}

be the diameter of R; unbounded faces have infinite diameter. Now let R be a
bounded face of P . For any positive number r, the r-neighborhood of face R is
defined as the set of all faces of P that have non-empty intersection with a disk
of radius r centered at the midpoint of a segment ef , where e, f are vertices on
∂(R) satisfying |ef | = diam(R); see Figure 4. If there are more than one pair
e, f of vertices of this kind we break ties arbitrarily. One should observe that the
r-neighborhood of a bounded face may include unbounded faces of P .

Embedding Point Sets into Plane Graphs of Small Dilation 9

e

f

d< cd
R

ρd

Fig. 3. The tiling by equilateral tri-
angles is of dilation 2/

√
3 ≈ 1.1547

Fig. 4. No face intersected by the disk is
of diameter > cd

The results of this section are based on the following lemma.

Lemma 1. For each parameter c ∈ [1, 1.5) there exist numbers ρ > 1 and δ > 1
such that the following holds. Suppose that the plane graph P contains a bounded
face R of diameter d, such that all faces in the ρd-neighborhood of R have diam-
eter less than cd.2 Then the dilation of P is at least δ.

e

f

R

1

−1

√
3

2
v

v + c+ 2κc

c c

κ

a

c− a/2

p

r ts

L

G

BB

G

Fig. 5. Constructing a lower bound

Proof. We may assume that face R is of diameter d = 1. Also, we assume that
ef is vertical and that its midpoint equals the origin; see Figure 5. As no vertex
of ∂(R) has a distance > 1 from e or from f , face R is completely contained in
the lune spanned by e and f .3

Now we place two axis-parallel boxes of width c and height a symmetrically
on the X-axis, at a distance of v + κ to either side of the origin; these boxes
are denoted by G in Figure 5. The parameters a, v, and κ will be chosen later.
2 This implies that only bounded faces can be included in the ρd-neighborhood of R.
3 The lune spanned by e and f equals the intersection of the two circles of radius |ef |

centered at e and f , respectively.

10 A. Ebbers-Baumann et al.

Suppose that all faces of P that intersect the disk of radius ρ := v+ c+ κ about
the origin have a diameter less than c.

Now, let us consider such a box, G. As its width equals c, there cannot
exist two points on the left and on the right vertical side of G, respectively,
that are contained in the same face R′ of the graph, because this would imply
diam(R′) ≥ c. Thus, the vertical sides of G must be separated by P , i. e., there
must be a sequence of edges, or a single edge, cutting through the upper and
lower horizontal sides of G. In the first case, box G must contain a vertex of P ,
as shown on the right hand side in the figure. In the second case, the edge that
crosses G top-down must itself be of length < c, because it belongs to a face
intersected by the disk of radius ρ. We enclose G in the smallest axis-parallel
box B which contains all line segments of length c that cross both horizontal
sides of G. The outer box B is of height 2c− a, its width exceeds the width c of
G by κ = κ(a, c) on either side, to include all slanted segments. The analysis of
κ(a, c) can be found in the full paper. By construction, both the upper and the
lower half of B must contain a vertex of P in the second case, as shown on the
left hand side of Figure 5.

Now we discuss how to choose the parameters v and a such as to guarantee a
dilation of δ > 1 in either possible case. First, we let v >

√
3/2 so that the boxes

B are disjoint from the lune; consequently, every shortest path in P connecting
vertices in the two boxes B has to go around the face R.

Case 1. Each of the boxes G contains a vertex of P . If a is less than |ef | = 1
then these vertices cause a dilation of at leas t a certain value δ > 1 which
depends only on a, c, v and κ.

Case 2. Each of the boxes B contains two vertices of P , one above, and one
below the X-axis. Let p and r denote vertices in the upper part of the left and
in the lower part of the right box B, respectively. We assume w. l. o. g. that the
shortest path in P connecting them runs below vertex f , so that its length is
at least |pf | + |fr|. If we make sure that, even at the extreme position depicted
in Figure 5, vertex r lies above the line L through p and f , a dilation δ > 1 is
guaranteed. The equation of L is given by

Y = − 1
2(v + c+ 2κ)

X − 1
2
.

Thus, we must ensure that

−(c− a

2
) > − 1

2(v + c+ 2κ)
v − 1

2

or, equivalently,

a > 2c− 1 − v

v + c+ 2κ

holds. Together with the condition 1 > a from Case 1 we obtain

Embedding Point Sets into Plane Graphs of Small Dilation 11

3 − 2c > a+ 2 − 2c >
c+ 2κ

v + c+ 2κ
> 0. (*)

Case 3. There exist at least one vertex of P in the left box G, and at least
two vertices in the right box B, above and below the X-axis. Since the vertex
in the box G must reside in either the upper or the lower part of the enclosing
box B, Case 2 applies.

Clearly, the above conditions can be fulfilled for each given c ∈ [1, 1.5). First,
we pick a ∈ (2c−2, 1), which guarantees 3−2c > a+2−2c > 0. Then we choose
v >

√
3/2 so large that the second inequality in condition (*) is satisfied. This

proves Lemma 1.

It is quite straightforward to derive quantitative results from the above con-
struction, by adjusting the values of the parameters a and v. The following
numerical values for ρ and δ have been obtained using Maple.

c 1.0 1.001 1.1 1.2 1.3 1.4
δ 1.00157 1.00156 1.00043 1.000092 1.000012 1.00000056
ρ 1.923 1.925 2.46 3.9 6.9 16.5

As a first consequence, we get the following result.

Theorem 1. Let P be a infinite graph whose faces cover the whole plane and
have a diameter bounded from above by some constant. Then δ(P) > 1.00156
holds for its dilation.

Proof. By assumption, d∗ := sup{diam(R) : R face of P} is finite. For each
ε > 0 there exists a face R of P such that diam(R) > (1 − ε)d∗ holds. By the
assumption on graph P , all faces R′ of P , in particular those in any neighborhood
of R, satisfy

diam(R′) ≤ d∗ <
1

1 − ε
diam(R) ≤ 1.001 diam(R),

if ε is small enough. Thus, graph P has dilation at least 1.00156.

The second consequence of Lemma 1 is a lower bound to the ∆ function.

Theorem 2. Let C denote the set of points on a closed convex curve. Then
∆(C) > 1.00157 holds for its dilation.

Proof. (Sketch) If curve C intersects or encircles a box G, we can argue as before.
If C passes between G and ef it becomes even easier to provide two points of
high dilation.

For the circle one can find an embedding of dilation (1 + ε)/ sin 1 ≈ 1.188
by placing a single vertex at the center and adding many equidistant radial
segments.

12 A. Ebbers-Baumann et al.

3 A Lower Bound for Line Arrangements

A lower bound much stronger than 1.00157 can be shown for graphs that result
from intersecting n families Fi of infinitely many equidistant parallel lines. Each
family is defined by three parameters, its orientation αi, the distance wi in X-
direction between consecutive lines, and the offset distance ei from the origin to
the first line in positive X-direction. We say that such families are in general
position if the numbers w−1

i are linearly independent over the rationals4.

Theorem 3. Given n families Fi, 2 ≤ i ≤ n, each consisting of infinitely many
equidistant parallel lines. Suppose that these families are in general position.
Then their intersection graph P is of dilation at least 2/

√
3.

One should observe that this lower bound is attained by the equitriangular
grid shown in Figure 3.

Proof. For n ≤ 3 the claim can be proven quite easily without assuming general
position, as shown in the full paper.

Now let n > 3. We shall prove the existence of a face R of P that represents
so large a barrier between two vertices p and p′ of P that even the Euclidean
shortest path from p to p′ around R is of dilation at least 2/

√
3. In fact, we shall

provide such a face and two vertices that are symmetric about the same center
point, which greatly helps with our analysis; see Figure 6. To this end we use the
general position assumption, and apply Kronecker’s theorem [2] on simultaneous
approximation in its following form.

Theorem 4. (Kronecker) Let L be a line in Rn that passes through the origin
and through some point (y1, . . . , yn) whose coordinates are linearly independent
over the rationals. For each point t ∈ Rn, and for each ε > 0, there is an integer
translate t+m, m ∈ Zn, of t whose ε−neighborhood is visited by L.

In other words, line L is dense on the torus Rn/Zn. Proofs can be found in,
e. g., Apostol [2] or Hlawka [15].

Since the families of lines are in general position, the real numbers yi :=
w−1

i , 1 ≤ i ≤ n, do not satisfy a linear equation with rational coefficients. Kro-
necker’s theorem, applied to ti := ei/wi + 1/2 and ε > 0 yields the existence of
integers mi and of a real number x satisfying

| ei

wi
+

1
2

+mi − x
1
wi

| < ε

that is,

|ei +
1
2
wi +mi wi − x| < ε wi.

Consequently, the point (x, 0) lies, for each family Fi, halfway between two neigh-
boring lines, so that it is center of symmetry for some face R in P—up to an
error that can be made arbitrarily small since the numbers wi are fixed.
4 This means, if n

i=1 ai w−1
i = 0 holds for rational coefficients ai then each ai must

be zero.

Embedding Point Sets into Plane Graphs of Small Dilation 13

From now on, we assume that R is symmetric about the origin, and that its
longest diagonal, d, is vertical and of length 2. Let us assume that the dilation
of graph P is less than 2/

√
3. We shall derive a contradiction by proving that

there exist two families of lines that contribute to the boundary of R and have
symmetric intersection vertices p, p′ that cause a dilation > 2/

√
3 in the presence

of the barrier R. Since R is symmetric, it is sufficient to provide one such vertex
p satisfying

|pa| + |pb|
2|p| ≥ 2/

√
3

where a and b are the endpoints of diagonal d, and |p| = |p0| denotes the distance
from p to the origin, as shown in Figure 6.

To this end, consider the locus E of all points where equality holds in the
above inequality, see Figure 7. E satisfies the quartic equation (X2 +Y 2 − 3

2)2 =
9
4 (1−Y 2). We want to show that the right part of its interior—referred to as an
ear, due to its shape—contains a vertex p of P .

R

p′

p

d

0

a

b

K L(e)

a = (0, 1)

b = (0,−1)

0

E

α

R

s

t

v

p

p′ d

L(e)

earwidth(e)

right ear

λ

Fig. 6. A symmetric face
acting as barrier

Fig. 7. The locus E of all points that cause dilation
2/
√

3 in the presence of line segment ab. The halfline
L(e) extends the edge e = bv to the right.

Since d is the longest diagonal of the symmetric face R, the vertices of R are
contained in the circle spanned by d. On the other hand, R itself is of dilation
< 2/

√
3, by assumption. Hence, the vertices of R must be outside of the locus

curve. This leaves only the small caps at a, b for the remaining vertices of R, and
∂(R) must contain two long edges.

First, assume that R is a parallelogram, as shown in Figure 7. Its shape is de-
termined by the position of its lower right vertex v in the bottom cap. Consider
the edge e from vertex b to v. Its extension beyond v, L(e), intersects the right ear
in a segment of length earwidth(e). In Figure 7 we have earwidth(e) = |st|, while
the length of the intersection of L(e) with the lower cap equals |bs|. The ratio

14 A. Ebbers-Baumann et al.

|st|/|bs| takes on its minimum value 3.11566 . . . > 1 at the angle α ≈ 9.74◦, when
L(e) hits the intersection point, λ, of the locus curve with the circle. Because of

earwidth(e) > 3.11|bs| ≥ 3.11|bv| > |bv|

the segment of L(e) passing through the ear must contain a vertex p of the two
line families bounding R. This proves Theorem 3 in case faceR is a parallelogram.

It is interesting to observe that in the limiting case α = 0, when R degenerates
into its diagonal d, the largest possible dilation 2/

√
3 is only attainable by picking

p as the bottommost point of the ear. This shows why these arguments would
not work for any lower bound larger than 2/

√
3.

Now let R be a general symmetric convex polygon. We may assume that its
two long edges have non-positive slope. Let K denote the convex boundary chain
of R that starts at vertex b and leads to the right until it hits the rightmost long
edge of R. In this situation the following holds.

Lemma 2. There exists an edge e in chain K such that the line L(e) passing
through e has the following property. The intersection of L(e) with the the right
ear of the locus curve is at least twice as long as the vertical projection of chain
K onto L(e).

The proof of Lemma 2 requires some technical effort; we skip it due to space
limitations. Consider Figure 8. Let cut(e) denote the length of the segment of
L(e) that is cut out by the extensions of the long edges of face R, and let projK(e)
be the length of the vertical projection of chain K onto L(e). By translating L(e)
to the endpoint of K, we can see cut(e) ≤ 2 projK(e), so Lemma 2 implies

cut(e) ≤ 2 projK(e) ≤ earwidth(e).

This guarantees the existence of a vertex of P in the interior of the locus curve
and completes the proof of Theorem 3 in the general case.

4 An Upper Bound to the Dilation of Finite Point Sets

First, we show how to modify the equitriangular grid, H , displayed in Figure 3,
in order to decrease its dilation. The construction is shown in Figure 9.

We replace each vertex v of H with an equilateral triangle T that has one
vertex on each of the three lines passing through v in H . The distance, a, between
the vertices and the center v of T is a parameter of our construction. Next, we
connect by an edge each vertex of T to the two visible vertices of its neighboring
triangle T ′. Afterwards, all vertices and edges of the old graph H are removed.
Let HA = HA(a) denote the resulting graph.

Theorem 5. Within the family HA(a), the minimum dilation of 1.1246 . . . is
attained for a ≈ 0.2486.

Embedding Point Sets into Plane Graphs of Small Dilation 15

projK(e)

cut(e)
e

earwidth(e)

R

K

L(e)
√

3γ

γ

Fig. 8. Vertically projecting the convex chain K onto the
line L(e). The intersection of L(e) with the right ear of
the locus curve is of length earwidth(e).

Fig. 9. The new graph HA

of dilation ≈ 1.1246

Proving this result requires considerable technical effort. For example, it is in
general not true that the dilation of an unbounded graph is attained by vertices
that are close to each other, as a rectangular grid of irrational aspect ratio shows.
After introducing global and local coordinates for the vertices of HA, one has to
distinguish 45 shortest path types. Closer inspection leads to four functions of
the integer coordinates i, j, whose maximum must be minimized by a suitable
choice of parameter a.

A vertex pair causing maximum dilation is shown in Figure 9, together with
two shortest paths connecting the two vertices. We obtain the following conse-
quence of Theorem 5.

Theorem 6. Each finite point set S is of dilation ∆(S) < 1.1247.

The proof uses a technique introduced in [8] which is also based on the approx-
imation of reals by rationals. It allows us to scale HA, and distort it carefully,
without affecting the dilation by more than a factor arbitrary close to 1, so that
the points of S can be accommodated in a finite part of the graph that contains,
for any two vertices, the shortest path connecting them in the original graph HA.

5 Conclusion

We have introduced the notion of the dilation of a set of points, and proven a
non-trivial lower bound to the dilation of the points on a closed curve. The big
challenge is in proving a similar lower bound for a finite set of points like, e.g.,
S5. As to the arrangements of lines, we conjecture that our lower bound holds
without the assumption of general position. Another interesting question is the
following. What is the lowest possible dilation of a graph whose faces cover the
whole plane and have bounded diameter? Our results place this value into the
interval (1.00157, 1.1247). Any progress on the upper bound might lead to an
improvement of Theorem 6.

16 A. Ebbers-Baumann et al.

References

1. P. Agarwal, R. Klein, Ch. Knauer, S. Langerman, P. Morin, M. Sharir, and M. Soss.
Computing the Detour and Spanning Ratio of Paths, Trees and Cycles in 2D and
3D. Manuscript, submitted for publication, 2005.

2. T. M. Apostol. Dirichlet Series in Number Theory, 2nd ed. Springer-Verlag, 1997.
Pp. 148–155.

3. S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, and M. Smid. Planar Spanners
and Approximate Shortest Path Queries Among Obstacles in the Plane. European
Symposium on Algorithms, 514–528, 1996.

4. G. Das and D. Joseph. Which Triangulations Approximate the Complete Graph?
Proc. Int. Symp. Optimal Algorithms, Springer LNCS 401, 168–192, 1989.

5. D.P. Dobkin, S.J. Friedman, and K.J. Supowit. Delaunay Graphs Are Almost as
Good as Complete Graphs. Discrete & Computational Geometry 5:399-407 (1990).

6. A. Dumitrescu, A. Grüne, and G. Rote. On the Geometric Dilation of Curves and
Point Sets. Manuscript, 2004.

7. A. Dumitrescu, A. Ebbers-Baumann, A. Grüne, R. Klein, and G. Rote. On Geo-
metric Dilation and Halving Chords. WADS’05

8. A. Ebbers-Baumann, A. Grüne, and R. Klein. On the Geometric Dilation of Finite
Point Sets. 14th International Symposium ISAAC 2003, Kyoto. In T. Ibaraki,
N. Katoh, and H. Ono (Eds.) Algorithms and Computation, Proceedings, pp. 250–
259, LNCS 2906, Springer-Verlag, 2003. To appear in Algorithmica.

9. A. Ebbers-Baumann, A. Grüne, and R. Klein. Geometric Dilation of Closed Planar
Curves: New Lower Bounds. To appear in Computational Geometry: Theory and
Applications.

10. A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A Fast Algorithm
for Approximating the Detour of a Polygonal Chain. Computational Geometry:
Theory and Applications, 27:123–134, 2004.

11. D. Eppstein. Spanning trees and spanners. In Handbook of Computational Geom-
etry, J.-R. Sack and J. Urrutia, editors, pp. 425-461. Elsevier, 1999.

12. D. Eppstein. The Geometry Junkyard. http://www.ics.uci.edu/∼eppstein/
junkyard/dilation-free/.

13. D. Eppstein and D. Hart. Shortest Paths in an Arrangement with k Line Orienta-
tions. Proceedings 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 310-316, 1999.

14. S. Fekete, R. Klein, and A. Nüchter. Online Searching with an Autonomous Robot.
Workshop on Algorithmic Foundations of Robotics, 2004.

15. E. Hlawka. Theorie der Gleichverteilung. BI Wissenschaftsverlag.
16. J.M. Keil and C.A. Gutwin. The Delaunay Triangulation Closely Approximates

the Complete Euclidean Graph. Discrete Comput. Geom. 7, 1992, pp. 13-28.
17. D. Lorenz. On the Dilation of Finite Point Sets. Diploma Thesis. Bonn, 2005.
18. G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University

Press, to appear.

The Layered Net Surface Problems in Discrete
Geometry and Medical Image Segmentation

Xiaodong Wu1,�, Danny Z. Chen2,��, Kang Li3, and Milan Sonka4,� � �

1 Departments of Electrical & Computer Engineering and Radiation Oncology,
University of Iowa, Iowa City, Iowa 52242, USA

xiaodong-wu@uiowa.edu
2 Department of Computer Science and Engineering,

University of Notre Dame, Notre Dame, IN 46556, USA
chen@cse.nd.edu

3 Dept. of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

kangl@cmu.edu
4 Dept. of Electrical and Computer Engineering, University of Iowa,

Iowa City, IA 52242-1595, USA
sonka@engineering.uiowa.edu

Abstract. Efficient detection of multiple inter-related surfaces repre-
senting the boundaries of objects of interest in d-D images (d ≥ 3) is
important and remains challenging in many medical image analysis ap-
plications. In this paper, we study several layered net surface (LNS) prob-
lems captured by an interesting type of geometric graphs called ordered
multi-column graphs in the d-D discrete space (d ≥ 3). The LNS prob-
lems model the simultaneous detection of multiple mutually related sur-
faces in three or higher dimensional medical images. Although we prove
that the d-D LNS problem (d ≥ 3) on a general ordered multi-column
graph is NP-hard, the (special) ordered multi-column graphs that model
medical image segmentation have the self-closure structures, and admit
polynomial time exact algorithms for solving the LNS problems. Our
techniques also solve the related net surface volume (NSV) problems of
computing well-shaped geometric regions of an optimal total volume in
a d-D weighted voxel grid. The NSV problems find applications in med-
ical image segmentation and data mining. Our techniques yield the first
polynomial time exact algorithms for several high dimensional medical
image segmentation problems. The practical efficiency and accuracy of
the algorithms are showcased by experiments based on real medical data.

� This research was supported in part by a faculty start-up fund from University of
Iowa.

�� This research was supported in part by the National Science Foundation under
Grants CCR-9988468 and CCF-0515203.

� � � This research was supported in part by NIH-NHLBI research grants R01-HL063373
and R01-HL071809.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 17–27, 2005.
© Springer-Verlag Berlin Heidelberg 2005

18 X. Wu et al.

1 Introduction

In this paper, we study the layered net surface (LNS) problems and their exten-
sions in discrete geometry. These problems arise in d-D medical image segmen-
tation (d ≥ 3) and other applications.

As a central problem in image analysis, image segmentation aims to define
accurate boundaries for the objects of interest captured by image data. Accurate
3-D image segmentation techniques promise to improve medical diagnosis and
revolutionize the current medical imaging practice. Although intensive research
has been done on image segmentation in several decades, efficient and effective
high dimensional image segmentation still poses one of the major challenges in
image understanding. As one common practice, to identify surface represent-
ing the boundary of the sought 3-D object, 2-D image slices are more or less
analyzed independently, and the 2-D results are stacked together to form the
3-D segmentation. One most successful and widely used technique is based on
2-D dynamic programming and optimal graph searching [11]. These approaches
have inherent limitations – the most fundamental one stems from the lack of
contextual slice-to-slice information when analyzing a sequence of consecutive
2-D images. Performing the segmentation directly on a 3-D image can produce
a more consistent segmentation result, yielding 3-D surfaces for object bound-
aries instead of a set of individual 2-D contours. Another active and far-reaching
line of research in this area rely on variational calculus and numerical methods,
e.g. level set methods and deformable models [9]. Although these approaches
are theoretically powerful, the interfacing between continuous formulations and
discrete solutions involve numerical approximation and stability issues.

We present a novel graph-theoretic technique for the problem of simultaneous
segmentation of multiple inter-related surfaces in three or higher dimensional
medical images, namely, the LNS problem. This technique is practically sig-
nificant since many surfaces in medical images appear in mutual relations. A
number of medical imaging problems can benefit from an efficient method for
simultaneous detection of multiple inter-related 3-D surfaces [11, 15, 9].

The simultaneous detection of multiple inter-related surfaces has been stud-
ied by the medical image analysis community for a long time. For the 2-D case,
there are several satisfactory results [11, 1, 14]. However, little work has been
done on the three and higher dimensional cases. Previous attempts [12, 3] on
extending graph-search based segmentation methods for the 2-D case to identi-
fying even a single optimal surface in 3-D medical images either made the meth-
ods computationally intractable or traded their ability to achieve global optima
for computational efficiency. Motivated by this segmentation problem, Wu and
Chen [13] introduced the optimal net surface problems and presented efficient
polynomial time exact algorithms for them. But, the algorithms in [13] can de-
tect only one optimal surface in 3-D. An implementation of their algorithms and
experimental validation based on real 3-D medical images were presented in [7].
More recently, Li et al. [8] extended the approach [13,7] to segmenting multiple
inter-related surfaces in 3-D. However, their new method does not consider the
very important region information (e.g., homogeneity) for the surface detection.

The LNS Problems in Discrete Geometry and Medical Image Segmentation 19

Modeling the simultaneous detection of multiple inter-related surfaces in high
dimensional medical images, we introduce the layered net surface (LNS) prob-
lems on an interesting type of geometric graphs, called ordered multi-column
graphs, embedded in the d-D discrete space for d ≥ 3 (to be defined in Section
2). We further extend the LNS problems to a more general ordered multi-column
graph (Section 5). Motivated by segmenting anatomical structures with a rela-
tively regular geometric shape, such as the left ventricles, kidneys, livers, and
lungs, we also study several net surface volume (NSV) problems, which aim to
find well-shaped regions of an optimal “volume” in a d-D weighted voxel grid.
These well-shaped geometric regions are closely related to monotonicity and
convexity in d-D discrete spaces (Section 4). Our main results in this paper are
summarized as follows.

– We develop an efficient algorithm for solving the LNS problem on an interest-
ing type of ordered multi-column graphs in polynomial time, by formulating
it as computing a minimum closed set in a vertex-weighted directed graph.

– We extend our LNS technique to solving the NSV problems of computing
several classes of optimal well-shaped geometric regions in a d-D weighted
voxel grid. These NSV problems arise in data mining [2], image segmentation
[1], and data visualization. The classes of regions that we study can be viewed
as generalizations of some of the pyramid structures in [2].

– We prove that the LNS problem on a general ordered multi-column graph
is NP-hard. However, the (special) ordered multi-column graphs that model
medical image segmentation applications have additional properties, and the
LNS problem on such graphs is polynomially solvable.

– We apply our polynomial time LNS algorithms to segmenting multiple inter-
related object boundaries in 3-D medical images.

We omit the proofs of the lemmas and theorems due to the page limit.

2 The Layered Net Surface (LNS) Problems

A multi-column graph G = (V,E) embedded in the d-D discrete space is defined
as follows. For a given undirected graph B = (VB , EB) embedded in (d − 1)-
D (called the net model) and an integer κ > 0, G is an undirected graph
in d-D generated by B and κ. For each vertex v = (x0, x1, . . . , xd−2) ∈ VB ,
there is a sequence Col(v) of κ vertices in G corresponding to v; Col(v) =
{(x0, x1, . . . , xd−2, k) : k = 0, 1, . . . , κ− 1}, called the v-column of G. We denote
the vertex (x0, x1, . . . , xd−2, k) of Col(v) by vk. If an edge (v, u) ∈ EB , then
we say that the v-column and u-column in G are adjacent to each other. For
each vertex vk ∈ Col(v), vk has edges in G to a non-empty list of consecutive
vertices in every adjacent u-column Col(u) of Col(v), say uk′ , uk′+1, . . . , uk′+s

(s ≥ 0); we call (uk′ , uk′+1, . . . , uk′+s), in this order, the edge interval of vk on
Col(u), denoted by I(vk, u). For an edge interval I, we denote by Bottom(I)
(resp., Top(I)) the d-th coordinate of the first (resp., last) vertex in I (e.g.,
Bottom(I(vk, u)) = k′ and Top(I(vk, u)) = k′ + s in the above example).

20 X. Wu et al.

(c)

1Col()1vCol() u3Col()3vCol()

u1

1v

u3

3v

(b)

u

2v v

u2

(a)
0

u0

Fig. 1. (a) A 2-D net model B. (b) A 3-D properly ordered multi-column graph G
generated by B and κ = 4 (the edges between Col(ui) and Col(ui+1), i = 0, 1, 2, are
symmetric to those between Col(vi) and Col(vi+1), and the edges between Col(vj) and
Col(uj), j = 1, 2, are symmetric to those between Col(v3) and Col(u3); all these edges
are omitted for a better readability). (c) Two (1, 2)-separate net surfaces in G marked
by heavy edges. (d) Two net surfaces divide the vertex set of G into three disjoint
vertex subsets.

Two adjacent columns Col(v) and Col(u) in G are said to be in proper order if
for any two vertices vk and vk+1 inCol(v),Bottom(I(vk , u))≤ Bottom(I(vk+1, u))
and Top(I(vk, u)) ≤ Top(I(vk+1, u)), and if the same holds for any two vertices
uk and uk+1 of Col(u) on Col(v). The corresponding edge (v, u) ∈ EB is called
a proper edge. If all pairs of adjacent columns in G are in proper order, then we
call G a properly ordered multi-column graph (briefly, a properly ordered graph).
Figures 1(a)–1(b) show a net model and a properly ordered graph.

Note that in medical image segmentation, the boundaries of the target objects
(e.g., organs) are often sufficiently “smooth”. The smoothness constraint on the
sought surfaces is modeled by the proper ordering of the edges in a multi-column
graph G, that is, the edges connecting each vertex vk in G to every adjacent
column Col(u) of Col(v) form an edge interval on Col(u), and such edge intervals
for any two adjacent columns of G are in proper order.

A net surface in G (also called a net) is a subgraph of G defined by a function
N : VB → {0, 1, . . . , κ− 1}, such that for every edge (v, u) ∈ EB, (vk′ , uk′′), with
k′ = N (v) and k′′ = N (u), is also an edge in G. For simplicity, we denote a net
by its function N . Intuitively, a net N in G is a special mapping of the (d−1)-D
net model B to the d-D space, such that N “intersects” each v-column of G at
exactly one vertex and N preserves all topologies of B. N can be viewed as a
functional “surface” of B in d-D defined on the (d − 1)-D space in which B is
embedded.

Given two integers L and U , 0 < L < U , two nets N 1 and N 2 of a properly
ordered graph G are said to be (L,U)-separate if L ≤ N 2(v)−N 1(v) ≤ U for
every vertex v ∈ VB . Roughly speaking, N 1 and N 2 do not cross each other and
are within a specified range of distance (see Figure 1(c)). For a given set of l−1
integer parameter pairs {(Li, Ui) : 0 < Li < Ui, 1 ≤ i < l}, l ≥ 2, we consider l
net surfaces NS = {N 1,N 2, . . . ,N l} in G such that N i+1 is “on top” of N i (i.e.,
∀v ∈ VB, N i+1(v) > N i(v)), and N i and N i+1 are (Li, Ui)-separate. Then, these
l net surfaces partition the vertex set V of G into l+1 disjoint subsets Ri, with
R0 = {vk : v ∈ VB , 0 ≤ k ≤ N 1(v)}, Ri = {vk : v ∈ VB ,N i(v) < k ≤ N i+1(v)}
for i = 1, 2, . . . , l−1, and Rl = {vk : v ∈ VB ,N l(v) < k < κ} (see Figure 1(d)).

The LNS Problems in Discrete Geometry and Medical Image Segmentation 21

Motivated by medical image segmentation [11,16,9], we assign costs to every
vertex of G as follows. Each vertex vk ∈ V has an on-surface cost b(vk), which
is an arbitrary real value. For each region Ri (i = 0, 1, . . . , l), every vertex
vk ⊆ V is assigned a real-valued in-region cost ci(vk). The on-surface cost of
each vertex is inversely related to the likelihood that it may appear on a desired
net surface, while the in-region costs ci(·) (i = 0, 1, . . . , l) measure the inverse
likelihood of a given vertex preserving the expected regional properties of the
partition {R0, R1, . . . , Rl}. Both the on-surface and in-region costs for image
segmentation can be determined using low-level image features [9, 11, 16].

The layered net surface (LNS) problem seeks l net surfaces NS = {N 1,N 2,
. . . ,N l} in G such that the total cost α(NS) induced by the l net surfaces in
NS, with

α(NS) =
l∑

i=1

b(N i) +
l∑

i=0

ci(Ri) =
l∑

i=1

∑
u∈V (Ni)

b(u) +
l∑

i=0

∑
u∈Ri

ci(u),

is minimized, where V (H) denotes the vertex set of a graph H .
In fact, our algorithmic framework is general enough for the cases in which

each vertex has only an on-surface cost, only in-region costs, or both. We will
present our approach for the case where each vertex has both the on-surface and
in-region costs.

3 Algorithm for the Layered Net Surface (LNS) Problem

This section gives our polynomial time algorithm for the layered net surface
problem on a d-D properly ordered graph G = (V,E). We first exploit the self-
closure structure of the LNS problem, and then model it as a minimum-cost
closed set problem based on a nontrivial graph transformation scheme.

A closed set C in a directed graph with arbitrary vertex costs w(·) is a subset
of vertices such that all successors of any vertex in C are also contained in C [10].
The cost of a closed set C, denoted by w(C), is the total cost of all vertices in
C. Note that a closed set can be empty (with a cost zero). The minimum-cost
closed set problem seeks a closed set in the graph whose cost is minimized.

3.1 The Self-closure Property of the LNS Problem

Our algorithm for the LNS problem hinges on the following observations about
the self-closure structure of any feasible LNS solution. Recall that in a set of l
feasible net surfaces NS = {N 1,N 2, . . . ,N l} in G, N i+1 is “on top” of N i, for
each i = 1, 2, . . . , l − 1.

For a vertex vk ∈ V (i.e., v ∈ VB and 0 ≤ k < κ) and each adjacent column
Col(u) of Col(v) (i.e., (v, u) ∈ EB), the lower-eligible-neighbor of vk on Col(u) is
the vertex in Col(u) with the smallest d-th coordinate that has an edge to vk in
G (i.e., the vertex in Col(u) with the smallest d-th coordinate that can possibly
appear together with vk on a same feasible net surface in G).

22 X. Wu et al.

Given the surface separation constraints, we define below the upstream and
downstream vertices of any vertex in G, to help characterize the spatial relations
between feasible net surfaces in G. For every vertex vk ∈ V and 1 ≤ i < l (resp.,
1 < i ≤ l), the i-th upstream (resp., downstream) vertex of vk is vk+Li (resp.,
vmax{0,k−Ui−1}) if k + Li < κ (resp., k − Li−1 ≥ 0). Intuitively, if vk ∈ N i, then
the i-th upstream (resp., downstream) vertex of vk is the vertex in Col(v) with
the smallest d-th coordinate that can be on N i+1 (resp., N i−1).

We say that a vertex vk is below (resp., above) a net surface N i if N i(v) > k
(resp., N i(v) < k), and denote by LO(N i) the subset of all vertices of G that
are on or below N i. For every vertex vk ∈ LO(N i), consider its lower-eligible-
neighbor uk′ on any adjacent Col(u) of Col(v). Let r = N i(v) and uk′′ be the
lower-eligible-neighbor of vr on Col(u) (vr ∈ Col(v) is on N i). Then by the
definition of net surfaces, k′′ ≤ N i(u). Since k ≤ N i(v), we have k′ ≤ k′′ due to
the proper ordering. Thus, k′ ≤ N i(u), and further, uk′ ∈ LO(N i). Hence, we
have the following observation.

Observation 1. For any feasible net surface N i in G, if a vertex vk is in
LO(N i), then every lower-eligible-neighbor of vk is also in LO(N i).

Observation 1 characterizes the self-closure property of every set LO(N i).
However, our task is more involved since the l net surfaces in NS are inter-related.
We need to further examine the closure structure between the LO(N i)’s.

Observation 2. Given any set NS = {N 1,N 2, . . . ,N l} of l feasible net sur-
faces in G, the i-th upstream (resp., downstream) vertex of each vertex in LO(N i)
is in LO(N i+1) (resp., LO(N i−1)), for every 1 ≤ i < l (resp., 1 < i ≤ l).

Observations 1 and 2 show an important self-closure structure of the LNS
problem, which is crucial to our LNS algorithm and suggests a connection be-
tween our target problem and the minimum-cost closed set problem [10]. In
our LNS approach, instead of directly searching for an optimal set of l net sur-
faces, NS∗ = {N ∗

1,N ∗
2, . . . ,N ∗

l }, we look for l optimal subsets of vertices in G,
LO(N ∗

1) ⊂ LO(N ∗
2) ⊂ . . . ⊂ LO(N ∗

l), such that each LO(N ∗
i) uniquely defines

the net surface N ∗
i ∈ NS∗.

3.2 The Graph Transformation Scheme

Our LNS algorithm is based on a sophisticated graph transformation scheme,
which enables us to simultaneously identify l > 1 optimal inter-related net sur-
faces as a whole by computing a minimum closed set in a weighted directed
graph G′ that we transform from G. This section presents the construction of
G′, which crucially relies on the self-closure structure shown in Section 3.1.

We construct the vertex-weighted directed graph G′ = (V ′, E′) from the d-
D properly ordered graph G = (V,E), as follows. G′ contains l vertex-disjoint
subgraphs {G′

i = (V ′
i , E

′
i) : i = 1, 2, . . . , l}; each G′

i is for the search of the i-th
net surface N i. V ′ =

⋃l
i=1 V

′
i and E′ =

⋃l
i=1E

′
i ∪ E′

s. The surface separation

The LNS Problems in Discrete Geometry and Medical Image Segmentation 23

constraints between any two consecutive net surfaces N i and N i+1 are enforced
in G′ by a subset of edges in E′

s, which connect the subgraphs G′
i and G′

i+1.
The construction of each subgraph G′

i = (V ′
i , E

′
i) is similar to that in [13].

For G′
i, every vertex vk in G corresponds to exactly one vertex vi

k ∈ V ′
i . Each

column Col(v) in G associates with a chain vi
κ−1 → vi

κ−2 → · · · → vi
0 in G′

i.
We then put directed edges into E′

s between G′
i and G′

i+1, to enforce the surface
separation constraints. For each vertex vi

k with k < κ− Li on the chain Chi(v)
in G′

i, a directed edge is put in E′
s from vi

k to vi+1
k+Li

on Chi+1(v) in G′
i+1.

On the other hand, each vertex vi+1
k with k ≥ Li on Chi+1(v) has a directed

edge in E′
s to vi

k′ on Chi(v) with k′ = max{0, k − Ui} (note that vk′ in G is
the (i + 1)-th downstream vertex of vk). Note that in this construction, each
vertex vi

k with k ≥ κ − Li has no edge to any vertex on Chi+1(v), and each
vertex vi+1

k with k < Li has no edge to any vertex on Chi(v). These vertices
of G′ are called deficient vertices, whose corresponding vertices in G cannot
possibly appear in any feasible solution for the LNS problem. By exploiting
the geometric properties of the properly ordered graphs, all deficient vertices
in G′ can be pruned in linear time. We simply denote the graph thus resulted
also by G′. Then, for every v ∈ VB and i = 1, 2, . . . , l, let µi(v) and κi(v) be
the smallest and largest d-th coordinates of the vertices on the chain Chi(v)
of G′

i, respectively. We then assign a cost w(vi
k) for each vertex vi

k in G′
i: If

k = µi(v), then w(vi
k) = b(vk) +

∑k
j=0[ci−1(vj) − ci(vj)]; otherwise, w(vi

k) =
[b(vk) − b(vk−1)] + [ci−1(vk) − ci(vk)]. This completes the construction of G′.

3.3 Computing Optimal Layered Net Surfaces for the LNS Problem

The graph G′ thus constructed allows us to find l optimal net surfaces in G,
by computing a non-empty minimum-cost closed set in G′. Given any closed set
C �= ∅ in G′, we define l feasible net surfaces, NS = {N 1,N 2, . . . ,N l}, in G,
as follows. Recall that we search for each net N i in the subgraph G′

i = (V ′
i , E

′
i).

Let Ci = C ∩ V ′
i . For each vertex v ∈ VB, denote by Ci(v) the set of vertices of

Ci on the chain Chi(v) of G′
i. Based on the construction of G′

i, it is not hard to
show that Ci(v) �= ∅. Let ri(v) be the largest d-th coordinate of the vertices in
Ci(v). Define the function N i as N i(v) = ri(v) for every v ∈ VB. The following
lemma is a key to our algorithm.

Lemma 1. Any closed set C �= ∅ in G′ specifies l feasible net surfaces in G
whose total cost differs from that of C by a fixed value cl(V).

Next, we argue that any l feasible net surfaces, NS = {N 1,N 2, . . . ,N l}, in
G correspond to a closed set C �= ∅ in G′. Based on the construction of G′,
every vertex vk on the net N i corresponds to a vertex vi

k in G′
i (vi

k is not a
deficient vertex). We construct a closed set Ci �= ∅ in G′

i for each net N i, as
follows. Initially, let Ci = ∅. For each vertex v ∈ VB, we add to Ci the subset
Ci(v) = {vi

k : k ≤ N i(v)} of vertices on Chi(v) of G′
i.

Lemma 2. Any set NS of l feasible net surfaces in G defines a closed set C �= ∅
in G′ whose cost differs from that of NS by a fixed value.

24 X. Wu et al.

By Lemmas 1 and 2, we compute a minimum-cost closed set C∗ �= ∅ in G′,
which specifies l optimal net surfaces in G. Note that G′ has O(l ·n) vertices and
O(l ·n · mB

nB
) edges, where n = |V | is the number of vertices in G, and nB = |VB |

and mB = |EB| for the net model B. By using the minimum s-t cut algorithm
in [5] to compute a minimum-cost closed set in G′, we have the following result.

Theorem 1. The LNS problem can be solved in O(l2n2 mB

nB
log(l·n·nB

mB
)) time.

4 Algorithms for the Net Surface Volume (NSV)
Problems

This section presents our algorithms for several optimal net surface volume
(NSV) problems. Specifically, instead of looking for multiple inter-related net
surfaces as in Section 3, for a given d-D voxel grid Γ = [0..N − 1]d of n = Nd

cells, with each cell x(x0, x1, . . . , xd−1) ∈ Γ having an arbitrary real “volume”
value vol(x), we seek multiple surfaces that enclose a well-shaped region R ⊆ Γ ,
such that the volume vol(R) of R, vol(R) =

∑
x∈R vol(x), is minimized (or

maximized). Note that even the case of the NSV problem on finding an optimal
simple polygon in a weighted 2-D grid is in general NP-hard [1].

We consider two classes of regions, called weakly watershed-monotone regions
and watershed-monotone shells, defined as follows. For any integers 0 ≤ i < d
and 0 ≤ c < N , let Γi(c) denote all voxels of Γ whose xi-coordinate is c (note that
Γi(c) is orthogonal to the xi-axis). A region R in Γ is said to be xi-monotone
if for any line l parallel to the xi-axis, the intersection R ∩ l is either empty
or a continuous segment. Further, we say that R is watershed-monotone with
respect to Γi(c) if (1) R is xi-monotone, and (2) for any line l orthogonal to
Γi(c), if the intersection R ∩ l �= ∅, then R ∩ l intersects a voxel of R ∩ Γi(c).
(Intuitively, the intersection of R and Γi(c) is equal to the projection of R onto
Γi(c), and is like a “watershed” of R.) If for every i = 0, 1, . . . , d − 1, R is
watershed-monotone to a Γi(ci) for an integer 0 ≤ ci < N , then we say that R
is watershed-monotone. A region R ⊆ Γ is weakly watershed-monotone if R is
watershed-monotone to every axis in a set of d − 1 axes of Γ and is monotone
(but need not be watershed-monotone) to the remaining axis. Clearly, watershed-
monotone regions are a subclass of weakly watershed-monotone regions. Suppose
R is watershed-monotone with respect to some Γi(ci), for each i = 0, 1, . . . , d−1;
then it is easy to see that ∩d−1

i=0 Γi(ci) �= ∅. A voxel in ∩d−1
i=0 Γi(ci) is called a kernel

voxel of R. Our second region class is called the watershed-monotone shells. For
any two watershed-monotone regions R1 and R2 such that R1 and R2 have a
common kernel voxel c and R2 ⊆ R1, the region R in Γ bounded between R1
and R2, i.e., R = R1 −R2, is a watershed-monotone shell.

Theorem 2. (1) The optimal weakly watershed-monotone region problem is
solvable in O(dn2 log n

d) time. (2) The optimal watershed-monotone shell prob-
lem is solvable in O(dn2 log n

d) time.

The LNS Problems in Discrete Geometry and Medical Image Segmentation 25

5 Algorithm for the Bipartite LNS (BLNS) Problem

In this section, we consider the layered net surface problem on a more general
ordered multi-column graph. Recall that any two adjacent columns of a properly
ordered multi-column graph are in proper order (Section 2). We now define the
reverse order on two adjacent columns Col(v) and Col(u) in a d-D multi-column
graph G = (V,E) generated by a (d − 1)-D net model B = (VB , EB): If for any
two vertices vk and vk+1 in Col(v), Bottom(I(vk, u)) ≥ Bottom(I(vk+1 , u)) and
Top(I(vk, u)) ≥ Top(I(vk+1, u)), and if the same holds for any two vertices uk

and uk+1 of Col(u) on Col(v), then we say that Col(u) and Col(v) are in reverse
order. If every two adjacent columns in G are in either proper order or reverse
order, then we call G a d-D ordered multi-column graph. Further, for two (L,U)-
separate nets N 1 and N 2 in G, if two adjacent columns Col(v) and Col(u) are
in reverse order, then L ≤ N 1(v) − N 2(v) ≤ U and L ≤ N 2(u) − N 1(u) ≤ U .
In this section, we assume that each vertex in G has only an on-surface cost.

We can prove that the LNS problem on a general d-D ordered multi-column
graph (d ≥ 3) is NP-hard, by reducing to it the minimum vertex cover problem
that is known to be NP-complete [4].

Next, we consider the LNS problem on a d-D ordered multi-column graph
G = (V,E) with a special net model B = (VB , EB), defined as follows. First,
remove from B all reverse edges; the remaining B is a set CC of connected
components with proper edges only. Then, contract each connected component
of CC into a single vertex. Finally, for each (removed) reverse edge (v, u) ∈ EB ,
say, v in C′ ∈ CC and u in C′′ ∈ CC (C′ = C′′ is possible), add an edge
between the contracted vertices of C′ and C′′. The resulting graph is called the
p-contracted graph of B. The bipartite LNS (BLNS) problem is defined on a
d-D ordered multi-column graph with a net model B whose p-contracted graph
is bipartite. Let n = |V |, mB = |EB|, and nB = |VB |.

Theorem 3. The general BLNS problem can be solved in O(l2n2 mB

nB
log(l·n·nB

mB
))

time, where l is the number of sought net surfaces.

6 Implementation and Experiments

To further examine the behavior and performance of our LNS algorithm, we
implemented it in standard C++ templates. After the implementation, we ex-
tensively experimented with 3-D synthetic and real medical image data, and
compared with a previously validated slice-by-slice 2-D segmentation approach
based on graph search techniques [14]. Our LNS program was tested on an AMD
Athlon MP 2000+ Dual CPU workstation running MS Windows XP.

The experiments showed that our LNS algorithm and software are computa-
tionally efficient and produce highly accurate and consistent segmentation re-
sults. The average execution time of our simultaneous 3-surface detection algo-
rithm on images of size 200× 200× 40 is 401.3 seconds. An accuracy assessment
on images of physical phantom tubes revealed that the overall signed errors for
the inner and outer diameters derived from the tube boundaries were (mean ±

26 X. Wu et al.

standard deviation) −0.36 ± 2.47% and −0.08 ± 1.35%, respectively. Our LNS
approach was tested on segmenting both the inner and outer airway wall surfaces
in CT images, in which outer wall surfaces are very difficult to detect due to their
blurred and discontinuous appearance and the presence of adjacent blood ves-
sels. The CT images had a nearly isotropic resolution of 0.7×0.7×0.6mm3. The
currently used 2-D dynamic programming method is unsuitable for the segmen-
tation of the outer airway wall. Our new approach produces good segmentation
results for both airway wall surfaces in a robust manner. Comparing to manual
tracing on 39 randomly selected slices, our LNS technique yielded signed border
positioning errors of −0.01±0.15mm and 0.01±0.17mm for the inner and outer
wall surfaces, respectively.

References

1. T. Asano, D.Z. Chen, N. Katoh, and T. Tokuyama, Efficient algorithms for
optimization-based image segmentation, Int. Journal of Computational Geometry
& Applications, 11(2)(2001), pp. 145-166.

2. D.Z. Chen, J. Chun, N. Katoh, and T. Tokuyama, Efficient algorithms for approxi-
mating a multi-dimensional voxel terrain by a unimodal terrain, Proc. 10th Annual
Int. Computing and Combinatorics Conf., Jeju Island, Korea, 2004, pp. 238-248.

3. R.J. Frank, D.D. McPherson, K.B. Chandran, and E.L. Dove, Optimal surface
detection in intravascular ultrasound using multi-dimensional graph search, Com-
puters in Cardiology, IEEE, Los Alamitos, 1996, pp. 45-48.

4. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, CA, 1979.

5. A.V. Goldberg and R.E. Tarjan, A new approach to the maximum-flow problem,
J. Assoc. Comput. Mach., 35(1988), pp. 921-940.

6. X. Huang, D. Metaxas, and T. Chen, MetaMorphs: Deformable shape and tex-
ture models, Proc. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), vol. I, June 2004, pp. 496-503.

7. K. Li, X. Wu, D.Z. Chen, and M. Sonka, Efficient optimal surface detection: Theory,
implementation and experimental validation, Proc. SPIE’s Int. Symp. on Medical
Imaging: Imaging Processing, Vol. 5370, San Diego, CA, 2004, pp. 620-627.

8. K. Li, X. Wu, D.Z. Chen, and M. Sonka, Optimal Surface Segmentation in Vol-
umetric Images — A Graph-Theoretic Approach, accepted to IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2005.

9. S. Osher and N. Paragios, Eds., Geometric Level Set Methods in Imaging, Vision
and Graphics. Springer, 2003.

10. J.C. Picard, Maximal closure of a graph and applications to combinatorial prob-
lems, Management Science, 22(1976), 1268-1272.

11. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine
Vision, 2nd edition, Brooks/Cole Publishing Company, Pacific Grove, CA, 1999.

12. D.R. Thedens, D.J. Skorton, and S.R. Fleagle, Methods of graph searching for bor-
der detection in image sequences with applications to cardiac magnetic resonance
imaging, IEEE Trans. on Medical Imaging, 14(1)(1995), pp. 42-55.

13. X. Wu and D.Z. Chen, Optimal net surface problems with applications, Proc. 29th
International Colloquium on Automata, Languages and Programming (ICALP),
2002, pp. 1029-1042.

The LNS Problems in Discrete Geometry and Medical Image Segmentation 27

14. F. Yang, G. Holzapfel, C. Schulze-Bauer, R. Stollberger, D. Thedens, L. Bolinger,
A. Stolpen, and M. Sonka, Segmentation of wall and plaque in in-vitro vascular MR
image, International Journal on Cardiovascular Imaging, 19(5)(2003), pp. 419-428.

15. X. Zeng, L.H. Staib, R.T. Schultz, and J.S. Duncan, Segmentation and measure-
ment of the cortex from 3-D MR images using coupled surfaces propagation, IEEE
Trans. Med. Imag., 18(1999), pp. 927-937.

16. S. Zhu and A. Yuille, Region competition: Unifying snakes, region growing, and
Bayes/MDL for multiband images segmentation, IEEE Trans. on Pattern Analysis
and Machine Intelligence, 18(1996), pp. 884-900.

Separability with Outliers

Sariel Har-Peled1,� and Vladlen Koltun2

1 Department of Computer Science, University of Illinois,
201 N. Goodwin Avenue, Urbana, IL, 61801, USA

sariel@cs.uiuc.edu
2 Computer Science Department, 353 Serra Mall,

Gates 464, Stanford University, Stanford, CA 94305, USA
vladlen@cs.stanford.edu

Abstract. We develop exact and approximate algorithms for computing
optimal separators and measuring the extent to which two point sets in
d-dimensional space are separated, with respect to different classes of
separators and various extent measures. This class of geometric problems
generalizes two widely studied problem families, namely separability and
the computation of statistical estimators.

1 Introduction

Consider a family F of surfaces in Rd, for d ≥ 2, called separators, such that
every f ∈ F partitions Rd into at least two connected components, some of
which are labelled inside f , while the rest are said to be outside f . For instance,
if F is a set of hyperplanes, the open halfspace lexicographically below f ∈ F is
said to be inside f , while the other halfspace is outside. As another example, if
F is a set of spheres, points inside f ∈ F are inside while the other connected
component of Rd \ f is outside. Given such a family F and two sets of points R
and B in Rd (said to be red and blue, respectively), such that |R| = |B| = n, the
separability problem asks for finding a separator f ∈ F , if one exists, such that
all the blue (resp., red) points are inside (resp., outside) f .

The study of the separability problem is motivated in part by the fundamental
classification problem in machine learning: Given two sets of objects (the training
sets), construct a predictor that will facilitate a rapid classification of a new
object as belonging to one of the sets. For the separability problem, the training
sets are sets of points, and the computed separator is a good candidate predictor
for classifying all other points in the space. Numerous statistical techniques have
been developed for the classification problem, such as Support Vector Machines
[17, 27]. The separability problem has also been studied from the combinatorial
point of view, particularly in computational geometry, with the aim of developing
algorithms with guaranteed correctness and bounds on worst-case running time.
In this context it is customary to assume that the dimension d is constant.

� Work on this paper has been supported by a NSF CAREER award CCR-0132901.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 28–39, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Separability with Outliers 29

For hyperplane and sphere separators linear-time algorithms are known
[32, 34, 36]. Algorithms have been found and hardness results have been devel-
oped for a number of types of separators for d = 2, such as (boundaries of)
strips, wedges, double-wedges [8, 29, 28], convex polygons and simple polygons
[22, 24, 33]. Separability for slab, wedge, prism and cone separators in d = 3 has
received recent attention, alongside other types of separators in 3-space, and ex-
act algorithms with running times ranging from near-linear to near-O(n8) were
presented [3, 30].

Previous works on the separability problem in computational geometry deal
with finding a separator that completely separates the red and blue points, as
described above. However, in practical applications it is likely that the point
sets will be almost, but not completely separable, in a sense that is made precise
below, due to noise, sampling and round-off errors. In such scenario the above
algorithms simply report that the point sets are not separable and terminate.
In this paper we develop separability algorithms that ensure robustness to inac-
curacies in the input by computing the best separator (when the point sets are
separable, this is simply a complete separator as above).

Specifically, for p, q ∈ Rd and S, T ⊆ Rd define d(p, q) = ‖ p− q ‖, d(p, T) =
minq∈T ‖p− q‖, and d(S, T) = minp∈S,q∈T ‖p− q‖. Consider the following
measures for estimating the extent of a point set S ∈ R3 with respect to a
separator f ∈ F .

– The combinatorial measure: Mc(f,S) = |S |. (This quantity does not depend
on f for a fixed S.)

– The L∞ measure: M∞(f,S) = maxp∈S d(f, p).
– The L1 measure: M1(f,S) =

∑
p∈S d(f, p).

– The L2 measure: M2(f,S) =
∑

p∈S (d(f, p))2.

For R, B and f ∈ F as above, let a red (resp., blue) outlier be defined as a
point of R (resp., of B) that lies inside (resp., outside) f . Let Rf ⊆ R (resp.,
Bf ⊆ B) be the set of red (resp., blue) outliers and define Of := Rf ∪Bf . In this
paper we develop algorithms that, given R, B and F , compute a separator f ∈ F
that minimizes (exactly or approximately) one of the above extent measures of
Of with respect to f . That is, the separator minimizes the number of outliers,
the distance of the farthest outlier from the separator, the sum of the distances of
the outliers from the separator, or the sum of the squares of these distances. We
call this class of problems separability with outliers. We concentrate in this initial
study on hyperplane and sphere separators. We present exact algorithms that
apply in any d = O(1). Since exact algorithms quickly become impractical as
the dimension increases, we present approximation algorithms for all the studied
problems. Most of these are candidates for efficient implementation. Specifically,
we show that:

– Let F be the set of hyperplanes (resp., spheres) in Rd. The separator f∗ ∈ F
that minimizes Mc(f,Of) for f ∈ F can be computed in time O(nkd+1 log k)
(resp., O(nkd+2 log k)), where k = Mc(f∗,Of∗). For any ε > 0, a separator

30 S. Har-Peled and V. Koltun

f ∈ F , such that Mc(f,Of) ≤ (1+ε)Mc(f∗,Of∗) can be computed in time
O
(
n(ε−2 log n)d+1

)
(resp., O

(
n(ε−2 logn)d+2

)
).

– Let F be the set of hyperplanes (resp., spheres) in Rd. The separator f∗ ∈ F
that minimizes M∞(f,Of) for f ∈ F can be computed in time O

(
n�d/2)

(resp.,O
(
n
d/2�+1

)
). For any ε > 0, a separator f ∈ F , such that M∞(f,Of)

≤ (1 + ε)M∞(f∗,Of∗) can be computed in time O
(
n/ε(d−1)/2

)
(resp.,

O
(
n/ε(d−1)/2 + 1/ε4d

)
).

– Let F be the set of hyperplanes in Rd. The separator f∗ ∈ F that mini-
mizes M1(f,Of) (resp., M2(f,Of)) for f ∈ F can be computed in time
O(nd) (resp., O(nd+1)). For any ε > 0, a separator f ∈ F , such that
M1(f,Of) ≤ (1 + ε)M1(f∗,Of∗) (resp., M2(f,Of) ≤ (1 + ε)M2(f∗,Of∗))
can be computed in time O

(
n/ε(d−1)/2

)
(resp., O

(
n/εd/2

)
).

– Let F be the set of spheres in Rd. For any ε > 0, a separator f ∈ F , such that
M1(f,Of) ≤ (1 + ε)M1(f∗,Of∗) (resp., M2(f,Of) ≤ (1 + ε)M2(f∗,Of∗))

can be computed in time O
((

n
ε log n

ε

)d+1
)
.

The running time for most of these algorithms can be improved by specialized
techniques when the dimension is small (e.g., d ≤ 3). We do not describe exact
algorithms for finding optimal sphere separators with respect to the L1 and
L2 measures, since computing such a separator requires analytic evaluation of a
function that is a sum of terms, each term being an absolute value of a difference
of a square root of a polynomial and a variable. Such analytic evaluation is not
known to be possible.

To our knowledge, the only instance of separability with outliers that was
studied before is line separability with respect to the combinatorial measure in
the plane [13, 23]. The optimal line separator in this setting can be computed in
time O((n + k2) log k), where k denotes the number of outliers achieved by the
optimum.

Motivated by the practical considerations expressed above, a number of previ-
ous results in computational geometry provide algorithms that are insensitive to
outliers. Problems that were studied in this context include linear programming
[13, 23, 31], shape fitting [26], and facility location [15].

Separability with outliers has an interesting connection to the computation
of statistical estimators, which in turn is intimately related to shape fitting.
Given a point set S and a family F of estimators, consider the problem of
finding the estimator f ∈ F that minimizes one of the above extent measures
of S with respect to f . Motivated by applications in statistical analysis and
computational metrology, this class of problems has been intensively studied in
recent years, specifically for hyperplane, sphere, line, and cylinder estimators
[2, 4, 5, 7, 12, 14, 19, 25, 26]. It is also a special case of separability with outliers.
Indeed, setting R = B = S yields precisely Of = S for any f ∈ F , equating
the computation of the optimal separator of R and B to the computation of the
optimal estimator of S. Some of the results obtained in this paper indeed use the
algorithmic machinery developed for the computation of statistical estimators,
appropriately extending and modifying it to handle separability with outliers.

Separability with Outliers 31

2 The Combinatorial Measure

Throughout this paper, let R,B ∈ Rd be two collections of n points each.

2.1 Hyperplane Combinatorial Separators

Theorem 1. Let F be the set of hyperplanes in Rd. The separator f∗ ∈ F that
minimizes Mc(f,Of) for f ∈ F can be computed in time O(nkd+1

opt log kopt),
where kopt = Mc(f∗,Of∗).

Proof. For f ∈ F , a point x = (x1, x2, . . . , xd) ∈ Rd lies on h, if a1x1 + . . . +
adxd +ad+1 = 0, where a1, . . . , ad+1 are the coefficients of h. With a slight abuse
of notation we denote a1x1 + . . .+ adxd + ad+1 by f(x). Note that although the
parametric space defining h is d+1 dimensional, one parameter can be eliminated
by enforcing ad+1 = 1.

In the above parametric space, every point of R∪B defines a linear inequality.
A point corresponding to a separator f violates exactly those inequalities that
correspond to points in Of . Given the linear program formed by these inequality
constraints, we are looking for a point that minimizes the number of violated
constraints. Stated differently, we seek the minimum number kopt of constraints
that need to be removed to make the linear program feasible.

Given k, we can decide in time O(nkd+1) whether kopt ≤ k [31]. Perform-
ing an exponential search with k = 20, 21, 22, . . . results in a constant factor
approximation of kopt. A binary search then locates the exact optimum.

Remark: Using the improved decision procedure of Chan for d = 2, 3 [13], the
running time in Theorem 1 can be improved to O((n + k2

opt) log2 n) for d = 2

and to O(n log2 n+ k
11/4
opt n

1/4 polylogn) for d = 3.

Theorem 2. Let F be the set of hyperplanes in Rd and let f∗ ∈ F be the
separator that minimizes Mc(f,Of) for f ∈ F . For any ε > 0, a separator
f ∈ F , such that Mc(f,Of) ≤ (1 + ε)Mc(f∗,Of∗) can be computed in time
O
(
n(ε−2 logn)d+1

)
.

Proof. We use the above reduction to the problem of estimating the number of
constraints that need to be removed so that a linear program in d dimensions be-
comes feasible. A recent result of Aronov and Har-Peled [9] shows that this num-
ber can be approximated within a factor of (1 + ε) in time O

(
n(ε−2 logn)d+1

)
.

2.2 Sphere Combinatorial Separators

Theorem 3. Let F be the set of spheres in Rd. The separator f∗ ∈ F that
minimizes Mc(f,Of) for f ∈ F can be computed in time O(nkd+2

opt log kopt),
where kopt = Mc(f∗,Of∗). For any ε > 0, a separator f ∈ F , such that
Mc(f,Of) ≤ (1 + ε)Mc(f∗,Of∗) can be computed in time O

(
n(ε−2 logn)d+2

)
.

32 S. Har-Peled and V. Koltun

Proof. Apply the standard “lifting transformation” [20] that maps every ball B
in Rd to a hyperplane B∗ in Rd+1 and a point p in Rd to a point p∗ on the
standard paraboloid in Rd+1, such that p ∈ B (resp., p ∈ ∂B, p /∈ B) if and
only if p∗ lies below (resp., on, above) B∗. This reduces the problem to finding
the (approximately) optimal hyperplane separator in Rd+1 and the results follow
from Theorems 1 and 2.

Remark: Using the improved decision procedure of Chan [13], the running time
in Theorem 3 can be improved to O(n log2 n+ k

11/4
opt n

1/4 polylogn) for d = 2.

3 The L∞ Measure

3.1 Hyperplane L∞-Separators

Theorem 4. Let F be the set of hyperplanes in Rd, d ≥ 3. The separator f∗ ∈ F
that minimizes M∞(f,Of) for f ∈ F can be computed in time O

(
n�d/2).

Proof. We follow the approach of Chan [12] to computing the width of a point
set. For a separator f ∈ F , parameterize it as f = (xf , af), for xf ∈ Rd, af ∈ R,
such that f = {p ∈ Rd | p · xf = af}. Consider the minimal slab Sf bounded by
hyperplanes parallel to f that contains Of . It can be parameterized as Sf = {p ∈
Rd | bf ≤ p · xf ≤ cf}, such that bf , cf ∈ R and 2af = bf + cf . Since xf , bf and
cf are dependent, cf can be eliminated: Sf = {p ∈ Rd | bf ≤ p · xf ≤ bf + 1}.
Observe that M∞(f,Of) = 1/(2 ‖xf ‖), where 1/ ‖xf ‖ is the width of Sf .
We compute the separator f∗ that minimizes 1/ ‖xf ‖. Consider the following
programming problem:

min 1/ ‖x‖,
s.t. ∀p ∈ B x · p ≤ b+ 1,

∀q ∈ R x · q ≥ b,

b ∈ R, x ∈ Rd

The optimal solution vector (b∗, x∗) provides exactly the parameters bf∗ and
xf∗ , respectively, of the optimal separator. The problem is a non-convex opti-
mization problem within a convex polytope defined by 2n linear constraints in
dimension d + 1. It can thus be solved in time O

(
n�d/2) by constructing the

polytope and explicitly computing the value of the optimization function at each
boundary feature [16].

Remark: The running time in Theorem 4 can be improved to O(n3/2+ε) for
any ε > 0 when d = 3, using the randomized techniques of [6], and is O(n log n)
when d = 2. We omit the details.

Theorem 5. Let F be the set of hyperplanes in Rd and let f∗ ∈ F be the
separator that minimizes M∞(f,Of) for f ∈ F . For any ε > 0, a separator
f ∈ F , such that M∞(f,Of) ≤ (1 + ε)M∞(f∗,Of∗) can be computed in time
O
(
n/ε(d−1)/2

)
.

Separability with Outliers 33

Proof. We can test in time O(n) whether B and R are separable by a hyper-
plane f , in which case M∞(f,Of) = 0 [32]. Assume therefore that this is not
the case. Let conv(S) denote the convex hull of a point set S ∈ Rd. Assume
without loss of generality that O ∈ conv(B)∩ conv(R), where O denotes the ori-
gin. Let the penetration depth π(conv(B), conv(R)) denote the smallest distance
by which conv(B) can be translated so that conv(B) and conv(R) are interior-
disjoint [6]. Denote the optimal translation vector by t ∈ Rd. It is easy to see
that there is a unique hyperplane Hr, that separates the interiors of conv(B + t)
and conv(R). Consider also Hb = Hr − t and Hm = Hr − t

2 . (Hm is thus the
mid-hyperplane between Hr and Hb.) Observe that Hm is the optimal separator
f∗. We concentrate on computing the translation t that approximately realizes
the penetration depth π(conv(B), conv(R)), i.e., if t∗ denotes the optimal trans-
lation, ‖t‖ ≤ (1+ ε) ‖t∗‖ and conv(B + t)∩ conv(R) = ∅. Given t we can find the
corresponding separator in time O(n). We first observe that given a direction
δ ∈ Sd−1, we can compute the shortest separating translation tδ in direction δ
in O(n) time. Indeed, assume without loss of generality that δ = (0, . . . , 0, 1) is
the positive vertical direction. Consider the linear program

min e,

s.t. ∀b ∈ B (b + eδ) · f ≥ g,

∀r ∈ R r · f ≤ g,

e, g ∈ R, f ∈ Rd

The optimum in this program is the value of tδ and can be found in time O(n)
[32]. Observe that if γ, δ ∈ Sd−1 are two directions at angle at most

√
ε from each

other, then (1 − ε)tδ ≤ tγ ≤ (1 + ε)tδ [6]. This implies that if ∆ ⊆ Sd−1 is a
√
ε-

net on Sd−1 and t∗ denotes the optimal translation, minδ∈∆ ‖tδ‖≤ (1 + ε) ‖t∗‖.
There exists such a

√
ε-net ∆ of size O

(
1/ε(d−1)/2

)
[18]. Executing the above

algorithm for every δ ∈ ∆ implies the theorem.

3.2 Sphere L∞-Separators

The algorithms in this section follow the approach of Chan [12] to computing
the minimum-width spherical shell.

Theorem 6. Let F be the set of spheres in Rd. The separator f∗ ∈ F that
minimizes M∞(f,Of) for f ∈ F can be computed in time O

(
n
d/2�+1

)
.

Proof. For a separator f ∈ F , denote its center by xf ∈ Rd and its radius by
rf ∈ R. Consider the minimum-width spherical shell enclosed by two spheres
centered at xf that contains Of . Denote its inner and outer radii by yf and zf ,
respectively. Note that M∞(f,Of) = (zf −yf)/2. We compute the separator f∗

that minimizes zf∗ − yf∗ . Consider the following programming problem:

min z − y,

s.t. ∀b ∈ B ‖b− x‖ ≤ z,

34 S. Har-Peled and V. Koltun

∀r ∈ R ‖r − x‖ ≥ y,

y, z ∈ R, x ∈ Rd

The optimal solution vector (y∗, z∗, x∗) provides the radius (zf∗ + yf∗)/2 and
center xf∗ of the optimal separator. By a change of variables, the problem is
easily seen to be a non-convex optimization problem within a convex polytope
defined by 2n linear constraints in dimension d + 2. It can be solved in time
O
(
n
d/2�+1

)
by constructing the polytope and explicitly computing the value of

the optimization function at each boundary feature [16].

Theorem 7. Let F be the set of spheres in Rd and let f∗ ∈ F be the sep-
arator that minimizes M∞(f,Of) for f ∈ F . For any ε > 0, a separator
f ∈ F , such that M∞(f,Of) ≤ (1 + ε)M∞(f∗,Of∗) can be computed in time
O
(
n/ε(d−1)/2 + 1/ε4d

)
.

Proof. Omitted due to space limitations.

Remark: In Theorems 7 and 5, more advanced arguments can be used to de-
couple the 1/ε factor in the bound from n, yielding a running time of the form
O
(
n+ 1/εO(d)

)
, which can be refined for small d. We omit the details.

4 The L1 and L2 Measures

4.1 Hyperplane L1-Separators

Theorem 8. Let F be the set of hyperplanes in Rd. The separator f∗ ∈ F that
minimizes M1(f,Of) for f ∈ F can be computed in time O(nd).

Proof. Observe that the optimal separator divides R ∪ B into two equal sets.
Our algorithm considers all such partitions of R∪B. After the standard duality
transformation, these partitions correspond precisely to the faces of the median
level of the arrangement A of the hyperplanes dual to the points R∪B. In fact,
it can be shown that the optimal separator corresponds to a vertex of this level.
We construct A and traverse the vertices of the median level using breadth-first
search on the 1-skeleton of the arrangement [21]. Throughout the traversal we
maintain the value of M1(f,Of). Since at each step only O(1) points change
their relation to the separator, the value of the measure can be maintained in
O(1) time per step. Upon the completion of the traversal we output the minimal
value of M1(f,Of) encountered during the process. We omit the easy details.

Remark: The running time in Theorem 8 can be improved to O(n4/3 logn)
when d = 2 using the dynamic convex hull algorithm of [10] to construct the
median level in the arrangement. When d = 3, the running time is O(n5/2+ε) for
any ε > 0 using combinatorial and algorithmic results concerning median levels
in three dimensions [11, 35]. Unfortunately there are no substantially sub-O(nd)
bounds on the complexity of the median level of an arrangement in Rd for d ≥ 4
(see [1] for the state of the art). Obtaining such a bound is an interesting open
problem.

Separability with Outliers 35

The following is an easy consequence of the techniques of Yamamoto et al
[37].

Theorem 9. Let F be the set of hyperplanes in Rd and let f∗ ∈ F be the
separator that minimizes M1(f,Of) for f ∈ F . For any ε > 0, a separator
f ∈ F , such that M1(f,Of) ≤ (1 + ε)M1(f∗,Of∗) can be computed in time
O(n/ε(d−1)/2).

Proof. Parameterize f ∈ F by xf ∈ Rd, such that f = {p ∈ Rd | p · xf = 1}. Let
α ∈ Sd−1 be the vertical direction. For x = (x1, . . . , xd) ∈ Rd, define the vertical
distance dα(f, p) = | p ·xf −1 |. Define the vertical L1-measure of f with respect
to S ⊆ Rd as Mα

1 (f,S) =
∑

p∈S d
α(f, p).

Lemma 1. The separator fα ∈ F that minimizes Mα
1 (f,Of) for f ∈ F can be

computed in time O(n).

Proof. Consider a point r ∈ R. Observe that its contribution to Mα
1 (f,Of) is

Cr(xf) = max(1 − r · xf , 0). On the other hand, the contribution of b ∈ B to
Mα

1 (f,Of) is Cb(xf) = max(b · xf − 1, 0). We seek to minimize the function∑
p∈B∪RCp(xf) over the space of separators xf ∈ Rd. We are thus searching for

the minimum of the sum of piecewise linear convex functions over Rd. This can
be computed in time O(n) using the pruning technique of Megiddo [32, 37].

Note that the algorithm of Lemma 1 can compute the separator that min-
imizes the directional distance in any direction γ ∈ Sd−1 by first applying a
linear transformation to the space that transforms γ to be vertical. Observe
that if γ, δ ∈ Sd−1 are two directions at angle at most

√
ε from each other,

(1 − ε)Mγ
1(fγ ,Ofγ) ≤ Mδ

1(f
δ,Ofδ) ≤ (1 + ε)Mγ

1 (fγ ,Ofγ). (We omit the sim-
ple proof.) Note also that if β ∈ Sd−1 denotes the direction normal to f∗, then
Mβ

1 (fβ ,Ofβ) = M1(f∗,Of∗). This implies that if ∆ ⊆ Sd−1 is a
√
ε-net on

Sd−1, minδ∈∆ Mδ
1(f δ,Ofδ) ≤ (1+ε)M1(f∗,Of∗). There exists such a

√
ε-net ∆

of size O
(
1/ε(d−1)/2

)
[18]. Executing the algorithm of Lemma 1 for every δ ∈ ∆

implies the theorem.

Remark: The algorithm of Theorem 9 immediately yields a linear (in n) ε-
approximation algorithm for the computation of an L1 linear estimator of a
point set in Rd. To our knowledge this is the first such algorithm for this basic
problem in statistics (see [37] for an exact algorithm in the plane).

4.2 Hyperplane L2-Separators

Theorem 10. Let F be the set of hyperplanes in Rd. The separator f∗ ∈ F that
minimizes M2(f,Of) for f ∈ F can be computed in time O(nd+1).

Proof. Consider the arrangement A(B∗ ∪ R∗) of the set of hyperplanes dual to
the points B∪R. Every point in a specific face C of A(B∗∪R∗) corresponds to a
hyperplane f that induces a fixed partition of B∪R that is the same for all such

36 S. Har-Peled and V. Koltun

f . Thus the set of outliers Of is fixed and the measure M2(f,Of) is given by a
function common to all such f . This function is a sum of |Of | quadratic functions
and is thus a quadratic function. Furthermore, since the partitions induced by
neighboring faces of A(B∗ ∪ R∗) differ by at most a constant number of points,
the above measure function for a specific cell can be computed in constant time
given the measure function for a neighboring cell. This leads to the following
algorithm.

Construct the arrangement A(B∗ ∪ R∗) and traverse all its faces of all di-
mensions. At each step of the traversal, update in constant time the measure
function and compute the point that minimizes the function. Determine in linear
time [32] whether this optimum point lies in the interior of the current face. If
so, compare the value at the optimum to the minimal value so far and update
the minimum if necessary. Otherwise the optimal point cannot lie in the cur-
rent arrangement face. When the traversal is completed the algorithm outputs
the minimal value and the hyperplane that corresponds to the dual point that
achieves the minimal value. The running time follows since we traverse O(nd)
arrangement faces and spend O(n) time in each.

Theorem 11. Let F be the set of hyperplanes in Rd and let f∗ ∈ F be the
separator that minimizes M2(f,Of) for f ∈ F . For any ε > 0, a separator
f ∈ F , such that M2(f,Of) ≤ (1 + ε)M2(f∗,Of∗) can be computed in time
O(n/εd/2).

Proof. Here, we want to find the hyperplane that approximately minimizes the
sum of square distances of the misclassified points. This can be achieved by a
direct adaptation of the techniques of Theorem 9. We omit the details.

4.3 Sphere L1- and L2-Separators

Theorem 12. Let F be the set of spheres in Rd and let f∗ ∈ F be the separator
that minimizes M1(f,Of) for f ∈ F . For any ε > 0, a separator f ∈ F , such

that M1(f,Of) ≤ (1+ε)M1(f∗,Of∗) can be computed in time O
((

n
ε log n

ε

)d+1
)
.

The same result can be achieved for the M2 measure.

Proof. Throughout the proof we primarily discuss the case of the M1 measure.
The algorithm can be naturally adapted to the M2 measure.

We begin by using Theorem 6 to compute an optimal L∞ sphere separator
f∞ in time O

(
n
d/2�+1

)
and define r = M∞(f∞,Of∞). This provides an n-

approximation to the optimal L1-separator. Indeed, for any sphere s in Rd there
is a point in Os at distance at least r from s. On the other hand, all points of
Of∞ are at distance at most r from f∞. Thus r ≤ M1(f∗,Of∗) ≤ nr. Define
U = nr and note that M1(f∗,Of∗) ≤ U ≤ nM1(f∗,Of∗).

Place around each point of B ∪ R a ball of radius ri = ε
2 (U/n2)(1 + ε

2)i, for

i = 0, . . . ,M , where M = 4
⌈
log1+ε/2(n2/ε)

⌉
= O(1

ε log n
ε). Let D denote the

resulting set of O(nM) = O(n
ε log n

ε) balls.

Separability with Outliers 37

Consider a sphere f . Clearly, if f fails to touch any ball of D around a point
p ∈ Of , then d(p, C) ≥ rM ≥ Un2. In particular, we can ignore such spheres,
since they are too expensive to be a good approximation to M1(f∗,Of∗). Fur-
thermore, let rD(f, p) denote the radius of the smallest ball in D that is centered
at p and intersects f . Let α(f) =

∑
p∈Of

rD(f, p). We have that

M1(f,Of) =
∑

p∈Of

d(f, p) ≤ α(f) =
∑

p∈Of

rD(f, p) ≤
∑

p∈Of

(
r0 + (1 +

ε

2
)d(f, p)

)
= nr0 + (1 +

ε

2
)
∑

p∈Of

d(f, p) ≤ (1 + ε)M1(f,Of).

However, the value of α(f) is uniquely defined by the set of balls of D that
the sphere f intersects and the points of B ∪ R that the ball defined by f
contains. We now show how to enumerate all such sets efficiently. We encode a
ball B in Rd by a cone in Rd+1 with axis parallel to the xd+1-axis, such that its
intersection with the hyperplane xd+1 = 0 is B. Thus a ball centered at x ∈ Rd

with radius r is encoded by a cone with apex (x,−r), denoted by cone(x,−r).
A sphere S centered at x with radius r is encoded by the point (x, r). Consider
the set of spheres intersecting B. Clearly, this is the set of points lying above
the hyperplane xd+1 = 0, above cone(x,−r) and below cone(x, r). Also, the
set of spheres that contain a point x ∈ Rd is the set of points lying above
cone(x, 0). Thus, consider the arrangement of the 2 |D|+n cones induced in this
way by the balls of D and the points of B ∪ R, together with the hyperplane
xd+1 = 0. Clearly, all the spheres defined by points inside a particular face
in this arrangement intersect the same set of balls of D and enclose the same
set of points of B ∪ R. We can thus find an approximate L1 sphere separator
simply by traversing the above arrangement. The complexity of the arrangement
is O((2 |D| + n)d+1) = O

((
n
ε log n

ε

)d+1
)

and the traversal can be performed in
the same asymptotic time. This implies the theorem.

5 Discussion and Open Problems

This paper is a step towards a better understanding of separability with outliers.
A wide range of interesting problems remain. Can algorithms presented in this
paper be improved? In particular, are there ε-approximation algorithms whose
running time is near-linear in n and polynomial in 1/ε and d?

Can we use the ideas of this paper to handle other types of separators, such
as slabs, cylinders, cones, and prisms? We can also consider the family of all
convex bodies as separators.

A number of successes in designing approximation algorithms for shape fitting
and extent approximation have been achieves by proving that there always exists
a small coreset that approximately captures the extent of the point set. Can we
demonstrate the existence of coresets for separability with outliers (i.e., small
sets that witness the extent to which two point sets penetrating each other) or
prove that they do not always exist?

38 S. Har-Peled and V. Koltun

It would also be interesting to consider algorithms that maintain (approxi-
mately) minimal separators as the point sets change, either as points are inserted
and deleted (dynamic setting) or as points move continuously (kinetic setting)?
The problem can also be considered in the streaming model of computation.

Acknowledgements

The authors wish to thank Pankaj Agarwal for suggesting the problem of sepa-
rability with outliers and for initial discussions.

References

1. P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir. On levels in arrangements
of lines, segments, planes, and triangles. Discrete Comput. Geom., 19:315–331,
1998.

2. P. K. Agarwal, B. Aronov, S. Har-Peled, and M. Sharir. Approximation and ex-
act algorithms for minimum-width annuli and shells. Discrete Comput. Geom.,
24(4):687–705, 2000.

3. P. K. Agarwal, B. Aronov, and V. Koltun. Efficient algorithms for bichromatic
separability. ACM Transactions on Algorithms, 2005. to appear.

4. P. K. Agarwal, B. Aronov, and M. Sharir. Line traversals of balls and smallest
enclosing cylinders in three dimensions. Discrete Comput. Geom., 21:373–388,
1999.

5. P. K. Agarwal, B. Aronov, and M. Sharir. Exact and approximation algorithms for
minimum-width cylindrical shells. Discrete Comput. Geom., 26(3):307–320, 2001.

6. P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Pen-
etration depth of two convex polytopes in 3D. Nordic J. Comput., 7(3):227–240,
2000.

7. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-
sures of points. J. Assoc. Comput. Mach., 51:606–635, 2004.

8. E. Arkin, F. Hurtado, J. Mitchell, C. Seara, and S. Skiena. Some lower bounds
on geometric separability problems. In 11th Fall Workshop on Computational
Geometry, 2001.

9. B. Aronov and S. Har-Peled. On approximating the depth and related problems.
In Proc. 16th ACM-SIAM Sympos. Discrete Algorithms, 2005.

10. G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43th Annu.
IEEE Sympos. Found. Comput. Sci., pages 617–626, 2002.

11. T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related
problems. Discrete Comput. Geom., 16:369–387, 1996.

12. T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder and
minimum-width annulus. Internat. J. Comput. Geom. Appl., 12(2):67–85, 2002.

13. T. M. Chan. Low-dimensional linear programming with violations. In Proc. 43th
Annu. IEEE Sympos. Found. Comput. Sci., pages 570–579, 2002.

14. T. M. Chan. Faster core-set constructions and data stream algorithms in fixed
dimensions. In Proc. 20th Annu. ACM Sympos. Comput. Geom., pages 152–159,
2004.

15. M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facil-
ity location problems with outliers. In Proc. 12th ACM-SIAM Sympos. Discrete
Algorithms, pages 642–651, 2001.

Separability with Outliers 39

16. B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete
Comput. Geom., 10:377–409, 1993.

17. N. Cristianini and J. Shaw-Taylor. Support Vector Machines. Cambridge University
Press, 2000.

18. R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
J. Approx. Theory, 10:227–236, 1974.

19. C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and
optimization algorithms for computational metrology. In Proc. 8th ACM-SIAM
Sympos. Discrete Algorithms, pages 121–130, 1997.

20. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1987.

21. H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
and hyperplanes with applications. SIAM J. Comput., 15:341–363, 1986.

22. H. Edelsbrunner and F. P. Preparata. Minimum polygonal separation. Inform.
Comput., 77:218–232, 1988.

23. H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for the
(≤k)-levels, with applications to separation and transversal problems. Internat. J.
Comput. Geom. Appl., 6:247–261, 1996.

24. S. P. Fekete. On the complexity of min-link red-blue separation. Manuscript,
Department of Applied Mathematics, SUNY Stony Brook, NY, 1992.

25. S. Har-Peled and K. Varadarajan. High-dimensional shape fitting in linear time.
In Proc. 19th Annu. ACM Sympos. Comput. Geom., pages 39–47, 2003.

26. S. Har-Peled and Y. Wang. Shape fitting with outliers. SIAM J. Comput.,
33(2):269–285, 2004.

27. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, Berlin, Germany, 2001.

28. F. Hurtado, M. Mora, P. A. Ramos, and C. Seara. Two problems on separability
with lines and polygonals. In Proc. 15th European Workshop on Computational
Geometry, pages 33–35, 1999.

29. F. Hurtado, M. Noy, P. A. Ramos, and C. Seara. Separating objects in the plane
with wedges and strips. Discrete Appl. Math., 109:109–138, 2001.

30. F. Hurtado, C. Seara, and S. Sethia. Red-blue separability problems in 3d. In
Proc. 3rd Int. Conf. Comput. Sci. and Its Appl., pages 766–775, 2003.

31. J. Matoušek. On geometric optimization with few violated constraints. Discrete
Comput. Geom., 14:365–384, 1995.

32. N. Megiddo. Linear programming in linear time when the dimension is fixed. J.
Assoc. Comput. Mach., 31:114–127, 1984.

33. J. S. B. Mitchell. Approximation algorithms for geometric separation problems.
Technical report, Department of Applied Mathematics, SUNY Stony Brook, NY,
July 1993.

34. J. O’Rourke, S. R. Kosaraju, and N. Megiddo. Computing circular separability.
Discrete Comput. Geom., 1:105–113, 1986.

35. M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three
dimensions. Discrete Comput. Geom., 26:195–204, 2001.

36. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York,
1996.

37. P. Yamamoto, K. Kato, K. Imai, and H. Imai. Algorithms for vertical and orthogo-
nal L1 linear approximation of points. In Proc. 4th Annu. ACM Sympos. Comput.
Geom., pages 352–361. ACM Press, 1988.

Casting an Object with a Core�

Hee-Kap Ahn1, Sang Won Bae1, Siu-Wing Cheng2, and Kyung-Yong Chwa1

1 Division of Computer Science,
Korea Advanced Institute of Science and Technology,

Daejon, Korea
{heekap, swbae, kychwa}@jupiter.kaist.ac.kr

2 Dept. of Computer Science, Hong Kong University of Science and Technology,
Hong Kong, China
scheng@cs.ust.hk

Abstract. In casting, molten material is poured into the cavity of the
cast and allowed to solidify. The cast has two main parts to be removed in
opposite parting directions. To manufacture more complicated objects,
the cast may also have a side core to be removed in a direction skewed
to the parting directions. In this paper, given an object and the parting
and side core directions, we give necessary and sufficient conditions to
verify whether a cast can be constructed for these directions. In the case
of polyhedral objects, we develop a discrete algorithm to perform the
test in O(n3 log n) time, where n is the object size. If the test result is
positive, a cast with complexity O(n3) can be constructed within the
same time bound. We also present an example to show that a cast may
have Θ(n3) complexity in the worst case. Thus, the complexity of our
cast is worst-case optimal.

1 Introduction

Casting or injection molding [7, 12, 14] is ubiquitous in the manufacturing in-
dustry for producing consumer products. A cast can be viewed as a box with a
cavity inside. Molten material (such as iron, glass or polymer) is poured into the
cavity and allowed to solidify. The cast has two main parts and the hardened
object is taken out by removing the two parts in opposite parting directions.
Many common objects need a side core in additional to the two main parts in
order to be manufactured. (For simplicity, we will refer to the side core as core
in the rest of the paper.) For example, consider a coffee mug in Figure 1(a). The
handle of the mug can only be produced using the two main parts. However,
these two main parts cannot produce the cavity. Figure 1(b) shows how the cof-
fee mug can be manufactured by incorporating a core into the cast. Cores are
used widely in prevailing modes of production, and the class of castable objects
may be enlarged through the use of cores [6, 12, 14, 15]. Cores naturally increase

� Work by Ahn, Bae and Chwa was supported by the Brain Korea 21 Project, The
School of Information Technology, KAIST, in 2005. Work by Cheng was supported
by Research Grant Council, Hong Kong, China (DAG04/05.EG21).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 40–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Casting an Object with a Core 41

(a) (b)

Fig. 1. (a) A coffee mug is unattainable using a 2-part cast. (b) By incorporating a
core to the cast, the cavity of the coffee mug can be manufactured.

manufacturing costs and decrease production capacity [7]. Besides, the core re-
traction mechanism takes up much of extra space. In this paper, we deal with
the case where one core is allowed.

We require that the main parts and the core should be removed without being
blocked by the cast or the object. This ensures that the given object can be mass
produced by re-using the same cast. This paper is concerned with the verification
of the geometric feasibility, castability, of the cast given the parting and core
directions. There has been a fair amount of work on the castability problem [1,
3, 4, 5, 9, 10, 11] for the case that there is no core. Chen, Chou and Woo [6]
described a heuristic to compute a parting direction to minimize the number
of cores needed. However, the parting direction returned need not be feasible.
Based on the approach of Chen, Chou and Woo, Hui presented exponential time
algorithms to construct a cast [8]. However, there is no guarantee that a feasible
cast will be found if there is one. Ahn et al. [2] proposed a hull operator, reflex-
free hull, to define cavities in polyhedron. The motivation is that the cavities
limit the search space for parting and core directions.

In this paper, we give the first exact characterization of the castability of an
object given the parting and core directions, assuming that the removal order of
the parts and the core is immaterial. The core is often removed first in practice,
so our assumption is stronger than necessary. Nevertheless, our result is the first
known characterization of castability when a core is allowed. For a polyhedron
of size n, we develop an O(n3 logn)-time algorithm for performing this test. The
cast can be constructed within the same time bound. This paper presents, to
the best of our knowledge, the first polynomial time algorithm for the problem.

2 Preliminaries

Let A be a subset of R3. We say that A is open if for any point p ∈ A, A
contains some ball centered at p with positive radius. We say that A is closed if
its complement is open. For all points p ∈ R3, p is a boundary point of A, if any
ball centered at p with positive radius intersects both A and its complement. The
boundary of A, denoted by bd(A), is the set of boundary points. The interior of
A, int(A), is A \ bd(A). Note that int(A) must be open.

We assume that the outer shape of the cast equals a box denoted by B. The
cavity of B has the shape of the object Q to be manufactured. We assume that

42 H.-K. Ahn et al.

Q is an open set so that the cast B \Q is a closed set. The box B is large enough
so that Q is contained strictly in its interior. We use dm and −dm to denote the
given opposite parting directions, and dc to denote the given core direction.

We call the main part to be removed in direction dm the red cast part and
denote it by Cr. We call the other main part the blue cast part and denote it by
Cb. We denote the core by Cc. We require each cast part and the core to be a
connected subset of B such that B \Q = Cr ∪Cb ∪Cc and these three pieces only
overlap along their boundaries.

Given the object Q and the directions dm and dc, our problem is to decide if
Q is castable. That is, whether B can be partitioned into Cr, Cb and Cc so that
they can be translated to infinity in their respective directions without colliding
with Q and the other pieces. We assume that the order of removing the parts
and the core is immaterial. In other words, if Q is castable, the parts and the
core can be removed in any order without colliding with Q or the other pieces.

3 The Characterization of Castability

In this section, we develop the exact characterization of the castability of Q
given the parting and core directions dm and dc. Recall that we assume Q to
be open but we do not require Q to be polyhedral. We first need some visibility
and monotonicity concepts.

Consider the illumination of Q by light sources at infinity in directions dm

and −dm. We denote by Vm the subset of points of B \ Q that do not receive
light from the direction dm or the direction −dm. That is, both rays emitting
from p in directions dm and −dm intersect Q. We use Vc

m to denote the points in
R3 \Q encountered when we sweep Vm to infinity in direction dc. Note that Vc

m

includes Vm itself. Consider the illumination of Q∪Vc
m by light sources at infinity

in directions dm and −dm. We use Vo to denote those points in B \ (Q ∪ Vc
m)

that do not receive light from the direction dm or the direction −dm. That is,
both rays emitting from p in directions dm and −dm intersect Q ∪Vc

m. Then Vc
o

denotes the points in R3 \ (Q ∪ Vc
m) encountered when we sweep Vo to infinity

in direction dc. Note that Vc
o includes Vo itself.

An object is monotone in direction d if for any line � parallel to d , the inter-
section between � and the interior of the object is a single interval. Notice that
although Vc

m is constructed by sweeping Vm in direction dc, the points inside Q
are excluded. Therefore, Vc

m needs not be monotone in direction dc in general.
So does Vc

o .
We will need the following lemmas. We skip the proof of the first one due to

space limitation.

Lemma 1. Q ∪ Vc
m ∪ Vc

o is monotone in dm.

Lemma 2. Given dm and dc, if Q is castable, then Vc
m∩B ⊆ Cc and Vc

o∩B ⊆ Cc.

Proof. Let p be a point in Vm. By the definition of Vm, if we move p in direc-
tion dm or −dm to infinity, p will hit Q. So p cannot be a point in Cr or Cb.

Casting an Object with a Core 43

Thus, Vm ⊆ Cc. Since Q is castable, Cc can be translated to infinity in direction
dc without colliding with Q and the red and blue cast parts. This implies that
Vc

m ∩ B ⊆ Cc. By the definition of Vo, if we move a point q ∈ Vo in direction dm

or −dm, q will hit Q ∪ Vc
m. So q must be a point in Cc, implying that Vo ⊆ Cc.

Thus, the same reasoning shows that Vc
o ∩ B ⊆ Cc.

Theorem 1. Given dm and dc, Q is castable if and only if Vc
m ∪Vc

o is monotone
in dc.

Proof. If Q is castable, then for any point p ∈ Cc, moving p to infinity in
direction dc will not hit Q, Cr, or Cb. By Lemma 2, (Vc

m ∪ Vc
o) ∩ B is contained

in Cc. Therefore, by considering the movement of all points in (Vc
m ∪ Vc

o) ∩ B
in direction dc, we conclude that Vc

m ∪ Vc
o is monotone in dc. This proves the

necessity of the condition.
We prove the sufficiency by showing the construction of a cast for Q. Ahn et

al. [4] proved that an object is castable using a 2-part cast (without any side
core) in parting direction d if and only if the object is monotone in direction
d . Thus, Lemma 1 implies that Q ∪ Vc

m ∪ Vc
o is castable using a 2-part cast in

direction dm. We use the construction by Ahn et. al [4] to build Cr and Cb with
the necessary modification for handling the side core. The details are as follows.
Without loss of generality, we assume that dm is the upward vertical direction,
dc makes angle of at most π/2 with dm, and the horizontal projection of dc aligns
with the positive x-axis.

Recall that the cast is made from a rectangular axis-parallel box B. We make B
sufficiently large and position Q inside B so that Vc

m ∪ Vc
o intersects the interior

of one vertical side facet of B only. Let S be that side facet of B. Thicken S
slightly to form a slab S+. Let T be the top horizontal facet of B. Thicken T
slightly to form one slab T+.

We move Q∪Vc
m ∪Vc

o upward to infinity to form one swept volume. Then we
subtract Q∪Vc

m ∪Vc
o from this swept volume to form a shape X . We can almost

make X ∩ B the red cast part, but it is possible that X ∩ B is disconnected.
So we add T+ to connect the components of X ∩ B to form one red cast part
Cr. Similarly, we can almost make (Vc

m ∪ Vc
o) ∩ B the side core, but it may be

disconnected. So we add S+ \T+ to connect the components in (Vc
m ∪Vc

o)∩B to
form the side core Cc. Lastly, we construct the blue cast part Cb as B\(Q∪Cr∪Cc).

We argue that any part or the side core can be removed without colliding
with Q, the other part or the side core. Since Vc

m ∪ Vc
o is monotone in direction

dc, the core Cc can be removed first without colliding with Q or the other cast
parts. Consider Cr. As Q ∪Vc

m ∪ Vc
o is monotone in direction dm, the removal of

Cr cannot collide with Q or Cc. Clearly, the removal of Cr cannot collide with Cb

by construction. The argument that Cb can be removed first is similar.

If we are given a CAD system that is equipped with visibility computation,
volume sweeping, and monotonicity checking operation, the characterization in
Theorem 1 can be used directly to check the castability of any object. The proof
also yields the construction of the cast.

44 H.-K. Ahn et al.

4 An Algorithm for Polyhedra

In this section, we apply Theorem 1 to check the castability of a polyhedron.
The goal is to obtain a discrete algorithm whose running time depends on the
combinatorial complexity of the polyhedron. To be consistent with the previous
section, our object is the interior of the polyhedron and we denote it by P . The
combinatorial complexity n of P is the sum of the numbers of vertices, edges,
and facets in bd(P). We present an O(n3 logn)-time algorithm for testing the
castability of P given dm and dc. During the verification, we compute Vc

m ∪ Vc
o ,

from which the cast C can be easily obtained as mentioned in the proof of
Theorem 1.

Throughout this section, we assume that dm is the upward vertical direction.
We also make two assumptions about non-degeneracy. First, no facet in bd(P)
is vertical. Second, the vertical projections of two polyhedron edges are either
disjoint or they cross each other. These non-degeneracy assumptions simplify
the presentation and they can be removed by a more detailed analysis. We call
a facet of P an up-facet if its outward normal points upward, and a down-facet
if its outward normal points downward.

Let H be a horizontal plane below P . We project all facets of P onto H.
The projections may self-intersect and we insert vertices at the crossings. The
resulting subdivision has O(n2) size and we denote it by M. For each cell of
M, we keep the set of polyhedron facets that cover it. We can compute M in
O(n2 logn) time using a plane-sweep algorithm and the association of polyhedron
facets to cells can also be done in O(n3 logn) time during the plane sweep.

After computing M, we test whether Vc
m ∪ Vc

o is monotone in dc (see The-
orem 1). We partition H into 2D slabs by taking vertical planes parallel to dc

through all vertices of M. Since there are O(n2) vertices in M and a vertical
plane parallel to dc intersects O(n) edges of P , there are O(n3) intersections in
total. So the overlay of M and the slabs can be computed in O(n3 logn) time
using a plane-sweep algorithm.

Consider a slab Σ on H. From the construction, Σ contains no vertex in
its interior and is partitioned into O(n) regions by the edges of M. Let d be
the projection of dc on H. The regions in Σ are linearly ordered in direction d
and we label them by ∆0, ∆1, . . . in this order. Notice that ∆0 is unbounded
in direction −d and the last region is unbounded in direction d . We use ζi to
denote the boundary edge between ∆i−1 and ∆i. For each region ∆i, we keep
the set of polyhedron facets that cover it. We cannot do this straightforwardly.
Otherwise, since there are O(n3) regions over all slabs and we may keep O(n)
polyhedron facets per region, the total time and space needed to do this would
be O(n4). The key observation is that if we walk from ∆0 along Σ in direction
d and record the changes in the set of facets whenever we cross a boundary
edge ζi, then the total number of changes in Σ is O(n). Therefore, we can use a
persistent search tree [13] to store the sets of polyhedron facets for all regions in
Σ. This takes O(n log n) time and O(n) space to build per slab. Hence, it takes
a total of O(n3 logn) time and O(n3) space.

Casting an Object with a Core 45

We employ an inductive strategy for testing the monotonicity of Vc
m ∪ Vc

0
in dc within the unbounded 3D slab Σ × [∞,−∞] for each 2D slab Σ on H.
Repeating this test for all 2D slabs on H gives the final answer. We scan the
regions in Σ in the order ∆0, ∆1, During the scanning, we incrementally
grow a volume Vc. The volume Vc is initially empty and Vc will be equal to
(Vc

m ∪ Vc
o) ∩ (Σ × [∞,−∞]) in the end.

We first discuss the data structures that we need to maintain during the
scanning. Consider the event that we cross the boundary ζi and that the portion
of Vc

m ∪Vc
o encountered so far is monotone in dc. Take the vertical strip through

ζi. We translate this strip slightly into ∆i−1 (resp. ∆i) and denote the perturbed
strip by H−

i (resp. H+
i). Let I−i denote the intersection H−

i ∩ (Vc
m ∪ Vc

o) and
let I+

i denote the intersection H+
i ∩ (Vc

m ∪ Vc
o). Both I−i and I+

i consist of O(n)
trapezoids. We call the upper and lower sides of each trapezoid its ceiling and
floor, respectively. The ceiling of each trapezoid τ lies on a boundary facet of
Vc

m ∪ Vc
o . We call this boundary facet the ceiling-facet of τ . This ceiling-facet

may lie within a down-facet in bd(P) or it may be parallel to dc and disjoint
from bd(P). The latter kind of facets are generated by the sweeping towards
dc. Therefore, it suffices to store a polyhedron facet or a plane parallel to dc

to represent the ceiling-facet. We denote this representation by fu(τ). Similarly,
the floor of τ lies on a boundary facet of Vc

m ∪ Vc
o . This boundary facet may lie

within a up-facet of P or it may be parallel to dc and disjoint from bd(P). We
call it the floor-facet of τ and denote its representation by f	(τ).

We are ready to describe the updating strategy when we reach a new region
∆i. We first discuss the monotonicity test. Later, we discuss how to grow Vc

if the test is passed. Note that there is a change in the polyhedron facets that
cover ∆i−1 and ∆i. There are several cases.

1. For any trapezoid τ ∈ I−i , neither fu(τ) nor f	(τ) is about to vanish above
ζi. Then some polyhedron edge e must project vertically onto ζi. Also, the
vertical projections of the two incident polyhedron facets of e cover ∆i but
not∆i−1. Consider the projection e− of e in direction −dc ontoH−

i . Since the
monotonicity test has been passed so far, the space between two trapezoids
in I−i is the polyhedron interior. Thus the projection e− cannot lie between
two trapezoids in I−i . So there are only two cases:

(a) The projection e− cuts across the interior of a trapezoid τ ∈ I−i . In this
case, we abort and report that P is not castable. The reason is that one
polyhedron facet incident to e must block the sweeping of τ towards dc.
It follows that Vc

m ∪ Vc
o is not monotone in dc and so P is not castable

by Theorem 1.
(b) The projection e− lies above all trapezoids. The case that e− lies below

all trapezoids can be handled symmetrically. Let f be the down-facet
incident to e. If we project e vertically downward, the projection either
lies on some up-facet f ′, or a boundary facet of Vc

m ∪ Vc
o that is parallel

to dc, or lies at infinity. The last case happens when I−i is empty (e.g.,
when we cross the boundary ζ1 between ∆1 and ∆0) and there is nothing

46 H.-K. Ahn et al.

to be done for this case. We discuss the other two cases. Let e′ denote
this vertical downward projection of e.
i. If e′ lies on a up-facet f ′, then e and e′ define a new trapezoid τ

that lies above all trapezoids in I−i and that fu(τ) = f and f	(τ) =
f ′. I+

i contains all trapezoids in I−i as well as τ . However, if the
outward normal of f makes an obtuse angle with dc, then f blocks
the sweeping of τ towards dc and we should abort and conclude as
before that P is not castable.

ii. If e′ lies on a boundary facet of Vc
m ∪ Vc

o that is parallel to dc, then
e′ actually lies on fu(τ) where τ is the topmost trapezoid in I−i .
Thus, we should grow τ upward and set fu(τ) = f . I+

i contains this
updated trapezoid τ and the other trapezoids in I−i . There is no
change in the monotonicity status.

2. For some trapezoid τ ∈ I−i , fu(τ) or f	(τ) is about to vanish above ζi. In this
case, a polyhedron edge e bounds fu(τ) or f	(τ) and e projects vertically
onto ζi. There are two cases:
(a) The polyhedron facets incident to e lie locally on different sides of the

vertical plane through ζi. Let f be the incident facet of e that lies locally
in direction dc from e. In this case, the vanishing fu(τ) or f	(τ) should
be replaced by f . However, if the outward normal of f makes an obtuse
angle with dc, we should abort and conclude as before that P is not
castable.

(b) Otherwise, both incident facets of e lie locally in direction −dc from
e. There is no change in monotonicity status, but we need to perform
update as follows. Let f be the vanishing fu(τ) or f	(τ) of τ . There are
two cases:
i. There are trapezoids in I−i that lie above and below f . Clearly, τ is

one of them. Let τ ′ be the other trapezoid. Then fu(τ ′) or f	(τ ′) is
about to vanish above ζi too. In this case, we should merge τ and τ ′

into one trapezoid. The ceiling-facet and floor-facet of this merged
trapezoid are the non-vanishing ceiling-facet and floor-facet of τ and
τ ′. I+

i contains this merged trapezoid and the trapezoids in I−i other
than τ and τ ′.

ii. All trapezoids in I−i lie on one side of f . Assume that τ is the topmost
trapezoid in I−i . The other case can be handled symmetrically. Then
f = fu(τ). It means that we are about to sweep the shadow volume
below f and bounded by τ into the space above ∆i. Thus, we should
set fu(τ) to be the plane that passes through e and is parallel to dc.
I+
i contains this updated trapezoid τ and the other trapezoids in I−i .

By representing each trapezoid in I−i combinatorially by its ceiling-facet and
floor-facet, the above description tells us how to update I−i combinatorially to
produce I+

i . Notice that I+
i will be treated as I−i+1 when we are about to cross

the boundary ζi+1 in the future. By storing the trapezoids in I−i in a balanced
binary search tree, the update at ζi can be performed in O(log n) time. Since

Casting an Object with a Core 47

there are O(n) regions in Σ, scanning Σ takes O(n log n) time. Summing over
all 2D slabs on H gives a total running time of O(n3 logn).

What about growing Vc into the space above ∆i? After the update, for each
trapezoid τ ∈ I+

i , fu(τ) and f	(τ) cut ∆i × [∞,−∞] into two unbounded solid
and one bounded solid Bτ . Conceptually, we can grow Vc by attaching Bτ for
each trapezoid τ ∈ I+

i , but this is too consuming. Observe that if I+
i merely

inherits a trapezoid τ from I−i , there is no hurry to sweep τ into the space above
∆i. Instead, we wait until ζj for the smallest j > i such that I+

j does not inherit
τ from I−j−1. Then fu(τ) and f	(τ) cut R× [∞,−∞] into two unbounded solids
and one bounded solid Sτ , where R is the area within Σ bounded by ζi and ζj .
We attach Sτ to grow Vc. By adopting this strategy, we spend O(1) time to grow
Vc when we cross a region boundary. Hence, we spend a total of O(n3) time to
construct Vc

m ∪Vc
o . Once Vc

m ∪Vc
o is available, we can construct the cast in O(n3)

time as explained in the proof of Theorem 1.

Theorem 2. Given dm and dc, the castability of a polyhedron with size n can
be determined in O(n3 logn) time and O(n3) space. If castable, the cast can be
constructed in the same time and space bounds.

Fig. 2. The boundary of each object is partitioned into three groups in accordance
with the removal directions in which the object has been verified castable

We developed a preliminary implementation of the algorithm of Theorem 2.
Figure 2 shows the output of our implementation on two polyhedra: the direction
dm is the upward vertical direction and the direction dc is the leftward direc-
tion. In the figure, the boundary of each object is partitioned into three groups
depending on which cast part they belong to. For the ease of visualization, each
boundary group is translated slightly in its corresponding removal direction.

5 Worst-Case Example

In this section, we present a lower bound construction showing that a castable
polyhedron of size n can require a cast of Ω(n3) size. Thus the space complexity
in Theorem 2 is worst-case optimal and the time complexity of our algorithm is
at most a logn factor off the worst-case optimum. Throughout this section, we
assume that dm is the upward vertical direction and dc is the leftward direction.

Figure 3 shows our lower bound construction. The polyhedron consists of two
parts: the upper part has four horizontal legs in a staircase and three slanted

48 H.-K. Ahn et al.

Fig. 3. The lower bound example in a perspective view

legs sitting on a horizontal leg. The lower part is an almost identical copy of
the upper part, except that it has three small holes as shown in the figure. The
upper hole can only be covered by the red cast part to be removed vertically
upward, and the other two holes only be covered each by the core and the blue
cast part. Figure 4(a) shows the front view (when we look at it from the left) and
the top view of the polyhedron P . In both projections, all three horizontal legs
cross the other three slanted legs in the upper part as well as in the lower part.

Clearly, the polyhedron is castable with respect to the given dm and dc. We
put Θ(n) horizontal legs and Θ(n) slanted legs in both the upper and the lower
parts. In the upper part, each slanted leg must be in contact with both Cr and Cc.
Moreover, the contacts with Cr and Cc alternateΘ(n) times along the slanted leg.

front view

a b a b

top view

�dc

�dm

(a)

(b)

p
q

Fig. 4. (a) A top view and a side view of the lower bound construction. (b) Two cross
sections along a (left) and b (right). The only way to remove p (resp. q) is translating
it in dm (resp. dc).

Casting an Object with a Core 49

As a result, the slanted legs in the upper part have a total of Θ(n2) contacts with
Cc. These contacts sweep in direction dc and generate Θ(n2) swept volumes. The
merging of any two such swept volumes is forbidden by the alternate appearances
of the left cross-section in Figure 4(b). Each swept volume projects vertically
and produces a shadow on each horizontal leg that lies below it. Thus, the total
complexity of Cc is Ω(n3).

References

1. H.K. Ahn, S.W. Cheng, and O. Cheong. Casting with skewed ejection direction.
In Proc. 9th Annu. International Symp. on Algorithms and Computation,, volume
1533 of Lecture Notes in Computer Science, pages 139–148. Springer-Verlag, 1998.

2. H.K. Ahn, S.W. Cheng, O. Cheong, and J. Snoeyink. The reflex-free hull. In-
ternational Journal of Computational Geometry and Applications, 14(6):453–474,
2004.

3. H.K. Ahn, O. Cheong, and R. van Oostrum. Casting a polyhedron with directional
uncertainty. Computational Geometry: Theory and Applications, 26(2):129–141,
2003.

4. H.K. Ahn, M. de Berg, P. Bose, S.W. Cheng, D. Halperin, J. Matoušek, and
O. Schwarzkopf. Separating an object from its cast. Computer-Aided Design,
34:547–559, 2002.

5. P. Bose and G. Toussaint. Geometric and computational aspects of gravity casting.
Computer-Aided Design, 27(6):455–464, 1995.

6. L.L. Chen, S.Y. Chou, and T.C. Woo. Parting directions for mould and die design.
Computer-Aided Design, 25:762–768, 1993.

7. R. Elliot. Cast Iron Technology. Butterworths, London, 1988.
8. K. Hui. Geometric aspects of mouldability of parts. Computer Aided Design,

29(3):197–208, 1997.
9. K.C. Hui and S.T. Tan. Mould design with sweep operations—a heuristic search

approach. Computer-Aided Design, 24:81–91, 1992.
10. K. K. Kwong. Computer-aided parting line and parting surface generation in mould

design. PhD thesis, The University of Hong Kong, Hong Kong, 1992.
11. J. Majhi, P. Gupta, and R. Janardan. Computing a flattest, undercut-free parting

line for a convex polyhedron, with application to mold design. Computational
Geometry: Theory and Applications, 13:229–252, 1999.

12. W.I. Pribble. Molds for reaction injection, structural foam and expandable styrene
molding. In J.H. DuBois and W.I. Pribble, editors, Plastics Mold Engineering
Handbook. Van Nostrand Reinhold Company, New York, 1987.

13. N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669–679, 1986.

14. C.F. Walton and T.J. Opar, editors. Iron Castings Handbook. Iron casting society,
Inc., 1981.

15. E. C. Zuppann. Castings made in sand molds. In J. G. Bralla, editor, Handbook of
Product Design for Manufacturing, pages 5.3–5.22. McGraw-Hill, New York, 1986.

Sparse Geometric Graphs with Small Dilation�

Boris Aronov1, Mark de Berg2, Otfried Cheong3, Joachim Gudmundsson4,
Herman Haverkort2, and Antoine Vigneron5

1 Department of Computer and Information Science, Polytechnic University,
Brooklyn, New York, USA

http://cis.poly.edu/~aronov
2 Department of Mathematics and Computing Science, TU Eindhoven, Eindhoven,

The Netherlands
mdberg@win.tue.nl, cs.herman@haverkort.net

3 Division of Computer Science, KAIST, Daejeon, South Korea
otfried@cs.kaist.ac.kr

4 IMAGEN Program, National ICT Australia Ltd��, Australia
joachim.gudmundsson@nicta.com.au

5 Department of Computer Science, National University of Singapore, Singapore
antoine@comp.nus.edu.sg

Abstract. Given a set S of n points in the plane, and an integer k such
that 0 � k < n, we show that a geometric graph with vertex set S, at
most n − 1 + k edges, and dilation O(n/(k + 1)) can be computed in
time O(n log n). We also construct n–point sets for which any geometric
graph with n− 1 + k edges has dilation Ω(n/(k + 1)); a slightly weaker
statement holds if the points of S are required to be in convex position.

1 Preliminaries and Introduction

A geometric network is an undirected graph whose vertices are points in Rd.
Geometric networks, especially geometric networks of points in the plane, arise in
many applications. Road networks, railway networks, computer networks—any
collection of objects that have some connections between them can be modeled
as a geometric network. A natural and widely studied type of geometric network
is the Euclidean network, where the weight of an edge is simply the Euclidean
distance between its two endpoints. Such networks for points in the plane form
the topic of study of our paper.

When designing a network for a given set S of points, several criteria have
to be taken into account. In particular, in many applications it is important to
� This work was supported by LG Electronics and NUS research grant R-252-000-166-

112. Research by B.A. has been supported in part by NSF ITR Grant CCR-00-81964
and by a grant from US-Israel Binational Science Foundation. Part of the work was
carried out while B.A. was visiting TU/e in February 2004 and in the summer of
2005. MdB was supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

�� National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 50–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sparse Geometric Graphs with Small Dilation 51

ensure a short connection between every pair of points in S. For this it would be
ideal to have a direct connection between every pair of points; the network would
then be a complete graph. In most applications, however, this is unacceptable
due to the high costs. Thus the question arises: is it possible to construct a
network that guarantees a reasonably short connection between every pair of
points while not using too many edges? This leads to the concept of spanners,
which we define next.

Recall that the weight of an edge e = (u, v) in a Euclidean networkG = (S,E)
on a set S of n points is the Euclidean distance between u and v, which we
denote by d(u, v). The graph distance dG(u, v) between two vertices u, v ∈ S is
the length of the shortest path in G connecting u to v. The dilation (or: stretch
factor) of G, denoted ∆(G), is the maximum factor by which graph distance dG

differs from the Euclidean distance d, namely

∆(G) := max
u,v∈S
u=v

dG(u, v)
d(u, v)

.

The network G is a t-spanner for S if ∆(G) � t.
Spanners find applications in robotics, network topology design, distributed

systems, design of parallel machines, and many other areas and have been a
subject of considerable research [3]. Recently spanners found interesting practi-
cal applications in metric space searching [14,15] and broadcasting in commu-
nication networks [1,9,13]. The problem of constructing spanners has received
considerable attention from a theoretical perspective—see the surveys [7,17].

The complete graph has dilation 1, which is optimal, but we already noted
that the complete graph is generally too costly. The main challenge is therefore
to design sparse networks that have small dilation. There are several possible
measures of sparseness, for example the total weight of the edges or the maximum
degree of a vertex. The measure that we will focus on is the number of edges.
Thus the main question we study is this: Given a set S of n points in the plane,
what is the best dilation one can achieve with a network on S that has few
edges? Notice that the edges of the network are allowed to cross or overlap.

This question has already received ample attention. For example, there are
several algorithms [2,12,16,18] that compute a (1+ε)-spanner for S, for any given
parameter ε > 0. The number of edges in these spanners is O(n/ε). Although
the number of edges is linear in n, it can still be rather large both due to the
dependency on ε and due to the hidden constants in the O-notation. Das and
Heffernan [4] showed how to compute, for any c > 1, an O(1)–spanner with cn
edges. We are interested in the case where the number of edges is close to n, not
just linear in n. Any spanner must have at least n − 1 edges, for otherwise the
graph would not be connected, and the dilation would be infinite. This leads us
to define the quantity ∆(S, k):

∆(S, k) := min
V (G)=S

|E(G)|=n−1+k

∆(G).

52 B. Aronov et al.

Thus ∆(S, k) is the minimum dilation one can achieve with a network on S
that has n − 1 + k edges. The goal of our paper is not to give an algorithm for
computing a minimum-dilation network with n−1+k edges for the specific input
graph. (Problems of this type have been studied by several authors [6,8,10]. In
general they appear quite hard.) Rather, we will study the worst-case behavior
of the function ∆(S, k): what is the best dilation one can guarantee for any set
S of n points if one is allowed to use n− 1 + k edges? In other words, we study
the quantity

δ(n, k) := sup
S⊂R

2

|S|=n

∆(S, k).

Keil and Gutwin [11] proved that the Delaunay triangulation of any set S of
points in the plane has dilation at most 2π

3 cos(π/6) ≈ 2.42. Since the Delaunay
triangulation has at most 3n− 6 edges (when n � 3), this shows that δ(n, 2n−
5) � 2.42. We are interested in what can be achieved for smaller values of k, in
particular for 0 � k < n.

In the above definitions we have placed a perhaps unnecessary restriction
that the graph may use no other vertices besides the points of S. We will also
consider networks whose vertex sets strictly contain S. In particular, we define
a Steiner tree on S as a tree T with S ⊂ V (T). The dilation ∆∗(T) is defined
analogously as

∆∗(T) := max
u,v∈S
u=v

dT (u, v)
d(u, v)

.

The vertices in V (T) \ S are called Steiner points. We do not assume a priori
that the network is embedded in the plane without self-intersections—the edges
of T may cross or overlap. Note that T may have any number of vertices, the
only restriction is on its topology.

Our results. We first show that any Steiner tree on a set S of n equally spaced
points on a circle has dilation at least n/π. We prove in a similar way that
δ(n, 0) � 2

πn − 1. Eppstein [7] gave a simpler proof that δ(n, 0) > 1
3n; we

improve this bound by a constant factor. Our bound is tight in the sense that
∆(S, 0) = 2

πn− 1 + o(1) when S is a set of n equally spaced points on a circle.
We then continue with the case 0 < k < n. Here we give an example of a

set S of n points for which any network with n − 1 + k edges has dilation at
least 2

π �n/(k + 1)� − 1, proving that δ(n, k) � 2
π �n/(k + 1)� − 1. We also prove

that for points in convex position1 the dilation can be almost as large as in the
general case: there are sets of points in convex position such that any network
has dilation Ω(n/((k + 1) logn)).

Next we study upper bounds. We describe a O(n logn) time algorithm that
computes for a given set S and parameter 0 � k < n a network of dilation
O(n/(k + 1)). Combined with our lower bounds, this implies that δ(n, k) =
Θ(n/(k+1)). In particular, our bounds apply to the case k = o(n), which was left

1 A set of points is in convex position if they all lie on the boundary of their convex
hull.

Sparse Geometric Graphs with Small Dilation 53

open by Das and Heffernan [4]. Notice that, for any constant c � 1, if n � k � cn,
then we have 1 � δ(n, k) � δ(n, n− 1), and thus δ(n, k) = Θ(1) = Θ(n/(k+ 1)).
It means that our result δ(n, k) = Θ(n/(k+1)) generalizes to the case 0 � k � cn
for any constant c � 1.

Our lower bounds use rather special point sets and it may be the case that
more ‘regular’ point sets admit networks of smaller dilation. Therefore we also
study the special case where S is a

√
n×√

n grid. We show that such a grid admits
a network of dilationO(

√
n/(k + 1)) and that this bound is asymptotically tight.

We also obtain tight bounds for point sets with so–called bounded spread. These
results and their proofs can be found in the full version of the paper.

Notation and terminology. Hereafter S will always denote a set of points in the
plane. Whenever it causes no confusion we do not distinguish an edge e = (u, v)
in the network under consideration and the line segment uv.

2 Lower Bounds

In this section we prove lower bounds on the dilation that can be achieved with
n− 1 + k edges for 0 � k < n.

2.1 Steiner Trees

We first show a lower bound on the dilation of any Steiner tree for S. The lower
bound for this case uses the set S of n points p1, p2, . . . , pn spaced equally on
the unit circle, as shown in Fig. 1(a).

Theorem 1. For any n > 1, there is a set S of n points in convex position such
that any Steiner tree on S has dilation at least 1

sin(π/n) � n
π .

Proof. Consider the set S described above and illustrated in Fig. 1(a). Let o be
the center of the circle, and let T be a Steiner tree on S. First, let’s assume that
o does not lie on an edge of the tree.

a

b

c

o
�θ

o

pi

pi+1

γi

(a) (b)

Fig. 1. (a) The homotopy class of the path γi. (b) Illustrating the proof of Lemma 1.

54 B. Aronov et al.

Let x and y be two points and let γ and γ′ be two paths from x to y avoiding
o. We call γ and γ′ (homotopy) equivalent if γ can be deformed continuously
into γ′ without ever passing through the point o, that is, if γ and γ′ belong to
the same homotopy class in the punctured plane R2 \ {o}.

Let γi be the unique path in T from pi to pi+1 (where pn+1 := p1). We argue
that there must be at least one index i for which γi is not equivalent to the
straight segment pipi+1, as illustrated in Fig. 1(a).

We argue by contradiction. Let Γ be the closed loop formed as the concatena-
tion of γ1, . . . , γn, and let Γ ′ be the closed loop formed as the concatenation of
the straight segments pipi+1, for i = 1 . . . n. If γi is equivalent to pipi+1, for all i,
then Γ and Γ ′ are equivalent. We now observe that, since Γ ′ is a simple closed
loop surrounding o, it cannot be contracted to a point in the punctured plane
(formally, it has winding number 1 around o). On the other hand, Γ is contained
in the tree T �� o (viewed as a formal union2 of its edges) and hence must be
contractible in R2 \ {o}. Hence Γ and Γ ′ cannot be equivalent, a contradiction.

Consider now a path γi not equivalent to the segment pipi+1. Then γi must
“go around” o, and so its length is at least 2. The distance between pi and pi+1,
on the other hand, is 2 sin(π/n), implying the theorem.

Now consider the case where o lies on an edge of T . Assume for a contradiction
that there is a spanning tree T that has dilation 1/ sin(π/n) − ε for some ε > 0.
Let o′ be a point not on T at distance ε/100 from o. Then we can use the
argument above to show that there are two consecutive points whose path in T
must go around o′. By the choice of o′ such a path must have dilation larger
than 1/ sin(π/n) − ε, a contradiction. ��

2.2 The Case k = 0

If we require the tree to be a spanning tree without Steiner points, then the path
γi in the above proof must not only “go around” o, but must do so using points
pj on the circle only. We can use this to improve the constant in Theorem 1, as
follows. Let pi and pi+1 be the consecutive points such that the path γi is not
equivalent to the segment pipi+1. Consider the loop formed by γi and pi+1pi.
It consists of straight segments visiting some of the points of S. Let C be the
convex hull of this loop. We can deal with the case where the center o lies on
the boundary of C by moving it slightly, as we did in the proof of Theorem 1.
Therefore we can assume that o lies in the interior of C (otherwise, the loop is
contractible in the punctured plane) and there exist three vertices v1, v2, and
v3 of C such that o ∈ �v1v2v3. Since the loop visits each of these three vertices
once, its length is at least the perimeter of �v1v2v3, which is at least 4 by
Lemma 1 below. Therefore, we have proven

2 Notice that T may not be properly embedded in the plane, i.e., the edges of T
may cross or overlap. However, viewed not as a subset of the plane, but rather as
an abstract simplicial complex, T is certainly simply connected and Γ is a closed
curve contained in it and thus contractible, within T , to a point. Therefore it is also
contractible in the punctured plane, as claimed.

Sparse Geometric Graphs with Small Dilation 55

Corollary 1. For any n > 1 there is an n-point set S in convex position such
that any spanning tree on S has dilation at least 4−2 sin(π/n)

2 sin(π/n) � 2
πn− 1 and thus

δ(n, 0) � ∆(S, 0) � 2
πn− 1.

Lemma 1. Any triangle inscribed in a unit circle and containing the circle cen-
ter has perimeter at least 4.

Proof. Let o be the circle center, and let a, b, and c be three points at distance
one from o such that o is contained in the triangle �abc. We will prove that the
perimeter p(�abc) is at least 4.

We need the following definition: For a compact convex set C in the plane
and 0 � θ < π, let w(C, θ) denote the width of C in direction θ. More precisely,
if �θ is the line through the origin with normal vector (cos θ, sin θ), then w(C, θ)
is the length of the orthogonal projection of C to �θ.

The Cauchy-Crofton formula [5] allows us to express the perimeter p(C) of a
compact convex set C in the plane as p(C) =

∫ π

0 w(C, θ)dθ.
We apply this formula to �abc, and consider its projection on the line �θ

(for some θ). The endpoints of the projection of �abc are projections of two
of the points a, b, and c. Without loss of generality, for a given θ, let these
be a and b, and assume that c projects onto the projection of the segment
ob. Then we clearly have w(oc, θ) � w(ob, θ). Since o lies in C, we also have
w(oc, θ) � w(oa, θ) (consider the angles the segments oa, ob and oc make with
the line �θ). This implies 3w(oc, θ) � w(oa, θ)+w(ob, θ)+w(oc, θ), and therefore

w(�abc, θ) = w(oa, θ) + w(ob, θ)
= w(oa, θ) + w(ob, θ) + w(oc, θ) − w(oc, θ)
� 2

3 (w(oa, θ) + w(ob, θ) + w(oc, θ)).

Integrating θ from 0 to π and applying the Cauchy-Crofton formula gives
p(�abc) � 2

3 (p(oa)+p(ob)+p(oc)). Since oa, ob, and oc are segments of length 1,
each has perimeter 2, and so we have p(�abc) � 2

3 · 6 = 4. ��

2.3 The General Case

We now turn to the general case, and we first consider graphs with n − 1 + k
edges for 0 < k < n.

Theorem 2. For any n and any k with 0 < k < n, there is a set S of n
points such that any graph on S with n − 1 + k edges has dilation at least
2−sin(π/
n/(k+1)�)
sin(π/
n/(k+1)�) � 2

π · � n
k+1� − 1. Hence, δ(n, k) � 2

π · � n
k+1� − 1.

Proof. Our example S consists of k + 1 copies of the set used in Theorem 1.
More precisely, we choose sets Si, for 1 � i � k + 1, each consisting of at least
�n/(k + 1)� points. We place the points in Si equally spaced on a unit-radius
circle with center at (2ni, 0), as in Fig. 2. The set S is the union of S1, . . . , Sk+1;
we choose the sizes of the Si such that S contains n points.

56 B. Aronov et al.

Fig. 2. Illustrating the point set S constructed in the proof of Theorem 2

Let G be a graph with vertex set S and n − 1 + k edges. We call an edge
of G short if its endpoints lie in the same set Si, and long otherwise. Since G
is connected, there are at least k long edges, and therefore at most n− 1 short
edges. Since

∑
|Si| = n, this implies that there is a set Si such that the number

of short edges with endpoints in Si is at most |Si| − 1. Let G′ be the induced
subgraph of Si. By Corollary 1, its dilation is at least

2 − sin(π/�n/(k + 1)�)
sin(π/�n/(k + 1)�) � 2

π
·
⌊

n

k + 1

⌋
− 1.

Since any path connecting two points in Si using a long edge has dilation at
least n, this implies the claimed lower bound on the dilation of G. ��

2.4 Points in Convex Position

The point set of Theorem 1 is in convex position, but works as a lower bound
only for k = 0. In fact, by adding a single edge (the case k = 1) one can reduce
the dilation to a constant. Now consider n points that lie on the boundary of
a planar convex figure with aspect ratio at most ρ, that is, with the ratio of
diameter to width at most ρ. It is not difficult to see that connecting the points
along the boundary—hence, using n edges—leads to a graph with dilation Θ(ρ).
However, the following theorem shows that for large aspect ratio, one cannot do
much better than in the general case. The proof will be given in the full version
of this paper.

Theorem 3. For any n and k such that 0 � k < n, there is a set S of n points
in convex position such that any graph G with vertex set S and n− 1 + k edges
has dilation Ω(n/((k + 1) logn)).

3 A Constructive Upper Bound

In this section we show an upper bound on the dilation achievable with k extra
edges. We make use of the fact (observed by Eppstein [7]) that a minimum
spanning tree has linear dilation. More precisely, we will use the following lemma.

Lemma 2. Let S be a set of n points in the plane, and let T be a minimum
spanning tree of S. Then T has dilation at most n−1. In other words, ∆(S, 0) �
∆(T) � n− 1 and, as it holds for all S with |S| = n, we have δ(n, 0) � n− 1.

Sparse Geometric Graphs with Small Dilation 57

Proof. Let p, q ∈ S and consider the path γ connecting p and q in T . Since T
is a minimum spanning tree, any edge in γ has length at least d(p, q). Since γ
consists of at most n− 1 edges, the dilation of γ is at most n− 1. ��

The following algorithm builds a spanner with at most n− 1 + k edges:

Algorithm 1 SparseSpanner(S, k)
Input A set S of n points in the plane and an integer k � 0.
Output A graph G=(S,E).
1: Compute a Delaunay triangulation of S.
2: Compute a minimum spanning tree T of S.
3: if k = 0 then
4: return T .
5: Let m← �(k + 5)/2�.
6: Compute m disjoint subtrees of T , each containing O(n/m) points, by removing

m− 1 edges.
7: E ← ∅.
8: for each subtree T ′ do
9: add the edges of T ′ to E.

10: for each pair of subtrees T ′ and T ′′ do
11: if there is a Delaunay edge (p, q) with p ∈ T ′, q ∈ T ′′ then
12: add the shortest such edge (p, q) to E.
13: return G = (S, E).

We first prove the correctness of the algorithm.

Lemma 3. Algorithm SparseSpanner returns a graph G with at most n−1+k
edges and dilation bounded by O(n/(k + 1)).

Proof. Lemma 2 shows that our algorithm is correct if k = 0, so from now on
we assume that k � 1, and thus m � 3. Consider the graph G′ obtained from
the output graph G by contracting each subtree T ′ created in step 6 to a single
node. G′ is a planar graph with m � 3 vertices, without loops or multiple edges,
and so it has at most 3m − 6 edges. The total number of edges in the output
graph is therefore at most

n− 1 − (m− 1) + 3m− 6 = n+ 2m− 6 � n+ k − 1.

Consider two points x, y ∈ S. Let x = x0, x1, . . . , xj = y be a shortest path
from x to y in the Delaunay graph. It has dilation [11] at most 2π/(3 cos(π/6)) =
O(1). We claim that each edge xixi+1 in the Delaunay graph has path in G with
dilation O(n/k). The concatenation of these paths yields a path from x to y with
dilation O(n/k), proving the lemma.

If xi and xi+1 fall into the same subtree T ′, then Lemma 2 implies a dilation
of O(n/m) = O(n/k).

58 B. Aronov et al.

It remains to consider the case xi ∈ T ′, xi+1 ∈ T ′′, where T ′ and T ′′ are
distinct subtrees of T . Let (p, q) be the edge with p ∈ T ′, q ∈ T ′′ inserted in
step 12—such an edge exists, since at least one Delaunay edge between T ′ and
T ′′ has been considered, namely (xi, xi+1). Let δ′ be a path from xi to p in T ′,
and let δ′′ be a path from q to xi+1 in T ′′. Both paths have O(n/k) edges. By
construction, we have d(p, q) � d(xi, xi+1). We claim that every edge e on δ′ and
δ′′ has length at most d(xi, xi+1). Indeed, if e had length larger than d(xi, xi+1),
then we could remove it from T and insert either (xi, xi+1) or (p, q) to obtain a
better spanning tree. Therefore the concatenation of δ′, the edge (p, q), and δ′′

is a path of O(n/k) edges, each of length at most d(xi, xi+1), and so the dilation
of this path is O(n/k). ��

Theorem 4. Given a set S of n points in the plane and an integer k � 0, a
graph G with vertex set S, n − 1 + k edges, and dilation O(n/(k + 1)) can be
constructed in O(n logn) time.

Proof. We use algorithm SparseSpanner. Its correctness has been proven in
Lemma 3. Steps 1 and 2 can be implemented in O(n logn) time [7]. Step 6 can
be implemented in linear time as follows. Orient T by arbitrarily choosing a root
node. Traverse T in postorder, keeping track of the size |Tv| of the (remaining)
subtree Tv rooted at the current node v. When |Tv| reaches n/m, cut Tv off the
main tree by removing the edge connecting v to its parent. Each of the trees
rooted at the children of v has size smaller than n/m, and the maximum degree
of any node of T is at most six [7,19]. Therefore, at the time Tv is cut off from
the main tree, we have n/m � |Tv| < 1 + 5(n/m). The argument does not apply
when we reach the root, so we are left with one tree that can be arbitrarily small,
but has fewer than 6n/m vertices. To implement steps 10–12, we scan the edges
of the Delaunay triangulation, and keep the shortest edge connecting each pair
of subtrees. It can be done in O(n logn) time. ��

4 Conclusions and Open Problems

We have shown that for any planar n-point set S and parameter 0 � k < n,
there is a graph G with vertex set S, n − 1 + k edges, and dilation at most
O(n/(k + 1)). We also proved a lower bound of Ω(n/(k + 1)) on the maximum
dilation of such a graph.

Minimum dilation graphs are not well understood yet. For instance, it is
not known whether a minimum dilation tree for a given point set may self-
intersect [7], not even if the point set is in convex position. (On the other hand,
minimum dilation paths or tours can self–overlap.) No efficient algorithm for
computing the minimum dilation tree for a given point set is known. It would be
interesting to either give such an algorithm, or show that the problem is NP-hard
and look for algorithms that approximate the best possible dilation (instead of
giving only a guarantee in terms of n and k, as we do).

Sparse Geometric Graphs with Small Dilation 59

References

1. K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder. Geometric spanners
for wireless ad hoc networks. IEEE Trans. Parallel Dist. Systems, 14(4):408–421,
2003.

2. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42:67–90, 1995.

3. B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on
graph spanners. Internat. J. Comput. Geom. Appl., 5:124–144, 1995.

4. G. Das and P. Heffernan. Constructing Degree–3 Spanners with Other Sparseness
Properties. Int. J. Found. Comput. Sci., 7(2):121–136, 1996.

5. M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, En-
glewood Cliffs, NJ, 1976.

6. Y. Emek and D. Peleg. Approximating minimum max-stretch spanning trees on
unweighted graphs (full version). In Proc. ACM-SIAM Symp. Discrete Algo., pages
261–270, 2004.

7. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 425–461. Elsevier Science Publishers,
Amsterdam, 2000.

8. D. Eppstein and K. Wortman. Minimum dilation stars. In Proc. ACM Symp.
Comput. Geom., pages 321–326, 2005.

9. A. M. Farley, A. Proskurowski, D. Zappala, and K. J. Windisch. Spanners and
message distribution in networks. Discrete Appl. Math., 137(2):159–171, 2004.

10. S. P. Fekete and J. Kremer. Tree spanners in planar graphs. Discrete Appl. Math.,
108:85–103, 2001.

11. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete Comput. Geom., 7:13–28, 1992.

12. C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the
complete graphs and almost as cheap as minimum spanning trees. Algorithmica,
8:251–256, 1992.

13. X.-Y. Li. Applications of computational geomety in wireless ad hoc networks.
In X.-Z. Cheng, X. Huang, and D.-Z. Du, editors, Ad Hoc Wireless Networking.
Kluwer, 2003.

14. G. Navarro and R. Paredes. Practical construction of metric t-spanners. In Proc.
5th Workshop Algorithm Eng. Exp., pages 69–81. SIAM Press, 2003.

15. G. Navarro, R. Paredes, and E. Chez. t-spanners as a data structure for metric
space searching. In Proc. 9th Int. Symp. String Proc. Inf. Retrieval, volume 2476
of Lecture Notes in Computer Science, pages 298–309. Springer-Verlag, 2002.

16. J. S. Salowe. Constructing multidimensional spanner graphs. Internat. J. Comput.
Geom., 1:99–107, 1991.

17. M. Smid. Closest point problems in computational geometry. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 877–935. Elsevier
Science Publishers, Amsterdam, 2000.

18. P. M. Vaidya. A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete Comput. Geom., 6:369–381, 1991.

19. A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput., 11, 1992.

Multiple Polyline to Polygon Matching

Mirela Tănase1, Remco C. Veltkamp1, and Herman Haverkort2

1 Department of Computing Science, Utrecht University, The Netherlands
2 Department of Computing Science, TU Eindhoven, The Netherlands

Abstract. We introduce a measure for computing the similarity be-
tween multiple polylines and a polygon, that can be computed in
O(km2n2) time with a straightforward dynamic programming algorithm.
We then present a novel fast algorithm that runs in time O(kmn log mn).
Here, m denotes the number of vertices in the polygon, and n is the total
number of vertices in the k polylines that are matched against the poly-
gon. The effectiveness of the similarity measure has been demonstrated
in a part-based retrieval application with known ground-truth.

1 Introduction

The motivation for multiple polyline to polygon matching is twofold. Firstly, the
matching of shapes has been done mostly by comparing them as a whole [2,8,10].
This fails when a significant part of one shape is occluded, or distorted by noise.
In this paper, we address the partial shape matching problem, matching portions
of two given shapes. Secondly, partial matching helps identifying similarities
even when a significant portion of one shape boundary is occluded, or seriously
distorted. It could also help in identifying similarities between contours of a non-
rigid object in different configurations of its moving parts, like the contours of a
sitting and a walking cat. Finally, partial matching helps alleviating the problem
of unreliable object segmentation from images, over or undersegmentation, giving
only partially correct contours.

Contribution. Firstly, we introduce a measure for computing the similarity
between multiple polylines and a polygon. This similarity measure is a turning
angle function-based similarity, minimized over all possible shiftings of the end-
points of the parts over the shape, and also over all independent rotations of
the parts. Since we allow the parts to rotate independently, this measure could
capture the similarity between contours of non-rigid objects, with parts in dif-
ferent relative positions. We then derive a number of non-trivial properties of
the similarity measure.

Secondly, based on these properties we characterize the optimal solution that
leads to a straightforwardO(km2n2)-time and space dynamic programming algo-
rithm. We then present a novel O(kmn logmn) time and space algorithm. Here,
m denotes the number of vertices in the polygon, and n is the total number of
vertices in the k polylines that are matched against the polygon.

Thirdly, we have experimented with a part-based retrieval application. Given
a large collection of shapes and a query consisting of a set of polylines, we want to

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 60–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multiple Polyline to Polygon Matching 61

retrieve those shapes in the collection that best match our query. The evaluation
using a known ground-truth indicates that a part-based approach improves the
global matching performance for difficult categories of shapes.

2 Related Work

Arkin et al. [2] describe a metric for comparing two whole polygons that is
invariant under translation, rotation and scaling. It is based on the L2-distance
between the turning functions of the two polygons, and can be computed in
O(mn logmn) time, where m is the number of vertices in one polygon and n is
the number of vertices in the other.

Most partial shape matching methods are based on computing local features
of the contour, and then looking for correspondences between the features of the
two shapes, for example points of high curvature [1,7]. Such local features-based
solutions work well when the matched subparts are almost equivalent up to a
transformation such as translation, rotation or scaling, because for such subparts
the sequences of local features are very similar. However, parts that we perceive
as similar, may have quite different local features (different number of curvature
extrema for example).

Geometric hashing [12] is a method that determines if there is a transformed
subset of the query point set that matches a subset of a target point set, by
building a hash table in transformation space. Also the Hausdorff distance [5]
allows partial matching. It is defined for arbitrary non-empty bounded and closed
sets A and B as the infimum of the distance of the points in A to B and the
points in B to A. Both methods are designed for partial matching, but do not
easily transform to our case of matching multiple polylines to a polygon.

Partially matching the turning angle function of two polylines under scaling,
translation and rotation, can be done in time O(m2n2) [4]. Given two matches
with the same squared error, the match involving the longer part of the polylines
has a lower dissimilarity. The dissimilarity measure is a function of the scale,
rotation, and the shift of one polyline along the other. However, this works for
only two single polylines.

Latecki et al [6], establish the best correspondence of parts in a decomposition
of the matched shapes. The best correspondence between the maximal convex
arcs of two simplified versions of the original shapes gives the partial similarity
measure between the shapes. One drawback of this approach is that the matching
is done between parts of simplified shapes at “the appropriate evolution stage”.
How these evolution stages are identified is not indicated in their papers, though
it certainly has an effect on the quality of the matching process.

3 Polylines-to-Polygon Matching

We concentrate on the problem of matching an ordered set {P1, P2, . . . , Pk} of
k polylines against a polygon P . We want to compute how close an ordered set
of polylines {P1, P2, . . . , Pk} is to being part of the boundary of P in the given

62 M. Tănase, R.C. Veltkamp, and H. Haverkort

P

P1 P2 P3

P

P3

P2

P1

Fig. 1. Matching an ordered set {P1, P2, P3} of polylines against a polygon P

order in counter-clockwise direction around P (see figure 1). For this purpose,
the polylines are rotated and shifted along the polygon P , in such a way that the
pieces of the boundary of P “covered” by the k polylines are mutually disjoint
except possibly at their endpoints. Note that P is a polygon and not an open
polyline, only because of the intended application of part based retrieval.

3.1 Similarity Between Multiple Polylines and a Polygon

The turning function ΘA of a polygon A measures the angle of the counter-
clockwise tangent with respect to a reference orientation as a function of the
arc-length s, measured from some reference point on the boundary of A. It is a
piecewise constant function, with jumps corresponding to the vertices of A. A
rotation of A by an angle θ corresponds to a shifting of ΘA over a distance θ in
the vertical direction. Moving the location of the reference point A(0) over a dis-
tance t ∈ [0, lA) along the boundary of A corresponds to shifting ΘA horizontally
over a distance t.

Let Θ : [0, l] → R be the turning function of a polygon P of m vertices, and
of perimeter length l. Since P is a closed polyline, the domain of Θ can be easily
extended to the entire real line, by Θ(s + l) = Θ(s) + 2π. Let {P1, P2, . . . Pk}
be a set of polylines, and let Θj : [0, lj] → R denote the turning function of the
polyline Pj of length lj . If Pj is made of nj segments, Θj is piecewise-constant
with nj − 1 jumps.

For simplicity of exposition, fj(t, θ) denotes the quadratic similarity between
the polyline Pj and the polygon P , for a given placement (t, θ) of Pj over P :
fj(t, θ) =

∫ lj
0 (Θ(s + t) −Θj(s) + θ)2ds.

We assume the polylines {P1, P2, . . . , Pk} satisfy the condition
∑k

j=1 lj ≤ l.
The similarity measure, which we denote by d(P1, . . . , Pk;P), is the square root
of the sum of quadratic similarities fj , minimized over all valid placements of
P1, . . . , Pk over P :

d(P1, . . . , Pk;P) = min
valid placements
(t1, θ1) . . . (tk, θk)

 k∑
j=1

fj(tj , θj)

1/2

.

Multiple Polyline to Polygon Matching 63

l 2l

Θ

t1 t1 + l1

Θ1

t2 t2 + l2

Θ2

t3 t3 + l3 < t1 + l

Θ3

Fig. 2. To compute d(P1, . . . , Pk; P) between the polylines P1, . . . , P3 and the polygon
P , we shift the turning functions Θ1, Θ2, and Θ3 horizontally and vertically over Θ

It remains to define what the valid placements are. The horizontal shifts
t1, . . . , tk correspond to shiftings of the starting points of the polylines P1, . . . , Pk

along P . We require that the starting points of P1, . . . , Pk are matched with
points on the boundary of P in counterclockwise order around P , that is: tj−1 ≤
tj for all 1 < j ≤ k, and tk ≤ t1 + l. Furthermore, we require that the matched
parts are disjoint (except possibly at their endpoints), sharpening the constraints
to tj−1 + lj−1 ≤ tj for all 1 < j ≤ k, and tk + lk ≤ t1 + l (see figure 2).

The vertical shifts θ1, . . . , θk correspond to rotations of the polylines P1,
. . . , Pk with respect to the reference orientation, and are independent of each
other. Therefore, in an optimal placement the quadratic similarity between a
particular polyline Pj and P depends only on the horizontal shift tj , while the
vertical shift must be optimal for the given horizontal shift. We can thus express
the similarity between Pj and P for a given positioning tj of the starting point
of Pj over P as: f∗j (tj) = minθ∈R fj(tj , θ).

The similarity between the polylines P1, . . . , Pk and the polygon P is thus:

d(P1, . . . , Pk;P) = min
t1∈[0,l), t2,...,tk∈[0,2l);

∀j∈{2,...,k}: tj−1+lj−1≤tj ; tk+lk≤t1+l

 k∑
j=1

f∗j (tj)

1/2

. (1)

3.2 Properties of the Similarity Function

In this section we give a few properties of f∗j (t), as functions of t, that constitute
the basis of the algorithms for computing d(P1, . . . , Pk;P) in sections 3.3 and 3.4.
We also give a simpler formulation of the optimization problem in the definition
of d(P1, . . . , Pk;P). Arkin et al. [2] have shown that for any fixed t, the function
fj(t, θ) is a quadratic convex function of θ. This implies that for a given t, the
optimization problem minθ∈R fj(t, θ) has a unique solution, given by the root
θ∗j (t) of the equation ∂fj(t, θ)/∂θ = 0. As a result:

Lemma 1. For a given positioning t of the starting point of Pj over P , the
rotation that minimizes the quadratic similarity between Pj and P is given by
θ∗j (t) = −

∫ lj
0 (Θ(s + t) −Θj(s))ds/lj .

64 M. Tănase, R.C. Veltkamp, and H. Haverkort

We now consider the properties of f∗j (t) = fj(t, θ∗j (t)), as a function of t.

Lemma 2. The quadratic similarity f∗j (t) has the following properties:
i) it is periodic, with period l;
ii) it is piecewise quadratic, with mnj breakpoints within any interval of length

l; moreover, the parabolic pieces are concave.

For a proof of this and the following lemmas, see [11].
The following corollary indicates that to compute the minimum of the function

f∗j , we need to look only a discrete set of at most mnj points.

Corollary 1. The local minima of the function f∗j are among the breakpoints
between its parabolic pieces.

We now give a simpler formulation of the optimization problem in the defini-
tion of d(P1, . . . , Pk;P). In order to simplify the restrictions on tj in equation (1),

we define: fj(t) := f∗j

(
t+

∑j−1
i=1 li

)
. In other words, the function fj is a copy of

f∗j , but shifted to the left with
∑j−1

i=1 li. Obviously, fj has the same properties as
f∗j , that is: it is a piecewise quadratic function of t that has its local minima in at
most mnj breakpoints in any interval of length l. With this simple transforma-
tion of the set of functions f∗j , the optimization problem defining d(P1, . . . , Pk;P)
becomes:

d(P1, . . . , Pk;P) = min
t1∈[0,l), t2,...,tk∈[0,2l);

∀j∈{2,...,k}: tj−1≤tj ; tk≤t1+l0

 k∑
j=1

fj(tj)

1/2

, (2)

where l0 := l−
∑k

i=1 li. Notice that if (t∗1, . . . , t
∗
k) is a solution to the optimization

problem in equation (2), then (t∗1, . . . , t
∗
k), with t∗j := t

∗
j +

∑j−1
i=1 li, is a solution

to the optimization problem in equation (1).

3.3 Characterization of an Optimal Solution

In this section we characterize the structure of an optimal solution to the opti-
mization problem in equation (2), and give a recursive definition of this solution.
This definition forms the basis of a straightforward dynamic programming solu-
tion to the problem.

Let (t∗1, . . . , t
∗
k) be a solution to the optimization problem in equation (2).

Lemma 3. The values of an optimal solution (t∗1, . . . , t
∗
k) are found in a discrete

set of points X ⊂ [0, 2l) of the breakpoints of the functions f1, ..., fk, plus two
copies of each breakpoint: one shifted left by l0 and one shifted right by l0.

We call a point in [0, 2l), which is either a breakpoint of f1, ..., fk, or such a
breakpoint shifted left or right by l0, a critical point. Since function fj has 2mnj

breakpoints, the total number of critical points in [0, 2l) is at most 6m
∑k

i=1 ni =
6mn. Let X = {x0, . . . , xN−1} be the set of critical points in [0, 2l).

Multiple Polyline to Polygon Matching 65

With the observations above, the optimization problem we have to solve is:

d(P1, . . . , Pk;P) = min
t1, . . . , tk ∈ X

∀j > 1 : tj−1 ≤ tj ; tk − t1 ≤ l0

 k∑
j=1

fj(tj)

1/2

. (3)

We denote: D[j, a, b] = min
t1, . . . , tj ∈ X

xa ≤ t1 ≤ . . . ≤ tj ≤ xb

j∑
i=1

fi(ti) , (4)

where j ∈ {1, . . . , k}, a, b ∈ {0, . . . , N − 1}, and a ≤ b. Equation (4) describes
the subproblem of matching the set {P1, . . . , Pj} of j polylines to a subchain of
P , starting at P (xa) and ending at P (xb +

∑j
i=1 li). We now show that D[j, a, b]

can be computed recursively. Let (t�1 , . . . t
�
j) be an optimal solution for D[j, a, b].

Regarding the value of t�j we distinguish two cases:

– t�j = xb, in which case (t�1 , . . . t
�
j−1) must be an optimal solution for D[j −

1, a, b], otherwise (t�1 , . . . t
�
j) would not give a minimum for D[j, a, b]; thus

in this case, D[j, a, b] = D[j − 1, a, b] + fj(xb);
– t�j �= xb, in which case (t�1 , . . . t

�
j) must be an optimal solution for D[j, a, b−

1]; otherwise (t�1 , . . . t
�
j) would not give a minimum for D[j, a, b]; thus in this

case D[j, a, b] = D[j, a, b− 1].

We can now conclude that :

D[j, a, b] = min
(
D[j − 1, a, b] + fj(xb), D[j, a, b− 1]

)
, for j ≥ 1 ∧ a ≤ b, (5)

where the boundary cases are D[0, a, b] = 0 and D[j, a, a− 1] has no solution.
A solution of the optimization problem (3) is then given by

d(P1, . . . , Pk;P) = min
xa,xb∈X, xb−xa≤l0

√
D[k, a, b] . (6)

Equations (5) and (6) lead to a straightforward dynamic programming algo-
rithm for computing the similarity measure d(P1, . . . , Pk;P) in O(km2n2) time.

3.4 A Fast Algorithm

The above time bound to computate of the similarity measure d(P1, . . . , Pk;P)
can be improved to O(kmn logmn). The refinement of the dynamic programming
algorithm is based on the following property of equation (5):

Lemma 4. For any polyline Pj, j ∈ {1, . . . , k}, and any critical point xb, b ∈
{0, . . . , N − 1}, there is a critical point xz, 0 ≤ z ≤ b, such that:

i) D[j, a, b] = D[j, a, b− 1], for all a ∈ {0, ..., z − 1}, and
ii) D[j, a, b] = D[j − 1, a, b] + fj(xb), for all a ∈ {z, ..., b}.

66 M. Tănase, R.C. Veltkamp, and H. Haverkort

For given j and b, we consider the function D[j, b] : {0, N − 1} → R, with
D[j, b](a) = D[j, a, b]. Lemma 4 expresses the fact that the values of function
D[j, b] can be obtained from D[j, b− 1] up to some value z, and from D[j − 1, b]
(while adding fj(xb)) from this value onwards. This property allows us to improve
the time bound of the dynamic programming algorithm. Instead of computing
arrays of scalars D[j, a, b], we will compute arrays of functions D[j, b]. The key
to success will be to represent these functions in such a way that they can be
evaluated fast and D[j, b] can be constructed from D[j−1, b] and D[j, b−1] fast.

Algorithm FastCompute d(P1, . . . , Pk; P)
1. Compute the set of critical points X = {x0, . . . , xN−1}, and sort them
2. For all j ∈ {1, ..., k} and all b ∈ {0, ..., N − 1}, evaluate fj(xb)
3. ZERO ← a function that always evaluates to zero (see Lemma 5)
4. INFINITY ← a function that always evaluates to ∞ (see Lemma 5)
5. MIN ←∞
6. a← 0
7. for j ← 1 to k do

8. D[j,−1]← INFINITY

9. for b← 0 to N − 1 do

10. D[0, b]← ZERO

11. for j ← 1 to k do

12. Construct D[j, b] from D[j − 1, b] and D[j, b− 1]
13. while xa < xb − l0 do

14. a← a + 1
15. val← evaluation of D[k, b](a)
16. MIN ← min (val, MIN)
17. return

√
MIN

The running time of this algorithm depends on how the functions D[j, b] are
represented. In order to make especially steps 12 and 15 of the above algorithm
efficient, we represent the functions D[j, b] by means of balanced binary trees.
Asano et al. [3] used an idea similar in spirit.

An efficient representation for function D[j, b]. We now describe the tree
Tj,b used for storing the function D[j, b]. Each node ν of Tj,b is associated with
an interval [a−ν , a

+
ν], with 0 ≤ a−ν ≤ a+

ν ≤ N − 1. The root ρ is associated with
the full domain, that is: a−ρ = 0 and a+

ρ = N − 1. Each node ν with a−ν < a+
ν is

an internal node that has a split value aν = �(a−ν +a+
ν)/2� associated with it. Its

left and right children are associated with [a−ν , aν] and [aν + 1, a+
ν], respectively.

Each node ν with a−ν = a+
ν is a leaf of the tree, with aν = a−ν = a+

ν . For any
index a of a critical point xa, we will denote the leaf ν that has aν = a by λa.
Note that so far, the tree looks exactly the same for each function D[j, b]: they
are balanced binary trees with N leaves, and logN height. Moreover, all trees
have the same associated intervals, and split values in their corresponding nodes.
With each node ν we also store a weight wν , such that Tj,b has the following
property: D[j, b](a) is the sum of the weights on the path from the tree root to the
leaf λa. Such a representation of a function D[j, b] is not unique. Furthermore,
we store with each node ν a value mν which is the sum of the weights on the

Multiple Polyline to Polygon Matching 67

Tj−1,bTj,b−1

Tj,b

⇓
λz

λ0 λN−1 λ0

λ0

λz

λz

λN−1

λN−1

Fig. 3. The tree Tj,b is contructed from Tj,b−1 and Tj−1,b by creating new nodes along
the path from the root to the leaf λz, and adopting the subtrees to the left of the path
from Tj,b−1, and the subtrees to the right of the path from Tj−1,b

path from the left child of ν to the leaf λaν , that is: the rightmost descendant of
the left child of ν.

Lemma 5. The data structure Tj,b for the representation of function D[j, b] can
be operated on such that:

(i) The representation of a zero-function (i.e. a function that always evaluates
to zero) can be constructed in O(N) time. Also the representation of a
function that always evaluates to ∞ can be constructed in O(N) time.

(ii) Given Tj,b of D[j, b], evaluating function D[j, b](a) takes O(logN) time.
(iii) Given Tj−1,b and Tj,b−1 of the functions D[j − 1, b] and D[j, b − 1], re-

spectively, a representation Tj,b of D[j, b] can be computed in O(logN)
time.

Proof. We restrict ourselves to item (iii), the main element of the solution.
To construct Tj,b from Tj,b−1 and Tj−1,b efficiently, we take the following

approach. We find the sequences of left and right turns that lead from the root
of the trees down to the leaf λz , where z is defined as in lemma 4. Note that the
sequences of left and right turns are the same in the trees Tj,b, Tj,b−1, and Tj−1,b,
only the weights on the path differ. Though we do not compute z explicitly, we
will show below that we are able to construct the path from the root of the tree
to the leaf λz corresponding to z, by identifying, based on the stored weights, at
each node along this path whether the path continues left or right.

Lemma 4 tells us that for each leaf left of λz, the total weight on the path
to the root in Tj,b must be the same as the total weight on the corresponding
path in Tj,b−1. At λz itself and right of λz , the total weights to the root in Tj,b

must equal those in Tj−1,b, plus fj(xz). We construct the tree Tj,b with these
properties as follows. We start building Tj,b by constructing a root ρ. If the path
to λz goes into the right subtree, we adopt as left child of ρ the corresponding
left child ν of the root from Tj,b−1. There is no need to copy ν: we just add a
pointer to it. Furthermore, we set the weight of ρ equal to the weight of the root
of Tj,b−1. If the path to λz goes into the left subtree, we adopt the right child
from Tj−1,b and take the weight of ρ from there, now adding fj(xz).

68 M. Tănase, R.C. Veltkamp, and H. Haverkort

Then we make a new root for the other subtree of the root ρ, i.e. the one that
contains λz , and continue the construction process in that subtree. Every time
we go into the left branch, we adopt the right child from Tj−1,b, and every time
we go into the right branch, we adopt the left child from Tj,b−1 (see figure 3).
For every constructed node ν, we set its weight wν so that the total weight of ν
and its ancestors equals the total weight of the corresponding nodes in the tree
from which we adopt ν’s child — if the subtree adopted comes from Tj−1,b, we
increase wν by fj(xz).

By keeping track of the accumulated weights on the path down from the root
in all the trees, we can set the weight of each newly constructed node ν correctly
in constant time per node. The accumulated weights together with the stored
weights for the paths down to left childrens’ rightmost descendants, also allow us
to decide in constant time which is better: D[j, b−1](aν) or D[j−1, b](aν)+fj(xz).
This will tell us if λz is to be found in the left or in the right subtree of ν.

The complete construction process only takes O(1) time for each node on the
path from ρ to λz . Since the trees are perfectly balanced, this path has only
O(logN) nodes, so that Tj,b is constructed in time O(logN). ��

Theorem 1. The similarity d(P1, . . . , Pk;P) between k polylines {P1, . . . , Pj}
with n vertices in total, and a polygon P with m vertices, can be computed in
O(kmn log(mn)) time using O(kmn log(mn)) storage.

Proof. We use algorithm Fastcompute d(P1, . . . , Pk;P) with the data structure
described above. Step 1 and 2 of the algorithm can be executed in O(kmn +
mn logn) time. From lemma 5, we have that the zero-function ZERO can be
constructed in O(N) time (line 3). Similarly, the infinity-function INFINITY
can be constructed in O(N) time (line 4). Lemma 5 also insures that constructing
D[j, b] from D[j − 1, b] and D[j, b − 1] (line 12) takes O(logN) time, and that
the evaluation of D[k, b](a) (line 15) takes O(logN) time. Notice that no node
is ever edited after it has been constructed. Thus, the total running time of the
above algorithm will be dominated by O(kN) executions of line 12, taking in
total O(kN logN) = O(kmn log(mn)) time.

Apart from the function values of fj computed in step 2, we have to store
the ZERO and the INFINITY function. All these require O(kN) = O(kmn)
storage. Notice that any of the functions constructed in step 12 requires only
storing O(log(N)) = O(log(mn)) new nodes and pointers to nodes in previously
computed trees, and thus we need O(kmn log(mn)) for all the trees computed in
step 12. So the total storage required by the algorithm is O(kmn log(mn)). ��

We note that the problem resembles a general edit distance type approximate
string matching [9]. Global string matching under a general edit distance error
model can be done by dynamic programming in O(kN) time, where k andN rep-
resent the lengths of the two strings. The same time complexity can be achieved
for partial string matching through a standard “assign first line to zero” trick
[9]. This however does not apply here due to the condition xb − xa ≤ l0.

Multiple Polyline to Polygon Matching 69

4 Experimental Results

Our algorithm has been implemented in C++ and is evaluated in a part-based
shape retrieval application (see http://give-lab.cs.uu.nl/Matching/Mtam/)
with the Core Experiment “CE-Shape-1” part B test set devised by the MPEG-7
group to measure the performance of similarity-based retrieval for shape descrip-
tors. This test set consists of 1400 images: 70 shape classes, with 20 images per
class. The shape descriptor selected by MPEG-7 to represent a closed contour of
a 2D object or region in an image is based on the Curvature Scale Space (CSS)
representation [8]. We compared our matching to the CSS method, as well as to
matching the global contours with turning angle functions (GTA).

CSS/GTA Part-based Bull’s Eye Score
Query Image Query Parts CSS GTA MPP

10 30 65

beetle-20

15 15 70

ray-3

Fig. 4. A comparison of the Curvature Scale
Space (CSS), Global Turning Angle function
(GTA), and our Multiple Polyline to Polygon
(MPP) matching (in %)

The performance of each shape
descriptor was measured using the
“bull’s-eye” percentage: the per-
centage of retrieved images belong-
ing to the same class among the top
40 matches (twice the class size).
These experimental results indicate
that for those classes with a low
performance of the CSS matching,
our approach consistently performs
better. See figure 4 for two exam-
ples. The emphasis of this paper
lies on the algorithmic aspects, but
for a rigorous experimental evalu-
ation, see [11]. The running time
for a single query on the MPEG-7
test set of 1400 images is typically
about one second on a 2 GHz PC.

Acknowledgements. We thank Veli Mäkinen for the partial string matching
reference, and Geert-Jan Giezeman for programming support. This research was
supported by the FP6 IST projects 511572-2 PROFI and 506766 AIM@SHAPE,
and the Dutch Science Foundation (NWO) project 612.061.006 MINDSHADE.

References

1. N. Ansari and E. J. Delp. Partial shape recognition: A landmark-based approach.
PAMI, 12:470–483, 1990.

2. E. Arkin, L. Chew, D. Huttenlocher, K. Kedem, and J. Mitchell. An efficiently
computable metric for comparing polygonal shapes. PAMI, 13:209–215, 1991.

3. T. Asano, M. de Berg, O. Cheong, H. Everett, H.J. Haverkort, N. Katoh, and
A. Wolff. Optimal spanners for axis-aligned rectangles. CGTA, 30(1):59–77, 2005.

4. Scott D. Cohen and Leonidas J. Guibas. Partial matching of planar polylines under
similarity transformations. In Proc. SODA, pages 777–786, 1997.

70 M. Tănase, R.C. Veltkamp, and H. Haverkort

5. D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using the
hausdorff distance. PAMI, 15:850–863, 1993.

6. L. J. Latecki, R. Lakämper, and D. Wolter. Shape similarity and visual parts. In
Proc. Int. Conf. Discrete Geometry for Computer Imagery, pages 34–51, 2003.

7. H.-C. Liu and M. D. Srinath. Partial shape classification using contour matching
in distance transformation. PAMI, 12(11):1072–1079, 1990.

8. F. Mokhtarian, S. Abbasi, and J. Kittler. Efficient and robust retrieval by shape
content through curvature scale space. In Workshop on Image DataBases and
MultiMedia Search, pages 35–42, 1996.

9. Gonzala Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

10. K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and S.W. Zucker. Shock graphs and
shape matching. IJCV, 55(1):13–32, 1999.

11. Mirela Tanase. Shape Deomposition and Retrieval. PhD thesis, Utrecht University,
Department of Computer Science, February 2005.

12. Haim Wolfson and Isidore Rigoutsos. Geometric hashing: an overview. IEEE
Computational Science & Engineering, pages 10–21, October-December 1997.

Minimizing a Monotone Concave Function with
Laminar Covering Constraints

Mariko Sakashita1, Kazuhisa Makino2, and Satoru Fujishige3

1 Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
sakasita@amp.i.kyoto-u.ac.jp

2 Graduate School of Information Science and Technology, University of Tokyo, Tokyo,
113-8656, Japan

makino@mist.i.u-tokyo.ac.jp
3 Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan

fujishig@kurims.kyoto-u.ac.jp

Abstract. Let V be a finite set with |V | = n. A familyF ⊆ 2V is called laminar
if for arbitrary two sets X, Y ∈ F , X∩Y �= ∅ implies X ⊆ Y or X ⊇ Y . Given
a laminar family F , a demand function d : F → R+, and a monotone concave
cost function F : RV

+ → R+, we consider the problem of finding a minimum-cost
x ∈ RV

+ such that x(X) ≥ d(X) for all X ∈ F . Here we do not assume that the
cost function F is differentiable or even continuous. We show that the problem
can be solved in O(n2q) time if F can be decomposed into monotone concave
functions by the partition of V that is induced by the laminar familyF , where q is
the time required for the computation of F (x) for any x ∈ RV

+ . We also prove that
if F is given by an oracle, then it takes Ω(n2q) time to solve the problem, which
implies that our O(n2q) time algorithm is optimal in this case. Furthermore, we
propose an O(n log2 n) algorithm if F is the sum of linear cost functions with
fixed setup costs. These also make improvements in complexity results for source
location and edge-connectivity augmentation problems in undirected networks.
Finally, we show that in general our problem requires Ω(2

n
2 q) time when F is

given implicitly by an oracle, and that it is NP-hard if F is given explicitly.

1 Introduction

Let V be a finite set with |V | = n. A family F ⊆ 2V is called laminar if for arbitrary
two sets X,Y ∈ F , X ∩ Y �= ∅ implies X ⊆ Y or X ⊇ Y . A function F : RV → R is
called monotone nondecreasing (simply monotone) if F (x) ≤ F (y) holds for arbitrary
two vectors x, y ∈ RV with x ≤ y, and concave if αF (x) + (1 − α)F (y) ≤ F (αx+
(1 − α)y) holds for arbitrary two vectors x, y ∈ RV and real α with 0 ≤ α ≤ 1.

Given a laminar family F , a demand function d : F → R+, and a monotone concave
function F : RV

+ → R+, the problem to be considered in this paper is given as

(P) Minimize F (x) (1.1)

subject to x(X) ≥ d(X) (X ∈ F), (1.2)

x(v) ≥ 0 (v ∈ V), (1.3)

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 71–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 M. Sakashita, K. Makino, and S. Fujishige

where R+ denotes the set of all nonnegative reals, and x(X) =
∑

v∈X x(v) for any
X ⊆ V . Here we do not assume that the cost function F is differentiable or even con-
tinuous. The present problem has various applications, since laminar families represent
hierarchical structures in many organizations. Moreover, the problem can be regarded
as a natural generalization of the source location problem and the edge- connectivity
augmentation problem in undirected networks, which do not seemingly have laminar
structures. We shall show in Section 2 that they can be formulated as (P) by using ex-
treme sets in given networks.

In this paper, we study the following three cases, in which the cost functions F are
expressed as

(i) F1(x) =
∑
X∈F

f∆X(x[∆X]) (laminar sum), (1.4)

(ii) F2(x) =
∑
v∈V

fv(x(v)) (separable), (1.5)

(iii) F3(x) =
∑

v∈V :x(v)>0

(avx(v) + bv) (fixed-cost linear), (1.6)

where ∆X = X −
⋃

{Y | Y ∈ F , Y � X}, x[∆X] denotes the projection of x on

∆X , f∆X : R∆X
+ → R+ and fv : R{v}

+ → R+ are monotone concave, and av and bv
are nonnegative constants. It is clear that F2 is a special case of F1, and F3 is a special
case of F2 (and hence of F1).

We consider Problem (P) when the cost function F is given either explicitly or im-
plicitly. Here “implicitly” means that F is given by an oracle, i.e., we can invoke the
oracle for the evaluation of F (x) for any x in RV

+ and use the function value F (x).
In either case (explicitly or implicitly), we assume that F (x) can be computed for any
x ∈ RV

+ in O(q) time.
We show that if F = F1, the problem can be solved in O(n2q) time, where q is

the time required for the computation of F (x) for each x ∈ RV
+. We also prove that

the problem requires Ω(n2q) time, if F (= F2) is given by an oracle. This implies that
our O(n2q) algorithm is optimal if F (= F1, F2) is given by an oracle. Moreover, we
show that the problem can be solved in O(n log2 n) and O(n(log2 n + q)) time if F
is explicitly and implicitly given as F3, respectively, and the problem is intractable in
general. Table 1 summarizes the complexity results obtained in this paper.

We remark that the results below remain true, even if we add the integrality condition
x ∈ ZV to the problem.

Our positive results can be applied to the source location problem and the edge-
connectivity augmentation problem (see Section 2 for details). These make improve-

Table 1. Summary of the results obtained in this paper

F1 F2 F3 general

explicit O(n2q) O(n2q) O(n log2 n) NP-hard
inapproximable

implicit (oracle) Θ(n2q) Θ(n2q) O(n(log2 n + q)) Ω(2
n
2 q)

Minimizing a Monotone Concave Function with Laminar Covering Constraints 73

ments in complexity results for the problems. Our results implies that the source loca-
tion problem can be solved in O(nm + n2(q + logn)) time if the cost function F is
expressed as F1, e.g., the sum of fixed setup costs and concave running costs for facili-
ties at v ∈ V , and in O(n(m+ n logn)) time if the cost function F is expressed as F3,
i.e., the cost is the sum of fixed setup costs and linear running costs. We remark that the
source location problem has been investigated, only when the cost function depends on
the fixed setup cost of the facilities (see (2.5)). Similarly to the source location problem,
our results together with the ones in [7, 8] imply that the augmentation problem can be
solved in O(nm + n2(q + logn)) time if F = F1, and in O(n(m + n logn)) time if
F = F3. We remark that the augmentation problem has been investigated only when
the cost function is linear (see (2.8)).

The rest of the paper is organized as follows. Section 2 presents two applications of
our covering problem. Section 3 investigates the case in which F is laminar or sepa-
rable, and Section 4 studies the case in which F is linear with fixed costs or general
monotone concave.

Due to the space limitation, technical details are omitted.

2 Applications of Our Covering Problem

In this section we introduce two network problems as examples of our problem.

2.1 Source Location Problem in Undirected Networks

Let N = (G = (V,E), u) be an undirected network with a vertex set V , an edge set E,
and a capacity function u : E → R+. For convenience, we regard N as a symmetric
directed graph N̂ = (Ĝ = (V, Ê), û) defined by Ê = {(v, w), (w, v) | {v, w} ∈ E}
and û(v, w) = û(w, v) = u({v, w}) for any {v, w} ∈ E. We also often write u(v, w)
instead of u({v, w}).

A flow ϕ : Ê → R+ is feasible with a supply x : V → R+ if it satisfies the
following conditions:

∂ϕ(v) def=
∑

(v,w)∈Ê

ϕ(v, w) −
∑

(w,v)∈Ê

ϕ(w, v) ≤ x(v) (v ∈ V), (2.1)

0 ≤ ϕ(e) ≤ û(e) (e ∈ Ê). (2.2)

Here (2.1) means that the net out-flow value ∂ϕ(v) at v ∈ V is at most the supply at v.
Given an undirected network N with a demand k > 0 and a cost function F : RV

+ →
R+, the source location problem is to find a minimum-cost supply x such that for each
v ∈ V there is a feasible flow ϕv such that the sum of the net in-flow value and the
supply at v is at least k. The problem is rewritten as follows.

Minimize F (x)
subject to ∀ v ∈ V, ∃ a feasible flow ϕv in N with a supply x:

−∂ϕv(v) + x(v) ≥ k, (2.3)

x(v) ≥ 0 (v ∈ V). (2.4)

74 M. Sakashita, K. Makino, and S. Fujishige

Note that the flow ϕv (v ∈ V) in (2.3) may depend on v ∈ V . From the max-flow min-
cut theorem, we can show that (2.3) can be represented by a laminar covering constraint
(1.2). Hence the source location problem can be formulated as (P) in Section 1. Since
given an undirected network N = (G = (V,E), u) and a demand k (> 0), the family
F of all extreme sets, as well as the deficiency d : F → R+, can be computed in
O(n(m+ n logn)) time [7], our results for the laminar covering problem immediately
imply the ones for the source location problem (see Section 1). We remark that the
source location problem has been investigated in [1, 9] in a special case where the cost
function is given as

F (x) =
∑

v∈V :x(v)>0

bv. (2.5)

Namely, the cost function depends only on the fixed setup cost of the facilities at vertices
v ∈ V with x(v) > 0, and is independent of the positive supply value x(v).

2.2 Edge-Connectivity Augmentation in Undirected Networks

Let N = (G = (V,E), u) be an undirected network with a capacity function u : E →
R+. For a positive real k we call N k-edge-connected if for every two nodes v, w ∈ V
the maximum flow value between v and w is at least k. Given an undirected network
N , a positive real k, and a node-cost function F : RV

+ → R+, the edge-connectivity
augmentation problem (e.g., [2, 3, 4, 7, 10]) is to find a setD of new edges with capacity
µD : D → R+ for which N ′ = (G′ = (V,E ∪D), u ⊕ µD) is k-edge-connected and
F (∂µD) is minimum, where ∂µD(v) =

∑
e∈D:e�v µD(e) (v ∈ V), and u⊕ µD is the

direct sum of u and µD. From the max-flow min-cut theorem, we can see that x = ∂µD

must satisfy κ(X) + x(X) ≥ k for any nonemptyX � V , which implies

x(X) ≥ d(X) (X ∈ F), (2.6)

where d(X) is given by

d(X) = max{k − κ(X), 0} (2.7)

and F is the family of all extreme sets in N . On the other hand, it is known that any
x satisfying (2.6) can create a capacity function µD : D → R+ for which N ′ is
k-edge-connected [5, 6] and moreover, such an x of minimum x(V) can be found in
O(n(m+n logn)) time [7, 8]. Therefore, the augmentation problem can be formulated
as our laminar covering problem. Our results provide an improvement over the existing
ones for the augmentation problem (see Section 1). We note that the edge-connectivity
augmentation problem has been studied only when the cost function F is linear, i.e.,

F (x) =
∑
v∈V

avx(v). (2.8)

Note that, if av = 1
2 for all v ∈ V , then the cost F (∂µD) with µD(e) = 1 (e ∈ D) is

equal to the number of edges in D.

Minimizing a Monotone Concave Function with Laminar Covering Constraints 75

3 The Laminar Sum Cost Case

In this section we consider the problem whose cost function is given by F1, i.e.,

(P1) Minimize
∑
X∈F

f∆X(x[∆X])

subject to x(X) ≥ d(X) (X ∈ F), (3.1)

x(v) ≥ 0 (v ∈ V),

where f∆X is a monotone concave function on ∆X . We shall present an O(n2q) time
algorithm for the problem and show the Ω(n2q) time bound when the cost function is
given by an oracle.

3.1 Structural Properties of Optimal Solutions

This section reveals structural properties of optimal solutions of Problem (P1) in (3.1),
which makes it possible for us to devise a polynomial algorithm for Problem (P1).

For a laminar family F = {Xi | i ∈ I} define a directed graph T = (W,A) with a
vertex set W and an arc set A by

W = {wi | i ∈ I ∪ {i0}}
A = {ai = (wi, wj) | Xi � Xj,F contains no set Y with Xi � Y � Xj}

∪ {ai = (wi, wi0) | Xi is a maximal set in F},

X1

X2

X3 X4

X7

X6

X5

w1

w2

w3

w4

w5

w6

w7

wi0

a3

a2
a4

a1
a5

a7

a6

F = {X1, X2, · · · , X7} The tree representation T = (W, A) of F

Fig. 1.

where i0 is a new index not in I . Since F is laminar, the graph T = (W,A) is a directed
tree toward the root wi0 and is called the tree representation of F (see Fig. 1). For each
Xi ∈ F let us define the family of the children, the incremental set and the depth by

S(Xi) = {Xj | aj = (wj , wi) ∈ A},
∆Xi = Xi \

⋃
Xj∈S(Xi)

Xj,

h(Xi) = |{Xj | Xj ∈ F with Xj ⊇ Xi}|.
For a function d : F → R we also define the increment ∆d by ∆d(X) = d(X) −∑

Y ∈S(X) d(Y). If ∆d(X) ≤ 0, we can remove constraint x(X) ≥ d(X) from (1.2).

76 M. Sakashita, K. Makino, and S. Fujishige

Hence we assume that every set X ∈ F satisfies ∆d(X) > 0. We also assume without
loss of generality that F (0) = 0.

Let F be a laminar family on V , and T = (W,A) be the tree representation of F .
Consider the problem projected on Y ∈ F that is given as

(PY) Minimize
∑

X∈F :X⊆Y

f∆X(x[∆X])

subject to x(X) ≥ d(X) (X ∈ F , X ⊆ Y), (3.2)

x(v) ≥ 0 (v ∈ V).

We first show properties of optimal solutions of (PY), from which we derive prop-
erties of optimal solutions of (P1).

Lemma 3.1. For a minimal Y ∈ F , Problem (PY) has an optimal solution x = zv for
some v ∈ Y such that

zv(t) =
{
d(Y) (= ∆d(Y)) (t = v)
0 (t ∈ V \ {v}). (3.3)

��

Lemma 3.2. Let Y be a non-minimal set in F . Then there exists an optimal solution x
of Problem (PY) such that for some v ∈ ∆Y

x(t) =
{
∆d(Y) (t = v)
0 (t ∈ (V \ Y) ∪ (∆Y \ {v})) ,

x(X) = d(X) (X ∈ S(Y)),

or for some X ∈ S(Y)

x(Z) =
{
d(X) +∆d(Y) (Z = X)
d(Z) (Z �= X, Z ∈ S(Y)),

x(v) = 0 (v ∈ (V \ Y) ∪∆Y) . ��

Let W ∗ = {wi | Xi ∈ F}. A partition P = {P1, · · · , Pk} of W ∗ is called a
path-partition of W ∗ if each Pj = {wj0 , wj1 , · · · , wjrj

} ∈ P forms a directed path
wj0 → wj1 → · · · → wjrj

in T = (W,A) with ∆Xj0 �= ∅. We are now ready to
describe our structure theorem.

Theorem 3.3. Problem (P1) in (3.1) has an optimal solution x∗ that can be obtained
from a path-partition P = {P1, · · · , Pk} of W ∗ together with vj ∈ ∆Xj0 (j =
1, · · · , k) as follows.

x∗(t) =
{∑

wji
∈Pj

∆d(Xi) (t = vj , j = 1, · · · , k)
0 (t ∈ V \ {vj | j = 1, · · · , k}). ��

3.2 A Polynomial Algorithm

In this section we present a polynomial algorithm for Problem (P1) in (3.1). The algo-
rithm applies dynamic programming to compute an optimal path-partition of W ∗.

Minimizing a Monotone Concave Function with Laminar Covering Constraints 77

For any Y ∈ F , we denote by wY the node in W corresponding to Y , and by
wj0(= wY), wj1 , · · · , wjh(Y)−1 , wjh(Y)(= wi0) the directed path from wY to the root
wi0 . Our dynamic programming solves the following h(Y) problems for each Y ∈ F .

(P(Y, k)) Minimize
∑

X∈F :X⊆Y

f∆X(x[∆X]) (3.4)

subject to x(Y) ≥ d(Y) +
k∑

i=1

∆d(Xji), (3.5)

x(X) ≥ d(X) (X ∈ F , X � Y), (3.6)

x(v) ≥ 0 (v ∈ V), (3.7)

where Y ∈ F and k = 0, 1, · · · , h(Y) − 1. Let α(Y, k) denote the optimal value of
Problem (P(Y, k)). By Theorem 3.3, these problems (P(Y, k)) have optimal solutions
based on a path-partition P of {wi | Xi ∈ F , Xi ⊆ Y }. For Pj ∈ P containing
wY ∈ W (that corresponds to Y), let vj be the node in ∆Xj0 given in Theorem 3.3.
We store vj as β(Y, k). It follows from Lemmas 3.1 and 3.2 that α(Y, k) and β(Y, k)
can be computed as follows.

For each minimal Y ∈ F (which corresponds to a leaf in T) the following zk
v for

some v ∈ Y gives an optimal solution, due to Lemma 3.1.

zk
v (t) =

{∑k
i=0∆d(Xji) (t = v)

0 (t ∈ ∆Y \ {v}).
Hence we have

(α(Y, k), β(Y, k)) =
(

min
v∈Y

fY (zk
v), arg min

v∈Y
fY (zk

v)
)

(3.8)

for k = 0, · · · , h(Y)−1, where argminv∈Y fY (zk
v) denotes a vertex v∗ ∈ Y satisfying

fY (zk
v∗) = minv∈Y fY (zk

v).
For a non-minimal Y ∈ F , Lemma 3.2 validates the following recursive formulas.

α(Y, k) = min

 min
X∈S(Y)

{
α(X, k+1) +

∑
Z∈S(Y)

Z �=X

α(Z, 0)

}
,

min
v ∈∆Y

{
f∆Y (zk

v) +
∑

X∈S(Y)

α(X, 0)

} , (3.9)

β(Y, k) =

β(X, k + 1) if α(Y, k) = α(X, k + 1) +

∑
Z∈S(Y)

Z �=X

α(Z, 0),

v if α(Y, k) = f∆Y (zk
v) +

∑
X∈S(Y)

α(X, 0).
(3.10)

By using (3.8), (3.9), and (3.10), our algorithm first computes each α and β from the
leaves toward root wi0 of T . Then we obtain an optimal value

∑
X∈S(Xi0) α(X, 0) of

Problem (P1) in (3.1). Next, we compute an optimal solution x∗ by using β from the
root toward the leaves of T .

78 M. Sakashita, K. Makino, and S. Fujishige

Our algorithm is formally described as follows.

Algorithm DP
Input: A laminar family F , a demand function d, and a cost function F as in (3.1).
Output: An optimal solution x∗ for Problem (P1) in (3.1).
Step 0. W̃ := W.

Step 1. (Compute α and β) While W̃ �= {wi0} do

Choose an arbitrary leaf w ∈ W̃ of T [W̃] and let Y be the set in F corresponding
to w.
/∗ T [W̃] denotes the subtree of T induced by W̃ . ∗/
(1-I) Computeα(Y, k) and β(Y, k) for k = 0, · · · , h(Y)−1 by using (3.8)∼(3.10).
(1-II) W̃ := W̃ \ {w}.

Step 2. W̃ := W \ {wi0}, and x∗(v) := 0 for all v ∈ V .
Step 3. (Compute an optimal x∗) While W̃ �= ∅ do

Choose an arbitrary node w of T [W̃] having no leaving arc and let Y be the set in
F corresponding to w. Let wj0 be the node in W corresponding to Xj0 such that
β(Y, 0) ∈ ∆Xj0 and wj0 → wj1 → · · · → wjl

(= w) be a directed path in T [W̃].
x∗(β(Y, 0)) :=

∑l
i=0∆d(Xji) and W̃ := W̃ \ {wj0 , · · · , wjl

}.
Step 4. Output x∗ and halt. ��

We now have the following theorem.

Theorem 3.4. Algorithm DP computes an optimal solution for Problem (P1) in
O(n2q) time. ��

3.3 The Lower Bound for the Time Complexity When F is Given by an Oracle

In this section we consider a lower bound for the time complexity of our problem
when F is given by an oracle. We shall show that the oracle has to be invoked Ω(n2)
times even if we know in advance that F is given in the form of (1.5), i.e., F =∑

v∈V fv(x(v)). This, together with Theorem 3.4, implies that Algorithm DP is op-
timal if F is given by an oracle.

Suppose n is a positive even number. Let g0 : R+ → R+ be a monotone increasing
and strictly concave function (e.g., g0(x) = −1

x+1 + 1 (x ≥ 0)), and for each i =
n
2 + 1, n

2 + 2, · · · , n define gi : R+ → R+ by

gi(ξ) =
{
g0(n

2 + 1) − g0(i− n
2) (ξ > 0)

0 (ξ = 0) .

Then, let V = {v1, · · · , vn} and consider a problem instance I obtained by

a laminar family F =
{
Xi = {v1, · · · , vn

2 +i}
∣∣ i = 0, · · · , n

2

}
,

a demand function d : d(Xi) = i+ 1 (i = 0, 1, · · · , n
2), (3.11)

a cost function F (x) =
∑
v∈V

fv(x(v)),

where fvi(ξ) = g0(ξ) if vi ∈ X0, and gi(ξ) if vi ∈ V −X0.

Minimizing a Monotone Concave Function with Laminar Covering Constraints 79

For this problem instance, we have the following lemma.

Lemma 3.5. The problem instance I defined as above requires at least n
2 (n

2 + 1) calls
to the oracle for F . ��

This implies the following theorem.

Theorem 3.6. If F is given by an oracle, then Problem (3.1) requires Ω(n2q) time. ��

We can easily see that Lemma 3.5 still holds even if each fv is given by an oracle.

Theorem 3.7. Let F be a separable monotone concave function (i.e., F =
∑

v∈V fv

with monotone concave functions fv : R+ → R+ (v ∈ V)). If each fv is given by an
oracle, then Problem (3.1) requires Ω(n2q) time. ��

Notice that Algorithm DP given in Section 3.2 is optimal, due to this theorem.

Corollary 3.8. If the cost function F (= F1 or F2) is given by an oracle, then Problem
(3.1) requires Θ(n2q) time. ��

4 The FC Linear and General Cost Cases

We first consider the problem whose cost function is given as F3, i.e., the cost function
F is the sum of fv (v ∈ V) represented by

fv(x) =
{
avx+ bv (x > 0)
0 (x = 0).

Note that Problem (P) with F = F3 can be solved in O(n2q) time by using Algo-
rithm DP in Section 3.2. We shall show that it admits an O(n log2 n) time algorithm.
We remark that our problem requires O(n2q) time even if F is separable.

The lower envelope of fv1 , · · · , fvk
is given as f(x) = mini fvi(x), and note that

it is piecewise linear for x > 0, and it is well known that the lower envelope of
fv1 , · · · , fvj+1 can be computed from that of fv1 , · · · , fvj and fvj+1 in O(log j) time.
Hence the lower envelope of fv1 , · · · , fvk

can be constructed in O(k log k) time.
Our algorithm is similar to Algorithm DP in Section 3.2, but, for each Y ∈ F ,

it constructs the lower envelope corresponding to α(Y, k) (k = 0, · · · , h(Y) − 1).
This implicit computation of α(Y, k) (k = 0, · · · , h(Y) − 1) makes the algorithm
faster. Although we skip the details due to the space limitations, we have the following
theorem.

Theorem 4.1. Problem (P) with F = F3 can be solved in O(n log2 n) time if F is
given explicitly, and in O(n(q + log2 n)) time if F is given implicitly by an oracle. ��

We next consider Problem (P) whose cost function F is general monotone concave.
We show that it requires Ω(2

n
2 q) time to solve the problem if F is given implicitly by

an oracle, and that it is NP-hard if F is given explicitly.
Let us first consider the case in which the cost function is given explicitly. We show

that the problem is NP-hard, by reducing it to the following 3 SAT, which is known to
be NP-hard.

80 M. Sakashita, K. Makino, and S. Fujishige

3 SAT
Input: A 3-CNF ϕ =

∧
cj∈C cj , where cj = (lj1 ∨ lj2 ∨ lj3).

Question: Is ϕ satisfiable, i.e., does there exist an assignment y∗ ∈ {0, 1}N such
that ϕ(y∗)=1 ? ��

Here cj is a clause containing three literals lj1 , lj2 and lj3 in {y1, · · · , yN , y1, · · · , yN}.
Given a problem instance I of 3 SAT, we construct the corresponding instance J of

Problem (P) as follows.
Let V = {v1, · · · , v2N} and F = {Xi = {v2i−1, v2i} | i = 1, 2, · · · , N}. Let d be

a demand function defined by d(Xi) = 1 for eachXi ∈ F , and let F be a cost function
given by

F (x)=α

 N∑
i=1

min{x(v2i−1), x(v2i)}+
∑
cj∈C

min
{
x(v(j1)), x(v(j2)), x(v(j3))

} (4.1)

where α > 0, and v(jk) = v2i−1 if ljk
= yi and v(jk) = v2i if ljk

= yi. Note that F is
a monotone concave function, and hence F , d, and F above give a problem instance of
(P). Then we have the following lemma.

Lemma 4.2. Let J denote the problem instance of (P) constructed as above from a
problem instance I of 3 SAT. Let OPT (J) denote the optimal value of J. Then I is
satisfiable if and only if OPT (J) = 0, and unsatisfiable if and only if OPT (J) ≥ α (>
0). ��

Since the value of α in (4.1) can be arbitrarily large, we have the following result.

Theorem 4.3. It is NP-hard to approximate Problem (P) within any constant α. In
particular, Problem (P) is NP-hard.

As for implicit representation of F , we have the following theorem.

Theorem 4.4. It takes Ω(2
n
2 q) time to solve Problem (P) if F is given by an oracle. ��

5 Concluding Remarks

We have considered the problem of minimizing monotone concave functions with lam-
inar covering constraints. Our results can be summarized by Table 1 in Section 1.

In this paper we have assumed that the objective function F is monotone nonde-
creasing. It should be noted that this monotonicity assumption can be removed if we
impose that the sum x(V) be equal to a constant.

Acknowledgments

The authors would like to express their appreciation to Hiro Ito (Kyoto Univ.), Hiroshi
Nagamochi (Kyoto Univ.), András Frank (Eötvös Univ.), and Tibor Jordán (Eötvös
Univ.) for their valuable comments.

Minimizing a Monotone Concave Function with Laminar Covering Constraints 81

References

1. K. Arata, S. Iwata, K. Makino, and S. Fujishige: Locating sources to meet flow demands in
undirected networks, J. Algorithms, 42 (2002), 54–68.

2. A. A. Benczúr and D. R. Karger: Augmenting undirected edge connectivity in Õ(n2) time, J.
Algorithms, 37 (2000), 2–36.

3. G.-R. Cai and Y.-G. Sun: The minimum augmentation of any graph to k-edge-connected
graph, Networks, 19 (1989), 151–172.

4. A. Frank: Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete
Mathematics, 5 (1992), 25-53.

5. L. Lovász: Combinatorial Problems and Exercises, North-Holland (1979).
6. W. Mader: A reduction method for edge-connectivity in graphs, Ann. Discrete Mathematics,

3 (1978), 145–164.
7. H. Nagamochi: Computing extreme sets in graphs and its applications, Proc. of the 3rd

Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications (January 21–
24, 2003, Tokyo, Japan) 349–357.

8. H. Nagamochi and T. Ibaraki: Augmenting edge-connectivity over the entire range in Õ(nm)
time, J. Algorithms, 30 (1999), 253–301.

9. H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Some covering problems in location theory
on flow networks, IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, E75-A (1992), 678–683.

10. T. Watanabe and A. Nakamura: Edge-connectivity augmentation problems, J. Comput. Sys-
tem Sci., 35 (1987), 96–144.

Almost Optimal Solutions for Bin Coloring
Problems

Mingen Lin, Zhiyong Lin, and Jinhui Xu

Department of Computer Science and Engineering,
University at Buffalo, the State University of New York,

Buffalo, NY 14260, USA
{mlin6, zlin, jinhui}@cse.buffalo.edu

Abstract. In this paper we study two interesting bin coloring prob-
lems: Minimum Bin Coloring Problem (MinBC) and Online Maximum
Bin Coloring Problem (OMaxBC), motivated from several applications
in networking. For the MinBC problem, we first show that it is NP-
complete, and then present two near linear time approximation algo-
rithms to achieve almost optimal solutions, i.e., no more than OPT + 2
and OPT + 1 respectively, where OPT is the optimal solution. For
the OMaxBC problem, we first introduce a deterministic 2-competitive
greedy algorithm, and then give lower bounds for any deterministic and
randomized (against adaptive offline adversary) online algorithms. The
lower bounds show that our deterministic algorithm achieves the best
possible competitive ratio.

1 Introduction

Bin packing is a fundamental problem in combinatorial optimization and has
been extensively studied in the past [1]. In this paper we consider two interesting
variants of the packing problem, called Minimum Bin Coloring (MinBC) problem
and Online Maximum Bin Coloring (OMaxBC) problem respectively. In the
MinBC problem, we are given n types of unit-size items with each type containing
qi, 1 ≤ i ≤ n, items and associated with a distinct color. We are also given m

bins, each with an integer capacity B such that B =
n
i=1 qi

m . The objective is to
minimize the maximum number of different colors in each bin. In the OMaxBC
problem, all the items are given and packed in an online fashion, and the objective
is to maximize the minimum number of different colors in each bin.

Our bin coloring problems are motivated from several applications in net-
working. In such applications, each type of items represents all the packets from
a single user (or a single task) and each bin represents a burst [2, 3] or a channel.
By maximizing (or minimizing) the different number of colors in the OMaxBC
(or MinBC) problem, we can maximize (minimize the cost of de-assembling) the
fairness for all users. Other applications of the bin coloring problem have been
discussed in [4].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 82–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Almost Optimal Solutions for Bin Coloring Problems 83

Several variants of the bin coloring problems have been studied. In [4] Krumke
et al. considered the online version of the MinBC problem and proved an up-
per bound and a lower bound for the competitive ratio of a greedy-type algo-
rithm. They also showed that some trivial algorithm has a better competitive
ratio. In [5] and [6] two related bin coloring problems called Class-Constrained
Bin-Packing problem (CCBP) and Class-Constrained Multiple Knapsack problem
(CMKP) were studied. A dual polynomial time approximation scheme (PTAS)
was presented in [5] for the CCBP problem, and a dual approximation algorithm
was given in [6] for the CMKP problem. For the CMKP problem, Shachnai and
Tamir showed that it is sufficient to add one more compartment to each knap-
sack in order to eliminate the gap between the performance of an optimal and
a polynomial time algorithm. The running time of their algorithm is O(M2N2),
where M is the number of bins and N is the number of types of items.

In this paper we present the best possible solutions (under the assumption that
P �= NP) for both MinBC and OMaxBC problems. For the MinBC problem, we
first show that it is NP-complete even for the offline version, and then present two
near linear time approximation algorithms to achieve almost optimal solutions,
i.e., the generated solutions are no more than OPT+2 and OPT+1 respectively,
where OPT is the optimal solution. Our algorithms are based on a number of
interesting observations and efficient techniques for handling various types of
items. In certain way the MinBC problem can be viewed as a dual problem of
the CMKP problem with the restriction that all the bins have the same size. With
this restriction our algorithm for the MinBC problem improves the algorithm in
[6] by a factor of O(N) in the running time.

For the OMaxBC problem, we first introduce a deterministic greedy algorithm
with a competitive ratio of 2, and then give lower bounds for any determinis-
tic and randomized (against adaptive offline adversary) online algorithms. The
lower bounds indicate that our deterministic algorithm achieves the best possible
competitive ratio.

Our algorithms for both problems are very simple, efficient and with high
quality. They can be easily implemented for practical purpose.

2 Minimum Bin Coloring Problem

In this section, we study the (offline) Minimum Bin Coloring Problem (MinBC).
Let G1, G2, · · · , Gn be the n types of items with each Gi containing qi unit-

size items and associated with a distinct color ci (i.e., all the qi items in Gi share
the same color ci), and an integer B =

n
i=1 qi

m be the capacity of each of the m
bins b1, b2, · · · , bm. Let IA

i be the set of items packed in bin bi by some algorithm
A, CA

i be the number of different colors of IA
i , and CA be the maximum number

of different colors in one of the m bins. The objective of the MinBC problem is
to pack all the items in the m bins so that the maximum number of different
colors in a single bin is minimized, i.e., minA C

A = minA maxm
i=1{CA

i }.
For simplicity of discussion, we also view each Gi as a splittable item of size

qi, but require that when Gi is split, it always yields items of integral sizes.

84 M. Lin, Z. Lin, and J. Xu

2.1 MinBC Is NP-Complete

In this section, we show that the (decision version of) MinBC problem is NP-
complete.

First of all, it is obvious that the MinBC problem is in NP, since given a
packing of the m bins, we can easily compute the maximum number of different
colors in a single bin in polynomial time.

To show the NP-hardness of the MinBC problem, we reduce from the 3-
partition problem, which is NP-complete. The 3-partition problem can be defined
as follows. Given 3n integers t1, t2, . . . , t3n and v = 1

n

∑3n
i=1 ti, find sets S1, . . . , Sn

with |Si| = 3 such that for all i,
∑

j∈Si
tj = v.

The reduction is constructed as follows. For a given instance I of the 3-
partition problem, we construct an instance of the MinBC problem I ′ which
has 3n distinctively colored items with size t1, t2, . . . , t3n respectively and n bins
with capacity v. We show that if I has a solution if and only if I ′ has a solution
such that each bin has exactly 3 different colors (see details in the full paper).

Theorem 1. The minimum bin coloring (MinBC) problem is NP-complete. For
any ε > 0, there is no approximation algorithm with approximation ratio 4

3 − ε
for it unless P = NP .

2.2 A Basic Algorithm

In this section, we present a simple algorithm and show the quality of its solu-
tions. The main steps of our algorithm are shown in Algorithm 1.

Algorithm 1 BasicAlg
1: Sort all items in a non-decreasing order of their sizes. Let the sorted order be

G1, G2, · · · , Gn.
2: Start from G1 and the first bin b1.
3: Pack as much of the current item Gj as possible into the current bin bi.
4: If the current bin bi is full, move to the next bin b(i+1) mod m until the current item

Gj has been fully packed. Else move to the next bin b(i+1) mod m.
5: Move to the next item.
6: Repeat steps 3 to 5 until all items are packed.

Our algorithm can be divided into two stages. In the first stage, we pack
small-sized items fully into bins in a round-robin manner until some item cannot
be fully packed into a single bin. In the second stage, we pack the rest of items
with each item in multiple bins.

We show in Theorem 2 that even though the above algorithm is very simple,
it yields near optimal solutions. Let OPT be the (maximum) number of colors
in an optimal packing.

Lemma 1. In an optimal packing, there exists a bin having at least � n
m� different

colors.

Almost Optimal Solutions for Bin Coloring Problems 85

Theorem 2. The algorithm BasicAlg yields a packing with at most OPT + 2
different colors in each bin.

Proof. First, by Lemma 1 we know that if no item is packed into more than one
bin, then the number of different colors in each bin is at most � n

m� ≤ OPT ≤
OPT + 2.

Second, we consider the case where at least one item is packed into more than
one bin. Let Gj be the first (according to the order of items being packed) of
such items and bi be the first bin in which Gj is packed. Let the level of a bin be
the size of all items packed in it. When the first stage of the algorithm finishes,
we have the following observations.

Observation 1. Each of the bins b1, b2, . . . , bi has � j−1
m � items and each of the

bins bi+1, . . . , bm has � j−1
m � − 1 items.

Thus each bin has no more than � j−1
m � ≤ � n

m� ≤ OPT different colors after
finishing stage 1.

Observation 2. The levels of bins bi, bi+1, . . . , bm, b1, . . . , bi−1 are in non-
decreasing order. (The proof is omitted, see the full paper for details)

The above observation, along with the fact that Gj has to be packed into
multiple bins, implies that no item in Gj , . . . , Gn can be fully packed into a
single bin in stage 2. Also in stage 2, each item is packed into consecutive bins.
Thus, each bin will be packed with at most two more items in stage 2. Therefore
we have the following observation.

Observation 3. Each bin obtains at most 2 more colors in stage 2.

Finally, putting all together, we know that when the algorithm finishes, each
bin has at most OPT + 2 different colors. ��

The above theorem gives an upper bound for the performance of Algorithm
BasicAlg. The following example shows that this bound is actually tight. In
this example, we have 4 items a, b, c, d of size εN , 2 items e, f of size (1

3 − ε)N ,
12 items g . . . r of size 1

3N , 1 item x of size (1
3 + 2ε)N , and 2 items y, z of size

(1 − 2ε)N , where ε < 1
6 is a constant. All items have different colors. We also

have 7 bins with capacity N. By carefully choosing N , we can make all items
have integer sizes.

Our algorithm outputs a packing shown in Figure 1, where the maximum
number of different colors in a single bin is 5. An optimal packing is shown
in Figure 2, where the maximum number of different colors in a single bin is
only 3.

Theorem 3. The running time of Algorithm BasicAlg is O(m+ n logn).

86 M. Lin, Z. Lin, and J. Xu

a

h

o

z1

z2

p

i

b c

j

q

z3 z4

r

k

d

e

l

x1
y1

x2

m

f g

n

y2y3

Fig. 1. The output of BasicAlg where
x1 = (1

3
+ε)N, x2 = εN, y1 = y2 = 1

3
, y3 =

(1
3
− 2ε)N, z1 = εN, z2 = z3 = z4 = (1

3
−

ε)N

y

f

e

x

g

h

i l

k

j m

n

o r

q

p
d
ca

b

z

Fig. 2. An optimal packing

2.3 An Improved Algorithm

The algorithm presented in previous section yields a near optimal solution (i.e.,
CA ≤ OPT + 2). Since the MinBC problem is NP-complete, if we assume that
P �= NP , then the best possible (polynomial-time) solution one could hope is an
algorithm with CA ≤ (OPT+1) (i.e., with no more than OPT+1 different colors
in a single bin). Thus a very interesting question is to determine whether such
an algorithm exists. In this section, we give an affirmative answer by presenting
such an algorithm. Our algorithm is modified from our algorithm BasicAlg.

Note that in the analysis of Algorithm BasicAlg, if no item is packed in more
than one bin, then the resulting packing is actually optimal. Thus to improve
the algorithm, we need to use different strategy to deal with those items packed
in more than one bin.

Consider the case in which at least one item is packed into more than one bin.
Let Gj be the first item packed in more than one bin by Algorithm BasicAlg,
and bi be the first bin in which Gj is packed. Let L be the set of bins {b1, b2, . . . ,
bi−1} and R be the set of bins {bi, . . . , bm}. By Observations 1 and 3, after
packing all items, each bin in R has no more than OPT + 1 different colors and
each bin in L has no more than OPT + 2 different colors. Thus to achieve a
better solution, we have to reduce the number of colors for bins in L. Our main
idea is to move items in bins in L with OPT +2 colors into bins in R with OPT
colors.

To do so, we modify our algorithm as follows. We define additional color of a
bin to be the number of different colors the bin gains in stage 2 and base of a
bin to be the level of the bin after finishing stage 1.

The correctness of the algorithm is shown as follows. Clearly if the algo-
rithm terminates in step 2 or 3, it returns the packing generated by Algorithm
BasicAlg. We shall show that the algorithm will terminate in the rest of the
steps.

To show that the algorithm terminates in steps 4 to 8, we shall show that (1)
the index of bl2 decreases after each iteration, and (2) if bl2 exists, br1 exists.

Almost Optimal Solutions for Bin Coloring Problems 87

Algorithm 2 ImprovedAlg
Bk(L) + Bk(R) ≤ g − 1 < m− i + 1 for all k ≥ 0
1: Run Algorithm BasicAlg.
2: If no item is packed into more than one bin, stop.
3: If after stage 1 of Algorithm BasicAlg, there are more than m − i + 1 items

unpacked, stop.
4: Find the last bin bl2 with 2 additional colors in L.
5: Find the first bin br1 with 1 additional color in R.
6: Remove the last item packed in bl2 and insert it into br1 at the position just above

the base (i.e., pack it on the top of the items accumulated in stage 1). Bin br1 will
overflow.

7: Continuously propagate the overflowing part of br1 to the following bins and insert
it on the top of their bases. See Figure 3 .

8: Repeat steps 4 to 7 until no bin has 2 additional colors in L.

Lemma 2. After each iteration (step 7), the index l2 of bl2 decreases and the
index r1 of br1 increases.

Proof. Since bl2 is the last bin with 2 additional colors in L, each bin in bl2+1, . . . ,
bi−1 has 1 additional color. Below we show that after each iteration (step 7), bin
bl2 has 1 additional color and br1 has 2 additional colors, that is, l2 decreases
after the propagation while r1 increases. Let a and b be the two partial items
packed in bl2 before the propagation and a is on top of b (i.e. a is packed after b,
see Figure 3). In the propagation (step 6 and 7), a is moved onto the base of bin
br1 and some part c with size |a| in bin bl2−1 is moved into bl2 . By Observation
2 and the order we pack items, we know that in stage 2 no item can be fully
packed in any bin and each item is packed in consecutive bins. This implies that
if b is part of an item Gk, then c has to be part of Gk, since otherwise (i.e., c
contains part of another item) Gk can be fully packed in bin bl2 , a contradiction.
Thus, after the propagation, bin bl2 has only 1 additional color, and therefore l2
decreases in next iteration.

During each iteration, the items packed in bins between bl2 and br1 do not
change. By Observation 2, in stage 2, the partial item packed in bin br1 has a
larger size than that of a. Thus after the iteration, br1 has 2 additional colors
which implies that r1 can only increase in the next iteration. ��

Next, we show that if bl2 exists, then br1 exists. Let g be the number of
remaining items after finishing stage 1 of Algorithm BasicAlg. When Algorithm
ImprovedAlg reaches step 4, we have g ≤ m− i+ 1. Let Bk(L) (or Bk(R)) be
the number of bins with 2 additional colors in L (or R) after the kth iteration.

Lemma 3. After each iteration k, each bin has at most 2 additional colors and
Bk(L) +Bk(R) ≤ g − 1.

Proof. By Observation 3, each bin has at most 2 additional colors before the
first iteration. After stage 1, each item is packed in consecutive bins, so B0(L)+
B0(R) ≤ g − 1.

88 M. Lin, Z. Lin, and J. Xu

L R

a

b

c

l2 r1

Fig. 3. The procedure of exchange items
in Algorithm ImprovedAlg

i

o

y′
3

a

h

z2

p

i

b c

j

q

z3
z4

r

k

d

l

e

z1

x′
1

m

x′
2

y′
1

f
g

n

y′
2

Fig. 4. The output of ImprovedAlg where
x′

1 = 1
3
N, x′

2 = 2εN, y′
1 = (1

3
− ε)N, y′

2 =
1
3
N, y′

3 = (1
3
− ε)N

Let X be the set of bins between bl2 and br1 . Note that bins in X do not
change and each of them has at most 2 additional color. Hence, we only need to
show that each bin in (L ∪ R) \X has 2 additional colors after each iteration.
As shown in Lemma 2, bl2 has 1 additional color and br2 has 2 additional color
after each iteration. Also note that after each iteration, each item packed in bins
(L ∪ R) \ X during stage 2 is still packed in consecutive bins. By the proof of
Observations 3 in the proof Theorem 2 each bin in (L ∪ R) \X has at most 2
additional colors and Bk(L) +Bk(R) ≤ g − 1. ��

From Lemma 3, we have Bk(L) ≤ g − 1 −Bk(R) < m− i+ 1 −Bk(R). Note
that m− i+ 1 −Bk(R) is the number of bins with 1 additional color in R after
the k-th iteration . This implies that if bl2 exists, then br1 must exist.

The performance of the algorithm is shown in the following theorem.

Theorem 4. The algorithm ImprovedAlg produces a packing with at most
OPT + 1 different colors in each bin.

Proof. As mentioned previously, the algorithm can terminate in any one of three
cases (in step 2,3 and 8, respectively).

If the algorithm terminates in step 2, the output is an optimal packing since
no item is split.

If the algorithm terminates in step 3, then after stage 1 of Algorithm
BasicAlg, there are more than m − i + 1 unpacked items. Each bin in L has
� j−1

m � colors, each bin in R has � j−1
m � − 1 colors and |R| = m− i+ 1. There are

more than � j−1
m �(i−1)+(� j−1

m �− 1)(m− i+1)+m− i+1 = � j−1
m �m colors. By

pigeon hole principle, there must have one bin with at least � j−1
m � + 1 different

colors in any optimal solution. Thus when the algorithm terminates, each bin
has at most � j−1

m � + 2 ≤ OPT + 1 different colors.
Now we consider the case in which after stage 1, there are no more than

m − i + 1 unpacked items. From Lemma 3, we know that when the algorithm
terminates, each bin in L has one additional color and each bin in R has no
more than 2 additional colors. Thus, the maximum number of different colors is
� j−1

m � + 1 ≤ OPT + 1. ��

Almost Optimal Solutions for Bin Coloring Problems 89

For the same instance given in subsection 2.2, our improved algorithm yields
the following packing (Figure 4).

Theorem 5. The running time of Algorithm ImprovedAlg is O(m+n log n).

Proof. By Theorem 3, step 1 takes O(m + n logn) time. By carefully manipu-
lating an linked list, we can achieve O(m) running time for steps 4-8. See full
paper for details. ��

3 Online Maximum Bin Coloring Problem

In this section, we consider the Online Maximum Bin Coloring (OMaxBC) prob-
lem. The OMaxBC problem is defined as follows.

Online Maximum Bin Coloring Problem (OMaxBCB,m): Given B,m ∈ N
and a sequence δ = r1, · · · , rN , where N = Bm, of unit-size items, each associ-
ated with a color ci ∈ N , one is asked to pack δ into m bins (b1, b2, · · · , bm) with
size B so as to maximize the minimum number of different colors in a single
bin. The items in δ are given in an online fashion and have to be packed online,
i.e., each ri has to be packed irrevocably before every rk for k > i, and has no
knowledge about rk.

We say a bin is open if it is not completely filled up. Conversely a bin is closed
if it is completely filled up. Let A(δ) denote the objective function value of the
solution generated by an online algorithm A on sequence δ, and OPT (δ) denote
that of an optimal offline algorithm which has full knowledge about the input
sequence δ in advance. A is said to have a competitive ratio α if there exists a
constant β such that OPT (δ) ≤ α ·A(δ) + β for any sequence δ.

3.1 A Greedy Algorithm

In this section we introduce a greedy algorithm, called GreedyFit, and show
that its competitive ratio is 2.

We denote the difference between the number of items and the number of
different colors in a bin as the repeated number of the bin.

Algorithm 3 GreedyFit
1: For each arriving ri, if every open bin contains color ci, pack ri into the open bin

with the smallest repeated number (break ties arbitrarily).
2: Otherwise, pack ri into the open bin which doesn’t contain color ci and has the

minimum number of different colors (break ties arbitrarily).

After GreedyFit finishes a sequence δ of items, let Cmax be the maximum
number of different colors assigned to a bin, and bmax be one of the bins with
Cmax different colors. Similarly, let Cmin be the minimum number of different
colors assigned to a bin, and bmin be one of the bins with Cmin different colors.

90 M. Lin, Z. Lin, and J. Xu

Given a bin b and an item r, if the number of different colors of b increases to
i after r is packed into b, we say r is the ith new item of b. Otherwise r is a
repeated item of b.

Lemma 4. For any sequence δ, Cmax ≤ 2Cmin + 1.

Proof. If Cmax ≤ Cmin +1, clearly Cmax ≤ 2Cmin +1. Thus we can assume that
Cmax > Cmin + 1.

Consider the ith new item rmax
i of bmax, where Cmin + 1 < i ≤ Cmax. When

rmax
i arrives, since GreedyFit puts rmax

i into bmax instead of bmin, there are
two possibilities: either the color cmax

i of rmax
i is already in bmin or bmin is closed.

If bmin is closed, the repeated number of bmin is B−Cmin. Consider the moment
when the last repeated item of bmin is processed. The number of repeated items
of bmax is no smaller than B − Cmin − 1. Hence, we have Cmax ≤ Cmin + 1,
contradicting our assumption that Cmax > Cmin + 1. This means that when
rmax
i is processed, bmin must be open and has already contained cmax

i . Thus,
each rmax

i of bmax is already in bmin. We have Cmax − Cmin − 1 ≤ Cmin, and
the lemma follows. ��

Let δ be any sequence ofN = Bm items. Let n be the total number of different
colors in δ. For each 1 ≤ i ≤ n, let Gi be the set of items with the ith color and
qi be the size of Gi. Define

q′i =
{
qi, if qi < m
m, otherwise

Lemma 5. In an optimal offline solution to the OMaxBCB,m problem, the
minimum number of different colors in a single bin is �

n
i=1 q′

i

m �.

Theorem 6. Algorithm GreedyFit is 2-competitive for the OMaxBCB,m

problem. In particular, OPT (δ) ≤ 2 · Cmin + 1 for any sequence δ.

Proof. Let bi be the first closed bin after applying GreedyFit on δ. Let Ci be
the number of different colors in bi when it is closed. Then at the moment when
bi becomes closed. The followings are true.

1. bi has B −Ci repeated items. Any of the other bins has at least B −Ci − 1
repeated items.

2. An item ri is repeated if and only if ci occurs greater than m times so far.

Therefore, we have (B −Ci − 1)(m− 1) + (B −Ci) ≤ Bm−
∑n

i=1 q
′
i. It implies∑n

i=1 q
′
i ≤ (Ci +1)(m− 1)+Ci ≤ (Cmax +1)(m− 1)+Cmax = mCmax +m− 1.

Thus, OPT (δ) = �
n
i=1 q′

i

m � ≤ Cmax ≤ 2Cmin + 1. ��

3.2 A Lower Bound on the Competitive Ratio

In this section, we give a lower bound on the competitive ratio of any determin-
istic and randomized algorithm for the OMaxBCB,m problem.

Almost Optimal Solutions for Bin Coloring Problems 91

Theorem 7. Let B ≥ 3,m ≥ 2 ∈ N , and A be a deterministic online algorithm
for the OMaxBCB,m problem. Then the competitive ratio CA of A is no less
than 2, i.e., CA ≥ 2.

Proof. Let h be an integer in [2,min{�B
2 �,m}]. Consider the following sequence

δ consisting of two sub-sequences δ1, δ2 of length hm − 1 and (B − h)m + 1
respectively. δ1 consists of hm−1 items with each having a different color. After
A finishes processing δ1, let bmin be the bin containing the least number of items.
Let X be the set of items in bmin. There are two cases to consider.

– Case 1 0 < |X | ≤ h − 1. In this case, δ2 consists of (B − h)m + 1 items
such that all colors are in X and each color occurs at least m times. After
finishing δ2, the number of different colors in bmin remains the same. Thus
A(δ) = |X |. We have OPT (δ) ≥ |X | + �hm−1−|X|

m � ≥ |X | + h− 1 ≥ 2|X |
– Case 2 |X | = 0. In this case, we can select a new color c different from all

the colors in δ1. δ2 consists of (B − h)m+ 1 items of color c. It is clear that
A(δ) = 1 and OPT (δ) ≥

⌊
hm
m

⌋
= h ≥ 2.

Therefore, in both cases limh→∞
OPT (δ)

A(δ) ≥ 2. ��

Note that in the proof of Theorem 7, we construct the sequence based on
the output of the algorithm. The arguments still hold when A is a randomized
algorithm. Thus we have the following corollary.

Corollary 1. Let B ≥ 3,m ≥ 2 ∈ N . Let A be any randomized online algorithm
for the OMaxBCB,m. The competitive ratio of A is CA ≥ 2 against any adaptive
offline adversary.

References

1. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company (1997) 46–93

2. Xu, J., Qiao, C., Li, J., Xu, G.: Efficient burst scheduling algorithms in optical burst-
switched networks using geometric techniques. IEEE Journal on Selected Areas in
Communications 22 (2004) 1796–1811

3. Yoo, M., Qiao, C.: A high speed protocol for bursty traffic in optical networks. In:
Proc. SPIE All-Opt. Commun. Syst. Volume 3230. (1997) 79–90

4. Krumke, S.O., de Paepe, W.E., Rambau, J., Stougie, L.: Online bin coloring. In:
Proceedings of the 9th Annual European Symposium on Algorithms. (2001) 74–85

5. Schachnai, H., Tamir, T.: Polynomial time approximation schemes for class-
constrained packing problems. In: 3rd International Workshop on Approximation
Algorithms for Combinatorial Optimization. (2000) 238–249

6. Shachnai, H., Tamir, T.: On two class-constrained version of the mutiple knapsack
problem. Algorithmica 29 (2001) 442–467

GEN-LARAC: A Generalized Approach to the
Constrained Shortest Path Problem Under

Multiple Additive Constraints�

Ying Xiao1, Krishnaiyan Thulasiraman1, and Guoliang Xue2

1 School of Computer Science, University of Oklahoma,
200 Felgar Street, Norman, OK 73019, USA

{ying xiao, thulsi}@ou.edu
2 Arizona State University, Tempe, AZ 85287, USA

xue@asu.edu

Abstract. Given a network modeled as a graph G with each link associ-
ated with a cost and k weights, the Constrained Shortest Path (CSP(k))
problem asks for computing a minimum cost path from a source node
s to a target node t satisfying pre-specified bounds on path weights.
This problem is NP-hard. In this paper we propose a new approxima-
tion algorithm called GEN-LARAC for CSP(k) problem based on La-
grangian relaxation method. For k = 1, we show that the relaxed prob-
lem can be solved by a polynomial time algorithm with time complexity
O((m+n log n)2). Using this algorithm as a building block and combing
it with ideas from mathematical programming, we propose an efficient
algorithm for arbitrary k. We prove the convergence of our algorithm
and compare it with previously known algorithms. We point out that
our algorithm is also applicable to a more general class of constrained
optimization problems.

1 Introduction

Recently there has been considerable interest in the design of communication
protocols that deliver certain performance guarantees that are usually referred
to as Quality of Service (QoS) guarantees. A problem of great interest in this
context is the QoS routing problem that requires the determination of a mini-
mum cost path from a source node to a destination node in a data network that
satisfies a specified upper bound on the delay of the path. This problem is also
known as the Constrained Shortest Path (CSP) problem. The CSP problem is
known to be NP-hard [5]. So, in the literature, heuristic approaches and approx-
imation algorithms have been proposed. Heuristics, in general, do not provide
performance guarantees on the quality of the solution produced. On the other
hand, ε-approximation algorithms deliver solutions within arbitrarily specified
precision requirement but are not efficient in practice. References [6], [8], [13]

� The work of K. Thulasiraman has been supported by NSF ITR grant ANI-0312435
The work of G. Xue has been supported by NSF ITR grant ANI-0312635.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 92–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Generalized Approach to the Constrained Shortest Path Problem 93

present ε-algorithms and contain several fundamental ideas of interest in devel-
oping such algorithms.

There are certain approximation algorithms based on mathematical program-
ming techniques. These algorithms start with an integer linear programming
(ILP) formulation and relax the integrality constraints. The relaxed problem is
usually solved by Lagrangian dual (relaxation) method. The first such algorithm
was reported in [7] by Handler and Zang. It is based on a geometric approach
which is also called the hull approach by Mehlhorn and Ziegelmann [15]. More
recently, in an independent work, Jüttner et al. [10] developed the Lagrangian
Relaxation based Aggregated Cost (LARAC) algorithm which also uses the La-
grangian dual method. In contrast to the geometric method, they used an alge-
braic approach. In another work, Blokh and Gutin [2] defined a general class of
combinatorial optimization problems of which the CSP problem is a special case.
In a recent work, Xiao et al. [21] drew attention to the fact that the algorithms
in [2], [7], [10] are equivalent. In view of this equivalence, we shall refer to these
algorithms simply as the LARAC algorithm. Ziegelmann [24] provides a fairly
complete list of references to the literature on the CSP and related problems.

The CSP(k) problem is more general than the CSP problem in that it allows
more than one delay constraint. Given a communication network modeled as a
graph G with each link in the graph associated with a cost and k(≥ 1) weights,
the CSP(k) problem asks for a minimum cost path from a source node s to a
target node t satisfying multiple constraints on the path weights.

A variation of CSP(k) problem, Multi-Constrained Path (MCP) problem has
also been a topic of extensive study. The difference between CSP(k) and MCP
problems is that MCP problem only asks for a path satisfying all the constraints
simultaneously without the requirement of minimizing the cost. For the MCP
problem, a series of heuristics and approximation algorithms can be found in [4],
[9],[11],[12], [16], [22], [23].

Two methods for the CSP(k) problem based on mathematical programming
have been proposed by Beasley and Christofides [1], and Mehlhorn and Ziegel-
mann [15]. Reference [1] uses a subgradient procedure to compute the Lagrangian
relaxation function of the ILP formulation. With geometrical interpretation of
the algorithm of [7], the authors of [1] proposed an algorithm called hull approach
which is a special case of cutting planes method [18].

In this paper we present a new approach to the CSP(k) problem using La-
grangian relaxation. We first show that for k = 1, an approximation solution can
be computed in O((m+n log n)2) time. Because this algorithm and LARAC are
based on the same methodology and obtain the same solution, we also denote
our algorithm as LARAC.

For arbitrary k, we use our LARAC algorithm as a building block and combine
it with ideas from mathematical programming to achieve progressively higher
values of the Lagrangian function. We present the GEN-LARAC algorithm and
prove its correctness and convergence properties in Sect. 3. Simulation results
comparing our algorithm with two other algorithms are presented in Sect. 4. We

94 Y. Xiao, K. Thulasiraman, and G. Xue

conclude in Sect. 5 pointing out that our approach is quite general and is ap-
plicable for the general class of combinatorial optimization problems studied
in [2].

2 Problem Definition and Preliminaries

Consider a directed graph G(N,E) where N is the set of nodes and E is the
set of links in G. Each link (u, v) is associated with a set of k + 1 additive
non-negative integer weights Cuv = (cuv, w

1
uv, w

2
uv . . . , w

k
uv). Here cuv is called

the cost of link (u, v) and wi
uv is called the ith delay of link (u, v). Given two

nodes s and t, an s-t path in G is a directed simple path from s to t. Let Pst

denote the set of all s-t paths in G. For path p define

c(p) =
∑

(u,v)∈p

cuv and di(p) =
∑

(u,v)∈p

wi
uv, i = 1, 2 . . . , k.

The value c(p) is called the cost of path p and di(p) is called the ith delay of
path p. Given k positive integer r1, r2. . . , rk, an s-t path is called feasible (resp.
strictly feasible) if di(p) ≤ ri (resp. di(p) < ri), for all i = 1, 2 . . . , k (ri is called
the bound on the ith delay of a path).

The CSP(k) problem is to find a minimum cost feasible s-t path. An instance
of the CSP(k) problem is strictly feasible if all the feasible paths are strictly feasi-
ble. Without loss of generality, we assume that the problem under consideration
is always feasible. In order to guarantee strict feasibility, we do the following
transformation.

For i = 1, 2 . . . , k, transform the delays of link (u, v) such that the new weight
vector C′

uv is given by C′
uv = (cuv, 2w1

uv, 2w
2
uv . . . , 2w

k
uv).

Also transform the bounds ri’s so that the new bound vector R′ is given by
R′ = (2r1 + 1, 2r2 + 1 . . . , 2rk + 1).

In the rest of the paper, we only consider the transformed problem. Thus all
link delays are even integers, and delay bounds are odd integers. We shall use
symbols with capital or bold letters to represent vectors and matrices. For the
simplicity of presentation, we shall use Cuv and R instead of C′

uv and R′ to
denote the transformed weight vector and the vector of bounds. Two immediate
consequences of this transformation are stated below.

Lemma 1. ∀p ∈ Pst, ∀i ∈ {1, 2 . . . , k}, di(p) �= ri in the transformed problem.

Lemma 2. A path in the original problem is feasible (resp. optimal) iff it is
strictly feasible (resp. optimal) in the transformed problem.

Starting with an ILP formulation of the CSP(k) problem and relaxing the
integrality constraints we get the RELAX-CSP(k) problem below. In this for-
mulation, for each s-t path p, we introduce a variable xp.

A Generalized Approach to the Constrained Shortest Path Problem 95

RELAX - CSP(k) :

min
∑

p

c(p)xp (1)

s.t.
∑

p

xp = 1 (2)

∑
p

di(p)xp ≤ ri, i = 1 . . . , k (3)

xp ≥ 0, ∀p ∈ Pst. (4)

The Lagrangian dual of RELAX-CSP(k) is given below.

DUAL - RELAX-CSP(k) :
max w − λ1r1 · · · − λkrk (5)
s.t. w − d1(p)λ1 · · · − dk(p)λk ≤ c(p), ∀p ∈ Pst (6)

λi ≥ 0, i = 1 . . . , k. (7)

In the above dual problem λ1,λ2. . . ,λk and w are the dual variables, with w
corresponding to (2) and each λi corresponding to the ith constraint in (3).

It follows from (6) that w ≤ c(p) + d1(p)λ1 · · · + dk(p) λk, ∀p ∈ Pst. Since we
want to maximize (5), the value of w should be as large as possible, i.e.

w = min
p∈Pst

{c(p) + d1(p)λ1 · · · + dk(p)λk}.

With the vector Λ defined as Λ = (λ1, λ2 . . . , λk), define

L(Λ) = min
p∈Pst

{c(p) +
k∑

i=1

λi(di(p) − ri)}. (8)

Notice that L(Λ) is called the Lagrangian function in literature and is a
continuous concave function of Λ [3].

Then DUAL-RELAX-CSP(k) can be written as follows.

DUAL- RELAX-CSP(k)
max L(Λ), Λ ≥ 0. (9)

The Λ∗ that maximizes (9) is called the maximizing multiplier and is defined
as

Λ∗ = arg maxΛ≥0L(Λ). (10)

Lemma 3. If an instance of the CSP(k) problem is feasible and a path popt is
an optimal path, then ∀Λ ≥ 0, L(Λ) ≤ c(popt).

We shall use L(Λ) as an lower bound of c(popt) to evaluate the approximation
solution obtained by our algorithm. Given p ∈ Pst and Λ, define

96 Y. Xiao, K. Thulasiraman, and G. Xue

C(p) ≡ (c(p), d1(p), d2(p) . . . , dk(p)),
D(p) ≡ (d1(p), d2(p) . . . , dk(p)),
R ≡ (r1, r2 . . . , rk),
cΛ(p) ≡ c(p) + d1(p)λ1 · · · + dk(p)λk, and

dΛ(p) ≡ d1(p)λ1 · · · + dk(p)λk.

Here cΛ(p) and dΛ(p) are called the aggregated cost and the aggregated delay
of path p, respectively. We shall use PΛ to denote the set of s-t paths attaining
the minimum aggregated cost w.r.t. to Λ. A path pΛ ∈ PΛ is called a Λ-minimal
path.

The key issue now is to search for the maximizing multipliers and termination
conditions. For the case k = 1, we have the following theorem.

Theorem 1. DUAL-RELAX-CSP(1) is solveable in O((m+ n logn)2) time.

Proof. See Appendix.

Because our algorithm and LARAC are based on the same methodology and
obtain the same solution, we shall also call our algorithm LARAC. In the rest of
the paper, we shall discuss how to extend it for k > 1. In particular we develop an
approach that combines the LARAC algorithm as a building block with certain
techniques in mathematical programming. We shall call this new approach as
GEN-LARAC.

3 GEN-LARAC for the CSP(k) Problem

3.1 Optimality Conditions

Theorem 2. Given an instance of a feasible CSP(k) problem, a vector Λ ≥ 0
maximizes L(Λ) iff the following problem in variables uj’s is feasible.∑

pj∈PΛ

ujdi(pj) = ri, ∀i, λi > 0 (11)

∑
pj∈PΛ

ujdi(pj) ≤ ri, ∀i, λi = 0 (12)

∑
pj∈PΛ

uj = 1 (13)

uj ≥ 0, ∀j, pj ∈ PΛ. (14)

Proof. Sufficiency: Let x = (u1 . . . , ur, 0 . . . , 0) be a vector of size |Pst|, where
r = |PΛ|.

Obviously, x is a feasible solution to RELAX-CSP(k). It suffices to show that
x and Λ satisfy the complementary slackness conditions.

According to (6), ∀p ∈ Pst, w ≤ cp + d1(p)λ1 · · · + dk(p)λk. Since we need to
maximize (5), the optimal w = cp + d1(pΛ)λ1 · · · + dk(pΛ)λk, ∀pΛ ∈ PΛ. For all

A Generalized Approach to the Constrained Shortest Path Problem 97

other paths p, w−cp+d1(p)λ1 · · ·+dk(p)λk < 0. So x satisfies the complementary
slackness conditions. By (11) and (12), Λ also satisfies complementary slackness
conditions.

Necessary: Let x∗ and (w,Λ) be the optimal solution to RELAX-CSP(k)
and DUAL-RELAX-CSP(k), respectively. It suffices to show that we can obtain
a feasible solution to (11)-(14) from x∗.

We know that all the constraints in (6) corresponding to paths in Pst − PΛ

are strict inequalities and w = cp + d1(pΛ)λ1 · · ·+ dk(pΛ)λk, ∀pΛ ∈ PΛ. So, from
complementary slackness conditions we get

xp = 0, ∀p ∈ Pst − PΛ.

Now let us set uj corresponding to path p in PΛ equal to xp, and set all
other uj ’s corresponding to paths not in PΛ equal to zero. The ui’s so elected
will satisfy (11) and (12) since these are complementary conditions satisfied by
(w,Λ). Since xi’s satisfy (2), uj ’s satisfy (13). Thus we have identified a solution
satisfying (11)-(14).

3.2 GEN-LARAC: A Coordinate Ascent Method

Our approach is based on the coordinate ascent method and proceeds as follows.
Given a multiplier Λ, in each iteration we try to improve the value of L(Λ) by
updating one component of the multiplier vector. If the objective function is
not differentiable, the coordinate ascent method may get stuck at a corner Λs

not being able to make progress by changing only one component. We shall call

Algorithm 1. GEN-LARAC: A Coordinate Ascent Algorithm
Step 1: Λ0 ← (0, . . . , 0); flag ← true;B ← 0; t← 0
Step 2: {Coordinate Ascent Step}
while flag do

flag ← false
for i = 1 to k do

γ ← arg maxξ≥0L(λt
1 . . . , λt

i−1, ξ, λ
t
i+1 . . . , λt

k)
if γ �= λt

i then
flag ← true

λt+1
j =

γ if j = i;
λt

j if j �= i.
, j = 1, 2 . . . , k

t← t + 1
end if

end for
end while
Step 3: if Λt is optimal then return Λt

Step 4: B ← B+1 and stop if B > Bmax (Bmax is the maximum number of iteration
allowed)
Step 5: Compute a vector Λ+ such that L(Λ+) > L(Λt).
Step 6: t← t + 1, Λt ← Λ+, and go to Step 2.

98 Y. Xiao, K. Thulasiraman, and G. Xue

Λs pseudo optimal point which requires updates of at least two components to
achieve improvement in the solution. We shall discuss how to jump to a better
solution from a pseudo optimal point in Sect. 3.3. Our simulations show that
the objective values attained at pseudo optimal points are usually very close to
the maximum value of L(Λ).

3.3 Verification of Optimality of Λ

In Step 3 we need to verify if a given Λ is optimal. We show that this can be
accomplished by solving the following LP problem, where PΛ = {p1, p2 . . . , pr}
is the set of Λ-minimal paths.

max 0 (15)

s.t.
∑

pj∈PΛ

ujdi(pj) = ri, ∀i, λi > 0 (16)

∑
pj∈PΛ

ujdi(pj) ≤ ri, ∀i, λi = 0 (17)

∑
pj∈PΛ

uj = 1 (18)

uj ≥ 0, ∀j, pj ∈ PΛ. (19)

By Theorem 2, if the above linear program is feasible then the multiplier Λ
is a maximizing multiplier.

Let (y1 . . . , yk, δ) be the dual variables corresponding to the above problem.
Let Y = (y1, y2 . . . , yk). The dual of (15)-(19) can be written as follows

min RY T + δ (20)
s.t. D(pi)Y T + δ ≥ 0, i = 1, 2 . . . , r (21)

yi ≥ 0, ∀i, λi > 0. (22)

Evidently the LP problem (20)-(22) is feasible. From the relationship between
primal and dual problems, it follows that if the linear program (15)-(19) is in-
feasible, then the objective of (20) is unbounded (−∞). Thus, if the optimum
objective of (20)-(22) is 0, then the linear program (15)-(19) is feasible and by
Theorem 2 the corresponding multiplier Λ is optimal. In summary we have the
following lemma.

Lemma 4. If (15)-(19) is infeasible, then ∃Y = (y1, y2 . . . , yk) and δ satisfying
(21)-(22) and RY T + δ < 0.

The Y required in the above lemma can be identified by applying the sim-
plex method on (20)-(22) and terminating it once the objective value becomes
negative.

Let Λ be a non-optimal Lagrangian multiplier and denote Λ(s, Y) = Λ+ Y/s
for s > 0.

A Generalized Approach to the Constrained Shortest Path Problem 99

Theorem 3. If a multiplier Λ ≥ 0 is not optimal, then

∃M > 0, ∀s > M,L(Λ(s, Y)) > L(Λ).

Proof. If M is big enough, PΛ ∩ PΛ(s,Y) �= ∅. Let pJ ∈ PΛ ∩ PΛ(s,Y).

L(Λ(s, Y)) = c(pJ) + (D(pJ) −R)(Λ + Y/s)T

= c(pJ) + (D(pJ) −R)ΛT + (D(pJ) −R)(Y/s)T

= L(Λ) + (D(pJ)Y T −RY T)/s.

Since D(pJ)Y T + δ ≥ 0 and RY T + δ < 0, D(pJ)Y T −RY T > 0.
Hence L(Λ(s, Y)) > L(Λ).

We can find the proper value of M by binary search after computing Y . The
last issue is to compute PΛ. It can be expected that the size of PΛ is usually
very small. So we adapted the k-shortest path algorithm to compute PΛ.

3.4 Analysis of the Algorithm

In this section, we shall discuss the convergence properties of GEN-LARAC.

Lemma 5. If there is a strictly feasible path, then for any given τ , the set Sτ =
{Λ|L(Λ) ≥ τ} ⊂ Rk is bounded.

Proof. Let p∗ be a strictly feasible path. For any Λ = (λ1 · · · , λk) ∈ Sτ , we have

c(p∗) + λ1(d1(p∗) − r1) · · · + λk(dk(p∗) − rk) ≥ L(Λ) ≥ τ.

Since di(p∗) − ri < 0 and λi ≥ 0 for i = 1, 2 . . . , k, Λ must be bounded.

If there is only one delay constraint, i.e., k = 1, we have the following prop-
erty [10].

Lemma 6. A value λ > 0 maximizes the function L(λ) if and only if there
are paths pc and pd which are both cλ-minimal and for which d(pc) ≥ r and
d(pd) ≤ r. (pc and pd can be the same; in this case d(pd) = d(pc) = r).

By Lemma 6, we have the following lemma.

Lemma 7. A multiplier Λ ≥ 0 is pseudo optimal iff ∀i∃pi
c, p

i
d ∈ PΛ, di(pi

c) ≥ ri
and di(pi

d) ≤ ri.

For an n-vector V = (v1, v2 . . . , vn), let |V |1 = |v1|+ |v2| · · ·+ |vn| denote the
L1-norm.

Lemma 8. Let Λ and H be two multipliers obtained in the same while-loop of
Step 2 in Algorithm 1. Then |L(H) − L(Λ)| ≥ |H − Λ|1.

100 Y. Xiao, K. Thulasiraman, and G. Xue

Proof. Let Λ = Λ1, Λ2 . . . , Λj = H be the consecutive sequence of multipliers
obtained in Step 2. We first show that |L(Λi+1) − L(Λi)| ≥ |Λi+1 − Λi|1.

Consider two cases.
Case 1: λi+1

b > λi
b. By Lemma 6 and Lemma 1, ∃pΛi+1 , db(pΛi+1) > rb.

By definition, we have:
c(pΛi+1) + Λi+1DT (pΛi+1) ≤ c(pΛi) + Λi+1DT (pΛi), and
c(pΛi+1) + ΛiDT (pΛi+1) ≥ c(pΛi) + ΛiDT (pΛi).

Then

L(Λi+1) − L(Λi)
= c(pΛi+1) + Λi+1(D(pΛi+1) −R)T − [c(pΛi) + Λi(D(pΛi) −R)T]
= c(pΛi+1) + Λi(D(pΛi+1) −R)T + (Λi+1 − Λi)(D(pΛi+1) −R)T

− [c(pΛi) + Λi(D(pΛi) −R)T]
≥ c(pΛi) + Λi(D(pΛi) −R)T + (Λi+1 − Λi)(D(pΛi+1) −R)T

− [c(pΛi) + Λi(D(pΛi) −R)T]
= (Λi+1 − Λi)(D(pΛi+1) −R)T

= (λi+1
b − λi

b)(db(pΛi+1) − rb) ≥ |λi+1
b − λi

b|.

Case 2: λi+1
b < λi

b. We have ∃pΛi+1 , db(pΛi+1) < rb.
The rest of the proof is similar to Case 1.
Hence

|L(Λj) − L(Λ1)|
= |L(Λ2) − L(Λ1) + L(Λ3) − L(Λ2) · · · + L(Λj) − L(Λj−1)|
= |L(Λ2) − L(Λ1)| + |L(Λ3) − L(Λ2)| · · · + |L(Λj) − L(Λj−1)|
≥ |Λ2 − Λ1|1 + |Λ3 − Λ2|1 · · · + |Λj − Λj−1|1 ≥ |Λj − Λ1|1.

The second equality holds because L(Λ1) < L(Λ2) < · · · < L(Λj).

Obviously, if the while-loop in Step 2 terminates in a finite number of steps,
the multiplier is pseudo optimal by definition. If the while loop does not termi-
nate in a finite number of steps (this occurs only when infinite machine precision
is assumed), we have the following theorem.

Theorem 4. Let {Λi} be a consecutive sequence of multipliers generated in the
same while-loop in Step 2 in Algorithm 1. Then the limit point of {L(Λi)} is
pseudo optimal.

Proof. Since L(Λ1) < L(Λ2) < · · · and Λi is bounded from above, lims→∞ L(Λs)
exists and is denoted as L∗. We next show the vector lims→∞ Λs also exists.

By Lemma 8, ∀s, j > 0, |Λs+j − Λs|1 ≤ |L(Λs+j) − L(Λs)|.
By Cauchy criterion, lims→∞ Λs exists. We denote it as Λ∗.
We label all the paths in Pst as p1, p2 . . . , pN such that cΛ∗(p1) ≤ cΛ∗(p2) . . .

≤ cΛ∗(pN). Obviously p1 is a Λ∗-minimal path. Let

θ = min{cΛ∗(pj) − cΛ∗(pi)|∀pi, pj ∈ Pst, cΛ∗(pj) − cΛ∗(pi) > 0}, and
π = max{dw(pj) − dw(pi)|∀pi, pj ∈ Pst, w = 1, 2 . . . , k}.

A Generalized Approach to the Constrained Shortest Path Problem 101

Let M be a large number, such that ∀t ≥ M, |Λ∗ − Λt|1 < θ/(2π).
Consider any component j ∈ {1, 2 . . . , k} of the multiplier after computing

arg maxξ≥0L(λ1 . . . , λj−1, ξ, λj+1 . . . , λk) in iteration t ≥ M .

By Lemma 6, ∃pt
c and pt

d ∈ PΛt and dj(pt
c) ≥ rj ≥ dj(pt

d).
It suffices to show PΛt ⊆ PΛ∗ . Given pΛt ∈ PΛt , we shall show cΛ∗(pΛt) =

cΛ∗(p1). We have

0 ≤ cΛt(p1) − cΛt(pΛt) = [c(p1) + dΛt(p1)] − [c(pΛt) + dΛt(pΛt)]
= c(p1) + dΛ∗(p1) − [c(pΛt) + dΛ∗(pΛt)] + (Λt − Λ∗)(D(p1) −D(pΛt))T

= cΛ∗(p1) − cΛ∗(pΛt) + (Λt − Λ∗)(D(p1) −D(pΛt))T .

Since |(Λt − Λ∗)(D(pi) −D(pj))T | ≤ π|(Λt − Λ∗)|1 ≤ θ/2,

0 ≤ cΛt(p1) − cΛt(pΛt) ≤ cΛ∗(p1) − cΛ∗(pΛt) + θ/2.

Then cΛ∗(pΛt) − cΛ∗(p1) ≤ θ/2, which implies that cΛ∗(pΛt) = cΛ∗(p1).
Hence, ∀j ∈ {1, 2 . . . , k}, ∃p∗c , p∗d ∈ PΛ∗ , dj(p∗c) ≥ rj ≥ dj(p∗d).

4 Numerical Simulation

We use COPT , OPT , and POPT to denote the cost of the optimal path to
the CSP(k) problem, the optimal value, and the pseudo optimal value of the
Lagrangian function, respectively. In our simulation, we first verify that the
objectives at pseudo optimal points are very close to the optimal objectives.
We use 3 types of graphs: Power-law out-degree graph (PLO) [17], Waxman’s
random graph (RAN) [20], and regular graph (REG) [19]. The number of weights
is 4, 8 and 12, i.e., k = 4, 8, and 12. Link weights are random even integers
uniformly distributed between 2 and 200. We use the following two metrics to
measure the quality of path p in Table 1.

g(p) = c(p)/POPT and f(p) = max
i=1,2...,k

di(p)/ri.

By Lemma 3, g(p) is the upper bound of the ratio of the cost of p and COPT .
The f(p) indicates the degree of violation of p to the constraints on its delays.

In Fig. 1, the label LARAC-REG means the results obtained by running GEN-
LARAC algorithmon regular graphs.Other labels can be interpreted similarly.We
only report the results on regular graph and random graph for better visibility.

We conducted extensive experiments to compare our algorithm with the Hull
approach [15], the subgradient method [1], and the general-purpose LP solver
CPLEX. Because the four approaches share the same objective, i.e., maximizing
the Lagrangian function, they always obtain similar results. Due to space limi-
tation we only report the number of shortest path computation which dominate
the running time of all the first three algorithms. Generally, GEN-LARAC algo-
rithm and Hull approach are faster than the subgradient methods and CPLEX
(See [24] for the comparison of Hull approach and CPLEX). But GEN-LARAC

102 Y. Xiao, K. Thulasiraman, and G. Xue

Table 1. Quality of Pseudo-optimal paths: Error = (OPT − POPT)/OPT #SP =
Number of invocations of shortest path algorithm

Type k OPT POPT Error g(p) f(p) #SP Time(s)

REG 4 1116.8 1109.9 0.006 1.01 1.07 15.2 0.14

REG 8 1078.3 1069.0 0.032 1.00 1.09 20.7 0.21

REG 12 1066.2 1057.8 0.008 1.00 1.08 28.2 0.32

PLO 4 401.75 382.71 0.047 1.00 1.25 9.6 0.07

PLO 8 328.95 320.77 0.025 1.01 1.15 7.2 0.04

PLO 12 368.43 342.43 0.071 1.02 1.24 18.3 0.21

RAN 4 1543.6 1531.5 0.008 1.01 1.08 13.4 0.13

RAN 8 1473.3 1456.5 0.011 1.00 1.09 20.0 0.25

RAN 12 1438.6 1423.7 0.010 1.00 1.01 17.9 0.45

 10

 15

 20

 25

 30

 35

 40

 4 5 6 7 8 9 10 11 12

of

 s
ho

rt
es

t p
at

h
co

m
pu

ta
tio

n

k: number of weights

LARAC-REG

Hull-REG

Subgradient-REG

LARAC-RAN

Hull-RAN

Subgradient-RAN

Fig. 1. The comparison of the number of shortest path computation among GEN-
LARAC, Hull approach, and subgradient method. All algorithms terminate when have
reached 99% of the OPT .

and Hull approach beat each other on different graphs. Figure 1 shows that on
the regular graph, GEN-LARAC is the fastest. But for the random and Power-
law out degree graphs, the Hull approach is the fastest. The probable reason
is that the number of s-t paths is relatively small in these two types of graphs
because the length (number of hops)of s-t paths is usually small even when the
number of nodes is large. This will bias the results in favor of Hull approach
which adds one s-t path into the linear system in each iteration [15]. So we
choose the regular graph because we have a better control of the length of s-t
paths.

A Generalized Approach to the Constrained Shortest Path Problem 103

5 Summary and Conclusion

In this paper we developed a new approach to the constrained shortest path
problem involving multiple additive constraints. Our approach uses the LARAC
algorithm as a building block and combines it with certain ideas from mathe-
matical programming to design a method that progressively improves the value
of the Lagrangian function until optimum is reached. The algorithm is analyzed
and its convergence property has been established. Simulation results comparing
our approach with two other approaches show that the new approach is quite
competitive.

Since the LARAC algorithm is applicable for the general class of optimization
problems (involving one additive delay constraint) studied in [2] our approach
can also be extended for this class of problems to include multiple additive con-
straints, whenever an algorithm for the underlying optimization problem (such
as Dijkstra’s algorithm for the shortest path problem) is available.

References

1. J. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989.

2. B. Blokh and G. Gutin. An approximation algorithm for combinatorial opti-
mization problems with two parameters. Australasian Journal of Combinatorics,
14:157–164, 1996.

3. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2003.

4. S. Chen and K. Nahrstedt. On finding multi-constrained path. In ICC, pages
874–879, 1998.

5. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San
Francisco, CA, USA, 1979.

6. Ashish Goel, K. G. Ramakrishnan, Deepak Kataria, and Dimitris Logothetis. Effi-
cient computation of delay-sensitive routes from one source to all destinations. In
INFOCOM, pages 854–858, 2001.

7. G. Handler and I. Zang. A dual algorithm for the constrained shortest path prob-
lem. Networks, 10:293–310, 1980.

8. R. Hassin. Approximation schemes for the restricted shortest path problem. Math.
of Oper. Res., 17(1):36–42, 1992.

9. J. M. Jaffe. Algorithms for finding paths with multiple constraints. Networks,
14:95–116, 1984.

10. Alpár Jüttner, Balázs Szviatovszki, Ildikó Mécs, and Zsolt Rajkó. Lagrange relax-
ation based method for the QoS routing problem. In INFOCOM, pages 859–868,
2001.

11. Turgay Korkmaz and Marwan Krunz. Multi-constrained optimal path selection.
In INFOCOM, pages 834–843, 2001.

12. Gang Liu and K. G. Ramakrishnan. A*prune: An algorithm for finding k shortest
paths subject to multiple constraints. In INFOCOM, pages 743–749, 2001.

13. D. Lorenz and D. Raz. A simple efficient approximation scheme for the restricted
shortest paths problem. Oper. Res. Letters, 28:213–219, 2001.

104 Y. Xiao, K. Thulasiraman, and G. Xue

14. Nimrod Megiddo. Combinatorial optimization with rational objective functions.
In STOC ’78: Proceedings of the tenth annual ACM symposium on Theory of com-
puting, pages 1–12, New York, NY, USA, 1978. ACM Press.

15. Kurt Mehlhorn and Mark Ziegelmann. Resource constrained shortest paths. In
ESA, pages 326–337, 2000.

16. H. De Neve and P. Van Mieghem. Tamcra: A tunable accuracy multiple constraints
routing algorithm. Comput. Commun., 23:667–679, 2000.

17. C. R. Palmer and J. G. Steffan. Generating network topologies that obey power
laws. In IEEE GLOBECOM, pages 434–438, 2000.

18. A. Schrijver. Theory of linear and integer programming. John Wiley, New York,
1986.

19. K. Thulasiraman and M. N. Swamy. Graphs: Theory and algorithms. Wiley Inter-
science, New York, 1992.

20. B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications, 6(9):1617–1622, Dec. 1988.

21. Y. Xiao, K. Thulasiraman, and G. Xue. Equivalence, unification and generality
of two approaches to the constrained shortest path problem with extension. In
Allerton Conference on Control, Communication and Computing, University of
Illinois, pages 905–914, 2003.

22. G. Xue, A. Sen, and R. Banka. Routing with many additive QoS constraints. In
ICC, pages 223–227, 2003.

23. Xin Yuan. Heuristic algorithms for multiconstrained quality-of-service routing.
IEEE/ACM Trans. Netw., 10(2):244–256, 2002.

24. M. Ziegelmann. Constrained shortest paths and related problems. PhD thesis,
Max-Planck-Institut fr Informatik, 2001.

Appendix: Proof to Theorem 1

Lemma 9. If λ < λ∗(λ > λ∗), then d(pλ) ≥ T (d(pλ) ≤ T) for each cλ-minimal
path, where T is the path delay constraint [10].

We next give the proof to Theorem 1.

Proof. We prove this theorem by showing an algorithm with O((m + n logn)2)
time complexity. Assume vertex 1 (n) is the source (target). Algorithm 2 com-
putes shortest path using lexicographic order on a pair of link weights (luv, cuv),
∀(u, v) ∈ E based on parametric search [14], where luv = cuv +λ∗duv and λ∗ is
unknown. The algorithm is the same as Bellman-Ford algorithm except for Step
4 which needs special cares (We use Bellman-Ford algorithm here because it is
easy to explain. Actually the Dijkstra’s algorithm is used to get the claimed time
complexity). In Algorithm 2, we need extra steps to evaluate the Boolean expres-
sion in the if statement in Step 4 since λ∗ ≥ 0 is unknown. If xv = ∞, yv = ∞,
then the inequality holds. Assume xv and yv are finite (non-negative) values. We
need an Oracle test to tell whether the value of p+ qλ∗ is less than, equal to, or
larger than 0, where p = xu + cuv − xv and q = yu + duv − yv. If p q ≥ 0, it is
trivial to find the sign of p+ qλ∗. WLOG, assume p q < 0, i.e., −p/q > 0. The
Oracle test is presented as Algorithm 3.

A Generalized Approach to the Constrained Shortest Path Problem 105

Algorithm 2. Parametric Search Based Algorithm for CSP(1) Problem
Step 1: Mv = (xv, yv)← (+∞, +∞) for v = 2, 3 . . . , n and M1 = (0, 0)
Step 2: i← 1
Step 3: u← 1
Step 4: ∀v, (u, v) ∈ E, if (xv + λ∗yv > xu + λ∗yu + cuv + λ∗duv) or

(xv + λ∗yv = xu + λ∗yu + cuv + λ∗duv) and (xv > xu + cuv))
Mv ← (xu + cuv, yu + duv)

Step 5: u← u + 1 and if u ≤ n, go to Step 4.
Step 6: i← i + 1 and if i < n , go to Step 3.

The time complexity of the Oracle test is O(m+n logn). On the other hand,
we can revise Algorithm 2 using Dijkstra’s algorithm and the resulting algorithm
has time complexity O((m + n logn)2).

Next, we show how to compute the value of λ∗ and L(λ∗). Algorithm 2 com-
putes a λ∗-minimal path p with minimal cost. Similarly, we can compute a
λ∗-minimal path q with minimal delay. Then the value of λ∗ is given by the fol-
lowing equation: c(p)+λ∗d(p) = c(q)+λ∗d(q) and L(λ∗) = c(p) +λ∗(d(p)−T).
Notice that d(q) < T < d(p).

Algorithm 3. Oracle Test with Unknown λ∗

Step 1: Let λ = −p/q > 0 and ∀(u, v) ∈ E, define link length luv = cuv + λduv

Step 2: Compute two shortest paths pc and pd using the lexicographic order on
(luv, cuv) and (luv, duv), respectively
Step 3: Obviously, d(pc) ≥ d(pd). Consider 4 cases:

1. d(pc) > T and d(pd) > T : By Lemma 6 and Lemma 9, λ < λ∗ and thus
p + qλ∗ < 0 if q < 0 and p + qλ∗ > 0 otherwise

2. d(pc) < T and d(pd) < T : By Lemma 6 and Lemma 9, λ > λ∗ and thus
p + qλ∗ > 0 if q < 0 and p + qλ∗ < 0 otherwise

3. d(pc) > T and d(pd) < T : By Lemma 6, λ = λ∗and thus p + qλ∗ = 0
4. d(pc) = T or d(pd) = T : By Lemma 1, this is impossible

Simultaneous Matchings

Khaled Elbassioni1, Irit Katriel2,�, Martin Kutz1, and Meena Mahajan3,��

1 Max-Plank-Institut für Informatik, Saarbrücken, Germany
{elbassio, mkutz}@mpi-sb.mpg.de

2 BRICS � � �, University of Aarhus, Åbogade 34, Århus, Denmark
irit@daimi.au.dk

3 The Institute of Mathematical Sciences, Chennai, India
meena@imsc.res.in

Abstract. Given a bipartite graph G = (X ∪̇ D, E ⊆ X × D), an X-
perfect matching is a matching in G that covers every node in X. In this
paper we study the following generalisation of the X-perfect matching
problem, which has applications in constraint programming: Given a
bipartite graph as above and a collection F ⊆ 2X of k subsets of X, find
a subset M ⊆ E of the edges such that for each C ∈ F , the edge set
M ∩ (C × D) is a C-perfect matching in G (or report that no such set
exists). We show that the decision problem is NP-complete and that the
corresponding optimisation problem is in APX when k = O(1) and even
APX-complete already for k = 2. On the positive side, we show that a
2/(k + 1)-approximation can be found in 2kpoly(k, |X ∪D|) time.

1 Introduction

Matching is one of the most fundamental problems in algorithmic graph theory.
The all-important notion of characterising feasibility / efficiency as polynomial-
time computation came about in the context of the first efficient matching algo-
rithm due to Edmonds [4]. Since then, an immense amount of research effort has
been directed at understanding the various nuances and variants of this problem
and at attacking special cases. For an overview of developments in matching
theory and some recent algorithmic progress, see for instance [7,11].

In this paper we consider a generalisation of the bipartite matching problem.
Suppose we are given a bipartite graphG = (V,E) where the vertex set partition
is V = X ∪̇ D (so E ⊆ X × D) and a collection F ⊆ 2X of k constraint sets.
A solution to the problem is a subset M ⊆ E of the edges such that M is
simultaneously a perfect matching for each constraint set in F . More precisely,
for each C ∈ F , the edge set M ∩ (C ×D) has to be a C-perfect matching, i.e.,
a subgraph of G in which every vertex has degree at most 1 and every vertex of

� Supported by the Danish Research Agency (grant # 272-05-0081).
�� This work was done while the fourth author was visiting the Max-Plank-Institut

für Informatik, Saarbrücken, Germany.
� � � Basic Research in Computer Science, funded by the Danish National Research

Foundation.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 106–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Simultaneous Matchings 107

C has degree exactly 1. Also, analogous to maximum-cardinality matchings, we
may relax the perfect matching condition and ask for a largest set M such that
for each C ∈ F , the edge set M ∩ (C ×D) is a matching in G.

Why consider this generalisation of matching? Apart from purely theoretical
considerations suggesting that any variant of matching is worth exploring, there
is a concrete important application in constraint programming where precisely
this question arises. A constraint program consists of a set X of variables and
a set D of values. Each variable x ∈ X has a domain D(x) ⊆ D, i.e., a set of
values it can take. In addition, there is a set of constraints that specify which
combinations of assignments of values to variables are permitted.

An extensively studied constraint is the AllDifferent constraint (AllDiff)
which specifies for a given set of variables that the values assigned to them
must be pairwise distinct (see, e.g., [9,10,12,14,15]). An AllDiff constraint can
be viewed as an X-perfect matching problem in the bipartite graph that has the
set X of variables on one side, the set D of values on the other side, and an
edge between each variable and each value in its domain. Typically, a constraint
program contains several AllDiff constraints, defined over possibly overlapping
variable sets. This setting corresponds to the generalisation we propose.

Formally, we consider the following problems:

SIM-W-MATCH (SIMULTANEOUS WEIGHTED MATCHINGS):
Input: a bipartite graph G = (V,E) with V = X ∪̇D and E ⊆ X×D, a weight

or profit w(e) associated with each edge in E, and a collection of constraint
sets F ⊆ 2X .

Feasible Solution: a set M ⊆ E satisfying ∀C ∈ F : M ∩ (C×D) is a matching.
The weight of this solution is

∑
e∈M w(e).

Output: (The weight of) a maximum-weight feasible solution.

SIM-W-PERF-MATCH (SIMULTANEOUS WEIGHTED PERFECT MATCHINGS):
Input: as above
Feasible Solution: as above but only saturating (perfect) matchings allowed, i.e.,

a set M ⊆ E satisfying ∀C ∈ F : “M ∩ (C ×D) is a C-perfect matching.”
Output: (The weight of) a maximum-weight feasible solution or a flag indicating

the absence of any feasible solution.

These are the optimisation / search versions1; in the decision versions, an ad-
ditional weight W is given as input and the answer is ‘yes’ if there is a feasible
solution of weight at least W . When all edge weights are 1, the corresponding
problems are denoted by SIM-MATCH and SIM-P-MATCH respectively. In this case,
the decision version of SIM-P-MATCH does not need any additional parameterW .

We use the following notation: n = |X |, d = |D|, m = |E|, k = |F|, t =
max{|C| : C ∈ F}. We also assume, without loss of generality, that X = ∪C∈FC.

1 Note that due to the weights, an optimal solution to the former might not saturate
all sets even if such a perfect assignment exists. Thus SIM-W-PERF-MATCH is not
a special case of SIM-W-MATCH.

108 K. Elbassioni et al.

At first sight these problems do not appear much more difficult than bipartite
matching, at least when the number of constraint sets is a constant. It seems
quite plausible that a modification of the Hungarian method [8] should solve
this problem. However, we show in Section 2 that this is not the case; even when
k = 2, SIM-P-MATCH is NP-hard. We also show that it remains NP-hard even if
the graph is complete bipartite (i.e., E = X ×D) and d and t are constants; of
course, in this case, k must be unbounded. Furthermore, SIM-MATCH is APX-
hard, even for k = 2. On the positive side, SIM-W-MATCH is in APX for every
constant k. These results are shown in Section 3. Finally, in Section ?? we
examine the SIM-P-MATCH polytope and observe that it can have vertices that
are not even half-integral.

2 NP-Completeness of SIM-P-MATCH for k ≥ 2

The main result of this section is the following.

Theorem 1. Determining feasibility of an instance of SIM-P-MATCH with k con-
straint sets is NP-complete for every single parameter k ≥ 2.

Proof. Membership in NP is straightforward. We establish NP-hardness of SIM-

P-MATCH for k = 2 (it then follows trivially for each k > 2). The proof is by
reduction from SET-PACKING.

SET-PACKING:
Instance: A universe U ; a collection C = {S1, S2, . . . , Sp} of subsets of U .
Decision problem: Given an integer � ≤ p, is there a collection C′ ⊆ C of at least
� pairwise disjoint sets?

Optimisation problem: Find a collection C′ ⊆ C of pairwise disjoint subsets such
that |C′|, the number of chosen subsets, is maximised.

k-SET-PACKING: The restriction where every set in C contains at most k ele-
ments.

SET-PACKING(r): The restriction where every vertex of U appears in at most r
sets from C.

It is known that SET-PACKING is NP-hard, and so is 3-SET-PACKING(2), the
special case where the size of each set is bounded by 3 and each element occurs
in at most 2 sets. See, for instance, [2].

We present the reduction from SET-PACKING to SIM-P-MATCH (with k = 2) in
detail here because it will later serve for an APX result, too. View SIM-P-MATCH

as a question of assigning values to variables (as in the constraint programming
application described in Section 1). Each element a from the universe U is em-
bodied by a single value va and there are � variables x1, . . . , x	, which belong to
both constraint sets X1 and X2, that are fighting for these values. Between the
xi’s and the vj ’s we place gadgets that encode the sets in C.

Consider the trivial situation with only singleton sets in C. There we could
simply connect each xi to each value that occurs as such a singleton. Then a

Simultaneous Matchings 109

u v w

RGGR RG

Fig. 1. The basic gadget for the reduction

“packing” of � singleton sets in U would obviously give an assignment of � values
to the xi’s in this complete bipartite graph, and vice versa.

The difficult part is to build gadgets between the xi and U such that a single
variable occupies more than one value from U . Therefore consider the configu-
ration in Figure 1. We have five values on the upper side and four variables on
the lower, marked with letters ‘R’ (red) and ‘G’ (green) to indicate that they
belong to the constraint sets X1 and X2, respectively (red-green colour indicat-
ing membership in both sets). If the leftmost value is assigned to some red-green
variable outside the figure then the two left variables will be forced to claim the
two values to their right and in turn, the remaining two variables will have to
pick the values marked v and w. In other words, if a red-green variable claims
the input value u on the left, it effectively occupies the two output values v and
w, too. Conversely, if the value u is not required elsewhere, the four variables
can all make their left-slanted connections and leave v and w untouched.

We can concatenate several such 4-variable gadgets to obtain a larger amplifi-
cation. If we merge the output value v of one gadget with the input u′ of another
one, as shown in Figure 2, we get the effect that occupying only the input u from
outside this configuration, forces the gadget variables to claim the three output
values w, v′, and w′ that could otherwise stay untouched. (Indeed, we only get
three such values and not four because the connecting value v counts no longer
as an output.)

u v = u′ w v′ w′

RGRGGRRGGR RG

Fig. 2. Merging two 1:2-gadgets into one 1:3-gadget

For a q-element set S = {v1, . . . , vq} ∈ C, we concatenate q − 1 gadgets
and make v1, . . . , vq ∈ U their resulting output values. Then we connect each
red-green variable xi to the input value of each such set gadget. The resulting
configuration has obviously the desired behaviour. We can assign values to all

110 K. Elbassioni et al.

variables without violating the red and green constraint if and only if we can
pack � sets from C into U . ��

Complete bipartite graphs with d = 3, t = 2. Theorem 1 states that it
is NP-hard to solve instances of SIM-P-MATCH with two constraint sets X1 and
X2. However, if the graph is a complete bipartite graph, it is straightforward to
determine whether a solution exists and to find it if so: First match the vertices
of X1 with any set of distinct vertices in D. Then it remains to match the
vertices of X2 \X1 with vertices that were not matched with vertices from the
intersection X1 ∩X2. Since the graph is complete bipartite, the existence of a
solution is determined solely by the sizes of X1, X2, X1 ∩X2 and D.

It is therefore natural to ask whether it is always possible to solve SIM-P-

MATCH on a complete bipartite graph. With a little bit of thought and inspection,
one can come up with similar feasibility conditions for k = 3, 4. What about
arbitrary k? It turns out that the problem is NP-hard if the number of constraint
sets is not bounded, even if each constraint set has cardinality 2 and d = |D| = 3.
The proof is by a reduction from 3-VERTEX-COLORING, which is known to be
NP-complete (see for instance[5]).

Instance: An undirected graph G = (V,E).
Decision problem: Is there a way of colouring the vertices of G, using at most

3 distinct colours, such that no two adjacent vertices get the same colour?

Proposition 1. SIM-P-MATCH is NP-hard even when d = 3, t = 2, and the
underlying graph is complete bipartite.

Proof. Let G = (V,A) be an instance of 3-VERTEX-COLORING. We construct a
corresponding instance of SIM-P-MATCH as follows: let X = V , D = {1, 2, 3},
E = X ×D, and F = A. It is straightforward to see that any feasible solution
to this instance of SIM-P-MATCH is a 3-colouring of V with no monochromatic
edge, and vice versa. ��

3 APX-Completeness

We now examine the approximability of SIM-W-MATCH.

3.1 Membership in APX for Constant k

APX is the class of optimisation problems which have polynomial-time const-
ant-factor approximation algorithms. That is, a maximisation problem Π is in
APX if there is a constant 0 < α ≤ 1 and a polynomial-time algorithm A such
that for every instance x of Π we have α ·Opt(Π,x) ≤ A(x) ≤ Opt(Π,x), where
A(x) is the output of the algorithm on input x, and Opt(Π,x) is the value of
the optimum solution. Clearly, the larger the approximation factor α, the better
the quality of approximation. For more details, see any text on approximation
algorithms, such as [6,16].

Simultaneous Matchings 111

Consider the following naive polynomial-time approximation algorithm for
SIM-W-MATCH: Find a maximum profit matching for each constraint set C ∈
F independently and return the most profitable matching found. Clearly, an
optimal solution is at most k times larger, which gives an approximation ratio
of 1/k. Hence we have:

Proposition 2. An instance of SIM-W-MATCH with k constraint sets can be
approximated in polynomial time within a factor of 1/k.

Corollary 1. For any constant k, SIM-W-MATCH with k constraints is in APX.

3.2 Improving the Approximation Factor

We can slightly improve the 1/k factor by considering more than one set Xi ∈ F
at a time. Fix a maximum-weight feasible solution M with profit Opt. For any
set S ⊆ X , let f(S) denote the profit of the maximum weight simultaneous
matching in the graph induced by S ∪D, and let g(S) be the profit of the edges
in M ∩ (S × D). Clearly, for each S we have f(S) ≥ g(S) and further, each
feasible solution on S ∪D is also a solution on G, so that Opt ≥ f(S).

First consider the case with two constraint sets X1, X2. We can compute
f(X1) and f(X2) independently, each as an ordinary maximum-matching prob-
lem, and we can also evaluate the symmetric difference f(X1 ⊕X2) := f(X1 \
X2)+f(X2\X1) as the union of two independent maximum-matching problems.
Altogether we get

f(X1)+f(X2)+f(X1⊕X2) ≥ g(X1)+g(X2)+g(X1⊕X2) = 2g(X1∪X2) = 2 Opt.

By averaging, the largest of the three terms on the left is at least 2/3 · Opt.
For k > 2, we generalise the notion of symmetric differences appropriately.

Define X̂i := Xi \
⋃

h =iXh and consider the reduced pairs Sij = X̂i ∪ Ŷi. As
before, we can determine f(Sij) exactly for any index pair i �= j by indepen-
dent computation of maximum matchings on X̂i and X̂j. A careful choice of
coefficients yields∑

i

f(Xi) +
1

k − 1

∑
i<j

f(Sij) ≥
∑

i

g(Xi) +
1

k − 1

∑
i<j

g(Sij) ≥ 2g(X) = 2 Opt

and again by averaging, at least one of the f(Xi) or f(Sij) is no less than
4/(3k) · Opt.

Proposition 3. For any constant k, SIM-W-MATCH with k constraint sets can
be approximated in polynomial time within a factor of 4/(3k).

We now pursue this approach to its logical conclusion. The main idea is to
identify subsets S of X for which (a) f(S) is upper bounded by Opt and (b) f(S)
can be efficiently computed. Note that for any S ⊆ X , (a) comes for free, since

112 K. Elbassioni et al.

in computing f(S) we consider all the original constraint sets, restricted to S.
Then, for every choice of non-negative weights ξS , we have∑

S

ξSf(S) ≥
∑
S

ξSg(S) ≥ Fξ · Opt

where Fξ = minx∈X

∑
S:x∈S ξS ; the last inequality holds because each edge

(x, d) of the optimal solution M is counted with a total weight of
∑

S:x∈S ξS . By
averaging, the largest term f(S) is at least Fξ · Opt/Tξ, where Tξ =

∑
ξS is the

total weight. (In proving Proposition 2, the chosen S’s were precisely the Xi’s,
with weight 1 each, so Fξ = 1 and Tξ = k. In proving Proposition 3, the chosen
S’s were the Xi’s and the Sij , and Fξ = 2 and Tξ = 3k/2.)

Clearly, we lose nothing by considering only maximal subsets S for which
f(S) is efficiently computable. (The sets Sij above were not maximal in this
sense.) Below, we consider only maximal subsets. Our approach can be sketched
as follows.

Let R denote the collection of maximal sets S ⊆ X for which f(S) can be
efficiently computed (and is upper bounded by Opt). Also, let C denote the family
of maximal subsets of X entirely contained in either of each Xi or X \Xi. That
is, every C ∈ C is identified with a vector (v1, v2, . . . , vk) ∈ {0, 1}k \0k, such that
C =

⋂
i:vi=1Xi \

⋃
i:vi=0Xi. Clearly, β = |C| = 2k − 1. We characterise the sets

in R and observe that α = |R| is O((2k)k). Also, we note that for each R ∈ R
and each C ∈ C, C is either completely contained in or completely outside R. We
now wish to compute, for each R ∈ R, a weight ξR such that the corresponding
ratio Fξ/Tξ is maximised. Define an α × β 0-1 matrix A = (aR,C)R,C where
aR,C = 1 iff C ⊆ R. Consider the following pair of primal-dual linear programs:

λ∗P (k) = max λ λ∗D(k) = min λ
s.t. AT ξ ≥ λeβ s.t. Az ≤ λeα

eT
αξ = 1 eT

β z = 1
ξ ≥ 0 z ≥ 0

over ξ ∈ Rα and z ∈ Rβ , where eα and eβ are the vectors of all ones of dimen-
sions α and β respectively. A feasible solution ξ to the primal assigns weights
(normalised so that Tξ = 1) to each R ∈ R achieving an approximation factor
given by the value of the corresponding objective function. We show that both
the primal and the dual have feasible solutions with objective value 2/(k + 1).

Theorem 2. For any integer k ≥ 1, we have λ∗P (k) = λ∗D(k) = 2
k+1 . There is a

primal optimal solution ξ ∈ Rα whose support has size |{R ∈ [α] : ξR > 0}| =
k +

(
k
2

)
2k−2.

Due to space limitations, we skip the proof of this theorem; it can be found in the
full version of this paper. Theorem 2 establishes that an approximation factor of
2/(k + 1) is possible. To compute the running time of the approximation, note
that each f(R) can be computed in polynomial time, and we need to compute
f(R) only for those R ∈ R having non-zero ξR. Hence by Theorem 2, the running
time is polynomial provided k +

(
k
2

)
2k−2 is polynomial in the input size.

Simultaneous Matchings 113

Theorem 3. SIM-W-MATCH can be approximated within a factor of 2/(k + 1)
by an algorithm that runs in 2kpoly(n,m, d, k) time.

Thus, for all instances of SIM-W-MATCH with k = O(logN), where N = max{n,
m, d}, a 2

k+1 approximation can be found in polynomial time. Furthermore, The-
orem 2 tells us also that this factor is the best-possible via the above approach.

3.3 APX-Hardness for k ≥ 2

Recall that completeness within APX is defined through L reductions, see for
instance [16]. So an approximation scheme for an APX-complete problem trans-
lates into such a scheme for any problem in APX.

Theorem 4. For each k ≥ 2, SIM-MATCH with k constraint sets is APX-hard.

Proof. We only have to modify our reduction from the proof of Theorem 1
slightly to account for the new setting. Instead of testing for a given number � of
variables xi, we let � = p, the cardinality of C. So a perfect solution would have to
pack all sets into U . In order to get an approximation-preserving reduction, we
have to make sure that a certain fraction of the sets can always be packed. This
is achieved by restricting to 3-SET-PACKING(2), which is already APX-hard [2].

In this situation, the overall number of variables is at most 9p since there
are p choice variables, and each gadget contributes at most 8 variables. Let M
denote the number of gadget variables; then M ≤ 8p. Since each element of U
appears in at most 2 sets and since each set is of size at most 3, we can always
find at least p/4 disjoint sets. (Just construct any maximal collection of disjoint
sets. Including any one set in the collection rules out inclusion of at most 3 other
sets.) Thus, if the optimal set packing has kopt sets then kopt ≥ p/4.

Let sopt denote the value of an optimal solution to the SIM-MATCH instance
constructed. Note that sopt counts variables, while kopt counts sets. We claim
that sopt = kopt +M . The relation “≥” follows simply from assigning the kopt
input values of the gadgets that correspond to an optimal packing to some xi.
Then all gadget variables can be assigned values without conflict. To see “≤,”
notice that any assignment can be transformed into one in which all gadget vari-
ables receive values, without decreasing the total number of satisfied variables.
It is then easy to see that we can find a set packing with as many sets as we
have xi assigned with values. This shows the claim.

Suppose now that SIM-MATCH can be approximated within a factor of α.
That is, we can find in polynomial time a feasible assignment on s variables,
where s is at least αsopt. Then s = k′ + M ≥ α(kopt + M), so k′ ≥ αkopt −
M(1 − α) ≥ αkopt − 8p(1 − α) ≥ αkopt − 8(4kopt)(1 − α) = kopt(33α − 32).
Thus, an α-approximation for SIM-MATCH gives a (33α− 32)-approximation for
3-SET-PACKING(2). This gives the desired L reduction. ��

Plugging the current-best known inapproximability bound of 99/100 for 3-SET-

PACKING(2) from [3] into the above reduction, we learn that SIM-MATCH cannot
be approximated to within a factor of 1 − 1/3300 unless P = NP.

114 K. Elbassioni et al.

4 The SIMULTANEOUS MATCHINGS Polytope

Consider again instances of SIM-P-MATCH, on complete bipartite graphs, with
k = 2. As remarked in section 2, checking feasibility in such a setting is trivial.
In [1], a somewhat different aspect of this setting is considered. Assume that the
set D is labelled by the set of integers 0, 1, . . . , d− 1, and X = {x1, x2, . . . , xn}.
Then every feasible solution becomes an integer vector in the n-dimensional
space {0, 1, . . . , d−1}n. Now what is the structure of the polytope defined by the
convex hull of integer vectors corresponding to feasible solutions? The authors
of [1] establish the dimension of this polytope and also obtain classes of facet-
defining inequalities.

We consider the variant where dimensions / variables are associated with each
edge of the graph, rather than each vertex in X . Viewed as a purely graph-
theoretic decision / optimisation problem, this makes eminent sense as it directly
generalises the well-studied matching polytope (see for instance [11]): we wish
to assign 0,1 values to each edge variable (a value of 1 for an edge corresponds
to putting this edge into the solution M , 0 corresponds to omitting this edge)
such that all vertices of X (or as many as possible) have an incident edge in M ,
and M is a feasible solution. This is easy to write as an integer program:
Choose xe for each edge e so as to

maximise
∑
e∈E

wexe (for SIM-W-MATCH)

S.T. ∀x ∈ X :
∑

e=(x,z):z∈D

xe ≤ 1, ∀z ∈ D :
∑

e=(x,z):x∈X1

xe ≤ 1,

∀z ∈ D :
∑

e=(x,z):x∈X2

xe ≤ 1, ∀e : xe ∈ {0, 1}

The corresponding linear program replaces the last condition above by ∀e : xe ∈
[0, 1]. Let PI denote the convex hull of integer solutions to the integer program,
and let PL denote the convex hull of feasible solutions to the linear program. PI

and PL are polytopes in Rn, with PI ⊆ PL.

b da c f he g i

21 543 6

Fig. 3. A vertex of PL that is not half-integral

The special case of the above where there is just one constraint set (either
X1 or X2 is empty) is the bipartite matching polytope. For this polytope, it is

Simultaneous Matchings 115

known that every vertex is integral; i.e. PI = PL. For non-bipartite graphs, this
polytope is not necessarily integral, but it is known that all vertices there are
half-integral (i.e. at any extremal point of the polytope, all edge weights are from
the set {0, 1/2, 1}). Unfortunately, these nice properties break down even for two
constraint sets. We illustrate this with an example in Figure 3. The underlying
graph is the complete bipartite graph. Assign weights of 1/3 to the edges shown
by dotted lines, 2/3 to those shown with solid lines, and 0 to all other edges.
This gives a feasible solution and hence a point in PL, and it can be verified2

that it is in fact a vertex of PL and is outside PI .

References

1. G. Appa, D. Magos, and I. Mourtos. On the system of two all different predicates.
Information Processing Letters, 94/3:99–105, 2005.

2. P. Berman and T. Fujito. Approximating independent sets in degree 3 graphs. In
WADS 1995, volume 955 of LNCS, pages 449–460, 1995.

3. M. Chleb́ık and J. Chleb́ıková. Inapproximability results for bounded variants of
optimization problems. In FCT 2003, volume 2751 of LNCS, pages 27–38, 2003.

4. J. Edmonds. Path, trees and flowers. Canadian Journal of Mathematics, pages
233–240, 1965.

5. M. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman, 1979.

6. D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems.
Brooks/Cole Pub. Co., 1996.

7. M. Karpinski and W. Rytter. Fast parallel algorithms for graph matching problems.
1998. Oxford Lecture Series in Mathematics and its Applications 9.

8. H.W. Kuhn. The Hungarian Method for the assignment problem. Naval Research
Logistic Quarterly, 2:83–97, 1955.

9. M. Leconte. A bounds-based reduction scheme for constraints of difference. In
Proceedings of the Constraint-96 Workshop, pages 19–28, 1996.

10. A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In IJCAI, 2003.

11. L. Lovasz and M. Plummer. Matching Theory. North-Holland, 1986. Annals of
Discrete Mathematics 29.

12. K. Mehlhorn and S. Thiel. Faster Algorithms for Bound-Consistency of the Sort-
edness and the AllDifferent Constraint. In CP, 2000.

13. PORTA. http://www.zib.de/optimization/software/porta/.
14. J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In

AAAI, 1998.
15. W.J. van Hoeve. The AllDifferent Constraint: A Survey. In Proceedings of the

Sixth Annual Workshop of the ERCIM Working Group on Constraints, 2001.
16. V. Vazirani. Approximation Algorithms. Springer, 2001.

2 The software PORTA [13] was used to find this vertex.

An Optimization Problem Related to VoD
Broadcasting

Tsunehiko Kameda1, Yi Sun1, and Luis Goddyn2

1 School of Computing Science
2 Department of Mathematics,

Simon Fraser University, Burnaby, B.C. Canada V5A 1S6

Abstract. Consider a tree T of depth 2 whose root has s child nodes
and the kth child node from left has nk child leaves. Considered as a
round-robin tree, T represents a schedule in which each page assigned to
a leaf under node k (1 ≤ k ≤ s) appears with period snk. By varying s,
we want to maximize the total number n = s

k=1 nk of pages assigned
to the leaves with the following constraints: for 1 ≤ k ≤ s, nk = �(m +

k−1
j=1 nj)/s�, where m is a given integer parameter. This problem arises

in the optimization of a video-on-demand scheme, called Fixed-Delay
Pagoda Broadcasting.

Due to the floor functions involved, the only known algorithm for
finding the optimal s is essentially exhaustive, testing m/2 different po-
tential optimal values of size O(m) for s. Since computing n for a given
value of s incurs time O(s), the time complexity of finding the optimal s
is O(m2). This paper analyzes this combinatorial optimization problem
in detail and limits the search space for the optimal s down to κ

√
m

different values of size O(
√

m) each, where κ ≈ 0.9, thus improving the
time complexity down to O(m).

1 Introduction

Recently, Bar-Noy et al. have formulated a combinatorial problem called the
windows scheduling problem [1]. This problem is defined by positive integers c and
w1, w2, . . . , wn, where c is the number of slotted channels and, for i = 1, 2, . . . , n,
a window of size wi is associated with page i. A valid schedule assigns page
i to slots such that it appears at least once in every window of wi slots (not
necessarily in the same channel).

Recently, there has been much interest in the broadcast-based delivery of
popular videos, in order to address the scalability issue in video-on-demand
(VoD). A VoD broadcasting scheme, called Fixed-Delay Pagoda Broadcasting
(FDPB), was proposed by Pâris [5].1

A channel consists of a sequence of time slots of duration d (sec) each. The
viewer initially downloads pages for md (sec) before s/he starts viewing the
1 It has been implemented in a prototype video-on-demand (VOD) system [6]. Holler-

mann and Holzscherer [3] had also conceived a scheme similar to FDPB. A recent
survey on VoD can be found in [4].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 116–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimization Problem Related to VoD Broadcasting 117

video. FDPB has the following constraints: (a) there is just one channel2 that is
divided into s subchannels, each subchannel consisting of every sth slot of the
channel; (b) wi = m+i−1; (c) each page must be transmitted in one subchannel
with a fixed period, and (d) all pages appearing in a given subchannel must be
consecutive and have the same period. Our objective is to maximize the number
of pages n that can be scheduled, by choosing the optimal value for s, which
depends on m.

The author of [5] originally conjectured that s =
√
m would be the optimal

s value, but later found that it was not always the case among the examples
he tested. Recently, Bar-Noy et al. [2] considered this problem and proposed
a method whereby they could find the optimal value by testing m/2 different
values of s. We analyze this dependency in detail in this paper and show that the
optimal value of s is guaranteed to be one of roughly 0.9

√
m possible values. We

thus can avoid time-consuming exhaustive search for the optimal s. The limited
range for s reduced the running time of a computer program to compute the
optimal value for s rather dramatically from a few hours down to a few seconds
when m = 10000.3

The rest of the paper is organized as follows. Sect. 2 describes a useful tool,
called the round-robin tree, introduced in [2]. In Sect. 3, we derive a formula for
the optimal number sopt of subchannels that maximizes the number of pages
that can be scheduled under the constraints adopted by FDPB. We then find
in Sect. 4 a small range for s in terms of m that needs to be searched, in order
to find sopt. Finally, in Sect. 5, we mention implications of our results, and also
propose a new method of subchanneling such that a subchannel is divided into
subsubchannels.

2 Preliminaries

2.1 Round-Robin Tree

The round-robin (RR) tree is a useful tool to represent a cyclic schedule [2]. Fig.
1 shows an example of a 2-level round-robin tree whose leaves are labeled by
pages. A round-robin tree represents a schedule as follows:

1. Initially the root gets a “turn”.
2. When a non-leaf node gets a turn, it passes the turn to its “next” child node.

The leftmost child node gets a turn first and the order “next” means the next
sibling to the right, wrapping around back to the leftmost child node.

3. When a leaf gets a turn, its associated page is scheduled and the turn goes
back to the root. ��

Example 1. Applying the above rules, it is seen that Fig. 1 represents the sched-
ule, 〈P1, P4, P8, P2, P5, P9, . . .〉. Note that pages P1, P2 and P3 have period 9
2 For the purpose of our discussion, this can be assumed without loss of generality.

The general case is considered in the discussions section of this paper.
3 Measured for a Java program running on a Pentium II CPU.

118 T. Kameda, Y. Sun, and L. Goddyn

3 P4 P5 P6 P7 8P PP P P9 10 12112P P P1

Fig. 1. A round-robin tree representation of FDPB with s = 3 subchannels

(= 3s), pages P4, . . . , P7 have period 12 (= 4s), and pages P8, . . . , P12 have pe-
riod 15 (= 5s). ��

Lemma 1. [1] Suppose the root of a 2-level RR tree T has s subtrees and for
k = 1, 2, . . . , s, the kth subtree from left has nk child leaves. Then T repre-
sents a schedule in which each page assigned to a leaf in the kth subtree ap-
pears with period nk × s, and the minimum cycle of the schedule is given by
s × LCM(n1, n2, . . . , nk), where LCM stands for the least common multiple of
the arguments. ��

2.2 Model

The kth subtree of an RR tree T gets one “turn” out of every s “turns”. We
thus consider that the given channel is divided into s subchannels such that
subchannel k consists of the time slots t satisfying (t mod s) + 1 = k, where
time slots are numbered t = 0, 1, 2, . . . [5].

Lemma 2. [1, 5] In FDPB with parameter m, in order for the viewer to be able
to view the video continuously, page i must be broadcast (scheduled) at least once
in each window of size wi = m+ i− 1. ��

Example 2. Let us suppose m = 9 and choose s = 3. Page P1 can be scheduled
in every w1 = 9 + 1 − 1 = 9th slot. Since s = 3, subchannel 1 consists of every
3rd slot, and P1 needs only 1/3 of it, and P2 and P3 can also be scheduled in
subchannel 1, Thus we create a subtree with three leaves and label them by
P1, P2 and P3. See Fig. 1. These three pages will each have period 9 (= 3s),
which is adequate, since w2 > 9 and w3 > 9. Page P4 must have period at most
w4 = m + 4 − 1 = 12 (= 4s). Thus, we create the second subtree (representing
subchannel 2) as shown in Fig. 1. Similarly for the last subtree. In summary,
by dividing a channel into three subchannels, we can now pack 12, instead of 9
(when s = 1), pages in a channel. ��

Let nk denote the number of leaves of the kth subtree. In order for P1 to appear
within every window of size w1 = m, we must satisfy sn1 ≤ m by Lemma 1.
We thus get n1 = �m/s� as the maximum integer satisfying this inequality. Now
that the first n1 pages have been scheduled in subchannel 1, the next page, i.e.,
the n1 + 1st page must have period at most wn1+1 = m + (n1 + 1) − 1, hence
sn2 ≤ m + n1, from which we get n2 = �(m + n1)/s�. In general, we have the
following formula for nk:

An Optimization Problem Related to VoD Broadcasting 119

nk = �(m+ n1 + n2 + · · · + nk−1)/s� (1)

Let n(m, s) denote the total number of pages that can be scheduled by a 2-level
RR tree with s subtrees, i.e.,

n(m, s) =
s∑

k=1

nk. (2)

3 Optimization for FDPB

3.1 Problem

Fig. 2(a) plots n(100, s) computed from (1) and (2) by varying s in the range
1 ≤ s ≤ 100 (the rugged curve). It is seen that s = 10 maximizes n(100, s).

In Fig. 2(b), n(m, s) is plotted for many different values of m (1 ≤ m ≤ 130).
For each value of m, a curve is drawn by varying s within the range 1 ≤ s ≤ m.
This can be considered as exhaustive search by which to find the optimal s that
maximizes n(m, s).4 Note that the optimal value of s that maximizes n(m, s)
grows with m. Our main interest in this paper is to analyze the dependency of
the optimal value of s on m in the hope of finding the optimal value without
resorting to exhaustive search.

From what we have seen, we can use subtrees and subchannels almost syn-
onymously. From now on, we will mainly use the term subtree. In reference to
(1), for k = 1, · · · , s, we define rk (0 ≤ rk ≤ s− 1) by

m+
k−1∑
j=1

nj = snk + rk. (3)

We thus have for k ≥ 2

nk = �(nk−1s+ rk−1 + nk−1)/s� = nk−1 + �(nk−1 + rk−1)/s�
rk = nk−1 + rk−1 (mod s). (4)

In order to find the optimal value of s that maximizes n(m, s) by differentiation,
we try to approximate n(m, s) by a function that doesn’t contain any floor
function. Let r̄ denote the average of {rk | k = 1, 2, . . . , s} in (3).

Lemma 3. The total number of pages that can be assigned to the s subtrees is
approximated by the following formula when s (< m) is sufficiently large:

n(m, s) ≈ (m− r̄)
(

(1 +
1
s
)s − 1

)
. (5)

4 The four dotted curves in Fig. 2(b) correspond to m = 9, 21, 51 and 128. (See Sect. 5.)

120 T. Kameda, Y. Sun, and L. Goddyn

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 10 20 30 40 50 60 70 80 90 100

Number of subchannels (s)

Number of pages packed (n(100,s))

Actual data for m=100
Approximation (r/s=0.5)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

Number of subchannels (s)

Number of pages packed into one channel (n)

Each curve represents an intial period m
Four channels used

Fig. 2. (a) The rugged curve shows n(100, s) for 1 ≤ s ≤ m = 100. The smooth dashed
curve is an approximation using (5) with r̄/s = 0.5; (b) n(m, s) for m = 1, 2, . . . , 130.

Proof. Let n0 = m and rewrite (3) as follows: rk =
∑k−1

j=0 nj − snk, and hence
rk

s (1 + 1/s)s−k = (1 + 1/s)s−k
∑k−1

j=0 nj/s− (1 + 1/s)s−knk. Summing this from
k = 1 to s, we get

s∑
k=1

rk
s

(1 + 1/s)s−k =
s∑

k=1

(1 + 1/s)s−k
k−1∑
j=0

nj/s−
s∑

k=1

(1 + 1/s)s−knk.

We can rewrite the right hand side as follows:
∑s−1

j=0(nj/s)
∑s

k=j+1(1+1/s)s−k−∑s
k=1(1 + 1/s)s−knk =

∑s−1
j=0 nj [(1 + 1/s)s−j − 1] −

∑s
k=1(1 + 1/s)s−knk =

m[(1 + 1/s)s − 1] − n(m, s). We thus obtain

n(m, s) = m[(1 + 1/s)s − 1] −
s∑

k=1

rk
s

(1 + 1/s)s−k. (6)

We notice that n(m, 1) = n(m,m) = m and that n(m, s) increases with s for
small (relative to m) values of s. We now estimate n(m, s) for large s (< m).
For sufficiently large s, we assume that the remainders r1, · · · , rs are uniformly
distributed in the range [0, s−1]. Substituting ri = r̄ into (6), we obtain (5). ��

3.2 Solution

Corollary 1. For sufficiently large s, the total number of pages n(m, s) can be
bounded as follows:

(m− s+ 1)
(

(1 +
1
s
)s − 1

)
≤ n(m, s) ≤ m

(
(1 +

1
s
)s − 1

)
Proof. Follows directly from Lemma 3 by setting r̄ = s−1 (for the lower bound)
and r̄ = 0 (for the upper bound). ��

An Optimization Problem Related to VoD Broadcasting 121

In order to find the optimal value of s that maximizes n(m, s), one needs to
evaluate (2) for s ranging 2 ≤ s ≤ m/2 [2]. This is time-consuming when m
gets large. In what follows, we show that the optimal solution sopt can be found
within a range containing O(

√
m) possible values of s. The following theorem

shows how sopt grows with m for large m.

Theorem 1. The optimal number of subtrees sopt grows roughly linearly with√
m.

Proof. Let r̄ = a(s − 1) in (5), where the range of parameter a is 0 < a < 1.
The optimal s satisfies the differential equation, ∂n(m,s)

∂s = 0. Therefore, we have

(1 + 1/s)s
[
ln(1 + 1/s) +

s2(1/s−(s+1)/s2)
s+1

]
(m−a(s−1))−a ((1 + 1/s)s − 1) = 0.

If s is sufficiently large, we can approximate the above equation as follows:

em/2 + 23
24ea

s2
− (e− 1)a ≈ 0.

By solving the above quadratic equation, using the assumption s2 " a, we obtain

sopt ≈
√

em

2a(e− 1)
. (7)

��

Fig. 3 plots the optimal number of subtrees, sopt, computed by exhaustive
search, varying s from 1 to m for each period m of the first page in the range
up to 10000. It is observed that, despite the assumption s " 1 made to derive
(5), practically all the data points are within an area bounded by

√
m − 3 and

1.54
√
m+6. By reducing the range of search from s ∈ [1,m/2] to s ∈ [max{√m−

3, 1}, 1.54
√
m+ 6], the execution time of our search program for all values of m

between 1 and 50000 went down rather drastically from more than one day to
less than a minute. This range is roughly (1.54 − 1)

√
m ≈ 0.54

√
m.

4 Theoretical Bounds

Although the results obtained in the previous section are quite satisfactory, there
is no guarantee that nothing strange will happen beyond m = 10000. In order
to dispel such misgivings, we shall derive theoretical upper and lower bounds in
this section. They are shown in Fig. 3 as the top and bottom curves.

The formula (7) is not directly useful, since a = a(m, s) is a function of s. In
order to overcome this problem, let S denote a range for s such that sopt ∈ S
for large m. Define aup = Sups∈S{a(m, s)} and alow = Inf s∈S{a(m, s)} Then
from (7), we have √

em

2aup(e− 1)
≤ sopt ≤

√
em

2alow (e− 1)
. (8)

122 T. Kameda, Y. Sun, and L. Goddyn

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
pt

im
al

 n
um

be
r

of
 s

ub
tr

ee
s

Period of first page (m)

Optimal no of subchannels
1.78* SQRT(m)

1.54* SQRT(m)+6
SQRT(m)-3

0.89*SQRT(m)

Fig. 3. The optimal number of subtrees (sopt) vs. the period (m) of the first page. The
actual optima are plotted as data points.

Since a < 1, we obviously have aup < 1. In the rest of this section, we shall find
a lower bound on alow . Fig. 4(a) plots the computation results for a(10000, s)
for s in the range 1 ≤ s ≤ m = 10000. The initial part of the graph is blown up
in Fig. 4(b).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

a(
10

00
0,

s)
 =

 (
A

ve
ra

ge
 r

em
ai

nd
er

)/
(s

-1
)

Number of subchannels (s)

(a) 1 < s < 10000

Normalized average remainder

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

a(
10

00
0,

s)
 =

 (
A

ve
ra

ge
 r

em
ai

nd
er

)/
(s

-1
)

Number of subchannels (s)

(b) 1 < s < 300

Normalized average remainder

Fig. 4. (a) Quantity a(10000, s) = r̄/(s − 1) vs. s (1 ≤ s ≤ 10000); (b) Quantity
a(10000, s) = r̄/(s− 1) vs. s (1 ≤ s ≤ 300)

In order to find alow for given m, we want to investigate how the remainder
changes in the vicinity of s =

√
m, where the optimal value for s is to be found.

Example 3. Fig. 5 illustrates the case where m = 10000 and the number of
subtrees s = 150. (The optimal number of subtrees in this case is sopt = 132.)
The horizontal axis represents the 150 subtrees, i.e., subtrees k = 1 to k =

An Optimization Problem Related to VoD Broadcasting 123

150. Each number in Fig. 5 is nk of (1) for some k, and its height represents
rk of (3). The lower horizontal line is the average of all the remainders {rk |
k = 1, 2, . . . , s}, while the upper horizontal line is at height (s − 1)/2. The
dotted curves (each “dot” is represented by symbol “+”) in Fig. 5 represent the
difference |rk+1 − rk| for k = 1, 2, . . . , s − 1. For example, let index k be such
that nk = 137 and rk = 5. (Of the two points in Fig. 5 that are labeled by
137, this point is the one close to the bottom.) Then by (4) we can compute
nk+1 = 137+�(137+5)/150� = 137 and rk+1 = 137+5 (mod 150) = 142, which
correspond to the other point labeled by 137. The difference rk+1 − rk = 137 is
seen as a “+” just below this 137. Similarly, we can compute nk+2 = 138 and
rk+2 = 129, and hence |rk+2 − rk+1| = 8. This explains the position of the point
labeled by 138 and the height of the next “+”. ��

One striking feature in Fig. 5 is the presence of quadratic curves (parabo-
las).We now examine the cause of the parabolas observed in the above example.
For m = 10000 and s >

√
m = 100, after computing n1, n2, . . . , suppose we

reach i − 2 such that ni−2 = s − 1 and ri−2 = r for some r. Using (4), we get
ni−1 = s − 1 + �(s − 1 + r)/s� = s, ri−1 = r − 1; ni = s + 1, ri = r − 1;
(ni = s+ 1 appears at the bottom of the right parabola in Fig. 5. If s is chosen
too large, this parabola will move to the right out of range.) ni+1 = s+2, ri+1 =
r = (r− 1)+1 ;ni+2 = s+3, ri+2 = (r− 1)+1+2, and so forth, and in general,

ri+j = (r − 1) +
j∑

h=1

h = (r − 1) + j(j + 1)/2, (9)

for 0 ≤ j ≤ p, where p is the maximum number such that (r− 1) + p(p+ 1)/2 ≤
s− 1. It is seen that ri+j is a quadratic function of j.

Lemma 4. For sufficiently large m, if s >
√
m then the average remainder

r̄ > (s− 1)/4.

Proof. Fix the value s >
√
m near

√
m,5 and assume the worst case, where

the remainders are concentrated near 0, i.e., the remainder in (9) has the form
ri+j = j(j + 1)/2 (i.e., r = 1) for 0 ≤ j ≤ p. Thus the remainders take one of
the p + 1 values, 0, 1, 3, . . . , p(p + 1)/2, because this leads to the most skewed
distribution of remainders towards 0. Note that p satisfies (p+1)(p+2)/2 > s−1.
Then the average value of all the p + 1 remainders is given by R = (1/(p +
1))

∑p
j=1 j(j + 1)/2 = p(p+ 2)/6. Using (p+ 1)(p+ 2)/2 > s− 1, we can derive

R > (1 − 1/(p+ 1))(s− 1)/3 > [1 − 1/(
√

2(s− 1) − 1)](s− 1)/3. For s ≥ 14, we
have [1 − 1/(

√
2(s− 1) − 1)] > 3/4, and therefore r̄ > R > (s− 1)/4. ��

Quadratic growth is not clearly discernible in the middle part of Fig. 5, but
it is there. For example, there is a parabolic curve segment on which the points
5 As commented earlier, if s is chosen too large, the parabola that contains a point

labeled by nk = s at its bottom won’t appear. In such a case, see the comments
after this lemma.

124 T. Kameda, Y. Sun, and L. Goddyn

178

177

176

175

173

172

171

170

169

168

167

166

164

163

162

161

160

159

158
157
156
155
154
153152151150149148

147
146
145
144
143

142

141

140

139

138

137

137

136

135

134

133

132

131

130

129

129

128

127

126

125

124

124

123

122

121

120

120

119

118

117

116

116

115

114

113

113

112

111

110

110

109

108

107

107

106

105

105

104

103

103

102

101

101

100

99

99

98

97

97

96

95

95

94

93

93

92

92

91

90

90

89

89

88

87

87

86

86

85

85

84

84

83

82

82

81

81

80

80

79

79

78

78

77

77

76

76

75

75

74

74

73

73

72

72

71

71

70

70

69

69

68

68

68

67

67

66

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140

Fig. 5. Above k (1 ≤ k ≤ s = 150) on the horizontal axis, a point with label nk is
plotted at height rk

labeled by 95, 96 and 97 lie. It is easy to see that in general the average of
the remainders on such a parabolic curve segment is larger than (s − 1)/4. In
particular, if there are only two points on a parabolic curve segment, then their
difference in height must be > (s − 1)/2, and hence their average should be
> (s− 1)/4. There may be one or two points, e.g., the point labeled by 101 near
the bottom of the graph, which do not share a parabolic curve segment with
any other points. But their influence on lowering the average remainder can be
compensated for by other large remainders. Note that on the left part of Fig. 5
there are parabola-like patterns, but they are not parabolas in the sense the
term is used here. Two points labeled by 80, for example, form a parabolic curve
segment.

Theorem 2. For sufficiently large m, the optimal number of subtrees sopt that
maximizes n(m, s) can be bounded as follows:√

em

2(e− 1)
< sopt <

√
2em

(e− 1)
.

Proof. Lemma 4 implies alow > 1/4. Plug it and aup < 1 into (8). ��

According to the above theorem, only
√

2em/(e− 1) −
√
em/2(e− 1) ≈

1.78
√
m − 0.89

√
m = 0.89

√
m different values of s need be tested to find sopt.

The bounds given by the above theorem are shown as the top and bottom curves
in Fig. 3.

An Optimization Problem Related to VoD Broadcasting 125

5 Discussions

Let us consider the general case, where we have c channels, C1, C2, . . . , Cc. Sup-
pose the maximum period of the initial page for channel C1 is m1. Then we have
m2 = m1+(i1+1)−1 for first page of channel C2, if pages 1 to i1 are packed into
channel C1. Thus by varying the parameter m in our previous analysis, we can
determine how many pages can be packed into the second, third, . . . channels.
For example, the four dotted curves in Fig. 2(b) correspond to m = 9, 21, 51 and
128. The curve for m1 = 9 reaches its peak 12 at s = 3, which implies that 12
pages can be packed into C1 if the period of the first page is 9 and three subtrees
are used. Thus page 13 is the first page to be packed in C2, and therefore we
should look at the curve for m2 = 9+13−1 = 21. This curve has the peak value
of 30, and thus 30 pages can be packed into C2, and so forth.

We could use recursive subchanneling. Namely, we first divide a channel into
s subchannels of equal bandwidth as before, and then further divide each of the
s subchannels into subsubchannels, and so forth. In other words, instead of a
2-level RR tree, we use a RR tree with 3 or higher levels. It turns out that we
are able to fit only slightly more pages into a channel for some values of m.
Recursive subchanneling becomes more beneficial for larger values of m.

Although the problem addressed in this paper is rather special, we believe the
approach we used could be applied to many other optimization problems that
involve the floor or ceiling function.

Acknowledgement

We thank the members of the Distributed Computing Laboratory in the School
of Computing Science at Simon Fraser University for stimulating discussions.

References

1. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems.
Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (2002) 433–442

2. Bar-Noy, A., R.E. Ladner, R.E., Tamir, T.: Scheduling Techniques for Media-on-
Demand. Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (2003) 791–
800

3. Hollmann, H.D.L., Holzscherer, C.D.: Philips Tech. Rept. (1991) European Patent
(1991) and US patent No. 5524271 (1995)

4. Kameda, T., Sun, T.: Survey on VoD broadcasting schemes. School of
Computing Science, SFU (2003) http://www.cs.sfu.ca/∼tiko/ publications/

VODsurveyPt1.pdf

5. Pâris, J.-F.: A fixed-delay broadcasting protocol for video-on-demand. 10th Int’l
Conf. on Computer Communications and Networks (2001) 418–423

6. Thirumalai, K., Pâris, J.-F., Long, D.D.E.: Tabbycat: an inexpensive scalable server
for video-on-demand. Proc. IEEE International Conference on Communications
(2003) 896–900

A Min-Max Relation on
Packing Feedback Vertex Sets�

Xujin Chen1, Guoli Ding2, Xiaodong Hu1, and Wenan Zang3

1 Institute of Applied Mathematics, Chinese Academy of Sciences,
P.O. Box 2734, Beijing 100080, China
{xchen, xdhu}@amss.ac.cn

2 Mathematics Department, Louisiana State University,
Baton Rouge, Louisiana, USA

gxlading@cox.net
3 Department of Mathematics, The University of Hong Kong,

Hong Kong, China
wzang@maths.hku.hk

Abstract. Let G be a graph with a nonnegative integral function w
defined on V (G). A family F of subsets of V (G) (repetition is allowed)
is called a feedback vertex set packing in G if the removal of any member
of F from G leaves a forest, and every vertex v ∈ V (G) is contained
in at most w(v) members of F . The weight of a cycle C in G is the
sum of w(v), over all vertices v of C. In this paper we characterize all
graphs with the property that, for any nonnegative integral function w,
the maximum cardinality of a feedback vertex set packing is equal to the
minimum weight of a cycle.

1 Introduction

We begin with a brief introduction to the theory of packing and covering. More
details on this subject can be found in [6]. A hypergraph H is an ordered pair
(V, E), where V is a finite set and E is a set of subsets of V . Members of V and E
are called vertices and edges of H , respectively. An edge is minimal if none of its
proper subsets is an edge. A clutter is a hypergraph whose edges are all minimal.
The blocker of hypergraph H = (V, E) is the clutter b(H) = (V, E ′), where E ′ is
the set of all minimal subsets B ⊆ V such that B ∩A �= ∅ for all A ∈ E . We also
define b(H)↑ = (V, E ′′), where E ′′ consists of all B ⊆ V such that B ∩A �= ∅ for
all A ∈ E . It is well known that b(b(C)) = C = b(b(C)↑) holds for every clutter C.

Let I be a set and let α be a function with domain I. Then, for any finite
subset S of I, we denote by α(S) the sum of α(s), over all s ∈ S. Let R+
(resp. Z+) denote the sets of nonnegative real numbers (resp. integers). Let M
be the E-V incidence matrix of a hypergraph H = (V, E). For any w ∈ ZV

+ ,

� Supported in part by: 1The NSF of China under Grant No. 70221001 and 60373012,
2NSA grant H98230-05-1-0081, NSF grant ITR-0326387, and AFOSR grant: F49620-
03-1-0239-0241, and 3The Research Grants Council of Hong Kong.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 126–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Min-Max Relation on Packing Feedback Vertex Sets 127

let ν∗w(H) = max{xT 1 : x ∈ RE
+,x

TM ≤ wT }, τ∗w(H) = min{wT y : y ∈
RV

+,My ≥ 1}, νw(H) = max{xT 1 : x ∈ ZE
+,x

TM ≤ wT }, τw(H) = min{wT y :
y ∈ ZV

+ ,My ≥ 1}. Combinatorially, each vector x ∈ ZE
+ with xTM ≤ wT can

be interpreted as a family F of edges (repetition is allowed) of H , for which
each vertex v ∈ V belongs at most w(v) members of F . Such a family is called
a w-packing of H . It is clear that νw(H) is the maximum size of a w-packing of
H . Similarly, τw(H) is the minimum of w(B), over all edges B of b(H)↑. Notice
from the LP Duality Theorem that

νw(H) ≤ ν∗w(H) = τ∗w(H) ≤ τw(H). (1)

One of the fundamental problems in combinatorial optimization is to identify
scenarios under which either one or two of the above inequalities holds with
equality. In particular, H is ideal if τ∗w(H) = τw(H), for all w ∈ ZV

+, while H
is Mengerian if ν∗w(H) = νw(H), for all w ∈ ZV

+. Obviously b(H) is Mengerian
iff so is b(H)↑. It is well known that being Mengerian is actually equivalent to
νw(H) = τw(H) for all w ∈ ZV

+ [3]. Thus every Mengerian hypergraph is ideal.
Our present work is a continuation of [1,2]. To clarify our motivation, we

summarize the main results in [1]. For any simple graph G = (V,E), let CG =
(V, E) denote the clutter in which E consists of V (C), for all induced cycles C of
G. A Θ-graph is a subdivision of K2,3. A wheel is obtained from a cycle by adding
a new vertex and making it adjacent to all vertices of the cycle. A W -graph is
a subdivision of a wheel. An odd ring is a graph obtained from an odd cycle
by replacing each edge e = uv with either a cycle containing e or two triangles
uabu, vcdv together with two additional edges ac and bd. A subdivision of an odd
ring is called an R-graph. Let L be the class of simple graphs G such that no
induced subgraph of G is isomorphic to a Θ-graph, a W -graph, or an R-graph.

Theorem 1. [1] The following are equivalent for every simple graph G: (i) CG

is Mengerian; (ii) CG is ideal; (iii) G ∈ L.

Fulkerson [4] proved that a hypergraph is ideal iff its blocker is ideal. There-
fore, the equivalence of (ii) and (iii) in Theorem 1 implies the following

Corollary 1. b(CG)↑ is ideal if and only if G ∈ L.

At this point, Guenin [5] suggested a natural question: When is b(CG)↑ Men-
gerian? In general, the blocker of a Mengerian hypergraph does not have to be
Mengerian (see [6]). However, the following theorem, our main result in this
paper, says that CG, b(CG)↑, and hence b(CG) are always Mengerian together.

Theorem 2. b(CG)↑ is Mengerian if and only if CG is.

Let G = (V,E) be a simple graph and let w ∈ ZV
+ . A subset of V is called an

feedback vertex set (FVS) in G if it meets every cycle in G. Since the edge set
of b(CG)↑ is exactly the set of feedback vertex sets (FVSs) in G, we also call a
w-packing of b(CG)↑ a w-packing of FVSs in G, or simply an FVS packing. The
min-max relation in our main result can be restated as follows: if G = (V,E) is

128 X. Chen et al.

a simple graph, then the maximum cardinality of a w-packing of FVSs equals
the minimum weight of a cycle in G for any w ∈ ZV

+ iff G ∈ L.
The rest of the paper is devoted to the proof of Theorem 2. In section 2, we

prove some results on how Mengerian hypergraphs can be put together to get
a larger Mengerian hypergraph. Then, in Section 3, we explain results from [1],
which describe how graphs in L can be constructed from some “prime” graphs by
“summing” operations. Finally, we establish Theorem 2 in Section 4 by showing
that all prime graphs have the required Mengerian property.

2 Sums of Hypergraphs

The purpose of this section is to prove a few lemmas, which claim that being
Mengerian is preserved under some natural summing operations.

LetH = (V, E) be a hypergraph and w∈ ZV
+ . It is easy to see that τw(b(H)↑)=

min
A∈E

w(A). Denoting rw(H) = min
A∈E

w(A), we have

b(H)↑ is Mengerian iff b(H)↑ has a w-packing of size rw(H), ∀ w ∈ ZV
+. (1)

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. If |V1 ∩V2| ∈ {0, 1},
then (V1∪V2, E1∪E2) is called the |V1∩V2|-sum ofH1 andH2. If V1∩V2 = {x1, x2}
and for i = 1, 2, Hi has an edge Ai = {x1, x2, yi} that is the only edge containing
yi, then ((V1 ∪V2)−{y1, y2}, (E1 ∪E2)−{A1, A2}) is called the 2-sum of H1 and
H2. If V1 ∩V2 = {x1, x2, x3} and A = {x1, x2, x3} is an edge of H1 and H2, then
(V1 ∪ V2, E1 ∪ E2) is called the 3-sum of H1 and H2 over A. The notations given
here will be used implicitly in the proofs of Lemma 1 and Lemma 2 below.

Lemma 1. Let H be a k-sum (k ∈ {0, 1, 2}) of H1 and H2. If both b(H1)↑ and
b(H2)↑ are Mengerian, then so is b(H)↑.

Proof. The conclusion is obvious when k ∈ {0, 1}. We consider the case of k = 2.
Suppose H = (V, E). By (1), it suffices to show that (∗) b(H)↑ has a w-packing
of size rw(H) for all w ∈ ZV

+ . Suppose otherwise, (∗) were false for some w ∈ ZV
+

with w(V) minimum. Let r = rw(H).

(1.1) w(v) ≤ r for all v ∈ V .
Suppose (1.1) fails. Then w′ ∈ ZV

+ with w′(v) = min{r, w(v)} for all v ∈ V
satisfies rw′(H) = r and w′(V) < w(V), and therefore b(H)↑ has a w′-packing
of size r, which is also a w-packing of b(H)↑, a contradiction. So (1.1) holds.

Let i = 1, 2, define wi ∈ ZV
+ with wi(yi) = max{0, r − w(x1) − w(x2)} and

wi(v) = w(v) for all v ∈ Vi − {yi}. Then rwi(Hi) ≥ r, and by (1), b(Hi)↑ has a
wi-packing Bi of size r. Choosing such Bi with maximum

∑
B∈Bi

|B|, we have
(1.2) For any j ∈ {1, 2}, xj is contained in exactly w(xj) members of Bi.

Suppose B1 ∩{x1, x2} = B2 ∩{x1, x2} for some B1 ∈ B1 and B2 ∈ B2. Let χ1,
χ2, and χ be the characteristic vectors of B1, B2, and B = (B1 ∪B2)−{y1, y2},
which are considered as subsets of V1, V2, and V , respectively. Define w′

1 =

A Min-Max Relation on Packing Feedback Vertex Sets 129

w1−χ1, w′
2 = w2−χ2, and w′ = w−χ. For i = 1, 2, since b(Hi)↑ has a w′

i-packing
Bi − {Bi} of size r − 1, it follows from (1) that rw′

i
(Hi) = τw′

i
(b(Hi)↑) ≥ r − 1.

Therefore rw′(H) ≥ r − 1. Since w′(V) < w(V), b(H)↑ has a w′-packing B′ of
size r− 1, which yields a w-packing B′ ∪ {B} of b(H)↑. This contradiction gives
(1.3) B1 ∩ {x1, x2} �= B2 ∩ {x1, x2}, for all B1 ∈ B1 and B2 ∈ B2.

It can be deduced from (1.2) and (1.3) that w(x1) + w(x2) < r. Recalling
wi(Ai) = r, we have |Bi ∩Ai| = 1, for all Bi ∈ Bi, i = 1, 2, which, together with
(1.2), implies a contradiction to (1.3). The lemma is proved. ��

Lemma 2. Let H is be a 3-sum of H1 and H2 over A = {x1, x2, x3}. For i = 1, 2
and 1 ≤ j < k ≤ 3, let Hijk be obtained from Hi by adding a new vertex xijk and
a new edge Aijk ={xijk, xj , xk}. If all b(Hijk)↑ are Mengerian, then so is b(H)↑.

Proof. Let H = (V, E). As in the proof of Lemma 1, we shall prove: (∗) b(H)↑

has a w-packing of size rw(H) for all w ∈ ZV
+ . Suppose that (∗) were false for a

w ∈ ZV
+ with w(V) minimum. Writing r = rw(H), we have

(2.1) w(v) ≤ r for all v ∈ V .

Let 1 ≤ i ≤ 2, 1 ≤ j < k ≤ 3, Vijk = Vi ∪{xijk}, and define wijk ∈ Z
Vijk

+ with
wi(xijk) = max{0, r − w(xj) − w(xk)} and wijk(v) = w(v) for all v ∈ Vi. Then
b(Hijk)↑ has a wijk-packing Bijk of size r. Choosing such Bijk with

∑
B∈Bi

|B|
as large as possible, we have
(2.2) For any 1 ≤ h ≤ 3, 1 ≤ i ≤ 2, and 1 ≤ j < k ≤ 3, xh is contained in

exactly w(xh) members of Bijk.
(2.3) B ∩A �= B′ ∩A, for all B ∈ B1jk and B′ ∈ B2j′k′ with 1 ≤ j < k ≤ 3 and

1 ≤ j′ < k′ ≤ 3.

(2.4) w(xj) + w(xk) > r for all 1 ≤ j < k ≤ 3.
Suppose otherwise. By symmetry, we assume w(x1) + w(x2) ≤ r. Then, for
i = 1, 2, wi12(Ai12) = r, and hence no member of Bi12 can contain {x1, x2}.

If w(x1) + w(x3) > r, then, by (2.2), some Bi12 in Bi12 (i = 1, 2) contains
both x1 and x3, which implies B112 ∩ A = {x1, x3} = B212 ∩ A contradicting
(2.3). Hence w(x1)+w(x3) ≤ r, and by symmetry, w(x2)+w(x3) ≤ r. Therefore
|B ∩ {xj , xk}| ≤ 1 for all B ∈ Bijk.

Obviously w(A) ≥ rw(H) = r. Furthermore w(A) > r as w(A) = r implies
a contradiction to (2.3). It follows from (2.2) that each Bijk has an edge Bijk

with |Bijk ∩A| ≥ 2. Thus, by (2.3), for 1 ≤ j < k ≤ 3, {B1jk ∩ A,B2jk ∩A} =
{{xj, x	}, {xk, x	}} where � ∈ {1, 2, 3} − {j, k}. Without loss of generality, let
B112∩A = {x1, x3} and B212∩A = {x2, x3}. By (2.3), B113∩A �= {x2, x3}. Thus
B113 = {x1, x2} and B213 ∩ A = {x2, x3}. Now B223 ∩ A ∈ {{x1, x2}, {x1, x3}}
violates (2.3), which proves (2.4).

(2.5) |B ∩A| ≤ 2 for all B ∈ Bijk, where 1 ≤ i ≤ 2 and 1 ≤ j < k ≤ 3.

Suppose otherwise. Without loss of generality, we assume that some B1j0k0 has
a member B0 with B0 ⊇ A. It follows from (2.3) that |B ∩ A| ≤ 2 for all

130 X. Chen et al.

B ∈ B212 ∪ B213 ∩ B223. Let 1 ≤ j < k ≤ 3. Since, by (2.4), w(xj) + w(xk) > r,
it follows from (2.2) that B2jk has a member B2jk that contains both xj and
xk, implying B2jk ∩ A = {xj, xk}. Therefore, by (2.3), |B ∩ A| �= 2 for all
B ∈ B112 ∪ B113 ∪ B123.

Let {j, k, �} = {1, 2, 3} with j < k, and let B′
1jk consist of members of B1jk

that contains x	. By (2.2), |B′
1jk| = w(x). As, by (2.4), w1jk(x1jk) = 0, we

have |B ∩ {xj, xk}| ≥ 1 and hence B ⊇ A for all B ∈ B′
1jk. Consequently,

w(xj) ≥ w(x) and w(xk) ≥ w(x). Since j, k, � were chosen arbitrarily, it follows
that w(x1) = w(x2) = w(x3), B′

1jk = B1jk and thus w(x1) = w(x2) = w(x3) = r.
On the other hand, since by (2.3), |B ∩A| ≤ 2 for all B ∈ B212, we deduce from
(2.2) that r = |B212| ≥ w(A)/2 = 3r/2, a contradiction, which proves (2.5).

Finally, let i ∈ {1, 2}. By (2.4), w(x1) + w(x2) > r, which, together with
(2.2), implies that Bi12 has a member Bi12 that contains both x1 and x2. Now
by (2.5), we must have Bi12 = {x1, x2}, contradicting (2.3) and establishing the
lemma. ��

3 Graphical Structures

In this section, we summarize some results form [1] that describe how graphs in
L can be constructed from “prime” graphs.

All graphs considered are undirected, finite, and simple, unless otherwise
stated. Let G = (V,E) be a graph. For any U ⊆ V or U ⊆ E, let G\U be
the graph obtained from G by deleting U , and let G[U] be the subgraph of G
induced by U ; when U is a single to {u}, we simply write G\u instead of G\{u}.
A rooted graph consists of a graph G and a specified set R of edges such that
each edge of R belongs to a triangle and each triangle in G contains at most one
edge from R. By adding pendent triangles to the rooted graph G we mean the
following operation: to each edge uv in R, we introduce a new vertex tuv and
two new edges utuv and vtuv. The readers are referred to [1] for the definitions
of sums of graphs.

Lemma 3. [1] For any graph G ∈ L, at least one of the following holds.

(i) G is a k-sum of two smaller graphs, for k ∈ {0, 1, 2, 3};
(ii) G is obtained from a rooted 2-connected line graph by adding pendent triangles.

Let G be a k-sum (k = 0, 1, 2, 3) of graphs G1 and G2, then H = CG is the k-
sum of H1 = CG1 and H2 = CG2 , and each hypergraph Hijk defined in Lemma 2
is precisely CGijk

, where Gijk is the graph defined in the following lemma.

Lemma 4. [1] Let G ∈ L be a k-sum of two smaller graphs. Then

(i) If k ∈ {0, 1, 2}, then G is a k-sum of two smaller graphs that belong to L.
(ii) If G is a 3-sum of G1 and G2 over a triangle x1x2x3x1, then all Gijk (1 ≤

i ≤ 2, 1 ≤ j < k ≤ 3)) are in L, where Gijk is obtained from Gi by adding
a new vertex xijk and two new edges xijkxj and xijkxk.

A Min-Max Relation on Packing Feedback Vertex Sets 131

Two distinct edges are called in series if they form a minimal edge cut. Every
edge is also considered as being series with itself. Being in series is an equiva-
lence relation. Each equivalence class is called a series family. A series family
is nontrivial if it has at least two edges. A graph G is weakly even if, for every
nontrivial series family F of G with |F | odd, there are two distinct edges xy and
xz such that they are the only two edges of G that are incident with vertex x. A
graph is subcubic if the degree of each vertex is at most three. A graph is chord-
less if every cycle of the graph in an induced cycle. Let K−

4 be obtained from
K4 by deleting an edge, W−

4 be obtained a wheel on five vertices by deleting a
rim edge, and K+

2,3 be obtained from K2,3 by adding an edge between the two
vertices of degree three. As usual, L(G) stands for the line graph of G.

Lemma 5. [1] Suppose G ∈ L is not a 2-sum of two smaller graphs. If G is
obtained from a rooted 2-connected line graph L(Q) by adding pendent triangles,
where Q has no isolated vertices, then the following statements hold: (i) if Q
has a triangle, then G ∈ {K3,K

−
4 ,W

−
4 ,K

+
2,3}; (ii) Q is connected, subcubic, and

chordless; (iii) every cut edge of Q is a pendent edge; (iv) Q is weakly even.

Lemma 6. [1] If Q is subcubic and chord chordless, then every noncut edge
belongs to a nontrivial series family.

A path with end vertices u and v is called a u-v path. If a vertex v has degree
three, then the subgraph formed by the three edges incident with v is called a
triad with center v. In the next lemma, the sum of the indices is taken mod t.

Lemma 7. [1] Suppose Q is connected and subcubic, and all its cut edges are
pendent edges. If F = {e1, . . . , et} is a nontrivial series family of Q, then Q\F
has precisely t components Q1, . . . , Qt. The indices can be renamed such that
each ei is between V (Qi) and V (Qi+1). In addition, if |V (Qi)| = 2, then the
only edge in E(Qi) is a pendent edge of Q and it forms a triad with ei−1 and ei;
if |V (Qi)| > 2, and u and v are the ends of ei−1 and ei in Qi, then u �= v and
Qi has two internally vertex-disjoint u-v paths.

Let G = (V,E) be a graph. The degree of a vertex v ∈ V is denoted by dG(v).
A 2-edge coloring of G is an assignment of two colors to every edge in E. We
say that a color is represented at vertex v if at least one edge incident with v is
assigned that color.

Lemma 8. Let G = (V,E) be a graph and let U ⊆ V . Suppose G[U] is bipartite
and dG(u) ≥ 2 for all u ∈ U . Then G has a 2-edge coloring such that both colors
are represented at every vertex in U .

Let G′ be a connected subgraph of G. Then the contraction of G′ in G is
obtained from G\E(G[V (G′)]) by identifying all vertices in V (G′). This is the
same as the ordinary contraction except we also delete the resulting loops.

Lemma 9. Let G = (V,E) be subcubic, chordless, and weakly even. If G′ =
(V ′, E′) is obtained from G by repeatedly contracting induced cycles, and U =
(V ′ − V) ∪ {v ∈ V ∩ V ′ : dG(v) = 3}, then G′[U] is bipartite.

132 X. Chen et al.

4 Packing Feedback Vertex Sets

The goal of this section is to prove Theorem 2, the main result of this paper.
The major part of our proof consists of the following two lemmas.

Lemma 10. Let G be obtained from a rooted 2-connected line graph L(Q)
by adding pendent triangles, where Q is triangle-free and satisfies (ii)-(iv) in
Lemma 5. Let C be a collection of induced cycles in G, which include all trian-
gles in G. Suppose S ⊆ V (G) with |S ∩ V (C)| ≥ 2 for every C ∈ C. Then S
can be partitioned into R and B such that R ∩ V (C) �= ∅ �= B ∩ V (C) for every
C ∈ C.

Proof. Let us call a pair (R,B) satisfying the conclusion of the lemma a cer-
tificate for (G, C, S). Suppose the lemma is false. Then we can choose a coun-
terexample Ω = (G, C, S) such that (a) |C| is minimized; (b) subject to (a),
tΩ = |C ∈ C : |V (C)| = 3 and V (C) ⊆ S}| is minimized; (c) subject to (a) and
(b), dΩ = |{v : v ∈ V (G) and dG(v) = 4}| is minimized. Clearly we have
(10.1) |C| ≥ 2.

By (a)-(c), we shall define Ω′ = (G′, C′, S′) such that Ω′ satisfies the hypoth-
esis of the lemma with G′, C′, S′ in place of G, C, S, respectively, and Ω′ has a
certificate (R′, B′), from which we deduce contradiction to the assumption that
Ω has no certificate.

(10.2) If x ∈ V (G) belongs to a triangle T of G and dG(x) = 2, then x �∈ S; in
particular S ∈ E(Q).

Otherwise, Ω′ = (G\x, C −{T }, S−{x}) has a certificate (R′, B′), and therefore
either (R′ ∪ {x}, B′) or (R′, B′ ∪ {x}) is a certificate for Ω. So (10.2) holds.

(10.3) If x is a pendent edge of Q, then x �∈ S.
By (10.1) and (10.2), we may assume that x are contained in both a triangle
T in L(Q) and a pendent triangle T ′ in G. Since Ω′ = (G\((V (T ′) ∩ E(Q)) −
{x}), C − {T, T ′}, S−{x}) has a certificate (R′, B′), we have x �∈ S as otherwise
either (R′ ∪ {x}, B′) or (R′, B′ ∪ {x}) is a certificate for Ω. Thus (10.3) holds.

Given x ∈ E(Q), Qx is obtained from Q by subdividing x with a new vertex
wx. There is a natural 1-1 correspondence between triangles in L(Q) and tri-
angles in L(Qx). Additionally, L(Qx) can be rooted the same way as L(Q) was
rooted. Let Gx be obtained from the rooted L(Qx) by adding pendent triangles.
For every C ∈ C, we define cycle Cx in Gx as follows: if C is a triangle, then
Cx is a triangle in Gx that naturally corresponds to C; if C has length at least
four, then Cx = C when C avoids x, and Cx = L(Dx) when C = L(D) for cycle
D through x in Q, and Dx is obtained from D by subdividing x with wx. Set
Cx = {Cx : C ∈ Cx}. An edge in Q is called maximum if its both ends have
degree 3.

(10.4) Every maximum edge of Q belong to S.
If x �∈ S for some maximum edge x, then the certificate for Ω′ = (Gx, Cx, S) is
a certificate for Ω. Hence (10.4) holds.

A Min-Max Relation on Packing Feedback Vertex Sets 133

(10.5) tΩ = 0. That is, |S ∩ V (T)| = 2 for all triangles T of G.
If (10.5) fails for T , then, by (10.2), T is a triad in Q with center u and contains
edge x = uv which is not a root edge. As, by (10.3), x is not a pendent edge,
Ω′ = (Gx, Cx, (S − {x}) ∪ {wxv}) has a certificate (R′, B′). Now replacing wxv
with x in (R′, B′) results in a certificate for Ω. This contradiction proves (10.5).

(10.6) G = L(Q).
If G has a pendent triangle T , then, by (10.2) and (10.5), the certificate for
Ω′ = (G, C − {T }, S) is a certificate for Ω. So we have (10.6).

By (10.5), every triad T of Q contains precisely two edges in S. Let ST

be the set of these two edges. Let D be the set of cycles D of Q such that
L(D) ∈ C. If ST ⊆ E(D) for some triad T and D ∈ D, then the certificate for
Ω′ = (G, C − {L(D)}, S) is a certificate for Ω. Therefore we have
(10.7) |ST ∩ E(D)| < 2 for all triads T of Q and all cycles D ∈ D.

(10.8) No cycle in D contains a maximum edge.
Suppose some D ∈ D contains a maximum edge x. Then by Lemma 6 and
Lemma 5(iii), x is contained in a nontrivial series family F = {e1, . . . , et} of
Q. Let components Q1, . . . , Qt of Q\F be indexed as in Lemma 7. It can be
deduced from Lemma 7 and (10.3), (10.7) that |V (Qi)| �= 2 for all i. Notice that
I = {i : 1 ≤ i ≤ t and |V (Qi)| > 2} is of size at least two.

In case of |I| = t, (10.4) implies F ⊆ S. Let Z1 = Q\V (Q2) and Z2 = Q2. For
i = 1, 2, let Q′

i be obtained from Q by contracting Z3−i into a vertex zi, and then
adding a pendent edge fi at zi, let Gi = L(Q′

i), Ci = {C ∈ C, V (C) ⊆ V (Gi)} ∪
{fie1e2fi}, and Si = (S ∩ E(Zi)) ∪ {e1, e2}. Each (Gi, Ci, Si) has a certificate
(Ri, Bi), which gives a certificate (R1 ∪ R2, B1 ∪ B2) for Ω. In case of |I| < t,
suppose 1 �∈ I. For every i ∈ I, letQ′

i = Q[E(Qi)∪E(D)], Gi = L(Q′
i), Ci = {C ∈

C : V (C) ⊆ E(Qi) ∪ {ei−1, ei}} ∪ {L(D)} and Si = S ∩E(Qi) ∪ {ei−1, ei}. Then
every (Gi, Ci, Si), i ∈ I has a certificate (Ri, Si) such that for all {i, i+ 1} ⊆ I,
if Si ∩Si+1 �= ∅, then ei belongs to either Ri ∩Ri+1 or Bi ∩Bi+1. It follows that
(∪i∈IRi, S − ∪i∈IRi) is a certificate for Ω. The contradiction establishes (10.8).

For each D ∈ D, edges of Q that have precisely one end in V (D) are called
connectors of D. The combination of (10.3) and (10.7) implies
(10.9) Every D ∈ D has at least two connectors.

(10.10) Cycles in D are pairwise vertex-disjoint.
Suppose otherwise, D and D′ are distinct cycles in D that share a common
vertex. As the certificate (R′, B′) for Ω′ = (G, C − {L(D)}, S) cannot be a
certificate for Ω, we may assume S∩E(D) ⊆ R′, and by (10.7), all connectors of
D belong to B′. Observe that D′ contains at least two connector x1, x2 of D. For
i = 1, 2, let yi be the edge in D ∩R′ that has a common end with xi. By (10.8),
y1 �= y2, and it can be verified that ((R′ − {y1}) ∪ {x1}, (B′ − {x1}) ∪ {y1}) is a
certificate for Ω. Hence we have (10.10).

Let QD be obtained from Q by contracting D, for every D ∈ D, into a vertex
vD. Let U = {vD : D ∈ D} ∪ {v ∈ V (Q) − ∪D∈DV (D) : dQ(v) = 3} and let

134 X. Chen et al.

Q′ = QD[S′], where S′ ⊆ E(QD) is the set of edges corresponding to those in
S − ∪D∈DE(D). By Lemma 9, Q′[U] is bipartite, and by (10.5), (10.7), (10.9),
dQ′(u) ≥ 2 for all u ∈ U . Thus Lemma 8 guarantees a 2-edge coloring of Q′ in
which both colors are represented at every vertex in U . Let R′ and B′ be the
two color classes. We view S′ = R′ ∪B′ as a subset of S. Then by (10.8), R′ and
B′ can be easily extended to be R and B, respectively, such that (R,B) forms
a certificate for Ω. The contradiction completes the proof of the lemma. ��

Lemma 11. Let G be obtained from a rooted 2-connected line graph L(Q)
by adding pendent triangles, where Q is triangle-free and satisfies (ii)-(iv) in
Lemma 5. Then b(CG)↑ is Mengerian.

Proof. Let w ∈ ZV
+ and r = rw(CG). By (1), we only need to show that b(CG)↑

has w-packing of size r. We may assume that r ≥ 2, and w(v) ≤ r for all v ∈ V .
Let C′ consist of all triangles in G and C′′ consist of all other cycles in G. For any
F ⊆ V , let α(F) and β(F) be the number of cycles in C′ and C′′, respectively,
that F meets. Clearly, there is a collection F of subsets of V such that (a)
|F| = r; and (b) every v ∈ V is contained in exactly w(v) members of F . We
chose such an F such that (c) α(F) =

∑
F∈F α(F) is maximum, and (d) subject

to (c), β(F) =
∑

F∈F β(F) is maximum. We prove that every member of F is
an FVS of G, and thus F is a w-packing of b(CG)↑ of size r.

(11.1) F ∩ V (C) �= ∅, for all F ∈ F and C ∈ C′.
Suppose otherwise, F0 ∩ V (C0) = ∅ for some F0 ∈ F and C0 ∈ C′. It follows
that |F1 ∩ V (C0)| ≥ 2 for some F1 ∈ F . Let F0∆F1 = (F0 − F1) ∪ (F1 − F0),
FQ

01 = (F0∆F1)∩E(Q) and FG
01 = (F0∆F1)−E(Q). Let C′

0 be the set of all cycles
C ∈ C′ with V (C)∩(F0 ∩F1) = ∅ and |V (C)∩FQ

01| ≥ 2. For each C ∈ C′
0, certain

triad in Q contains all members of V (C) ∩ FQ
01. Let U be the set of the centers

of all these triads. For each pendent triangle C ∈ C′
0, we perform the following

operations on Q. Let x, y be the two edges in V (C)∩FQ
01, let u be their common

end, and let z = uv be the other edge incident with u. We replace z with u′v,
where u′ is a new vertex. Let Q′ be the resulting graph, after performing this
operation over all pendent triangles C ∈ C′

0. Let Q′′ = Q′[FQ
01]. By Lemma 9,

Q′′[U] is bipartite, and by Lemma 8, Q′′ has a 2-edge coloring so that both colors
are represented at each vertex of U . Let R0 and R1 denote the two color classes.
For each z ∈ V (G)−E(Q), let Tz denote the pendent triangle of G that contains
z. Let S0 = {z ∈ FG

01 : |V (Tz) ∩ R0| < |V (Tz) ∩ R1|} and S1 = FG
01 − S0. For

i = 0, 1, let F ′
i = (F1 ∩ F0) ∪Ri ∪ Si. Let F ′ = (F − {F0, F1}) ∪ {F ′

0, F
′
1}. Then

F ′ satisfies (a) and (b), and α(F ′) > α(F) contradicts (c), yielding (11.1).

(11.2) For any x ∈ V , if G′ is a block of G\x, then there exists a triangle-free
graph Q′, which satisfies (ii)-(iv) in Lemma 5, such that G′ is obtained
from L(Q′) by adding pendent triangles.

We may assume that |V (G′)| ≥ 3, and for each z ∈ V (G′) − E(Q), the pendent
triangle Tz containing z is contained in G′. Let Q1 = Q[V (G′)∩E(Q)]. We may
assume that some Tz\z is not contained in any triangle of L(Q1) for otherwise
Q′ = Q1 is as desired. Let Z be the set of all such z. Construct Q′ from Q1 by

A Min-Max Relation on Packing Feedback Vertex Sets 135

adding |Z| pendent edges such that L(Q′) is isomorphic to G′\(V (G′)−E(Q)−
Z). It can be deduced from Lemma 5 that Q′ is as desired. Thus we have (11.2).

Now we prove that each member of F is an FVS of G. Suppose otherwise. By
(11.1) and (b), we have F0, F1 ∈ F and C0 ∈ C′′ such that F0 ∩ V (C0) = ∅ and
|F1∩V (C0)| ≥ 2. Suppose thatG1, . . . , Gk are all blocks ofG\(F0∩F1). By (11.2),
Gi is obtained from L(Qi) by adding pendent triangles, where Qi is triangle-free
and satisfies (ii)-(iv) in Lemma 5. Let i ∈ {1, . . . , k}. Let Si = (F0∆F1)∩ V (Gi)
and let Ci be the set of cycles C of Gi with |V (C)∩Si| ≥ 2. By (11.1), Lemma 10
applies and provides a partition (Ri, Bi) of Si such that each cycle in Ci meets
both Ri and Bi. By interchanging Ri with Bi if necessary, it can be assumed
that if any distinct Si and Sj have a common vertex v then either v ∈ Ri ∩Rj or
v ∈ Bi∩Bj . Let F ′

0 = (F0 ∩F1)∪(R1 ∪· · ·∪Rk), F ′
1 = (F0 ∩F1)∪(B1 ∪· · ·∪Bk),

and F ′ = (F−{F0, F1})∪{F ′
0, F

′
1}. Then F ′ satisfies (a) and (b), α(F ′) ≥ α(F),

and β(F ′) > β(F), contradicting to (d). The lemma is established. ��

Proof of Theorem 2. Since every Mengerian hypergarph is ideal, the “only if”
part follows from Corollary 1 and Theorem 1. To establish the “if” part, we only
need to show that, if G ∈ L then b(CG)↑ is Mengerian. We apply induction on
|V (G)|. The base case |V (G)| = 1 is trivial, so we proceed to the induction step.
By Lemma 4 and Lemma 1, 2, we may assume that G cannot be represented
as a k-sum (k = 0, 1, 2, 3) of two smaller graphs, for otherwise we are done by
induction. Then we conclude from Lemma 3 that G is obtained from a rooted 2-
connected line graph L(Q) by adding pendent triangles. It can be assumed that
Q has no isolated vertices. If Q has a triangle, then we are done by Lemma 5(i)
and (1) since for any K = (V,E) ∈ {K3,K

−
4 ,W

−
4 ,K

+
2,3} and w ∈ ZV

+ , it is not
hard to find a w-packing of FVSs in K of size equal to the minimum weight of
a cycle in K. So we may assume that Q is a triangle-free and satisfies (ii)-(iv)
in Lemma 5. Now the result follows from Lemma 11. ��

Acknowledgement. The authors are indebted to Professor Bertrand Guenin
for suggesting the problem and for stimulating discussion.

References

1. G. Ding and W. Zang, Packing cycles in graphs, J. Combin. Theory Ser. B 86 (2003),
381-407.

2. G. Ding, Z. Xu, and W. Zang, Packing cycles in graphs, II, J. Combin. Theory Ser.
B 87 (2003), 244-253.

3. J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs,
Annals of Discrete Math., 1 (1977), 185-204.

4. D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Mathematical Pro-
gramming 1 (1971), 168-194.

5. B. Guenin, Oral communication, 2000.
6. A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Sringer-Verlag,

Berlin, 2003.

Average Case Analysis for Tree Labelling Schemes

Ming-Yang Kao1,�, Xiang-Yang Li2,��, and WeiZhao Wang2

1 Northwestern University, Evanston, IL, USA
kao@cs.northwestern.edu

2 Illinois Institute of Technology, Chicago, IL, USA
xli@cs.iit.edu, wangwei4@iit.edu

Abstract. We study how to label the vertices of a tree in such a way that we can
decide the distance of two vertices in the tree given only their labels. For trees,
Gavoille et al. [7] proved that for any such distance labelling scheme, the maxi-
mum label length is at least 1

8
log2 n−O(log n) bits. They also gave a separator-

based labelling scheme that has the optimal label length Θ(log n · log(Hn(T))),
where Hn(T) is the height of the tree. In this paper, we present two new dis-
tance labelling schemes that not only achieve the optimal label length Θ(log n ·
log(Hn(T))), but also have a much smaller expected label length under certain
tree distributions. With these new schemes, we also can efficiently find the least
common ancestor of any two vertices based on their labels only.

1 Introduction

For commonly used graph representations such as adjacency matrices and lists [15],
one cannot determine whether or not two vertices are adjacent in the graph only based
on the names of the two vertices. In contrast, Breuer and Folkman [5, 6] proposed to
label the vertices in such a way that there exists a polynomial-time algorithm that can
determine the adjacency of two vertices given only their labels. Such a labelling scheme
is generally known as an adjacency labelling scheme. If the length of a label is allowed
to be arbitrarily large, then one can encode any desired information. However, for a
labelling scheme to be useful, the label length should be relatively short (say, polylog-
arithmic in the size of the graph) and yet allows one to decode the adjacency efficiently
(say, time polynomial in the input label lengths). Breuer and Folkman [5, 6] proposed to
use Hamming distances to label general graph. An (m, t)-labelling scheme labels each
vertex with an m-bit label such that two vertices are adjacent if and only if their labels
are at Hamming distance t or less of each other. Breuer and Folkman [6] showed that
every n-vertex graph has a (2n∆, 4∆− 4)-labelling scheme, where∆ is the maximum
vertex degree in the graph. Kannan et al. [14] gave adjacency labelling schemes with
O(log n)-bit labels for several families of graphs, including graphs of bounded degrees,
graphs of bounded genuses, trees, and various intersection-based graphs such as inter-
nal graphs and c-decomposable graphs. Alstrup and Rauhe [4] improved the bound to
k logn+O(log∗ n) for the family Ak of graphs with arboricity k and n vertices.

� Supported in part by NSF Grant IIS-0121491.
�� Supported in part by NSF Grant CCR-0311174.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 136–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Average Case Analysis for Tree Labelling Schemes 137

It is useful and possible to design a more general labelling scheme that also contains
the distance information. A distance labelling scheme permits one to determine the
distance between two vertices efficiently based only on their labels [7, 12]. Peleg [12]
gave an O(log2 n)-bit distance labelling scheme for general trees and c-decomposable
graphs. He showed [12] that for a family of n-vertices graphs with Ω(exp(n1+ε)) non-
isomorphic graphs, any distance labelling scheme must use labels with a total length
Ω(n1+ε). Gavoille et al. [7] studied the bounds for the label length of the distance la-
belling schemes for several graph families. For general graphs, they gave a tight bound
of Θ(n) bits; for planar graphs, an upper bound of O(

√
n logn) and a lower bound of

Ω(n1/3); for bounded-degree graphs, a lower bound of Ω(
√
n); and for trees, a tight

bound of Θ(log n · log(Hn(T))), where Hn(T) is the height of the tree. Alstrup and
Rauhe [3] built the lower-bounds of length of the label for supporting ancestor, sibling
and connectivity. Recently, several distance labelling schemes considering bounded dis-
tance and weighted distance have been devised and surveyed by Gavoille and Peleg
[10]. Alstrup et al. [2] designed a labelling scheme for a rooted tree to compute in
constant time the least common ancestor from the labels of any two vertices. The la-
bels assigned are of size O(log n) bits for a tree of n vertices. Alstrup et al. [1] studied
labelling schemes for trees, supporting various relationships (ancestor, sibling, and con-
nectivity) between vertices at small distance.

In this paper, we study distance labelling schemes for unweighted trees. For trees,
Gavoille et al. [7] proved that for any distance labelling scheme, the label length is
at least 1

8 log2 n − O(log n); they also gave a separator-based labelling scheme that
has a label length O(log2 n). Gavoille [9] improved the label scheme to O(log n ·
log(Hn(T))). Here, we present two new distance labelling schemes- backbone-based
scheme and rake-based scheme, that not only achieve the asymptotically optimal label
lengthO(log n · log(Hn(T))) but also have a much smaller expected label length under
certain tree distributions. With these new schemes, we can also find the least common
ancestor of any two vertices based on their labels only. Table 1 summarizes our main
results, where k is the maximum vertex degree, E(Hn) is the expected height of a tree.

2 Preliminaries

Unless explicitly stated otherwise, a tree is always rooted at vertex r. The relative posi-
tions of the children are significant. The size of a tree T , denoted as |T |, is the number
of the vertices in T . Given two vertices u and v in a tree T , the unique simple path be-
tween u and v in T is denoted as P(u, v, T), and the number of edges on P(u, v, T) is
the distance between u and v, denoted as dT (u, v). The level of a vertex u is dT (u, r).
The height of a tree T with n vertices, denoted asHn(T), is maxu∈T dT (u, r). A vertex
w is an ancestor of a vertex u if it is on the path P(u, r, T); the vertex u is then called a
descendant of w. A vertex w is the least common ancestor of two vertices u, v if w has
the largest level among all common ancestors of u and v. For a tree T and a vertex u,
let T u denote the subtree of T formed by u and all its descendants in T .

A vertex labelling for a tree T is a function L that assigns an integer L(u, T) to
each vertex in the tree T . A distance calculator is a function f that computes the dis-
tance of two vertices u,v in tree T given only their labels L(u, T) and L(v, T) but

138 M.-Y. Kao, X.-Y. Li, and W. Wang

Table 1. Summary of the main results of this paper

tree labelling schemes separator-based backbone-based rake-based
worst case Θ(log n · log(Hn(T))) Θ(log n · log(Hn(T))) Θ(log n · log(Hn(T)))

deterministic analysis Theorem 5 Theorem 2 Theorem 4

upper
O(log n · log log n) O(log n· log log n) O(log n· log log log n)

binary search Theorem 7 Theorem 7 Theorem 10
tree Distribution

lower
Ω(log n · log log n) Ω(log n·log log n

log log log n
) Ω(log n)

Theorem 9 Theorem 8 Lemma 1

upper
O(log2 n) O(log2 n) O(log2 n)

uniform tree Theorem 5 Theorem 2 Theorem 4

distribution
lower

Ω(log2 n) Ω(log2 n
log log n

) Ω(log2 n
log log n

)
Theorem 13 Theorem 12 Theorem 11

upper
O(log n · log log n) O(log n· log log n) O(log n· log log n)

distributions with Theorem 14 Theorem 14 Theorem 14
(Hn) = O(logε n)

lower
Ω(log n·log log n

log k
) Ω(log n) Ω(log n)

Theorem 6 Lemma 1 Lemma 1

Upper
O(log2 n) O(log2 n) O(log2 n)

distributions with Theorem 5 Theorem 2 Theorem 4
(Hn) = Ω(nε)

lower
Ω(log2 n) Ω(log n) Ω(log n)
Lemma 1 Lemma 1 Lemma 1

not T . A distance labelling scheme is a two-component tuple L = 〈L, f〉 such that
f(L(u, T), L(v, T)) = dT (u, v) for any pair of vertices u, v ∈ T . The length of a
labelling scheme L for a tree T with n vertices, denoted as �n(L, T), is defined as
�n(L, T) = maxu∈T |L(u, T)|, where |x| is the number of bits in the integer x. The
length �n(L) of a labelling scheme L is defined as �n(L) = maxT �n(L, T). All loga-
rithmic functions ln in this paper are in base 2. It is easy to show that

Lemma 1. For any tree labelling scheme L and tree distribution, E(�n(L)) ≥ logn.

3 Three Tree Labelling Schemes

In this section, we first present two new tree labelling schemes, namely, the backbone-
based labelling scheme and the rake-based labelling scheme. We then review the
separator-based labelling scheme and discuss the worst case performances of these three
schemes.

3.1 Backbone-Based Labelling

Given a tree T with root r, a backbone B(T) is a path from the root r to leaf formed
recursively as follows. If r has no child, then the backbone is r itself. If r has one
child, say h1, then the backbone is the path of r concatenated by B(T h1), i.e., B(T) =
r⊕B(T h1). If r has more than one child, then the backbone is the path of r concatenated
by B(T h1) where h1 is the child of r such that |T h1 | is maximum among all r’s children,
i.e., B(T) = r ⊕ B(T h1). Here P1 ⊕ P2 stands for the concatenatation of two paths.

Given a forest F , letB(F) =
⋃

T∈F B(T). Define a d-backbone operation as first re-
moving the edges in B(F) fromF and then removing the resulting isolated vertices in F

Average Case Analysis for Tree Labelling Schemes 139

Algorithm 1: Backbone-Based Vertex Labelling
1: for each internal vertex vi do
2: Assign a unique positive label µ(vi, vj) between 1 and Wi, where Wi is the number of

vi’s child, for every vertex vj that is vi’s child.
3: for i = 0 to CB(T)− 1 do
4: for each tree Tj in forest D(i)(T) do
5: Let vj be Tj’s root and B(Tj) be its backbone, and v� be vj’s parent if it exists.
6: for every vertex vk ∈ B(Tj) do
7: Set LB(vk, T) = LB(v�, T) ◦ 〈dT (vk, vj), µ(v�, vj)〉 if v� exists and set

LB(vk, T) = 〈dT (vk, vj), 0〉 otherwise. Here, the ◦ separates the label into chunks.

Algorithm 2: Backbone-Based Distance Decoder
1: Without loss of generality, we assume LB(u, T) = L0(u) ◦ · · · ◦ La(u) and LB(v, T) =
L0(v) ◦ · · · ◦ Lb(v) with a ≥ b. Here, Li(u) is the i + 1 part of the label LB(u, T).

2: Assume Lc(u) = 〈x, y〉. For notational simplicity, we let Lc(u)[1] = x and Lc(u)[2] = y.
3: Set dis = 0 and find the smallest index c such that Lc(u) �= Lc(v) if such c exists.
4: if c does not exist then
5: dis = dis + Li(v)[1] for i = b + 1 to a.
6: else
7: dis = dis + Li(v)[1] for i = c + 1 to a and dis = dis + Li(u)[1] for i = c + 1 to b.
8: Set dis = dis + Lc(u)[1] + Lc(v)[1] if Lc(u)[2] �= Lc(v)[2] and set dis = dis +

|Lc(u)[1]− Lc(v)[1]| otherwise.
9: Output fB(LB(u, T), LB(v, T)) = dis.

Fig. 1. The Backbone-Based Distance Labelling Scheme

fromF to produce a forest D(F). For simplicity, we denote D(k)(F) = D(D(k−1)(F)),
i.e., D(k)(F) is the forest after k d-backbone operations on the original forest F . Let
CB(T) denote the number of d-backbone operations needed to separate a tree T into
isolated vertices. We have the following theorem (proof omitted):

Theorem 1. For a tree T of n vertices, CB(T) ≤ logn.

Figure 1 presents our backbone-based labelling scheme LB = 〈LB, fB〉. Given a
vertex u, its label LB(u, T) is a series of two element tuples separated by the “ ◦ ”
symbol. We call each two element tuple a chunk of the label. Let LB(u, T) = L0(u) ◦
. . . ◦ Li(u) ◦ . . .La(u), where Li(u) is the ith chunk of the label. Let c be the smallest
index such that Lc(u) �= Lc(v) if it exists. Without loss of generality, assume that
Lc(u) < Lc(v). A key observation is that the vertex with label L0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with label LB(u, T) and LB(v, T).

In Algorithm 1, for every vertex vi, when we assign child-label to vj who is vi’s
child, we assume the label length is logWi, where Wi is the number of children of
vi. However, given Wi children, when you assign a label �, the label length is log �
instead of logWi. With this observation [9], we can reduce the total tree label length
by applying the following reshuffle process. First, we apply Algorithm 1 to obtain a
label LB(u, T) for every vertex u. Initially, we mark all the internal vertices as “un-

140 M.-Y. Kao, X.-Y. Li, and W. Wang

processed” and all leaf vertices as “processed”. While there is an “unprocessed” ver-
tex , we pick one vertex v such that all of its children are processed. Without loss of
generality, we assume that vi1 , vi2 , . . . , vik

are v’s children who are not on the same
backbone of v. For any vertex w in tree T vij , the label of LB(w, T) should contain
LB(v, T) as a common prefix and the second element of (a + 1)th chunk is also the
same. Assume that LB(w, T) = LB(v, T) ◦La+1(w) ◦La+2(w) ◦ . . . ◦Lc(w). Define
κ(w) =

∑c
i=a+2 log(Li(w)[2]), and γ(vij) = max

w∈T
vij κ(w). We sort the vertices

vi1 , vi2 , . . . , vik
according to the size of their subtrees T vij in an ascending order, and

let σ be the index of the sorted list, i.e., |T viσ(j) | is the jth largest. Then we reassign
La+1(v)[2] = j to each vertex v if v is in the tree T viσ(j) . Observe that this reassign
process does not affect the label of the first element of any chunks and the correctness
is straightforward. Following Lemma reveals a property of the reshuffle process (proof
omitted due to space limit).

Lemma 2. After the reshuffle process, γ(r) ≤ 2 logn for LB , where r is the root.

Notice that the reshuffle process does not depend the any specific properties of
the Backbone-Based Distance Labelling Scheme. Thus, even we change the labelling
scheme for the first element, as long as the label contains at most logn chunks, Lemma
2 still holds. Recall that the label of vertex u is LB(u, T) = L0(u) ◦ . . . ◦Lk(u), where
Li(u) is tuple composed of two integers. Since

∑k
i=1 log(Li(u)[2]) ≤ γ(r), we have

Theorem 2. �n(LB , T) and the time complexity of decoding is O(log n · logHn(T))
for any tree T with n vertices.

PROOF. From the definition of tree label length, �n(LB) = maxT �n(LB , T) ≤
log(max{Hn(T)} · CB(T) + γ(r) ≤ logn · [log(max{Hn(T)} + 2].

3.2 Rake-Based Scheme

In this section, we present a new tree labelling scheme based on the tree decomposition
scheme by Kao [11]. A chain of T is a path in T such that every vertex of the given path
has at most one child in T . A tube of T is a maximal chain of T . A root path of a tree
is a tree path whose head is the root of that tree; similarly, a leaf path is one ending at a
leaf. A leaf tube of T is a tube that is also a leaf path. Let LT (T) denote the set of leaf
tubes in T . Let R(T) = T −LT (T), i.e., the subtree of T obtained by deleting from T
all its leaf tubes. The operation R is called the rake operation.

A tube system of a tree T is a set of tree paths P1, · · · , Pm in T such that
T h1, · · · , T hm are pairwise disjoint, where hi is the head of Pi. We can iteratively
rake T to obtain tube systems. Every rake operation produces a tube system of T until
T is raked to empty. Given a tree T , let R(i)(T) be the remaining tree after ith rake
operation and CR(T) be the number of rake operations needed to make the tree empty.
Similarly, we have

Theorem 3. For any tree T of n vertices, CR(T) ≤ logn.

Based on the rake operation, we define a labelling scheme LR = (LR, fR) as
follows. For the rake-based labelling scheme defined in Algorithm 3 and Algorithm
4,similar to the backbone scheme, by assuming that dc(u) < dc(v), a key observation

Average Case Analysis for Tree Labelling Schemes 141

Algorithm 3: Rake-Based Vertex Labelling

1: for each internal vertex vi do
2: Assign a unique positive ID µ(vi, vj) for every vertex vj that is vi’s child, i.e., µ(vi, va) �=

µ(vi, vb) if va and vb are vi’s children.
3: Let CR(T) be the number of rake operations needed to make T empty.
4: for i = CR(T)− 1 down to 0 do
5: for each tube S in LT(Ri(T)) do
6: Let h be the head of the tube S, i.e., the vertex with the smallest level in the tube, and

let h′ be the parent of h in the tree T if such h′ exists.
7: for each vertex vj in tube S do
8: Set the label of vj as LR(vj , T) = LR(vk, T) ◦ 〈dT (vj , h

′), µ(h′, h)〉 if h′ exists
and set LR(vj , T) = 〈dT (vj , r), 0〉 otherwise.

9: Apply the reshuffle process to modify the second element of the chunks of the label.

Algorithm 4: Rake-Based Distance Decoder

1: For any pair of vertices u �= v, we assume LR(u, T) = L0(u)◦· · ·◦La(u) and LR(v, T) =
L0(v) ◦ · · · ◦ Lb(v) with a ≥ b. Assume Lc(u) = 〈x, y〉. For notational simplicity, we let
Lc(u)[1] = x and Lc(u)[2] = y.

2: Set dis = 0 and find the smallest index c such that Lc(u) �= Lc(v) if such c exists.
3: if c does not exist then
4: dis = dis + a

i=b+1 di(v).
5: else
6: Set dis = dis + a

i=c+1 di(v) + b
i=c+1 di(u).

7: Set dis = dis+Lc(u)[1]+Lc(v)[1] ifLc(u)[2] �= Lc(v)[2] and dis = dis+|Lc(u)[1]−
Lc(v)[1]| otherwise.

8: Output fR(LR(u, T), LR(v, T)) = dis.

Fig. 2. The Rake-Based Distance Labelling Scheme

about vertex u, v’s least common ancestor is that the vertex with label L0(u)◦· · ·◦Lc(u)
is the least common ancestor of vertices with label LR(u, T) and LR(v, T).

From Lemma 2 and Theorem 3, �n(LR) = maxT �n(LR, T) ≤ log(Hn(T)) ·
CR(T) + γ(r) ≤ logn · (log(Hn(T)) + 2). We thus have

Theorem 4. The length of �n(LR, T) is O(log n · logHn(T)) and the time complexity
of decoding is O(log n · logHn(T)) for any tree T with n vertices.

3.3 Separator-Based Labelling

In this section, we review a tree labelling scheme first proposed by Peleg [12] and then
improved by Gavoille [9]. The key idea is to find a separator, i.e., a vertex here, of a
tree such that the removal of the separator breaks the tree into several subtrees each
with at most half of the vertices in the original tree. Iteratively remove separators of the
remaining trees until all vertices are disconnected. For more details of the separator-
based labelling scheme please refer to [12] and [9].

142 M.-Y. Kao, X.-Y. Li, and W. Wang

Again, a key observation here is that the vertex with label L0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with label LS(u, T) and LS(v, T). Regarding
the length of the separator-based labelling scheme, we have the following two theorems
(their proofs are omitted here due to space limit).

Theorem 5. �n(LS , T) is O(log n · log(Hn(T))) for any tree T with n vertices.

Theorem 6. �n(LS , T) is Ω(max{ log n·log log n
log k , log2(Hn(T)}) for any tree T with n

vertices and bounded degree k.

4 Expected Label Length Under Binary Search Tree Distribution

In Section 3, we presented two tree labelling schemes which have the worst case length
Θ(log2 n) for any binary tree. We focus on the expected label length under binary search
tree distribution in this section and under uniform tree distribution in the next section.

4.1 General Upper Bound

In this subsection, we build a general but not too bad upper bound for the expected
length of �n(LR, T) and �n(LB , T) when the trees are binary search trees with usual
randomization; that is, the binary search tree is constructed in a standard fashion (n con-
secutive insertions) from a random permutation of {1, 2, · · · , n}, where each permuta-
tion is equally likely. It has been proved in [13] that the expected height of a random bi-
nary search tree is E(Hn) = α logn−β log logn+O(1), where α log

(2e
α

)
= 1, α ≥ 2

and β = 3
2 log α

2
. Numerically, α = 4.311 · · · , and β = 1.953 · · · . With the above fact,

we can give an upper bound for the expected length of both backbone-based labelling
scheme and rake-based labelling scheme, and this technique can be applied to other tree
randomization also. The proof is omitted due space limit.

Theorem 7. The expected label lengths for both backbone-based scheme, rake-based
scheme, and separator based scheme are at most logn · log log n+ logα logn, where
α is a constant satisfying the equation α log

(2e
α

)
= 1, α ≥ 2.

4.2 Lower Bound of the Expected Length for Backbone-Based Scheme and
Separator-Based Scheme

Given the upper bound of expected length for backbone-based scheme, we would like to
compute the lower bound for E(�n(LB), T) and find the gap between them. Following
theorem gives a lower bound for the expected length of a random binary search tree
based on backbone-based scheme.

Theorem 8. The expected label length of a random binary search tree based on the
backbone-based scheme is Ω(log n·log log n

log log log n), i.e., E(�(LB), T) = Ω(log n·log log n
log log log n).

The proof of Theorem 8 is omitted here due to space limit. Theorem 8 gives a lower
bound that is very close to the upper bound. The gap is only log log logn, and we

Average Case Analysis for Tree Labelling Schemes 143

conjecture that the lower bound is Ω(logn · log logn) which is tight. Similarly, we
have a lower bound of the expected length for separator-based Scheme, and it can be
obtained directly from Theorem 6 since for a a binary search tree, the degree of the
vertex is bounded by 3 and �(LB) = Ω(log n · log logn) from Theorem 6.

Theorem 9. The expected label length of a random binary search tree based on the
separator-based scheme isΩ(log n·log logn), i.e., E(�(LB), T) = Ω(log n·log logn).

Theorem 9 and Theorem 7 together shows that the expected length for separator-
based scheme for random binary search tree is exactly Θ(log n · log log n).

4.3 Upper Bound of Expected Length for Rake-Based Scheme

In this section, we give a tighter upper bound of the expected tree label length for rake-
based scheme. We first present the following theorem (proof omitted here).

Theorem 10. The expected label length of a random binary search tree for rake-
based scheme is logn · log log logn + logα · logn + o(1), where α = 213 + 1, i.e.,
E(�n(LB , T)) = logn · log log logn+ logα · logn+ o(1).

Remember that for a tree with n vertices, we need at least logn bits to represent the
vertices even without the requirement to recover the distance. Thus, from Theorem 10,
our rake-based Scheme is almost tight. Our conjecture is that the upper bound could
be improved to O(log n), which matches the lower bound. An interesting result drawn
from Theorem 8 and Theorem 10 is that under the binary search tree distribution, usu-
ally the rake-based Scheme is better than backbone-based scheme. Recall that for the
backbone based scheme, the length of the backbone B(T) is at least log(|T |). However,
for rake based scheme, every rake operation decreases the height of the tree at least
by 1 and most often more than 1. Thus, the last tube of the tree T , as we proved, is
O(log logn) with high probability, compared with O(log n) for the backbone. There-
fore, it is natural that the rake-based scheme outperforms the backbone-based scheme.

5 Expected Label Length Under Uniform Binary Tree Distribution

In this section, we consider the binary trees with uniform distribution; that is every
distinct binary tree with n vertices has the same probability. It is well known that there
are Cn of enumeration of different binary trees with n vertex, where Cn is Catalan
Number. Based on this fact, we have the following lower bounds for the backbone-
based scheme, rake-based scheme and separator-based scheme.

Theorem 11. The expected tree label length of backbone-based scheme is Ω(log2 n
log log n).

Theorem 12. The expected tree label length of rake-based scheme is Ω(log2 n
log log n).

Theorem 13. The expected tree label length of separator-based scheme is Θ(log2 n).

144 M.-Y. Kao, X.-Y. Li, and W. Wang

The lower bound of the expected label length of backbone-based, rake-based and

separator-based are Ω(log2 n
log log n), Ω(log2 n

log log n) and Ω(log2 n) respectively. These lower

bounds either are very close to or match the upper bounds log2 n, and we conjecture
that the lower bounds for both the backbone-based and rake-based schemes are also
Ω(log2 n), which is asymptotically tight.

6 Expected Label Length Under Several Other Tree Distributions

We then discuss the upper and lower bounds in a more general setting. Generally, we
have the following results on the expected label length for any tree distribution:

Theorem 14. Under any tree distribution, we have (1) E(�n(LR, T)) ≤
log E(Hn(T)) · logn; (2) E(�n(LB , T)) ≤ log E(Hn(T)) · logn; (3) E(�n(LS , T)) ≤
log E(Hn(T)) · logn.

Theorem 14 reveals an important information about the expected label length: the
upper bound of expected label length relates to the expected height of the tree. For the
lower bound of the expected label length, we have the following theorem.

Theorem 15. For any degree bounded tree distribution, if the probability P(Hn(T) ≥
E(Hn(T)) = α where α is some constant, then the expected length of separator-based
scheme is Ω(log(n)·log(E(Hn(T))

log k), where k is the degree bound.

From the previous two sections, one may observe that for bounded degree tree dis-
tribution, the label length depends on the expected tree height and size of the largest
subtree. When the expected tree height is O(nε) where ε is some constant, the label
length for the backbone-based, rake-based and separator-based are most likely to be
similar, which is close to O(log2 n), under most distributions. When the expected tree
height is O(logε n), the backbone-based, rake-based and separator-based schemes can
achieve a better expected label length, which is O(log n · log logn). We also conjecture
that the label length of rake-based scheme can achieve O(log n · log log logn) or even
O(log n) under certain tree distributions, which is tight.

7 Conclusion

In this paper, we studied how to label the vertices of a tree such that we can de-
cide, given only the labels of two vertices, their distance in the tree. Specifically, we
present two new distance labelling schemes that can achieve asymptotic optimal length
O(log n · log(Hn(T)) and have a much smaller expected label length under certain tree
distributions. In the meanwhile, we also show how to find the least common ances-
tor of any two vertices based on their labels only. Rake-based labelling scheme usu-
ally achieves a smaller expected label length than backbone-based and separator-based
schemes for most tree distributions with average low height. A remaining future work
is to close the gaps between the upper bounds and the lower bounds for various tree dis-
tributions, and to prove the conjectures listed in our full version [17]. For more details
of the proof, please refer [17] also.

Average Case Analysis for Tree Labelling Schemes 145

References

1. S. ALSTRUP, P. BILLE, AND T. RAUHE, Labeling schemes for small distances in trees, In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 2003,
pp. 689–698.

2. S. ALSTRUP, C. GAVOILLE, H. KAPLAN, AND T. RAUHE, Nearest common ancestors: A
survey and a new distributed algorithm, in SPAA’02, 2002.

3. S. ALSTRUP AND T. RAUHE, Lower bounds for labeling schemes supporting, ancestor, sib-
ling, and connectivity queries, Tech. Report IT-C, nr. 10, IT University of Copenhagen, 2001.

4. , Small induced universal graphs and compact implicit graph representations, in IEEE
FOCS, 2002.

5. M. A. BREUER, Coding the vertexes of a graph, in IEEE Transactions on Information The-
ory, vol. 12, April 1966, pp. 148–153.

6. M. A. BREUER AND J. FOLKMAN, An unexpected result on coding the vertices of a graph,
in Journal of Mathematical Analysis and Applications, vol. 20, 1967, pp. 583–600.

7. S. P. C. GAVOILLE, D. PELEG AND R. RAZ, Distance labeling in graphs, in Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete algorithms, 2001, pp. 210–219.

8. P. FLAJOLET AND A. ODLYZKO, The average height of binary trees and other simple trees,
in Journal of Computer and System Sciences, vol. 25, 1982, pp. 171–213.

9. C. GAVOILLE, M. KATZ, N. KATZ, C. PAUL, AND D. PELEG, Approximate distance label-
ing schemes, in 9th Annual European Symposium on Algorithms (ESA), vol. 2161 of LNCS,
2001, pp. 476–488.

10. C. GAVOILLE AND D. PELEG, Compact and localized distributed data structures, Distrib.
Comput., 16 (2003), pp. 111–120.

11. M.-Y. KAO, Tree contractions and evolutionary trees, SIAM Journal on Computing, 27
(1998), pp. 1592–1616.

12. D. PELEG, Proximity-preserving labeling schemes and their applications, in Proceedings
of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science,
Springer-Verlag, 1999, pp. 30–41.

13. B. REED, The height of a random binary search tree, Journal of ACM, 50 (2003), pp. 306–
332.

14. M. N. S. KANNAN AND S. RUDICH, Implicit representation of graphs, in Proceedings of
the Twentieth annual ACM symposium on Theory of computing, ACM Press, 1988, pp. 334–
343.

15. J. P. SPINRAD, Efficient Graph Representations, American Mathematical Society, June
2003.

16. D. B. WEST, Introduction to Graph Theory, Prentice Hall, 2nd edition ed., August 2000.
17. MING-YANG KAO, XIANG-YANG LI, AND WEIZHAO WANG, Average Case Anal-

ysis for Tree Labelling Schemes. Full veresion of the paper is available at
http://www.cs.iit.edu/∼xli/publications-select.html

Revisiting T. Uno and M. Yagiura’s Algorithm�

(Extended Abstract)

Binh-Minh Bui Xuan, Michel Habib, and Christophe Paul

CNRS - LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France
{buixuan, habib, paul}@lirmm.fr

Abstract. In 2000, T. Uno and M. Yagiura published an algorithm that
computes all the K common intervals of two given permutations of length
n in O(n + K) time. Our paper first presents a decomposition approach
to obtain a compact encoding for common intervals of d permutations.
Then, we revisit T. Uno and M. Yagiura’s algorithm to yield a linear time
algorithm for finding this encoding. Besides, we adapt the algorithm to
obtain a linear time modular decomposition of an undirected graph, and
thereby propose a formal invariant-based proof for all these algorithms.

1 Introduction

T. Uno and M. Yagiura’s algorithm [23] computes all the K common intervals
of two permutations of length n in O(n + K) time. Therein, each genome is
regarded as a permutation on a finite set of genes, and a common interval of two
genomes refers to a set of genes that are consecutive on each genome. This notion
formalises the concept of a gene cluster. Afterwards, F. de Montgolfier pointed
out strong relationships between modules of a permutation graph and common
intervals of any of its realiser (made of two permutations) [12]. This allows to
define the common interval decomposition tree for this case. From recent works,
the tree turns out to own some important biological meaning [2, 19]. Particularly,
common intervals help out with finding evolutionary distances between the cor-
responding species [4, 14, 19]. Finally, common intervals can be interpreted as
pieces of each genome that have been conserved all along an evolutionary sce-
nario between the involved species and their common ancestor [2].

The seminal algorithmic result on common intervals is due to T. Uno and
M. Yagiura (Fig. 1). This really is a masterpiece among combinatorial algo-
rithms as it uses a unique scan on one of the two permutations and could be
seen as an application of a sweep plane paradigm as used in computational geom-
etry [11]. However, its correctness proof is tough to understand. Later, S. Heber
and J. Stoye pointed out a smaller and generating sub-family, so-called the family
of irreducible common intervals, and succeeded in adapting T. Uno and M. Yag-
iura’s algorithm to find all irreducible common intervals of d permutations in
O(d × n) time [17]. Besides, generating all the K common intervals from this
sub-family is in O(K) time [17]. While they used T. Uno and M. Yagiura’s
� Full version available at http://www.lirmm.fr/∼buixuan as RR-LIRMM-05049

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 146–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Revisiting T. Uno and M. Yagiura’s Algorithm 147

T. Uno and M. Yagiura’s general scheme:
1. Let Potential be an empty list
2. For i = n down to 1 Do
3. (Filter): Remove all known boundaries r in Potential such that

for all l ≤ i, (l, r) is not a common interval
4. (Add): Add i to the head of Potential
5. (Extract): While there still is some boundary r of Potential such

that (i, r) is a common interval, output (i, r)
6. End of for

Fig. 1. A list Potential is used. It contains at each step i all boundaries r ≥ i such
that there is some l ≤ i with (l, r) a common interval. Then, Potential is traced to
output the common intervals of the form (i, r). The main difficulty of such approach
relies on the linear time complexity while the idea is based on a double iteration.

scheme as a black box, they did not give further explanations for the correctness
proof. Recently, A. Bergeron et al. bypassed this difficult issue and devised an
alternative algorithm together with its combinatorial proof [3].

In this paper, we propose a complete invariant-based proof of T. Uno and
M. Yagiura’s algorithm, as well as its complexity analysis. We also show how
it can easily be adapted to compute in O(n) time a tree representation of all
common intervals of two permutations on n elements. Then, Section 3 generalises
T. Uno and M. Yagiura’s algorithm, and uses it as a central step for modular
decomposition algorithms of undirected graphs.

2 Common Interval Decomposition

Let us denote n = �1, n� = {1, 2, . . . , n}. A permutation π on a finite set V
is regarded indifferently as a bijection from |V | to V , a total order on V , or a
word in V ∗ without multiple occurrence. The support of a factor of π is called
an interval of π, noted π(�l, r�) with l, r ∈ |V | its left and right boundaries. A
common interval of two permutations on V is interval of each (see Figure 2).
There could be a quadratic number of those, e.g. when the permutations are
identical. The decomposition addressed in this paper is based on the seminal
works on weakly partitive families [8, 22]. Let us recall some useful formalisms.

2.1 Combinatorial Decomposition Aspects

Let V be a given finite set. Two subsets of V overlap when none of their inter-
section and differences is empty. A family F ⊆ 2V is weakly partitive if and only
if ∅ /∈ F , F contains the trivial subsets (singletons and V), and F is closed by in-
tersection, union, and differences on overlapping subsets. It is partitive if weakly
partitive and closed by symmetric difference on overlapping subsets [8, 22]. A
weakly partitive family can have O(n!) members, e.g. with F = 2V .

148 B.-M. Bui Xuan, M. Habib, and C. Paul

1 :

σ : 3 5 7 21 6 8 9 4

1 2 3 4 5 6 7 8 9

.

.

1 :

σ : 3 21 9 457 8 6

1 2 3 4 5 6 7 8 9

.

.

i. ii.

Fig. 2. In both examples, σ(�3, 6�) = {5, 6, 7, 8} = (�5, 8�) is a common interval

3 21 9 4

P

L

5 6 7 8

.

.

1 :

σ : 3 5 7 21 6 8 9 4

i. ii.

1 2 3 4 5 6 7 8 9

.

.

Fig. 3. Common interval decomposition tree. “L” stands for Linear and “P” for Prime.

Let F ⊆ 2V be weakly partitive. A member S ∈ F is strong when it does not
overlap any other F ∈ F . The subset of F containing all strong members of F is
denoted SF . The members of SF can be organised by inclusion order in a tree,
so-called the decomposition tree and noted TF . The size of TF is O(n).

Theorem 1. [8, 22] Except for binary nodes, an internal node in TF satisfies
one and only one of the following: (Prime node) no union of children belongs
to F , except for the node itself; (Degenerate node) all union of children belongs
to F ; (Linear node) there is a children ordering such that a union of children
belongs to F if and only if they are consecutive in this order.

Roughly, the tree TF is a (compact) encoding of F from which all members of
F can easily be generated. A permutation σ is factorising for F if and only if any
strong subset S ∈ SF is an interval of σ [7]. In other words, a factorising permu-
tation is a visit-order of the leaves of TF by a depth-first graph search. Though
the following property is trivial, it yields a formal decomposition framework for
common intervals. Fig. 3 exemplifies the common interval decomposition.

Property 1. The family CI of common intervals of two permutations σ1 and σ2
satisfies three following properties: CI is weakly partitive; TCI has no Degenerate
nodes; and both σ1 and σ2 are factorising.

A common interval is reducible if it is union of consecutively overlapping non-
trivial common intervals, and is irreducible when not reducible [17]. This notion
can easily be generalised to any weakly partitive family. Now, it is straight-
forward from the definitions that the irreducible common intervals exactly are
Prime nodes and pairs of consecutive children of Linear nodes of the decom-
position tree. Hence, one can compute in O(n) time the family of irreducible
common intervals from the decomposition tree and conversely. In this paper, we
would rather focus on the notion of right-strong intervals. However, notice that
both notions of irreducibility and right-strong interval merely are combinatorial

Revisiting T. Uno and M. Yagiura’s Algorithm 149

tools to remove the term “K” in the raw O(n+K) common intervals computing
time. Fortunately, both of them can be adapted in T. Uno and M. Yagiura’s
sweep paradigm.

2.2 Right-Strong Intervals

Let σ = σ1 and σ2 be two permutations on V . Let CI refer to the family of their
common intervals. Then, σ is factorising for CI. W.l.o.g., from now on, intervals
will stand for intervals of σ. By definition, a common interval is an interval.

Definition 1 (Right-Strong Interval). Given a factorising permutation σ
for a (weakly) partitive family F ⊆ 2V , an interval σ(�i, j�) ∈ F is right-strong
if and only if it does not overlap on its right any other interval of σ that belongs
to F , namely if and only if i < i′ ≤ j < j′ implies σ(�i′, j′�) /∈ F .

Roughly, a right-strong interval of CI is a member of CI that does not overlap
any other member of CI on its right in the order σ. Their number is bounded
by 2 × n from Corollary 1 below. To formalise their computation, let us define
Select(i) = {j | σ(�i, j�) is a right-strong interval } for all n ≥ i ≥ 1.

Definition 2 (Useless Boundary). While inspecting σ from n down to 1,
σ(�l, r�) is visited at step i if i < l, unvisited otherwise. Then, r ∈ �i, n� is use-
less w.r.t. i if none of the unvisited right-strong intervals is of the form σ(�l, r�).

Lemma 1. Let mi be the maximum boundary such that σ(�i,mi�) ∈ F . Then,
mi = max Select(i) and for all i < r < mi+1, r is useless w.r.t. i.

Proof. If σ(�i,mi�) overlaps σ(�i′,m′�) on its right, then σ(�i,m′�) ∈ F (par-
titivity) and mi is not maximum. Therefore, mi ∈ Select(i). Then, mi =
max Select(i) is trivial. Besides, for all l < i + 1 ≤ r < mi+1, σ(�l, r�) overlaps
σ(�i+ 1,mi+1�) on its right. ��

Corollary 1. |Select(1)| + . . .+ |Select(n)| ≤ 2 × n.

Proof. From Lemma 1, the sets Select(i) \ {max Select(i)} (1 ≤ i ≤ n) are
pairwise disjunctive and their total cardinal is bounded by n. ��

2.3 Right-Strong Intervals of Two Permutations Computation

With a slight modification, i.e. by adding an one-line routine, T. Uno and M. Yag-
iura’s algorithm computes in O(n) time the family of right-strong intervals of
two permutations σ = σ1 and σ2 on V , where n = |V |. However, we will detail its
correctness, since the original version is tough to understand. The sets Select(i)
(n ≥ i ≥ 1) will be computed using a list Potential. At each step i, this list
contains the right boundaries r ≥ i of all unvisited right-strong intervals.

Potential is initialised as an empty list. Each step n ≥ i ≥ 1 aims at remov-
ing from Potential as many useless boundaries w.r.t. i as possible. For this pur-
pose, let C2(i, j) refer to the convex hull in σ2 of σ(�i, j�), i.e. C2(i, j) = σ2(�l, r�)

150 B.-M. Bui Xuan, M. Habib, and C. Paul

where l = min{k | σ2(k) ∈ σ(�i, j�)} and r = max{k | σ2(k) ∈ σ(�i, j�)}. We de-
fine Sσ(�i,j�) = C2(i, j)\σ(�i, j�) as the splitter set of σ(�i, j�). Roughly, a splitter
makes an interval not a common interval. Let s(σ(�i, j�)) = |Sσ(�i,j�)| = si(j).
We define δi(pj) = si(pj+1)−si(pj) if a member pj of Potential has a successor
pj+1. Otherwise, δi(pj) = +∞. Then, Theorem 2 below is fundamental and most
results thereafter rely on it. However, from our standpoint, the theorem is easier
to prove and most comprehensive when generalised to Theorem 4 in Section 3.1.

Property 2. [23] σ(�i, j�) is a common interval if and only if si(j) = 0.

Theorem 2. [23] δi(pj) < 0 implies pj is useless w.r.t. i.

At each step i, assume that some Update-Detect routine provides 1. for each
pj in Potential a pointer to the value of si(pj); and 2. a list Detected of pointers
to all pj with δi(pj) < 0, and possibly to some other useless boundaries w.r.t. i.
Besides, assume that the pointed pj1 < . . . < pjh

are organised increasingly.
Then, Potential is filtered twice. The first filtering (Pre-Filter) is our only

addition to the original algorithm. It follows from Lemma 1, which states that it
is possible to move apart some useless boundaries w.r.t. i even before considering
σ(i). Concisely, a pointer to r0 = max Select(i + 1) is maintained. Then, if r0
has some predecessors in Potential, they are removed and r0 receives the mark
Eaten, which is for use in Section 2.4. The second filtering (Customised Filter)
backtracks Detected from pjh

down to pj1 . Each pjk
is removed from Potential

if still there. If some removing makes the next-left boundary p′ have δi(p′) < 0,
p′ is also removed and so on. Thus, only useless boundaries w.r.t. i are removed,
and all remaining boundaries have positive δi. Both filtering takes linear time on
the number of removed boundaries. The boundary i is then added to the head
of Potential (Add) and the update of step i is complete. Notice that δi(i) ≥ 0.

Invariant 1. After the update of step i, let pj0 be the first member of Potential
with si(pj0) �= 0. Then, Select(i) = {r < pj0 | r is a member of Potential}.

Proof. After the update, all pj have δi(pj) ≥ 0. If r ∈ Select(i), then si(r) = 0
and r < pj0 . Besides, σ(�i, r�) is unvisited at step i. Hence, r still is a member
of Potential, and it is strictly before pj0 . Conversely, any member r < pj0

of Potential after the update satisfies si(r) = 0. If σ(�i, r�) overlaps some
σ(�i′, r′�) on its right, then i < i′ ≤ r < r′, σ(�i′, r�) ∈ CI, σ(�i′, r′�) ∈ CI and
the Pre-Filter at step i′ would remove r from Potential if it was still there. ��

Outputting Selected(i) from the list Potential (Extract) follows from In-
variant 1. Its computing time obviously is linear on the size of the output.

Turning our attention to complexity issues, Corollary 1 and the fact that each
boundary is inserted exactly once in Potential imply the following.

Result 1. The right-strong intervals computing time is O(n) if Update-Detect
runs in linear time on the size of the output Detected at each iteration step i.

Revisiting T. Uno and M. Yagiura’s Algorithm 151

T. Uno and M. Yagiura’s algorithm revisited:
1. Let Potential be an empty list and Select(n + 1) = ∅
2. For i = n down to 1 Do
3. (Update-Detect): Collect all known useless boundaries w.r.t. i
4. (Pre-Filter): If there are some r < r0(= max Select(i+1)) in

Potential, remove them and mark r0 as Eaten
5. (Customised Filter): Remove all known useless boundaries w.r.t. i
6. (Add): Add the boundary i to the head of Potential
7. (Extract): Find the right-most rq in Potential with si(rq) = 0

and output Select(i) = {r1 . . . rq}
8. End of for

and Max. Each 1 ≤ Minj ≤ n is a boundary with two pointers first(Minj) and
last(Minj) to two members of Potential. All pj between these two members
satisfy Minj = min{k | σ2(k) ∈ σ(�i, pj�)}. Besides, each pj in Potential has
a pointer Min(pj) to the corresponding member of Min. It is analogous for Max.
By supposing V = �1, n�, computing si(pj) from this structure is in O(1) time.

Let Min = [Min′
1, . . . ,Min′s′] and Max = [Max′1, . . . ,Max′t′] at the beginning

of step i. Suppose inductively that C2(i+ 1, pj) = σ2(�Min(pj), Max(pj)�) for all
pj and that Min, resp. Max, is strictly decreasing, resp. increasing. Notice that
σ2(Min′

1) = σ2(Max′1) = σ(i + 1). Now, i′ with σ2(i′) = σ(i) can be obtained
in O(1) time. Then, either i′ < Min′

1 and Max will be unchanged, or Max′1 < i′

and Min unchanged. We trace Min, resp. Max, from j = 1 until finding the first
j∗ with Min′

j∗ ≤ i′ < Max′1, resp. Min′
1 < i′ ≤ Max′j∗ . Notice that j∗ > 1 and

let pj0 = first(Min′
j∗−1), resp. pj0 = first(Max′j∗−1).

Lemma 2. [23] pj is useless w.r.t. i if si(pj)−si+1(pj)>si(pj+1)−si+1(pj+1)≥0.

Invariant 2. (equivalent to Lemma 2) pj with 1 ≤ j < j0 is useless w.r.t. i.

W.l.o.g. Min′
j∗ ≤ i′ < Max′1, we set Min′

j∗−1 to i′; point first(Min′
j∗−1)

to p1; and for all 1 ≤ j < j0, point Min(pj) to Min′
j∗−1. Thus, each pj satisfies

C2(i, pj) = σ2(�Min(pj), Max(pj)�). It is straightforward to maintain this fact
until the end of step i, and the inductive hypothesis for the next step holds.
Finally, Detected is defined as a list of pointers to p1 < . . . < pj0−1. Now,
the only member of Potential where δi can be negative that is not pointed by
Detected is pj1 = last(Minj∗−1). Thus, if δi(pj1) < 0, we add a pointer to pj1 to
the end of Detected. The running time is O(j0 + j∗) = O(j0) = O(|Detected|).

Result 2. Right-strong intervals of two permutations computing time is O(n).

Remark 1. Ideally, at each step i, Potential would contain only the right
boundaries r ≥ i of all unvisited right-strong intervals. Is it true ?

Update-Detect can be as follows [23]. Let Potential = [p1(= i+1), . . . , pl] at
the beginning of step i. The routine updates two lists Min = [Min1, . . . ,Mins]

152 B.-M. Bui Xuan, M. Habib, and C. Paul

2.4 Common Interval Decomposition of d Permutations

After the right-strong intervals computation, a symmetric sweep from left-to-
right generates the strong common intervals. We recall that those are the nodes
of the decomposition tree. Moreover, the sweep organises them by interval inclu-
sion. Hence, constructing the tree is in O(n) time. Then, the labelling can use
the following remarks. Since there are only Prime and Linear nodes, the strong
common intervals that are marked Eaten by the right-strong intervals compu-
tation also have this mark in the left-strong intervals computation. Besides, a
node has Eaten if and only if it is Linear. Finally, Property 2, Theorem 2, and
Lemma 2 can be generalised to the case of d permutations if one replaces C2(i, pj)
with Cj = Sσ(�i,pj�) $σ(�i, pj�) = ∪d

h=2Ch(i, pj). Then, at each step i in the new
Update-Detect, one has to maintain Cj rather than just C2(i, pj). The hitch
lays on the fact that Ch(i, pj) (2 ≤ h ≤ d) are not pairwise disjunctive. However,
as an element σ(i′) can be added to some Ch(i′′, p′′j) only once throughout the
computation, the total maintenance can be done in O(d× n) time.

Result 3. The common interval decomposing time of d permutations is O(d×n).

3 Modular Decomposition

Let G = (V,E) be a loopless simple undirected graph with n = |V | and m = |E|.
A vertex v ∈ V \X exterior to X �= ∅ is adjacent to X if it is adjacent to each
vertex of X , non-adjacent to X if non-adjacent to each vertex of X . In both
cases, v is uniform to X . Otherwise, v is a splitter of X . X is a module if it
has no splitters. Roughly, the family M of modules of G refers to the set of
subgraphs of G that behave as one single vertex. It is well-known that M is
partitive [8, 22], and finding efficient algorithms for computing TM from G has
been an important challenge of the last two decades [7, 8, 9, 12, 15, 21, 22]. The
factorising permutations of G refer to the ones of M. Linear time algorithms for
obtaining one such permutation are available for chordal graphs [18], inheritance
graphs [16], and even for arbitrary graphs [15]. The decomposition approach
conducted by C. Capelle is as follows. First find a factorising permutation [15],
then construct the modular decomposition tree [7]. Both computations run in
O(n+m) time even if the latter [7] is somewhat heavily fathered.

Theorem 3. [12] Both permutations of any realiser of a permutation graph are
factorising for the graph.

Corollary 2. The family CI of common intervals of two permutations is in-
cluded in the family M of modules of the permutation graph that realises them.
Besides, CI and M share the same strong subsets, namely SCI = SM. Finally,
TCI is isomorphic to TM, with Degenerate labels replaced by Linear ones.

From Corollary 2, the algorithm of the previous section is an O(n) time mod-
ular decomposition algorithm for a permutation graph given by one realiser, yet
m = θ(n2). In this section, given a factorising permutation σ, we compute the
modular decomposition tree of G. Let us first adapt Property 2 and Theorem 2.

Revisiting T. Uno and M. Yagiura’s Algorithm 153

3.1 Submodularity on the Size of the Splitter Sets

Let SX refer to the splitter set of a vertex subset X �= ∅ and s(X) = |SX | count
the number of its splitters. We extend s(∅) = −n. Property 3 and Corollary 3
below are our graph versions of respectively Property 2 and Theorem 2.

Property 3. σ(�i, j�) is a module if and only if si(j) = s(σ(�i, j�)) = 0.

Definition 3 (Submodularity). (see e.g. [24]) A set function µ : 2V → is
submodular when µ(X) + µ(Y) ≥ µ(X ∪ Y) + µ(X ∩ Y), for all X,Y ⊆ V.

Theorem 4 (Submodularity). The function s counting the splitters of mod-
ules of a graph is submodular.

Proof. Since s(∅) = −n and s(X) ≤ n for X ⊆ V non-empty, the only tricky is-
sue consists of proving the submodular inequality for a pair (X,Y) of overlapping
subsets of V . To do this, we first notice that SX∩Y = (SX∩Y \ Y, SX∩Y ∩ Y) . Be-
sides, SX∪Y = (SX∪Y \ SX , SX∪Y ∩ SX) can be reduced by definition of splitters
to SX∪Y = (SX∪Y \ SX , SX \ (X ∪ Y)). Similarly, SY = (SY \ SX∩Y , SX∩Y \ Y) .
Finally, SX = (SX \ Y, (SX ∩ Y) \ SX∩Y , (SX ∩ Y) ∩ SX∩Y) can be reduced
to SX = (SX \ (X ∪ Y), (SX ∩ Y) \ SX∩Y , SX∩Y ∩ Y) . Hence, |SX | + |SY | −
|SX∪Y | − |SX∩Y | = |(SX ∩ Y) \ SX∩Y | + |SY \ SX∩Y | − |SX∪Y \ SX |.

To achieve proving the lemma, we prove that SY \SX∩Y ⊇ SX∪Y \SX . Indeed,
let v ∈ SX∪Y \ SX . Then, v is exterior to X and is uniform to X . By symmetry,
we suppose w.l.o.g. that v ∈ NX . Since X ∩ Y �= ∅, there exists w ∈ X ∩ Y
with (v, w) ∈ E. Now, v is a splitter of X ∪ Y , implying u ∈ Y \X such that
(v, u) /∈ E. Hence, v ∈ SY . It is trivial by v ∈ NX that v /∈ SX∩Y . ��

Corollary 3. Let i ≤ pj < pj+1, and δi(pj) = si(pj+1)−si(pj). Then, δi(pj) < 0
implies there is no k ≤ i such that σ(�k, pj�) is a module.

Proof. If δi(pj) < 0, then the submodularity on the subsets σ(�k, pj�) and
σ(�i, pj+1�) for all k ≤ i implies that sk(pj) > sk(pj+1) ≥ 0. ��

3.2 Modular Decomposition Algorithm

The two latter generalisations state that Section 2.4’s decomposition scheme can
be used in the case of modules if one adapts the involved routines accordingly.
Actually, the adaptation is straightforward, except for the Update-Detect routine
and labelling the decomposition tree. For lake of space, we do not detail here the
graph version of Update-Detect, which computes in O(n+m) global time. Now,
let us show how to label the decomposition tree. First, it is well-known that
a modular decomposition tree has no Linear nodes, and its Degenerate nodes
are divided into Serial nodes – adjacency guaranteed between all children –
and Parallel nodes – non-adjacency between children [8, 22]. Then, by analogous
remarks as in Section 2.4, nodes marked Eaten are Degenerate, others are Prime.
Besides, thanks to some Adjacency marks in the graph version of Update-Detect,
which state the adjacency between the children of the node, we can differ the
Serial and Parallel nodes in the labelling.

154 B.-M. Bui Xuan, M. Habib, and C. Paul

Result 4. The modular decomposition is solved in O(n+m) time for any graph.

There exists an O(n) time common interval decomposition algorithm of two
permutations [20]. Unfortunately, the algorithm therein is not that simple and
relies on a rather sophisticated algorithm [10]. Moreover their approach is not
extended to general modular decomposition. To this aim one could use the algo-
rithm proposed in [7]. However, this latter produces a rather heavy sequence of
trees. On the other hand, our approach uses a unique paradigm for both com-
putations of common interval and modular decomposition tree, and not only we
unify the two corresponding domains but also provide very efficient algorithms.

4 Conclusion and Perspectives

We show the importance of graph layout approaches, e.g. with factorising per-
mutations, which are based on a gateway between algorithms on permutations
and those on graphs. Besides, we show strong potentials of generalising T. Uno
and M. Yagiura’s algorithm to the case of weakly partitive families. Thus, the use
of this algorithm would be an important crux for designing future algorithms.
For instance, it would be interesting to adopt the same philosophy conducted
throughout our paper to other combinatorial problems such as decomposition
into “inheritance-block” of an inheritance graph in O(n+m) time, which would
yield an alternative to the algorithms proposed in [6, 16]. Another example would
be the modular decomposition in O(n) time of a bounded tolerance graph –
trapezoid graph with solely parallelograms [5, 13] – when an intersection model
is provided. Then, it would be very interesting to have an O(n) modular decom-
position time for an interval or trapezoid graph on one of its intersection model,
which would give interesting links to works on gene-teams [1].

Acknowledgements. We are grateful to T. Uno for helpful discussions.

References

1. M.-P. Béal, A. Bergeron, S. Corteel, and M. Raffinot. An algorithmic view of gene
teams. Theoretical Computer Science, 320(2-3):395–418, 2004.

2. S. Bérard, A. Bergeron, and C. Chauve. Conservation of combinatorial structures
in evolution scenarios. In International Workshop on Comparative Genomics (RE-
COMB04), volume 3388 of LNCS, pages 1–14, 2004.

3. A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing common
intervals of k permutations, with applications to modular decomposition of graphs.
In 13th Annual European Symposium on Algorithms (ESA05), 2005. to appear in
LNCS.

4. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its applica-
tions to genome comparison. In 9th Annual International Conference on Computing
and Combinatorics (COCOON03), volume 2697 of LNCS, pages 68–79, 2003.

5. K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance
graphs. Discrete Applied Mathematics, 60:99–117, 1995.

Revisiting T. Uno and M. Yagiura’s Algorithm 155

6. C. Capelle. Block decomposition of inheritance hierarchies. In 23rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG97), volume
1335 of LNCS, pages 118–131, 1997.

7. C. Capelle, M. Habib, and F. de Montgolfier. Graph decomposition and factorizing
permutations. Discrete Mathematics and Theoretical Computer Science, 5(1):55–
70, 2002.

8. M. Chein, M. Habib, and M.C. Maurer. Partitive hypergraphs. Discrete Mathe-
matics, 37(1):35–50, 1981.

9. A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In
Trees in algebra and programming (CAAP 94), volume 787 of LNCS, pages 68–84,
1994.

10. E. Dahlhaus. Parallel algorithms for hierarchical clustering, and applications
to split decomposition and parity graph recognition. Journal of Algorithms,
36(2):205–240, 2000.

11. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
geometry. Springer-Verlag, 1991.

12. F. de Montgolfier. Décomposition modulaire des graphes. Théorie, extensions et
algorithmes. PhD thesis, Université Montpellier II, 2003.

13. S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28(3):129–140,
1998.

14. M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. In 4th
International Workshop on Algorithms in Bioinformatics (WABI04), volume 3240
of LNBI, pages 26–37, 2004.

15. M. Habib, F. de Montgolfier, and C. Paul. A simple linear-time modular decompo-
sition algorithm. In 9th Scandinavian Workshop on Algorithm Theory (SWAT04),
volume 3111 of LNCS, pages 187–198, 2004.

16. M. Habib, M. Huchard, and J.P. Spinrad. A linear algorithm to decompose inher-
itance graphs into modules. Algorithmica, 13(6):573–591, 1995.

17. S. Heber and J. Stoye. Finding all common intervals of k permutations. In 12th
Annual Symposium on Combinatorial Pattern Matching (CPM01), volume 2089 of
LNCS, pages 207–218, 2001.

18. W.-L. Hsu and T.-M. Ma. Substitution decomposition on chordal graphs and
applications. In 2nd International Symposium on Algorithms (ISA91), volume 557
of LNCS, pages 52–60, 1991.

19. G. M. Landau, L. Parida, and O. Weimann. Using pq trees for comparative ge-
nomics. In 16th Annual Symposium on Combinatorial Pattern Matching (CPM05),
volume 3537 of LNCS, 2005.

20. R. M. McConnell and F. de Montgolfier. Algebraic Operations on PQ Trees and
Modular Decomposition Trees. In 31st International Workshop on Graph-Theoretic
Concepts in Computer Science (WG05), 2005. to appear in LNCS.

21. R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive orienta-
tion. Discrete Mathematics, 201:189–241, 1999.

22. R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete
Mathematics, 19:257–356, 1984.

23. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309, 2000.

24. D. J. A. Welsh. Matroids: Fundamental concepts. In Handbook of Combinatorics,
volume 1, pages 481–526. North-Holland, 1995.

Generating Cut Conjunctions and Bridge
Avoiding Extensions in Graphs�

L. Khachiyan1, E. Boros2, K. Borys2, K. Elbassioni3,
V. Gurvich2, and K. Makino4

1 Department of Computer Science, Rutgers University, 110 Frelinghuysen Road,
Piscataway NJ 08854��

2 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854
{boros, kborys, gurvich}@rutcor.rutgers.edu

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
elbassio@mpi-sb.mpg.de

4 Division of Mathematical Science for Social Systems, Graduate School of
Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

makino@sys.es.osaka-u.ac.jp

Abstract. Let G = (V, E) be an undirected graph, and let B ⊆ V × V
be a collection of vertex pairs. We give an incremental polynomial time
algorithm to enumerate all minimal edge sets X ⊆ E such that every
vertex pair (s, t) ∈ B is disconnected in (V, E � X), generalizing well-
known efficient algorithms for enumerating all minimal s-t cuts, for a
given pair s, t ∈ V of vertices. We also present an incremental polynomial
time algorithm for enumerating all minimal subsets X ⊆ E such that no
(s, t) ∈ B is a bridge in (V, X ∪B). These two enumeration problems are
special cases of the more general cut conjunction problem in matroids:
given a matroid M on ground set S = E ∪ B, enumerate all minimal
subsets X ⊆ E such that no element b ∈ B is spanned by E � X. Unlike
the above special cases, corresponding to the cycle and cocycle matroids
of the graph (V, E∪B), the enumeration of cut conjunctions for vectorial
matroids turns out to be NP-hard.

1 Introduction

The cut enumeration problem for graphs calls for listing all minimal subsets of
edges whose removal disconnects two specified vertices of a given graph. This so
called two-terminal cut enumeration problem is known to be solvable in O(Nm+
m+n) time and O(n+m) space [10], where n and m are the numbers of vertices
and edges in the input graph, and N is the number of cuts. In this paper, we
study the following extension of the two-terminal cut enumeration problem:
� This research was partially supported by the National Science Foundation (Grant

IIS-0118635), and by DIMACS, the National Science Foundation’s Center for Dis-
crete Mathematics and Theoretical Computer Science.

�� Our friend and co-author, Leonid Khachiyan passed away with tragic suddenness,
while we were working on this paper.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 156–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs 157

Cut Conjunctions in Graphs: Given an undirected graph G = (V,E),
and a collection B = {(s1, t1), . . . , (sk, tk)} of k vertex pairs si, ti ∈ V ,
enumerate all minimal edge sets X ⊆ E such that for all i = 1, . . . , k,
vertices si and ti are disconnected in G′ = (V,E �X).

Note that si and sj or si and tj or ti and tj may coincide for i �= j. We call a min-
imal edge set X ⊆ E for which all pairs of vertices (si, ti) ∈ B are disconnected
in the subgraph G′ = (V,E �X), a minimal B-cut, or simply a cut conjunction
if B is clear from the context. Observe that each cut conjunction must indeed
be the union (conjunction) of some minimal si-ti cuts for i = 1, . . . , k, justi-
fying the naming of these edge sets. Let us also note that the enumeration of
cut conjunctions cannot efficiently be reduced to two-terminal cut enumeration,
because the majority of conjunctions of minimal si-ti cuts, for i = 1, . . . , k, may
be non minimal B-cuts (see [1] for an example).

In what follows, we assume without any loss of generality that in the above
cut conjunction problem, no pair of vertices (si, ti) is connected by an edge of G,
i.e. E∩B = ∅ (since all such edges would have to belong to all cut conjunctions).

When B is the collection of all pairs of distinct vertices drawn from some
vertex set V ′ ⊆ V , minimal B-cuts are known as multiway cuts, see e.g. [11]. The
enumeration of cut conjunctions in graphs thus also includes the enumeration of
multiway cuts.

It will be convenient to consider the cut conjunction problem for graphs in the
context of the more general cut enumeration problem for (vectorial) matroids
(see e.g. [7,12] for a thorough introduction to matroid theory).

Cut Conjunctions in Matroids: Given a matroid M on ground set S
and a set B ⊆ S, enumerate all maximal sets X ⊆ A = S � B that span no
element of B.

When M is the cycle matroid of a graph G = (V,E ∪ B), where E ∩ B = ∅,
we can let S = E ∪ B, and then by definition, an edge set Y ⊆ A = E spans
b = (si, ti) ∈ B if and only if Y contains an si-ti path. This means that a
maximal edge set Y ⊆ E spans no edge b ∈ B if and only if X = E � Y is a
minimal B-cut in the graph (V,E). Thus, in this special case the cut conjunction
problem in matroids is equivalent with the cut conjunction problem in graphs.

Let r : S → Z+ be the rank function of a matroid M on S. The dual matroid
M∗ on S is defined by the rank function r∗(X) = r(S � X) + |X | − r(S), see
e.g. [12]. In particular, Y ⊆ A = S � B spans b ∈ B in M∗ if and only if
r∗(Y ∪ {b}) = r∗(Y), which is equivalent to r(X ∪ B) = r(X ∪ (B � b)) + 1,
where as before, X = A � Y denotes the set complimentary to Y in A. This
means that the cut conjunction problem for the dual matroid M∗ is equivalent
to the following enumeration problem:

Dual Formulation of Cut Conjunctions in Matroids: Given a matroid
M on ground set S and a set B ⊆ S, enumerate all minimal sets X ⊆ A =
S �B such that each element b ∈ B is spanned by X ∪ (B � b).

158 L. Khachiyan et al.

In particular, when M is the cycle matroid of a graph G = (V,E) (and conse-
quently, M∗ is the cocyle matroid of G), the dual formulation of the cut con-
junction problem for matroids leads to the following enumeration problem:

Bridge-Avoiding Extensions in Graphs: Given an undirected graph
G = (V,E), and a collection of edges B ⊆ E, enumerate all minimal edge
sets X ⊆ E �B such that no edge b ∈ B is a bridge in G′ = (V,B ∪X).

Let us note that in all of the mentioned problems, the output may consist of
exponentially many sets, in terms of the input size. Thus, the efficiency of such
enumeration algorithms customarily is measured in both the input and output
sizes (see e.g., [6]). In particular, it is said that a family F can be enumerated in
incremental polynomial time, if for any subfamily F ′ ⊆ F the problem of finding
e ∈ F \ F ′ or proving that F ′ = F can be solved in poly(n, |F ′|) time, where n
denotes the input size of the problem. The enumeration problem of F is called
NP-hard, if deciding F ′ �= F for subfamilies F ′ ⊆ F is NP-hard, in general.
It can be shown that if the enumeration problem for F is NP-hard, then no
algorithm can generate all elements of F in time poly(n, |F|), unless P=NP.

1.1 Our Results

We show that all of the above enumeration problems for graphs can be solved
efficiently, i.e. in incremental polynomial time.

Theorem 1. All cut conjunctions for a given set of vertex pairs in a graph can
be enumerated in incremental polynomial time.

Theorem 2. All minimal bridge-avoiding extensions for a given set of edges in
a graph can be enumerated in incremental polynomial time.

In contrast, it can be shown that the more general cut conjunction problem
for vectorial matroids is NP-hard:

Proposition 1. [3] Let M be a vectorial matroid defined by a collection S of
n-dimensional vectors over a field of characteristic zero or of large enough char-
acteristic (at least 8n), let B be a given subset of S and let F be the family of
all maximal subsets of A = S �B that span no vector b ∈ B. Given a subfamily
X ⊆ F , it is NP-hard to decide if X �= F .

In addition to indicating that the enumeration of cut conjunctions in vectorial
matroids cannot be solved in incremental (or output) polynomial time, unless
P=NP, the above result also implies that the dual formulation of the cut con-
junction problem for vectorial matroids is similarly NP-hard. This is, because
the dual of an explicitly given vectorial matroid M over a field F is again a
vectorial matroid over the same field, for which an explicit representation can
be obtained from M efficiently (see e.g., [9]).

As stated in Proposition 1, our NP-hardness result for cut conjunctions in
vectorial matroids is valid for vectorial matroids over sufficiently large fields. In
particular, the complexity of enumerating cut conjunctions in binary matroids
remains open. We can only show that this problem is tractable for |B| = 2:

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs 159

Proposition 2. Let M be a binary matroid on ground set S and let B =
{b1, b2} ⊆ S. All maximal subsets X of A = S �B which span neither b1 nor b2
can be enumerated in incremental polynomial time.

Finally, it is worth mentioning that for an arbitrary B, the cut conjunction
problem in binary matroids includes, as a special case, the well-known hypergraph
transversal (also known as hypergraph dualization) problem [4,5]: enumerate all
maximal independent sets (equivalently, minimal transversals) for an explicitly
given hypergraph H ⊆ 2V . To see this inclusion, letB be the n×|H| binary matrix
whose columns are the characteristic vectors of the hyperedges of H, and let I be
the n×n identity matrix. Letting M = [I, B] and denoting by A the columns set
of I, we can identify each maximal subset of A which spans no columns of B with
a maximal independent vertex set for H. This shows that listing cut conjunctions
for a binary matroid is at least as hard as listing all maximal independent sets for
a hypergraph. The fastest algorithm for hypergraph dualization runs in quasi-
polynomial time poly(n)+No(logN), where N is the sum of the input and output
sizes, see [5].

1.2 The X − e + Y Method

We prove Theorems 1, 2 by using a generic approach discussed below. Let E
be a finite set and let π : 2E → {0, 1} be a monotone Boolean function defined
on the subsets of E, i.e., for which π(X) ≤ π(Y) whenever X ⊆ Y . Suppose
that an efficient algorithm is available for evaluating π(X) in poly(|E|) time for
any X ⊆ E, and that our goal is to enumerate all minimal subsets X ⊆ S for
which π(X) = 1. In particular, the enumeration of cut conjunctions (CC) and
bridge avoiding subsets (BA) can all be embedded into this general scheme by
letting πCC(X) = 1 iff vertex si is disconnected from ti in (V,E�X) for all i =
1, . . . , k and πBA(X) = 1 iff no b ∈ B is a bridge in (V,B ∪X).

Returning to the general scheme, given a monotone Boolean function π, let
F = {X | X ⊆ E is a minimal set satisfying π(X) = 1}, and let G = (F , E) be
the directed “supergraph” with the vertex set F in which two verticesX,X ′ ∈ F
are connected by an arc (X,X ′) ∈ E if and only if X ′ can be obtained from X
by the following process:

(p1) Delete an element e from X (π(X � e) = 0 by the minimality of X).
(p2) Add a minimal set Y ⊆ E�X to restore the property π((X � e)∪Y) = 1.
(p3) Assuming a linear order on the elements of E, delete the lexicographically
first minimal set Z ⊆ X � e for which X ′ = (X � (Z ∪ e)) ∪ Y ∈ F .

Note that in step (p3) an arbitrary fixed linear order can be used, and that
the lexicographic minimization can be done efficiently, because we assume that
evaluating π(·) takes poly(|E|) time. Note also that in step (p3) we can always
find a subset Z ⊆ X � e for which X ′ = (X � (Z ∪ e)) ∪ Y belongs to F , due to
the minimality of Y chosen in step (p2). Since an out-neighbor of vertex X in G
is generated for all elements e ∈ X in step (p1) and all possible minimal sets Y
in step (p2), the resulting supergraph G = (F , E) is always strongly connected.

160 L. Khachiyan et al.

Proposition 3. For any monotone Boolean function π : 2E → {0, 1}, and any
linear ordering of E, the supergraph G = (F , E) is strongly connected.

Proof. Let X,X ′ ∈ F be two vertices of G. We show by induction on |X �X ′|
that G contains a directed path from X to X ′. If X �X ′ = ∅ then X ⊆ X ′, but
since X ′ is minimal, X = X ′ must follow. Suppose that |X �X ′| > 0 and let us
show that there is an out-neighbor X ′′ of X such that |X ′′ �X ′| is smaller than
|X �X ′|. Choose an arbitrary e ∈ X �X ′. Since (X � e) ∪X ′ contains X ′ and
π(X ′) = 1, we have π((X�e)∪X ′) = 1 by the monotonicity of π, and hence there
is a minimal nonempty set Y ⊆ X ′�X such that π((X�e)∪Y) = 1. Now we can
lexicographically delete some elements Z of X � e and obtain an out-neighbor
X ′′ = (X � (Z ∪ e)) ∪ Y ∈ F for which |X ′′ �X ′| ≤ |X � (X ′ ∪ e)| < |X �X ′|.
Such a set Z exists because we have π((X � e) ∪ (Y � y)) = 0 for all y ∈ Y by
the minimality of Y , and thus any minimal set X̃ ∈ F contained in (X � e)∪ Y
must contain Y . ��

Let us remark that the number of minimal sets Y in (p2) may be exponential.
For a given set X ∈ F and element e ∈ X , any two distinct minimal sets, Y and
Y ′, corresponding to X and e, produce different neighbors of X in G. Hence,
every neighbor of X in G may be generated at most |X | times.

Since the supergraph G = (F , E) is always strongly connected, we can generate
F by first computing an initial vertex Xo ∈ F and then performing a traversal
(say, breadth-first search) of G. Given our assumption that π can be evaluated
in poly(|E|) time, computing an initial vertex of G can be done in polynomial
time. Steps (p1) and (p3) can also be performed in poly(|E|) time. Hence we
can conclude that the enumeration problem for F reduces to the enumeration of
sets Y in step (p2). In particular, due to the above remark we get the following
statement:

Proposition 4. All elements of F can be enumerated in incremental polyno-
mial time whenever the enumeration problem (p2) can be done in incremental
polynomial time. ��

As an illustration for theX−e+Y method, consider the path conjunction problem
[2]: given an undirected graph G = (V,E) and a collection of k vertex pairs
si, ti ∈ V , enumerate all minimal edge sets X ⊆ E such that for all i = 1, . . . , k,
vertices si and ti are connected in (V,X). Let us define in this case π(X) = 1 if
and only if every si is connected to ti in (V,X). Then the minimal edge sets X for
which π(X) = 1 are exactly the minimal path conjunctions. Furthermore, any
such minimal path conjunction is a collection of trees T1, . . . , Tl such that each
vertex pair (si, ti) belongs to a common tree Tj. Removing an edge e from X
splits one of the trees into two sub-trees T ′

j , T
′′
j such that there is at least one pair

(si, ti) with one vertex belonging to T ′
j and the other to T ′′

j . Let G′ be the graph
obtained from G by contracting each tree of T1, . . . , T

′
j , T

′′
j , . . . , Tl into a vertex,

and let u and v denote the vertices corresponding to T ′
j and T ′′

j . A minimal edge
set Y restores the property that all si and ti are connected in (V, (X � e)∪Y) if
and only if Y is a simple path from u to v in G′. Hence the X − e+ Y method

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs 161

reduces the problem to the enumeration of all u-v paths in G′, which can be done
via backtracking [8] incrementally efficiently. Thus by Proposition 4 enumerating
all minimal path conjunctions can be done in incremental polynomial time [2].

Our proofs of Theorems 1, 2 follow this approach using the two monotone
Boolean functions πCC , πBA defined at the beginning of this section. The re-
mainder of the paper is organized as follows. We provide sketches for the proofs
of Theorems 1 and 2 in Section 2 and 3, respectively. For a full version with all
related results and proofs see [1].

2 Proof of Theorem 1

In this section we apply the X − e + Y method to the Boolean function πCC

in order to enumerate all cut conjunctions in graphs. First, in Subsection 2.1
we state a characterization of cut conjunctions in graphs. In Subsection 2.2 we
reduce the problem of enumerating all minimal sets Y in (p2) to the enumeration
of all cut conjunctions in a graph of a simpler structure. In Subsection 2.3 we
show that the latter problem can be solved efficiently by using a variant of the
supergraph approach.

For a graph G = (V,E), a vertex subset U ⊆ V , and edge subset F ⊆ E,
let us denote by G[U] the subgraph of G induced by U , by G − U = G[V � U]
the graph obtained from G by deleting U together with all incident edges, and
by G− F = (V,E � F) the subgraph of G obtained by deleting the edge set F .
Furthermore, we write G+U = (V ∪U,E), G+F = (V,E ∪F), and G−G′ for
the subgraph G − V ′, when G′ = (V ′, E′) is a subgraph of G. Finally, we write
G′ +G′′ = (V ′ ∪ V ′′, E′ ∪E′′) for two graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′).

2.1 Characterization of Minimal Cut Conjunctions in Graphs

Let G = (V,E) be an undirected connected graph. It will be convenient to define
a cut to be a set of edges E(G1, . . . , Gl) =

⋃
i=j{uv ∈ E : u ∈ Gi, v ∈ Gj} where

G1, . . . , Gl are induced subgraphs of G such that their vertex sets partition V ,
and Gi is connected for each i = 1, . . . , l. Let B = {(s1, t1), . . . , (sk, tk)} be a
set of distinct source-sink pairs of G. A B-cut is a cut E(G1, . . . , Gl) such that,
for each i, si and ti do not belong to the same Gj . If the set B is clear from
the context we shall call the minimal B-cut a cut conjunction. The following
characterization of cut conjunctions follows directly from their definition.

Proposition 5. Let E(G1, G2, . . . , Gl) be a B-cut. Then, E(G1, G2, . . . , Gl) is
a minimal B-cut if and only if for every x, y ∈ {1, . . . , l} with x �= y, if there is
an edge of G between Gx and Gy then there must exist a source-sink pair (si, ti)
with exactly one vertex in Gx and the other in Gy.

2.2 Reduction

In this section we reduce the problem of generating all minimal sets Y in (p2)
to generating all cut conjunctions in a graph of a simpler structure.

162 L. Khachiyan et al.

Let F be a subset of edges of G and let (si, ti) ∈ B. Suppose that si and ti are
in the same component of G− F . Then we say that (si, ti) is F -conflicting. Let
X = E(G1, G2, . . . , Gl) be a minimal B-cut of G and let b ∈ X . The removing
b from X reconnects some two components, Gx and Gy, of G − X , where one
endpoint of b is in Gx and the other in Gy. Thus G − (X � b) contains at least
one (X�b)-conflicting pair. Hence generating all minimal sets Y ⊆ E�X which
restore the property that no si is connected to ti, is equivalent to generating all
minimal B′-cuts in the graphGx+Gy+b where B′ is the set of (X�b)-conflicting
pairs. Let L = Gx and R = Gy. We can always relabel the (X � b)-conflicting
pairs to guarantee that the conflicting si’s are in L and the conflicting ti’s are
in R. We denote the resulting graph by H(X, b).

2.3 Enumerating Minimal Cut Conjunctions in H(X, b)

Let H = H(X, b) = (V,E) be the graph defined at the end of Section 2.2,
that is: H = L + R + b, where b = vLvR is a bridge, L contains the sources
s1, . . . , sk, and R contains the sinks t1, . . . , tk. Let B = {(s1, t1), . . . , (sk, tk)}
and let K = E(G1, . . . , Gl) be a cut conjunction of H , such that K �= {b}.
Without loss of generality, assume that b is in G1. Note that every other Gj is
contained either in L or in R (since Gj is connected and all paths from L to R
go through b). We denote by M = G1 the component containing b and call it the
root component of K. The other components will be called leaf components of
K. Denote the Gj ’s contained in L by L1, . . . , Lm and those in R by R1, . . . , Rn.
Observe that all edges of K = E(M,L1, . . . , Lm, R1, . . . , Rn) lie between the
root and leaf components. Hence M uniquely determines the leaf components
of K. Now we define the digraph H, the supergraph of cut conjunctions of H .
The vertex set of H is the family of all cut conjunctions of H other than {b}.
For each cut conjunction K = E(M,L1, . . . , Lm, R1, . . . , Rn) of H we define its
out-neighborhood to consist of all cut conjunctions which can be obtained from
K by the following sequence of steps:

(q1) Choose a vertex v incident to e ∈ K such that v /∈ {vL, vR}. Depending on
v we have the following three cases.
(q2-a) Suppose v ∈ Rj is in a leaf component ofK andM+v+e does not contain
a source-sink pair (si, ti). Thus either v is not a sink, or v = ti and si �∈ M . Let
W1, . . . ,Wp be the components of Rj −v, and let MD = M+v+

⋃
u∈M{uv ∈ E}.

Then D = E(MD, L1, . . . , Lm, R1, . . . , Rj−1, W1, . . . ,Wp, Rj+1, . . . , Rn) is a B-
cut. Note that we have moved v from Rj to M . Removing v from Rj splits Rj

into components W1, . . . ,Wp.
(q2-b) Suppose v ∈ Rj is in a leaf component of K and M + v + e contains
a source-sink pair (si, ti). Thus v = ti, si ∈ M and vL �= si. Let W1, . . . ,Wp

be the components of Rj − ti and let U1, . . . , Ur be the components of M − si

not containing b. Denote MD = (M + ti +
⋃

u∈M{uti ∈ E}) − (si + U1 + . . .+
Ur). Then D = E(MD, L1, . . . , Lm, si, U1, . . . , Ur, R1, . . . , Rj−1, W1, . . . ,Wp,
Rj+1, . . . , Rn) is a B-cut. Note that we have moved ti from Rj to M . To restore

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs 163

the property that no si is connected to ti, we have removed si from M . Removing
v from Rj splits Rj into components W1, . . . ,Wp, and removing si from M splits
M into components U1, . . . , Ur and MD, the component containing b.
(q2-c) Suppose v ∈ M − {vL, vR} and v is adjacent to Lj . Note that v �∈
{t1, . . . , tk}. Let U1, . . . , Ur be the components of M − v not containing b, and
let MD = M − (v + U1 + . . . + Ur). Then D = E(MD, L1, . . . , Lj−1, Lj + v +⋃

u∈Lj
uv ∈ E, Lj+1, . . . , Lm, U1, . . . , Ur, R1, . . . , Rn) is a B-cut. Note that we

have moved v from M to Lj splitting M into components U1, . . . , Ur and MD.
(q3) Let D = E(G1, . . . , Gl) be the B-cut obtained in the previous step. Choose
the lexicographically first two sets Gx and Gy such that there is an edge e ∈ D
connecting Gx and Gy and there is no (D� e)-conflicting pair. Replace Gx and
Gy in D by Gx+Gy. Repeat until no such edge exists, thus the B-cut is minimal.
Let K ′ = E(M ′, L′

1, . . . , L
′
m′ , R′

1, . . . , R
′
n′) be the resulting cut conjunction.

Then K ′ is a neighbor of K in H.

Proposition 6. The supergraph H is strongly connected.

This claim will follow from lemmas 1 and 2. To state these, let us consider two
cut conjunctions K1 and K3, and denote by M1, M3 their root components. We
call the vertices of M3 blue, all others green, and denote by K the subgraph of
H induced by cut conjunctions whose root components contain all blue vertices.

Lemma 1. There exists a cut conjunction K2 ∈ K such that there is a path
from K1 to K2 in H.

Proof. Let T be an arbitrary spanning tree of M3 containing the bridge b. For a
B-cut D of H with M as its root component, we partition the edges of T into
two groups. We call an edge e of T a D-solid edge, if e ∈ M and e is reachable
from b by using only edges of T that are in M . Otherwise e is called a D-dashed
edge. Note that b is D-solid edge. We denote the set of D-solid edges by SD and
the set of D-dashed edges by DD. Clearly, |SD| + |DD| = |T |.

Let K1 = E(M1, L1, . . . , Lm, R1, . . . , Rn). We will show by induction on |SK1 |
that there is a path from K1 to K2. If |SK1 | = |T |, then K1 ∈ K. If |SK1 | < |T |,
then there exists a K1-dashed edge vw between two blue vertices v and w such
that v is in a leaf component of K1, w ∈ M1 and w is incident to a K1-solid
edge. Suppose that v ∈ Rj . We now show that K ′

1, a neighbor of K1, obtained
by moving v from the leaf to the root component, has |SK′

1
| ≥ |SK1 | + 1.

Case 1: v is not a sink or v = ti and si �∈ M1. Let D be a B-cut obtained
in (q2-a) and MD = M1 + v be its root component. Since MD contains both v
and w, vw is a D-solid edge, so |SD| = |SK1 | + 1. In (q3) MD can only merge
with leaf components, hence |SK′

1
| ≥ |SD|.

Case 2: v = ti, si ∈ M . Note that ti is a blue vertex, so si must be green,
since M3 does not contain any source-sink pair, and in particular si cannot be
an endpoint of b. Let D be a B-cut obtained in (q2-b) and MD be its root
component. Recall that MD = (M1 + ti)− (si +U1 + . . .+Ur), where U1, . . . , Ur

are the components of M − si not containing b. Observe that in (q2-b) we did
not remove any K1-solid edge from M1. Since si is a green vertex, all edges

164 L. Khachiyan et al.

incident to si do not belong to T . Edges in U1, . . . , Ur and incident to these
components are also not K1-solid, because all paths from b to U1, . . . , Ur, which
use edges of T that are in M1, must go through si. Thus |SD| = |SK1 | + 1. In
(q3) MD can only merge with leaf components, hence |SK′

1
| ≥ |SD|. ��

Lemma 2. For every K2 ∈ K there is a path from K2 to K3 in K.

This lemma follows similarly to the previous one, see [1] for details.
Note finally that since H is strongly connected and finding an initial vertex of

H is easy, we can enumerate all sets Y in (p2) in incremental polynomial time,
completing the proof of Proposition 6. ��

3 Proof of Theorem 2

In this section we assume that G = (V,E) is a multigraph. Given B ⊆ E, let
F = minimal {X ⊆ E�B | no b ∈ B is a bridge of (V,B ∪X)}. We enumerate
F by using the X − e + Y method stated in Section 1.2. Proposition 7 below
implies that this can be accomplished in incremental polynomial time.

Proposition 7. Given a set X ∈ F and an edge e ∈ X, all sets Y in (p2) can
be enumerated with polynomial delay.

Proof. Let B′ = {b1, . . . , bk} be the subset of edges of B that are bridges in
(V,B ∪ (X � e)). First observe that for each edge bi ∈ B′ there is a cycle Ci in
(V,B ∪X) containing e and bi. Suppose bi ∈ Ci � Cj for some i, j ∈ {1, . . . , k}.
Then there is a cycle C′ ⊆ (Ci ∪Cj)� e such that bi ∈ C′. C′ is also the cycle in
(V,B ∪ (X � e)). This would contradict the definition of B′. Hence all edges of
B′ lie on a common cycle in (V,B ∪X) containing e, and accordingly, all edges
of B′ belong to a common path in (V,B ∪ (X � e)).

Let G′ = (V ′, E′) be the multigraph obtained from (V,E � e) by contracting
all edges in (B � B′) ∪ (X � e). Then B′ is a path in G′. Furthermore, the
enumeration of all sets Y in (p2) now reduces to the enumeration of all minimal
edge sets Y ′ of G′ for which no edge b on the path B′ is a bridge in (V ′, B′∪Y ′).
Thus the enumeration of cut conjunctions in cocycle matroids reduces to the
special case of the same problem for multigraphs in which B is a path.

Now we argue that the latter problem is equivalent to the enumeration of
all directed paths between a pair of vertices in some explicitly given directed
multigraph. To see this, denote by u1, . . . , uk+1 the k + 1 vertices on the path
B′ = {b1, . . . , bk} in G′, and assume that bi = uiui+1 for i = 1, . . . , k. If no edge
b ∈ B′ is a bridge in (V ′, B′ ∪ Y ′), then for each i = 1, . . . , k there must exist
a path P ⊆ Y ′ such that P and B′ are edge disjoint and the vertex set of P
contains exactly two vertices uα, uβ of B′ such that α ≤ i and β ≥ i+ 1. Thus
Y ′ = P1 ∪ . . .∪Ps, for some paths P1, . . . , Ps satisfying conditions above, where
no two distinct paths in Y ′ have a common vertex outside of B′. Denoting
by uαi and uβi the intersection of the vertex set of Pi with B′, we conclude
u1 = α1 < α2 ≤ β1 < α3 ≤ β2 < α4 ≤ . . . < αs ≤ βs−1 < βs = uk+1.

Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs 165

Let us now consider the directed multigraph
−→
G ′ = (V ′,

−→
E ′) obtained from the

multigraph G′ = (V ′, E′) by replacing the undirected path B′ by the directed
path

−→
B ′ = u1 ← u2 ← . . . ← uk+1 and by adding two opposite arcs u → v and

v → u for each edge uv ∈ E′ � B′. From the above discussion it follows that
there exists a one to one correspondence between all minimal sets Y ′ and all
minimal directed paths from u1 to uk+1 in

−→
G ′. Since it is well known that all

minimal directed paths between a given pair of vertices can be enumerated via
backtracking [8] with polynomial delay, Proposition 7 follows. ��

References

1. E. Boros, K. Borys, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino.
Enumerating cut conjunctions in graphs and related problems. Rutcor Research
Report RRR 19-2005, Rutgers University.

2. E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino. Generating
paths and cuts in multi-pole (di)graphs. In J. Fiala, V. Koubek, and J. Kratochvil,
editors, Mathematical Foundations of Computer Science MFCS, volume 3153 of
Lecture Notes in Computer Science, pages 298–309, Prague, Czech Republic, Au-
gust 22-27 2004. Springer Verlag, Berlin, Heidelberg, New York.

3. E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino. On the com-
plexity of some enumeration problems for matroids. To appear in SIAM Journal
on Discrete Mathematics, 2005.

4. T. Eiter and G. Gottlob. Identifyig the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24:1278–1304, 1995.

5. M. Fredman and L. Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21:618–628, 1996.

6. E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal
independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on
Computing, 9:558–565, 1980.

7. J.G. Oxley. Matroid Theory. Oxford University Press, Oxford, New York, Tokyo,
1992.

8. R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5:237–252, 1975.

9. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B.
Springer Verlag, Berlin, Heidelberg, New York, 2003. page 654.

10. S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi. An algorithm to enumerate
all cutsets of a graph in linear time per cutset. Journal of the Association for
Computing Machinery, 27:619–632, 1980.

11. V. Vazirani. Approximation Algorithms. Springer Verlag, Berlin, Heidelberg, New
York, 2001.

12. D.J.A. Welsh. Matroid Theory. Academic Press, London, 1976.

Orthogonal Drawings of Series-Parallel Graphs
with Minimum Bends�

Xiao Zhou and Takao Nishizeki

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan
{zhou, nishi}@ecei.tohoku.ac.jp

Abstract. In an orthogonal drawing of a planar graph G, each vertex is
drawn as a point, each edge is drawn as a sequence of alternate horizon-
tal and vertical line segments, and any two edges do not cross except at
their common end. A bend is a point where an edge changes its direction.
A drawing of G is called an optimal orthogonal drawing if the number
of bends is minimum among all orthogonal drawings of G. In this pa-
per we give an algorithm to find an optimal orthogonal drawing of any
given series-parallel graph of the maximum degree at most three. Our
algorithm takes linear time, while the previously known best algorithm
takes cubic time. Furthermore, our algorithm is much simpler than the
previous one. We also obtain a best possible upper bound on the number
of bends in an optimal drawing.

Keywords: orthogonal drawing, bend, series-parallel graph, planar
graph.

1 Introduction

Automatic graph drawings have numerous applications in VLSI circuit layouts,
networks, computer architecture, circuit schematics, etc. [3, 10]. Many graph
drawing styles have been introduced [1, 3, 8, 10, 14, 16]. Among them, an “or-
thogonal drawing” has attracted much attention due to its various applications,
specially in circuit schematics, entity relationship diagrams, data flow diagrams,
etc. [13, 15, 18, 19]. An orthogonal drawing of a planar graph G is a drawing of
G such that each vertex is mapped to a point, each edge is drawn as a sequence
of alternate horizontal and vertical line segments, and any two edges do not
cross except at their common end. A point where an edge changes its direction
in a drawing is called a bend of the drawing. Figure 1(a) depicts an orthogonal
drawing of the planar graph in Fig. 1(b); the drawing has exactly one bend on
the edge joining vertices g and t. If a planar graph G has a vertex of degree five
or more, then G has no orthogonal drawing. On the other hand, if G has no
vertex of degree five or more, that is, the maximum degree ∆ of G is at most
four, then G has an orthogonal drawing, but may need bends. If a planar graph

� This work is supported by JSPS grants.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 166–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends 167

represents a VLSI routing, then one may be interested in an orthogonal drawing
such that the number of bends is as small as possible, because bends increase the
manufacturing cost of a VLSI chip. An orthogonal drawing of a planar graph G
is called an optimal orthogonal drawing if it has the minimum number of bends
among all possible orthogonal drawings of G.

g

t

a

s

hb

c f

d e

g

ts h

a

b

ed

c f

s

a
b

c

d e

f

h

t
s

b

a

h

c

d

t

f

e

g

g

(c)(a) (b) (d)

Fig. 1. (a) An optimal orthogonal drawing with one bend, (b), (c) two embeddings of
the same planar graph, and (d) an orthogonal drawing with three bends

The problem of finding an optimal orthogonal drawing is one of the most
famous problems in the graph drawing literature [3, 10] and has been studied
both in the fixed embedding setting [6, 13, 15, 17, 19] and in the variable embed-
ding setting [5, 7, 12]. A planar graph with a fixed embedding is called a plane
graph. As a result in the fixed embedding, Tamassia [19] presented an algorithm
to find an optimal orthogonal drawing of a plane graph G in time O(n2 logn)
where n is the number of vertices in G; he reduced the optimal drawing problem
to a min-cost flow problem. Then Garg and Tamassia improved the complex-
ity to O(n7/4√logn) [6]. As a result in the variable embedding setting, Garg
and Tamassia showed that the problem is NP-complete for planar graphs of
∆ ≤ 4 in the variable embedding setting [7]. However, Di Battista et al. [5]
showed that the problem can be solved in polynomial time for planar graphs
G of ∆ ≤ 3. Their algorithm finds an optimal orthogonal drawing among all
possible plane embeddings of G. They use the properties of “spirality,” min-cost
flow techniques, and a data structure, call a SPQ∗R-tree that implicitely rep-
resents all the plane embeddings of G. The algorithm is complicated and takes
time O(n5 logn) for planar graph of ∆ ≤ 3. Using the algorithm, one can find
an optimal orthogonal drawing of a biconnected series-parallel simple graph of
∆ ≤ 4 and of ∆ ≤ 3 in time O(n4) [5] and in time O(n3) [4], respectively. Note
that every series-parallel graph is planar. Series-parallel graphs arise in a variety
of problems such as scheduling, electrical networks, data-flow analysis, database
logic programs, and circuit layout [20]. The complexities O(n5 log n), O(n4) and
O(n3) above for the variable embedding setting are very high, and it is expected
to obtain an efficient algorithm for a particular class of planar graphs of ∆ ≤ 3
[2].

In this paper we deal with the class of series-parallel (multi)graphs of ∆ ≤ 3,
and give a simple linear algorithm to find an optimal orthogonal drawing in
the variable embedding setting. The graph G in Fig. 1 is series-parallel, and has
various plane embeddings; two of them are illustrated in Figs. 1(b) and (c); there

168 X. Zhou and T. Nishizeki

is no plane embedding having an orthogonal drawing with no bend; however, the
embedding in Fig. 1(b) has an orthogonal drawing with one bend as illustrated
in Fig. 1(a) and hence the drawing is optimal; the embedding in Fig. 1(c) needs
three bends as illustrated in Fig. 1(d); given G, our algorithm finds an optimal
drawing in Fig. 1(a). Our algorithm works well even if G has multiple edges
or is not biconnected, and is much simpler and faster than the algorithms for
biconnected series-parallel simple graphs in [4, 5]; we use neither the min-cost
flow technique nor the SPQ∗R tree, but uses some structural features of series-
parallel graphs, which have not been exploited in [20]. We furthermore obtain a
best possible upper bound on the minimum number of bends.

The rest of the paper is organized as follows. In Section 2 we present some
definitions and our main idea. In Section 3 we present an algorithm and an upper
bound for biconnected series-parallel graphs. Finally Section 4 is a conclusion.
We omit a linear algorithm for non-biconnected series-parallel graphs in this
extended abstract, due to the page limitation.

2 Preliminaries

In this section we present some definitions and our main idea.
Let G = (V,E) be an undirected graph with vertex set V and edge set E. We

denote the number of vertices in G by n(G) or simply by n. For a vertex v ∈ V ,
we denote by G − v the graph obtained from G by deleting v. An edge joining
vertices u and v is denoted by uv. We denote by G − uv the graph obtained
from G by deleting uv. We denote the degree of a vertex v in G by d(v,G) or
simply by d(v). We denote the maximum degree of G by ∆(G) or simply by
∆. A connected graph is biconnected if there is no vertex whose removal results
in a disconnected graph or a single-vertex graph K1. A plane graph is a fixed
embedding of a planar graph.

Let G be a planar graph of∆ ≤ 3. We denote by bend(G) the number of bends
of an optimal orthogonal drawing of G in the variable embedding setting. (Thus
bend(G) = 1 for the graphG in Fig. 1.) LetD be an orthogonal drawing ofG. The
number of bends in D is denoted by bend(D). Of course, bend(G) ≤ bend(D).
Let G(D) be a plane graph obtained from a drawing D by replacing each bend
in D with a new vertex. Figures 2(a) and (b) depict G(D) for the drawings
D in Figs. 1(a) and (d), respectively. An angle formed by two edges e and e′

incident to a vertex v in G(D) is called an angle of vertex v if e and e′ appear
consecutively around v. An angle of a vertex in G(D) is called an angle of the
plane graph G(D). In an orthogonal drawing, every angle is π/2, π, 3π/2 or 2π.
Consider a labeling l which assigns a label 1, 0, −1 or −2 to every angle of G(D).
Labels 1, 0, −1 and −2 correspond to angles π/2, π, 3π/2 and 2π, respectively.
We call l a regular labeling of G(D) if l satisfies the following three conditions
(a)–(c) [10, 19]:

(a) for each vertex v of G(D),
(a-1) if d(v) = 1 then the label of the angle of v is −2,

Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends 169

(a-2) if d(v) = 2 then the labels of the two angles of v total to 0, and
(a-2) if d(v) = 3 then the labels of the three angles of v total to 2;

(b) the sum of the labels of each inner face is 4; and
(c) the sum of the labels of the outer face is −4.

0

1 1 1
1 1

−1 −1

1
1

1
1

1
1

1

11
−1−1

−1 −1

−1

0

0

0

0

1
1
1
1
1
1
1
1

0
−1−1

0

0

0 0

−1 −1
0

−1

1 1 1
1 1
1
1 1

1

11

1

1

(a) (b)

Fig. 2. Regular labelings of G(D) corresponding to the drawings D in Figs. 1(a) and
(d), respectively

Figures 2(a) and (b) illustrate regular labelings for the orthogonal drawings in
Figs. 1(a) and (d), respectively. If D is an orthogonal drawing of G, then clearly
G(D) has a regular labeling. Conversely, every regular labeling of G(D) corre-
sponds to an orthogonal drawing of G [19]. An orthogonal (geometric) drawing
of G can be obtained from a regular labeling of G(D) in linear time, that is,
in time O(n(G) + bend(D)) [10, 19]. Therefore, from now on, we call a regular
labeling of G(D) an orthogonal drawing of a planar graph G or simply a drawing
of G, and obtain a regular labeling of G in place of an orthogonal (geometric)
drawing of G.

A series-parallel graph (with terminals s and t) is recursively defined as fol-
lows:

(a) A graph G of a single edge is a series-parallel graph. The ends s and t of
the edge are called the terminals of G.

(b) Let G1 be a series-parallel graph with terminals s1 and t1, and let G2 be
a series-parallel graph with terminals s2 and t2.

(i) A graph G obtained from G1 and G2 by indentifying vertex t1 with
vertex s2 is a series-parallel graph, whose terminals are s = s1 and
t = t2. Such a connection is called a series connection.

(ii) A graph G obtained from G1 and G2 by identifying s1 with s2 and
t1 with t2 is a series-parallel graph, whose terminals are s = s1 = s2
and t = t1 = t2. Such a connection is called a parallel connection.

For example, the graph in Fig. 1 is series-parallel.
Throughout the paper we assume that the maximum degree of a given series-

parallel graph G is at most three, that is, ∆ ≤ 3. We may assume without loss of
generality that G is a simple graph, that is, G has no multiple edges, as follows.
If a series-parallel multigraph G consists of exactly three multiple edges, then
G has an optimal drawing of four bends; otherwise, insert a dummy vertex of
degree two into an edge of each pair of multiple edges in G, and let G′ be the
resulting series-parallel simple graph, then an optimal drawing of the multigraph

170 X. Zhou and T. Nishizeki

G can be immediately obtained from an optimal drawing of the simple graph G′

by replacing each dummy vertex with a bend.
A drawing D of a series-parallel graph G is outer if the two terminals s and t

of G are drawn on the outer face of D. A drawing D is called an optimal outer
drawing of G if D is outer and bend(D) = bend(G). The graph in Fig. 1 has an
optimal outer drawing as illustrated in Fig. 1(a). On the other hand, the graph
in Fig. 3(a) has no optimal outer drawing for the specified terminals s and t; the
no-bend drawing D in Fig. 3(b) is optimal but is not outer, because s is not on
the outer face; and the drawing Do with one bend in Fig. 3(c) is outer but is
not optimal.

tt

D D

t
s

s

(b) (c) o

s

(a) G

Fig. 3. (a) A biconnected series-parallel graph G, (b) an optimal drawing D, and (c)
an outer drawing Do

Our main idea is to notice that a series-parallel graph G has an optimal
outer drawing if G is “2-legged.” We say that G is 2-legged if n(G) ≥ 3 and
d(s) = d(t) = 1 for the terminals s and t of G. The edge incident to s or t is
called a leg of G, and the neighbor of s or t is called a leg-vertex. For example,
the series-parallel graphs in Figs. 4(a)–(c) are 2-legged.

t
s

t

s

t

s t

t

s
s

t

s

(d) (f)(a) (b) (c) (e)

Fig. 4. (a)–(c) I-, L- and U-shaped drawings, and (d)–(f) their schematic representa-
tions

We will show in Section 3 that every 2-legged series-parallel graph G has an
optimal outer drawing and the drawing has one of the three shapes, “I-shape,”
“L-shape” and “U-shape,” defined as follows. An outer drawing D of G is I-
shaped if D intersects neither the north side of terminal s nor the south side of
terminal t after rotating the drawing and renaming the terminals if necessary,
as illustrated in Fig. 4(a). D is L-shaped if D intersects neither the north side of
s nor the east side of t after rotating the drawing and renaming the terminals if
necessary, as illustrated in Fig. 4(b). D is U-shaped if D does not intersect the
north sides of s and t after rotating the drawing and renaming the terminals

Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends 171

if necessary, as illustrated in Fig. 4(c). In Figs. 4(a)–(c) each side is shaded.
The north side and the south side of a terminal contain the horizontal line
passing through the terminal, while the east side of a terminal contains the
vertical line passing through the terminal. The schematic representations of I-,
L-, and U-shaped drawings are depicted in Figs. 4(d), (e) and (f), respectively.
D is called an optimal X-shaped drawing, X=I, L and U, if D is X-shaped and
bend(D) = bend(G).

More precisely, we will show in Section 3 that every 2-legged series-parallel
graph G with n(G) ≥ 3 has both an optimal I-shaped drawing and an optimal
L-shape drawing and that G has an optimal U-shaped drawing, too, unless G is a
“diamond graph,” defined as follows. A diamond graph is either a path with three
vertices or obtained from two diamond graphs by connecting them in parallel
and adding two leggs.

s t ts

(e)(a) (c)(b) (d)

s ts

t
t

s

Fig. 5. (a) Diamond graph, (b) I-shaped drawing, (c) L-shaped drawing, (d) non-
diamond graph, and (e) U-shaped drawing

For example, the 2-legged series-parallel graph in Fig. 5(a) is a diamond graph,
and has both an optimal (no-bend) I-shaped drawing and an optimal (no-bend)
L-shaped drawing as illustrated in Figs. 5(b) and (c), but does not have an optimal
(no-bend) U-shaped drawing.On the other hand, the 2-legged series-parallel graph
in Fig. 5(d) is obtained from the diamond graph in Fig. 5(a) simply by inserting a
new vertex of degree two in an edge, and is not a diamond graph any more. It has
an optimal (no-bend) U-shaped drawing, too, as illustrated in Fig. 5(e). Thus the
diamond graph in Fig. 5(a) has a U-shaped drawing with one bend.

3 Optimal Drawing of Biconnected Series-Parallel Graph

In this section we give a linear algorithm to find an optimal drawing of a bicon-
nected series-parallel graph G of ∆ ≤ 3. We first give an algorithm for 2-legged
series-parallel graphs in Subsection 3.1. Using the algorithm, we then give an
algorithm for biconnected series-parallel graphs in Subsection 3.2.

3.1 2-Legged Series-Parallel Graph

We first have the following lemma on a diamond graph. (The proofs of all theorems
and lemmas are omitted in this extended abstract, due to the page limitation.)

172 X. Zhou and T. Nishizeki

Lemma 1. If G is a diamond graph, then

(a) G has both a no-bend I-shaped drawing DI and a no-bend L-shaped drawing
DL;

(b) DI and DL can be found in linear time; and
(c) every no-bend drawing of G is either I-shaped or L-shaped, and hence G does

not have a no-bend U-shaped drawing.

The proof of Lemma 1 immediately yields a linear algorithm Diamond(G,DI,
DL) which recursively finds both a no-bend I-shaped drawing DI and a no-bend
L-shaped drawing DL of a given diamond graph G.

The following lemma holds for a 2-legged series-parallel graph G which is not
a diamond graph.

Lemma 2. The following (a) and (b) hold for a 2-legged series-parallel graph G
with n(G) ≥ 3 unless G is a diamond graph:

(a) G has three optimal I-, L- and U-shaped drawings DI, DL and DU;
(b) DI, DL and DU can be found in linear time; and
(c) bend(G) ≤ (n(G) − 2)/3.

We denote by Kn a complete graph of n(≥ 1) vertices. Let G be a 2-legged
series-parallel graph obtained from copies ofK2 andK3 by connected them alter-
nately in series, as illustrated in Fig. 6. Then bend(G) = (n(G) − 2)/3. Thus the
bound in Lemma 2(c) is best possible.

Fig. 6. A graph attaining the bound in Lemma 2(c)

The proof of Lemma 2 immediately yields a linear algorithm Non-Diamond
(G, DI, DL, DU) which recursively finds three optimal I-, L- and U-shaped draw-
ings DI, DL and DU of a given 2-legged series-parallel graph G unless G is a dia-
mond graph. By algorithms Diamond and Non-Diamond one can find an op-
timal drawing of a 2-legged series-parallel graph G.

3.2 Biconnected Series-Parallel Graphs

A biconnected series-parallel graph G can be defined (without specifying termi-
nals) as a biconnected graph which has no K4 as a minor. For every edge uv in G,
G is a series-parallel graph with terminals u and v.

A cycleC of four vertices in a graphG is called a diamond if two non-consecutive
vertices of C have degree two in G and the other two vertices of C have degree
three and are not adjacent in G. We denote by G/C the graph obtained from
G by contracting C to a new single vertex vC . (Note that GC = G/C is series-

Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends 173

parallel if G is series-parallel. One can observe that, from every diamond graph,
one can obtain a path with three vertices by repeatedly contracting a diamond.)

Noting that every biconnected series-parallel graph has a vertex of degree two,
one can easily observe that the following Lemma 3 holds. (Lemma 3 is also an
immediate consequence of Lemma 2.1 in [9] on general series-parallel graphs.)

Lemma 3. Every biconnected series-parallel graphG of∆ ≤ 3 has, as a subgraph,
one of the following three substructures (a)–(c):

(a) a diamond C;
(b) two adjacent vertices u and v such that d(u) = d(v) = 2; and
(c) a complete graph K3 of three vertices u, v and w such that d(v) = 2.

Our idea is to reduce the optimal drawing problem for a biconnected series-
parallel graph G to that for a smaller graph G′ as in the following Lemma 4.

Lemma 4. Let G be a biconnected series-parallel graph with n(G) ≥ 6.

(a) If G has a diamond C, then bend(G) = bend(G′) for G′ = G/C.
(b) If G has a substructure (b) in Lemma 3(b), then bend(G) = bend(G′) for

G′ = G− uv.
(c) If G has a substructure (c) in Lemma 3(c), then bend(G) = bend(G′)+1 for

G′ = G− v − uw.

From the proof of Lemma 4 we have the following algorithm Biconnected(G,
D) to find an optimal drawing D of a biconnected series-parallel graph G.

Biconnected(G, D);
begin

One may assume that n(G) ≥ 6 (otherwise, one can easily find an optimal
drawing D of G in linear time);
{ By Lemma 3 G has one of the three substructures (a)–(c) in Lemma 3. }
Case 1: G has a diamond C;
Let G′ = G/C; { G′ is a biconnected series-parallel graph. }
Biconnected(G′, D′);
Extend an optimal drawing D′ of G′ to an optimal drawing D of G simply
by replacing vC by a rectanglar drawing of C;

Case 2: G has no diamond, but has a substructure (b);
Let G′ = G− uv;
{ G′ is a 2-legged series-parallel graph with terminals u and v, and is not
a diamond graph. }
Find an optimal U-shaped drawing D′

U of G′ by Non-Diamond;
{ cf. Lemma 2 }

Extend D′
U to an optimal drawing D of G by drawing uv as a straight

line segment; { cf. Lemma 4 }
Case 3:G has neither a diamond nor a substructure (b), but has a substructure

(c);

174 X. Zhou and T. Nishizeki

Let G′ = G− v − uw;
{ G′ is a 2-legged series-parallel graph with terminals u and w, and is not
a diamond graph. }
Find an optimal U-shaped drawing D′

U of G′ by Non-Diamond;
Extend D′

U to an optimal drawing D of G by drawing K3 = uvw as a
rectangle with one bend; { cf. Lemma 4 }

end

All substructures (a)–(c) can be found total in time O(n) by a standard book-
keeping method to maintain all degrees of vertices together with all paths of length
two with an intermediate vertex of degree two. One can thus observe that Bicon-
nected can be executed in linear time.

We thus have the following theorem.

Theorem 1. An optimal orthogonal drawing of a series-parallel biconnected graph
G of ∆ ≤ 3 can be found in linear time.

4 Conclusions

In this paper, we gave a linear algorithm to find an optimal orthogonal drawing of a
series-parallel graphG of∆ ≤ 3 in the variable embeddings setting. Our algorithm
works well even if G has multiple edges or is not biconnected, and is simpler and
faster than the previously known one for biconnected series-parallel simple graphs
[4, 5]. One can easily extend our algorithm so that it finds an optimal orthogonal
drawing of a partial 2-tree of∆ ≤ 3. Note that the so-called block-cutvertex graph
of a partial 2-tree is a tree although the block-cutvertex graph of a series-parallel
graph is a path. One can prove that bend(G) ≤ �n(G)/3� for every biconnected
series-parallel graph and bend(G) ≤ (n(G) + 4)/3 for every series-parallel graph.
The bounds on bend(G) are best possible.

In an orthogonal grid drawing, every vertex has an integer coordinate. The size
of an orthogonal grid drawing is the sum of width and height of the minimum axis-
parallel rectangle enclosing the drawing. One can prove that every biconnected
series-parallel graph G of ∆ ≤ 3 has an optimal orthogonal grid drawing of size
≤ 2N/3 + 1, where N = n(G) + bend(G).

It is left as a future work to obtain a linear algorithm for a larger class of planar
graphs.

Acknowledgments. We thank Dr. Md. Saidur Rahman for fruitful discussions.

References

1. P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia and I. G. Tollis, How to
draw a series-parallel digraph, Porc. of SWAT ’92, pp. 272-283, 1992.

2. F. Brandenburg, D. Eppstein, M. T. Goodrich, S. Kobourov, G. Liotta and P.
Mutzel, Selected open problems in graph drawings, Proc. of GD ’03, LNCS, 1912,
pp. 515-539, 2004.

Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends 175

3. G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing: Algorithm
for the Visualization of Graphs, Prentice-Hall Inc., Upper Saddle River, New Jersey,
1999.

4. G. Di Battista, G. Liotta and F. Vargiu, Spirality and optimal orthogonal drawings,
Tech. Rept. 07.94, Dipartimento di Informatica e Sistemistica, Universita’ di Roma
“La Sapienza,” 1994.

5. G. Di Battista, G. Liotta and F. Vargiu, Spirality and optimal orthogonal drawings,
SIAM J. Comput., 27(6), pp. 1764–1811, 1998.

6. A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to
graph drawing, Proc. of GD ’96, LNCS, 1190, pp. 201–226, 1997.

7. A. Garg and R. Tamassia, On the computational complexity of upward and rectilinear
planarity testing, SIAM J. Comput., 31(2), pp. 601–625, 2001.

8. S. H. Hong, P. Eades and S. H. Lee, Drawig series-parallel digraphs symmetrically,
Comput. Geom., 17, pp. 165–188, 2000.

9. M. Juvan, B. Mohar and R. Thomas, List edge-colorings of series-parallel graphs,
The Electronic J. Combinatorics, 6(42), pp. 1–6, 1999.

10. T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific, Singapore,
2004.

11. K. Nomura, S. Taya and S. Ueno, On the orthogonal drawing of outerplanar graphs,
Proc. of COCOON ’04, LNCS, 3106, pp. 300–308, 2004.

12. M. S. Rahman, N. Egi and T. Nishizeki, No-bend orthogonal drawings of subdivisions
of planar triconnected cubic graphs, IEICE Trans. Inf. & Syst., E88-D(1), pp. 23-30,
2005.

13. M. S. Rahman and T. Nishizeki, Bend-minimum orthogonal drawings of plane 3-
graphs, Proc. of WG ’02, LNCS, 2573, pp. 265–276, 2002.

14. M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular grid drawings of plane
graphs, Comp. Geom. Theo. App., 10(3), pp. 203–220, 1998.

15. M. S. Rahman, S. Nakano and T. Nishizeki, A linear algorithm for bend-optimal
orthogonal drawings of triconnected cubic plane graphs, J. of Graph Alg. App., 3(4),
pp. 31-62, 1999.

16. M. S. Rahman, S. Nakano and T. Nishizeki, Box-rectangular drawings of plane
graphs, J. of Algorithms, 37, pp. 363–398, 2000.

17. M. S. Rahman, S. Nakano and T. Nishizeki, Orthogonal drawings of plane graphs
without bends, J. of Graph Alg. App., 7(4), pp. 335–362, 2003.

18. J. Storer, On minimum node-cost planar embeddings, Networks, 14, pp. 181–212,
1984.

19. R. Tamassia, On embedding a graph in the grid with the minimum number of bends,
SIAM J. Comput., 16, pp. 421–444, 1987.

20. K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combinato-
rial problems on series-parallel graphs, J. Assoc. Comput. Mach., 29, pp. 623–641,
1982.

Bisecting a Four-Connected Graph
with Three Resource Sets

Toshimasa Ishii1, Kengo Iwata2, and Hiroshi Nagamochi3

1 Department of Information and Computer Sciences,
Toyohashi University of Technology,

Aichi 441-8580, Japan
ishii@ics.tut.ac.jp

2 Mazda Motor Corporation,
Hiroshima 730-8670, Japan

3 Department of Applied Mathematics and Physics,
Graduate School of Informatics,

Kyoto University,
Kyoto 606-8501, Japan

nag@amp.i.kyoto-u.ac.jp

Abstract. Let G = (V, E) be an undirected graph with a node set V
and an arc set E. G has k pairwise disjoint subsets T1, T2, . . . , Tk of
nodes, called resource sets, where |Ti| is even for each i. The partition
problem with k resource sets asks to find a partition V1 and V2 of the
node set V such that the graphs induced by V1 and V2 are both connected
and |V1 ∩ Ti| = |V2 ∩ Ti| = |Ti|/2 holds for each i = 1, 2, . . . , k. The
problem of testing whether such a bisection exists is known to be NP-
hard even in the case of k = 1. On the other hand, it is known that
that if G is (k + 1)-connected for k = 1, 2, then a bisection exists for
any given resource sets, and it has been conjectured that for k ≥ 3, a
(k + 1)-connected graph admits a bisection. In this paper, we show that
for k = 3, the conjecture does not hold, while if G is 4-connected and
has K4 as its subgraph, then a bisection exists and it can be found in
O(|V |3 log |V |) time. Moreover, we show that for an arc-version of the
problem, the (k + 1)-edge-connectivity suffices for k = 1, 2, 3.

1 Introduction

In this paper, we consider the following graph partition problems: given an undi-
rected graph G = (V,E) with a set V of nodes a set E of arcs, and k pairwise
disjoint sets T1, T2, . . . , Tk of nodes, called resource sets, where each |Ti| is even,
find a partition V1 and V2 of V such that the graphs induced by V1 and V2 are
both connected and |V1 ∩ Ti| = |V2 ∩ Ti| = |Ti|/2 holds for each i = 1, 2, . . . , k.
This problem is called the bisection problems with k resource sets, and such a
bisection is called k-bisection (with respect to T1, . . . , Tk).

Such a problem of partitioning a graph into connected subgraphs under fair-
division type of constraints appears in many applications such as political dis-
tricting [1,7,13], the paging system in operating systems [11] and the image

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 176–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bisecting a Four-Connected Graph with Three Resource Sets 177

(a) (b)

Fig. 1. Illustration of instances of 4-connected graphs which have no 3-bisection, where
T1 = {v1, v2}, T2 = {v3, v4}, and T3 = {v5, v6} in both (a) and (b). Note that the graph
(b) is also 5-connected.

processing [6]. For the political districting, a dual graph of the map which con-
sists of regions is required to be divided into connected subgraphs, each of which
represents an electoral zone, so that both the area and the number of voters in
each zone is balanced over all zones.

So far, for general graphs, the problem was shown to be NP-hard even if k = 1
holds, since it is NP-hard to test whether a 1-bisection exists or not [3,4]. On the
other hand, when k = 1, 2, it was shown that if a given graph is (k+1)-connected,
then for any given resource sets, such a k-bisection exists and it can be found in
linear time for k = 1 by Suzuki et al. [10] and by Wada and Kawaguchi [12], and
in O(|V |2 log |V |) time for k = 2 by Nagamochi et al. [9]. For a general k ≥ 3, to
our knowledge, any nontrivial sufficient condition for which a k-bisection exists
is not known, while it was conjectured in [9] that every (k+ 1)-connected graph
admits a k-bisection.

In this paper, we consider the case of k = 3. We first show that there exist
4-connected graphs which have no 3-bisection, as shown in Figure 1. Indeed, in
both graphs, it is not difficult to observe that for any partition V1 and V2 of V
bisecting each Ti, V1 or V2 do not induce a connected graph. This indicates a
negative answer to the above conjecture for k = 3. In particular, the graph in
Figure 1(b) is also 5-connected, which shows that even 5-connected graphs may
have no 3-bisection (this also indicates a negative answer to the above conjec-
ture for k = 4). Instead, in this paper, we give a sufficient condition for which a
3-bisection exists; we prove that if G is 4-connected and has a complete graph
K4 of four nodes as its subgraph, then a 3-bisection exists. We also show that
it can be found in O(|V |3 log |V |) time. A key technique of the proof, which
is an extension of the method by Nagamochi et al. [9], is a reduction of the
problem to a geometrical problem. We first prove that every 4-connected graph
containing a complete graph K∗ of four nodes as its subgraph can be embedded

178 T. Ishii, K. Iwata, and H. Nagamochi

in the 3-dimensional space &3, in such a way that the following (i)(ii) hold: (i)
the convex hull of its nodes is a trigonal pyramid corresponding to the K∗, (ii)
every node not in K∗ is in the convex hull of its neighbors (precise definition
is given in Section 2.2). This will guarantee that, for any given plane H in
&3, each of the two subgraphs of G separated by H remains connected. Given
such an embedding in &3, we apply the so-called ham-sandwich cut algorithm,
which is well known in computational geometry, to find a plane H∗ that bisects
T1, T2, and T3 simultaneously. Consequently, the two subgraphs by the plane
H∗ indicates a 3-bisection. We give an algorithm for finding such a plane H∗ in
O(|V |3 log |V |) time.

Moreover, we consider an arc-version of the bisection problem; given an undi-
rected graph G = (V,E) and k pairwise disjoint sets T1, . . . , Tk of arcs, where
each |Ti| is even, find a partition E1 and E2 of E such that the graphs induced
by E1 and E2 are both connected and |E1 ∩ Ti| = |E2 ∩ Ti| = |Ti|/2 holds for
each i = 1, . . . , k. We call such a bisection k-bisection of the arc set. For this
problem, we show that a (k + 1)-edge-connected graph admits a bisection for
any given resource sets for k = 1, 2, 3.

The paper is organized as follows. Some definitions and preliminaries are
described in Section 2. Section 3 describes an algorithm for finding a 3-bisection
in a 4-connected graph with K4, and Section 4 proves its correctness. In Section
5, we make some remarks on the problem for a general k and discuss the arc-
version of the problem.

2 Preliminaries

Let G = (V,E) stand for an undirected simple graph with a set V of nodes and
a set E of arcs, where we denote |V | by n and |E| by m. A singleton set {x} may
be simply written as x, and “⊂” implies proper inclusion while “⊆” means “⊂”
or “=”. For a subgraph G′ of G, the sets of nodes and arcs in G′ are denoted
by V (G′) and E(G′), respectively. For a set X of nodes in G, a node v ∈ V −X
is called a neighbor of X if it is adjacent to some node in X , and the set of all
neighbors of X is denoted by NG(X).

For an arc e = (u, v), we denote by G/e the graph obtained from G by
contracting u and v into a single node (deleting any resulted self-loop), and
by G − e the graph obtained from G by removing e. We also say that G/e is
obtained from G by contracting the arc e. A graph G is k-connected if and only
if |V | ≥ k + 1 and the graph G−X obtained from G by removing any set X of
(k − 1) nodes remains connected. A graph G is k-edge-connected if and only if
the graph G−F obtained from G by removing any set F of (k−1) arcs remains
connected.

The main results of this paper are described as follows.

Theorem 1. Let G = (V,E) be a 4-connected graph which contains a complete
graph with four nodes as its subgraph. Let T1, T2, T3 be pairwise disjoint subsets
of V such that |Ti| is even for i = 1, 2, 3. Then G has a 3-bisection with respect
to T1, T2, and T3, and it can be found in O(n3 log n) time. ��

Bisecting a Four-Connected Graph with Three Resource Sets 179

Theorem 2. Let G = (V,E) be a (k + 1)-edge-connected graph with pairwise
disjoint subsets Ti, i = 1, . . . , k of E such that each |Ti| is even. If k = 1, 2, 3,
then a k-bisection of the arc set exists. ��

In the sequel, we first give a constructive proof of Theorem 1 by reducing the
problem to a geometrical problem as mentioned in Section 1. For this, we give
some geometric notations in the next two subsections.

2.1 Convex Hull and Ham-Sandwich Cut

Consider the d-dimensional space &d. For a non-zero a ∈ &d and a real b ∈ &1,
H(a, b) = {x ∈ &d | 〈a · x〉 = b} is called a hyperplane, where 〈a · x〉 denotes the
inner product of a, x ∈ &d. Moreover, H+(a, b) = {x ∈ &d | 〈a · x〉 ≥ b} (resp.,
H−(a, b) = {x ∈ &d | 〈a · x〉 ≤ b}) is called a positive closed half space (resp.,
negative closed half space) with respect to H = H(a, b).

For a set P = {x1, . . . , xk} of points in &d, a point x′ = α1x1 + · · · + αk

with
∑

i=1,...,k αi = 1 and αi ≥ 0, i = 1, . . . , k is called a convex combination
of P , and the set of all convex combinations of P is denoted by conv(P). If
P = {x1, x2}, then conv(P) is called a segment (connecting x1 and x2), denoted
by [x1, x2]. A subset S ⊆ &d is called a convex set if [x, x′] ⊆ S for any two points
x, x′ ∈ S. For a convex set S ⊆ &d, a point x ∈ S is called a vertex if there is no
pair of points x′, x′′ ∈ S − x such that x ∈ [x′, x′′]. For two vertices x1, x2 ∈ S,
the segment [x1, x2] is called an edge of S if αx′ + (1 − α)x′′ = x ∈ [x1, x2] for
some 0 ≤ α ≤ 1 implies x′, x′′ ∈ [x1, x2]. The intersection S of a finite number of
closed half spaces is called a convex polyhedron, and is called a convex polytope
if S is non-empty and bounded.

Given a convex polytope S in &d, the vertex-edge graph GS = (VS , ES) is
defined to be an undirected graph with node set VS corresponding to the vertices
of S and arc set ES corresponding to those pairs of vertices x, x′ for which [x, x′]
is an edge of S. For a convex polyhedron S, a hyperplane H(a, b) is called
a supporting hyperplane of S if H(a, b) ∩ S �= ∅ and either S ⊆ H+(a, b) or
S ⊆ H−(a, b). We say that a point p ∈ S is strictly inside S if there is no
supporting hyperplane of S containing p. If S has a point strictly inside S in
&d, S is called full-dimensional in &d. The set of points strictly inside conv(P)
is denoted by int(conv(P)).

Let P1, . . . , Pd be d sets of points in &d. We say that a hyperplaneH = H(a, b)
in &d bisects Pi if |Pi ∩H+(a, b)| ≥ �|Pi|/2� and |Pi ∩H−(a, b)| ≥ �|Pi|/2� hold.
Thus if |Pi| is odd, then any bisector H of Pi contains at least one point of Pi.
If H bisects Pi for each i = 1. . . . , d, then H is called a ham-sandwich cut with
respect to P1, . . . , Pd. The following result is well-known (see, e.g., [5]).

Theorem 3. Given d sets P1, . . . , Pd of points in the d-dimensional space &d,
there exists a hyperplane which is a ham-sandwich cut with respect to the sets
P1, . . . , Pd. ��

In [2], Chi-Yuan et al. showed that a ham-sandwich cut with respect to given
sets P1, P2, . . . , Pd of points in &d with

∑d
i=1 |Pi| = p can be found in O(p3/2)

180 T. Ishii, K. Iwata, and H. Nagamochi

time for d = 3, O(p8/3) time for d = 4, and O(pd−1−a(d)) time with certain small
constant a(d) > 0 for d ≥ 5.

2.2 Convex Embedding of a Graph

In this section, we introduce a strictly convex embedding of a graph in &d, which
was first defined by Nagamochi et al. [9].

Given a graphG = (V,E), an embedding of G in &d is an mapping f : V → &d,
where each node v is represented by a point f(v) ∈ &d, and each arc e = (u, v)
by a segment [f(u), f(v)], which may be written by f(e). For two arcs e, e′ ∈ E,
segments f(e) and f(e′) may cross each other. For a set {v1, . . . , vp} = Y ⊆ V
of nodes, we denote by f(Y) the set {f(v1), . . . , f(vp)} of points, and we denote
conv(f(Y)) by convf (Y).

A strictly convex embedding of a graph is defined as follows (see Figure 2).

Definition 1. [9] Let G = (V,E) be a graph without isolated nodes and let G′ =
(V ′, E′) be a subgraph of G. A strictly convex embedding (or SC-embedding, for
short) of G with boundary G′ is an embedding f of G into &d in such a way
that

(i) the vertex-edge graph of the full-dimensional convex polytope convf (V ′) is
isomorphic to G′ (such that f itself defines an isomorphism),

(ii) f(v) ∈ int(convf (NG(v))) holds for all nodes v ∈ V − V ′,
(iii) the points of {f(v) | v ∈ V } are in general position. ��

From this definition, we can see that the vertices of convf (V) are precisely the
points in the boundary f(V ′).

The following lemma implies that given an SC-embedding of G = (V,E)
into &d, each two sets of nodes obtained by bisecting f(V) with an arbitrary
hyperplane in &d induce connected graphs.

Lemma 1. [9, Lemma 4.2] Let G = (V,E) be a graph without isolated nodes
and let f be an SC-embedding of G into &d. Let f(V1) ⊆ H+(a, b) and f(V) ∩
(H+(a, b) − H(a, b)) ⊆ f(V1) hold for some hyperplane H = H(a, b) and for
some ∅ �= V1 ⊆ V . Then V1 induces a connected graph. ��

By Theorem 3 and this lemma, if there is an SC-embedding of a given graph
G = (V,E) into &k, then by bisecting the embedded graph with a hyperplane
which is a ham-sandwich cut with respect to T1, . . . , Tk, we can obtain a partition
V1 and V2 of V bisecting each Ti such that each Vj induces a connected graph,
that is, a k-bisection. Based on this observation, we give an algorithm for finding
a 3-bisection in the next section.

3 Algorithm for Bisecting Resource Sets

In this section, we give an algorithm, named BISECT3 for finding a 3-bisection
in a 4-connected graph with K4 in O(n3 logn) time, which proves Theorem 1.

Bisecting a Four-Connected Graph with Three Resource Sets 181

Algorithm BISECT3
Input: A 4-connected graph G = (V,E) which has a complete graph K with
4 nodes, and three pairwise disjoint node sets T1, T2, and T3 where each |Ti| is
even.
Output: A 3-bisection of G with respect to T1, T2, and T3.
Phase 1: Find an SC-embedding f of G with boundary K into &3.
Phase 2: By applying a ham-sandwich cut algorithm to f(V) in &3, find a
plane H in &3 which bisects T1, T2, and T3. Output the bisection {V1, V2} of V
divided by H . ��
As mentioned in Section 2.1, a ham-sandwich cut bisecting each Ti in &3 exists,
and it can be found in O(n3/2) time. Hence, for proving the correctness of algo-
rithm BISECT3, it suffices to show that Phase 1 can find an SC-embedding of
G with boundary K into &3 in O(n3 logn) time. In the next section, we give a
proof for this.

4 SC-Embedding of a Graph into �3

In this section, given a 4-connected graph G which contains a complete graph
with four nodes, denoted by K, we propose an algorithm, named EMBED3, for
finding an SC-embedding of G with boundary K into &3 in O(n3 logn) time.
Figure 2 shows an instance of such an SC-embedding of a 4-connected graph
into &3.

The algorithm EMBED3, which is an extension of the algorithm in &2 given
in [9], consists of two steps. First, we contract arcs in E − E(K), one by one,
while preserving the 4-connectivity until a complete graph G∗ with 5 nodes
containing K is obtained. Then we can easily obtain an SC-embedding f of G∗

with boundary K into &3; we find an embedding f ′ of V (K) by putting them in
general position (which shapes a trigonal pyramid), and we embed the node v

(a) (b)

Fig. 2. Illustration of an instance of an SC-embedding; (b) shows an SC-embedding of
the graph in (a) with boundary ({v1, v2, v3, v4}, 1≤i,j≤4(vi, vj)) into �3

182 T. Ishii, K. Iwata, and H. Nagamochi

with {v} = V (G∗)−V (K) in int(convf ′(V (K))). Next, by tracing the process of
the contraction reversely and embedding the contracted arcs into &3, we convert
the embedding f into the one for the original graph. The outline of algorithm
EMBED3 is described as follows.

Algorithm EMBED3
Input: A 4-connected graph G = (V,E) which has a complete graph K with 4
nodes.
Output: An SC-embedding of G with boundary K into &3.
Step 1: While |V (G)| ≥ 6 holds, execute the following procedure.

Find an arc e ∈ E(G) − E(K) such that G/e remains 4-connected, and con-
tract the arc e. Let G := G/e.
/** The current graph G obtained by Step 1 is a complete graph with 5 nodes
containing K. **/
Step 2: Embed G into &3 so that its embedding is an SC-embedding f with
boundary K. Next, by tracing the process of the contraction in Step 1 reversely
and embedding the contracted arcs into &3, one by one, we convert the embed-
ding f into the one for the original graph. ��

In the subsequent sections, we prove the correctness of algorithm EMBED3
by describing the details for each step. The analysis of the time complexity is
omitted due to space limitation.

4.1 Correctness of Step 1

We give a proof of the following theorem for the correctness of Step 1.

Theorem 4. Let G = (V,E) be a 4-connected graph which has a complete graph
K with 4 nodes. Then there exists an arc e ∈ E − E(K) such that G/e is 4-
connected. ��

We first introduce the following preparatory theorem about the contraction
of arcs in 4-connected graphs.

Definition 2.A graph G is called uncontractible k-connected if G is k-connected
and G/e is not k-connected for any arc e ∈ E(G). ��

Theorem 5. [8] A graph G is uncontractible 4-connected if and only if G sat-
isfies the following properties:
(i) G is 4-connected,
(ii) the degree of each node in V (G) is exactly 4, and
(iii) for each arc (u, v) ∈ E(G), there exists a node w ∈ V (G) − {u, v} with
{(u,w), (v, w)} ⊆ E(G). ��

Proof of Theorem 4. Let V1 = V − V (K). We construct the new graph G∗ from
G = (V,E), defined as follows. V (G∗) = V1∪V (K)∪V2, where V2 is a copy of V1.
An arc (u1, u2) belongs to E(G∗) if and only if (a) (u1, u2) ∈ E, (b) u1, u2 ∈ V2

Bisecting a Four-Connected Graph with Three Resource Sets 183

and ui, i = 1, 2 is the copy of vi ∈ V1 such that (v1, v2) ∈ E, or (c) u1 ∈ V (K),
u2 ∈ V2, and u2 is the copy of v2 ∈ V1 such that (u1, v2) ∈ E. Note that G∗

is also 4-connected. Since |NG∗(v)| ≥ 5 holds for a node v ∈ V (K), Theorem 5
implies that G∗ has an arc e ∈ E(G∗) such that G∗/e is 4-connected. Without
loss of generality, let e ∈ E − E(K) (note that e /∈ E(K) since |V (K)| = 4 and
G∗ − V (K) is not connected).

We claim that G/e remains 4-connected, proving the theorem. Assume by
contradiction thatG/ewould have a node setX with |X | ≤ 3 such that (G/e)−X
is not connected. Then there is a component C	 of (G/e) − X with V (C) ⊆
V1 since K is the complete graph. Also in G∗/e, NG∗/e(V (C)) ⊆ X holds.
V (G∗/e) − V (C) −X �= ∅ and this contradict the 4-connectivity of G∗/e. �

4.2 Correctness of Step 2

In this section, for a graph G = (V,E) and a subgraphG1 of G, we consider a sit-
uation where a graph G/e obtained from G by contracting some arc e = (u1, u2)
with {u1, u2} − V (G1) �= ∅ has an SC-embedding f ′ of G/e with boundary G1
into &d. For proving the correctness of Step 2, we will show by the following
Lemma 2 that if |NG(ui)| ≥ d + 1 holds for i = 1, 2, then we can find an SC-
embedding of G with boundary G1 into &d. Since Step 1 in algorithm EMBED3
contracts arcs while preserving the 4-connectivity, it follows that the degree of
every node is always at least 4 in the current graph. Also note that any arc in
boundary K is not contracted through the algorithm. Hence, we can observe
that the following Lemma 2 proves the correctness of Step 2.

Lemma 2. Let G = (V,E) be a graph without isolated nodes and let f ′ be an
SC-embedding of G/e with boundary G1 into &d for an arc e = (u1, u2) with
{u1, u2} − V (G1) �= ∅. Assume that for each node ui, i = 1, 2, |NG(ui)| ≥ d+ 1
holds if ui ∈ V −V (G1). Then there is an SC-embedding of G with boundary G1
into &d. ��

Before proving Lemma 2, we give some notations and one preparatory lemma
for an embedding of a new point into &d. For a convex polyhedron S in &d, a
supporting hyperplane H of S is called a facet of S if the dimension of H ∩ S
is d − 1. It is well-known that every full-dimensional convex polyhedron can be
uniquely represented by all of its facets.

Definition 3. For a full-dimensional convex polyhedron S in &d, let x be a
vertex of S. Let Hx denote the family of all facets H(a, b) of S containing the
point x such that S ⊆ H+(a, b). Define the following polyhedron:

D(x, S) =
⋂

H(a,b)∈Hx
(H−(a, b) −H(a, b)). ��

Lemma 3. Let P be a set of points in &d such that conv(P) is full-dimensional,
and let x be a vertex of conv(P). Then for a point y ∈ &d, x ∈ int(conv(P ∪{y})
if and only if y ∈ D(x, conv(P)). ��

184 T. Ishii, K. Iwata, and H. Nagamochi

Proof of Lemma 2 (sketch). Let u∗ ∈ V (G/e) denote the node obtained by
contracting u1 and u2 in G. Without loss of generality, assume u2 ∈ V − V (G1)
(this is possible from the assumption {u1, u2} − V (G1) �= ∅). Hence |NG(u2)| ≥
d + 1 holds. We give a constructive proof of the lemma; we show a way of
finding an SC-embedding f of G with boundary G1 into &d. Let f(v) := f ′(v)
for each node v ∈ V (G/e) − {u∗} = V (G) − {u1, u2} and f(u1) := f ′(u∗).
Note that G1 also plays the role as G′ in Definition 1 (i), and that every node
v ∈ V (G) − V (G1) − (NG(u2) ∪ {u2}) satisfies v ∈ int(convf (NG(v))). We
prove this lemma by showing that u2 can be embedded so that each node v ∈
{u2}∪NG(u2)−V (G1) is strictly inside the convex hull of its neighbors. For the
convexity for u2, u2 ∈ int(convf (NG(u2))) must hold (the position of each node
v ∈ V (G)−{u2} has been fixed, so int(convf (NG(u2))) is well-defined). For the
convexity for each v ∈ NG(u2)−V (G1), u2 ∈ Dv must hold by Lemma 3, where
Dv = D(v, convf (NG(v) ∪ {v} − {u2})) if v is a vertex of convf (NG(v) ∪ {v}
−{u2}), Dv = &d otherwise. Hence it suffices to show that int(convf (NG(u2)))∩
(
⋂

v∈NG(u2)−V (G1)Dv) �= ∅ (we have only to embed u2 into this space).
Since |NG(u2)| ≥ d + 1 holds and the points of {f(v) | v ∈ NG(u2)} are in

general position, it follows that int(convf (NG(u2))) �= ∅. Similarly, we can prove
that for each v which is a vertex of convf (NG(v) ∪ {v} −{u2}), convf (NG(v) ∪
{v}−{u2}) is full-dimensional in &d and Dv �= ∅. Moreover, since each node v ∈
NG(u2) − {u1} satisfies v ∈ NG/e(u∗) and f(v) = f ′(v) ∈ int(convf ′(NG/e(v))),
it follows that

⋂
v∈NG(u2)−{u1}−V (G1)Dv contains the point f ′(u∗) = f(u1) and

points sufficiently close to f(u1). This and u1 ∈ NG(u2) indicate that D∗ =
int(convf (NG(u2)))∩ (

⋂
v∈NG(u2)−{u1}−V (G1)Dv) �= ∅ holds. Moreover, we have

int(convf (NG(u2))) ∩ Du1 �= ∅ since otherwise u1 /∈ V (G1) would hold and
f ′(u∗)(= f(u1)) would be on a facet of convf ′(NG/e(u∗)), contradicting that f ′

is an SC-embedding of G/e. Therefore, it follows that D∗ ∩Du1 contains points
sufficiently close to f(u1). �

5 Remarks

For k = 3, the following properties hold as a corollary of Theorem 1.

Corollary 1. Let G = (V,E) be a 4-connected graph and contain pairwise dis-
joint subsets T1, T2, T3 of V such that |Ti| is even for i = 1, 2, 3. Then, by adding
at most two extra arcs to G, a 3-bisection can be obtained. In particular, if G has
K3, then by adding at most one extra arc to G, a 3-bisection can be obtained. ��

As for a general k, we can observe from Theorem 3 and Lemma 1 that if an
SC-embedding of G into &k exists, then G admits a k-bisection with respect to
any family {T1, . . . , Tk} of resource sets. Lemma 2 implies that if

(a) G has a subgraph G1 which plays the role as G′ in Definition 1 (i),
(b) |NG(v)| ≥ k + 1 holds for each node v ∈ V (G) − V (G1), and
(c) we can continue contracting arcs not in E(G1) while preserving the above
(b) until a graph consisting of G1 and at most one extra node is obtained,

Bisecting a Four-Connected Graph with Three Resource Sets 185

then an SC-embedding of G with boundary G1 into &k can be found. Hence, a
sufficient condition for G to satisfy the above (a)–(c) indicates one for G to have
a k-bisection.

Finally, we give a proof of Theorem 2 about the arc-version of the bisection
problem. This can be done by using a reduction to the node-version of the
problem. LetG be a (k+1)-edge-connected graph. IfG has exactly k+1 arcs, then
it has exactly two nodes and it is trivial. Assume that |E(G)| > k+ 1. Let L(G)
denote the line graph of G, and VL(E′) ⊆ V (L(G)) denote the node set of L(G)
corresponding to an arc set E′ ⊆ E in G. Observe that {E1, E2} is a k-bisection
of the arc set with respect to {T1, . . . , Tk} in G if and only if {VL(E1), VL(E2)}
is a k-bisection of the node set with respect to {VL(T1), . . . , VL(Tk)} in L(G).
Moreover, if G is (k + 1)-edge-connected, then L(G) is (k + 1)-connected and
has Kk+1. As mentioned in Section 1 and Theorem 1, if k = 1, 2, 3, then L(G)
admits a k-bisection of the node set, and hence G also admits a k-bisection of
the arc set. Finally, we remark that there exist instances that have no feasible
partition unless G is (k + 1)-edge-connected for k = 1, 2, 3.

References

1. B. Bozkaya, G. Laporte, E. Erkut, A tabu search heuristic and adaptive memory
procedure for political districting, European J. Operational Research, 144 (2003),
12–26.

2. L. Chi-Yuan, J. Matoušek and W. Steiger, Algorithms for ham-sandwich cuts, Dis-
crete Comput. Geom., 11 (1994), 433–452.

3. J. Chléıková, Approximating the maximally balanced connected partition problem
in graphs, Information Processing Letters, 60 (1999), 225–230.

4. M. E. Dyer and A. M. Frieze, On the complexity of partitioning graphs into con-
nected subgraphs, Discrete Applied Mathematics, 10 (1985), 139–153.

5. H. Edelsbrunner, Algorithms in combinatorial geometry, Springer-Verlag, Berlin,
1987.

6. R. C. Gonzales and P. Wintz, Digital Image Processing, Publisher Addison-Wesley,
Reading, MA, 1977.

7. B. Hayes, Machine politics, American Scientist, 84 (1996), 522–526.
8. N. Martinov, A recursive characterization of the 4-connected graphs, Discrete Math-

ematics, 84 (1990), 105–108.
9. H. Nagamochi, T. Jordán, Y. Nakao, and T. Ibaraki, Convex embeddings bisecting

of 3-connected graphs, Combinatorica, 22(4) (2002), 537–554.
10. H. Suzuki, N. Takahashi, and T. Nishizeki, A linear algorithm for bipartition of

biconnected graphs, Information Processing Letters, 33 (1990), 227–232.
11. D. C. Tsichritzis and P. A. Bernstein, Operating Systems, Academic Press, New

York, 1981.
12. K. Wada and K. Kawaguchi, Efficient algorithms for tripartitioning triconnected

graphs and 3-edge-connected graphs, Lecture Notes in Comput. Sci., 790, Springer,
Graph-theoretic concepts in computer science, 1994, 132–143.

13. J. C. Williams Jr, Political redistricting: a review, Papers in Regional Science, 74
(1995), 12–40.

Laminar Structure of Ptolemaic Graphs and Its
Applications

Ryuhei Uehara1 and Yushi Uno2

1 School of Information Science, Japan Advanced
Institute of Science and Technology (JAIST), Ishikawa, Japan

uehara@jaist.ac.jp
2 Department of Mathematics and Information Sciences,

Graduate School of Science, Osaka Prefecture University, Sakai, Japan
uno@mi.s.osakafu-u.ac.jp

Abstract. Ptolemaic graphs are graphs that satisfy the Ptolemaic inequality for
any four vertices. The graph class coincides with the intersection of chordal
graphs and distance hereditary graphs, and it is a natural generalization of block
graphs (and hence trees). In this paper, a new characterization of ptolemaic
graphs is presented. It is a laminar structure of cliques, and leads us to a
canonical tree representation, which gives a simple intersection model for
ptolemaic graphs. The tree representation is constructed in linear time from a
perfect elimination ordering obtained by the lexicographic breadth first search.
Hence the recognition and the graph isomorphism for ptolemaic graphs can be
solved in linear time. Using the tree representation, we also give an O(n) time
algorithm for the Hamiltonian cycle problem.

Keywords: algorithmic graph theory, data structure, Hamiltonian cycle, intersec-
tion model, ptolemaic graphs.

1 Introduction

Recently, many graph classes have been proposed and studied [2,10]. Among them, the
class of chordal graphs is classic and widely investigated. One of the reasons is that the
class has a natural intersection model and hence a concise tree representation; a graph is
chordal if and only if it is the intersection graph of subtrees of a tree. The tree representa-
tion can be constructed in linear time, and it is called a clique tree since each node of the
tree corresponds to a maximal clique of the chordal graph (see [17]). Another reason is
that the class is characterized by a vertex ordering called a perfect elimination ordering.
The ordering can also be computed in linear time, and a typical way to find it is called the
lexicographic breadth first search (LBFS) introduced by Rose, Tarjan, and Lueker [16].
The LBFS is also widely investigated as a tool for recognizing several graph classes (see
a comprehensive survey by Corneil [6]). Using those characterizations, many efficient
algorithms have been established for chordal graphs (see, e.g., [9]).

Distance in graphs is one of the most important topics in algorithmic graph theory.
The class of distance hereditary graphs was introduced by Howorka to deal with the
distance property called isometric [12]. For the class, some characterizations are inves-
tigated [1,8,11], and many efficient algorithms have been proposed (see, e.g., [5,4,14]).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 186–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Laminar Structure of Ptolemaic Graphs and Its Applications 187

However, the recognition of distance hereditary graphs in linear time is not simple;
Hammer and Maffray’s algorithm [11] fails in some cases, and Damiand, Habib, and
Paul’s algorithm [7] requires to build a cotree in linear time (see [7, Chapter 4] for
further details), where the cotree can be constructed in linear time by using recent algo-
rithm with multisweep LBFS approach by Bretscher, Corneil, Habib, and Paul [3].

In this paper, we focus on the class of ptolemaic graphs. Ptolemaic graphs are graphs
that satisfy the Ptolemaic inequality d(x, y)d(z,w) ≤ d(x, z)d(y,w) + d(x,w)d(y, z) for
any four vertices x, y, z,w 1. Howorka showed that the class of ptolemaic graphs coin-
cides with the intersection of the class of chordal graphs and the class of distance hered-
itary graphs [13]. On the other hand, the class of ptolemaic graphs is a natural general-
ization of block graphs, and hence trees (see [19] for the relationships between related
graph classes). However, there are relatively few known results specified to ptolemaic
graphs. The reason seems that the ptolemaic graphs have no useful characterizations
from the viewpoint of the algorithmic graph theory.

We propose a tree representation of ptolemaic graphs which is based on the laminar
structure of cliques of a ptolemaic graph. The tree representation also gives a natural
intersection model for ptolemaic graphs, which is defined over directed trees. The tree
representation can be constructed in linear time. The construction algorithm can also
be modified to a recognition algorithm which runs in linear time. It is worth remarking
that the algorithm is quite simple, especially, much simpler than the combination of two
recognition algorithms for chordal graphs and distance hereditary graphs. Moreover, the
tree representation is canonical up to isomorphism. Hence, using the tree representation,
we can solve the graph isomorphism problem for ptolemaic graphs in linear time.

The tree representation enables us to use the dynamic programming technique for
some problems on ptolemaic graphs G = (V, E). It is sure that the Hamiltonian cycle
problem is one of most well known NP-hard problem, and it is still NP-hard even for a
chordal graph, and that an O(|V | + |E|) time algorithm is known for distance hereditary
graphs [14]. Here, we show that the Hamiltonian cycle problem can be solved in O(|V |)
time using the technique if a ptolemaic graph is given in the tree representation.

Due to space limitation, some proofs are omitted, and can be found at http://
www.jaist.ac.jp/˜uehara/pdf/ptolemaic2.pdf .

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V, E) is the set NG(v) = {u ∈ V |
{u, v} ∈ E}, and the degree of a vertex v is |NG(v)| and is denoted by degG(v). For a
subset U of V , we denote by NG(U) the set {v ∈ V | v ∈ N(u) for some u ∈ U}. If no
confusion can arise we will omit the index G. Given a graph G = (V, E) and a subset
U of V , the induced subgraph by U, denoted by G[U], is the graph (U, E′), where
E′ = {{u, v} | u, v ∈ U and {u, v} ∈ E}. Given a graph G = (V, E), its complement is
defined by Ē = {{u, v} | {u, v} � E}, and is denoted by Ḡ = (V, Ē). A vertex set I is an
independent set if G[I] contains no edges, and then the graph Ḡ[I] is said to be a clique.

1 The inequality is also known as “Ptolemy” inequality which seems to be more popular. We
here use “Ptolemaic” stated by Howorka [13].

188 R. Uehara and Y. Uno

Given a graph G = (V, E), a sequence of the distinct vertices v1, v2, . . . , vl is a path,
denoted by (v1, v2, . . . , vl), if {v j, v j+1} ∈ E for each 1 ≤ j < l. The length of a path is
the number of edges on the path. For two vertices u and v, the distance of the vertices,
denoted by d(u, v), is the minimum length of the paths joining u and v. A cycle is a path
beginning and ending with the same vertex. A cycle is said to be Hamiltonian if it visits
every vertex in a graph exactly once.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is
a chord of that cycle. A graph is chordal if each cycle of length at least 4 has a chord.
Given a graph G = (V, E), a vertex v ∈ V is simplicial in G if G[N(v)] is a clique in G.
An ordering v1, . . . , vn of the vertices of V is a perfect elimination ordering (PEO) of
G if the vertex vi is simplicial in G[{vi, vi+1, . . . , vn}] for all i = 1, . . . , n. Once a vertex
ordering is fixed, we denote N(v j) ∩ {vi+1, . . . , vn} by N>i(v j). It is known that a graph
is chordal iff it has a PEO (see [2]). A typical way of finding a PEO of a chordal graph
in linear time is the lexicographic breadth first search (LBFS), which is introduced by
Rose, Tarjan, and Lueker [16], and a comprehensive survey is presented by Corneil [6].

It is also known that a graph G = (V, E) is chordal iff it is the intersection graph of
subtrees of a tree T (see [2]). Let Tv denote the subtree of T corresponding to the vertex
v in G. Then we can assume that each node c in T corresponds to a maximal clique C of
G such that C contains v on G iff Tv contains c on T . Such a tree T is called a clique tree
of G. From a PEO of a chordal graph G, we can construct a clique tree of G in linear
time [17].

Given a graph G = (V, E) and a subset U of V , an induced connected subgraph
G[U] is isometric if the distances in G[U] are the same as in G. A graph G is distance
hereditary if G is connected and every induced path in G is isometric.

A connected graph G is ptolemaic if for any four vertices u, v,w, x of G,
d(u, v)d(w, x) ≤ d(u,w)d(v, x) + d(u, x)d(v,w). We will use the following characteri-
zation of ptolemaic graphs due to Howorka [13]:

Theorem 1. The following conditions are equivalent: (1) G is ptolemaic; (2) G is dis-
tance hereditary and chordal; (3) for all distinct nondisjoint maximal cliques P,Q of G,
P ∩ Q separates P \ Q and Q \ P.

Let V be a set of n vertices. Two sets X and Y are said to be overlapping if X∩Y � ∅,
X \ Y � ∅, and Y \ X � ∅. A family F ⊆ 2V \ {{∅}} is said to be laminar if F contains
no overlapping sets; that is, for any pair of two distinct sets X and Y in F satisfy either
X ∩ Y = ∅, X ⊂ Y, or Y ⊂ X. Given a laminar family F , we define laminar digraph
−→
T (F) = (F ,−→EF) as follows; −→EF contains an arc (X, Y) iff X ⊂ Y and there are no other
subset Z such that X ⊂ Z ⊂ Y, for any sets X and Y. We denote the underlying graph
of −→T (F) by T (F) = (F , EF). The following two lemmas for the laminar digraph are
known (see, e.g., [15, Chapter 2.2]);

Lemma 1. (1) T (F) is a forest. (2) If a familyF ⊆ 2V is laminar, we have |F | ≤ 2|V |−1.

Hence, hereafter, we call T (F) (−→T (F)) a (directed) laminar forest. We regard each
maximal (directed) tree in the laminar forest T (F) (−→T (F)) as a (directed) tree rooted at
the maximal set, whose outdegree is 0 in −→T (F). We define a label of each node S 0 in
−→
T (F), denoted by �(S 0), as follows: If S 0 is a leaf, �(S 0) = S 0. If S 0 is not a leaf and

Laminar Structure of Ptolemaic Graphs and Its Applications 189

has children S 1, S 2, . . . , S h, �(S 0) = S 0 \ (S 1 ∪ S 2 ∪ · · · ∪ S h). Since F is laminar, each
vertex in V appears exactly once in �(S) for some S ⊆ V , and its corresponding node is
uniquely determined.

3 A Tree Representation of Ptolemaic Graphs

3.1 A Tree Representation

For a ptolemaic graph G = (V, E), let M(G) be the set of all maximal cliques, i.e.,
M(G) := {M | M is a maximal clique in G}, and C(G) be the set of nonempty vertex
sets defined below: C(G) :=

⋃
S⊆M(G){C | C = ∩M∈S M,C � ∅}. Each vertex set C ∈

C(G) is a nonempty intersection of some maximal cliques. Hence, C(G) contains all
maximal cliques, and each C in C(G) induces a clique. We also denote by L(G) the
set C(G) \ M(G). That is, each vertex set L ∈ L(G) is an intersection of two or more
maximal cliques. The following properties are crucial.

Theorem 2. Let G = (V, E) be a ptolemaic graph. Let F be a family of sets in L(G)
such that ∪L∈F L ⊂ M for some maximal clique M ∈ M(G). Then F is laminar.

Proof. Omitted.
�

Lemma 2. Let C1,C2 be any overlapping sets in C(G) for a ptolemaic graph G =
(V, E). Then C1 ∩ C2 separates C1 \C2 and C2 \C1.

Proof. Omitted.
�

Now we define a directed graph−→T (C(G)) = (C(G), A(G)) for a given ptolemaic graph
G = (V, E) as follows: two nodes C1,C2 ∈ C(G) are joined by an arc (C1,C2) if and
only if C1 ⊂ C2 and there is no other C in C(G) such that C1 ⊂ C ⊂ C2. We denote by
T (C(G)) the underlying graph of −→T (C(G)).

Theorem 3. A graph G = (V, E) is ptolemaic if and only if the graph T (C(G)) is a tree.

Proof. Omitted.
�

Hereafter, given a ptolemaic graph G = (V, E), we call T (C(G)) (−→T (C(G))) a (di-
rected) clique laminar tree of G. We can naturally extend the label of a laminar for-
est to the directed clique laminar tree: Each node C0 in C(G) has a label �(C0) :=
C0 \ (C1 ∪C2 ∪ · · · ∪Ch), where (Ci,C0) is an arc on −→T (C(G)) for 1 ≤ i ≤ h. Intuitively,
we additionally define the label of a maximal clique as follows; the label of a maximal
clique is the set of vertices that are not contained in any other maximal cliques. We note
that for each vertex in G its corresponding node in T (C(G)) is uniquely determined by
maximal cliques. Therefore, we can define the mapping from each vertex to a vertex
set in C in T (C(G)): We denote by C(v) the clique C with v ∈ �(C). When we know
whether C(v) is in M or L, we specify it by writing CM(v) or CL(v). An example is
given in Figure 2 (for the given ptolemaic graph (a), the clique laminar tree (b) is ob-
tained after adding the vertices 16, 15, 14, 13, 12, 11, 10, 9, 8, and the clique laminar tree
(c) is obtained after adding all vertices). In Figure 2, each single rectangle represents

190 R. Uehara and Y. Uno

a non-maximal clique, each double rectangle represents a maximal clique, and each
rectangle contains its label.

We also note that from −→T (C(G)) with labels, we can reconstruct the original ptole-
maic graph uniquely up to isomorphism. That is, two ptolemaic graphs G1 and G2 are
isomorphic if and only if labeled −→T (C(G1)) is isomorphic to labeled −→T (C(G2)).

By Theorem 3, we obtain an intersection model for ptolemaic graphs as follows:

Corollary 1. Let −→T be any directed graph such that its underlying graph T is a tree. Let
T be any set of subtrees

−→
Tv such that

−→
Tv consists of a root C and all vertices reachable

from C in −→T . Then the intersection graph over T is ptolemaic. On the other hand, for
any ptolemaic graph, there exists such an intersection model.

Proof. The directed clique laminar tree −→T (C(G)) is the base directed graph of the inter-
section model. For each v ∈ V , we define the root C such that v ∈ �(C).
�

3.2 A Linear Time Construction of Clique Laminar Trees

The main theorem in this section is the following:

Theorem 4. Given a ptolemaic graph G = (V, E), the directed clique laminar tree
−→
T (C(G)) can be constructed in O(|V | + |E|) time.

We will make the directed clique laminar tree −→T (C(G)) by separating the vertices in
G into the vertex sets in C(G) =M(G) ∪ L(G).

We first compute (and fix) a PEO v1, v2, . . . , vn by the LBFS. The outline of our
algorithm is similar to the algorithm for constructing a clique tree for a given chordal
graph due to Spinrad in [17]. For each vertex vn, vn−1, . . . , v2, v1, we add it into the
tree and update the tree. For the current vertex vi, let v j := min{N>i(vi)}. Then, in
Spinrad’s algorithm [17], there are two cases to consider: N>i(vi) = C(v j) or N>i(vi) ⊂
C(v j). The first case is sipmle; just add vi into C(v j). In the second case, Spinrad’s
algorithm adds a new maximal clique C(vi) that consists of N>i(vi) ∪ {vi}. However,
in our algorithm, involved case analysis is required. For example, in the latter case,
the algorithm have to handle three vertex sets; two maximal cliques {vi} ∪ N>i(vi) and
C(v j) together with one vertex set N>i(vi) shared by them. In this case, intuitively, our
algorithm makes three distinct sets CM with �(CM) = {vi}, CL with �(CL) = N>i(vi),
and C with �(C) = C(v j) \ N>i(vi), and adds two arcs (CL,CM) and (CL,C); this means
that vi is in CM = N>i(vi) ∪ {vi}, C is a clique C(v j), and CL is the vertex set shared by
CM and C. However, our algorithm has to handle more complicated cases since the set
C(v j) (and hence N>i(vi)) can already be partitioned into some vertex sets.

In −→T (C(G)), each node C stores �(C). Hence each vertex in G appears exactly once in
the tree. To represent it, each vertex v has a pointer to the node C(v) in C(G) =M(G)∪
L(G). The detail of the algorithm is described as CLIQUELAMINARTREE shown in
Figure 1, and an example of the construction is depicted in Figure 2. In Figure 2, the
left-hand graph gives a ptolemaic graph, and the right-hand tree is the clique laminar
tree constructed according to the vertex ordering given in the figure. We show the
correctness and a complexity analysis of the algorithm.

We will use the following property of a PEO found by the LBFS of a chordal graph:

Laminar Structure of Ptolemaic Graphs and Its Applications 191

Fig. 1. A linear time algorithm for the clique laminar tree T of a ptolemaic graph G = (V, E)

Lemma 3. [6, Theorem 1] Let v1, v2, . . . , vn be a PEO found by the LBFS. Then i < j
implies max{N(vi)} ≤ max{N(v j)}.

We assume that Algorithm CLIQUELAMINARTREE is going to add vi, and let v j :=
min{N>i(vi)}. We will show that all possible cases are listed, and in each case, CLIQUE-
LAMINARTREE correctly manages the nodes inC(G) and their labels in O(deg(vi)) time.
The following lemma drastically decreases the number of possible cases, and simplifies
the algorithm.

Algorithm 1: CLT
Input : A ptolemaic graph G = (V, E) with a PEO v1, v2, . . . , vn obtained by the LBFS,
Output: A clique laminar tree T .
initialize T by the clique CM(vn) := {vn} and set the pointer from vn to CM(vn);1
for i := n − 1 down to 1 do2

let v j := min{N>i(vi)};3
switch condition of N>i(vi) do4

case (1) N>i(vi) = CM(v j)5
update �(CM(v j)) := �(CM(v j)) ∪ {vi} and

∣∣∣CM (v j)
∣∣∣ :=
∣∣∣CM(v j)

∣∣∣ + 1;6

set CM(vi) := CM (v j);7
case (2) N>i(vi) = CL(v j)8

make a new maximal clique CM (vi) with �(CM(vi)) := {vi} and9

|CM(vi)| :=
∣∣∣CL(v j)

∣∣∣ + 1;
add an arc (CL(v j),CM(vi));10

case (3) N>i(vi) ⊂ C(v j) and
∣∣∣�(C(v j))

∣∣∣ =
∣∣∣C(v j)

∣∣∣11
update �(C(v j)) := �(C(v j)) \ N>i(vi) and

∣∣∣�(C(v j))
∣∣∣ :=
∣∣∣�(C(v j))

∣∣∣ − |N>i(vi)|;12

make a new vertex set L := N>i(vi) with �(L) := N>i(vi) and |L| := |N>i(vi)|;13
make a new maximal clique CM (vi) with �(CM(vi)) = {vi} and14
|CM(vi)| := |L| + 1;
add arcs (L,C(v j)) and (L,CM(vi));15

case (4) N>i(vi) ⊂ C(v j) and
∣∣∣�(C(v j))

∣∣∣ <
∣∣∣C(v j)

∣∣∣16
make a new vertex set L := N>i(vi) with �(L) := N>i(vi) ∩ �(C(v j)) and17
|L| := |N>i(vi)|;
update �(C(v j)) := �(C(v j)) \ L and

∣∣∣�(C(v j))
∣∣∣ :=
∣∣∣�(C(v j))

∣∣∣ − |L|;18

make a new maximal clique CM (vi) with �(CM(vi)) = {vi} and19
|CM(vi)| = |L| + 1;
remove the arc (L′,C(v j)) with L′ ⊂ L and add an arc (L′, L);20
add arcs (L,C(v j)) and (L,CM(vi));21

end22
end23
set the pointer from vi to C(vi);24

end25
return T .26

192 R. Uehara and Y. Uno

16
5

3

2
4 6

8

10

7
1

16

12

6,4

9

11 φ

14

15

7

8

10

5

3

2

13 1

11

14
12

13

15 10

9

8
14

16,13,12,11

(a)

(b)

(c)

9

15

Fig. 2. A ptolemaic graph and its clique laminar tree

Lemma 4. Let vk be max{N>i(vi)}. We moreover assume that the set N>i(vi) has already
been divided into some distinct vertex sets L1, L2, . . . , Lh. Then, there is an ordering of
the sets such that vk ∈ L1 ⊂ L2 ⊂ · · · ⊂ Lh.

Proof. Omitted.
�

We here describe the outline of the proof of Theorem 4, and the details can be found
in Appendix. Since the graph G is chordal and the vertices are ordered in a PEO, N>i(vi)
induces a clique. By Lemma 4, we have three possible cases; (a) N>i(vi) = C(v j), (b)
N>i(vi) ⊂ C(v j) and there are no vertex sets in N>i(vi), and (c) N>i(vi) ⊂ C(v j) and there
are vertex sets L1 ⊂ L2 ⊂ · · · ⊂ Lh ⊂ N>i(vi). In the last case, we note that Lh � N>i(vi);
otherwise, we have v j ∈ Lh, or consequently, Lh = C(v j) = N>i(vi), which is case (a).
In case (a), we have two subcases; C(v j) is a maximal clique (i.e., N>i(vi) = CM(v j)) or
C(v j) is a non-maximal clique (i.e., N>i(vi) = CL(v j)).

In each case, careful analysis implies that the maintenance of the clique laminar tree
can be done in O(deg(vi)) time for each vi. Therefore the time complexity of CLIQUE-
LAMINARTREE is O(n + m), which completes the proof of Theorem 4.

4 Applications of Clique Laminar Trees

Theorem 5. The recognition problem for ptolemaic graphs can be solved in linear time.

Proof. Omitted.
�

Theorem 6. The graph isomorphism problem for ptolemaic graphs can be solved in
linear time.

Proof. Omitted.
�

We note that Theorem 5 is not new. Since a graph is ptolemaic iff it is chordal and
distance-hereditary [13], we have Theorem 5 by combining the results in [16,11,7,3].
We dare to state Theorem 5 to show that we can recognize if a graph is ptolemaic and
then construct its clique laminar tree at the same time in linear time, and the algorithm is
much simpler and more straightforward than the combination of known algorithms. (As
noted in Introduction, the linear time algorithm for recognition of distance hereditary
graphs is not so simple.)

Laminar Structure of Ptolemaic Graphs and Its Applications 193

Theorem 7. The Hamiltonian cycle problem for ptolemaic graphs can be solved in
O(n) time.

Due to space limitation, we describe the outline of the proof of Theorem 7.
We remind that −→T (C(G)) takes O(n) space. We first observe that if −→T (C(G)) contains

a vertex set C with |C| = 1, the vertex in C is a cutpoint of G, and hence G does not
have a Hamiltonian cycle. This condition can be checked in O(n) time over −→T (C(G)).
Hence, hereafter, we assume that G has no cutpoint, or equivalently, any vertex set C in
C satisfies |C| > 1.

Let L be a vertex set in C(G). Each vertex set L′ with (L, L′) ∈ A(G) is said to be
a child of L, and each vertex set L′′ with (L′′, L) ∈ A(G) is said to be a parent of L.
That is, a child L′ and a parent L′′ of L satisfy L′′ ⊂ L ⊂ L′. We define ancestors
and descendants for L as in ordinary trees. Note here that any node L in −→T (C(G)) is an
ancestor and descendant of itself. We denote by c(L) and p(L) the number of children
of L and the number of parents of L in −→T (C(G)), respectively. Hence c(M) = 0 for each
maximal clique M, and p(L) = 0 for each minimal vertex set L.

We first consider a minimal vertex set L with p(L) = 0. By Lemma 2, each L in
L(G) is a separator of G. It is easy to see that if we remove L from G, we have c(L)
connected components. Hence, if |L| < c(L), G cannot have a Hamiltonian cycle. On
the other hand, when |L| = c(L), any Hamiltonian cycle uses all vertices in L to connect
each connected component. This fact can be seen as follows; we first make a cycle of
length |L| in L, and next replace each edge by a path through the vertices in one vertex
set corresponding to a child of the node L. We say that we assign each edge to distinct
child of L. If |L| > c(L), we can construct a Hamiltonian cycle with |L| − c(L) edges in
G[L]. In this case, c(L) edges in L are assigned to construct a cycle, and |L| − c(L) edges
are left, which can be assigned in some other descendants. We then define the margin
m(L) by |L| − c(L) = |�(L)| − c(L). That is, if m(L) < 0, G has no Hamiltonian cycle, and
if m(L) > 0, we have m(L) edges in L which can be assigned in some descendants. We
note that a margin can be inherited only from an ancestor to an descendant.

We next define a distribution δ((Ci,C j)) of the margin, which is a function assigned to

each arc (Ci,C j) in −→T (C(G)). Let C1, . . . ,Ck be the children of L. Then for i = 1, 2, . . . , k
each arc (L,Ci) has a distribution δ((L,Ci)) with

∑k
i=1 δ((L,Ci)) = m(L). That is, each

child Ci inherits δ((L,Ci)) margins from L, and some descendants of Ci will consume
δ((L,Ci)) margins from L. The way to compute the distribution will be discussed later.

We then consider a vertex set C with p(C) > 0 and c(C) ≥ 0, that is, C is a vertex
set which is not minimal. Let P1, P2, . . . , Ph be parents of C and C1,C2, . . . ,Ck children
of C. That is, we have Pi ⊂ C ⊂ C j for each i and j with 1 ≤ i ≤ h = p(C) and
1 ≤ j ≤ k = c(C) (k = c(C) = 0 when C is maximal clique). We assume that δ((Pi,C))
are already defined for each Pi. In the case, we have to assign k edges in C to the children
of C. Each child will replace it by the path through all vertices in the child. We also
have one assigned edge from each parent, and some additional vertices from parents Pi

if δ((Pi,C)) > 0. Hence the margin m(C) is defined by |�(C)|+ h +
∑h

i=1 δ((Pi,C))− k =
|�(C)|+

∑h
i=1(δ((Pi,C))+1)−k. The distribution δ((C,Ci)) of the margin m(C) is defined

by a function with
∑k

i=1 δ((C,Ci)) = m(C).
Above discussion leads us to the following theorem:

194 R. Uehara and Y. Uno

Theorem 8. Let G = (V, E) be a ptolemaic graph. Then G has a Hamiltonian cycle if
and only if there exist feasible distributions of margins such that each vertex set C in C
satisfies m(C) ≥ 0.

Our linear time algorithm, sayA, runs on T (C(G));A collects the leaves in T (C(G)),
computes the margins, and repeats this process by computing the margin of C such that
all neighbors of C have been processed except exactly one neighbor. The outline of the
procedure for each vertex set C with parents P1, P2, . . . , Ph and children C1,C2, . . . ,Ck

is described as follows:
(1) When the vertex set C is a leaf of T (C(G)), C is a maximal clique in G, and hence
δ((P,C)) is set to 0, where P is the unique parent of C.
(2) When C is not a leaf of T (C(G)), let X be the only neighbor which is not processed.
Without loss of generality, we assume that either X = Ph or X = Ck. To simplify the
notation, we define h′ = h− 1 and k′ = k if X = Ph, and h′ = h and k′ = k− 1 if X = Ck.
We have three subcases, but the most complicated case is described below.

When C is not a maximal clique with k > 0 and h > 0, A first computes
the margin m(C) = |�(C)| +

∑h′
i=1(δ((Pi,C)) + 1) − k′. Next, A distributes the mar-

gin m(C) to the children C1, . . . ,Ck′ by computing δ′ := m(C) −
∑k′

i=1 δ((C,Ci)) =
|�(C)|+

∑h′
i=1(δ((Pi,C))+1)−

∑k′
i=1(δ((C,Ci))+1). The value δ′ indicates the margin that

can be consumed by X.
If X is a child Ck, A distributes all margins δ′ to X, or sets δ((C, X)) = δ′. Thus, in

this case, if δ′ < 0, G has no Hamiltonian cycles. When δ′ ≥ 0, A will use the margin
δ′ when it processes the vertex set X.

On the other hand, if X is a parent Ph, the margin will be distributed from X to C.
Hence, if δ′ < 0, the vertex C borrows margin δ′ from X which will be adjusted when
the vertex X is chosen by A. Thus A sets δ((X,C)) = −δ′ in this case. If δ′ ≥ 0, the
margin is useless since the parent X only counts the number of its children C, and does
not use their margins. Therefore,A does nothing.
(3) When C is the last node of the process; that is, every value of δ((C,C′)) or δ((C′,C))
for each neighbor C′ of C has been computed. In the case,A computes m(C) = |�(C)|+
∑h

i=1(δ((Pi,C))+1)−
∑k

i=1(δ((C,Ci))+1). If m(C) < 0, C does not have enough margin.
Hence G has no Hamiltonian cycle. Otherwise, every node has enough margin, and
hence G has a Hamiltonian cycle.

The correctness of A can be proved by a simple induction for the number of nodes
in −→T (C(G)) with Theorem 8. On the other hand, since T (C(G)) contains O(n) nodes, the
algorithm runs in O(n) time and space, which completes the proof of Theorem 7. We
note that the construction of a Hamiltonian cycle can be done simultaneously in O(n)
time and space.

5 Concluding Remarks

In this paper, we presented new tree representations (data structures) for ptolemaic
graphs. The result enables us to use the dynamic programming technique to solve some
basic problems on this graph class. We presented a linear time algorithm for the Hamil-
tonian cycle problem, as one of such typical examples. To develop such efficient algo-
rithms based on the dynamic programming for other problems are future works.

Laminar Structure of Ptolemaic Graphs and Its Applications 195

Acknowledgment

The authors thank Professor Hiro Ito, who pointed out a flaw in our polynomial time
algorithm for finding a longest path in a ptolemaic graph stated in [18]. That motivated
us to investigate the problems in this paper.

References

1. H.-J. Bandelt and H.M. Mulder. Distance-Hereditary Graphs. J. of Combinatorial Theory,
Series B, 41:182–208, 1986.

2. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.
3. A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time LexBFS Cograph

Recognition Algorithm. In Graph-Theoretic Concepts in Computer Science (WG 2003),
pages 119–130. LNCS Vol. 2880, Springer-Verlag, 2003.

4. H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill-in and
treewidth for distance hereditary graphs. Discrete Applied Mathematics, 99:367–400, 2000.

5. M.-S. Chang, S.-Y. Hsieh, and G.-H. Chen. Dynamic Programming on Distance-Hereditary
Graphs. In Proceedings of 8th International Symposium on Algorithms and Computation
(ISAAC ’97), pages 344–353. LNCS Vol. 1350, Springer-Verlag, 1997.

6. D.G. Corneil. Lexicographic Breadth First Search — A Survey. In Graph-Theoretic Con-
cepts in Computer Science (WG 2004), pages 1–19. LNCS Vol. 3353, Springer-Verlag, 2004.

7. G. Damiand, M. Habib, and C. Paul. A Simple Paradigm for Graph Recognition: Application
to Cographs and Distance Hereditary Graphs. Theoretical Computer Science, 263:99–111,
2001.

8. A. D’Atri and M. Moscarini. Distance-Hereditary Graphs, Steiner Trees, and Connected
Domination. SIAM J. on Computing, 17(3):521–538, 1988.

9. F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by
Cliques, and Maximum Independent Set of a Chordal Graph. SIAM J. on Computing,
1(2):180–187, 1972.

10. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathe-
matics 57. Elsevier, 2nd edition, 2004.

11. P.L. Hammer and F. Maffray. Completely Separable Graphs. Discrete Applied Mathematics,
27:85–99, 1990.

12. E. Howorka. A Characterization of Distance-Hereditary Graphs. Quart. J. Math. Oxford (2),
28:417–420, 1977.

13. E. Howorka. A Characterization of Ptolemaic Graphs. J. of Graph Theory, 5:323–331, 1981.
14. R.-W. Hung and M.-S. Chang. Linear-time algorithms for the Hamiltonian problems on

distance-hereditary graphs. Theoretical Computer Science, 341:411–440, 2005.
15. B. Korte and J. Vygen. Combinatorial Optimization, volume 21 of Algorithms and Combi-

natorics. Springer, 2000.
16. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on

Graphs. SIAM J. on Computing, 5(2):266–283, 1976.
17. J.P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.
18. R. Uehara and Y. Uno. Efficient Algorithms for the Longest Path Problem. In 15th Annual

International Symposium on Algorithms and Computation (ISAAC 2004), pages 871–883.
LNCS Vol.3341, Springer-Verlag, 2004.

19. H.-G. Yeh and G.J. Chang. Centers and medians of distance-hereditary graphs. Discrete
Mathematics, 265:297–310, 2003.

On the Complexity of the G-Reconstruction
Problem

Zdeněk Dvořák and Vı́t Jeĺınek

Department of Applied Mathematics, Charles University,
Malostranské Náměst́ı 25, 118 00 Praha 1
{rakdver, jelinek}@kam.mff.cuni.cz

Abstract. Let G be a fixed undirected graph. The G-structure of a
graph F is the hypergraph H with the same set of vertices as F and
with the property that a set h is a hyperedge of H if and only if the
subgraph of F induced on h is isomorphic to G. For a fixed parameter
graph G, we consider the complexity of determining whether for a given
hypergraph H there exists a graph F such that H is the G-structure of
F . It has been proven that this problem is polynomial if G is a path
with at most 4 vertices ([9], [10]). We investigate this problem for larger
graphs G and show that for some G the problem is NP-complete – in
fact we prove that it is NP-complete for almost all graphs G.

1 Introduction and Basic Definitions

In this paper, we study the complexity of a decision problem related to the
existence of a graph with a prescribed set of induced subgraphs of a given kind.

All the graphs considered in this paper are simple undirected graphs without
multiple edges or loops. If G = (V,E) is a graph and h a subset of V , let G[h]
denote the subgraph of G induced by h, i.e., G[h] =

(
h,E ∩

(
h
2

))
. The vertex

connectivity of G is denoted by κ(G).
A hypergraph H = (V,E) is an ordered pair consisting of a vertex set V

and a set of hyperedges E ⊆ 2V . A hypergraph H is called k-uniform if every
hyperedge of H has size k. Let G be a graph on k vertices. The G-structure of
a graph F with vertex set V is the k-uniform hypergraph whose vertex set is V
and whose edges are exactly the sets h ⊆ V such that F [h] is isomorphic to G.
If H is the G-structure of F , we say that F is a G-realization of H .

The G-reconstruction problem for a fixed graph G is defined as follows:

Input: a k-uniform hypergraph H , where k = |V (G)|.
Question: does a G-realization F of the hypergraph H exist?

This question is related to the general problem of reconstructing a graph from
information about its smaller parts (see [1] and [2] for examples of this kind of
problems). Another motivation for this problem stems from the Semi-Strong Per-
fect Graph Theorem, which states that if two graphs have the same P4-structure
(where P4 is a path on four vertices), then either both of them are perfect or nei-
ther of them is ([7]). Therefore, to recognize perfect graphs, it suffices to be able

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 196–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Complexity of the G-Reconstruction Problem 197

to recognize the P4-structures corresponding to perfect graphs. This observation
motivated Chvátal to ask whether the P4-reconstruction problem can be solved
in polynomial time. This stimulated a lot of research in the area, see for example
[5], [6] or [8]. The question was finally answered by Hayward et al. ([10]), who
proved that there exists a polynomial time algorithm for this problem.

The P3-reconstruction problem can also be solved in polynomial time by [9],
and it is easy to see that also for all other graphs on three vertices. This led Hay-
ward et al. ([10]) to ask whether there is a graphG such that theG-reconstruction
problem is NP-complete.

In this paper, we prove that the G-reconstruction problem is NP-complete for
many graphs G (in fact it is NP-complete for a sufficiently large random graph
G with high probability). The smallest graph for which we are able to prove
the problem to be NP-complete is K2 + 3K1 (a graph consisting of an edge
and three isolated vertices). With respect to the original question of Chvátal
and the results of [10] it is noteworthy that we are also able to prove that the
Pn-reconstruction problem is NP-complete for all n ≥ 6.

The paper is organized as follows: in Section 1 we prepare some technical
tools. In Section 2 we prove the key theorem of this paper, which gives sufficient
conditions for the G-reconstruction problem to be NP-complete. In Section 3
we show several interesting classes of graphs which satisfy these conditions.
Since the problem obviously belongs to NP, we are only concerned with its
NP-hardness.

2 Preliminaries

Consider the G-reconstruction problem for a fixed graph G. Throughout this
paper we always assume that k denotes the number of vertices ofG. Furthermore,
we always assume that neither G nor its complement is a complete graph (in both
of these cases, the G-reconstruction problem is trivial). Note that this implies
that k ≥ 3.

Our proof of NP-hardness proceeds by construction of hypergraphs such that
prescribed subgraphs of their reconstructions must satisfy some properties. We
are able to express other NP-hard problems with these properties, thus showing
that it is hard to determine whether such a reconstruction exists. Let us state a
few definitions that describe this idea more formally.

Definition 1. Let F = (V,E) be a graph, let U = (u1, . . . , um) be an or-
dered m-tuple whose elements are unorderdered pairs of vertices of F . Let
X = (X1, . . . , Xm) be an ordered m-tuple of boolean values. We say that X
agrees with F on U if Xi is true if and only if ui is an edge of F for each
i = 1, . . . ,m. Furthermore, if P (x1, . . . , xm) is an m-variate boolean predicate
we say that F satisfies P on U if P is satisfied by the boolean values that agree
with F on U .

Definition 2. An ordered pair T = (H,U) is called a G-gadget for an m-variate
boolean predicate P , if the following conditions hold:

198 Z. Dvořák and V. Jeĺınek

– H is a k-uniform hypergraph.
– U = (u1, . . . , um) is an ordered m-tuple, where ui ∈

(
V (H)

2

)
are mutually

distinct, but not necessarily disjoint pairs of vertices of H.
– For any m-tuple of boolean values X = (X1, . . . , Xm), the predicate P is

satisfied by X if and only if there exists a graph F with G-structure H such
that X agrees with F on U .

We call the pairs ui ∈ U as well as the vertices that belong to these pairs special.
If no ambiguity can arise, we omit G from the specification of the gadget and
speak simply of a gadget for P .

Definition 3. Let H1 = (V1, E1) and H2 = (V2, E2) be two k-uniform hyper-
graphs. Let e1 = {x1, x2} ∈

(
V1
2

)
and e2 = {y1, y2} ∈

(
V2
2

)
be two pairs of

vertices. We say that a hypergraph H = (V,E) is obtained by connecting H1 and
H2 through e1 and e2 if H satisfies the following conditions:

– V is the disjoint union of V1 and V2 \ e2.
– Let g : V2 → (V2 \ e2)∪ e1 be a bijection defined as follows: g(y) = y for each
y ∈ V2 \ e2, and g(yi) = xi for i ∈ {1, 2}. Then H = H1 ∪ {g[h];h ∈ H2},
where g[h] is the image of the set h under the bijection g.

Similarly, if (H1, U1) and (H2, U2) are two G-gadgets with U1 = (e1, . . . , ep)
and U2 = (f1, . . . , fq), then by connecting the two gadgets through e1 and f1 we
obtain a gadget (H,U), where H is the corresponding connection of H1 and H2,
and U = (e1, . . . , ep, f

′
2, . . . , f

′
q), with f ′

i being the image of fi under the mapping
g defined above.

Note that since k ≥ 3, there can be no hyperedge fully contained in either
e1 or e2. This implies that the induced subhypergraph H [V1] is equal to H1 and
H [(V2 \ e2) ∪ e1] is isomorphic to H2.

The importance of the operation introduced by Definition 3 is explained by
the following lemma.

Lemma 1. Suppose that κ(G) > 2. Let T1 = (H1, U1), T2 = (H2, U2) be G-
gadgets for the predicates P1(x1, . . . , xp) and P2(y1, . . . , yq), respectively, where
U1 = (e1, . . . , ep) and U2 = (f1, . . . , fq). Let T = (H,U) be the gadget obtained
by connecting T1 and T2 through e1 and f1, with U = (e1, e2, . . . , ep, f

′
2, . . . , f

′
q).

Then T is a G-gadget for the following predicate P :

P (x1, . . . , xp, y2, . . . , yq) = P1(x1, . . . , xp) ∧ P2(x1, y2, . . . , yq).

Proof. Let F be a G-realization of H . Then F [V1] is a realization of H1, thus
F [V1] satisfies P1 on U1. Similarly, F [V2] satisfies P2 on (e1, f ′

2, . . . , f
′
q). It follows

that F satisfies P on U , as required.
Conversely, let (X1, . . . , Xp, Y2, . . . , Yq) be a (p+q−1)-tuple of boolean values

that satisfy P . Then (X1, . . . , Xp) satisfy P1, hence there exists a graph F1
which is a realization of H1 and agrees with (X1, . . . , Xp) on U1. Similarly,
there is a realization F2 of H [(V2 \ f1) ∪ e1] that agrees with (X1, Y2, . . . , Yq) on

On the Complexity of the G-Reconstruction Problem 199

(e1, f ′
2, . . . , f

′
q). Since both F1 and F2 agree with X1 on e1 and the two graphs

do not have any other common vertex, there is a graph F on the vertex set V
such that F [V1] = F1 and F [(V2 \ f1) ∪ e1] = F2. It remains to show that F is
a realization of H . Clearly the only problem might arise from the k-tuples that
intersect both V1 \ e1 and V2 \ f1. No such k-tuple belongs to H , thus it suffices
to prove that G is not isomorphic to any graph induced by such a k-tuple. This
however follows straightforwardly from the condition on the connectivity of G,
since if G were isomorphic to a graph induced by some such k-tuple K, then
K ∩ e1 would be a cut of size at most 2 in G. ��

Next we are going to state several lemmas related to the existence of gadgets
for various properties, concretely:

– a gadget O that forces the presence of an edge at the pair of special vertices,
i.e., the one for the property P (x) = x,

– a gadget Z that forces the absence of an edge at the pair of special vertices,
i.e., the one for the property P (x) = x,

– a nonequality gadget N for the property P (x, y) = (x �= y),
– an equality gadget Q for the property P (x, y) = (x = y),
– a gadget TSAT for the property P (x, y, z) = x ∨ y ∨ z,
– a gadget TNAE for the property P (x, y, z) = (x �= y) ∨ (x �= z) ∨ (y �= z),

and
– a gadget T1 in 3 for the property P (x, y, z) = (x∧y∧z)∨(x∧y∧z)∨(x∧y∧z).

Lemma 2. Suppose that κ(G) > 2. Then a gadget O exists if and only if a
gadget Z exists.

Proof. We construct Z as follows: first, we take k vertices and put this k-tuple
K into Z. Then we embed a fixed copy of G on these vertices, and connect a
copy of the gadget O to every pair that forms an edge of this copy. We choose
U = {u}, where u is any non-edge of the prescribed copy of G. By Lemma 1 this
is a gadget that enforces that the subgraph of any reconstruction of Z induced
by K is exactly the prescribed copy of G and thus that u is a non-edge.

By an analogical construction, we may obtain O from Z. ��

Lemma 3. Suppose that κ(G) > 2. If a gadget O exists, then also a gadget N
exists.

Proof. We take k vertices and put this k-tuple K into N . Let this hypergraph
be denoted by N0. Since G is neither complete nor edgeless, there are at least
two ways how to reconstruct the N0. We construct the sequence N0, N1, . . . , Np

of hypergraphs satisfying the following conditions:

– Ni ⊂ Ni+1

– Let ni be the number of different subgraphs of reconstructions of Ni induced
by K. Then ni ≤ 2ni+1.

– ni ≥ 2 for i �= p, np = 1.

200 Z. Dvořák and V. Jeĺınek

If we succeed, then np−1 = 2. The graphs F1 and F2 obtainable as subgraphs
of reconstructions of Np−1 induced by K must have the same number of edges
(since they are isomorphic to G) and thus there exist two pairs of vertices u1
and u2 of K such that ui is the edge in Fi and the nonedge in F3−i, thus
(Np−1, (u1, u2)) is a gadget for P .

We construct the sequence as follows: Let e1, e2, . . . be a sequence of pairs of
vertices of K, in any order. Let NO

i and NZ
i be hypergraphs obtained from Ni−1

by connecting O and Z on ei, respectively, nO
i and nZ

i numbers of subgraphs in
reconstructions of these hypergraphs induced by K. Then nO

i + nZ
i = ni−1, let

nX
i be the greater of them (any of them if they are equal) and put Ni = NX

i . If
nX

i = 1, we let p = i, otherwise we continue with the construction. ��

Lemma 4. Suppose that κ(G) > 2. If a gadget N exists, then also a gadget Q
exists.

Proof. We take two copies of the gadget N and connect them using Lemma 1.
��

Lemma 5. Suppose that κ(G) > 2. If a gadget O exists, then also at least one
of TSAT, TNAE, or T1 in 3 gadgets exists.

Proof. We take a k-tuple of verticesK and addK to the constructed hypergraph.
Let v be an arbitrary vertex in K and let as e1, . . . , ek−1 be the pairs of vertices
of K containing v.

Due to the connectivity condition and the fact that G is not complete we have
δ(G) ≥ 3 and k ≥ 5. The following cases may occur:

– There are vertices in G that have degrees δ(G) + 1 and δ(G) + 2. Then we
attach copies of O to e1, . . . , eδ(G)−1 and copies of Z to eδ(G), . . . , ek−4. The
pairs ek−3, ek−2 and ek−1 are the special ones. This forms a TSAT gadget,
as in any reconstruction at least one of the special pairs may and must be
chosen to be an edge.

– There is a vertex in G that has degree δ(G)+1, no vertex of degree δ(G)+2
and δ(G) ≤ k − 2. Then the same construction applies and the resulting
gadget is TNAE.

– There is no vertex in G with degree δ(G) + 1, then we attach copies of O
to e1, . . . , eδ(G)−2 and copies of Z to eδ(G)−1, . . . , ek−4. Furthermore, we
attach copies of N to ek−3, ek−2 and ek−1 and take the other special pairs
of these copies as special for the resulting gadget. We thus obtain T1 in 3.

– δ(G) = k− 2, ∆(G) = k− 1, then G is a complement of a matching. If there
are exactly two vertices of degree k− 2, we attach copies of O to all pairs of
O except of a single triangle. Then we choose negations (through N) of the
pairs of the triangle as special and the resulting gadget is T1 in 3. Otherwise
we force edges and nonedges in K using gadgets O and Z as given by a fixed
copy of G except for pairs on four vertices on which two nonedges are in this
fixed copy. Of these four we take any three and by taking negated pairs in
this triangle as special we again obtain T1 in 3.

On the Complexity of the G-Reconstruction Problem 201

This shows that indeed in all the cases at least one of the gadgets exists. ��

Lemma 6. Suppose that a gadget Q exists and κ(G) > 2. If a gadget T = (H,U)
for a predicate P (x1, x2, . . . , xm) exists, then also a gadget T ′ = (H ′, U ′) for the
predicate P ′(x2, . . . , xm) = P (x2, x2, x3, . . . , xm) exists.

Proof. This lemma is similar to Lemma 1, but we must be a bit more careful
since we are working only on one graph. Let u1 and u2 be the vertex pairs
that correspond to variables x1 and x2 of P . The basic idea of the proof is to
join the pairs u1 and u2 by a sufficiently long chain of gadgets Q, and use the
connectivity constraints again to show that a reconstruction of such hypergraph
exists whenever the predicate P ′ is satisfied. The details are left out due to space
constraints. ��

The proof of the following lemma is omitted due to space constrains.

Lemma 7. Suppose that κ(G) > 2 and G is self-complementary (i.e., G is
isomorphic to G). If a gadget Q exists, then also a gadget TNAE exists.

3 NP-Completeness of the Graph Reconstruction
Problem

We are now ready to prove the NP-completeness of the graph reconstruction
problem modulo a few conditions on G:

Theorem 1. If G is a graph such that κ(G) > 2 and a G-gadget O exists. Then
the G-reconstruction problem is NP-complete.

Proof. Using the previous lemmas, TSAT, TNAE or T1 in 3 exist. We proceed
by reduction from one of the well-known NP-complete problems 3 − SAT , 3 −
NAE−SAT or 3-exact set cover ([3]), depending on which of the gadgets exists.
Let TX be this gadget.

Input of each of those problems is a CNF-formula with clauses of size exactly
3. We want to decide whether a assignment of truth values to variables exists,
such that at least 1 (2 or 3, exactly 1, respectively) literal in each clause is
satisfied. In the second and the third case we even do not need negations to be
present in the clauses, but allowing them makes the problems only harder. Let
a formula I be an instance of the problem.

We need to create an equivalent instance of G-reconstruction problem. For
each clause of I, we add a copy of TX . For each variable that occurs in n clauses,
we add a star with n rays consisting of copies of Q joined by single special vertex
pair p. Whether the variable is true or false will be determined by whether the
edge p (and hence also its copies) is appears in the reconstruction or not. If
the occurrence of a variable is negated, we attach a copy of a gadget N to
the appropriate ray. For each clause C of I, we then identify the special edges
of gadget TX added for C with the ends of the rays that correspond to the
appropriate occurrences of variables of C, using Lemma 1 and Lemma 6. It

202 Z. Dvořák and V. Jeĺınek

follows that the created instance is a gadget for formula I (where the special
edges are the centers of the stars corresponding to variables, and clauses of I
are interpreted according to X), and thus it is reconstructible if and only if I is
satisfiable.

Since G is fixed, all the used gadgets have constant size, hence the reduction
is polynomial. ��

Note also that the gadgetO does not exist if G is self-complementary. However
this does not prevent the existence of the gadgetN for this class of graphs, which
justifies the following theorem:

Theorem 2. If G is a self-complementary graph such that κ(G) > 2 and a
G-gadget N exists, then the G-reconstruction problem is NP-complete.

Proof. The proof is analogical to the proof of Theorem 1 – we may construct
gadget Q using just gadget N and TNAE is obtained using Lemma 7. ��

We can obtain NP-completeness for some more graphs using the following
trivial theorem:

Theorem 3. If the G-reconstruction problem is NP-complete, then also the G-
reconstruction problem is NP-complete.

Proof. This follows trivially from the fact that F is a G-reconstruction of a
hypergraph H if and only if F is a G-reconstruction of H . ��

4 Classes of Graphs for Which the Problem Is Hard

We show that there are several important classes of graphs that satisfy the con-
ditions of Theorem 1. The existence of O is the interesting part. For the classes
of graphs described in this section, a gadget O exists. Therefore, provided that
they (or their complements, by Theorem 3 and Lemma 2) have sufficient con-
nectivity, the G-reconstruction for them is NP-complete. The following theorem
shows that a slight variant of rigidity of a graph is sufficient to ensure existence
of a gadget O.

Theorem 4. Suppose that G is a graph on k vertices which satisfies the follow-
ing conditions:

(i) ∀x ∈ V (G) G− x has no nontrivial automorphism
(ii) ∀x, y ∈ V (G) if x �= y then G− x is not isomorphic to G− y

Then the following statements hold:

1. Let H be a G-structure of a graph F which contains two hyperedges h1 and
h2 that intersect in k−1 vertices, i. e. we have h1 = {a, v1, v2, . . . , vk−1} and
h2 = {b, v1, v2, . . . , vk−1}. Then {a, vi} ∈ E(F) if and only if {b, vi} ∈ E(F).

2. If G is not self-complementary, then the gadgets O and Z exist. On the other
hand, if G is self-complementary, then the gadget N exists.

On the Complexity of the G-Reconstruction Problem 203

Proof. First we prove part 1 of the theorem. Let fi be the isomorphism that maps
G onto F [hi] for i ∈ {1, 2}. For contradiction, suppose that F does not have the
required property. We may assume that {a, v1} ∈ E(F) and {b, v1} /∈ E(F). The
following two cases are distinguished:

1. There is a vertex x ∈ V (G) such that f1(x) = a and f2(x) = b. Since
{a, v1} ∈ E(F) and {b, v1} /∈ E(F), we know that the preimage of v1 under
f1 is different from the preimage of v1 under f2. Hence if we compose f1
with the inverse f2 and restrict this mapping to the graph G− x, we obtain
a nontrivial automorphism, contrary to assumption (i) of the theorem.

2. There are two distinct vertices x, y ∈ V (G) such that f1(x) = a and
f2(y) = b. But then the graphs G − x and G − y are both isomorphic to
F [{v1, . . . , vk−1}], which contradicts assumption (ii) of the theorem.

To prove the second part of the theorem, we first introduce the following
notation: let {x, y} ∈ E(G) be an arbitrary edge of G and {x̂, ŷ} ∈

(
V (G)

2

)
\

E(G) be an arbitrary non-edge of G. We construct a graph K by the following
procedure:

1. Let V0 be an arbitrary set of size k, let G0 = (V0, E0) be a fixed isomorphic
embedding of G on the set V0.

2. With each element x0 ∈ V0 we associate a set S(x0) of k − 2 new vertices
denoted {w(x0);w ∈ V (G) \ {x, y}}. For each vertex y0 ∈ V0 such that
{x0, y0} is an edge of E0 we add new edges induced by the set {x0, y0}∪S(x0)
so that this set contains an isomorphic copy of G defined by the isomorphism
that maps x to x0, y to y0 and w to w(x0) for each w ∈ V (G) \ {x, y}.

3. With each element x0 ∈ V0 we associate a set Ŝ(x0) of k − 2 new vertices
denoted {ŵ(x0);w ∈ V (G) \ {x̂, ŷ}}. For each vertex y0 ∈ V0 such that
{x0, y0} is not an edge of G0 we add new edges induced by the set {x0, y0}∪
Ŝ(x0) so that this set contains an isomorphic copy of G defined by the
isomorphism that maps x̂ to x0, ŷ to y0 and w to ŵ(x0) for each w ∈
V (G) \ {x̂, ŷ}.

Let K denote the graph on k · (2k − 3) vertices obtained by the previous three
steps. Let H be the G-structure of K. Let K ′ be any graph whose G-structure
is H , let G′

0 = K ′[V0]. Obviously, G′
0 and G0 are both isomorphic to G, because

their vertex set V0 is a hyperedge of H . However, we can establish a stronger
property:

– If G is self-complementary then G′
0 = G0 or G′

0 = G0, where G0 is the
complement of G0.

– If G is not self-complementary then G′
0 = G0.

This property immediately implies the second part of the theorem. To prove
the property, we introduce a binary relation on

(
V0
2

)
called friendship defined as

follows: we say that the two pairs {x, y1} and {x, y2} are friends in G0, if they
share a common vertex and if either both of them or neither of them belong to
E0. From the first part of the theorem we obtain that if two pairs of vertices

204 Z. Dvořák and V. Jeĺınek

{x, y1} and {x, y2} are friends in G0, then they are also friends in G′
0, because

H contains the two hyperedges hi = {x, yi}∪S′(x) for i ∈ {1, 2}, where S′(x) is
defined as S(x) if the two friends are edges of G0, and S′(x) = Ŝ(x) otherwise.
Let ∼ denote the relation obtained as the transitive closure of the friendship
relation in G0. Note that ∼ is an equivalence on

(
V0
2

)
whose blocks are the edge

sets of the connected components of G0 and of the connected components of
G0. Since friendship in G0 implies friendship in G′

0, we have that the blocks
of ∼ are subsets of the blocks of ∼′, where ∼′ is the closure of the friendship
relation in G′

0. But the number of blocks of ∼′ is the number of connected
components of G′

0 and its complement, which is equal to the number of blocks
of ∼. Hence the two equivalence relations ∼ and ∼′ are equal and the two
corresponding friendship relations are equal as well. Since every disconnected
graph has a connected complement, we know that at least one block B of the
relation ∼ is spanning in V0, i. e. for each x ∈ V0 at least one edge incident to
x belongs to B. If the members of B are edges of G′

0 then all the other blocks
must only contain non-edges (and vice versa), because any edge outside of B
would necessarily become a friend of some edge in B by the spanning property
of B. This implies that the edge set of G′

0 is either equal to B or equal to the
complement of B. Clearly if G is not self-complementary, then only one of these
two options is available.

This concludes the proof of the theorem. ��
Modifying slightly the well-known proof of the fact that almost no random

graph has a nontrivial automorphism (see for example [4]), we can show that
almost all graphs satisfy the assumptions of Theorem 4, and thus we obtain the
following result:

Theorem 5. Let G be a random graph. Then with probability 1 − o(1) the G-
reconstruction problem is NP-complete.

We now consider several more specialized examples. The straightforward (but
technical) proofs of the following theorems are left out due to the space con-
straints.

The previous results by Hayward et al. ([10]) showed that the P4-
reconstruction problem can be solved in a polynomial time. This makes the
following result interesting:

Theorem 6. If G is a path on k vertices with k ≥ 5, then a gadget O and a
gadget Z for G exist.

Note that the complement of Pn satisfies κ(Pn) > 2 whenever n ≥ 6. Also
note that a gadget Z for some graph G is at the same time a gadget O for G.
By the theorems 1, 3 and 6 we then have that the Pn-reconstruction problem is
NP-complete for each n ≥ 6.

The smallest graph G for that we can show that the G-reconstruction problem
is NP-complete has 5 vertices, by the following result:

Theorem 7. If G is a graph on k ≥ 4 vertices with only one edge, then a
G-gadget Z exists.

On the Complexity of the G-Reconstruction Problem 205

If G is a graph with one edge and at least five vertices then κ(G) > 2, thus
the G-reconstruction problem is NP-complete.

5 Conclusion

We have proved that for many graphs G, the G-reconstruction problem is NP-
complete. On the other hand, the P4-reconstruction problem is polynomial and
hence we might hope that for some other small graphs the problem could be
solvable in polynomial time. However, the genericity of Theorem 1 suggests that
the problem is usually hard. We are confident enough to state the following

Conjecture 1. There exists a constant k0 such that for any graph G with
|V (G)| > k0, that is not edgeless or complete, the G-reconstruction problem
is NP-complete.

Acknowledgements

We would like to thank Jan Kratochv́ıl and Pavel Valtr for introducing the prob-
lem to us and for useful discussions about it. We would also like to thank Daniel
Král’ for careful reading of the paper and useful suggestions on improvement of
the presentation.

References

1. Ulam S. M.: A Collection of Mathematical Problems, Wiley, New York, 1960.
2. Bondy J. A. and Hemminger R. L.: Graph Reconstruction – a survey, J. Graph

Theory 1 (1977), 227–268.
3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, New York, 1979.
4. L. Babai, P. Erdos, and S. M. Selkow: Random graph isomorphism, SIAM J. Com-

puting, 9 (1980), 628–635.
5. V. Chvátal, C.T. Hoàng: On the P4-structure of perfect graphs I. Even decompo-

sitions, J. Combin. Theory Ser. B 39 (1985), 209–219.
6. C.T. Hoàng: On the P4-structure of perfect graphs II. Odd decompositions, J.

Combin. Theory Ser. B 39 (1985), 220–232.
7. B. A. Reed: A semi-strong perfect graph theorem, J. Combin. Theory B 43 (1987),

223–240.
8. V. Chvátal: On the P4-structure of perfect graphs III. Partner decompositions, J.

Combin. Theory Ser. B 43 (1987), 349–353.
9. R. Hayward: Recognizing P3-structure: A Switching Approach, Journal Comb.

Theory (Series B) 66 No. 2 (1996), 247–262.
10. R. Hayward, S. Hougardy and B. Reed: Polynomial time recognition of P4-

structure, Proceedings of 13th Annual ACM-SIAM Symp. On Discrete Algorithms
(2002), 382–389.

Hybrid Voting Protocols and Hardness of Manipulation

Edith Elkind1 and Helger Lipmaa2,�

1 Department of Computer Science, University of Warwick, U.K.
2 Cybernetica AS and University of Tartu, Estonia

Abstract. This paper addresses the problem of constructing voting protocols that
are hard to manipulate. We describe a general technique for obtaining a new pro-
tocol by combining two or more base protocols, and study the resulting class of
(vote-once) hybrid voting protocols, which also includes most previously known
manipulation-resistant protocols. We show that for many choices of underlying
base protocols, including some that are easily manipulable, their hybrids are NP-
hard to manipulate, and demonstrate that this method can be used to produce
manipulation-resistant protocols with unique combinations of useful features.

1 Introduction

In multiagent systems, the participants frequently have to agree on a joint plan of action,
even though their individual opinions about the available alternatives may vary. Voting
is a general method of reconciling these differences, and having a better understanding
of what constitutes a good voting mechanism is an important step in designing better
decision-making procedures. In its most general form, a voting mechanism is a map-
ping from a set of votes (i.e., voters’ valuations for all alternatives) to an ordering of
the alternatives that best represents the collective preferences. In many cases, however,
the attention can be restricted to mechanisms that interpret their inputs (votes) as total
orderings of the alternatives/candidates and output a single winner. A classical example
here is Plurality voting, where only the top vote of each voter is taken into account, and
the candidate with the largest number of top votes wins.

A fundamental problem encountered by all voting mechanisms is manipulation, i.e.,
the situation when a strategizing voter misrepresents his preferences in order to obtain
a more desirable outcome. One can expect that rational agents will engage in manipu-
lation whenever it is profitable for them to do so; as a result, the output of the voting
mechanism may grossly misrepresent the actual preferences of the agents and be detri-
mental to the system as a whole.

It is well-known [8,11] that any nondictatorial voting mechanism for three or more
candidates is susceptible to manipulation. However, while there is no information-
theoretic solution to this problem, one can try to discourage potential manipulators
by making manipulation infeasible. This approach is particularly attractive in multi-
agent setting, when decisions have to be made in real time, and whether an agent can

� Part of this work was done when the first author was visiting Helsinki University of Technol-
ogy. The authors were supported by the Finnish Defence Forces Institute for Technological
Research; also, the first author was supported by the EPSRC grant GR/T07343/01 “Algorith-
mics of Network-sharing Games”.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 206–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hybrid Voting Protocols and Hardness of Manipulation 207

find a beneficial manipulation quickly is more important than whether such a manip-
ulation exists in principle. It turns out that some of the voting protocols that are used
in practice enjoy this property: it has been shown [1,2] that second-order Copeland and
Single Transferable Vote (STV) are NP-hard to manipulate. Furthermore, in a recent pa-
per [4], Conitzer and Sandholm showed that several protocols, including Borda, STV,
Maximin and Plurality, can be modified so that manipulating them becomes computa-
tionally hard. Their method involves prepending the original protocol by a pre-round
in which candidates are divided into pairs and the voters’ preferences are used to de-
termine the winner of each pair; the winners of the pre-round participate in elections
conducted according to the original protocol. Different methods for pairing up the can-
didates and eliciting the votes give rise to different levels of complexity, such as NP-
hardness, #P-hardness, or PSPACE-hardness. The advantage of this method of con-
structing manipulation-resistant protocols is in preserving some of the properties of the
original protocol: for example, if the base protocol is Condorcet-consistent (see Sect. 6
for definition), then the modified protocol is Condorcet-consistent as well. However,
for some other desirable features this is not true, and, generally, eliminating half of the
candidates using a set of criteria that may be very different in spirit from those used by
the original protocol, is likely to alter the outcome considerably, so that the desiderata
that motivated the original protocol may no longer be attainable.

We build upon the ideas of [4] to construct a larger family of protocols that are hard
to manipulate. We observe that their pre-round phase can be viewed as the first stage of
the voting protocol known as Binary Cup (BC) (defined in Sect. 2). While this protocol
itself is not hard to manipulate (at least, when the schedule is known in advance), the
results of [4] can be interpreted as showing that combining BC with other protocols
results in manipulation-resistant schemes. We generalize this idea by showing that this
kind of hardness amplification is not unique to BC.

We define the class of hybrid voting protocols Hyb(Xk,Y). In Hyb(Xk,Y), after the
voters have expressed their preferences, k steps of protocol X are performed to eliminate
some of the candidates, and then protocol Y is run on the rest of the candidates, reusing
the votes as restricted to the remaining candidates. Clearly, the protocols of [4] belong
to this family, as does STV; therefore, our framework encompasses most of the known
hard-to-manipulate voting mechanisms.

We show that many other hybrid protocols are NP-hard to manipulate as well. Specif-
ically, we consider several well-known protocols, such as Plurality, Borda, STV, and
Maximin, and prove that many of their hybrids are manipulation-resistant. We do this
by formulating some fairly general conditions on X and Y under which the protocols
of the form Hyb(Xk,Plurality), Hyb(Xk, STV), or Hyb(STVk,Y) are NP-hard to ma-
nipulate. Additionally, we show that a hybrid of a protocol with itself may be different
from the original protocol — and much harder to manipulate. We prove that this is, in-
deed, the case for Borda protocol: Hyb(Bordak,Borda) is NP-hard to manipulate, while
Borda itself is easily manipulable. We define a generic closure operation on protocols
that makes them closed under hybridization. Interestingly, applying this operation to the
easy-to-manipulate Plurality results in the hard-to-manipulate STV. We conjecture that
for many other basic protocols, their closed versions are NP-hard to manipulate as well.
On the flip side, we demonstrate that hybridization does not always result in hard-to-

208 E. Elkind and H. Lipmaa

manipulate protocols: in particular, the hybrid protocols that use Plurality as their first
component, are almost as easy to manipulate as their second component. Finally, we
demonstrate that our techniques extend to voting protocols that allow voters to rate the
candidates rather than just order them.

The value of our results is not so much in constructing specific new manipulation-
resistant protocols, but rather in providing a general method for doing that, which can
be used with many basic schemes. Since a hybrid inherits some of the properties of
its ingredients, we get hard-to-manipulate protocols with properties not shared by the
schemes from [1,2,4]. It has already been argued in [4] that it is desirable to have
manipulation-resistant protocols that can be used in different real-life situations; our
method fits the bill.

The use of voting and voting-related techniques is not restricted to popular elections:
the ideas from this domain have been applied in rank aggregation [5,9], recommender
systems [10], multiagent decision making in AI [7], etc. In many of these settings, the
number of alternatives is large enough to make our results applicable, and, furthermore,
the agents are both sufficiently sophisticated to attempt manipulation and may derive
significant utility from doing so. Therefore, we feel that it is important to have a better
understanding of what makes voting protocols hard to manipulate, as this will allow us
to design more robust decision-making systems that use voting-like methods.

2 Preliminaries and Notation

We assume that there are n voters and m candidates and denote the set of all voters
by V = {v1, . . . , vn} and the set of all candidates by C = {c1, . . . , cm}. Most of our
complexity results are in terms ofm and n, i.e., unless specified otherwise, ‘polynomial’
always means ‘polynomial in m and n’.

The set of all permutations ofC is denoted byΠ(C); the preference of the ith voter is
expressed by a list πi ∈ Π(C): the first element is the voter’s most preferred candidate,
etc. In particular, this means that within one voter’s preference list, ties are not allowed.
We write (. . . , ci, . . . , Cj , . . .) to denote that a voter prefers ci to all candidates in Cj ,
without specifying the ordering of candidates withinCj . For any subsetC′ ⊆ C, let π|C′

be the permutation π as restricted to C′ (i.e., elements not from C′ are omitted). Note
that π|C′ corresponds to a valid preference in an election that has the candidate set C′.

A voting protocol is a mapping P : Π(C) × · · · ×Π(C) '→ C that selects a winner
c ∈ C based on all voters’ preference lists. In this paper, we consider the following
common voting protocols (in all definitions that mention points, the candidate with the
most points wins):

Plurality: A candidate receives 1 point for every voter that ranks it first.
Borda: For each voter, a candidate receives m− 1 point if it is the voter’s top choice,
m− 2 if it is the second choice, . . . , 0 if it is the last.

Single Transferable Vote (STV): Winner determination proceeds in rounds. In each
round, a candidate’s score is the number of voters that rank it highest among the
remaining candidates, and the candidate with the lowest score drops out. The last
remaining candidate wins. (A vote transfers from its top remaining candidate to the
next highest remaining candidate when the former drops out.)

Hybrid Voting Protocols and Hardness of Manipulation 209

Maximin: A candidate’s score in a pairwise election is the number of voters that prefer
it over the opponent. A candidate’s number of points is the lowest score it gets in
any pairwise election.

Binary Cup (BC): The winner determination process consists of �logm� rounds. In
each round, the candidates are paired; if there is an odd number of candidates, one
of them gets a bye. The candidate that wins the pairwise election between the two
(or got a bye) advances into the next round. The schedule of the cup (i.e., which
candidates face each other in each round) may be known in advance (i.e., before
the votes are elicited) or it may depend on the votes.

We say that a voter vj can manipulate a protocol P if there is a permutation π′
j ∈

Π(C) such that for some values of πi ∈ Π(C), i = 1, . . . , n, we haveP (π1, . . . , πn) =
c, P (π1, . . . , πj−1, π

′
j , πj+1, . . . , πn) = c′ �= c, and vj ranks c′ above c. We say that

vj manipulates P constructively if vj ranks c′ first and destructively otherwise. All
results in this paper are on constructive manipulation; in what follows, we omit the
word ‘constructive’. A voter vj manipulates P efficiently if there is a polynomial time
algorithm that given preference lists π1, . . . , πn for which such π′

j exists, can find one
such π′

j .

3 Hybrid Protocols

In this section, we formally define (vote-once) hybrid protocols. Intuitively, a hybrid of
two protocols X and Y executes several steps of X to eliminate some of the candidates,
and then runs Y on the remaining set of candidates. To make this intuition precise, how-
ever, we have to define how to interpret the first protocol X as a sequence of steps. While
there is no obvious way to do this for an arbitrary protocol, most well-known protocols,
including the ones described in Sect. 2, admit such an interpretation. In particular, we
suggest the following definitions:

– For STV, a step is a single stage of the protocol. That is, a step of STV consists of
eliminating a candidate with the least number of first-place votes and transferring
each vote for this candidate to the highest remaining candidate on that ballot.

– For Binary Cup (BC), a step is a single stage of the protocol as well, i.e., it consists
of pairing up the candidates and eliminating the ones who lose in the pairwise
comparison.

– For point-based protocols, such as Plurality, Borda, or Maximin, we first compute
the scores of all candidates, order them by their scores from the lowest to the high-
est, and define a step to consist of eliminating the first (i.e., the lowest ranked)
remaining candidate in this sequence. Note that the scores are not recomputed be-
tween the steps. (A similar approach can be applied to any voting protocol that can
be extended to a preference aggregation rule, i.e., a function that maps votes to to-
tal orderings of the candidates. In this case, the order in which the candidates are
eliminated is obtained by inverting the output of the preference aggregation rule.)

Definition 1. A hybrid protocol Hyb(Xk,Y) consists of two phases. Suppose that the
voters’ preference lists are described by the n-tuple (π1, . . . , πn). In the first phase, the

210 E. Elkind and H. Lipmaa

protocol executes k steps of X(π1, . . . , πn); let S be the set of candidates not eliminated
in the first phase. In the second phase, the protocol applies Y to (π1|S , . . . , πn|S), i.e.,
the preference lists restricted to the remaining set S of candidates.

It is straightforward to extend this definition to hybrids Hyb(X(1)
k1
,X

(2)
k2
, . . . ,X

(t)
kt
,Y) of

three or more protocols.

4 Hardness Results

4.1 Hardness of STV-Based Hybrids

In this subsection, we show that hybrids Hyb(STVk,Y) and Hyb(Xk, STV) are NP-
hard to manipulate for many “reasonable” voting protocols X and Y, including the cases
X,Y ∈ {Plurality,Borda,Maximin,BC}.

Theorem 1. A hybrid of the form Hyb(STVk,Y) is NP-hard to manipulate as long as
Y satisfies the following condition: Whenever there is a candidate c who receives K
first-place votes and n − K second-place votes, while all other candidates receive at
most K − 1 first-place vote, Y declares c the winner.

The proof can be found in the full version of the paper.

Corollary 1. The hybrids Hyb(STVk,Y), where Y ∈ {Plurality,Borda,Maximin,BC,
STV}, are NP-hard to manipulate.

The proof of this corollary is straightforward since all these voting protocols satisfy the
required property.

Theorem 2. A hybrid of the form Hyb(Xk, STV) is NP-hard to manipulate if X satisfies
the following condition for some unbounded nondecreasing function f(·) and infinitely
many K: Suppose that all but one voter rank some K candidates c1, . . . , cK after all
other candidates, and all other candidates receive at least 2 first-place votes. Then after
f(K) steps of X, the set of eliminated candidates is a subset of {c1, . . . , cK}.

Proof (Sketch). Set k = f(K). Denote the set of candidates in the construction of [2]
by C′; let C′′ = {c1, . . . , cK} and C = C′ ∪ C′′. Modify the votes of all honest
voters in that construction so that they rank C′ above C′′. The reduction of [2] has the
property that each candidate in C′ gets more than 2 first-place votes. Hence, the set of
candidates eliminated in k rounds of X is a subset of C′′; furthermore, the remaining
candidates from C′′ will be the first candidates eliminated by STV. Hence, no matter
how the manipulator ranks the candidates in C′′, it has no effect on the execution of the
protocol, and his vote can be viewed as a vote in the original STV and vice versa. ��

Corollary 2. The hybrids of the form Hyb(Xk, STV), where X ∈ {Plurality,Borda,
Maximin,BC}, are NP-hard to manipulate.

Proof. It is easy to see that Plurality, Maximin and BC satisfy the condition of the
theorem. For Borda, it is satisfied whenever the number of voters exceeds the number
of candidates; in the construction of [2], the number of voters is larger than 3|C′|, so
we can set K = |C′|. ��

Hybrid Voting Protocols and Hardness of Manipulation 211

4.2 Hybrids of the Form Hyb(Xk, Plurality)

In this subsection, we prove that Hyb(Xk,Plurality) is hard to manipulate whenever X
satisfies Property 1, defined below. While this property might seem artificial, we show
that it is possessed by at least two well-known protocols, namely, Borda and Maximin.

Property 1. For any set G = {g1, . . . , gN}, any collection S = {s1, . . . , sM} of sub-
sets of G, and any K ≤ M , there are some k′, k′ ≤ M , and T , T > 3N , such that it is
possible to construct in polynomial time a set of T +N(T − 2)+3N votes over the set
of candidates C′ ∪ C′′ ∪ {p}, where C′ = {c′1, . . . , c′N}, C′′ = {c′′1 , . . . , c′′M}, so that

1. there are T voters who rank p first;
2. for each i = 1, . . . , N , there are T − 2 voters who rank c′i first;
3. for each i = 1, . . . , N , there are 3 voters who rank all c′′j such that gi ∈ sj above
c′i, and rank c′i above all other candidates;

4. for any additional vote π, when it is tallied with all other votes, the set of candidates
eliminated in the first k′ rounds is a subset of C′′ of size M −K;

5. for any subset S′ ⊆ S, |S′| = M−K , one can design in polynomial time a vote πS′

that, when tallied with other votes, guarantees that the set of candidates eliminated
in the first k′ rounds is exactly {c′′i | si ∈ S′}.

Theorem 3. A hybrid of the form Hyb(Xk,Plurality) is NP-hard to manipulate con-
structively whenever X satisfies Property 1.

Proof. We give a reduction that is based on the NP-hard problem SET COVER. Recall
that SET COVER can be stated as follows: Given a ground set G = {g1, . . . , gN}, a
collection S = {s1, . . . , sM} of subsets of G, and an integer K , does there exist a K-
cover of G, i.e., a subset S′ of S, S′ = {s1, . . . , sK}, such that for every gi ∈ G there
is an sj ∈ S′ such that gi ∈ sj?

Construct the set of votes based onG, S, andK so that it satisfies Property 1. Let k =
k′, and let p be the manipulator’s preferred candidate. We show that the manipulator
can get p elected under Hyb(Xk,Plurality) if and only if he can find a set cover for G.
Indeed, after k rounds of X, all candidates in C′ ∪ {p} survive, as well as exactly K
candidates from C′′. We show that p wins if and only if these K candidates correspond
to a set cover of G. Observe that any surviving candidate from C′′ has at most 3N < T
first-place votes, so he cannot win in the last stage. Now, consider a candidate c′i ∈ C′.
Suppose that the corresponding element is not covered, i.e., all c′′j such that gi ∈ sj are
eliminated. Then after the end of the first phase, c′i has T + 1 first-place vote, while p
has T first-place votes, so in this case p cannot win. On the other hand, suppose that for
any gi ∈ G there is an sj ∈ S such that gi ∈ sj and c′′j is not eliminated in the first
phase. Then at the beginning of the second phase each c′i ∈ C′ has T − 2 first-place
votes, while p has T first-place votes, so in this case p wins. ��

Corollary 3. The protocols Hyb(Bordak,Plurality) and Hyb(Maximink,Plurality) are
NP-hard to manipulate.

Proof. Let the voters who rank p first, rank the candidates in C′ above those in C′′, and
the voters who rank c′i first, rank the candidates in p ∪ C′ above those in C′′. For large

212 E. Elkind and H. Lipmaa

enough T , this guarantees that both Borda and Maximin scores of the candidates in
C′ ∪ {p} are much higher than those of the candidates in C′′, so none of the candidates
in C′ ∪{p} can be eliminated in the first phase. On the other hand, we still have enough
flexibility to ensure that all candidates in C′′ have the same Borda (or Maximin) score
with respect to the honest voters’ preferences. Then, for both protocols, the manipulator
can get anyM−K candidates fromC′′ eliminated by putting them on the bottom of his
vote and ranking the remaining K candidates above the candidates in C′ ∪ {p}. Thus,
both Borda and Maximin satisfy all conditions in the statement of Theorem 3. ��

Together with our results on STV and the results of [4], the constructions of this
section provide a wide choice of manipulation-resistant protocols. In the next sec-
tion, we add to our repertoire two more protocols that are hard to manipulate, namely,
Hyb(Bordak,Borda) and Hyb(Maximink,Borda).

5 Hybrid of a Protocol with Itself

We say that a protocol is hybrid-proof if a hybrid of several copies of this protocol is
equivalent to the original protocol. While some protocols, such as STV or Binary Cup,
have this property, for many other protocols, especially score-based ones, this is not the
case, since in a hybrid protocol, the scores of all surviving candidates are recomputed in
the beginning of the second phase, while in the original protocol they are computed only
once. Nevertheless, any protocol can be modified to be hybrid-proof. For an arbitrary
protocol X, define a closed protocol X by X = Hyb(X1, . . . ,X1), where the number of
copies of X1 is such that X selects a single winner; a step of X corresponds to a single
copy of X1. It is not hard to check that for any protocol X, the closed protocol X is
hybrid-proof.

Interestingly, Hyb(Plurality1, . . . ,Pluralitym) = STV: the vote transfer mechanism
can be viewed as recomputing each candidate’s Plurality score. Observe that while
Plurality has particularly bad manipulation resistance properties (see, e.g., Sect. 7),
STV is NP-hard to manipulate. This leads us to conjecture that for many other base pro-
tocols, the new protocols obtained in this manner are NP-hard to manipulate. Whenever
this is the case, the closed protocols provide the most faithful manipulation-resistant
approximation to the underlying protocols, which makes them compelling alternatives
to the original protocols. This conjecture is supported by the fact that for some easy-to-
manipulate protocols, a hybrid of just two copies of the protocol is NP-hard to manipu-
late; increasing the number of copies should make the manipulation harder, not easier.
As an illustration, in the full version of the paper, we prove the following result.

Theorem 4. The hybrids Hyb(Bordak,Borda) and Hyb(Maximink,Borda) are NP-
hard to manipulate.

6 Properties of Voting Protocols

Voting protocols are evaluated based on various criteria, such as Pareto-optimality (a
candidate who is ranked lower than some other candidate by every voter never wins),

Hybrid Voting Protocols and Hardness of Manipulation 213

Condorcet-consistency (if there is a candidate who is preferred to every other candidate
by a majority of voters, this candidate wins), or monotonicity (with the relative order
of the other candidates unchanged, ranking a candidate higher should never cause the
candidate to lose, nor should ranking a candidate lower ever cause the candidate to win).
In the context of this paper, a natural addition to this list is hardness of manipulation.

Most voting schemes that are based on pairwise comparisons, in particular, BC and
Maximin, are Condorcet-consistent, while for STV, or positional methods, such as
Plurality or Borda, this is not the case. One can prove that Plurality, Borda, Maximin,
and BC are monotone, while STV is not. All basic voting protocols considered in this
paper except BC are Pareto-optimal.

To analyze whether properties (1)–(3) are preserved under hybridization, we have
to extend these definitions to multi-step protocols. We say that a multi-step protocol is
strongly Pareto-optimal if whenever every voter ranks c1 below c2, c1 is eliminated be-
fore c2, and strongly monotone if ranking a candidate higher does not affect the relative
order of elimination of other candidates and cannot result in him being eliminated at
an earlier step; the definition of Condorcet consistency remains unchanged. It is easy to
see that multi-step versions of Pareto-optimal protocols that we consider are strongly
Pareto-optimal, at least for some draw resolution rules. However, not all monotone pro-
tocols are strongly monotone: for example, in Borda, moving a candidate several posi-
tions up changes other candidates’ scores in a non-uniform way.

Proposition 1. For any voting protocols X and Y and any k > 0, if both X and Y
are Condorcet-consistent, so is Hyb(Xk,Y); if X is strongly Pareto-optimal (strongly
monotone) and Y is Pareto-optimal (monotone), then Hyb(Xk,Y) is Pareto-optimal
(monotone).

We omit the proofs.
The construction proving that BC is not Pareto-optimal can be easily modified to

show that any protocol of the form Hyb(BCk,Y) is not Pareto-optimal for some k,
where Y ∈ {Plurality,Borda,Maximin, STV}. Hence, prior to this work, the only
Pareto-optimal mechanisms that were known to be NP-hard to manipulate were STV
and the variants of the Copeland protocol that were described in [1]. Our results imply
that Hyb(Bordak,Plurality), Hyb(Maximink,Plurality), and Hyb(Bordak,Borda) also
combine these two properties.

Furthermore, except for STV, all previous hard-to-manipulate protocols involved
methods that use pairwise comparisons, and such methods have been criticized for re-
lying too much on the number of victories rather than their magnitude. On the other
hand, both Hyb(Bordak,Plurality) and Hyb(Bordak,Borda) are based purely on posi-
tional methods, which do not suffer from this flaw, and Maximin (and hence, hybrids of
Maximin with positional methods) also takes into account the magnitude of victories.

7 Limitations and Extensions

Hybrids That Are Easy to Manipulate. Unfortunately, our method of obtaining hard-
to-manipulate protocols is not universal: if the protocol used in the first phase does not
provide the manipulator with sufficiently many choices, the resulting hybrid protocol

214 E. Elkind and H. Lipmaa

is almost as easy to manipulate as its second component. In particular, this applies to
Plurality protocol.

Theorem 5. Suppose that a protocol Y satisfies the following property for any candi-
date c: Given other voters’ preference profiles, the manipulator can in polynomial time
find a beneficial manipulation that ranks c first or infer that no such manipulation ex-
ists. Then there is a polynomial-time algorithm that can constructively manipulate the
hybrid Hyb(Pluralityk,Y) for any k.

Proof. For the first phase of the protocol, the only choice that the manipulator has
to make is which candidate to rank first; the rest of his vote will have no effect on the
elimination process. Hence, he can try allm options. Suppose that when the manipulator
ranks ci first, the set of candidates that survive the first phase isCi. The manipulator can
deduce the honest voters’ preferences over Ci. If ci �∈ Ci, he simply has to construct a
beneficial manipulation π|Ci of Y and, in his vote, rank ci first and order the candidates
in Ci as suggested by π|Ci . If ci ∈ Ci, in constructing a beneficial manipulation of Y
he is restricted to orderings that rank ci first. By our assumptions, he can find a solution
to this problem in polynomial time. ��

Corollary 4. There are polynomial-time algorithms that can constructively manipulate
Hyb(Pluralityk,Y), where Y ∈ {Borda,Maximin,BC,Plurality} for any k.

Utility-Based Voting. So far, we have focused on voting schemes that required each
voter to submit a total ordering of the candidates. However, in many settings a voter may
be essentially indifferent between some of the alternatives, but have a strong opinion on
the relative merit of other alternatives. In this case, his preference may be better reflected
by a utility vector u = (u1, . . . , um), where 0 ≤ uj ≤ 1 is the utility that this voter
assigns to candidate cj . To guarantee fairness, the utility vectors are normalized, i.e.,
we require that either uj = 0 for all j or

∑
j uj = 1.

The definitions of a voting protocol and manipulation can be modified in a straight-
forward manner. The most natural voting protocol for the utility-based framework is
HighestScore, which computes the total score of each candidate, i.e., the sum of utilities
assigned to this candidate by all voters, and selects the candidate with the highest total
score. A hybrid of two utility-based protocols is a protocol that performs k steps of the
first protocol, re-normalizes the utility vectors (restricted to the surviving candidates)
and executes the second protocol on the remaining candidates. While HighestScore it-
self is not manipulation-resistant, the techniques we use for ordering-based protocols
are applicable in this setting, too.

Theorem 6. There is a polynomial-time algorithm that can manipulate HighestScore.
However, Hyb(HighestScorek,HighestScore) is NP-hard to manipulate.

8 Conclusions and Future Work

Our work places the results of [3,4] within a more general paradigm of hybrid voting
schemes. The advantage of our approach is that it works for a wide range of protocols:
while some voting procedures are inherently hard to manipulate, they may not satisfy

Hybrid Voting Protocols and Hardness of Manipulation 215

the intuitive criteria of a given setting. On the other hand, a hybrid of two protocols
retains many of their desirable properties, and sometimes may combine the best of both
worlds. All of the voting protocols described in Sect. 2, as well as many others, are used
in different contexts; while it would be unreasonable to expect that all of them will be
replaced, say, by STV just because it is harder to manipulate, hybrids of these protocols
with similar ones or even with themselves may be eventually preferred to the original
protocols. Moreover, our results on utility-based voting suggest that our techniques can
be useful for a wider class of problems and can be viewed as a contribution to the more
general task of constructing computationally strategy-proof mechanisms.

An important issue not addressed in this paper is that of designing protocols with
high average-case complexity. However, even asking this question properly, i.e., coming
up with a natural distribution of voter’s preferences with respect to which the average-
case hardness is computed is itself a difficult task: clearly, in most scenarios one cannot
expect preferences to be uniformly distributed. Initial results in this direction can be
found in [6]; however, this topic should be explored further.

References

1. John J. Bartholdi, III, Craig A. Tovey, and James B. Orlin. The Computational Difficulty of
Manipulating an Election. Social Choice and Welfare, 6:227–241, 1989.

2. John J. Bartholdi, III and James B. Orlin. Single Transferable Vote Resists Strategic Voting.
Social Choice and Welfare, 8(4):341–354, 1991.

3. Vincent Conitzer and Tuomas Sandholm. Complexity of Manipulating Elections with Few
Candidates. In Proceedings of the Eighteenth National Conference on Artificial Intelligence
and Fourteenth Conference on Innovative Applications of Artificial Intelligence, pages 314–
319, Edmonton, Alberta, Canada, July 28 — August 1 2002. AAAI Press.

4. Vincent Conitzer and Tuomas Sandholm. Universal Voting Protocol Tweaks to Make Manip-
ulation Hard. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 781–788, Acapulco, Mexico, August 9–15 2003.

5. Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar, Rank aggregation methods for
the Web, In Proc. 10th International World-Wide Web Conference (WWW), pages 613–622.

6. Edith Elkind and Helger Lipmaa. Small Coalitions Cannot Manipulate Voting. In Proceed-
ings of Financial Cryptography and Data Security - Ninth International Conference, Roseau,
The Commonwealth Of Dominica, February 28–March 3, 2005.

7. Eithan Ephrati and Jeffrey S. Rosenschein. Multi-Agent Planning as a Dynamic Search
for Social Consensus. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1993.

8. Allan F. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,
41:597–601, 1973.

9. Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee. Comparing and
Aggregating Rankings with Ties. In Proceedings of 23rd ACM Symposium on Principles of
Database Systems (PODS), pages 47–58.

10. David M. Pennock, Eric Horvitz, and C. Lee Giles. Social Choice Theory and Recommender
Systems: Analysis of the Axiomatic Foundations of Collaborative Filtering. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence, July 2000.

11. Mark A. Satterthwaite. The Existence of Strategy-Proof Voting Procedures: A Topic in Social
Choice Theory. PhD thesis, University of Wisconsin, Madison, 1973.

On the Complexity of Rocchio’s
Similarity-Based Relevance Feedback Algorithm

Zhixiang Chen1 and Bin Fu2,3

1 Department of Computer Science, University of Texas-Pan American,
Edinburg, TX 78541, USA

chen@cs.panam.edu
2 Department of Computer Science, University of New Orleans,

New Orleans, LA 70148, USA
fu@cs.uno.edu

3 Research Institute for Children, 200 Henry Clay Avenue,
New Orleans, LA 80118, USA

Abstract. In this paper, we prove for the first time that the learning
complexity of Rocchio’s algorithm is O(d+d2(log d+log n)) over the dis-
cretized vector space {0, . . . , n − 1}d, when the inner product similarity
measure is used. The upper bound on the learning complexity for search-
ing for documents represented by a monotone linear classifier (q, 0) over
{0, . . . , n− 1}d can be improved to O(d + 2k(n− 1)(log d + log(n− 1))),
where k is the number of nonzero components in q. An Ω((d

2) log n)
lower bound on the learning complexity is also obtained for Rocchio’s al-
gorithm over {0, . . . , n− 1}d. In practice, Rocchio’s algorithm often uses
fixed query updating factors. When this is the case, the lower bound is
strengthened to 2Ω(d) over the binary vector space {0, 1}d. In general,
if the query updating factors are bounded by O(nc) for some constant
c ≥ 0, an Ω(nd−1−c/(n−1)) lower bound is obtained over {0, . . . , n−1}d.

1 Introduction

Information retrieval has a long history of research on relevance feedback (see,
for example, [1,8,14,15,17,19]), and becomes a necessary part of our daily life
due to the popularity of the Web. It is regarded as the most popular query
reformation strategy [1,17]. The central idea of relevance feedback is to improve
search performance for a particular query by modifying the query step by step,
based on the user’s judgments of the relevance or irrelevance of some of the
documents retrieved. In his popular textbook [19], van Vijsbergen describes the
relevance feedback as a fixed error correction procedure and relates it to the
linear classification problem. When the inner product similarity is used, relevance
feedback is just a Perceptron-like learning algorithm. Wong, Yao and Bollmann
[20] studied the linear structure in information retrieval. They designed a very
nice gradient descent procedure to compute the coefficients of a linear function
and analyzed its performance. In order to update the query vector adaptively,
their gradient descent procedure must know the user preference which is in

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 216–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Complexity of Relevance Feedback Algorithm 217

practice the unknown target to be learned by an information retrieval system. In
[3,4], multiplicative adaptive algorithms are devised for user preference retrieval
with provable, efficient performance.

There are many different variants of relevance feedback in information re-
trieval. However, in this paper we only study Rocchio’s similarity-based relevance
feedback algorithm [15,17]. In spite of its popularity in various applications, there
is little rigorous analysis of its complexity as a learning algorithm in literature.
As a first step towards formal analysis of Rocchio’s similarity-based relevance
feedback algorithm, the work in [7] establishes a linear lower bound on the learn-
ing complexity for the algorithm in searching for documents represented by a
monotone linear classifier xi1 ∨xi2 ∨· · ·∨xik

over the binary vector space {0, 1}d,
when any of the four typical similarity measures (inner product, dice coefficient,
cosine coefficient, and Jaccard coefficient) listed in [17] is used. The linear lower
bound obtained in [7] is independent of the query updating factors and the clas-
sification threshold that are used by the algorithm. A number of challenging
problems regarding further analysis of the algorithm remain open [7].

In practice, a fixed query updating factor and a fixed classification thresh-
old are often used in Rocchio’s similarity-based relevance feedback algorithm
[1,17]. Using a fixed query updating factor has many merits, such as simplicity
and efficiency. As another example, the popular Winnow algorithm [11] uses a
fixed updating factor. When this is the case, the work in [5] strengthened the
linear lower bound in [7] to a quadratic lower for the algorithm in searching for
documents represented by xi1 ∨ xi2 ∨ · · · ∨ xik

over {0, 1}d.
In this paper, we prove for the first time that the learning complexity of

Rocchio’s algorithm in searching for documents represented by a linear classifier
is O(d + d2(log d + logn)) over the discretized vector space {0, . . . , n − 1}d,
when the inner product similarity measure is used. The upper bound on learning
complexity for documents represented by a monotone linear classifier (q, 0) over
{0, . . . , n− 1}d can be improved to O(d+ 2k(n− 1)(logd+ log(n− 1))), where k
is the number of nonzero components in q. An Ω((d

2) log n) lower bound on the
learning complexity is also obtained for Rocchio’s algorithm over {0, . . . , n−1}d.
In practice, Rocchio’s algorithm often uses fixed query updating factors. When
this is the case, the lower bound is strengthened to 2Ω(d) over {0, 1}d. In general,
if the query updating factors are bounded by O(nc) for some constant c ≥ 0, an
Ω(nd−1−c/(n− 1)) lower bound is obtained over {0, . . . , n− 1}d.

2 Rocchio’s Similarity-Based Relevance Feedback
Algorithm

Let R be the set of all real values. Let d and n be two integers with d ≥ 1
and n ≥ 2. In the binary vector space model in information retrieval [17,18], a
collection of d features (or terms) T1, T2, . . . , Td are used to represent documents
and queries. Each document x is represented as a vector vx = (x1, x2, . . . , xd)
such that for any i, 1 ≤ i ≤ d, the i-th component of vx is one if the i-th feature
Ti appears in x or zero otherwise. Each query q is represented by a vector

218 Z. Chen and B. Fu

vq = (q1, q2, . . . , qd) such that for any i, 1 ≤ i ≤ d, the i-th component of vq ∈ R
is a real value used to determine the relevance (or weight) of the i-th feature
Ti. Because of the unique vector representations of documents and queries, for
convenience we simply use x and q to stand for their vector representations
vx and vq, respectively. If term frequencies are used to index a document x,
then x is a vector in the discretized vector space {0, . . . , n − 1}d. Note that
fractional term frequency/inverse document frequency vectors can be converted
into vectors in {0, . . . , n− 1}d. A similarity measure, called similarity for short,
in general is a function m from Rn ×Rn to non-negative real values. A similarity
m is used to determine the relevance closeness of documents to the search query
and to rank documents according to such closeness. Among a variety of similarity
measures, vector inner product similarity is commonly used [17,18,1]. To simply
presentation, we will focus on this similarity throughout this paper.

Definition 1. A linear classifier over the d-dimensional discretized vector space
{0, . . . , n − 1}d is a pair (q, φ), where q ∈ Rd is the query/weight vector and
φ ∈ R is a threshold. The classifier classifies any documents x ∈ {0, . . . , n− 1}d

as relevant if q · x > φ or irrelevant otherwise.

Definition 2. An adaptive learning algorithm A for learning a unknown target
linear classifier (q, φ) over the n-dimensional discretized vector space {0, . . . , n−
1}d from examples is a game played between the algorithm A and the user in a
step by step fashion, where the query/weight vector q and the threshold φ are
unknown to the algorithm A. At any step t ≥ 1, A gives a linear classifier (qt, φ)
as a hypothesis to the target linear classifier to the user, where qt ∈ Rd and
φ ∈ R. If the hypothesis is equivalent to the target, then the user says “yes”
to conclude the learning process. Otherwise, the user presents a counterexample
xt ∈ {0, . . . , n − 1}d such that the target classifier and the hypothesis classi-
fier differ at xt. In this case, we say that the algorithm A makes a mistake.
At step t + 1, the algorithm A constructs a new hypothetical linear classifier
(qt+1, φt+1) to the user based on the received counterexamples x1, . . . ,xt. The
learning complexity (or the mistake bound) of the algorithm A is in the worst
case the maximum number of counterexamples that it may receive from the user
in order to learn some classifier over {0, . . . , n− 1}d.

Definition 3. Rocchio’s similarity-based relevance feedback algorithm is an
adaptive learning algorithm for learning any linear classifier (q, φ) over the d-
dimensional discretized vector space {0, . . . , n− 1}d from examples. Let (q1, φ1)
be the initial hypothesis. Assume that at the beginning of step t > 1 the algorithm
has received a sequence of counterexamples x1, . . . ,xt−1, then the algorithm uses
the following modified query vector qt for its next classification:

qt = αt0q1 +
t−1∑
j=1

αtjxj , (1)

where αtj ∈ R, for j = 0, . . . , t− 1, are called query updating factors.

Please note that our definition above is a generalized version of Rocchio’s
original algorithm.

On the Complexity of Relevance Feedback Algorithm 219

3 An Upper Bound for Documents Represented by a
Linear Classifier

In this section, we will prove an upper on the learning complexity of Rocchio’s
similarity-based algorithm in searching for documents represented by a linear
classifier over the discretized vector space {0, . . . , n−1}d. We first prove Lemma 1
using linear independence to allow Rocchio’s algorithm to simulate any adaptive
learning algorithm for learning linear classifiers. Utilizing linear independence
to derive upper bounds on learning complexity can be found, for examples, in
[2,6,10].

Lemma 1. Let A be any given adaptive learning algorithm for learning linear
classifiers over the d-dimensional discretized vector space {0, . . . , n − 1}d. Let
l(A) and t(A) denote respectively the learning complexity and the time complexity
of the algorithm A. Then, the learning complexity of Rocchio’s similarity-based
relevance feedback in searching for documents represented by a linear classifier
over {0, . . . , n−1}d is at most d+ l(A), and it time complexity is O(d2 log2 n(d+
l(A)) + t(A)).

Proof. By Definition 1, the algorithm A works in a step by step fashion. At step
t ≥ 1. A computes a hypothesis linear classifier (qt, φt). We design the following
procedure to allow Rocchio’s algorithm to simulate the algorithm A:

For t = 1, do
Call A to generate the hypothesis (q1, θ1).
Set q∗

1 = 0 and present the hypothesis (q∗
1, φ1) to the user.

If the user answers “yes”, then stop.
Otherwise a counterexample x1 is received as relevance feedback.

For t > 1, do
If xt−1 is also a counterexample to A’s current hypothesis linear
classifier (qt−1, φt−1), then call A to generate a new hypothesis (qt, φt)
using x1, . . . ,xt−1.
If xt−1 is not a counterexample to A’s current hypothesis linear
classifier (qt−1, φt−1), then simply let qt = qt−1 and φt = φt−1.
Compute q∗

t as the projection of qt onto the linear
space defined by {x1, . . . ,xt−1}.
Let Rocchio’s algorithm present the new hypothesis (q∗

t , φt) to the user.
If the user answers “yes”, then stop.
Otherwise a counterexample xt is received as relevance feedback.
Repeat the process for t > 1.

We note that Rocchio’s algorithm in the above simulation procedure uses
a zero initial query vector. For any t > 1, the algorithm uses a query vector
q∗

t =
∑t−1

i=1 αixi for some αi ∈ R, because q∗
t is the projection of qt onto

the linear space defined by {x1, . . . ,xt−1}. This means that the query vector is
updated following expression (1). Also, since q∗

t is the projection of qt onto the

220 Z. Chen and B. Fu

linear space defined by by {x1, . . . ,xt−1}, we have qt = q∗
t + rt for some vector

rt such that rt · xi = 0 for i = 1, . . . , t− 1.
For any t > 1, if xt is linearly dependent on x1, . . . ,xt−1, i.e., xt =

∑t−1
i=1 βixi

for some βi ∈ R, then we have

qt · xt = (q∗
t + rt) ·

t−1∑
i=1

βixi

= q∗
t ·

t−1∑
i=1

βixi +
t−1∑
i=1

βirt · xi

= q∗
t ·

t−1∑
i=1

βixi = q∗
t · xt

Hence, the algorithm A has the same classification on xt as Rocchio’s algorithm
does. In other words, if both A and Rocchio’s algorithm have different classifi-
cations on xt, then xt must be linearly independent of x1, . . . ,xt−1. Note that
xt is a counterexample for the hypothesis linear classifier (q∗

t , φt) of Rocchio’s
algorithm. The above analysis implies that if xt is not a counterexample for the
hypothesis linear classifier (qt, φt) of the algorithm A, then xt must be linearly
independent of x1, . . . ,xt−1. Since there are at most d many linearly indepen-
dent vectors over the vector space {0, . . . , n− 1}d, this can only happen at most
d times. This follows that the learning complexity of Rocchio’s algorithm is at
most d+ l(A). For each t > 1, the projection q∗

t can be computed using standard
matrix operations in O(d2 log2 n) time, and the above simulation procedure runs
at most d+l(A) iterations. Therefore, the time complexity of Rocchio’s algorithm
is O(d2 log2 n(d+ l(A)) + t(A)). �

Theorem 1. The learning complexity of Rocchio’s similarity-based relevance
feedback algorithm in searching for documents represented by a linear classi-
fier over the d-dimensional discretized vector space {0, . . . , n − 1}d is O(d +
d2(log d + logn)). Moreover, the time complexity of achieving this upper bound
is polynomial in d and logn.

Proof. It is proved by Maass and Turán in [12] that linear classifiers over
the d-dimensional vector space {0, . . . , n − 1}d can be learned by an adaptive
learning algorithm from examples with learning complexity O(d2(log d+logn)).
Their algorithm uses linear classifiers over {0, . . . , n− 1}d as hypotheses, and its
time complexity is polynomial in d and logn. Therefore, the above theorem fol-
lows from Lemma 1 via simulating the learning algorithm by Maass and Turán
[12]. �

4 Upper Bound for Documents Represented by a
Monotone Linear Classifier

In this section, we consider the learning complexity of Rocchio’s similarity-based
relevance feedback algorithm in searching for documents represented by a mono-

On the Complexity of Relevance Feedback Algorithm 221

tone linear classifier (q, 0) over the discretized vector space {0, . . . , n−1}d, where
qi ≥ 0, 1 ≤ i ≤ d. For a monotone linear classifier (q, 0), any x ∈ {0, . . . , n− 1}d

is classified as relevant if

q · x = q1x1 + q2x2 + · · · + qdxd > 0, (2)

or irrelevant otherwise. The efficient learnability of monotone linear classifiers
has been extensively studied in machine learning (for example, [11]).

Theorem 2. The learning complexity of Rocchio’s similarity-based relevance
feedback algorithm in searching for documents represented by a monotone lin-
ear classifier (q, 0) over the discretized vector space {0, n − 1}d is at most
d+ 2k(n− 1)(log d+ log(n− 1)). Here, k is the number of nonzero components
of q.

We postpone the proof to the end of this section, but first give the following
corollary, which gives the bound of the well-known algorithm Winnow1 [11]:

Corollary 1. The learning complexity of Rocchio’s similarity-based relevance
feedback algorithm in searching for documents represented by a monotone linear
classifier (q, 0) over the binary vector space {0, 1}d is at most d+2k log d. Here,
k is the number of nonzero components of q.

We now extend the multiplicative query updating technique developed by
Littlestone [11] for learning monotone linear classifiers over the boolean vector
space {0, 1}d to the discretized vector space {0, . . . , n − 1}d to search for doc-
uments represented by a monotone linear classifier (q, 0) satisfying expression
(2). The algorithm MAL is given in the following. We observe that the algo-
rithm MAL differs from the algorithm Winnow1 [11] at the promotion step as
follows: MAL uses α xi

n−1qi,t to update qi,t+1, while the algorithm Winnow1 uses
αqi,t. The performance of the algorithm MAL, when it is used to search for doc-
uments represented by a monotone linear classifier (q, 0) satisfying expression
(2), is given in the following two lemmas.

Lemma 2. Let u denote the total number of promotions that the algorithm MAL
needs to search for documents represented by a monotone the linear classifier
(q, 0). If α > n− 1, then,

u ≤ k
logφ

log α
n−1

.

Here, k is the number of nonzero components qi > 0.

Lemma 3. Let T denote the learning complexity of the algorithm MAL in
searching for documents represented a monotone linear classifier (q, 0) over the
discretized vector space {0, . . . , n−1}d. let k denote the number of nonzero com-
ponents of q. Suppose α > n− 1. Then,

T ≤ d(n− 1)
φ

+ kα
logφ

log α
n−1

. (3)

222 Z. Chen and B. Fu

Proof of Theorem 2. It follows directly from the above Lemma 3 and Lemma
1 in the previous section with the choices of φ = d(n− 1) and α = 2(n− 1). �

Algorithm MAL:
(i) Inputs:

q1 = 1, the initial query vector
α: the query updating factor
φ ≥ 0, the classification threshold

(ii) Set t = 1.
(iii) Classify and rank documents with the linear classifier (qt, φ).
(iv) While (the user judged the relevance of a document x) do {

for i = 1, . . . , d, do {
/* qt = (q1,t, . . . , qd,t), x = (x1, . . . , xd) */
if (xi �= 0) {

if (x is relevant) /* promotion */
set qi,t+1 = α xi

n−1qi,t
else /* demotion */

set qi,t+1 = 0
} else

set qi,t+1 = qi,t
}

}
(v) If no documents were judged in the k-th step, then stop.
O therwise, let t = t+ 1 and go to step (iv).

/* The end of the algorithm MAL */

5 Lower Bounds

Maass and Turán [12] have derived the following lower bound on the number of
different linear classifiers over the discretized vector space {0, . . . , n− 1}d:

Proposition 1. (Maass and Turán [12]) The number of different linear clas-
sifiers over the discretized vector space {0, . . . , n − 1}d is at least n(d

2)(n − 1)d.

Based on the above lower bound on the number of linear classifiers and the
binary decision tree technique devised by Littlestone [11], they obtained an
Ω((d

2) log n) for any adaptive learning algorithm for learning linear classifier over
{0, . . . , n− 1}d. This implies the following corollary:

Corollary 2. The learning complexity of Rocchio’s algorithm in searching for
documents represented by a linear classifier over the discretized vector space
{0, . . . , n − 1}d is at least Ω((d

2) logn). In particular, in the binary vector space
{0, 1}d, the lower bound is Ω(d2).

On the Complexity of Relevance Feedback Algorithm 223

Remark 1. The above lower bound does not apply to the case of searching for
documents represented by a monotone linear classifier over {0, . . . , n− 1}d, be-
cause there are fewer monotone linear classifiers over {0, . . . , n−1}d than general
linear classifiers, so that the Ω((d

2) logn) lower bound on the number of linear
classifiers in general does not hold for monotone linear classifiers. In particular,
there are at most (d

k) monotone disjunctions xi1 ∨ xi2 ∨ · · · ∨ xik
over the binary

vector space {0, 1}d. We can only derive an Ω(k log d) lower bound for search-
ing for documents represented by a monotone disjunction of k binary relevant
features. When k is a constant, this lower bound becomes Ω(log d). In [7], an
Ω(n) lower bound is obtained for monotone disjunctions of k relevant features
over {0, 1}d.

In practice, a fixed query updating factor α us used for Rocchio’s algorithm.
At any step t ≥ 1, for 1 ≤ i ≤ d, the i-component of the query vector qt+1
is updated with respect to the counterexample example xt = (x1,t, . . . , xd,t) as
follows: qi,t+1 = qi,t +αxi,t if xt is relevance, otherwise qi,t+1 = qi,t −αxit . Since
in general the classification threshold can be reviewed as an additional variable,
it can be updated as φt+1 = φt + α if xt is relevance, otherwise φt+1 = φt − α.
Following the approach for deriving a lower bound for k-bound learning algorithm
in [12], we have the following theorem:

Theorem 3. If a fixed query updating factor is used, then the learning com-
plexity of Rocchio’s similarity-based relevance feedback algorithm in searching
for documents represented by a linear classifier over the Boolean vector space
{0, 1}d is at least 2Ω(d).

Proof Note that at any step t ≥ 1, the counterexample example xt =
(x1,t, . . . , xd,t) to the query vector qt is a binary vector in {0, 1}d. As analyzed
above, for 1 ≤ i ≤ d, the i-component qi,t+1 of the query vector qt+1 can be
updated as either qi,t, or qi,t +α, or qi,t −α, depending on whether xt is relevant
or not and whether xi is zero or one. By iteration from expression (1), qi,t+1 is
obtained from qi,1 with tmany operations, each of which is one of three types +0,
+α, and −α. The order of these operations do not affect the value of qi,t+1. The
value of qi,t+1 is determined by the number of each type of operations involved.
Thus, there are at most t3 many possible values for qi,t+1. This means there
are at most t3d many possible choices for qt+1. Similarly, φt+1 can be updated
as either φt + α or φt − α, implying there are at most t2 many possible values
for φt+1. Therefore, at step t, Rocchio’s algorithm with a fixed query updating
factor can generate at most t3(d+1) many possible hypotheses. By Proposition 1,
in order to search for document sets represented by any linear classifier over the
binary vector space {0, 1}d, we must have

t3(d+1) ≥ 2(d
2).

Hence, t ≥ 2Ω(d). �

Remark 2. As commented in Remark 1, the lower bound in Theorem 3 does not
apply to the case of searching for documents represented by a monotone linear

.

224 Z. Chen and B. Fu

classifier over {0, . . . , n−1}d, because there are fewer monotone linear classifiers
over {0, . . . , n− 1}d than general linear classifiers, so that the Ω((d

2) log n) lower
bound on the number of linear classifiers in general does not hold for monotone
linear classifiers. In [5], an Ω(k(n − k)) lower bound is obtained for monotone
disjunctions of k relevant features over {0, 1}d, when a constant query updating
factor is used.

Unfortunately, the proof of Theorem 3 cannot be generalized to the discretized
vector space {0, . . . , n−1}d. In this case, qi,k+1 is obtained from qi,1 with k many
operations, each of which is one of three types of operations +0, +αxi,k and
−αxi,k. Since xi,k in general may not be 1 or 0, the value of qi,k+1 is determined
by not only the number of each type of operations involved, but also the order
of these operations. However, we have the following lower bound:

Theorem 4. Suppose that the query updating factors used by Rocchio’s
similarity-based algorithm are bounded by O(nc) from some constant c ≥ 0 during
its process of searching for documents represented by a linear classifier over the
discretized vector space {0, . . . , n − 1}d. Then, learning complexity of Rocchio’s
algorithm is at least Ω(nd−1−c/(n− 1)).

Proof. It is proved in Hampson and Volper [9] that there are linear classifiers
(q, 0) over {0, . . . , n − 1}d such that qi = θ(nd−1) for some 1 ≤ i ≤ d. At each
step k ≥ 1, Rocchio’s algorithm can update its query vector by a magnitude of
at most O(nc(n − 1). Hence, the algorithm needs at least Ω(nd−1−c/(n − 1))
steps to to learn qi = θ(nd−1). �

Remark 3. The exponential lower bounds obtained in Theorems 3 and 4 do not
contradict to the O(d + d2(log d + logn)) upper bound obtained in Theorem 1
and the O(d+ 2k(n− 1)(log d+ log(n− 1))) upper bound obtained in Theorem
2. In Theorems 3 and 4, the query updating factors are either fixed or bounded
by O(nc), while there are no such requirements in Theorems 1 and 2. In reality,
when computing the projection of a query vector onto a linear subspace spanned
by a list of counterexamples in the proof of Lemma 1, exponential query updating
factors may occur.

6 Concluding Remarks

It would be very interesting to analyze the average-case learning complexity of
Rocchio’s algorithm. We feel that this problem is very challenging, because any
nontrivial average case complexity analysis will reply on realistic models of doc-
ument distribution, index term distribution, and the user preference distribution
as well. We feel that it is not easy to model those distributions nor to analyze the
complexity under those distributions. The probabilistic corpus model proposed
in [13] may shed some light on this problem.

On the Complexity of Relevance Feedback Algorithm 225

References

1. R. Baeza-Yates and B. Ribeiro-Neto, eds. Modern Information Retrieval, Addison-
Wesley, 1999.

2. N. Bshouty, Z. Chen, S. Decatur and S. Homer, On the learnability of ZN -DNF
formulas, Proceedings of COLT’95, 198-205, 1995.

3. Z. Chen, Multiplicative adaptive algorithms for user preference retrieval, Proceed-
ings of COCOON’01, 540-549, 2001.

4. Chen Z, Multiplicative adaptive user preference retrieval and its applications to
Web search. In: Zhang G, Kandel A, Lin T, and Yao Y, ed. Computational Web
Intelligence: Intelligent Technology for Web Applications. World Scientific, 303-328,
2004.

5. Z. Chen and B. Fu, A quadratic lower bound for Rocchio’s similarity-based rele-
vance feedback algorithm, Proceedings of COCOON’05, 955-964, 2005.

6. Z. Chen and S. Homer, Learning counting functions with queries, Theoretical Com-
puter Science, 180(1-2):155-168, 1997.

7. Z. Chen and B. Zhu, Some formal analysis of Rocchio’s similarity-based relevance
feedback algorithm. Information Retrieval 5: 61-86, 2002. (The preliminary version
of this paper appeared in Proceedings of ISAAC’00, LNCS 1969, pp 108-119, 2000.)

8. W. Frakes and R. Baeza-Yates, eds. Information Retrieval: Data Structures and
Algorithms. Prentice Hall, 1992.

9. S. Hampson and D. Volper, Representing and learning boolean functions of mul-
tivalued features, IEEE Trans. on Systems, Man, and Cybernetics, 20(1):67-80,
1990.

10. J. Kivinen, M. Warmuth and P. Auer, The perceptron algorithm vs. Winnow: linear
vs. logarithmic mistake bounds when few input variables are relevant, Artificial
Intelligence, (1-2):325-343, 1997.

11. N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm, Machine Learning 2:285-318, 1988.

12. W. Maass and G. Turán, How fast can a threshold gate learn? Computational
Learning Theory and Natural Learning Systems 1:381-414, 1994.

13. C. Papadimitriou, P. Raghavan and H. Tamaki, Latent semantic indexing: A prob-
abilistic analysis, Journal of Computer and System Science 61(2):217-235, 2000.

14. V. Raghavan and S. Wong, A critical analysis of the vector space model for informa-
tion retrieval, Journal of the American Society for Information Science 37(5):279-
287, 1986.

15. J. Rocchio, Relevance feedback in information retrieval. In: Salton G, ed.
The Smart Retrieval System - Experiments in Automatic Document Processing.
Prentice-Hall, Englewood Cliffs, NJ, 313-323, 1971.

16. F. Rosenblatt, (1958) The perceptron: A probabilistic model for information stor-
age and organization in the brain, Psychological Review 65(6):386-407, 1958.

17. G. Salton, eds. Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer, Addison-Wesley, 1989.

18. Salton G, Wong S and Yang C (1975) A vector space model for automatic indexing.
Comm. of ACM 18(11):613–620.

19. CJ van Vijsbergen, Information Retrieval, Butterworths, 1979.
20. S. Wong, Y. Yao and P. Bollmann, Linear structures in information retrieval, Pro-

ceedings of the 1988 ACM-SIGIR Conference on Information Retrieval, 219-232,
1988.

Correlation Clustering and Consensus Clustering

Paola Bonizzoni1, Gianluca Della Vedova2, Riccardo Dondi1,�, and Tao Jiang3,4,��

1 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca Milano - Italy

2 Dipartimento di Statistica, Università degli Studi di Milano-Bicocca Milano - Italy
3 Department of Computer Science and Engineering University of California - Riverside - USA

4 Center for Advanced Study, Tsinghua University, Beijing, China
bonizzoni@disco.unimib.it, gianluca.dellavedova@unimib.it

riccardo.dondi@unimib.it, jiang@cs.ucr.edu

Abstract. The Correlation Clustering problem has been introduced recently [5]
as a model for clustering data when a binary relationship between data points
is known. More precisely, for each pair of points we have two scores measur-
ing respectively the similarity and dissimilarity of the two points, and we would
like to compute an optimal partition where the value of a partition is obtained by
summing up scores of pairs involving points from a same cluster and scores of
pairs involving points from different clusters. A closely related problem is Con-
sensus Clustering, where we are given a set of partitions and we would like to
obtain a partition that best summarizes the input partitions. The latter problem
is a restricted case of Correlation Clustering. In this paper we prove that Min
Consensus Clustering is APX-hard even for three input partitions, answering an
open question, while Max Consensus Clustering admits a PTAS on instances with
a bounded number of input partitions. We exhibit a combinatorial and practi-
cal 4

5 -approximation algorithm based on a greedy technique for Max Consensus
Clustering on three partitions. Moreover, we prove that a PTAS exists for Max
Correlation Clustering when the maximum ratio between two scores is at most a
constant.

1 Introduction

The problem of analyzing a set of points in order to isolate subsets of points that are
closely related is known as clustering. Clustering is an important problem in computer
science due to its broad applications in areas such as datamining, machine learning, and
bioinformatics. An example application taken from [5] is to cluster a set of documents
into topics without having a clear notion of topic, but with a measure of similarity (or
dissimilarity) between pairs of documents. We construct a graph G whose vertices are
the documents. Each edge e is labeled with two weights, where the first weight a(e)
measures the similarity between the documents incident on e and the second weight
b(e) measures the dissimilarity between the documents incident on e. Given a partition

� Corresponding author.
�� Tao Jiang research is supported in part by NSF grant CCR-0309902, National Key Project for

Basic Research (973) grant 2002CB512801, and a fellowship from the Center for Advanced
Study, Tsinghua University.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 226–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Correlation Clustering and Consensus Clustering 227

π of the vertex set of G, the value of π can be formally defined as the summation of a(e)
for each edge internal to a cluster and b(e) for each edge whose endpoints are in two
different clusters. The MAX CORRELATION CLUSTERING problem asks for a partition
π of vertices of G of maximum value. An interesting property of this approach is that
the number of clusters to be obtained is not predetermined a priori, as in the case of the
k-median or k-center problems, and it depends uniquely on the instance.

There are in fact several versions of the problem. For instance, both the maximiza-
tion and minimization versions of the problem have been studied in the literature and
shown to have different approximation properties, as we will see in this paper. Note
that the minimization version asks for a partition π of vertices of G whose value is
defined by summing the weight a(e) for each edge e whose endpoints are in two differ-
ent clusters and weight b(e) for each edge internal to a cluster. Moreover, in the case
of arbitrary weights (i.e. a(e) = b(e) = 0 is allowed) the minimization version of the
problem, i.e. MIN CORRELATION CLUSTERING, has an O(logn)-approximation algo-
rithm [6,7,8], while MAX CORRELATION CLUSTERING is APX-hard and has a 0.7664-
approximation algorithm [6], improved to 0.7666 in [13]. Unweighted versions of COR-
RELATION CLUSTERING (that is all scores a(e) are either 0 or 1 and b(e) = 1 − a(e))
have also been considered before, proving that the unweighted MIN CORRELATION

CLUSTERING is APX-hard [8,6] via a reduction from minimum multicut, while admit-
ting a 4-approximation algorithm [6] and a randomized 3-approximation algorithm [3].
The unweighted MAX CORRELATION CLUSTERING admits a probabilistic PTAS [5].
Advances on variants of CORRELATION CLUSTERING have been recently achieved in
[3]. In this paper, we will describe a PTAS for MAX CORRELATION CLUSTERING on
input graphs where the ratio between the largest and smallest weights is bounded by a
constant. Such a restriction clearly implies that all weights are strictly larger than zero,
and hence the result is applicable only to complete graphs. The PTAS is based on the
smooth polynomial programming technique introduced in [2] and exploits the natural
denseness of the problem.

Another variant of CORRELATION CLUSTERING is the CONSENSUS CLUSTERING

problem. Here, we are given a set of partitions and we want to compute the median
partition, i.e. a partition having the total maximum similarity (or minimum distance) to
the input partitions. CONSENSUS CLUSTERING has been studied extensively in the lit-
erature [12,14], and its NP-hardness over general graphs is well-known. More attention
has been given to the problem recently because of its application in bioinformatics, in
particular, microarray data analysis. It is observed in [10,9] that microarray experiments
provide measures of gene expression levels, and clustering genes with similar expres-
sion levels could provide information useful for the construction of genetic networks.
Since different experimental conditions may result in significantly different expression
data (thus partitions of genes), it is often useful to compute the consensus of the parti-
tions given by a collection of gene expression data. It is easy to see that CONSENSUS

CLUSTERING is actually a special case of (weighted) CORRELATION CLUSTERING.
Consider an instance of CONSENSUS CLUSTERING. For each pair of elements of the
universe, x1 and x2, define an edge e = (x1,x2) with weight a(e) equal to the num-
ber of input partitions containing x1 and x2 in the same set (i.e. they are co-clustered)
and weight b(e) equal to the number of input partitions containing x1 and x2 in differ-

228 P. Bonizzoni et al.

ent sets (i.e. they are not co-clustered). Then, solving CONSENSUS CLUSTERING on
the instance would be equivalent to solving CORRELATION CLUSTERING. A number
of heuristics have been proposed for CONSENSUS CLUSTERING, which are based on
cutting-plane [11] and simulated annealing [9] techniques. In the latter paper, it was ob-
served that the problem is trivially solvable for instances of at most two partitions, while
an open question, as recently recalled in [3], is the complexity of the problem (mini-
mization and maximization versions) for k input partitions, for any constant k > 2.

In this paper, we settle the open question by showing that MIN CONSENSUS CLUS-
TERING is MAX SNP-hard on instances of three input partitions, which is the strongest
inapproximability results we could hope for. On the positive side, we exhibit a combi-
natorial and practical 4

5 -approximation algorithm based on a greedy technique for MAX

CONSENSUS CLUSTERING on three partitions. To our knowledge, this is the first com-
binatorial approximation algorithm for CONSENSUS CLUSTERING, except for the triv-
ial approximation algorithm that picks the best among the input partitions (which has
approximation factor 3

4 when applied to instances consisting of three partitions). The
approximation factor of 0.8 achieved by our algorithm improves on the approximation
factor obtained by applying the best algorithm for CORRELATION CLUSTERING based
on semi-definite programming. Moreover, we show that MAX CONSENSUS CLUSTER-
ING on instances of a bounded number of partitions admits a PTAS. This is achieved
by first showing that MAX CORRELATION CLUSTERING on instances with bounded
weights has a PTAS, by using the smooth polynomial programming technique.

The proof are given in the full version of the paper.

2 Preliminary Definitions

In this section, we introduce some basic notations and definitions that we will need
later. Let π be a partition and rπ be the characteristic vector associated with π defined
as rπ(i, j) = 1 if (i, j) are co-clustered in π, and rπ(i, j) = 0 if (i, j) are not co-clustered
in π. Closely related is the notion of correlation graph, that is a weighted graph G such
that each edge e = (i, j) is labeled with two weights a(e) and b(e), which are respec-
tively the similarity and the distance between i and j. In this paper we will study two
problems whose instance is a correlation graph G = (V,E) and the output is a partition
π of V . For the MIN CORRELATION CLUSTERING we want to find a partition minimiz-
ing the sum ∑e=(i, j) (rπ(i, j)b(e)+ (1− rπ(i, j))a(e)), while for MAX CORRELATION

CLUSTERING we want to maximize the sum ∑e=(i, j) (rπ(i, j)a(e)+ (1− rπ(i, j))b(e)).
For studying our versions of CONSENSUS CLUSTERING we need two notions of

distance and similarity between two partitions of a universe set U . The symmetric dif-
ference distance of π1,π2, denoted by d(π1,π2) is the number of pairs of elements co-
clustered in exactly one of {π1,π2}, while the similarity measure, denoted by s(π1,π2),
is the number of pairs of elements co-clustered in both partitions plus the number of
pairs of elements not co-clustered in both partitions π1 and π2. Given two elements
i, j of the universe set U and a set Π = {π1, . . . ,πk} of partitions of U , we denote by
sΠ(i, j) (or simply s(i, j) whenever Π is known from the context) the number of par-
titions of Π in which i, j are co-clustered. We denote by dΠ(i, j) (or simply d(i, j)
whenever Π is known from the context) the number of partitions of Π in which i, j

Correlation Clustering and Consensus Clustering 229

are not co-clustered. Clearly, for each pair (i, j), dΠ(i, j) + sΠ(i, j) = k. Now we for-
mally introduce the other two problems studied in the paper, both have a set Π =
{π1,π2, ...,πk} of partitions over universe U as instances and the output is a partition
π of U . For the MIN CONSENSUS CLUSTERING we want to minimize ∑k

i=1 d(πi,π),
which is equivalent to minimize ∑(i< j)(rπ(i, j)dΠ(i, j)+ (1− rπ(i, j))sΠ(i, j)), defined
as the cost c(π) of a solution π. For MAX CONSENSUS CLUSTERING we want to
maximize ∑k

i=1 s(πi,π), which is equivalent to maximize ∑(i< j)(rπ(i, j)sΠ(i, j)+ (1 −
rπ(i, j))dΠ(i, j)), defined as the similarity value v(π) of a solution π.

Consider the problem restricted to three partitions, 3 Consensus Clustering, 3CC. A
fundamental notion used in the paper is that of 2-component of an instance I of 3CC
over universe U . A 2-component is a maximal subset X of U such that each pair of
elements of X is co-clustered in at least two input partitions and |X | ≥ 2. It is easy to
see that it is possible to compute efficiently 2-components of an instance I of 3CC.

An important tool used in the reduction and in the approximation algorithm of Sec-
tion 4 is the component graph constructed from the 2-components of an instance I of
3CC. Let C = {C1,C2, . . . ,Cm} be the set of 2-components of I, then the component
graph associated with I is the graph Gc = (C,Ec) where (Ci,Cj) ∈ Ec iff Ci ∩Cj �= /0.

3 Inapproximability of Consensus Clustering

In this section, we show the inapproximability of MIN CONSENSUS CLUSTERING

within a certain constant factor. We consider a restricted case of MIN CONSENSUS

CLUSTERING where each instance consists of exactly three partitions and no pair of
elements is co-clustered in all three partitions: we call this case 3-RESTRICTED CON-
SENSUS CLUSTERING. We will prove that MIN 3-RESTRICTED CONSENSUS CLUS-
TERING, in short MR3CC, is MAX SNP-hard via an L-reduction from the MAX INDE-
PENDENT SET problem on cubic graphs, where we are asked for the largest subset of
vertices that are not connected by any edge [1] (see [4] for details on L-reductions).

The proof of MAX SNP-hardness of MR3CC consists of two separate reductions:
(1) an L-reduction from the MAX INDEPENDENT SET problem on cubic graphs to the
problem of finding a maximum independent set on an artificial class of graphs, called
gadget graphs, or G-graphs in short, (2) an L-reduction from the Max Independent Set
problem on G-graphs to MR3CC. The latter reduction is based on two main steps:
proving that (a) a G-graph associated with a cubic graph is the component graph of an
instance of MR3CC, (b) the size of an independent set of a G-graph is related by a
constant to the number of co-clustered pairs in a feasible solution of MR3CC that is
constructed from 2-components or vertices of the G-graph.

The first reduction. Given a cubic graph G = (V,E), we will associate with G a G-
graph G by constructing for each vertex of G a vertex gadget and for each edge (vi,v j)∈
E , an edge gadget connecting the two vertex gadgets associated with vi and v j. For each
vertex vi ∈ V , the vertex gadget VGi is the graph represented in Fig.1.

Since, in a cubic graph, a vertex vi may be adjacent to three edges, the vertex gadget
VGi has three vertices, ci1 ,ci4 ,ci12 , called docking vertices, each one connecting VGi to
an edge gadget associated with an edge adjacent to vi. We denote with VG(G) the set
of vertex gadgets associated with the vertex set of graph G . Given two adjacent vertices

230 P. Bonizzoni et al.

vi,v j ∈ V and the corresponding vertex gadgets VGi and VG j, respectively, there is an
edge gadget EGi, j associated with the edge (vi,v j) ∈ E . The edge gadget EGi, j is the
graph of 6 vertices joining VGi, V G j in two of their docking vertices, see Fig. 2.

We will say that two vertex gad-

i1
c

i5
c

i7
c i9

c i11
c

i12
c

i10
ci8

ci6
ci4

c
i2

c

i3
c

VG
i

Fig. 1. A vertex gadget V Gi

gets are independent if there is no
edge gadget between them; other-
wise they are adjacent. Please no-
tice that each vertex gadget VGi has
a unique maximum independent set
containing 6 vertices ({ci1 ,ci4 ,ci5 ,
ci8 ,ci9 ,ci12}) and that all the dock-
ing vertices of VGi are part of this
set. We denote this independent set

of a vertex gadget as type 1. There is an independent set of VGi having cardinality 5
with no docking vertices, for example ({ci2 ,ci3 ,ci6 , ci10 ,ci11}). We denote this indepen-
dent set of a vertex gadget as type 2. Observe that no two adjacent vertex gadgets have
an independent set of type 1 in a maximum independent set of G . We call 1,2-solution
an independent set of G where all vertex gadgets have an independent set of type 1 or
type 2 and for each pair VGi, VG j of vertex gadgets connected by an edge gadget EGi, j,
at least one of VGi, VG j is of type 2.

The following property derives

ci 1

ci 9
ci 11

VG i

VG j

ci 5
ci 7

ci 8
ci 10

ci 6
ci 4

ci 2

ci 12

cj 2

ci 3

cj 4 cj 6
cj 8 ci 10

ci 12

ci 11
cj 9cj 7

cj 5
cj 3

cj 1

c

cij1

ji1

cji2

cij2

EG i,j

Fig. 2. Vertex gadgets V Gi,V G j and edge gadget EGi j

from the fact that an edge gadget
has an independent set of size at
most 2 not including docking ver-
tices, i.e. vertices of the vertex gad-
gets. Given a G-graph G associa-
ted with G = (V,E) and given an
independent set I of G such that I
is not a 1,2-solution, then (in poly-
nomial time) it is possible to com-
pute a type 1,2-solution larger than
I. The following theorem shows
the reduction from independent set
on cubic graphs to the same prob-
lem on G-graphs.

Theorem 1. Let G = (V,E) be a cubic graph with |E| = m, |V | = n, and let G be the
G-graph obtained from G by our reduction. Then G has an independent set of size h if
and only if G has an independent set of size at least 6h + 5(n−h)+2m.

For each cubic graph G = (V,E), |E| = 3
2 |V | and there exists an independent set of

size |V |/4, hence the reduction is actually an L-reduction, and consequently computing
the maximum independent set is MAX SNP-hard also for G-graphs.

The second reduction. The first basic step is to build from a G-graph associated with
a cubic graph an instance of MR3CC whose component graph is the given G-graph.

Correlation Clustering and Consensus Clustering 231

Step (a). In the following, we first associate with each vertex and edge gadget a set of 2-
components, and then we construct three partitions having exactly such 2-components.
Consider a vertex gadget VGi and the corresponding 2-components as represented in
Fig. 3. Associated with VGi there are a universe set U = {i1, i2, ..., i35} and 3 partitions
over U whose 2-components are the ones of Fig. 3: π1(VGi) = ({ci1 ∪ ci2 ∪ ci4}, {ci5 ∪
ci7}, {ci8}, {ci11 ∪ci12}, {i8}, {i9}, {i17}, {i26}, {i27}, {i28}, {i29}), π2(V Gi) = ({ci1 ∪
ci3}, {ci4 ∪ci6 ∪ci7 ∪ci9}, {ci10 ∪ci12}, {i5}, {i6}, {i15}, {i16}, {i23}, {i24}, {i31}, {i32}),
π3(V Gi)= ({ci2}, {ci3 ∪ci5}, {ci6 ∪ci8 ∪ci10}, {ci9 ∪ci11}, {i3}, {i4}, {i11}, {i12}, {i21},
{i34}, {i35}).

It is easy to verify that each set ciz is a 2-component. Now let ci1 ,ci4 ,ci12 be the
docking vertices of vertex VGi. Note that each of them shares two elements with some
other 2-components of the same vertex gadget, while two elements, called private, are
not shared with any other 2-components of the vertex gadgets. Denoting by d1(EGi, j),
d2(EGi, j) the two docking vertices of the edge gadget EGi, j, and by p1(dk(EGi, j)),
p2(dk(EGi, j)) the two private elements of the docking vertex dk(EGi, j), we can then de-
scribe the 2-components associated with EGi, j. These 2-components are clearly the two
docking vertices and ci j1 = {p1(d1(EGi, j)),hi, j,1,ei, j,1}, ci j2 = {p2(d1(EGi, j)),ei, j,2},
c ji1 = {p1(d2(EGi, j)),hi, j,2,ei, j,1}, c ji2 = {p2(d2(EGi, j)),ei, j,2}, where ei, j,1, ei, j,2,
hi, j,1 and hi, j,2 are new elements associated with EGi, j.

Now we show how to construct the three partitions π1,π2,π3 associated with a G-
graph G . Note that for each pair VGi, VG j of vertex gadgets, the three partitions as-
sociated with VGi are over a universe set that is disjoint from the one of the three
partitions of VG j. Consequently, we can construct three partitions associated with all
vertex gadgets as the union of the partitions for each single gadget. Formally, for each
i ∈ {1,2,3}, then πi(VG(G)) = vg∈VG(G) πi(vg). Furthermore, other sets “producing”
the 2-components associated with edge gadgets are appropriately added to the three par-
titions π1(VG(G)), π2(VG(G)) and π3(VG(G)) to get π1,π2,π3. Then we can prove
the following lemma.

Lemma 2. Let G be a G-graph. Then there exists a set I of three partitions π1,π2,π3

computed by a polynomial algorithm such that G is the component graph of I. Then I
is an instance of MR3CC associated with G .

Step (b). The second basic step of the reduction from the Max Independent Set problem
on a G-graph G to MR3CC, consists in relating the cost of a feasible solution of the

ci1 = {i1, i2, i3, i4} ci2 = {i1, i5, i6, i7}
ci3 = {i2, i8, i9, i10} ci4 = {i7, i11, i12, i13}
ci5 = {i10, i14, i15, i16} ci6 = {i13, i17, i18, i19}
ci7 = {i14, i19, i20, i21} ci8 = {i18, i22, i23, i24}
ci9 = {i20, i26, i27, i25} ci10 = {i22, i28, i29, i30}
ci11 = {i25, i31, i32, i33} ci12 = {i30, i33, i34, i35}

i1
c

i5
c

i7
c i9

c i11
c

i12
c

i10
ci8

ci6
ci4

c
i2

c

i3
c

VG
i

Fig. 3. A vertex gadget and its 2-components

232 P. Bonizzoni et al.

instance of MR3CC associated with G to the 2-components or vertices of G . To this
aim it is east to see that, given an arbitrary solution π of MR3CC, there exists a solution
π∗ of cost at most equal to the one of π, but such that each set in π∗ is a subset of a 2-
component of the component graph associated with the instance: we denote such type
of solution as special solution.

The following theorem is the basic result used in our second L-reduction.

Theorem 3. There is an independent set I of a G-graph G= (V,E) of size at most
6k +5(n− k)+2m if and only if there is a special solution π of the associated instance
of MR3CC with 41k+40(n−k)+3m co-clustered pairs, where n, m and k are respec-
tively the number of vertex gadgets, the number of edge gadgets and k is the number of
mutually independent vertex gadgets.

Given a special solution π∗ with at least 41h + 40(n−h)+ 3m pairs, we can find in
polynomial time a set of h independent vertex gadgets in the G-graph.

Lemma 4. Let π be a special solution of MR3CC, it is possible to compute in polyno-
mial time a special solution π∗ that has at least the same number of co-clustered pairs of
π and contains 41 pairs for each vertex gadget in a set of h independent vertex gadgets,
40 pairs for each of the remaining n−h vertex gadgets and 3 pairs for each edge gadget.

Since the cost of a feasible solution of MR3CC is related by a constant to the number
of pairs in the solution, Theorem 3 provides a L-reduction, thus leading to the APX-
hardness of MR3CC.

4 A 4
5-Approximation Algorithm for Max Consensus Clustering

In this section, we present a 4
5 -approximation algorithms for MAX CONSENSUS CLUS-

TERING on instances of 3 partitions (Max-3CC) based on a combinatorial approach.
The algorithm constructs a partition by selecting 2-components (i.e. co-clustered pairs),
using a greedy technique, from a component graph built from the input instance. The
trivial approximation algorithm that picks the best of the input partitions has approxi-
mation factor 3

4 . In what follows, given a set X , we denote with P(X) the set of all pairs
of elements over X .

Lemma 5. Given an instance Π = {π1,π2,π3} of Max-3CC, let A, B be 2-components
of Π, then all elements in A∩B are co-clustered in three partitions. Moreover, there is
at most another 2-component C with elements in A∩B and it must be A∩B = A∩C =
B∩C.

Let X1, . . . ,Xn be the 2-components of the instance. If 2-components Xi and Xj are
not disjoint, let Ah = Xi ∩ Xj. Denote with A = {A1, . . . ,Ak} the set of non-empty in-
tersections of pairs of 2-components. Note that, if |Ai| ≥ 2, then each pair of elements
(x,y) ∈ Ai is co-clustered in three input partitions.

Let Π be an instance of Max-3CC and let (i, j) be a pair of elements of U . Recall that
sΠ(i, j) denotes the number of input partitions in which i and j are co-clustered, while
dΠ(i, j) denotes the number of input partitions in which i and j are not co-clustered.

Correlation Clustering and Consensus Clustering 233

Algorithm 1: Greedy-CC
Data: an instance Π over universe U
π ← /0; G ← the component graph associated with Π;1

while |V (G)|> 0 do2

X is a maximum 2-components in G; π ← π∪{X};3

remove all elements of X from U and update Π;4

G ← the component graph associated with Π;5

end6

foreach u ∈ U, u is not in a set of π do7

add {u} to π;8

end9

Result: π

Define the optimal weight of (i, j), denoted by wo(i, j), as the maximum of sΠ(i, j) and
dΠ(i, j). Given a solution π, we define the weight of (i, j) in π, denoted by wπ(i, j) as
sΠ(i, j) if (i, j) is co-clustered in π, dΠ(i, j) otherwise. Thus the similarity value v(π) of
a solution π can be expressed simply as ∑(i< j) wπ(i, j). Let opt be an optimal solution
of Π. Then: wopt(p) ≤ wo(p) for each p ∈ P(U). Let P′ be a set of pairs, the similarity
value of P′ in a solution π is v(P′,π) = ∑p∈P′ wπ(p).

Let π be the solution returned by Algorithm 1. Since every set in the solution π is a
subset of a 2-component, then all elements co-clustered in π are co-clustered in at least
two partitions of the input and thus wπ(p) = wopt(p) for each pair p of such pairs.

Moreover, observe that, since Greedy-CC constructs a partition π from subsets of
2-components, if a pair p is co-clustered in the instance in less than two partitions, it
follows that p is not co-clustered in π and thus wπ(p) = wo(p). Similarly, it is easy to see
that for each pair p co-clustered in three partitions, it follows that wπ(p) = wo(p) = 3.

Consequently, wπ(p) = wo(p) except for some pairs p = (a,b), such that a,b ∈ X ,
where X is a 2-component of graph G, and wπ(p) = 1 < wo(p) = 2, i.e. p is ”not
optimal”. Let us denote by Pπ,loss the set of such (non optimal) pairs. Then, we show
that the number of pairs in Pπ,loss is limited and we can bound from above the similarity
value of such pairs as follows.

Let us denote by Pπ,o the set of pairs contained in 2-components of G such that
wπ(p) = wo(p) = 2, by Pπ,1 the subset of pairs p that are not in 2-components and such
that wπ(p) = wo(p) = 2 (p is not co-clustered in π). Moreover, denote by PAi the set of
pairs with elements in a certain Ai and PA = ∪iPAi . Hence v(A) is the similarity value

of the pairs in PA, that is v(A) = ∑Ai∈A
3|Ai|(|Ai|−1)

2 . The following basic inequality is
used to prove the approximation factor:

v(Pπ,o,π)+ v(A)+ v(Pπ,1,π) ≥ 3v(Pπ,loss,π). (1)

The detailed analysis used to prove the above equation is based on properties of
2-components. Since for each p in Pπ,loss wπ(p) = 1 < wo(p) = 2, it follows that
v(Pπ,loss,π) ≥ 1

2 v(Pπ,loss,Opt). Hence it is easy to see that the following theorem holds.

Theorem 6. Algorithm Greedy-CC achieves an approximation factor of 4
5 .

234 P. Bonizzoni et al.

5 The PTAS

In this section, we will present a polynomial-time approximation scheme for MAX

CORRELATION CLUSTERING problem when the ratio between the maximum and the
minimum weights is upper-bounded by a constant. We recall that the value of a par-
tition π is ∑i< j a(i, j)rπ(i, j)+ ∑i< j b(i, j)(1 − rπ(i, j)), where rπ(i, j) = 1 if and only
if the elements i and j are co-clustered in π. Since we are interested only in instances
where the ratio maxi, j{a(i, j),b(i, j)}/mini, j{a(i, j),b(i, j)} is at most a constant, it is
not restrictive to assume that the mini, j{a(i, j),b(i, j)} = 1 and maxi, j{a(i, j),b(i, j)} is
equal to a certain constant wmax.

The scheme is based on the smooth polynomial programming technique of [2]. We
will briefly recall the relevant material from this paper, rephrased to take into account
maximization problems instead of minimization. A c-smooth polynomial integer pro-
gram (or PIP) is a problem of the form maximize p0(x1, . . . ,xn), subject to constraints
l j ≤ p j(x1, . . . ,xn) ≤ u j, xi ∈ {0,1} f or i = {1, . . . ,n} where each p j is an n-variate
polynomial of maximum degree d, and coefficients of each degree-� monomial (term)
are at most c · nd−�. Let opt denote the optimal value of a PIP. The fundamental result
that we will use, Theorem 1.10 of [2], asserts that, for each δ> 0, there exists an approx-

imation algorithm that, in time O(n
1

δ2), computes a 0/1 assignment< y1, . . . ,yn > to the
variables < x1, . . . ,xn > of a c-smooth PIP whose value is at least opt − δnd . Moreover
the assignment< y1, . . . ,yn > satisfies each linear constraint within an additive error of
O(δ

√
n logn). Notice that < y1, . . . ,yn > is not necessarily a feasible solution.

Our goal is therefore to write the restriction of CORRELATION CLUSTERING where
the number of sets in the computed partition is at most 8wmax/ε (that is a constant) as a
quadratic PIP. The simplest formulation uses variables xi,k whose value is 1 if and only
if the i-th element is in the k-th set of the partition, exploiting the fact that the quantity
∑k xi,kx j,k is equal to 1 if and only if the i-th and the j-th element are in the same set of
the partition. Formally, we want to maximize ∑i, j(ai, j ∑k xi,kx j,k + bi, j(1 − ∑k xi,kx j,k))
subject to the constraints ∑k nxi,k = n and xi,k ∈ {0,1}.

Notice that it is trivial to compute the partition associated to each 0/1 assignment
of xi,k. It has already been shown in [5] that the optimal value is at least Θ(n2), hence
an approximation algorithm with additive error δn2 is a PTAS. Also notice that only
O(n) variables appear in the above quadratic PIP, therefore the additive error is at most
δn2. The solution computed by the algorithm consists of at most 8wmax/ε sets, we still
have to show that it is not too far from the optimum when the number of sets of the
solution is unrestricted. In fact it is possible to prove that there is at most another εn2

additional error, which leads to an overall an additive error of 2εn2 of the optimum of
CORRELATION CLUSTERING.

Remember that the assignment computed by applying Theorem 1.10 of [2] may
violate each linear constraint at most by an additive error of O(ε

√
n logn). Actually

it is possible to show that no linear constraint is violated in our formulation. In fact
for each linear constraint and for each 0/1 assignment, both the left-hand side and the
right-hand side are multiple of n. Since n ≥ ε

√
n logn for sufficiently large values of n,

the 0/1 assignment must satisfy exactly all linear constraint.

Correlation Clustering and Consensus Clustering 235

The idea of the PTAS above can be applied also to the problem of MAX CON-
SENSUS CLUSTERING where there are at most a constant number of input partitions.
In fact, given an instance of MAX CONSENSUS CLUSTERING consisting of k input
partitions, let a(i, j), b(i, j) be respectively the number of input partitions where the
i-th and the j-th elements are co-clustered (respectively are not co-clustered). Clearly
a(i, j) + b(i, j) = k for all i, j, which implies that the optimal value is at least kn2/8,
moreover 0 ≤ a(i, j),b(i, j) ≤ k. Since k is at most a constant, even though a(i, j) or
b(i, j) can be equal to zero, similarly to the case of CORRELATION CLUSTERING we
can restrict ourselves to looking for a partition with a constant number of sets. Applying
Theorem 1.10 of [2], gives a 0/1 assignment to the variables xi,k with an additive error
εn2, which immediately leads to a PTAS.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoretical
Computer Science, 237(1–2):123–134, 2000.

2. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense
instances of N P -hard problems. Journal of Computer and System Sciences, 58:193–210,
2000.

3. N. Ailon, M. Charikar, A. Newman. Aggregating Inconsistent Information: Ranking and
Clustering. In Proc. 37th Symposium on Theory of Computing (STOC 2005), pages 684 –
693, 2005

4. G. Ausiello, P. Crescenzi, V. Gambosi, G. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial optimization problems and their approxima-
bility properties. Springer-Verlag, 1999.

5. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Machine Learning 56(1-3):
89–113 (2004).

6. M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In Proc.
44th Symp. Foundations of Computer Science (FOCS), pages 524–533, 2003.

7. E. D. Demaine and N. Immorlica. Correlation clustering with partial information. In 6th
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), pages 1–13, 2003.

8. D. Emanuel and A. Fiat. Correlation clustering – minimizing disagreements on arbitrary
weighted graphs. In Proc. 11th European Symp. on Algorithms (ESA), pages 208–220, 2003.

9. V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In Proc. 15th
International Conference on Tools with Artificial Intelligence (ICTAI), pages 418–425, 2003.

10. V. Filkov and S. Skiena. Heterogeneous data integration with the consensus clustering for-
malism. In Data Integration in the Life Sciences, First Intern. Workshop, (DILS), pages
110–123, 2004.

11. M. Grtschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem. Math-
ematical Programming, 45:52–96, 1989.

12. M. Krivanek and J. Moravek. Hard problems in hierarchical-tree clustering. Acta Informat-
ica, 23:311–323, 1986.

13. C. Swamy. Correlation clustering: maximizing agreements via semidefinite programming.
In Proc. 15th Symp. on Discrete Algorithms (SODA), pages 526–527, 2004.

14. Y. Wakabayashi. The complexity of computing medians of relations. Resenhas, 3(3):323–
349, 1998.

An Approximation Algorithm
for Scheduling Malleable Tasks

Under General Precedence Constraints

Klaus Jansen1,� and Hu Zhang2,��

1 Institute of Computer Science and Applied Mathematics, University of Kiel,
Olshausenstraße 40, D-24098 Kiel, Germany

kj@informatik.uni-kiel.de
2 Department of Computing and Software, McMaster University,

1280 Main Street West, Hamilton, ON L8S 4K1, Canada
zhanghu@mcmaster.ca

Abstract. In this paper we study the problem of scheduling malleable
tasks with precedence constraints. We are given m identical processors
and n tasks. For each task the processing time is a function of the num-
ber of processors allotted to it. In addition, the tasks must be processed
according to the precedence constraints. The goal is to minimize the
makespan (maximum completion time) of the resulting schedule. The
best previous approximation algorithm (that works in two phases) by
Lepére et al. [18] has a ratio 3 +

√
5 ≈ 5.236. We develop an improved

approximation algorithm with a ratio at most 100/43 + 100(
√

4349 −
7)/2451 ≈ 4.730598. We also show that our resulting ratio is asymptoti-
cally tight.

1 Introduction

In recent development of information technology, traditional super computers
have been gradually replaced by systems with large number of standard units. All
units have similar structure with certain processing ability in such a system [3].
To manage these resources, algorithms with satisfactory performance guarantee
are needed. However, classical scheduling algorithms usually are not able to
play such a role, mostly due to the large amount of communications between
� Research supported in part by the EU Thematic Network APPOL II, Approximation

and Online Algorithms for Optimization Problems, IST-2001-32007, and by the EU
Project CRESCCO, Critical Resource Sharing for Cooperation in Complex Systems,
IST-2001-33135.

�� This work was performed in part when this author was studying at the Univer-
sity of Kiel, Germany. Research supported in part by the DFG Graduiertenkolleg
357, Effiziente Algorithmen und Mehrskalenmethoden, by the EU Thematic Net-
work APPOL II, Approximation and Online Algorithms for Optimization Problems,
IST-2001-32007, by the EU Project CRESCCO, Critical Resource Sharing for Co-
operation in Complex Systems, IST-2001-33135, by an MITACS grant of Canada,
and by the NSERC Discovery Grant DG 5-48923.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 236–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Approximation Algorithm for Scheduling Malleable Tasks 237

units. There have been many models for this problem [2,9,14,22,24]. Among
them scheduling malleable tasks [24] is an important and promising model. In
this model, the processing time of a malleable task depends on the number of
processors allotted to it. The influence of communications between processors
allotted to the same task, synchronization and other overhead are included in
the processing time.

We assume that the malleable tasks are linked by precedence constraints,
which are determined in advance by the data flow among tasks. Let G = (V,E)
be a directed graph, where V = {1, . . . , n} represents the set of malleable tasks,
and E ⊆ V × V represents the set of precedence constraints among the tasks.
If there is an arc (i, j) ∈ E, then task Jj can not be processed before the
completion of processing of task Ji. Task Ji is called a predecessor of Jj , while
Jj a successor of Ji. Each task Jj can be processed on any number l ∈ {1, . . . ,m}
of identical processors, and the corresponding processing time is pj(l). The goal
of the problem is to find a feasible schedule minimizing the makespan Cmax
(maximum completion time).

According to the usual behaviour of parallel tasks in practice, Blayo et al. [1]
proposed a realistic model of malleable tasks under the following monotonous
penalty assumptions:
Assumption 1: The processing time p(l) of a malleable task J is non-increasing
in the number l of the processors allotted, i.e., p(l) ≤ p(l′), for l ≥ l′;
Assumption 2: The work W (l) = w(p(l)) = lp(l) of a malleable task J is
non-decreasing in the number l of the processors allotted, i.e., W (l) ≤ W (l′) for
l ≤ l′.

Assumption 1 indicates that if more processors are allotted to a malleable task,
then the task can not run slower. Furthermore, Assumption 2 implies that the
increase of processors allotted leads to an increasing amount of communication,
synchronization and scheduling overhead.

In a schedule each task Jj has two associated values: the starting time τj and
the number of processors lj allotted to task Jj . A task Jj is called active during
the time interval from its starting time τj to its completion time Cj = τj +pj(lj).
A schedule is feasible if at any time t, the number of active processors does not
exceed the total number of processors

∑
j:t∈[τj ,Cj] lj ≤ m and if the precedence

constraints τi + pi(li) ≤ τj are fulfilled for all i ∈ Γ−(j), where Γ−(j) is the set
of predecessors of task Jj .

Related Work: The problem of scheduling independent malleable tasks (with-
out precedence constraints) is strongly NP-hard even for only 5 processors [4].
Approximation algorithms for the problem of scheduling independent malleable
tasks with a ratio 2 was addressed in [7,19]. This was improved to

√
3 by Mounié

et al. [20], and further to 3/2 [21]. For the case of fixed m, Jansen and Porkolab
proposed a PTAS [11]. If p(l) ≤ 1, for arbitrary m an AFPTAS was addressed
by Jansen [10]. Du and Leung [4] showed that scheduling malleable tasks with
precedence constraints is strongly NP-hard for m = 3. Furthermore, there is
no polynomial time algorithm with approximation ratio less than 4/3, unless
P = NP [16]. If the precedence graph is a tree, a 4-approximation algorithm was

238 K. Jansen and H. Zhang

developed in [17]. The idea of the two-phase algorithms was proposed initially in
[17] and further used in [18] to obtain the previous best known approximation
algorithm for general precedence constraints with a ratio 3 +

√
5 ≈ 5.236. In

addition, in [18] the ratio was improved to (3 +
√

5)/2 ≈ 2.618 if the prece-
dence graph is a tree. More details on the problem of scheduling independent or
precedence constrained malleable tasks can be found in [5].

In [23] the discrete time-cost tradeoff problem is studied. An instance of the
discrete time-cost tradeoff problem is a project given by a finite set J of activ-
ities with a partial order (J,≺) on the set of activities. All activities have to
be executed in accordance with the precedence constraints given by the partial
order. Each activity Jj ∈ J has a set of feasible durations {dj1 , . . . , djk(j)} sorted
in a non-decreasing order, and has a non-increasing non-negative cost function
cj : IR+ → IR+ ∪ ∞, where cj(xj) is the amount paid to run Jj with duration
xj . Skutella [23] showed that for a given deadline L (or budget B − P) and a
fixed rounding parameter ρ ∈ (0, 1), there exists an algorithm that computes a
realization x for this problem such that ĉ(x) ≤ (B−P)/(1−ρ) and Cmax ≤ L/ρ,
where B − P is the optimal cost for the linear relaxation with a deadline L (re-
spectively T is the optimal project length for the linear relaxation with a budget
B−P). This problem is equivalent to the allotment problem of scheduling mal-
leable tasks with precedence constraints with unbounded number of processors.
The algorithm in [23] was used in [18] for solving the allotment problem ap-
proximately. We will also borrow ideas from [23] to develop our approximation
algorithm.

Our Contribution: In this paper, we develop an improved approximation algo-
rithm for scheduling malleable tasks with general precedence constraints. Our
algorithm is based on the two-phase approximation algorithm in [17,18]. In
the first phase we solve an allotment problem approximately. For a given set
of malleable tasks, the goal of the allotment problem is to find an allotment
α : V → {1, . . . ,m} deciding the numbers of processors allotted to execute the
tasks such that the maximum between both opposite criteria of critical path
length and average work (total work divided by total number of processors)
is minimized. In the second phase a variant of a list scheduling algorithm is
employed to generate a new allotment and to schedule all tasks according to
the precedence constraints. In [18], the allotment problem is formulated as a
bicriteria version of the discrete time-cost tradeoff problem, which can be ap-
proximately solved by the algorithm in [23] together with a binary search strat-
egy. The time-cost tradeoff problem corresponds to the scheduling problem with
an unbounded number of processors and bounded total work. A rounding pa-
rameter ρ = 1/2 is fixed in their algorithm. We borrow the ideas of the algo-
rithm in [23]. In our strategy, we construct a “reduced” instance of the time-cost
tradeoff problem and further transform it into instances of the linear time-cost
tradeoff problem with only two durations. Here we include two new constraints
for the linear program such that the binary search procedure can be avoided,
and a fractional solution to the allotment problem is obtained. In the round-
ing procedure, we do not fix the parameter ρ = 1/2. Instead, we leave it as

An Approximation Algorithm for Scheduling Malleable Tasks 239

an unspecified additional parameter for the second phase. In the second phase,
the allotment parameter µ ∈ {1, . . . , �(m + 1)/2�} is used to generate a new
allotment such that no task is allotted a number of processors more than µ.
The variant of the list scheduling algorithm runs with the resulting restricted
allotment. Furthermore, we carefully study the rounding technique. We notice
that a certain amount of work is not involved in the rounding procedure. By
counting this term carefully, we obtain some new bounds depending on ρ for
the total work of the rounded solution. Together with a rounding parameter
µ employed in the second phase, we develop a min-max nonlinear program,
whose optimal objective value is an upper bound on the approximation ratio
by choosing appropriate values of ρ and µ. In fact this min-max nonlinear pro-
gram measures the gap between the optimal fractional allotment solution and
the length of the generated schedule. Next we analyze the nonlinear program
to obtain optimum values for the parameters ρ and µ. Using ρ = 0.43 and
µ = (93m−

√
4349m2 − 4300m)/100 we obtain an improved approximation al-

gorithm with a ratio at most 100/43 + 100(
√

4349 − 7)/2451 ≈ 4.730598. The
values of the above bound for small m’s are listed and they are better than
those of the algorithm in [18]. In addition, we show that asymptotically the best
ratio is 4.730577 when m → ∞. This indicates that our result is asymptotically
tight. Recently, a 3.291919-approximation algorithm is proposed for the schedul-
ing problem with an additional assumption that the work function is convex in
processing time [13,25]. It is worth noting that their model is a special case of
the model we study in this paper. Due to the limit of space we do not give proofs
of all results in this version. We refer our full version [12,25] for details.

2 Approximation Algorithm

Our algorithm is based on the two-phase approximation algorithm in [18]. In
the first phase of their algorithm, a (2, 2)-approximate solution to the bicrite-
ria version of the discrete time-cost tradeoff problem is computed with a fixed
rounding parameter ρ = 1/2. However, in the solution the case of small project
length with large work can happen as there is no bound on the number of pro-
cessors available. Thus a binary search procedure is conducted to find a solution
such that the maximum of the corresponding project length and the average
work (the total work divided by m) is minimized. We also use the idea of the
discrete time-cost tradeoff problem. Different from their strategy, by including
some additional constraints we formulate a linear program relaxation for the
allotment problem to avoid the binary search procedure. In our algorithm we do
not fix ρ = 1/2 as in [18]. In fact, we set ρ as a parameter in the second phase
in order to enlarge the set of feasible solution and to find a better solution.

In the initialization step, we compute the values of the rounding parameter ρ
and the allotment parameter µ depending on the input m (See Section 3 for the
formulae).

240 K. Jansen and H. Zhang

In the first phase, we develop a linear program based on the approximation
algorithm for discrete time-cost tradeoff problem in [23]. By rounding its frac-
tional solution with the parameter ρ ∈ [0, 1] we are able to obtain a feasible
allotment α′ such that each task Jj is allotted l′j number of processors.

We borrow the ideas of the approximation algorithm for the discrete time-cost
tradeoff problem in [23] but not directly use it. For any malleable task Jj , its
processing time pj(l) and work Wj(l) = lpj(l) on l processors fulfil Assumption
1 and 2. We also denote by w(·) the work function in processing time, i.e.,
wj(pj(l)) = Wj(l). Denote by xj the fractional duration of the allotment problem
(or the processing time). Based on the ideas of the linear relaxation of the discrete
time-cost tradeoff problem in [23], we need to solve the following linear program:

min C = max{L,W/m}
s.t. 0 ≤ Cj ≤ L, for all j;

Cj + xk ≤ Ck, for all j and k ∈ Γ+(j);
xj ≤ pj(1), for all j;
xji ≤ xj , for all j and i = 1, . . . ,m;
0 ≤ xji ≤ pj(i), for all j and i = 2, . . . ,m;
xj1 = pj(m), for all j;
ŵj(xj) =

∑m
i=1 w̄ji(xji), for all j;

P =
∑n

j=1 pj(1);∑n
j=1 ŵj(xj) + P ≤ W,

(1)

where the “virtual” work function w̄j(xjm) = 0, and for all j and i = 1, . . . ,m−1:

w̄ji(xji) = [Wj(i+ 1) −Wj(i)](pj(i) − xji)/pj(i). (2)

Clearly, if xji = 0 for all i < l and xji = pj(i) for all i ≥ l, then ŵj(xj) =
lpj(l) − p(1) and xj = maxi xji = pj(l). In (1), the two more constraints come
from the following facts: In any schedule, any critical path length should be
bounded by the makespan. In addition, the makespan is an upper bound on the
average work (total work divided by m).

We apply the rounding technique similar to [23] for the fractional solution to
(1). For any solution x∗ji

∈ [0, pj(i)], if x∗ji
< ρpj(i), we round it to xji = 0; oth-

erwise we round it to xji = pj(i), where ρ ∈ (0, 1) is a rounding parameter to be
determined later. With the rounded solution max1≤i≤m xji ∈ {pj(m), . . . , pj(1)}
we are able to identify an l′j such that pj(l′j) equals to the rounded solution. This
gives an allotment α′ where each job Jj is allotted a number l′j processors.

In the second phase, with the resulting allotment α′ and the pre-computed
allotment parameter µ, the algorithm generates a new allotment α and runs
LIST, a variant of the list scheduling algorithm, in Table 1 (as proposed in
[8,18]) and a feasible scheduling is delivered for the instance.

3 Analysis of the Approximation Algorithm

We shall show the approximation ratio of our algorithm. Denote by L, W , Cmax
and by L′, W ′, C′

max the critical path lengths, the total works and the makespans

An Approximation Algorithm for Scheduling Malleable Tasks 241

Table 1. Algorithm LIST

LIST (J, m, α′, µ)
initialization: allot lj = min{l′

j , µ} processors to task Jj , for j ∈ {1, . . . , n};
SCHEDULED = ∅;
if SCHEDULED �= J then

READY = {Jj |Γ −(j) ⊆ SCHEDULED};
compute the earliest possible starting time under α for all tasks in READY ;
schedule the task Jj ∈ READY with the smallest earliest starting time;
SCHEDULED = SCHEDULED ∪ {Jj};

end

of the final schedule delivered by our algorithm and the schedule corresponding
to the allotment α′ generated in the first phase, respectively. Furthermore, we
denote by C∗

max the optimal objective value of (1), and L∗, W ∗ the (fractional)
optimal critical path length and the (fractional) optimal total work in (1). It is
worth noting that here W ∗ = P+

∑n
j=1 ŵj(x∗j) and W ′ =

∑n
j=1 l

′
jpj(l′j). We now

estimate the bounds of L′ andW ′. According to the rounding in the first phase of
our algorithm described in Section 2, if in the optimal solution of (1) x∗ji

< ρpj(i),
it is rounded to xji = 0. In this case its processing time is not increasing while
the work may increase. According to the definition of the “virtual” work (2),
w̄(xji) = Wj(i+1)−Wj(i) and w̄(x∗ji

) = [Wj(i+1)−Wj(i)][pj(i)−x∗ji
]/pj(i) ≥

[Wj(i+1)−Wj(i)](1− ρ). In the other case, when x∗ji
≥ ρpj(i), it is rounded to

xji = pj(i). Now the processing time may increase so the work is not increasing.
So we have xji ≤ x∗ji

/ρ. Combining these two cases we have that the following
bounds:

L′ ≤ L∗/ρ and (W ′ − P) ≤ (W ∗ − P)/(1 − ρ). (3)

Denote by OPT the overall optimal makespan (over all feasible schedules with
integral number of processors allotted to all tasks). It is obvious that

max{L∗,W ∗/m} ≤ C∗
max ≤ OPT. (4)

We define a piecewise work function wj(x) in fractional processing time xj

for task Jj based on (2) as follows: For xj ∈ [pj(m), pj(1)], if l = min{k|k ∈
{1, . . . ,m}, pj(k) = xj}, then wj(xj) = lpj(l). If xj ∈ (pj(l + 1), pj(l)) and
l = 1, . . . ,m− 1, then

wj(xj) =
pj(l)pj(l + 1)
pj(l) − pj(l + 1)

− (l + 1)pj(l + 1) − lpj(l)
pj(l) − pj(l + 1)

xj , (5)

In allotments α and α′, a task Jj is allotted lj and l′j processors, and their
processing times are pj(lj) and pj(l′j), respectively. In the optimal (fractional)
solution to (1), each task Jj has a fractional processing time x∗j . We define the
fractional number of processors allotted as l∗j = wj(x∗j)/x

∗
j .

242 K. Jansen and H. Zhang

Lemma 1. For any malleable task Jj, if pj(l + 1) ≤ x∗j ≤ pj(l) for some l ∈
{1, . . . ,m− 1}, then l ≤ l∗j ≤ l + 1.

Lemma 1 shows that l∗j is well defined. We notice that l∗j is just a notation
and we only have knowledge that the real fractional number of processors cor-
responding to x∗j should be in the interval [l, l+ 1] if pj(l+ 1) ≤ x∗j ≤ pj(l). The
notation l∗j here fulfils this property and is convenient for our following analysis.

Same as in [18], in the final schedule, the time interval [0, Cmax] consists of
three types of time slots. In the first type of time slots, at most µ− 1 processors
are busy. In the second type of time slots, at least µ and at most m−µ processors
are busy. In the third type at least m − µ + 1 processors are busy. Denote the
sets of the three types time slots by T1, T2 and T3, and |Ti| the overall lengths
for i ∈ {1, 2, 3}. In the case that µ = (m + 1)/2 and m odd, T2 = ∅. In other
cases all three types of time slots may exist. Then we have the following bound
on |T1| and |T2|:
Lemma 2. ρ|T1| + min{µ/m, ρ}|T2| ≤ C∗

max.

Proof. We construct a “heavy” directed path P in the final schedule, similar to
[18,13,25]. For any job Jj in T1∩P , the processing time of the fractional solution
to (1) increases by at most a factor 1/ρ according to (3). The processing time
does not change in the second phase as in α′ the job Jj is only allotted a number
l′j ≤ µ of processors such that it can be in the time slot of T1. Therefore for such
kind of jobs we have pj(lj) = pj(l′j) ≤ x∗j/ρ. For any job Jj in T2∩P , there are two
cases. In the first case, in α′ a job Jj is allotted l′j ≤ µ processors. This is same as
the case before and we also have pj(lj) ≤ x∗j/ρ. In the second case, in α′ a job Jj

is allotted l′j > µ processors, and lj = µ. Then there are two subcases according
to the solution to (1). In the first subcase, in the fractional solution to (1) there
are l∗j ≥ µ processors allotted. Since µ is an integer, we have l∗j ≥ �l∗j � ≥ µ ≥ lj .
Then ljpj(lj) = Wj(lj) ≤ Wj(µ) ≤ Wj(�l∗j �) ≤ wj(x∗j) = l∗jx

∗
j ≤ Wj(�l∗j �) due

to Assumption 2 and the definition of l∗j . Because l∗j ≤ m, and wj(x∗j) = x∗j l
∗
j ≥

pj(lj)lj = Wj(lj), it holds that pj(lj) ≤ x∗j l
∗
j /lj ≤ x∗jm/µ. In the second subcase,

in the fractional solution there are l∗j < µ processors allotted to Jj . Then in the
rounding procedure of the first phase the processing time must be rounded down
from x∗j to pj(l′j) as only in this way the assumption that l′j > µ of this case
can be satisfied. Then in the second phase, Jj is allotted µ processors and from
Assumption 2, pj(lj)lj ≤ pj(l′j)l

′
j . Since there are at most m processors allotted

to Jj in α′, we have pj(lj) ≤ pj(l′j)l
′
j/lj ≤ pj(l′j)m/µ ≤ x∗jm/µ. Therefore for

any job Jj in T2 ∩ P , pj(lj) ≤ x∗j max{1/ρ,m/µ}. With the construction of
the directed path P , it covers all time slots in T1 ∪ T2 in the final schedule. In
addition, in the schedule resulted from the fractional solution to (1), the jobs
processed in T1 in the final schedule contribute a total length of at least ρ|T1|
to L∗(P). In addition, the tasks processed in T2 contribute a total length of at
least |T2|min{ρ, µ/m} to L∗(P). Since the critical path L∗(P) is not more than
the makespan C∗

max according to (4), we have proved the claimed inequality.

Furthermore, we consider the “fixed” cost P =
∑n

j=1 pj(1). Let us consider a
schedule with makespan exactly the amount of P . The schedule is constructed

An Approximation Algorithm for Scheduling Malleable Tasks 243

by scheduling all tasks on the same processor. In this schedule for each task the
processing time is pj(1) (the largest processing time) and obviously the makespan
is equal to or larger than any feasible schedule. Thus we have

|T1| + |T2| + |T3| ≤ P. (6)

For each task Jj , the number l of processors allotted in α is not more than the
number l′ of processors allotted in α′. According to Assumption 2, its work does
not increase. Therefore W ≤ W ′. The total work W ∗ of the optimal solution
to (1) is the sum of the “fixed” cost and the remaining unrounded part, i.e.,
W ∗ = P +

∑n
j=1 ŵj(x∗j). According to the bound for the rounded solution (3),

we have that

W ≤ W ′ ≤ (W ∗ − P)/(1 − ρ) + P = W ∗/(1 − ρ) − ρP/(1 − ρ). (7)

Define the normalized overall length of the i-th type of time slots by xi =
|Ti|/C∗

max for i = 1, 2, 3, and xp = P/C∗
max. Thus we are able to obtain a min-

max nonlinear program as follows where its optimal value is an upper bound on
the approximation ratio r:

Lemma 3. The optimal approximation ratio of our algorithm is bounded by the
optimal objective value of the following min-max nonlinear program:

minµ,ρ maxx1,x2

x1(m− µ)(1 − ρ) + x2(1 − ρ)(m− 2µ+ 1) +m

(m− µ)(1 − ρ) + 1
s.t. ρx1 + min{ρ, µ/m}x2 ≤ 1;

x1 + x2(µ(1 − ρ) + ρ) ≤ m;
x1, x2 ≥ 0;
ρ ∈ (0, 1);
µ ∈ {1, . . . , �(m+ 1)/2�}.

(8)

To solve (8) a complicated case study is needed. Furthermore, we can show
[12,25] that to obtain the optimal ρ and µ we need to find roots to a polynomial
with degree 6. In general it is impossible to solve it analytically. So in our algo-
rithm, we fix ρ = 0.43 and µ = (93m−

√
4349m2 − 4300m)/100. Then we have

the following theorem:

Theorem 1. There exists an algorithm for the problem of scheduling malleable
tasks under precedence constraints with an approximation ratio

r ≤
2, if m = 2;
100
43

+
100
43

(43m− 100)(57
√

4349m2 − 4300m − 399m − 4300)
139707m2 − 174021m − 184900

, otherwise.

Corollary 1. For all m ∈ IN and m ≥ 2, the approximation ratio r is at most
100/43 + 100(

√
4349 − 7)/2451 ≈ 4.730598. Furthermore, when m → ∞, the

upper bound in Theorem 1 tends to the above value.

244 K. Jansen and H. Zhang

The corresponding bounds depending on m for m = 2, . . . , 33 are listed as
follows:

m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)
2 1 0.500 2.0000 10 3 0.430 3.9078 18 6 0.430 4.3249 26 8 0.430 4.4281
3 2 0.430 2.7551 11 4 0.430 4.0639 19 6 0.430 4.3083 27 8 0.430 4.4113
4 2 0.430 3.1080 12 4 0.430 4.0656 20 6 0.430 4.2938 28 8 0.430 4.3961
5 2 0.430 3.3125 13 4 0.430 4.0669 21 6 0.430 4.2880 29 8 0.430 4.4663
6 2 0.430 3.4458 14 4 0.430 4.1739 22 7 0.430 4.3857 30 9 0.430 4.4593
7 3 0.430 3.7507 15 5 0.430 4.2173 23 7 0.430 4.3685 31 9 0.430 4.4433
8 3 0.430 3.7995 16 5 0.430 4.2065 24 7 0.430 4.3531 32 9 0.430 4.4287
9 3 0.430 3.8356 17 5 0.430 4.1973 25 7 0.430 4.3897 33 10 0.430 4.4995

This is to compare with the result in [18], and gives an improvement of all m.
Furthermore, we can also analyze the asymptotic behaviour of the parameters

and the ratio. The numerical results for m = 2, . . . , 33 are listed below:

m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)
2 1 0.500 2.0000 10 3 0.420 3.8867 18 5 0.401 4.2579 26 8 0.477 4.3918
3 2 0.618 2.6180 11 4 0.500 4.0000 19 6 0.484 4.2630 27 8 0.469 4.3747
4 2 0.581 2.9610 12 4 0.500 4.0000 20 6 0.467 4.2520 28 8 0.440 4.3822
5 2 0.562 3.1717 13 4 0.462 4.0198 21 6 0.429 4.2837 29 8 0.414 4.4139
6 2 0.445 3.4139 14 4 0.408 4.1196 22 7 0.480 4.3466 30 9 0.475 4.4250
7 3 0.523 3.6617 15 5 0.490 4.1653 23 7 0.481 4.3276 31 9 0.456 4.4142
8 3 0.519 3.7104 16 5 0.491 4.1526 24 7 0.451 4.3257 32 9 0.431 4.4268
9 3 0.500 3.7500 17 5 0.441 4.1787 25 7 0.420 4.3581 33 9 0.409 4.4571

We can also show that when m → ∞, ρ∗ → 0.430991, µ∗ → 0.270875m and the
approximation ratio r → 4.730577 (see [12,25]). In this way we conjecture that
there exists a 4.730577-approximation algorithm for the problem of scheduling
malleable tasks with precedence constraints. However, our algorithm already has
a ratio asymptotically tight.

References

1. E. Blayo, L. Debrue, G. Mounié and D. Trystram, Dynamic load balancing for
ocean circulation with adaptive meshing, Proceedings of the 5th European Confer-
ence on Parallel Computing, Euro-Par 1999, LNCS 1685, 303-312.

2. D. E. Culler, R. Karp, D. Patterson, A. Sahay, E.Santos, K. Schauser, R. Sub-
ramonian and T. von Eicken, LogP: A practical model of parallel computation,
Communications of the ACM, 39 (11), 1996, 78-85.

3. D. E. Culler, J. P. Singh and A. Gupta, Parallel computer architecture: A hard-
ware/software approach, Morgan Kaufmann Publishers, San Francisco, 1999.

4. J. Du and J. Leung, Complexity of scheduling parallel task systems, SIAM Journal
on Discrete Mathematics, 2 (1989), 473-487.

5. P.-F. Dutot, G. Mounié and D. Trystram, Scheduling parallel tasks – approxima-
tion algorithms, in Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, J. Y.-T. Leung (Eds.), CRC Press, Boca Raton, 2004.

An Approximation Algorithm for Scheduling Malleable Tasks 245

6. D. R. Fulkerson, A network flow computation for project cost curves, Management
Science, 7 (1961) 167-178.

7. M. Garey and R. Graham, Bounds for multiprocessor scheduling with resource
constraints, SIAM Journal on Computing, 4 (1975), 187-200.

8. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical
Journal, 45 (1966), 1563-1581.

9. J. J. Hwang, Y. C. Chow, F. D. Anger and C. Y. Lee, Scheduling precedence graphs
in systems with interprocessor communication times, SIAM Journal on Computing,
18(2), 1989, 244-257.

10. K. Jansen, Scheduling malleable parallel tasks: an asymptotic fully polynomial-
time approximation scheme, Proceedings of the 10th European Symposium on Al-
gorithms, ESA 2002, LNCS 2461, 562-573.

11. K. Jansen and L. Porkolab, Linear-time approximation schemes for scheduling
malleable parallel tasks, Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1999, 490-498.

12. K. Jansen and H. Zhang, Improved approximation algorithms for schedul-
ing malleable tasks with precedence constraints, Technical Report,
http://www.informatik.uni-kiel.de/˜hzh/malle.ps.

13. K. Jansen and H. Zhang, Scheduling malleable tasks with precedence constraints,
Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2005, 86-95.

14. T. Kalinowski, I. Kort and D. Trystram, List scheduling of general task graphs
under LogP, Parallel Computing, 26(9), 2000, 1109-1128.

15. J. E. Kelley, Critical path planning and scheduling: mathematical bases, Operations
Research, 9 (1961) 296-320.

16. J. K. Lenstra and A. H. G. Rinnooy Kan, Complexity of scheduling under prece-
dence constraints, Operations Research 26 (1978), 22-35.

17. R. Lepère, G. Mounié and D. Trystram, An approximation algorithm for scheduling
trees of malleable tasks, European Journal of Operational Research, 142(2), 242-249
(2002).

18. R. Lepère, D. Trystram and G. J. Woeginger, Approximation algorithms for
scheduling malleable tasks under precedence constraints, International Journal
of Foundations of Computer Science, 13(4): 613-627 (2002).

19. W. Ludwig and P. Tiwari, Scheduling malleable and nonmalleable parallel tasks,
Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithms, SODA
1994, 167-176.

20. G. Mounié, C. Rapine and D. Trystram, Efficient approximation algorithms for
scheduling malleable tasks, Proceedings of the 11th Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA 1999, 23-32.

21. G. Mounié, C. Rapine and D. Trystram, A 3/2-dual approximation algorithm for
scheduling independent monotonic malleable tasks, manuscript.

22. G. N. S. Prasanna and B. R. Musicus, Generalised multiprocessor scheduling us-
ing optimal control, Proceedings of the 3rd Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA 1991, 216-228.

23. M. Skutella, Approximation algorithms for the discrete time-cost tradeoff problem,
Mathematics of Operations Research, 23 (1998), 909-929.

24. J. Turel, J. Wolf and P. Yu, Approximate algorithms for scheduling parallelizable
tasks, Proceedings of the 4th Annual Symposium on Parallel Algorithms and Ar-
chitectures, SPAA 1992, 323-332.

25. H. Zhang, Approximation Algorithms for Min-Max Resource Sharing and Mal-
leable Tasks Scheduling, Ph.D. Thesis, University of Kiel, Germany, 2004.

A 1.5-Approximation of the Minimal Manhattan
Network Problem

Sebastian Seibert1,� and Walter Unger2,��

1 ETH Zürich, Department Informatik, ETH Zentrum, CH-8092 Zürich
sseibert@inf.ethz.ch

2 RWTH Aachen, Lehrstuhl für Informatik I, D-52056 Aachen
quax@cs.rwth-aachen.de

Abstract. Given a set of points in the plane, the Minimal Manhattan
Network Problem asks for an axis-parallel network that connects every
pair of points by a shortest path under L1-norm (Manhattan metric).
The goal is to minimize the overall length of the network.

We present an approximation algorithm that provides a solution of
length at most 1.5 times the optimum. Previously, the best known algo-
rithm has given only a 2-approximation.

1 Introduction

Constructing connection networks of cheapest possible cost is an elementary task
in network design. Here, we consider the Minimal Manhattan Network Problem
which is defined as follows.

We are given a finite set of n points in the plane, and as distance measure
we use the L1-norm, also called Manhattan metric. A Manhattan path in the
plane is a path that consists solely of axis-parallel line segments. A shortest
Manhattan path connecting two points p1 = (x1, y1) and p2 = (x2, y2) will
always be a staircase, and its length is the L1-distance between p1 and p2, i.e.
|x1−x2|+ |y1−y2|. The task is to construct a network that connects each pair of
points by a minimal Manhattan path. The goal is to minimize the overall length
of the network.

Clearly there always exists a Manhattan network. For example, a complete
grid on the given point set will always do. That is, we take the set of x- and
y-coordinates {x1, . . . , xn}, and {y1, . . . , yn} respectively, with minimal and max-
imal elements xmin, xmax, ymin, ymax. Now the complete grid consist of the verti-
cal lines {(xi, y) | ymin ≤ y ≤ ymax}, and of the horizontal lines {(x, yj) | xmin ≤
x ≤ xmax}, where 1 ≤ i, j ≤ n. However, this grid can be more expensive than
the optimum at a rate of Θ(n) as pointed out already in [8].

Obviously, this problem has applications in VLSI design and related area.
Note that the given problem can be seen as a special case of finding a spanner.
� Partially supported by SNF 200021109252/1: Solution quality and efficiency in dis-

crete optimization.
�� Partially supported by EU 6th Framework Programme, contract 001907 (DELIS).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 246–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A 1.5-Approximation of the Minimal Manhattan Network Problem 247

The problem of finding cheap spanners has numerous applications, and it has
been widely studied, especially metric subproblems [1,4,5,7,9].

Under any norm Lb, the problem to find a k-spanner in the plane is to find
a network that connects each pair of the given point set by a path of length
at most k times the distance of the points pair under the given norm. Here
we are asking for a 1-spanner, a problem that under Lb-norm, b ≥ 2, becomes
trivial (the complete graph of direct connections in the plane is the minimal
1-spanner). Under L1-norm however, there is a multitude of possible solutions,
and very different minimal ones can exist.

Though it is not known whether the Manhattan network problem is NP-hard,
only approximative solutions have been found so far. Gudmundsson, Levcopou-
los, and Narasimhan [8] gave the first approximation algorithms with ratio 4 and
running time O(n3), and a fast (O(n log n)) algorithm with ratio 8. Later, Kato,
Imai, and Asano [10] gave a supposed 2-approximation algorithm with running
time O(n3), however, the proof turned out to be incomplete, as pointed out in
[2,3]. Building on some ideas from [10], Benkert, Shirabe, Widmann, and Wolff
[2,3] gave a 3-approximation algorithm with running time O(n logn). Also in [2],
exact solutions in exponential time were studied. Just recently Chepoi, Nouioua,
and Vaxes presented a new 2-approximation algorithm [6].

In this paper, we devise a completely new approach and obtain a 1.5-approxi-
mation algorithm with running time O(n3).

The remainder of the paper is structured as follows: In Section 2 we introduce
some basic definition. The algorithm and its analysis are presented in Section 3.

2 Notation and Preliminary Remarks

As mentioned before, the complete grid on the given point set can be a very
inefficient solution. However, it is easy to see that w.l.o.g., we may restrict to
those solutions only which are part of this grid. In other words, suppose we have
a solution that uses a line segment which is not part of a line on which at least
one of the given points lies. Then such a line segment can be moved until it
aligns with at least one of the given points, without increasing the overall costs.

A central though rather easy observation lies in the fact that we have to look
at only some pairs of points in order to establish an admissible solution of our
problem. Each pair of points p, q from the given set P spans an axis-parallel
rectangle R(p, q) having p and q as its corners.

First, we note that R(p, q) may degenerate into a line. But then, this straight
line, connecting p and q, will necessarily be part of every admissible solution.
Consequently, these degenerate cases are not problems in themselves. They might
influence other parts of the solution but only in the same way as placing other
line segments will do. In the following, we will picture the problem in general
without two or more points on the same line, and where necessary we will remark
how these cases will be included.

We call R(p, q) a critical rectangle if it contains no other point besides p
and q. Now we may focus on those rectangles only. Since if there is another

248 S. Seibert and W. Unger

point r in R(p, q), then already the shortest paths from p to r and from r to q
together form a shortest path from p to q.

Remark 1. A set of axis parallel lines solves the Minimal Manhattan Network
Problem on input point set P iff every pair p, q ∈ P of points that form a critical
rectangle R(p, q) is connected by a shortest L1-path.

Now let’s have a look at the following basic situation which will be the central
element of all considerations. Let a and b be two vertical neighboring points, i.e.
in the set of y-coordinates, there exists no other point between the y-coordinates
of a and b. We consider two segments of the horizontal lines where a and b lie,
namely the upper and lower part of a grid cell, see Figure 1. Clearly, any solution
(that uses only grid lines) uses one of the two line segments drawn bold.

a b

Fig. 1. line segments between points a,b

The construction of a complete solution will essentially consist of making, for
all such pairs of segments the choice which one to use. Obviously, choices on
neighboring lines are not independent of each other. In general, we have two
basic situations. We call a block a sequence of neighboring grid cells. Here, we
describe only the placement of horizontal line segments, i.e. we look at a vertical
sequence of cells. The placement of vertical line segments is completely analogue.

Lemma 1. In a vertical block where on k consecutive horizontal lines separating
the block cells, points are lying alternatingly left and right of the block,

⌊
k
2

⌋
line

segments are necessary and sufficient to connect those points.

2

3
4

6
5

1

7

p1

p5

p2

p6

p3

p7

p4

2

3
4

6
5

1

7

p1

p5

p2

p6

p3

p7

p4

(a) (b)

Fig. 2. Segments in a block

Proof. The situation is shown in Figure 2 for the cases of two (a) respectively
five (b) alternating points. Note that for an odd number of points there is only
one possible way to use the minimal number of segments.

A 1.5-Approximation of the Minimal Manhattan Network Problem 249

As remarked above, we need at least one of two line segments for each con-
secutive pair of points. This immediately implies that

⌊
k
2

⌋
is a lower bound on

the number of used segments.
On the other hand, by choosing every other line segment, all requirements

of using one out of two consecutive lines are fulfilled. And we can connect all
points in question by using additionally only vertical line segments (as well as
horizontal ones outside the block under consideration). ��

3 The Approximation Algorithm

In this section, we will describe an algorithm that in a first phase basically
just constructs sets of segments as described in Lemma 2, independently for
the vertical and horizontal orientation. Consequently, the resulting set of line
segments is not more expensive than an optimal solution but no solution in
itself. The second phase of the algorithm will overcome this at the price of a
moderate cost increase.

Algorithm 1.

Input: A set P of points in the plane.
1. Compute a set H of horizontal line segments.
2. Compute a set V of vertical line segments.
3. Chose the cheaper of the sets V , H and compute a solution S as an augmen-

tation of that set H respectively V , by adding some locally optimal parts.
Output: S

Before showing how to implement this, let us first demonstrate why this is an
1.5-approximation algorithm.

Lemma 2. For the sets H,V, S, constructed in Algorithm 1, the following holds.
(a) Each admissible solution needs horizontal line segments of a total length at

least the same as H.
(b) The analogue holds for V .
(c) S can be constructed using additional line segments of a total weight not

more than an optimal solution.

As a consequence of (a) and (b), H ∪V costs at most as much as an optimal so-
lution. Together with (c) this gives the desired approximation ratio, as explained
in more detail at the end of the section.

It suffices to describe Steps 1 and 3, since Step 2 is a complete analogue of
Step 1. First, let us focus on Step 1, the construction of H .

Here, the essential point is that for each critical rectangle R, horizontal line
segments are added inside R that cover the whole width of R. Conversely, each
added line segment h will be necessary according to Lemma 1. This will imme-
diately proof Lemma 2 (a).

As we will see, H , and analogously V , will have some other properties addi-
tionally that will be needed to proof Lemma 2 (c).

250 S. Seibert and W. Unger

The Construction of H To construct H, a sweep is performed over the point
set P , from left to right. For each point q newly reached by this sweep, we describe
how the horizontal line segments are continued, discontinued, or started to the
right of q (up to the horizontal position of the next point).

To this end, we have to distinguish three basic cases, depending on the position
of the next vertical neighbors, p and r, of q. Each case can split into sub-cases
depending on what line segments exist to the left of q. For the moment, let us
assume that there are no two points on the same grid line. We will deal with
this exception later on.

As a first case assume that p and r both are to the left of q, as seen in Figure 3.
Please note that grid lines 2, 3, and 4 are supposed to be neighbors. However,
grid lines 1 and 5 need not be neighbors to 2 and 4, respectively. Rather on
Line 1 lies the next point s above q among those that are to the right of q, and
analogously, on Line 5 lies t, the next point below q, among those that are to
the right of q.

5

1

2
3
4

p

q

r

s

t
5

1

2
3
4

p

q

r

s

t

(a) (b)

Fig. 3. New point to the right of its neighbors

Now, regardless of whether one or two horizontal segments on Lines 2 to 4
arriving at q are part of H , these are not continued beyond q. Rather, new
segments are started (or potentially continued) on lines 1 and 5. These segments
are immediately justified by the necessity to connect q as well as p and r with
s and t. The creation of these lines may then influence the construction of H in
that above Line 1, or below Line 5 switches may occur. These will be explained
later on.

For the moment just note that if to the right of q there are no more points
above or below, i.e. if s or t do not exist, then the corresponding segment of Line
1, respectively 5, will simply be not constructed.

Now assume that p and q are both to the right of q.
If two of the three lines 2-4 are used left of q (Figure 4 (a)) this can be the

case only because they are needed to connect points left of q (on lines 1 and 5)
to p, q, r. Then these segments will be continued toward p and q.

If just one or even no line out of 2-4 is used left of q, there are two possible
continuations to the right of q, shown dashed versus dotted in Figure 4 (b).

If there are points like s and t left of q above and below it, there must be line
segments in H to connect s with p and t with r. The choice of the dashed line

:

A 1.5-Approximation of the Minimal Manhattan Network Problem 251

5

1

2
3
4

p

q

r

s

t
5

1

2
3
4

p

q

r

s

t

(a) (b)

Fig. 4. New point to the left of its neighbors

segment means just to continue existing line segments, while the dotted solution
might result in switches below and above q. We choose the latter one only if it
saves line segments overall.

If no points exist to the left and above q, Line 1 does not exist, and we have
to compare dashed and dotted solutions (two segments each) only with respect
to a switch that might occur below Line 5. The case that there are no points to
the left and below q is dealt with symmetrically. If no points are to the left of q
at all, then q is the leftmost point of P , and we just start a single segment on
Line 3 to the right of q.

Finally, assume that w.l.o.g. p is to the right of q, and r is to the left, see
Figure 5.

1

2
3
4

5

p

q

r

s

t

1

5

2
3
4

p

q

r

s

t

(a) (b)

Fig. 5. New point with mixed neighbors

If there are any of the points right of q below it, we assume the next lower
point t to be on Line 5. Consequently, we include in H a segment of Line 5
from q to the right. This segment is needed independent of q since r needs to be
connected to t. (Note that it wouldn’t be placed better on Line 4 since there is
no point to the right and above to which such a placement could help connect r
because those points will always be connected to r via q.) If there are no points
like t, obviously, we don’t need any segments to the right of q lower than Line 3.

It remains to connect q to p to which end we chose a segment from Line 2
since that might help save segments via a switch above. Also, we calculate if the
segment on Line 5 (if existent) causes some switch below.

252 S. Seibert and W. Unger

Now we have to state an important feature of the line segments constructed so
far. Each line segment that was newly begun (i.e. not a continuation of a segment
to the left) either originated from the point currently looked at, or it was started
on a line on which there is a point to the right of it. Also, line segments from
the left are never discontinued if there is a point more to the right on their line.
In other words, line segments are either started from a point rightwards, or they
are started left of a point, in which case they always continue at least up to that
point. Recalling that V is constructed analogously top-down, we can summarize
the properties of H and V as follows.

Remark 2. (a) Each line segment in H and V has a point from P on it.
(b) If p and q are on vertically consecutive lines, and p left of q, there is in H a

line segment from p rightwards and one from q leftwards that either overlap
or end at points above each other. (One may be empty if the other covers
the whole distance.)

(c) If p and q are on horizontally consecutive lines, and p above q, there is in
V a line segment from p downwards and one from q upwards that either
overlap or end at points beside each other. (One may be empty if the other
covers the whole distance.)

When we show now how switches are done, we will make sure that the above
features of H and V never are violated.
A switch: In the above considerations, we have shown how a point influences
the construction of line segments in its immediate vicinity. Now we consider its
further influence. Due to symmetry, we only need to study the situation below
q, see Figure 6.

5

6
7

10
9
8

q

5

6
7

10
9
8

q

(a) (b)

Fig. 6. A switch

Assume we have started a new segment on Line 5, and that on the lines
below, all segments are simply continued rightwards, see Figure 6 (a). Then, in
the alternating points situation from Line 5 to 10, we would have more lines
than necessary (see Lemma 1). Consequently, we have to switch lines as shown
in Figure 6 (b). That is, we start new segments on those lines where there is a
point to the right.

A 1.5-Approximation of the Minimal Manhattan Network Problem 253

Multiple points on the same line: We remark that two or more points on the
same line rather simplify the problem to solve in that they create a mandatory
line segment between them, i.e. one that needs to be included in every admissible
solution. Consequently, we just obtain a few more cases that can be dealt with
similarly or even simpler than those above. Due to lack of space we defer these
to the full paper.

The construction of solution S: Assume that V is the cheaper one of sets V
and H . Following Remark 1, we will have to construct shortest paths for critical
rectangles only, in order to obtain a solution S by augmenting V .

Let us look at points p and q forming a critical rectangle R(p, q). From Re-
mark 2 (b), we can deduce that there always exist in H line segments between
p as shown bold in Figure 7 (a), where s may be identical with p and t with
q. To see this, just follow the vertical order of points from p down to q. All of
them except p and q need to be outside of R(p, q) since that rectangle is critical.
Consequently there exist a point s left of R(p, q) (or s = p) whose successor
t is right of R(p, q) (or t = q). Now the shown pattern exists immediately by
Remark 2 (b).

p

q

s

t

u

v

p

q

s

t

(a) (b)

Fig. 7. Critical rectangles with line segments from H ∪ V

Please note that the dotted staircase from p to q may consist of fewer parts
if s = p or t = q, or if the jump in the connection from s to t is outside R(p, q).
But the staircase has never more parts, that is, there is always a horizontal
connection through R(p, q) consisting of at most two parts.

One fact we have proven already by this is that we can always obtain an
admissible solution by adding vertical lines only.

When we apply the same argument to V , we obtain in general a situation
as shown in Figure 7 (b). In order to obtain a solution, one has to add some
additional line segments. Two possible solutions are shown by dotted respectively
dashed lines.

Now if the depicted points were the only ones to be considered, we could
generate a solution by moving and doubling lines from H , see Figure 8 (a).

However, in general several critical rectangles may overlap. That means we
would have, between v and t, a set of points that all need to be connected to

254 S. Seibert and W. Unger

v

u
p

q

s

t y
x

v

u
p

q

s

t

(a) (b)

Fig. 8. Constructing a solution from H

points left of v and above t. But these points form an anti-diagonal, i.e. they lay
top-right and bottom-left of each other. (Otherwise they would not all be part
of a critical rectangle with a point in the upper left part.) And they need only be
connected to a point y which is the closest up and left of them on a V -segment,
see Figure 8 (b). Note that x and y are helper points, not elements of P .

Now we have a sub-problem that can be solved optimally by a dynamic pro-
gramming approach: Connect a set of points that are bottom-left respectively
top-right of each other to a point that is top-left of all of them, including con-
nections between those points themselves. Note that parts of V may be existing
already as part of the solution, as drawn bold in Figure 8 (b).

The important point is that solving all sub-problems of this type costs all in
all not more than the optimal solution, and V (respectively H) is chosen to be
the cheaper one of H , V , i.e. costs at most half of an optimal solution. This gives
the desire result.

Theorem 1. Algorithm 1 generates in time O(|P |3) a solution S with length at
most 1.5 times the optimum. ��

To conclude this section, we describe more precisely how the dynamic pro-
gramming approach is used here. However, for a complete exposition we have to
defer to the full paper due to space restrictions.

The problem to solve is to connect a set of points p1, . . . , pk to each other
and to one specified point z1,k. We assume that the x and y coordinates each
are ordered, say x1 ≤ x2 ≤ . . . ≤ xk and y1 ≤ y2 ≤ . . . ≤ yk to match the above
picture. (All other cases are dealt with analogously). The specified point for any
subsequence of these is the left upper limit, i.e. zi,j = (xi, yj) for 1 ≤ i ≤ j ≤ k.

Now we can obtain an optimal solution by dynamic programming.
First we note that for singleton subproblems, nothing is to be done since

zi,i = pi, i.e. the solutions for that subproblem has cost zero.
For any larger subsequence pi, . . . , pj , we can compare all possibly optimal

solutions. For each subdivision of the set into pi, . . . , pl and pl+1, . . . , pj , a solu-
tion is obtained by connecting zi,j with both zi,l and zl+1,j , as well as pl with

A 1.5-Approximation of the Minimal Manhattan Network Problem 255

pl+1, together with the previously computed solutions of the two sub-problems.
Now for pi, . . . , pj the cheapest of all computed solutions is taken.

The optimality comes from the fact that we consider after all every possibility
to connect zi,k with all points in a tree-like manner. Since every admissible
solution needs to contain such a tree (or else some connection would be missing),
we include in the search an optimal solution.

Additionally, we have to remark that in our construction, we need to connect
the point z1,k with its counterpart to the upper left. Part of this is done by using
the segments from V , but a horizontal line segment is needed to connect these.
However since it is created in a part where there are no line segments above or
below it that where part of the sub-problem solutions, and we know that some
segment is needed here, we can account for this when we estimate that the cost
of the sub-problems together with this segment are not more expensive than an
optimal solution.

Finally we estimate the running time of the algorithm. The sweeps in Steps 1
and 2 can be implemented in time O(|P |2) while the dynamic programming in
step three is cubic in the number of involved points, that is O(|P |3) in the worst
case.

References

1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, On Sparse Spanners of
Weighted Graphs, Discrete Comput. Geoam. 9 (1993), 81–100.

2. M. Benkert, T. Shirabe, A. Wolff, The Minimum Manhattan Network Problem—
Approximations and Exact Solution. In Proc. 20th European Workshop on Com-
putational Geometry (EWCG’04), 209-212.

3. M. Benkert, F. Widmann, A. Wolff, The Minimum Manhattan Network Prob-
lem: A Fast Factor-3 Approximation. In Proc. 8th Japanese Conf. on Discrete and
Computational Geometry (JCDCG’04), 85–86.

4. B. Chandra, G. Das, G. Narasimhan, J. Soares, New Sparseness Resuls on Graph
Spanners. Internat. J. Comput. Geom. Appl. 5 (1995), 125–144.

5. D. Chen, G. Das, M. Smid, Lower bounds for computing geometric spanners and
approximate shortest paths. Discrete Applied Math. 110 (2001), 151–167.

6. V. Chepoi, K. Nouioua, Y. Vaxes, A rounding algorithm for approximating min-
imum Manhattan networks. 8th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, APPROX 2005 Springer Lect.
Notes Comp. Sci. 3624 (2005)

7. G. Das, G. Narasimhan, A Fast Algorithm for Constructing Sparse Euclidian Span-
ners. Internat. J. Comput. Geom. Appl. 7 (1997), 297–315.

8. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, Approximating a Minimum
Manhattan Network. Nordic J. Computing 8 (2001), 219–232.

9. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, Fast Greedy Algorithms for
Constructing Sparse Geometric Spanners. SIAM J. Computing 31 (2002), 1479–
1500.

10. R. Kato, K. Imai, T. Asano, An Improved Algorithm for the Minimum Manhattan
Network Problem. In P. Bose., P. Morin (eds.) Algorithms and Computation, 13th
International Symposium, Proc. ISAAC ’02 Springer Lect. Notes Comp. Sci. 2518
(2002), 344–356.

Hardness and Approximation of Octilinear
Steiner Trees

Matthias Müller-Hannemann1 and Anna Schulze2

1 Technische Universität Darmstadt, Department of Computer Science,
Hochschulstraße 10, 64289 Darmstadt, Germany
muellerh@algo.informatik.tu-darmstadt.de

http://www.algo.informatik.tu-darmstadt.de
2 Zentrum für Angewandte Informatik Köln, Weyertal 80, 50931 Köln, Germany

schulze@zpr.uni-koeln.de

Abstract. Given a point set K of terminals in the plane, the octilin-
ear Steiner tree problem is to find a shortest tree that interconnects all
terminals and edges run either in horizontal, vertical, or ±45◦ diagonal
direction. This problem is fundamental for the novel octilinear routing
paradigm in VLSI design, the so-called X-architecture.

As the related rectilinear and the Euclidian Steiner tree problem are
well-known to be NP-hard, the same was widely believed for the octilin-
ear Steiner tree problem but left open for quite some time. In this paper,
we prove the NP-completeness of the decision version of the octilinear
Steiner tree problem.

We also show how to reduce the octilinear Steiner tree problem to
the Steiner tree problem in graphs of polynomial size with the following
approximation guarantee. We construct a graph of size O(n2

ε2) which con-
tains a (1 + ε)–approximation of a minimum octilinear Steiner tree for
every ε > 0 and n = |K|. Hence, we can apply any α-approximation al-
gorithm for the Steiner tree problem in graphs (the currently best known
bound is α ≈ 1.55) and achieve an (α+ ε)- approximation bound for the
octilinear Steiner tree problem. This approximation guarantee also holds
for the more difficult case where the Steiner tree has to avoid blockages
(obstacles bounded by octilinear polygons).

Keywords: octilinear Steiner trees, NP-completeness, VLSI design, ap-
proximation algorithms, blockages.

1 Introduction

Background and motivation. In recent years there has been strong and grow-
ing interest in a new routing paradigm in VLSI design: octilinear routing, the
so-called X-architecture [1]. In addition to vertical and horizontal wires, octi-
linear routing allows wiring in 45- and 135-degree directions. Compared to tra-
ditional and state-of-the-art rectilinear (Manhattan) routing, such a technology
promises clear advantages in wire length and via reduction. As a consequence a
significant chip performance improvement and power reduction can be obtained
(with estimations being in the range of 10% to 20% improvement) [2, 3]. To

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 256–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hardness and Approximation of Octilinear Steiner Trees 257

enable such a technology, novel algorithmic approaches for the construction of
octilinear Steiner trees are needed. An octilinear Steiner tree is a tree that in-
terconnects a set of points (terminals) in the plane with minimum length such
that every line segment uses one of the four given orientations.

Even more general routing architectures are obtained if a fixed set of uniformly
oriented directions is allowed. For an integral parameter λ ≥ 2, consecutive
orientations are separated by a fixed angle of π/λ. A λ-geometry is a routing
environment in which every line segment uses one of the given orientations.
Manhattan routing can then be seen as the special case λ = 2 and the X-
architecture as the case λ = 4. A Steiner minimum tree in a λ-geometry is called
λ-SMT.

In this paper we focus on the octilinear case (although most of our results can
be generalized to arbitrary λ ≥ 2). We study approximation algorithms for the
octilinear Steiner tree problem with and without obstacles. The rectilinear and
the Euclidean Steiner tree problem have been shown to be NP-hard in [4] and
[5], respectively. It is widely believed that the Steiner tree problem is NP-hard
for every fixed λ (although this question seems to be open [6]). Here, we present
the proof that the octilinear Steiner tree problem is indeed NP-hard.

Blockages. In VLSI design routing is often restricted by the presence of block-
ages (or obstacles) which exclude certain areas for possible interconnections.
Throughout this paper, an obstacle is a connected region in the plane bounded
by a simple polygon. For a given set of obstacles O we require that the obstacles
be disjoint, except for possibly a finite number of common points. If all boundary
edges of an obstacle are rectilinear, we call such an obstacle a rectilinear obstacle.
Analogously, if all obstacle edges lie within the 4-geometry, such an obstacle is
called octilinear obstacle. In practice, obstacles are caused by preplaced macros
or other circuits and can be assumed to be rectilinear.

Previous work. It is fairly easy to see that the approximation schemes of
Arora [7] and Mitchell [8] are also applicable to the octilinear Steiner tree prob-
lem (without obstacles). Rao and Smith [9] even improved the running time of a
(1 + ε)–approximation to O(n log n). Unfortunately, the hidden constants of the
asymptotic running time grow exponentially depending on ε. Hence, in spite of
its theoretical importance, the practical value of these approximation schemes
might be limited. Heuristics have been proposed by Kahng et al. [10] and Zhu
et al. [11]. Exact approaches to the octilinear Steiner tree problem have been
developed by Nielsen, Winter and Zachariasen [12] and Coulston [6]. Nielsen et
al. report the exact solution to a large instance with 10000 terminals within two
days of computation time. However, we are not aware of exact approaches or
approximations in the presences of obstacles.

Transformation to Steiner tree problem in graphs. For rectilinear Steiner
tree problems for point sets in the plane the most successful approaches are
based on transformations to the related Steiner tree problem in graphs. Given a
connected graph G = (V,E), a length function �, and a set of terminals S ⊆ V ,
a Steiner tree is a tree of G containing all vertices of S. A Steiner tree T is a

258 M. Müller-Hannemann and A. Schulze

Steiner minimum tree of G if the length of T is minimum among all Steiner trees.
The best available approximation guarantee for the Steiner problem in general
graphs is α = 1 + ln 3

2 ≈ 1.55, obtained by Robins and Zelikovsky [13].
Given a finite point set K in the plane, the so-called Hanan grid [14] is

obtained by constructing a vertical and a horizontal line through each point
of K. The importance of the Hanan grid lies in the fact that it contains a
rectilinear Steiner minimum tree. An implementation by Althaus, Polzin and
Daneshmand [15] is the currently strongest available exact approach for both
the Steiner tree problem in graphs and the rectilinear Steiner tree problem.

Du and Hwang [16] generalized the Hanan grid construction to λ-geometries.
They define grids Gk(K) recursively in the following way. For an instance with
point set K, G0(K) = K. The grid G1(K) is constructed by taking λ (infinite)
lines with orientations π/λ, 2π/λ, . . . , (λ − 1)π/λ, π for each point of K. The
k-th grid Gk(K) for k > 1 is constructed from the (k − 1)-th grid by adding
for each intersection point x of lines in Gk−1(K) additional lines through x
with orientations π/λ, 2π/λ, . . . , (λ − 1)π/λ, π. Lee and Shen [17] showed that
for every instance of the Steiner tree problem in a λ-geometry with λ ∈ N≥2,
there is a minimum λ-Steiner tree which is contained in Gn−2(K). This result
has been strengthened for octilinear Steiner trees by Lin and Xue [18]. They
showed that a minimum octilinear Steiner tree is already contained in the grid
G(�2n/3	−1)(K). Unfortunately, the graph Gk(K) has O(n2k

) vertices and edges.
Hence, in general an optimal solution requires an exponentially large graph.

It is therefore an interesting open question which approximation guarantee
for the octilinear (or λ–) Steiner tree problem can be achieved if one works with
a graph Gk(K) for some fixed constant k. Some partial answers to this question
are obvious. Since G1(K) contains a shortest path between any pair of terminals
it also contains the solution obtained from the minimum spanning tree heuristic
to approximate the Steiner minimum tree. Therefore, its performance guaran-
tee cannot be worse than the Steiner ratio. The Steiner ratio is the smallest
upper bound on the ratio between the length of a minimum spanning tree and
the length of a Steiner minimum tree. The Steiner ratio in the octilinear case
is 4

2+
√

2
[19, 20]. This implies that G1(K) contains a solution which is not more

than about 17.15% above the minimum. In this paper, we show how to modify
G1(K) so that we can derive stronger approximation guarantees. For any k ∈ N
we construct a graph of size O(k2n2), which contains a (1 + 1

k)–approximation.

Our contribution. We summarize the main results of this paper:

– We establish the NP-completeness of the decision version of the octilinear
Steiner tree problem.

– For a given set of n terminals in the plane and for every ε > 0 we construct
a graph of size O(n2

ε2) which contains a (1+ ε)–approximation of a minimum
octilinear Steiner tree.

– If α denotes the approximation guarantee of an algorithm for the Steiner
tree problem in graphs, then we achieve an (α+ε)–approximation guarantee
for the octilinear Steiner tree problem with or without blockages.

Hardness and Approximation of Octilinear Steiner Trees 259

Overview. The remaining part of the paper is organized as follows. In Section 2
we state some basic definitions and facts about octilinear Steiner trees. After-
wards, we sketch our NP-completeness proof. Then, in Section 4, we derive our
approximation for the case without blockages. Finally, we briefly point out why
the same method also works in the presence of blockages. Several proofs had to be
omitted due to space restrictions. For details we refer to a preprint of the full pa-
per available at http://www.algo.informatik.tu-darmstadt.de/muellerh/ .

2 Basic Definitions and Facts for Octilinear Steiner Trees

In this section we recall some basic definitions and known facts about octilinear
Steiner trees which will be used in the later analysis of our approach, see for
example [17].

Property 1. The number of Steiner points for a Steiner tree on n terminals is at
most n− 2.

Property 2. The degree of any Steiner point is either three or four. There exists
a Steiner minimum tree such that every degree-4 Steiner point is adjacent to
four terminals which form a cross.

Property 3. There exists an octilinear Steiner minimum tree Topt such that the
three angles around a degree-3 Steiner point are π

2 ,
3π
4 ,

3π
4 (in some order).

A Steiner tree is a full Steiner tree if all its terminals are leaves. Any Steiner
tree can be decomposed into its full components.

Property 4 ([21]). Given a set of terminals K such that every Steiner minimum
tree is a full Steiner tree, there is a Steiner minimum tree Topt such that all but
at most one edge are straight edges. The latter one may bend once.

3 NP-Completeness of the Octilinear Steiner Tree
Problem

In this section we sketch the proof of the fact that the decision version of the
octilinear Steiner tree problem is NP-complete. We have the following decision
problem:

Problem: Octilinear Steiner tree decision problem
Instance: A set K of terminals with integral coordinates in the plane and a
number L ∈ N.
Task: Is there an octilinear Steiner tree T with l(T) ≤ L?

At a first glance, it might not even be clear whether the decision version of
the octilinear Steiner tree problem belongs to the class NP, since the distance
between terminals and/or Steiner points may be irrational. In sharp contrast to
the Euclidian version where this question is still open, we can prove membership
in NP for the octilinear case.

260 M. Müller-Hannemann and A. Schulze

Lemma 1. The decision version of the octilinear Steiner tree problem belongs
to the class NP.

Proof. To show membership in NP, we need a certificate which a nondetermin-
istic algorithm can guess and we can verify in polynomial time. In this case,
an appropriate certificate is the topology of an optimal tree T . (In this con-
text, topology means a graph which includes the terminals and Steiner points as
vertices and specifies the connections between these vertices as edges.)

From the topology of a tree, one can compute an optimal realization in the
plane in linear time [22]. Using our assumption that all terminals have integral
coordinates, it is easy to see that all Steiner points have rational coordinates
(namely by traversing the tree from its leaves). Moreover, the encoding length of
each Steiner point does not become too large. If s denotes the maximum number
of bits to store the coordinates of some input terminal, then the encoding length
of each Steiner point is upper bounded by O(s+ |K|). This follows from the fact
that all line segments are either horizontal, vertical or have slopes ±1. Hence,
we can express the length of each tree edge e by �(e) = ae +be ·

√
2, where ae and

be are rational numbers of polynomial size with respect to the input. The length
of the Steiner tree can be evaluated as �(T) = a+ b

√
2, where a =

∑
e∈T ae and

b =
∑

e∈T be. Hence, �(T) ≤ L if and only if 2 ≤
(

L−a
b

)2
. �

Theorem 1. The decision version of the octilinear Steiner tree problem is NP-
complete.

To prove this theorem, we basically use the same idea of a reduction as Garey,
Graham and Johnson [5] provided in their hardness proof for the Euclidean
Steiner tree problem. The main difference lies in the proof that this reduction
is correct. In the remainder of this section, we briefly sketch the construction
and point out the technical differences to the Euclidean case in the proof of its
correctness. A detailed formal description and the full proof are deferred to the
journal version of this extended abstract due to space restrictions. The prob-
lem we reduce to the octilinear Steiner tree decision problem is that of EXACT
COVER BY 3-SETS:

Problem: Exact cover by 3-sets
Instance: A family F = {F1, F2, . . . , Ft} of 3-element subsets of a set F of 3n
elements. Without loss of generality let F = {1, 2, . . . , 3n}.
Task: Is there a subfamily F ′ ⊆ F such that distinct elements of F ′ are disjoint
and

⋃
Fi∈F ′ Fi = F?

The 3-dimensional matching problem shown to be NP-complete in [23] is a
special case of the problem EXACT COVER BY 3-SETS. Therefore, EXACT
COVER BY 3-SETS is also NP-complete.

The main difficulty in the NP-completeness proof is due to the problem that
it is hard to argue about the optimality of some Steiner tree unless we have very
few terminals or very restricted locations for them. Hence, a reduction requires
gadgets of very small size. As gadgets have to be combined with each other, we

Hardness and Approximation of Octilinear Steiner Trees 261

Fig. 1. Basic gadgets: terminals are
dots; possible locations of Steiner
points which are not excluded by
probes are displayed with dashed lines

tip p 90°
109

1.207

1.207

Fig. 2. The region of a probe P with
tip p is the shaded area

would like to have that the possible configurations of optimal Steiner trees can
easily be enumerated for each subset of terminals contained in the gadget. The
overall configuration is composed by gadgets of rows of terminals which meet
in “triangles” or “squares”, see Fig. 1. Gadgets of these types are connected by
long rows of terminals. Hence, they are placed far enough from each other, so
that they do not directly mutually interact. In contrast, adjacent terminals of
the same row are relatively near to each other, they have a distance of at most
1/10. This has the important effect that there is a spanning tree such that each
edge has length at most 1. For a tree T denote by m(T) the maximum length
of some edge in T . From this property, we can conclude that also every edge in
an optimum Steiner tree Topt cannot be longer than 1, that is m(Topt) ≤ 1. The
composition of gadgets is the same as in the proof for the Euclidian case [5].

A fundamental idea in the proof is to restrict the possible locations of Steiner
points to certain so-called active regions. To exclude other regions for Steiner
points, we use a discrete version of the concept of so-called probes which are
regions with a geometric shape as in Fig. 2. The central node of a probe is called
the tip of the probe. We say that a probe P is valid if it is rotated by an integral
multiple of π/4 around its tip. In the Euclidean case, probes can be rotated by
any angle and have a slightly different shape.

Lemma 2. If p is a Steiner point of an octilinear Steiner minimum tree with
m(Topt) ≤ 1, then there must be at least one terminal located inside every valid
probe P with tip p.

These properties will enable us to conclude that any two terminals which
are at most 1/10 apart from each other must be connected by an edge in any
minimum Steiner tree. Hence, the whole combinatorial difficulty lies in the prob-
lem how to connect these components to a tree for the overall configuration of
terminals.

Given a configuration of terminals which encode an instance F of EXACT
COVER BY 3-SETS, one has to show that an optimal Steiner tree for this
configuration does not exceed a value L = L(F) if and only if there is an exact
cover. The value of L depends only on parameters t and n of F . Again one can
argue along the lines of the proof in [5]. However, compared to the Euclidian
case, optimal subtrees inside active regions have different lengths. Therefore,
it is crucial to note that certain inequalities about the relative lengths of such
subtrees remain valid.

262 M. Müller-Hannemann and A. Schulze

Fig. 3. Example of the graph G1 for
a set of three terminals (left) and its
refinement Gk

1 with k = 2 (right)

Fig. 4. Example of the covering of an
octilinear Steiner tree by rectangles
with edges in Gk

1

4 Error Bounds for Graph-Based Approximations

In this section we show how to improve upon the approximation guarantee ob-
tained for G1(K) for octilinear Steiner trees. To this end we construct a graph
Gk

1(K) which is parameterized by some constant k.
Recall that the graph G1 is the graph induced by four lines (vertical, hori-

zontal, and both main diagonals) through each terminal. The idea is to refine
G1 by superimposing O(k) additional lines. This is done as follows. Given a set
of terminals K with |K| = n, let BB(K) denote the bounding box of this point
set, that is, the smallest axis-parallel rectangle which includes all terminals. We
subdivide each side of BB(K) equidistantly with k points into k + 1 segments
and add for each subdivision point additional lines in all four feasible orienta-
tions of the octilinear geometry. See Fig. 3 for a small example. Since we have
O(n+ k) lines in each feasible direction, we get O((n + k)2) intersection points
of these lines. Hence, the induced graph Gk

1 has O((n + k)2) many vertices and
edges. For the bounding box BB(K) with side lengths bbx and bby, denote by
bb := max{bbx, bby} its maximum side length.

We next define how to cover a Steiner tree T by a set of axis-parallel rectangles
as follows (the rectangles may overlap). For each Steiner point s of T , the set R
contains a smallest rectangle including s with horizontal and vertical edges from
Gk

1 . In the degenerate case that s lies on a vertex or an edge of Gk
1 we add no

rectangle. We also add a smallest enclosing rectangle for each point p where an
edge of T bends. Degenerate cases are handled as with Steiner points. For each
straight-line segment of T not covered by previous rectangles we independently
add to R a smallest enclosing rectangle bounded by vertical and horizontal
edges from Gk

1 . Thus, we finally have the following partition of the Steiner tree:
T = ∪R∈R(T ∩R). See Fig. 4 for an example.

For a given tree T , we construct an approximating Steiner tree Tapp with edges
in Gk

1 as follows. For each rectangle R ∈ R let SR be the set of intersection points
of Topt with the boundary of R. We connect the point set SR in the shortest
possible way by (portions of) edges in Gk

1 , yielding a tree TR. From the union
of all these trees TR we eliminate in a postprocessing step the longest edge of
each cycle which may occur and all leaves and incident edges of the resulting
tree which are not terminals. We thereby obtain our approximation Tapp. The

Hardness and Approximation of Octilinear Steiner Trees 263

following technical lemma shows that we can bound for each rectangleR included
in R the length �(Tapp ∩R) of Tapp ∩R in terms of the length �(T ∩R) of T ∩R.

Lemma 3. For each R ∈ R, the following bound holds:

�(Tapp ∩R) − �(T ∩R) ≤ (4 −
√

2)
bb

k + 1
.

Lemma 4. The graph Gk
1 contains an octilinear Steiner tree which is at most a

factor of
1 +

(2n− 3)(4 −
√

2)
k + 1

longer than the optimal one.

Proof. Let K be a set of points in the plane with |K| = n and Topt be some
octilinear Steiner minimum tree for K. We have to show that there is some
octilinear Steiner tree Tapp within Gk

1 which approximates Topt sufficiently well.
We cover Topt by a set R of axis-parallel rectangles as described above. Let us

assume that Topt is composed of k ≥ 1 full Steiner trees with n1, n2, . . . , nk ≥ 2
vertices each. Then

∑k
i=1 ni = n+k−1. Each full component may have at most

si ≤ ni − 2 Steiner points. Hence, the total number of Steiner points satisfies∑k
i=1 si ≤ n−k−1. If mi denotes the number of edges in the i-th full component,

we have mi = ni + si − 1 for a total of m =
∑k

i=1 mi ≤ 2n− 2− k edges in Topt.
The cover R of Topt by rectangles contains at most one rectangle per Steiner

point, one rectangle for each edge and at most two additional rectangles per
bending edge (one for the bending point and one for the second part of the
edge). By Property 4, we may assume that each full component has at most one
bending edge. Thus |R| ≤

∑k
i=1 si +

∑k
i=1 mi + 2k ≤ 3n− 3.

Next we analyze the length �(Tapp) of Tapp in comparison to the optimal length
�(Topt). All edges of Topt which are incident to a terminal are represented in Gk

1 .
Hence, for all corresponding rectangles �(Topt ∩R) = �(Tapp ∩R). Clearly, there
are at least n edges incident to terminals. This implies, that for at most 2n− 3
rectangles of R there will be a difference between �(Tapp ∩ R) and �(Topt ∩ R).
Thus, we have

�(Tapp)
�(Topt)

=
�(Topt) +

∑
R∈R(�(Tapp ∩ R) − �(Topt ∩ R))

�(Topt)

≤ �(Topt) + (2n− 3) · maxR∈R{�(Tapp ∩ R) − �(Topt ∩ R)}
�(Topt)

.

Hence, it suffices to show that

max
R∈R

{�(Tapp ∩ R) − �(Topt ∩ R)} ≤ (4 −
√

2) · �(Topt)
k + 1

.

This relation follows from Lemma 3 and the observation that �(Topt) ≥ bb, since
every Steiner tree must connect the terminals which define the bounding box
BB(K). �

264 M. Müller-Hannemann and A. Schulze

Theorem 2. For a given set of n terminals in the plane and for every ε > 0
there is a graph of size O(n2

ε2) which contains a (1 + ε)–approximation of a
minimum octilinear Steiner tree.

Proof. The approximation guarantee follows directly from Lemma 4 if we choose
k := (4−

√
2)2n

ε . With such a choice of k, the graph has the claimed size. �

Blockages. Let us now sketch the necessary modifications in the presence of
obstacles. Let K be a set of points (terminals) in the plane and O be a set of
octilinear (or rectilinear) obstacles. Denote by VO the set of obstacle vertices.
Let n = |K| + |VO|. Analogously to the definition of G1(K), we now define a
graph G(K,O) which is induced by the set L of lines in all feasible directions in
4-geometry going through terminals or obstacle vertices. For a given parameter
k, we refine G(K,O) by adding lines. For any two parallel lines in L which are
neighbored (i.e., no third line with the same orientation lies between them) we
add k additional lines with the same orientation between them and place them
equidistantly. In total, we haveO(nk) lines. From the resulting induced graph, we
erase all vertices and their incident edges which lie strictly inside some obstacle.
The latter guarantees that every Steiner tree in this graph corresponds to a tree
in the plane which avoids all obstacles.

Theorem 3. Let α denote the approximation guarantee for an algorithm solving
the Steiner tree problem in graphs. Given a terminal set K, a set of octilinear
obstacles O, and some ε > 0, there is an (α+ ε)-approximation of the octilinear
Steiner tree problem with obstacles which have to be avoided.

The proof of this theorem follows basically the same ideas as that for the case
without obstacles. There is one essential difference, however. In the presence
of obstacles, edges between terminals and/or Steiner points may be forced to
bend several times. But if such an edge bends, then all but at most two of its
straight segments will lie on G(K,O). This observation implies that the number
of rectangles in a cover of some optimal Steiner tree on which we have to find
an approximative solution is upper bounded by 6n − 11 which suffices for an
analogous result as in Lemma 4.

References

1. http://www.xinitiative.org (2005)
2. Teig, S.L.: The X architecture: not your father’s diagonal wiring. In: SLIP ’02:

Proceedings of the 2002 international workshop on System-level interconnect pre-
diction, ACM Press (2002) 33–37

3. Paluszewski, M., Winter, P., Zachariasen, M.: A new paradigm for general archi-
tecture routing. Proceedings of the 14th ACM Great Lakes Symposium on VLSI
(GLSVLSI) (2004) 202–207

4. Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM
Journal on Applied Mathematics 32 (1977) 826–834

5. Garey, M., Graham, R., Johnson, D.: The complexity of computing Steiner minimal
trees. SIAM Journal on Applied Mathematics 32 (1977) 835–859

Hardness and Approximation of Octilinear Steiner Trees 265

6. Coulston, C.: Constructing exact octagonal Steiner minimal trees. In: ACM Great
Lakes Symposium on VLSI. (2003) 1–6

7. Arora, S.: Polynomial time approximation schemes for the Euclidean traveling
salesman and other geometric problems. Journal of the ACM 45 (1998) 753–782

8. Mitchell, J.: Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM Journal on Computing 28 (1999) 1298–1309

9. Rao, S., Smith, W.: Approximating geometric graphs via “spanners” and
“banyans”. Proceedings of the 30th ACM Symposium on Theory of Computing
(1998) 540–550

10. Kahng, A., Mǎndoiu, I., Zelikovsky, A.: Highly scalable algorithms for rectilin-
ear and octilinear Steiner trees. Proceedings 2003 Asia and South Pacific Design
Automation Conference (ASP-DAC) (2003) 827–833

11. Zhu, Q., Zhou, H., Jing, T., Hong, X., Yang, Y.: Efficient octilinear Steiner tree
construction based on spanning graphs. Proceedings 2004 Asia and South Pacific
Design Automation Conference (ASP-DAC) (2004) 687–690

12. Nielsen, B., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-
oriented Steiner tree problem. In: 10th Annual European Symposium on Algo-
rithms (ESA 2002). Volume 2461 of Lecture Notes in Computer Science. Springer
(2002) 760–772

13. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000)
770–779

14. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM Journal on
Applied Mathematics 14 (1966) 255–265

15. Althaus, E., Polzin, T., Daneshmand, S.: Improving linear programming ap-
proaches for the Steiner tree problem. Research Report MPI-I-2003-1-004, Max-
Planck-Institut für Informatik, Saarbrücken, Germany (2003)

16. Du, D.Z., Hwang, F.: Reducing the Steiner problem in a normed space. SIAM
Journal on Computing 21 (1992) 1001–1007

17. Lee, D., Shen, C.F.: The Steiner minimal tree problem in the λ-geometry plane.
In: Proceedings 7th International Symposium on Algorithms and Computations
(ISAAC 1996). Volume 1178 of Lecture Notes in Computer Science., Springer
(1996) 247–255

18. Lin, G.H., Xue, G.: Reducing the Steiner problem in four uniform orientations.
Networks 35 (2000) 287–301

19. Koh, C.: Steiner problem in octilinear routing model. Master thesis, National
University of Singapore (1995)

20. Shen, C.: The λ-geometry Steiner minimal tree problem and visualization. PhD
thesis, Northwestern University, Evanston, IL, USA (1997)

21. Brazil, M., Thomas, D., Winter, P.: Minimum networks in uniform orientation
metrics. SIAM Journal on Computing 30 (2000) 1579–1593

22. Brazil, M., Thomas, D., Weng, J., Zachariasen, M.: Canonical forms and algorithms
for Steiner trees in uniform orientation metrics. Technical Report TR-02/22, DIKU,
Department of Computer Science, Copenhagen, Denmark (2002). To appear in
Algorithmica.

23. Karp, R.: Reducibility among combinatorial problems. In Miller, R., Thatcher,
J., eds.: Complexity of Computer Computations. Plenum Press, New York (1972)
85–104

Dense Subgraph Problems with Output-Density
Conditions

Akiko Suzuki and Takeshi Tokuyama

Graduate School of Information Sciences,
Tohoku University, Sendai, 980-8579, Japan
{akiko, tokuyama}@dais.is.tohoku.ac.jp

Abstract. We consider the dense subgraph problem that extracts a
subgraph with a prescribed number of vertices that has the maximum
number of edges (total edge weight in the weighted case) in a given graph.
We give approximation algorithms with improved theoretical approxima-
tion ratios—assuming that the density of the optimal output subgraph
is high, where density is the ratio of number of edges (or sum of edge
weights) to the number of edges in the clique on the same number of
vertices. Moreover, we investigate the case where the input graph is bi-
partite, and design a pseudo-polynomial time approximation scheme that
can become a PTAS even if the size of the optimal output graph is com-
paratively small. This is a significant improvement in a theoretical sense,
since no constant-ratio approximation algorithm was known previously
if the output graph has o(n) vertices.

1 Introduction

We consider the weighted dense subgraph problem (often called the maximum
dispersion problem or dense k-subgraph problem) defined as follows:

Consider a weighted graph G = (V,E), where |V | = n, and each edge
e has a nonnegative weight 0 ≤ w(e) ≤ 1. Given a natural numbers
k ≤ n, find a subgraph H = (X,F) of G such that |X | = k and w(F) =∑

e∈F w(e) is maximized.

Its bipartite version is as follows:

Consider a weighted bipartite graph G = (U, V,E), where |U | = m,
|V | = n, and each edge e has a nonnegative weight 0 ≤ w(e) ≤ 1. Given
two natural numbers m′ ≤ m and n′ ≤ n, find a subgraph H = (X,Y, F)
of G such that |X | = m′, |Y | = n′, and w(F) =

∑
e∈F w(e) is maximized.

We note the condition 0 ≤ w(e) ≤ 1 is given since it is convenient for pre-
senting our theoretical results, although we can define each problem without it.
We say unweighted dense subgraph problem if w(e) = 1 for each edge. We define
the density ∆ of the output subgraph H to be ∆ = 2w(F)

k(k−1) for the non-bipartite

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 266–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dense Subgraph Problems with Output-Density Conditions 267

case and ∆ = w(F)
m′n′ for the bipartite case. In other words, density is the ratio of

the weight sum to the number of edges in a clique (or a bipartite clique) of the
same size. We mainly consider the case where the density of the optimal output
subgraph is high (e.g., ∆ = Ω(1)), and aim to design efficient approximation
algorithms.

CLIQUE and dense subgraph with a density condition. We first show
a motivating scenario to convince readers that the problem is interesting even
for the special case where ∆ = 1 and the graph is unweighted. Suppose that
we want to find a clique of size k in a graph G, suspecting that such a clique
exists. Suppose that such a clique indeed exists. Since CLIQUE is NP-complete,
we want to have an approximate solution. One possibility is to find a clique of
a size k′ < k such that the approximation ratio k/k′ is small. Unfortunately, it
is very difficult to obtain a clique of a large size, since it is known to be hard to
attain the approximation ratio n1−ε unless CO-NP = NP, and the current best
ratio is O(n/ log2 n) [4]. Another possible solution is to find a dense subgraph
with k vertices. Again, unfortunately, the current known approximation ratio
for the general dense subgraph problem is high. We show in this paper that the
approximation ratio is significantly improved utilizing the fact that ∆ = 1, and
hence this formulation of clique approximation has a nice theoretical guarantee.

Previous work. The densest subgraph problem that finds a subgraph with the
maximum average degree without any size constraint of the subgraph can be
solved in polynomial time [9]. However, the unweighted dense subgraph problem
(where k is given) is NP-hard since the max-clique problem is reduced to it.

Therefore, several approximation algorithms have been proposed [1,3,5,7,10]
in the literature for the dense subgraph problem. We use the convention that
an algorithm has an approximation ratio r > 1 for a maximization problem if
its objective value is at least r−1 times the optimal value. In practice, a greedy
algorithm removing the smallest weighted-degree vertex one by one often works
well; however, its approximation ratio is 2n/k (ignoring smaller terms) if k <
n/3, and it is asymptotically tight [3]. One nice feature of this algorithm is
that it gives a constant approximation ratio if k = Ω(n); however, the linear
dependency of the ratio in n is not satisfactory from the theoretical point of
view. The currently best algorithm has an approximation ratio that is slightly
better than n1/3, and it is conjectured that there exists some constant ε such
that nε approximation is hard [5,7,2,10]. As for the lower bound, Feige [6] showed
that it is R3SAT-hard to approximate within a ratio better than some constant
when k = Ω(n).

Unweighted dense subgraph problems with some additional density conditions
on the input/output graph have been also considered. In particular, when the
optimal subgraph has Ω(n2) edges (thus, ∆ = Ω(1) and k = Ω(n)), PTAS
algorithms are known [1,5]. However, in many applications of the dense subgraph
problem, it is desired to solve the problem with only a density assumption on the
optimal output graph. An nε-approximation algorithm with a time complexity
O(n1/ε) is known for the case ∆ = Ω(1) under an additional condition that the

268 A. Suzuki and T. Tokuyama

average degree of the input graph is Ω(k) [7]. It is also claimed in [7] that if the
optimal subgraph is a clique, there is an nO((1/ε) log(n/k)) time algorithm to have
an (1 + ε)-approximation solution: This time complexity is polynomial only if
k = Ω(n). As far as the authors know, no constant-ratio algorithm is known for
k = o(n) even for the unweighted problem. It is an interesting question whether
we can relax the requirement k = Ω(n), and this is one of our motivations of
this research.

Next, let us consider the bipartite dense subgraph problem. Although the
bipartite dense subgraph problem looks easier than the general dense subgraph
problem, it has not been revealed how much easier it is. Indeed, it is not much
easier. The problem is NP-hard, since the NP-hard edge-maximizing bipartite
clique problem is reduced to this problem. Note that bipartite clique problem is
polynomial-time solvable if the criterion is to maximize the number of vertices.
(See [8] for the complexities of bipartite clique problems.)

Our contribution. For the bipartite dense subgraph problem, let p = m/m′,
and q = n/n′. We have an algorithm with time complexity
O(mn2O(∆−1ε−2 log p log q)) which outputs a subgraphH0 = (X0, Y0, F0) such that
|X0| = m′, |Y0| = n′ and its weighted density ∆0 satisfies (1 + ε)∆0 ≥ ∆ for any
positive ε < 1. The time complexity implies that we have a PTAS if either (1) ∆
and min(p, q) are constants, (2) both p and q are constants and ∆ = Ω(log−1 n),
or (3) ∆ is a constant and max(p, q) = 2O(

√
log mn). We also give a polynomial-

time approximation algorithm with an approximation ratio (min(p, q))ε for any
constant ε > 0 only with the density condition ∆ = Ω(1). These results imply
that ∆ is the principal parameter to control the computational complexity.

As direct consequences of the bipartite problem, we have the following results
for the non-bipartite dense subgraph problem: We give an algorithm with an
approximation ratio (n/k)ε if the optimal solution has Ω(k2) edges (or w(F) =
Ω(k2) for the weighted problem). This improves the previous nε approximation
ratio of [7] when k is large, and also the additional condition on the average
degree of the input graph is removed. Moreover, we give a (2+ ε)-approximation
algorithm for any ε ≤ 1 that runs in O(n22O(∆−1ε−2 log2(n/k))) time. This implies
that we have a (2 + ε)-approximation polynomial-time algorithm if ∆ = Ω(1)
and n/k < 2

√
log n. As far as the authors know, this is the first constant-ratio

polynomial-time algorithm for the dense subgraph problem that works for some
k = o(n).

Technically, we apply the framework of Arora et al. [1] solving combinatorial
problems on a dense input graph by using quadratic integer programming (QIP)
and sampling. For our problem, the QIP is bilinear, and hence the error due to
the sampling can be more precisely analyzed. This enables to replace the den-
sity condition of the input graph with that of the output graph. Our algorithms
are randomized. However, we can derandomize them as follows: We can use any
pseudo random generator with pairwise independence [11] for graph decomposi-
tion given in Section 2. For the random sampling algorithms given in Sections 3
and 4, we can use a derandomization technique given in [1] using an expander.

Dense Subgraph Problems with Output-Density Conditions 269

2 Reduction to the Bipartite Problem

We show that we can reduce the general dense subgraph problem to the bipartite
case by increasing the approximation factor by 2. We have a graph G = (V,E)
and want to find a dense k-vertex subgraph H = (X,F). We first randomly
divide V into two sets U ′ and V ′, where each vertex of V is assigned to U ′ with
probability 0.5. Thus, we have a bipartite graph G′ = (U ′, V ′, E′). Consider
what happens on the optimal subgraph H . Let F ′ = E′ ∩ F . Then, we have a
bipartite subgraph W = (U ′ ∩X,V ′ ∩ X,F ′) of G′. By using the argument of
randomized max-cut [11], the expected value of w(F ′) is w(F)/2. Thus, with
a nonnegligible probability, (2 + o(1))w(F ′) ≥ w(F), and it is easy to see that
the density condition inherits. Next, we find an approximation solution W ′ for
the bipartite dense subgraph problem that has an approximation ratio r. Here,
although we may try all combinations of m′ and n′ satisfying m′ + n′ = k, it
suffices to consider the case where n′ ≈ k/2 (we omit details in this version).
Then, the subgraph in G induced by the vertex set of W ′ gives an (2 + o(1))r
approximation solution of the original problem. Hence, we have our results on the
dense subgraph problem from those on the bipartite dense subgraph problem.

3 Quasi-Polynomial Time Approximation Scheme for the
Bipartite Problem

We give an algorithm named ABDense (Approximate Bipartite-Dense) for com-
puting a dense subgraph with a given combination (m′, n′) of numbers of vertices
in a bipartite graph. In a weighted graph, the weighted degree of a vertex is the
sum of weights of edges incident to it. We need to give parameters γ < 1 and I
(the number of iterations of random sampling) to implement the algorithm. The
following is a pseudo-code of the algorithm:

Algorithm ABDense(G, m′, n′)
(∗ Output is a subgraph H with density D ∗)
1. D = 0;
2. for i ← 1 to I;
3. do
4. Randomly select a subset X0 ⊂ U of size γm′;
5. Let Y1 be the set of vertices with n′ largest weighted-degrees in the

subgraph induced by X0 ∪ V in G;
6. Let X1 be the set of vertices with m′ largest weighted-degrees in the

subgraph induced by U ∪ Y1 in G;
7. if density D1 of the graph H1 induced by X1 ∪ Y1 is larger than D;
8. then D = D1, H = H1:
9. return H ;

The algorithm itself is a familiar one. If γ = 1, it is a common naive algorithm
for this problem that is a core of many heuristics (e.g., multi-start local search

270 A. Suzuki and T. Tokuyama

or evolutional methods), and its deterministic version is utilized as a constituent
of a hybrid algorithm of [7] with an n1/3 approximation ratio.

Our contribution is a precise analysis of this algorithm. The success proba-
bility that D > (1 + ε)−1∆ depends on the parameters γ and I. We analyze the
performance of the algorithm to give suitable choice of γ and I, and show the
following result: Recall that p = m/m′, q = n/n′, and ∆ = w(F)

m′n′ .

Theorem 1. For any 0 < ε < 1 ABDense computes a (1 + ε)-approximation
solution for the bipartite dense subgraph problem in O(mn2O(∆−1ε−2 log p log q))
randomized expected time.

3.1 Framework of the Analysis

We first design another algorithm that is easier to analyze, and then simplify
the algorithm to obtain an analysis for ABDense. The algorithm is a two-step
sampling algorithm following a framework given by Arora et al. [1] for solving
the dense subgraph problem: The algorithm first selects a sample set Γ of size
γm and then search in its power set to find a subset of size γm′ that leads to an
approximate solution with the desired theoretical quality.

We can formulate the problem into a quadratic integer programming problem.
We write U = {u1, u2, . . . , um}, V = {v1, v2, . . . , vn}. We introduce a matrix
W = (wi,j)1≤i≤m,1≤j≤n indicating the graph structure of G. For the unweighted
case, wi,j is binary, and wi,j = 1 if and only if (ui, vj) ∈ E. For the weighted
problem, we regard wi,j as the weight of the edge (ui, vj). It is straightforward
to see that the bipartite dense subgraph problem is equivalent to the following
QIP.

QIP: Maximize txWy, subject to∑
1≤i≤m

xi = m′,
∑

1≤j≤n

yj = n′, and xi, yj ∈ {0, 1}.

Here, txWy =
∑

1≤i≤m

∑
1≤j≤n wi,jxiyj is the matrix product (we consider

x and y as column vectors and tx is the transpose of x). A very useful feature
is that the objective function is bilinear in xi and yj.

Let (xopt,yopt) be an optimal solution of QIP and zopt =t xoptWyopt. For a
given x, we define an n-dimensional vector a(x) = txW . Then, zopt = a(xopt) ·
yopt, where · is the inner product operation. Thus, if a = a(xopt) is known, it
suffices to solve the following problem:

IP-y(a): Maximize a · y subject to
∑

1≤j≤n yj = n′ and yj ∈ {0, 1}.

Symmetrically, we have the following IP-x:

IP-x(b): Maximize b · x subject to
∑

1≤i≤m xi = m′ and xi ∈ {0, 1}.

Both of IP-y(a) and IP-x(b) can be solved by greedy algorithms. Indeed,
given a = (a1, a2, . . . , an) (resp. b = (b1, b2, . . . , bm)), we consider the largest

Dense Subgraph Problems with Output-Density Conditions 271

n′ (resp. m′) entries (breaking tie arbitrary) of a (resp. b), and let J(a) ⊂
{1, 2, . . . , n} (resp. J(b) ⊂ {1, 2, . . . ,m}) be the set of corresponding indices.

We define the binary vector y(a) = (y1(a), y2(a), . . . , yn(a)) such that yj(a) =
1 if and only if j ∈ J(a). Similarly, we define a binary vector x(b) such that
xi(b) = 1 if and only if i ∈ J(b). Then, it is easy to see that the vectors y(a)
and x(b) are optimal solutions for IP-y(a) and IP-x(b), respectively.

Now, we can design an algorithm to find a feasible solution for QIP. Start
with any nonnegative vector a∗ and solve IP-y(a∗). Next, using the output
y1 = y(a∗) of IP-y(a∗), we compute the vector b∗ = b(y1) = Wy1, and
solve IP-x (b∗) to have an output vector x1 = x(b∗). The following lemma is
straightforward:

Lemma 1. The pair (x1,y1) is a feasible solution of QIP. Moreover, let
(x0,y0) be any feasible solution of QIP, and let (x1,y1) be the vector obtained
by applying the above procedure to a(x0). Then, tx1Wy1 ≥ tx0Wy0.

Let z1 = tx1Wy1 be the objective function value associated with (x1,y1).
We compare z1 to zopt. We first claim that if a∗ is a good approximation of
aopt = a(xopt), then zopt − z1 is small; in other words, (x1,y1) gives a good
approximation solution for QIP. Next, we give a method to obtain an a∗ that
approximates aopt.

Lemma 2. Let J = J(aopt) and J∗ = J(a∗). Then,
∑

j∈J∗ a∗j ≥
∑

j∈J a
∗
j and

z1 ≥ z∗ =
∑

j∈J∗ a
opt
j .

Proof. The first formula is straightforward from the definition of J∗. For the
second formula, z∗ =

∑
j∈J∗ a

opt
j = txoptWy1 is the objective function value of

a feasible solution (xopt,y1) of QIP. However, if we fix y1, x1 is the best possible
assignment of x values. Thus, this solution cannot be better than (x1,y1).

We define F1(a∗) =
∑

j∈J a
opt
j −

∑
j∈J a

∗
j and F2(a∗)=

∑
j∈J∗ a∗j−

∑
j∈J∗ a

opt
j .

Lemma 3. zopt − z1 ≤ F1(a∗) + F2(a∗).

Proof. From the previous lemma, zopt − z1 ≤
∑

j∈J a
opt
j −

∑
j∈J∗ a

opt
j ≤∑

j∈J a
opt
j −

∑
j∈J∗ a

opt
j +

∑
j∈J∗ a∗j −

∑
j∈J a

∗
j = F1(a∗) + F2(a∗).

Thus, in order to obtain an approximate solution whose objective function
value is at least (1−ε)zopt, it suffices to find a∗ such that F1(a∗)+F2(a∗) ≤ εzopt.

Now, we consider a random sample Γ ⊂ U of size |Γ | = γm. We identify
U and the index set {1, 2, . . . ,m}, thus we regard Γ ⊂ {1, 2, . . . ,m}. Let hj =∑

i∈Γ wi,jx
opt
i , for each j = 1, 2, . . . , n. We define a(Γ) = (a1(Γ), a2(Γ), . . . ,

an(Γ)) by aj(Γ) = γ−1hj . Since
∑

1≤i≤m wi,jx
opt
i = aopt

j , the expected values
of hj and aj(Γ) are represented by E(hj) = γaopt

j and E(aj(Γ)) = aopt
j , respec-

tively.
This a(Γ) is our candidate for a∗, and we estimate F1(a(Γ))+F2(a(Γ)). Note

that we are not ready to claim that we can compute a(Γ) at this stage, since we
do not know xopt.

272 A. Suzuki and T. Tokuyama

3.2 Analysis of F1(a(Γ)) + F2(a(Γ))

Let us start the detailed analysis. Since the corresponding terms in F1 and F2
cancels out for indices in J ∩J∗, we can remove them from the estimation. Thus,
the worst case occurs when J ∩ J∗ = ∅, and we assume this situation without
loss of generality in our analysis. We denote the expected value E(hj) by µj for
j = 1, 2, . . . n.

Lemma 4. Pr[hj > µj + δ] < e−δ2/(2µj+δ) and Pr[hj < µj − δ] < e−δ2/2µj for
each 1 ≤ j ≤ n. Here, e = 2.718 . . . is the base of natural logarithm.

Proof. We take each element of U in the sample with probability γ, and the
element ui contributes by wi,jx

opt
i to hj if it is selected. Thus, for each fixed j,

we define a random variable Zi,j that takes wi,jx
opt
i with probability γ and 0

with probability 1−γ for each i = 1, 2, . . . ,m. Note that if wi,jx
opt
i = 0, Zi,j ≡ 0.

This gives a series of independent variables for each fixed j, and hj =
∑m

i=1 Zi,j .
Thus, we apply Chernoff’s bounds to obtain the lemma.

Corollary 1. If µj ≤ f , Pr[hj < µj − rf] < e−r2f/2 and Pr[hj > µj + rf] <
e−r2f/(2+r) for any r > 0.

We utilize the following combinatorial fact (proof is omitted):

Lemma 5. Let S = {n1, n2, . . . nk} be a set of k real numbers satisfying that∑
1≤i≤k ni ≥ N for a given number N . Then there exists a natural number �

such that at least 2−	+1k entries of S exceed �N/3k.

Lemma 6. If γ = cn′ ln q
zoptε2 = c ln q

∆m′ε2 for a sufficiently large constant c, Fi(a(Γ)) <
εzopt/2 with a probability at least 0.9 for each of i = 1, 2.

Proof. We only prove for F2. Suppose that F2(a(Γ)) ≥ εzopt/2. We apply Corol-
lary 1 for f = γzopt/n′ = cε−2 ln q that is the average of γaopt

j over j ∈ J . Recall
that we can assume J∗ ∩ J = ∅. J is the set of indices for the n′ largest ele-
ments of aopt

j . Thus, µj ≤ f if j /∈ J , and accordingly µj ≤ f for j ∈ J∗. Thus,
Pr[hj > µj +rεf] < e−cr2 ln q/(2+rε) < q−cr2/(2+r). We define P (r) = q−cr2/(2+r).
Thus, the expected number of indices j ∈ {1, 2, . . . , n} such that hj −µj > rεf is
bounded by nP (r). Hence, from Markov’s inequality, the probability that there
are L such indices is bounded by nP (r)/L.

We use Lemma 5 by setting nj = hj − µj for j ∈ J∗, k = n′ and N =
γεzopt/2 = cn′ε−1 ln q/2. (We ignore all j /∈ J∗.) If F2(a(Γ)) ≥ εzopt/2,∑

j∈J∗ nj ≥ N . Thus, there exists an � such that at least 2−	+1n′ entries of

S exceeds �N/3n′ = 	cn′ε−1 ln q
6n′ ≥ c	ε−1 ln q

6 = 	εf
6 . From the argument above, the

probability that there are 2−	+1n′ such indices is bounded by nP (�/6)/(2−	+1n′)
= qP (�/6)2	−1. It is routine to show qP (�/6)2	−1 < e−3	 if c is sufficiently large
and q > e. Thus, the probability that there exists at least one such � is bounded
by

∑log n′

	=1 e−3	 < 1/10. Thus, the probability that F2(a(Γ)) < εzopt/2 is at most
0.1.

Dense Subgraph Problems with Output-Density Conditions 273

Corollary 2. If γ ≥ cn′ ln q
zoptε2 for a sufficiently large constant c, F1(a(Γ)) +

F2(a(Γ)) < εzopt with a probability at least 0.8.

We consider a sample Γ of size γm suggested in the above corollary. Let Z(Γ)
be the subset of Γ defined by Z(Γ) = {i ∈ Γ |xopt

i = 1}. hj =
∑

i∈Z(Γ) wi,j and
aj(Γ) = γ−1hj are computed from Z(Γ), thus we obtain a (1−ε) approximation
solution with probability 0.8 if we can correctly guess Z(Γ).

We can apply a version of exhaustive search to find Z(Γ). However, the num-
ber of all subsets of Γ is 2O(∆−1ε−2p ln q). Thus, if we exhaustively search all sub-
sets of Γ to find Z(Γ), the computation time is exponential in p. Fortunately, we
do not need to examine all subsets, since the expected value of the size of Z(Γ)
is γm′ = p−1|Γ |, and the following lemma is obtained from Chernoff’s bounds.

Lemma 7. The probability that ||Z(Γ)| − γm′| > 3
√
γm′ is at most 2e−2.

From the above lemma and Corollary 2, we have the following:

Corollary 3. With probability 0.8−2e−2, we have a sample Γ such that ||Z(Γ)|
− γm′| < 3

√
γm′ and Z(Γ) gives an (1 + ε)-approximation solution for QIP.

The number of subsets of Γ whose cardinality is at most r = γm′ + 3
√
γm′

is O(((p+ 1)e)r) from the Stirling’s formula. Since r = O(∆−1ε−2 ln q), we have
the following:

Theorem 2. We can compute an (1+ε)-approximation solution for the bipartite
dense subgraph problem in O(mn2O(∆−1ε−2 ln p ln q)) time with high probability.

3.3 Simplifying the Algorithm

In the above algorithm, we take a sample Γ , and exhaustively search all its
subsets of size approximately γm′ to find Z(Γ). However, it is easy to see that
there exists a subset of size exactly �γm′� to give an approximation algorithm,
if we allow to increase the error ratio ε slightly to (1 + 3p−0.5)ε. Now, instead
of two-step sampling, we can randomly select a subset X0 of size γm′ directly
from U , and apply IP-y and IP-x; thus, we obtain the algorithm ABDense. Our
analysis given in the previous subsection works to give the same time complexity
for ABDense, where the number I of iterations is O(2O(∆−1ε−2 ln p ln q)).

4 Approximation Algorithm Without Size Restriction

Now, let us consider the case where both p and q are large. By symmetry, we
assume p ≥ q without loss of generality. If we could naively set ε =

√
log q in

the complexity of our quasi-polynomial time algorithm, it would imply a poly-
nomial time algorithm with an O(

√
log q) approximation ratio. Unfortunately,

the analysis only holds under the condition ε < 1. However, we can prove the
following theorem:

274 A. Suzuki and T. Tokuyama

Theorem 3. For any fixed ε > 0, we have a qε-approximation polynomial-time
algorithm for the weighted bipartite dense subgraph problem if ∆ = Ω(1).

We assume q is larger than a sufficiently large constant, since otherwise we
have already given a PTAS. For technical reasons, we prove 2qε approximation
ratio, since it is easy to remove the factor 2 by decreasing ε slightly. The al-
gorithm is the same as the one in Section 3.1 except the sample size. Here, we
take a sample Γ of size γ̃m = cmn′

zopt , where c is a constant dependent on ε.
Using the analysis given in the previous section, the time complexity becomes
O(mn2O(ln p∆−1)) = O(mnpO(∆−1)) , which is polynomial if ∆ = Ω(1). There-
fore, it suffices to estimate the approximation ratio.

Lemma 8. If we take c sufficiently large, and take a random sample Γ such
that |Γ | = γ̃m, F1(a(Γ)) < zopt/2 with probability at least 0.9.

Proof. The proof is analogous to Lemma 6. The reason that we can save a ln q
factor in the sample size is that J is independent of choice of Γ , since aopt does
not rely on sampling. Thus, instead of the sum of the worst n′ errors of random
variables (among n candidates) in Lemma 6, we only need to estimate the sum
of errors of known n′ random variables. We omit routine details in this version.

Claim. If we choose the constant c sufficiently large, F2(a(Γ)) ≤ (qε −1)z∗ with
a large probability (say, ≥ 0.9).

Theorem 3 follows from the above claim. Recall that z∗ =
∑

j∈J∗ a
opt
j . The

formula F2(a(Γ)) ≤ (qε − 1)z∗ implies that either zopt ≤ 2qεz∗ or F2(a(Γ)) ≤
1−q−ε

2 zopt. In the first case, we have 2qε-approximation since the objective func-
tion value of our solution is at least z∗. In the second case, with probability
0.8, z∗ ≥ zopt − (F1(a(Γ)) + F2(a(Γ))) ≥ q−ε

2 zopt, and hence we also attain
2qε-approximation.

Now, let us prove the claim. The following lemma follows from Chernoff’s
bounds for large deviation cases:

Lemma 9. Let τj = max{1, µj/µ}, and we assume θ > e2 ≈ 7.39. Then, we
have the following: If µj > µ, Pr[hj > (1 + θ)µj] < (θ+ 1)−θr−1cτj/2. If µj < µ,
Pr[hj > (1 + θ)µ] < (θ + 1)−θr−1cτj/2. Here, µ = r−1γ̃zopt/n′ = r−1c is the
average of µj for j ∈ J∗.

The following lemma is a refinement of Lemma 5 (proof is omitted).

Lemma 10. Let S = {n1, n2, . . . nk} and T = {m1,m2, . . .mk} be sets of pos-
itive numbers. If

∑
1≤j≤k mj = M and

∑
1≤j≤k nj > NM , then there exists

a natural number � and I	 ⊂ {1, 2, . . . , k} such that
∑

j∈I�
mj > 2−	+1M and

nj ≥ 	Nmj

3 for each j ∈ I	.

Dense Subgraph Problems with Output-Density Conditions 275

We apply Lemma 10 setting mj = τj , nj = hj−µj for j ∈ J∗ and N = (r−1)µ
2 ,

where we ignore indices outside J∗. We remark that n′ ≤ M =
∑

j∈J∗ τj < 2n′.
Because

∑
j∈J∗ hj = r

∑
j∈J∗ µj = rn′µ, we have

∑
j∈J∗(hj − µj) = (r − 1)n′µ

> (r − 1)Mµ/2 = NM. Thus, there exists a natural number � and a set I	 such
that

∑
j∈I�

τj > 2−	+1n′ and nj ≥ 	Nτj

3 for each j ∈ I	. Thus, hj−µj ≥ 	(r−1)τjµ
6

for each j ∈ I	. From Lemma 9, the probability P that hj − µj ≥ 	(r−1)τjµ
6 is

bounded by (�(r − 1)τj)−c	τj(r−1)/12r < (�r)−c	τj/13, if r is sufficiently large.
Now, suppose that the claim is false and r > qε, and set the constant

c = 26ε−1. Then, the probability P is (�q)−2	τj < q−2	τj . By using Markov’s
inequality, we can show that the probability of the existence of I	 for a fixed �
is at most nP ≤ n

2−�+1n′ q
−2	 < q−	. Thus, the probability of existence of such a

pair (�, I) is bounded by
∑log q

	=1 q
−	, which is very small if q is large. Therefore,

we have a contradiction. Thus, we have proven the claim, and hence Theorem 3.

5 Concluding Remarks

It is important to seek for more practical algorithms with approximation ratios
as good as those given in this paper. Our algorithms are not practically efficient,
but we may have good solution by taking a smaller number of instances combined
with heuristics so that the process finishes within practical computation time.

Finally, it would be nice to remove the factor of 2 caused by the max-cut.

Acknowledgement. We thank an anonymous referee for suggesting derandom-
ization of algorithms. This research is supported by JSPS Grant-in-Aid for Sci-
entific Research on priority areas of New Horizons in Computing.

References

1. S. Arora, D. Karger, and M. Karpinski, Polynomial Time Approximation Schemes
for Dense Instances of NP-hard Problems, Proc. STOC’95 (1995), pp. 284-293.

2. Y. Asahiro, R. Hassin, and K. Iwama, Complexity of Finding Dense Subgraphs,
Discrete Applied Math. 121 (2002), pp. 15-26.

3. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, Greedily Finding Dense
Subgraphs, Journal of Algorithms 34 (2000), pp. 203-221.

4. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Pro-
tasi, Complexity and Approximation, Combinatorial Optimization Problems and
Their Approximability Properties, Springer-Verlag (1999).

5. A. Czygrinow, Maximum Dispersion Problem in Dense Graphs, Operation Research
Letters 27 (2000), pp. 223-227.

6. U. Feige, Relations between Average Case Complexity and Approximation Com-
plexity, Proc. STOC 02 (2002), pp. 534-543.

7. U. Feige, G. Kortsarz, D. Peleg, The Dense k-Subgraph Problem, Algorithmica 29
(2001), pp. 410-421.

8. D. S. Hochbaum, Approximating clique and biclique problems, J. Algorithms 29
(1998), pp. 174-200.

276 A. Suzuki and T. Tokuyama

9. G. Gallo, M. D. Grigoriadis, R. E. Tarjan, A Fast Parametric Maximum Flow
Algorithm and Applications, SIAM J. Comput. 18 (1989), pp. 30-55.

10. G. Kortsarz, D. Peleg, On Choosing a Dense Subgraph, Proc. FOCS93 (1993), pp.
692-701.

11. R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press
(1995).

A Complete Characterization of Tolerable Adversary
Structures for Secure Point-to-Point Transmissions

Without Feedback

Yvo Desmedt1,3,�, Yongge Wang2,��, and Mike Burmester3,� � �

1 University College London, UK
y.desmedt@cs.ucl.ac.uk

2 UNC Charlotte, USA
yonwang@uncc.edu

3 Florida State University, USA
burmester@cs.fsu.edu

Abstract. Problems of unconditionally secure communication have been stud-
ied extensively in network models. Dolev-Dwork-Waarts-Yung considered the
Byzantine threats model, in which the adversary can only take over a number of
nodes bounded by a threshold. They studied two cases:

1. all communication links (edges in the graph) are two-way communication,
2. all communication links are one-way communication, and there is no feed-

back.
The node sets that the adversary can take over was generalized by Hirt-Maurer to
an adversary structure. At PODC 2002, Kumar-Goundan-Srinathan-Rangan gen-
eralized Dolev-Dwork-Waarts-Yung’s first scenario to the case of a general adver-
sary structure. In this paper we generalize Dolev-Dwork-Waarts-Yung’s second
scenario to the case of a general adversary structure. As in Dolev-Dwork-Waarts-
Yung, our work relies on the use of secret sharing.

Keywords: Network security, Byzantine threats, Secret Sharing, adversary struc-
ture, unconditional security.

1 Introduction

Originally work on secure distributed computation (see, e.g., [1,3]) assumed that the par-
ties were connected by a complete network of reliable and private point-to-point com-
munication channels, with an adversary that could control up to k (Byzantine) nodes.

In practical networked environments it is often the case that two parties are not con-
nected with a private and authenticated channel. They then need to use intermediate
nodes to help them to carry out secure communication and secure multiparty computa-
tions. In this case, it is important to design secure communication protocols to achieve

� A part of this work has been funded by CCR-0209092. The author is BT Professor of Infor-
mation Security.

�� This work was supported, in part, by funds provided by The University of North Carolina at
Charlotte.

� � � A part of this work has been funded by CCR-0209092.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 277–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 Y. Desmedt, Y. Wang, and M. Burmester

participant cooperation in the presence of faults. Dolev, Dwork, Waarts, and Yung [6]
initiated the study of reducing the requirements for network connectivity in secure mul-
tiparty computation by providing protocols that achieve private and reliable communi-
cation. In the case of k Byzantine faults, they studied the cases:

1. all communication links (edges in the graph) are two-way communication. Reliable
and private communication is achievable if and only if the communication network
is 2k + 1 connected.

2. all communication links are one-way communication, and there is no feedback.
Then 3k + 1 connectivity is necessary and sufficient for reliable and private com-
munications.

In 2002, Desmedt and Wang [4] extended this to the case when there are feedback
channels.

The Byzantine faults model typically addresses threat scenarios in which the faults
are independent. This assumption is unrealistic when dealing with computer viruses,
such as the ILOVEYOU [11] virus and the Internet virus/worm [7] that only spread to
Windows, respectively Unix. A hacker who can exploit a weakness in one platform,
can with almost the same ease attack many computers, if not all, on that same platform.
There is therefore a need to design a model in which nodes on the same platform can be
distinguished. One such model, the adversary structure model, was proposed by Hirt
and Maurer [10] for secure multiparty computation (for an earlier version see [9]). In
this model the adversary is characterized by a structure (or family) of subsets of the
set of parties, which are the sets that the adversary can corrupt. Hirt and Maurer gave
necessary and sufficient conditions for secure multiparty computation in this adversary
model. Similar to the classical results for multiparty computation, Hirt and Maurer as-
sumed that communication networks are complete.

As in Dolev, Dwork, Waarts, and Yung [6], in this paper, we study the problem of
reducing the requirements for network connectivity in secure multiparty computation
in the sense of Hirt and Maurer [10] under the adversary structure model. We give nec-
essary and sufficient conditions on the communication network, with respect to a given
adversary structure Z , such that we have reliable and private point-to-point communica-
tion. It should be noted that results for not necessarily complete bi-direction networks
have been obtained by Kumar-Goundan-Srinathan-Rangan in [13]. They used an in-
duction argument to prove the sufficient condition. There are two essential differences
between our results and the results in [13].

– The secure message transmission protocols in [13] only apply to networks in which
all links are two-way. That is, one can send messages in two directions. Our proto-
cols work for networks that are not necessarily complete and the links are one-way.
That is, one may send message from one direction though not the other direction.

– Our protocols for secure transmissions are slightly more efficient than these in [13]
due to the induction processes in [13]. Specifically, our protocols will use minimal
Z-connected path-sets. We shall find a bound on the number of paths in such path-
sets, and show that it is sharp. Although we focus on point-to-point networks, our
results can easily be extended to broadcast networks.

A Complete Characterization of Tolerable Adversary Structures 279

The organization of this paper has as follows. In Section 2, we describe our model and
give definitions. In Section 3 we find necessary and sufficient conditions for secure
communication in our adversary model and propose secure transmission protocols. In
Section 4 we propose bounds.

2 Model and Background

2.1 Threshold Secret Sharing Schemes

Let F be a finite field, and let k, n be integers such that 0 ≤ k < n. A (k + 1)-out-of-n
secret sharing scheme is a probabilistic function S: F → Fn with the property that: for
any M ∈ F and S(M) = (v1, . . . , vn), no information about M can be inferred from
any k entries of (v1, . . . , vn), whereas M can be recovered from any k + 1 entries of
(v1, . . . , vn).

2.2 The Adversary

We employ an unconditional setting. That is, the adversary has unlimited resources.
The adversary is characterized by an adversary structure Z [10] that consists of all sets
of parties that the adversary can corrupt. Formally, let P be a party set. A subset ΓP
of the power set 2P of P is called an access structure on P [12]. It is monotone if and
only if ∅ �∈ ΓP and supersets of elements ΓP also belong to ΓP , i.e., we require that
if A ∈ ΓP and A ⊆ A′ ⊆ P , then A′ ∈ ΓP . Let ZP = ΓP . We call ZP ⊂ 2P , or
simply Z when there is no confusion, an adversary structure on P if its complement,
i.e., Zc

P = 2P \ ZP is a monotone access structure.
If Z1 and Z2 are adversary structures for P , then Z1 + Z2 = {Z1 ∪ Z2 : Z1 ∈

Z1, Z2 ∈ Z2} is also an adversary structure for P . 2Z and 3Z are the adversary struc-
tures Z + Z and Z + Z + Z respectively. Finally, a set of parties Z ∈ Z is maximal
if: Z ′ ⊃ Z ⇒ Z ′ /∈ Z . In the remaining part of the paper, we will use 2Z and 3Z to
denote the adversary structures Z + Z and Z + Z + Z respectively.

We consider two kinds of adversary: a passive and an active adversary. A passive
adversary (or gossiper adversary) can only read the traffic (the variables in the view)
of the parties in Z . An active adversary has unlimited computational power and can
read the traffic of Z and also control the parties in Z . Both kinds of adversary are
assumed to know the complete protocol specification, message space, and the complete
structure of the graph. In this paper, we shall not consider dynamic adversaries who can
change the parties they corrupt from round to round, but only static adversaries. That
is, the adversary selects which set of parties Z ∈ Z to corrupt, before the start of the
protocol.

2.3 The Communication Network

We model the communication network by a directed graph G = G(V,E) whose nodes
are the parties and whose edges are point-to-point reliable and private communication
channels.

280 Y. Desmedt, Y. Wang, and M. Burmester

2.4 Message Transmission Protocols

Let π be a message transmission protocol, letA be the sender andB the receiver, and let
Z be an adversary structure. The senderA selects a messageMA drawn from a message
space M with a certain probability distribution. At the beginning of the protocol, the
adversary flips coins and chooses a setZ ∈ Z of nodes to corrupt. At the end of protocol
π, the receiverB outputs a message MB ∈ M. We will assume that the message space
M is a subset of a finite field F (our results easily extend to message spaces of tuples
over F).

For any message transmission protocol we denote by adv the adversary’s view of
the execution of the protocol and by adv(M, r) the view whenMA = M and when the
sequence of coin flips used by the adversary is r.

Definition 1. Let π be transmission protocol, let MA the message selected by A and
MB the message output by B, let Z be an adversary structure.

1. We say that π is Z-reliable if B outputs MB = MA with probability 1. (The
probability is taken over the choices of MA and the coin flips of all nodes.)

2. We say that π is perfectly Z-private if for any two messages M0, M1, and for any
coin tosses r, we have Pr[adv(M0, r) = c] = Pr[adv(M1, r) = c]. The probabili-
ties are taken over the coin flips of the honest parties.

3. We say that π is perfectly Z-secure if it is Z-reliable and perfectly Z-private.

2.5 Connectivity

Definition 2. Let G(V,E) be a directed graph, A,B be nodes in G(V,E), and Z be a
an adversary structure on V \ {A,B}.

– A,B are Z-separable in G, if there is a set Z ∈ Z such that all paths from A to B
go through at least one node in Z . We say that Z separates A and B.

– A,B are (Z + 1)-connected if they are not Z-separable in G.

Observe that if (A,B) ∈ E, thenA,B are (Z +1)-connected for any Z on V \{A,B}.
The following result will be needed in our later discussions.

Theorem 1. Let G = G(V,E) be a directed graph, A,B be nodes in G, and Z1,Z2
be adversary structures on V \{A,B}. ThenA,B are (Z1 +Z2 +1)-connected if, and
only if: for all sets Z1 ∈ Z1 there is a set SZ1 of paths between A and B such that,

– the paths in SZ1 are free from nodes of Z1,
– for every Z2 ∈ Z2 there is at least one path in SZ1 that is free from nodes of Z2.

Proof. First consider the case when A,B are (Z1 + Z2 + 1)-connected. We prove that
the conditions are satisfied. For any set Z1 ∈ Z1, let SZ1 be the set of all paths from A
to B free from nodes of Z1. Assume that there is a set Z2 ∈ Z2 such that all paths of
SZ1 go through Z2. Then Z1 ∪ Z2 separates A,B in G. That is, A,B are (Z1 + Z2)-
separable in G. This is a contradiction.

For the converse observe that the conditions on the paths SZ1 make it impossible to
have a set Z2 ∈ Z2 such that Z = Z1 ∪ Z2 separates A,B. Indeed if there where such
a set Z separating A,B then there would be no path in SZ1 free of Z1 and Z2.

A Complete Characterization of Tolerable Adversary Structures 281

3 Secure Message Transmissions

We start by discussing message transmissions that tolerate passive adversaries. First we
briefly describe the intuition behind our protocols by observing that, whereas in the
Byzantine threats model the sender and receiver use vertex disjoint paths, for general
adversary structures this is not necessarily the case.

Theorem 2. Let G = G(V,E) be a directed graph, A,B be two nodes in G, and Z be
an adversary structure on V \ {A,B}. Suppose that the adversary is passive.

1. We have polynomial time (in the graph size) Z-reliable message transmission from
A to B if, and only if, A,B are ({∅} + 1)-connected in G.

2. We have polynomial time (in the graph size) perfectly Z-secure message transmis-
sion from A to B if, and only if, A,B are (Z + 1)-connected in G.

Proof. Result 1 is straightforward. For Result 2, first observe that if A,B are
Z-separable in G, then there is a set Z ∈ Z such that all paths from A go through
Z . Therefore Z-private message transmission fromA to B is impossible. Next suppose
that A,B are (Z + 1)-connected in G. In the following we describe a polynomial time
(in the graph size) protocol for A to securely send a message MA to B (our protocol is
similar to a protocol in [8, Lemma 2]).

1. Let G′(V ′E′) be the maximum subgraph of G(V,E) such that for each node v ∈
V ′, there is a direct path from v to B.

2. For each edge (u, v) ∈ E′, u chooses a random message (group elements chosen
according to the uniform distribution) ru,v and sends it to the node v.

3. Every node computes the sum of messages it has received and substracts the sum
of messages it has sent out. If the node is the actual sender A, then it adds to this
total the messsage MA. Call this sum the “final result” for this node.

4. Each final result from Step 3, except for the final result held by the actual receiver
B, is propagated by the nodes openly to the receiver B through a series of trans-
missions. The sum of all final results, including the final result held by the receiver
B, is the message MB .

Using a similar proof to that in [8, Lemma 2], we can show that the above protocol is a
Z-secure message transmission from A to B if A,B are (Z + 1)-connected in G.

Next we consider secure message transmission protocols for active adversaries.

Theorem 3. Let G = G(V,E) be a directed graph, A,B be nodes in G, and Z be an
adversary structure on V \ {A,B}. We have Z-reliable message transmission from A
to B if, and only if, A,B are (2Z + 1)-connected in G.

Proof. First assume that A,B are (2Z + 1)-connected in G, and let S be the set of all
directed paths from A to B. The paths in S will be used by the sender A to transmit
messages toB. LetMA be the message thatAwants to send toB. For each path p ∈ S,
A sends MA toB over p. At the end of the protocol,B receivesMB

p through each path
p ∈ S. Then by using Theorem 1, B finds a node set Z1 ∈ Z whose path set SZ1 is
such that the same message is received on all its paths. Let MB be this message. It is
sufficient to show that MB = MA. Suppose that the adversary selects Z2 ∈ Z . We
have:

282 Y. Desmedt, Y. Wang, and M. Burmester

– If Z1 ∩ Z2 = ∅ then MA = MB .
– IfZ1∩Z2 �= ∅ then by Theorem 1, sinceA,B are (2Z+1)-connected, there will be

a path p0 ∈ SZ1 free from nodes of Z2. On this pathMB
p0

= MA. Since B receives
the same message from all paths in SZ1 , we must have MA = MB

p0
= MB .

It follows that B can reliably recover the message MA.
Next assume that A,B are not (2Z + 1)-connected in G. That is, there are sets

Z1, Z2 ∈ Z such that all directed paths from A to B passes through some nodes in
Z1 ∪ Z2. Let M0 be the message that A transmits. The adversary will attempt to main-
tain a simulation of the possible behavior of A by executing the message transmission
protocol for some other message M1. The strategy of the adversary is to flip a coin and
then, depending on the outcome, decide which set of Z1 or Z2 to control (our model is
not dynamic, so the selection is done before the protocol starts). Let Zb be the chosen
set. In each execution step of the transmission protocol, the adversary causes each node
in Zb to follow the protocol as if the transmitted message were M1. Since B does not
know whether b = 1 or b = 2, with probability better than 1/2, at the end of the protocol
B cannot decide whetherA has transmitted M0 or M1 with probability better than 1/2.

Theorem 4. Let G = G(V,E) be a directed graph, A,B be nodes in G, and Z be an
adversary structure on V \ {A,B}. If there are no directed paths from B to A, then
we have perfectly Z-secure message transmission from A to B if and only if, A,B are
(3Z + 1)-connected in G.

Proof. First we show that the condition is sufficient. We shall describe a message trans-
mission protocol π that is perfectly Z-secure. Let Z = {Z1, . . . , Zt} be the adversary
structure (to make our protocol more efficient, we could take a list of maximal adversary
sets) and let MA be the message that A wants to send to B. The senderA first uses a t-
out-of-t secret sharing scheme to get shares (sA

1 , . . . , s
A
t) of the messageMA. For each

i ≤ t,A reliably sends sA
i toB via the reduced graphGV \Zi

= GV \Zi
(V \Zi, EV \Zi

),
where EV \Zi

= E \ {(u, v) : u ∈ Zi or v ∈ Zi}. For each i ≤ t, B reliably receives
sB

i on the reduced graph GV \Zi
, and hence recovers the message MB from the shares

(sB
1 , . . . , s

B
t). Now assume that the adversary controls all nodes in Zi0 . Then the ad-

versary will learn no information about MA from sA
i0 . Therefore the transmission pro-

tocol π is perfectly Z-private. It remains to show that π is Z-reliable. Since A,B are
(3Z+1)-connected, it is straightforward to see that for each Zi ∈ Z , the reduced graph
GV \Zi

is (2Z + 1)-connected. From Theorem 3 we get that B receives reliably all the
shares (sA

1 , . . . , s
A
t). It follows that the protocol is perfectly Z-secure.

Next we show that the condition is necessary. Assume that A,B are not (3Z + 1)-
connected. Then there are sets Z1, Z2, Z3 ∈ Z such that all directed paths from A to
B pass through some nodes in Z1 ∪ Z2 ∪ Z3. Let M0 be the message that A transmits.
The adversary will attempt to maintain a simulation of the possible behavior of A by
executing the transmission protocol π for some other message M1. The strategy of the
adversary is to flip coins and then, depending on the outcome, decide which set of Z1,
Z2 or Z3 to control. Let Zb be the chosen set. In each execution step of the transmission
protocol, the adversary causes each node in Zb to follow the protocol π as if the protocol
were transmitting the message M1. At the end of the protocol, the view of B could
be divided into three parts viewZ1 , viewZ2 , and viewZ3 , where viewZi (i = 1, 2, 3)

A Complete Characterization of Tolerable Adversary Structures 283

consists of all the information that the nodes in Zi have learned. Since neither A nor
B knows whether b = 1, b = 2 or b = 3, and since π is a perfectly private message
transmission protocol, MA cannot be recovered from any single viewZi . Since π is a
reliable message transmission protocol and the adversary controls one of Z1, Z2, or
Z3, B should be able to recover the secret message from two of these three views.
That is, if we regard (viewZ1 , viewZ2 , viewZ3) as shares of MA in a 2-out-of-3 secret
sharing scheme, then this scheme should be able to detect and simultaneously correct
one error. However 2-out-of-3 secret sharing schemes can only detect one error, and
cannot correct any errors (see, e.g., [14]). So we get a contradiction. This proves that
there is no perfectly secure message transmission protocol from A to B when A,B are
only 3Z-connected.

4 Bounds and Other Properties

4.1 Introduction

A threshold adversary structure Z is a structure whose maximal sets Z have cardinality
bounded by a threshold k. An example of such a structure is the classical Byzantine
faults structure. Evidently if one restricts oneself to threshold adversary structures, then
there is a description of the adversary structure which is logarithmic in the number
of elements in it. In this context, it should be noted that the “polynomial” algorithms
for multiparty computation in Hirt and Maurer [10] are polynomial in the size of the
adversary access structure which is generally exponential in the size of the network.
Hirt and Maurer do not study the problem for restricted access structures.

For a threshold adversary structure Z we get Z-tolerable communication in both the
passive and active case [5,6] via path-sets S for which,

– the paths are vertex-disjoint, and so
– the number of paths is polynomially bounded (in the size of the graph).

The goal of this section is to show that both properties are false in the general adver-
sary case, when limiting the adversary structures. Our results do not rely on unproven
assumptions.

We shall use a family of specific adversary structures Z that was informally intro-
duced in [2]. This structure consists of sets Z of nodes of a colored graph that have at
most k colors (e.g. computers running the same/different operating system are respec-
tively colored with the same/different color). In other words, the adversary can corrupt
any set of nodes provided it has no more than k colors. Evidently the number of nodes
in Z can be much larger than k (if many nodes have the same color). We now define
this structure formally.

Definition 3. A colored graph is a tuple G = G(V,E,C, f), with V the node set, E
the edge set, C the color set, and f a map from V onto C. The structure

ZC,k = {Z | Z ⊂ V and |f(Z)| ≤ k}.
is called a k-color adversary structure.

Note that if all nodes of the colored graph have different colors then we have the clas-
sical Byzantine faults structure, with no colors.

284 Y. Desmedt, Y. Wang, and M. Burmester

4.2 Bounds

To study the properties of path-sets that we shall use for Z-tolerable communication we
define the following. (This definition can also be used for general adversary structures,
not based on colors.)

Definition 4. Let G(V,E) be a directed graph, A,B be nodes in G, S be a set of
simple paths in G between A and B, and GS be the graph obtained by removing all
nodes and edges of G not in S. Let Z be an adversary structure. We say that S is a
minimal (Z + 1)-connected path-set from A to B in G, if

1. A and B are (Z + 1)-connected in GS , and
2. for each path p ∈ S, A and B are Z-separable in GS\{p}.

5 BA

1
1
1
1
1

1

2
2
2

2
2
2

3

3

3

3
3

3

4

4

4

4
4

5

5

5
5

4
5

Fig. 1. A minimal (ZC,k + 1)-connected path-set of a graph with 5 colors for a 2-color adversary
structure (c = 5, k = 2)

Lemma 1. Let G = G(V,E,C, f) be a colored graph, S be a minimal (ZC,k + 1)-
connected path-set between A and B, and c be the number of colors in the graph. Then
|S| ≤

(
c
k

)
. This bound is tight.

Proof. We apply Theorem 1 with Z1 = {∅} and Z2 = ZC,k, and construct a minimal
path-set, starting with S = ∅. For every maximal Z2 ∈ Z2, find a path free from nodes
of Z2, label it Z2, and add it to S. If there is already such a path in S, then just add the
extra label Z2 to this path.

Note that non-maximal sets do not add extra paths. Indeed, if after running this
construction one takes a set Z ′

2 ⊂ Z2, then the path with label Z2 will also receive the
Z ′

2 label. Since all the different sets Z2 ∈ Z2 have been considered, the set S will be
(ZC,k + 1)-connected (by Theorem 1).

Now note that a maximal set Z2 must have k colors and Z2 must contain all nodes
with these colors. So there are

(
c
k

)
maximal sets in Z2. Combining this with the previous

argument we get |S| ≤
(

c
k

)
.

A Complete Characterization of Tolerable Adversary Structures 285

To show that the bound is tight we describe an appropriate colored graph G =
G(V,E,C, f) and a minimal path-set S. Figure 1 illustrates our proof for c = 5 and
k = 2.

Let c ≥ k+1. We construct V andE as follows. Start with V = {A,B} and E = ∅.
Then add

(
c
k

)
node-disjoint paths connectingA to B as follows:

For i from 1 till
(

c
k

)
do:

Step 1 Select a not yet selected subset C′ ⊂ C of k colors.
Step 2 Add c− k new nodes vi,1, . . . , vi,c−k to V .
Step 3 Color these c− k new nodes with the C \C′ different colors, in such a way that

each gets a different color.
Step 4 Add the edges (A, vi,1), (vi,1, vi,2), . . . , (vi,c−k−1, vi,c−k), (vi,c−k, B) to E.

end-for-loop.

It is easy to verify that we get a minimal (ZC,k + 1)-connected path-set from A to
B. Indeed, if one picks a maximal element from ZC,k and removes all its nodes (which
is equivalent to picking any k colors and removing all nodes with these colors) one is
left with just one path. So, A and B are (ZC,k + 1)-connected. This also implies that if
one removes a single path from this path-set then A,B become ZC,k-separable.

Remark 1. Though the minimal path-set in Lemma 1 is super-polynomial in k, it is still
polynomial in the graph size. The construction in the proof of Lemma 1 will be used to
prove Theorem 5.

Theorem 5. There are directed graphs G(V,E) and adversary structures Z for which
the number of paths in a minimal (Z + 1)-connected path-set from A to B is super-
polynomial in the size of the graph.

Proof. We modify the colored graph G(V,E,C, f) constructed in Lemma 1 to get a
graph G′(V ′, E′) as follows. Take |C| = 2k + 1 (so c − k = k + 1) and construct G′

with |E′| = |E| and |V ′| = (k + 1)2 + 2. Start from G. For each path in this graph
reorder linearly the nodes accordingly to their colors (if the colors are labeled 1, 2, . . .
put the nodes with the smallest color label the closest to A). Make the graph directed,
i.e. the paths go fromA to B. Write the nodes and their colors in a

(
c
k

)
× (k+1) matrix

T = [(vi,j , f(vi,j)].
Now we explain how V ′ is constructed. In each column of T collapse the nodes

with the same color: that is, if f(vi,j) = f(vi′,j) then v′i,j = v′i′,j . From elementary
combinatorics we get that the number of different nodes that remain in each column is
k + 1. So, we have a total of (k + 1)2 + 2 different nodes includingA and B. It is now
easy to verify that the size of this path-set is super-polynomial.

Observe that the paths of the minimal path-set in Lemma 1 are not node-disjoint.

Remark 2. Though the number of paths in a minimal (Z+1)-connected path-set for the
directed graph G(V,E) in Theorem 5 is super-polynomial in the graph size, one may
still be able to design polynomial time algorithms (in the size of the graph) for perfect

286 Y. Desmedt, Y. Wang, and M. Burmester

secure communication. Indeed, for the case of privacy against a passive adversary, we
have an algorithm that runs in polynomial time in the graph size, which is more effi-
cient than in polynomial time in the graph and adversary size (see Theorem 2). It is an
open problem whether there exists a graph such that all perfect secure communication
protocols are super-polynomial in the graph size.

More details for colored graphs are given in the full version of this paper.

4.3 Other Results for Color Adversary Structures

Since color adversary structures are of interest on their own (to model platform depen-
dent attacks) [2], we prove the following result:

Theorem 6. LetG = G(V,E,C, f) be a colored graph which is (ZC,k+1)-connected.
If the number of colors is minimal then the paths in a minimal path-set are node-
disjoint and each path is monochrome (all nodes on one path have the same color).

Proof. Using Lemma 1 we see that the number of colors must be at least k + 1. We
now prove that we can have k+ 1 colors and that there is a minimal path-set with k+ 1
monochrome paths. Apply Theorem 1 with Z1 = {∅} and Z2 = ZC,k to construct
a minimal path-set. Start with S = ∅. Let Z2 be a maximal subset of Z2. Obviously
Z2 contains nodes of k different colors. Moreover, due to its maximality, it contains all
nodes that have these colors. Then by Theorem 1 there must be at least one path which
is free from the nodes of Z2, that is, free from the k colors of Z2. Since there are only
k + 1 colors, this path must be monochrome. Add one of these paths to S. Continue
with a new maximal Z ′

2 ∈ Z2 with at least one color different from Z2 until all k-color
sets are exhausted. In this way we get a minimal path-set consisting of k+ 1 paths, one
for each color. Clearly these paths are disjoint.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In: Proc. ACM STOC ’88, pages 1–10.

2. M. Burmester and Y. G. Desmedt. Is hierarchical public-key certification the next target for
hackers? Communications of the ACM, 47(8), pp. 68–74, August 2004.

3. D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In
Proc. ACM STOC, pp. 11–19, May 2–4, 1988.

4. Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In: Proc. Euro-
crypt ’02, Lecture Notes in Computer Science 2332, Springer-Verlag, pp. 502–517, 2002.

5. D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3, pp. 14–30, 1982.
6. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Jour-

nal of the ACM, 40(1), pp. 17–47, January 1993.
7. M. W. Eichin and J. A. Rochlis. With microscope and tweezers: an analysis of the Internet

virus of November 1988. In Proc. IEEE Sym. on Security and Privacy, pp. 326–343, 1989.
8. M. Franklin and M. Yung. Secure hypergraphs: privacy from partial broadcast. In: Proc. ACM

STOC ’95, pages 36–44, ACM Press, 1995.
9. M. Hirt and U. Maurer. Complete Characterization of Adversaries Tolerable in Secure Multi-

Party Computation. In Proc. of the 16th ACM PODC, pp. 25–34, August, 1997.

A Complete Characterization of Tolerable Adversary Structures 287

10. M. Hirt and U. Maurer. Player Simulation and General Adversary Structures in Perfect
Multiparty Computation. Journal of Cryptology 13(1): 31-60 (2000)

11. ‘ILOVEYOU’ computer bug bites hard, spreads fast. http://www.cnn.com/2000/
TECH/computing/05/04/iloveyou.01/index.html, May 4, 2000.

12. M. Ito, A. Saito and T. Nishizeki. Secret sharing schemes realizing general access structures.
Proc. IEEE Global Telecommunications Conf., Globecom’87, pp. 99–102, 1987.

13. M. Kumar, P. Goundan, K. Srinathan, and C. Rangan. On perfectly secure communication
over arbitrary networks. Proc. of ACM PODC 2002, pages 193–202.

14. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. North-Holland
Publishing Company, 1978.

Network Game with Attacker and Protector
Entities�

Marios Mavronicolas1, Vicky Papadopoulou1,
Anna Philippou1, and Paul Spirakis2

1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus
{mavronic, viki, annap}@ucy.ac.cy

2 Department of Computer Engineering and Informatics, University of Patras,
265 00 Patras, Greece, & Research and Academic Computer Technology Institute,

261 10 Patras, Greece
spirakis@cti.gr

Abstract. Consider an information network with harmful procedures
called attackers (e.g., viruses); each attacker uses a probability distri-
bution to choose a node of the network to damage. Opponent to the
attackers is the system protector scanning and cleaning from attackers
some part of the network (e.g., an edge or a path), which it chooses inde-
pendently using another probability distribution. Each attacker wishes to
maximize the probability of escaping its cleaning by the system protector;
towards a conflicting objective, the system protector aims at maximizing
the expected number of cleaned attackers.

We model this network scenario as a non-cooperative strategic game
on graphs. We focus on the special case where the protector chooses a
single edge. We are interested in the associated Nash equilibria, where
no network entity can unilaterally improve its local objective. We obtain
the following results:
– No instance of the game possesses a pure Nash equilibrium.
– Every mixed Nash equilibrium enjoys a graph-theoretic structure,

which enables a (typically exponential) algorithm to compute it.
– We coin a natural subclass of mixed Nash equilibria, which we call

matching Nash equilibria, for this game on graphs. Matching Nash
equilibria are defined using structural parameters of graphs, such as
independent sets and matchings.
• We derive a characterization of graphs possessing matching Nash

equilibria. The characterization enables a linear time algorithm
to compute a matching Nash equilibrium on any such graph with
a given independent set and vertex cover.

• Bipartite graphs are shown to satisfy the characterization. So,
using a polynomial-time algorithm to compute a perfect match-
ing in a bipartite graph, we obtain, as our main result, an ef-
ficient graph-theoretic algorithm to compute a matching Nash
equilibrium on any instance of the game with a bipartite graph.

� This work was partially supported by the IST Programs of the European Union
under contract numbers IST-2001-33116 (FLAGS) and IST-2004-001907 (DELIS).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 288–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Network Game with Attacker and Protector Entities 289

1 Introduction

Motivation and Framework. Consider an information network represented by
an undirected graph. The nodes of the network are insecure and vulnerable to
infection. A system protector (e.g., antivirus software) is available in the system;
however, its capabilities are limited. The system protector can guarantee safety
only to a small part of the network, such as a path or even a single edge, which
it may choose using a probability distribution. A collection of attackers (e.g.,
viruses or Trojan horses) are also present in the network. Each attacker chooses
(via a separate probability distribution) a node of the network; the node is
harmed unless it is covered by the system protector. Apparently, the attackers
and the system protector have conflicting objectives. The system protector seeks
to protect the network as much as possible, while the attackers wish to avoid
being caught by the network protector so that they be able to damage the
network. Thus, the system protector seeks to maximize the expected number
of attackers it catches, while each attacker seeks to maximize the probability it
escapes from the system protector.

Naturally, we model this scenario as a strategic game with two kinds of players:
the vertex players representing the attackers, and the edge player representing
the system protector. The Individual Cost of each player is the quantity to be
maximized by the corresponding entity. We are interested in the Nash equilibria
[5, 6] associated with this game, where no player can unilaterally improve its
Individual Cost by switching to a more advantageous probability distribution.
We focus on the simplest case where the edge player chooses a singe edge.

Summary of Results. Our results are summarized as follows:

– We prove that no instance of the game has a pure Nash equilibrium (pure
NE) (Theorem 1).

– We then proceed to study mixed Nash equilibria (mixed NE). We provide a
graph-theoretic characterization of mixed NE (Theorem 2). Roughly speak-
ing, the characterization yields that the support of the edge player and the
vertex players are an edge cover and a vertex cover of the graph and an
induced subgraph of the graph, respectively. Given the supports, the char-
acterization provides a system of equalities and inequalities to be satisfied
by the probabilities of the players. Unfortunately, this characterization only
implies an exponential time algorithm for the general case.

– We introduce matching Nash equilibria, which are a natural subclass of
mixed Nash equilibria with a graph-theoretic definition (Definition 1). Rou-
ghly speaking, the supports of vertex players in a matching Nash equilibrium
form together an independent set of the graph, while each vertex in the
supports of the vertex players is incident to only one edge from the support
of the edge player.

– We provide a characterization of graphs admitting a matching Nash equi-
librium (Theorem 3). We prove that a matching Nash equilibrium can be
computed in linear time for any graph satisfying the characterization once a
suitable independent set is given for the graph.

290 M. Mavronicolas et al.

– We finally consider bipartite graphs for which we show that they satisfy the
characterization of matching Nash equilibria; hence, they always have one
(theorem 5). More importantly, we prove that a matching Nash equilibrium
can be computed in polynomial time for bipartite graphs (6).

Due to space limits, some proofs are omitted; we include them in the full version
of the paper [3].

Significance. Our work joins the booming area of Algorithmic Game Theory.
Our work is the first1 to model realistic scenarios about infected networks as a
strategic game and study its associated Nash equilibria. Our results contribute
towards answering the general question of Papadimitriou [7] about the complex-
ity of Nash equilibria for our special game. Our results highlight a fruitful inter-
action between Game Theory and Graph Theory. We believe that our matching
Nash equilibria (and extensions of them) will find further applications in other
network games and establish themselves as a candidate Nash equilibrium for
polynomial time computation in other settings as well. Towards this direction,
in a subsequent work of ours [4], we compute polynomial time Nash equilibria
for the problem studied here in some practical families of graphs, such as regu-
lar graphs, graphs with perfect matching and trees. In the same work, we study
Nash equilibria for a generalized variation of the problem considered here.

2 Framework

Throughout, we consider an undirected graph G(V,E), with |V (G)| = n and
|E(G)| = m. Given a set of vertices X ⊆ V , the graph G\X is obtained by
removing from G all vertices of X and their incident edges. A graph H , is an
induced subgraph of G, if V (H) ⊆ V (G) and (u, v) ∈ E(H), whenever (u, v) ∈
E(G). Denote ∆(G) the maximum degree of the graph G. For any vertex v ∈
V (G), denote Neigh(v) = {u : (u, v) ∈ E(G)}, the set of neighboring vertices of
v. For a set of vertices X ⊆ V , denote NeighG(X) = {u �∈ X : (u, v) ∈ E(G) for
some v ∈ X}. For all above properties of a graph G, when no confusion raises,
we omit G.

2.1 The Model

An information network is represented as an undirected graph G(V,E). The
vertices represent the network hosts and the edges represent the communica-
tion links. We define a non-cooperative game Π(G) = 〈N , {Si}i∈N , {IC}i∈N 〉 as
follows:

– The set of players is N = Nvp ∪ Nep, where Nvp is a finite set of vertex
players vpi, i ≥ 1, and Nep is a singleton set of an edge player ep. Denote
ν = |Nep|.

1 To the best of our knowledge, [1] is a single exception. It considers inoculation
strategies for victims of viruses and establishes connections with variants of the
Graph Partition problem.

Network Game with Attacker and Protector Entities 291

– The strategy set Si of each player vpi, i ∈ Nvp, is V ; the strategy set Sep of

the player ep is E. Thus, the strategy set S of the game is
(

×
i ∈ Nvp

Si

)
×Sep =

V |Nvp| × E.
– Take any strategy profile s = 〈s1, . . . , s|Nvp|, sep〉 ∈ S, also called a configu-

ration.
• The Individual Cost of vertex player vpi is a function ICi : S → {0, 1}

such that ICi(s) =
{

0, si ∈ sep

1, si �∈ sep
; intuitively, vpi receives 1 if it is not

caught by the edge player, and 0 otherwise.
• The Individual Cost of the edge player ep is a function ICep : S → N

such that ICep(s) = |{si : si ∈ sep}|.

The configuration s is a pure Nash equilibrium [5, 6] (abbreviated as pure NE)
if for each player i ∈ N , it minimizes ICi over all configurations t that differ
from s only with respect to the strategy of player i.

A mixed strategy for player i ∈ N is a probability distribution over its strat-
egy set Si; thus, a mixed strategy for a vertex player (resp., edge player) is a
probability distribution over vertices (resp., over edges) of G. A mixed strat-
egy profile s is a collection of mixed strategies, one for each player. Denote
Ps(ep, e) the probability that edge player ep chooses edge e ∈ E(G) in s; denote
Ps(vpi, v) the probability that vertex player vpi chooses vertex v ∈ V in s. Note∑

v∈V Ps(vpi, v) = 1 for each vertex player vpi; similarly,
∑

e∈E Ps(ep, e) = 1.
Denote Ps(vp, v) =

∑
i∈Nvp

Ps(vpi, v) the probability that vertex v is chosen by
some vertex player in s.

The support of a player i ∈ N in the configuration s, denoted Ds(i), is the set
of pure strategies in its strategy set to which i assigns strictly positive probability
in s. Denote Ds(vp) =

⋃
i∈Nvp

Ds(i); so, Ds(vp) contains all pure strategies (that
is, vertices) to which some vertex player assigns strictly positive probability. Let
also ENeighs(v) = {(u, v)E : (u, v) ∈ Ds(ep)}; that is ENeighs(v) contains all
edges incident to v that are included in the support of the edge player in s.

A mixed strategic profile s induces an Expected Individual Cost ICi for each
player i ∈ N , which is the expectation, according to s, of its corresponding Indi-
vidual Cost (defined previously for pure strategy profiles). The mixed strategy
profile s is a mixed Nash equilibrium [5, 6] (abbreviated as mixed NE) if for each
player i ∈ N , it maximizes ICi over all configurations t that differ from s only
with respect to the mixed strategy of player i.

For the rest of this section, fix a mixed strategy profile s. For each vertex
v ∈ V , denote Hit(v) the event that the edge player hits vertex v. So, the proba-
bility (according to s) of Hit(v) is Ps(Hit(v)) =

∑
e∈ENeighs(v) Ps(ep, e). Define

the minimum hitting probability Ps as minv Ps(Hit(v)). For each vertex v ∈ V ,
denote ms(v) the expected number of vertex players choosing v (according to
s). For each edge e = (u, v) ∈ E, denote ms(e) the expected number of vertex
players choosing either u or v; so, ms(e) = ms(u) + ms(v). It is easy to see
that for each vertex v ∈ V , ms(v) =

∑
i∈Nvp

Ps(vpi, v). Define the maximum

292 M. Mavronicolas et al.

expected number of vertex players choosing e in s as maxems(e). We proceed to
calculate the Expected Individual Cost. Clearly, for the vertex player vpi ∈ Nvp,

ICi(s) =
∑

v∈V (G)

Ps(vpi, v) · (1 − Ps(Hit(v))

=
∑

v∈V (G)

Ps(vpi, v) · (1 −
∑

e∈ENeighs(v)

Ps(ep, e)) (1)

For the edge player ep,

ICep(s) =
∑

e=(u,v)∈E(G)

Ps(ep, e) · (ms(u) +ms(v))

=
∑

e=(u,v)∈E(G)

Ps(ep, e) · (
∑

i∈Nvp

Ps(vpi, u) + Ps(vi, v)) (2)

2.2 Background from Graph Theory

Throughout this section, we consider the (undirected) graph G = G(V,E).
G(V,E) is bipartite if its vertex set V can be partitioned as V = V1 ∪ V2 such
that each edge e = (u, v) ∈ E has one of its vertices in V1 and the other in V2.
Such a graph is often referred to as a V1, V2-bigraph. Fix a set of vertices S ⊆ V .
The graph G is an S-expander if for every set X ⊆ S, |X | ≤ |NeighG(X)|.

A set M ⊆ E is a matching of G if no two edges in M share a vertex. Given
a matching M , say that set S ⊆ V is matched in M if for every vertex v ∈ S,
there is an edge (v, u) ∈∈ M . A vertex cover of G is a set V ′ ⊆ V such that for
every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. An edge cover of G is a set E′ ⊆ E
such that for every vertex v ∈ V , there is an edge (v, u) ∈ E′. Say that an edge
(u, v) ∈ E (resp., a vertex v ∈ V) is covered by the vertex cover V ′ (resp., the
edge cover E′) if either u ∈ V ′ or v ∈ V ′ (resp., if there is an edge (u, v) ∈ E′).
A set IS ⊆ V is an independent set of G if for all vertices u, v ∈ IS, (u, v) /∈ E.
Clearly, IS ⊆ V is an independent set of G if and only if the set V C = V \IS
is a vertex cover of G. We will use the following consequence of Hall’s Theorem
[2–Chapter 6] on the marriage problem.

Proposition 1 (Hall’s Theorem). A graph G has a matching M in which
the vertex set X ⊆ V is matched if and only if for each for each subset S ⊆ X,
|Neigh(S)| ≥ |S|.

3 Nash Equilibria

Theorem 1. If G contains more than one edges, then Π(G) has no pure Nash
equilibrium.

Proof. Consider any graph G with at least two edges and any configuration s of
Π(G). Let e the edge selected by the edge player in s. Since G contains more

Network Game with Attacker and Protector Entities 293

than one edges, there exists an e′ ∈ E not selected by the edge player in s, such
that e and e′ contain at least one different endpoint, assume u. If there is at least
one v.p. located on e, it will prefer to go to u so that not to get arrested by the
edge player and gain more. Thus, this case can not be a pure NE for the vertex
players. Otherwise, the edge e contains no vertex player. But in this case, the
edge player would like to change current action and select another edge, where
there is at least one vertex player, so that to gain more. Thus, again this case
can not be a pure NE, for the edge player this time. Since always in any case,
one of the two kinds of players is not satisfied by s, s is not a pure NE. ��
Theorem 2 (Characterization of Mixed NE). A mixed strategy profile s is
a Nash equilibrium for any Π(G) if and only if:

1. Ds(ep) is an edge cover of G and Ds(vp) is a vertex cover of the graph
obtained by Ds(ep).

2. The probability distribution of the edge player over E, is such that, (a)
Ps(Hit(v)) = Ps(Hit(u)) = minv Ps(Hit(v)), ∀ u, v ∈ Ds(vp) and (b)∑

e∈Ds(ep) Ps(ep, e) = 1.
3. The probability distributions of the vertex players over V are such that, (a)

ms(e1) = ms(e2) = maxems(e), ∀ e1 = (u1, v1), e2 = (u2, v2) ∈ Ds(ep) and
(b)

∑
v∈V (Ds(ep)) ms(v) = ν.

4 Matching Nash Equilibria

The obvious difficulty of solving the system of Theorem 2 directs us in trying
to investigate the existence of some polynomially computable, solutions of the
system, corresponding to mixed NE of the game. We introduce a class of such
configurations, called mathing. We prove that they can lead to mixed NE, we
investigate their existence and their polynomial time computation.

Definition 1. A matching configuration s of Π(G) satisfies: (1) Ds(vp) is
an independent set of G and (2) each vertex v of Ds(vp) is incident to only one
edge of Ds(ep).

Lemma 1. For any graph G, if in ΠE(G) there exists a matching configuration
which additionally satisfies condition 1 of Theorem 2, then there exists probability
distributions for the vertex players and the edge player such that the resulting
configuration is a mixed Nash equilibrium for ΠE(G). These distributions can be
computed in polynomial time.

Proof. Consider any configuration s as stated by the lemma (assuming that there
exists one) and the following probability distributions of the vertex players and
the edge player on s:

∀e ∈ Ds(ep), Ps(ep, e) := 1/|Ds(ep)|, ∀e′ ∈ E, e′ /∈ Ds(ep), Ps(ep, e′) := 0
(3)

∀ i ∈ Nvp, ∀ v ∈ Ds(vp), Ps(vpi, v) := 1
|Ds(vp)| ,

∀u ∈ V, u /∈ Ds(vp), Ps(vpi, u) := 0
(4)

294 M. Mavronicolas et al.

Proposition 2.

∀ v ∈ Ds(vp), ms(v) =
ν

|Ds(vp)|
and ∀ u ∈ V, u �∈ Ds(vp), ms(u) = 0

We show that s satisfies all conditions of Theorem 2, thus it is a mixed NE.
2.(a): Ps(Hit(v)) = 1

|Ds(ep)| , ∀ v ∈ Ds(vp), by condition (2) of the definition
of a matching configuration and equation (3) above. 3.(a): ms(e1) = ms(v1) +
ms(u1) = 0 + ν

|Ds(vp)| = ν
|Ds(vp)| , ∀ e1 = (u1, v1) ∈ Ds(ep), because Dep is an

edge cover of G (by assumption), Dvp is an independent set of G (condition (1)
of the definition of a matching configuration) and recalling Proposition 2 above.
3.(c): Since Devp(s) is an edge cover of G (by assumption) and by Proposition
2, we have

∑
v∈V (Ds(ep)) ms(v) =

∑
v∈V

ν
|Ds(vp)| = |Ds(vp)| · ν

|Ds(vp)| = ν. The
rest of the conditions, can be easily shown to be fulfilled in s; see [3]. ��
Definition 2. A matching configuration which additionally satisfies condition
1 of Theorem 2 is called a matching mixed NE.

We proceed to characterize graphs that admit matching Nash equilibria.

Theorem 3. For any graph G, Π(G) contains a matching mixed Nash equilib-
rium if and only if the vertices of the graph G can be partitioned into two sets
IS, V C (V C ∪ IS = V and V C ∩ IS = ∅), such that IS is an independent set
of G (equivalently, V C is a vertex cover of the graph) and G is a V C-expander
graph.

Proof. We first prove that if G has an independent set IS and the graph G is a
V C-expander graph, where V C = V \IS, then ΠE(G) contains a matching mixed
NE. By the definition of a V C-expander graph, it holds that |Neigh(V C′)| ≥
V C′, for all V C′ ⊆ V C. Thus, by the Marriage’s Theorem 1, G has a matching
M such that each vertex u ∈ V C is matched into V \V C in M ; that is there
exists an edge e = (u, v) ∈ M , where v ∈ V \V C = IS. Partition IS into two
sets IS1, IS2, where set IS1 consists of vertices v ∈ IS for which there exists
an e = (u, v) ∈ M and u ∈ V C. Let IS2 the remaining vertices of the set, i.e.
IS2 = {v ∈ IS : ∀ u ∈ V C, (u, v) �∈ M}.

Now, recall that there is no edge between any two vertices of set IS, since
it is independent set, by assumption. Henceforth, since G is a connected graph,
∀ u ∈ IS2 ⊆ IS, there exists e = (u, v) ∈ E and moreover v ∈ V \IS = V C.
Now, construct set M1 ⊆ E consisting of all those edges. That is, initially set
M := ∅ and then for each v ∈ IS2, add one edge (u, v) ∈ E in M1. Note that, by
the construction of the set M1, each edge of it is incident to only one vertex of
IS2. Next, construct the following configuration s of ΠE(G): Set Ds(vp) := IS
and Ds(ep) := M ∪M1.

We first show that that s is a matching configuration. Condition (1) of a
matching configuration is fulfilled because Ds(vp)(= IS) is an independent set.
We show that condition (2) of a matching configuration is fulfilled. Each ver-
tex of set IS belongs either to IS1 or to IS2. By definition, each vertex of
IS1 is incident to only one edge of M and each vertex of IS2 is incident to no

Network Game with Attacker and Protector Entities 295

edge inM . Moreover, by the construction of setM1, each vertex of IS2 is incident
to exactly one edge of M1. Thus, each vertex v ∈ Ds(vp)(= IS) is incident to
only one edge of Ds(ep)(= M ∪M1), i.e. condition (2) holds as well. Henceforth,
s is a matching configuration.

We next show that condition 1 of Theorem 2 is satisfied by s. We first show
that Ds(ep) is an edge cover of G. This is true because (i) set M ⊆ Ds(ep) covers
all vertices of set V C and IS1, by its construction and (ii) setM1 ⊆ Ds(ep) covers
all vertices of set IS2, which are the remaining vertices of G not covered by set
M , also by its construction. We next show that Ds(vp) is a vertex cover of the
subgraph of G obtained by set Ds(ep). By the definition of sets IS1, IS2 ⊆ IS,
any edge e ∈ M is covered by a vertex of set IS1 and each edge e ∈ M1
is covered by a vertex of set IS2. Since Ds(ep) = M ∪ M1, we get that all
edges of the set are covered by Ds(vp) = IS1 ∪ IS2. This result combined with
the above observation on Ds(ep) concludes that condition 1 of Theorem 2 is
satisfied by s. Henceforth, by lemma 1, it can lead to a matching mixed NE of
ΠE(G).

We proceed to show that if G contains a matching mixed NE, assume s, then
G has an independent set IS and the graph G is a V C-expander graph, where
V C = V \IS. Define sets IS = Ds(vp) and V C = V \IS. We show that these
sets satisfy the above requirements for G. Note first that, set IS is an inde-
pendent of G since Ds(vp) is an independent set of G by condition (1) of the
definition of a matching configuration.

We next show G contains a matching M such that each vertex of V C is
matched into V \V C in M . Since Ds(ep) is an edge cover of G (condition 1 of a
mixed NE of Theorem 2), for each v ∈ V C, there exists an edge (u, v) ∈ Ds(ep).
Note that for edge (u, v), it holds that v ∈ IS, since otherwise IS would not
be a vertex cover of Ds(ep) (Condition 1 of a mixed NE). Now, construct a set
M ⊆ E consisting of all those edges. That is, That is, initially set M := ∅ and
then for each v ∈ V C, add one edge (u, v) ∈ Ds(ep) in M . By the construction of
set M and condition (2) of a matching mixed NE, we get that M is a matching
of G and that each vertex of V C is matched into V \V C in M . Thus, by the
Marriage’s Theorem 1, we get that |Neigh(V C′)| ≥ |V C′|, for all V C′ ⊆ V C
and so G is a V C-expander and condition (2) of a matching configuration also
holds in s.

��

4.1 A Polynomial Time Algorithm

The previous Theorems and Lemmas enables us to develop a polynomial time
algorithm for finding matching mixed NE for anyΠ(G), where G is a graph satis-
fying the requirements of Theorem 3. The Algorithm is described in pseudocode
in Figure 1.

Theorem 4. Algorithm A computes a matching mixed Nash equilibrium for
Π(G) and needs linear time O(m).

296 M. Mavronicolas et al.

Algorithm A(Π(G), IS, V C)

Input: A game Π(G) and a partition of V (G) into sets IS, V C = V \IS, such that
IS is an independent set of G and G is a V C-expander graph.
Output: A mixed NE s for Π(G).

1. Compute a set M ⊆ E, as follows:
(a) Initialization: Set M := ∅, Matched := ∅ (currently matched vertices in M),

Unmatched := V C (currently unmatched vertices in M vertices of V C),
Unused := IS, i := 1, Gi := G and M1 := ∅.

(b) While Unmatched �= ∅ Do:
i. Consider a u ∈ Unmatched.
ii. Find a v ∈ Unused such that (u, v) ∈ Ei. Set M := M∪(u, v), Unused :=

Unused\{v}.
iii. Prepare next iteration: Set i := i + 1, Matched := Matched ∪ {u},

Unmatched := Unmatched\{u}, Gi := Gi−1\u\v.
2. Partition set IS into two sets IS1, IS2 as follows: IS1 := {u ∈ IS : ∃ (u, v) ∈M}

and IS2 := IS\IS1. Note that IS2 := {u ∈ IS : � ∃ (u, v) ∈M, v ∈ V C}.
Compute a set M1 as follows: ∀ u ∈ IS2, set M1 := M1∪ (u, v), for any (u, v) ∈ E,
v ∈ V C.

3. Define a s with the following support: Ds(vp) := IS, Ds(ep) := M ∪M1.
4. Determine the probabilities distributions of the vertex players and the edge player of

configuration s′ using equations (3) and (4) of Lemma 1.

Fig. 1. Algorithm A

5 Bipartite Graphs

Lemma 2. In any bipartite graph G there exists a matching M and a vertex
cover V C such that (1) every edge in M contains exactly one vertex of V C and
(2) every vertex in V C is contained in exactly one edge of M .

Proof. Let X,Y the bipartition of the bipartite graphG. Consider any minimum
vertex cover of the graph G, V C. We are going to construct a matching M of
G so that conditions (1) and (2) of the Lemma hold. Let R the vertices of V C
contained in set X , i.e. R = V C ∩X and T the vertices of V C contained in set
Y , i.e. T = V C ∩ Y . Note that V C = R ∪ T . Let H and H ′ the subgraphs of G
induced by R ∪ (Y − T) and T ∪ (X − R), respectively. We are going to show
that G contains a matching in M as required by the Lemma.

Since R ∪ T is a vertex cover, G has no edge from Y − T to X −R. We show
that for each S ⊆ R, |NeighH(S)| ⊆ |Y − T |. If |NeighH(S)| < |S|, then we
can substitute NeighH(S) for S in V C to obtain a smallest vertex cover (∗1).
This is true because (i) NeighH(S) covers all edges incident to S that are not
covered by T and (ii) since G is a bipartite graph there are no edges between
the vertices of set S, so that a possible substitute of set S do not need to cover
any such edge.

Network Game with Attacker and Protector Entities 297

Thus, |NeighH(S)| ≥ |S|, for all S ⊆ R. By Hall’s Theorem (Theorem 1), H
has a matching MH such that each vertex of R is matched in MH . Using similar
arguments for set T , we can prove that for each S′ ⊆ T , |NeighH′(S′)| ≥ |S′|.
Henceforth, H ′ has a matching MH′ such that each vertex of T is matched in
MH′ . Now define M = MH ∪ MH′ . Since each H , H ′ is an induced subgraph
of G and the two subgraphs have disjoint sets of vertices, we get that M is
matching of G and that each vertex of V C = R∪T is matched in M . This result
combined with the fact that M is a matching of G concludes that condition (2)
of the Lemma holds.

We proceed to prove condition (1). That is, to show that every edge of M
contains exactly one vertex of V C. Observe first that by the construction of set
M , every edge of M contains at least one vertex of V C. Moreover, note that
only one of the endpoints of the edge is contained in M . This is true because by
the construction of set M each edge of set M matches either (i) a vertex of set
R ⊆ X to a vertex of set (Y − T) ⊆ Y or (ii) a vertex of set T ⊆ Y to a vertex
of set (X − R) ⊆ X . So, for any case exactly one of the two endpoints of the
edge is not contained in V C. ��

Lemma 3. Any X,Y -bigraph graph G can be partitioned into two sets IS, V C
(IS ∪ V C = V and IS ∩ V C = ∅) such that V C is a vertex cover of G (equiva-
lently, IS is an independent set of G) and G is a V C-expander graph.

Lemma 3 and Theorem 3 finally imply:

Theorem 5. Any Π(G) for which G is a connected bipartite graph, contains a
matching mixed Nash equilibrium.

Theorem 6. For any Π(G), for which G is a bipartite graph, a matching mixed
Nash equilibrium of Π(G) can be computed in polynomial time, max{O(m

√
n),

O(n2.5/
√

logn)}, using Algorithm A.

References

1. Aspnes, J., Chang, K., A. Yampolskiy: Inoculation Strategies for Victims of Viruses
and the Sum-of-Squares Problem. Proceedings of the 16th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (2005) 43-52

2. Asratian, A. S., Tristan, D., Häggkvist, M. J.: Bipartite Graphs and Their Applica-
tions. Cambridge Tracts in Mathematics, 131 (1998)

3. M. Mavronicolas, V. Papadopoulou, A. Philippou and P. Spirakis: A Network Game
with Attacker and Protector Entities. TR-05-13, Univ. of Cyprus, July (2005)

4. Mavronicolas, M., Papadopoulou, V., Philippou, A., Spirakis, P.: A Graph-Theoretic
Network Security Game. Accepted in 1st Workshop on Internet and Network Eco-
nomics, August (2005)

5. Nash, J. F.: Equilibrium Points in n-Person Games. Proceedings of the National
Acanemy of Sciences of the United States of America 36 (1950) 48-49

6. Nash, J. F.: Noncooperative Games. Annals of Mathematics 54(2) (1951) 286-295
7. C. H. Papadimitriou: Algorithms, Games, and the Internet. Proceedings of the 33rd

Annual ACM Symposium on Theory of Computing (2001) 749-753

SkipTree: A Scalable Range-Queryable
Distributed Data Structure for

Multidimensional Data

Saeed Alaei, Mohammad Toossi, and Mohammad Ghodsi

Computer Engineering Department,
Sharif University of Technology, Tehran, Iran

Abstract. This paper presents the SkipTree, a new balanced, distributed
data structure for storing data with multidimensional keys in a peer-to-
peer network. The SkipTree supports range queries as well as single point
queries which are routed in O(log n) hops. SkipTree is fully decentralized
with each node being connected to O(log n) other nodes. The memory us-
age for maintaining the links at each node is O(log n log log n) on aver-
age and O(log2 n) in the worst case. Load balance is also guaranteed to
be within a constant factor.

1 Introduction and Related Work

Over the past few years, there has been a trend to move from centralized server
based network architectures toward decentralized and distributed architectures
and peer to peer networks. The term Scalable Distributed Data Structure(SDDS)
first introduced by Litwin et al. in LH* [9] refers to this class of data structures.
Litwin et al. modified the original hash-based LH* structure to support range
queries in RP*[8, 9]. Based on the previous work of distributed data structures,
RP* and Distributed Random Tree (DRT) [6], new data structures based on
either hashing or key comparison have been proposed like Chord[13], Viceroy[10],
Koorde[4], Pastry[12], and P-Grid [2]. Most existing peer-to-peer overlays require
Θ(log n) links per node in order to achieve O(logn) hops for routing. Viceroy
and Koorde which are based on DHTs are the remarkable exceptions in that they
achieve O(log n) hops with only O(1) links per node at the cost of restricted or
no load balancing.

Typically, those systems which are based on DHTs and hashing lack range-
query, locality properties and control over distribution of keys due to hashing.
In contrast, those which are based on key comparison, although requiring more
complicated load balancing techniques, do better in those respects. P-Grid is one
of the systems based on key comparison which uses a distributed binary tree to
partition a single dimensional space with network nodes representing the leaves
of the tree and each node having a link to some node in every sibling subtree
along the path from the root to that node. Other systems like P-Tree have been
proposed that provide range queries in single dimensional space.

SkipNet [3] on which our new system relies heavily, is another system for
single dimensional spaces based on an extension to skip lists which supports
range queries in single dimensional case too.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 298–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SkipTree: A Scalable Range-Queryable Distributed Data Structure 299

RAQ [11] is also another solution for the multidimensional case which incor-
porates a distributed partition tree structure to partition the space. Its network
requires O(h) links at each node and routes in O(h) hops where h is the height
of the partition tree which can be of O(n) for an unbalanced tree. Although it
has been shown [1] that even for such unbalanced trees the number of messages
required to resolve a query still remains ofO(log n) on average if the links are cho-
sen randomly, the number of links that a node should maintain and the memory
requirement at each node for storing information about the path from that node
to the root still remain of O(h) which is as bad as O(n) for unbalanced trees.

In this paper we propose a new efficient scalable distributed data structure
called the SkipTree for storage of keys in multidimensional spaces. Our system
uses a distributed partition tree to partition the space into smaller regions with
each network node being a leaf node of that tree and responsible for one of
the regions. In contrast to similar tree-based solutions the partition tree here
is used only to define an ordering between the regions. The routing mechanism
and link maintenance is similar to that of SkipNet and independent of the shape
of the partition tree, so in general our system does not need to balance the
partition tree. It maintains a SkipNet by the leaves of the tree in which the
sequence of nodes in the SkipNet is the same sequence defined by the leaves of
the partition tree from left to right. Handling a single key query is almost similar
to that of an ordinary SkipNet while range queries are quiet different due to the
multidimensional nature of the SkipTree. From another point of view, our system
can be seen as an extension to the SkipNet for the multidimensional spaces.

In section 2 we explain the basic structure of the SkipTree including the struc-
ture of the partition tree, its associated SkipNet and the additional information
that needs to be stored in each node. In section 3, single and range queries
are explained. In section 4, the procedure for joining and leaving the network
is described. In section 5, some techniques for load balancing in SkipTrees are
discussed. In section 6 we modify the SkipTree structure to reduce the amount
of information that needs to be stored in each node about the partition tree and
finally section 7 concludes the paper.

2 Basic SkipTree Structure

The distributed data structure used in the SkipTree consists of a Partition Tree
whose leaves also form a SkipNet.

We assume that each data element has a key which is a point in our k-
dimensional search space. This space is split into n regions corresponding to the
n network nodes. Let S(v) denote the region assigned to node v. v is the node
responsible for every data element whose key is in S(v). We extend the definition
of S(v) to also denote the region assigned to the internal nodes of the tree. A
sample partition-tree is depicted in Figure 1.

For network node u, which corresponds to a leaf in the partition tree, we call
the path connecting the root of the tree to u the Principal Path of node u. We

300 S. Alaei, M. Toossi, and M. Ghodsi

1

1

7

2
8

9
4

5
6

3

2

7

3

4

5

6

8

9

A

A B C D E F G H I J

B

C

D

E

F

G

H

I

J

Fig. 1. A sample two dimensional partition tree and its corresponding space parti-
tioning. Each internal node in the partition tree, labelled with a number, divides a
region using the line labelled with the same number. Each leaf of the partition tree is
a network node responsible for the region labelled with the same letter.

refer to the hyperplane equations assigned to the nodes of the principal path
of node u (including information about on which side of those hyperplanes u
resides) as the Characteristic Plane Equations of u or CPE of u for short. Every
leaf node in the SkipTree stores its own CPE as well as the CPE of its links.
Using theses CPE information, every node like u can locally identify if a given
point belongs to a node to the left or the right of u or to the left or right of
any of its links in the partition tree. The latter is useful in routing queries as
explained in section 3. Hereafter, whenever we refer to a plane, we actually refer
to a hyperplane of k − 1 dimensions in a k-dimensional space.

We link the network nodes in the SkipTree together as shown in Figure 2 by
forming a SkipNet among the leaves of the partition tree described before.

Finally, we note that a real number pv is assigned to each node v. pv is
randomly generated when v joins the SkipTree so that pa < pv < pb where a
and b are v’s left and right leaf in the tree. This number is used in subsection 3.2
to handle range queries more efficiently.

3 Handling Queries

3.1 Single Point Query

The routing algorithm for single point queries is essentially the same algorithm
used in the SkipNet, that is every node receiving the query along the path,
sends it through its farthest link which does not point past the destination node
as shown in Figure 3. The distance to the destination node is at least halved at
each hop. This implies that the query reaches the destination after at most log2 n
hops. However, because SkipNet uses a probabilistic method for selecting and
maintaining links in the network, it guarantees routing in O(log n) hops w.h.p.
A formal proof of this can be found in [3].

For the above procedure to be effective we must be able to compare points
against nodes to identify whether the node containing a given point lies before or
after another node in the sequence. To do so, a node compares the point against
the planes in its own CPE in the order they appear in its principal path starting

SkipTree: A Scalable Range-Queryable Distributed Data Structure 301

A B D YFHI G C EZ

i2j2

643 7 8

2 5

1

R

Fig. 2. The links maintained by node A in the ideal SkipTree. The target nodes are
independent of the tree structure. The tree only helps us to put an ordering on the
nodes. The ith link in each direction skips over 2i−1 − 1 nodes in that direction.

S A BX

12i

i2

Fig. 3. A point query is routed through the farthest link which does not point past the
destination node. Here, S receives a query targeting node X, so it routes the query to
A. The distance to the destination node is at least halved at each hop.

from the root until it finds the first plane where the current node and the point
lie on different sides of the plane. This is where the point is contained in a region
belonging to a sibling subtree. If that subtree is a left (right) subtree, all of its
nodes as well as the node containing the point must also be to the left (right)
of the current node. The above procedure leads to O(min(h logn, n)) memory
usage at each node for storing the CPE. We will modify the tree structure in
section 6 to improve this.

3.2 Range Query

A range query in the SkipTree is a 3-tuple of the form (R, fs, ls) where R
is the query range in the multidimensional space and only the network nodes
whose sequence numbers reside in the interval [fs, ls] are searched. A normal
range query takes the form (R,−∞,+∞), so that all of the nodes are searched
regardless of their sequence numbers. Note that the region defined by R can be
of any shape as long as every node can locally identify whether R intersects with
a given hypercube.

When a node S receives a range query (R, fs, ls) it sends the query to each of
its links whenever there is node which intersects with the region R between that
link and the next link. Assume that A and B shown in Figure 4 are two nodes
corresponding to some two consecutive links maintained by S. S sends a copy of
the query to A if there is any node between A and B which intersects R. Every
such node, if any, must reside in one of the crosshatched subtrees illustrated in

302 S. Alaei, M. Toossi, and M. Ghodsi

A BS

V

? ?

12i

i2

Fig. 4. A range query is propagated through each of the links maintained by S whenever
there is node which intersects R between that link and the next link. Here, a copy of
the query is propagated to A if any of the nodes between A and B intersects with R.

the figure. In fact, such a node must be to the right of the nodes marked with
+ and to the left of the node marked with − and because S has all of CPEs
corresponding to its links, it also has access to the plane equations corresponding
to the internal nodes marked with a + or − sign. So, it can easily identify from
those equations the regions in the multidimensional space associated with each
of the subtrees between A and B and from that it can determine whether there
is any subtree between A and B whose region intersects with R and if there
is such a subtree, it must also contain a node whose region intersects with R.
Note that the fs and ls fields of the query are modified appropriately before a
copy of the query is sent through a link. The reason is to restrict the sequence
of nodes to be searched to prevent duplicate queries. For example in Figure 4,
suppose that a copy of the form (R, fs, ls) is to be sent from S to A. Also assume
that A.seq and B.seq are the sequence number of A and B respectively. Then
S computes the interval [fs′, ls′] as the intersection of [fs, ls] and [A.seq,B.seq]
and it sends the query (R, fs′, ls′) to A. This will ensure that no nodes in the
network receives the query more than once.

4 Node Join and Departure

4.1 Joins

To join the SkipTree, a new node v has to be able to contact an existing node u.
The node v first inserts itself in the partition tree by splitting S(u) using a

new plane P to two regions. One region is then assigned to v while u retains
control of the other region. Also, v copies its CPE from u and appends P to
both CPEs. The plane P can be arbitrarily chosen as our load balancing protol
will gradually change the partitioning to a more balanced configuration.

After updating the Partition Tree, v establishes its network links by joining
the SkipNet. Node sequence numbers are used here to define a total ordering
among the nodes. The SkipNet join algorithm is described in [3] and involves
only O(log n) steps w.h.p.

SkipTree: A Scalable Range-Queryable Distributed Data Structure 303

To complete the join, u transfers the data items which are no longer in its
assigned region to v.

4.2 Departures

Similar to node joins, when the node v is leaving the SkipTree, it has to follow
three steps.

The first step is to update the Partition Tree. Suppose that the last plane in
CPEv, called P , splits its parent region into regions S(v) and R. To update the
Partition Tree, node v sends a special range query to the nodes in R and instructs
them to remove the plane P from their CPE. This will effectively remove v from
the partition tree.

Next step is to transfer the data items, v can simply find the node responsible
for each item using a single point query and transfer the item accordingly. How-
ever, a more efficient method is to collect all possible target regions and evaluate
the queries locally.

In the last step, v has to remove itself from the SkipNet. As [3] points out,
this can be reduced to removing O(1) links by using background repair processes
similar to Chord and Pastry.

5 Load Balancing

Many distributed lookup protocols use hashing to distribute keys uniformly in
the search space and achieve some degree of load balance. Hashing cannot be
used in the SkipTree as it makes range queries impossible. As a result, a load
balancing mechanism is necessary to deal with the nonuniform key distribution.

Our load balancing protocol is derived from the Item Balancing technique
in [5]. Load balancing is achieved using a randomized algorithm that requires a
node to be able to contact random nodes in the network.

Let li, the load on node i, be the number of data items stored on i and α be
a constant number so that α > 1. We will prove that the SkipTree’s load will
be balanced w.h.p. if each node performs a minimum number of load balancing
tests as per system half-life [7].

Load Balancing Test. In a load balancing test, node i asks a randomly chosen
node j for lj . If lj ≥ αli or li ≥ αlj , i performs a load balancing operation.

Load Balancing Operation. Assume w.l.o.g that li < lj . First, node i nor-
mally leaves the SkipTree using the algorithm given in subsection 4.2. Then,
i joins the network once again at node j and selects a hyperplane for the
newly created internal node in the partition tree in a way that the number
of data elements is halved at both sides of the hyperplane. This makes both
li and lj to become equal to half the old value of lj.

Theorem 1. If each node performs Ω(log n) load balancing operations per half-
life as well as whenever its own load doubles, then the above protocol has the
following properties where N is the total number of stored data items.

304 S. Alaei, M. Toossi, and M. Ghodsi

– With high probability, the load of all nodes is between N
8αn and 16αN

n .
– The amortized number of items moved due to load balancing is O(1) per

insertion or deletion, and O(N/n) per node insertion or deletion.

The proof of this theorem using potential functions can be found in [5].

6 Memory Optimization

In this section we enforce some constraints on the plane equations that a node
stores, so that for a SkipTree of height h only O(log h) of the plane equations of
any CPE will be needed. The constraints that we enforce are the following:

– The planes must be perpendicular to a principal axis. So, in a k-dimensional
space of (x1, x2, · · · , xk) it must take the form of xi = c for some 1 ≤ i ≤ k
and some value of c.

– If the search space is k-dimensional, we precisely define the form of the plane
equation that may be assigned to an internal node depending on the depth
of that node. We first introduce the following notation:
dA: for a node A in the SkipTree, the depth of A is represented by dA and

is defined to be the length of the principal path corresponding to A plus
one as illustrated in Figure 5.

lA: for every node A in the SkipTree, the level of A is indicated by lA where
lA = �log2 (dA

k + 1)� as illustrated in Figure 5.
d′A: for a node A in the SkipTree, the relative depth of A is represented by
d′A and is defined as d′A = dA − k(2lA−1 − 1) as illustrated in Figure 5.

sA: for a node A in the SkipTree, the section number of A is represented
by sA where sA = �d′

A

k �.
We are now ready to state the last constraint:
If A is an internal node, the plane equation assigned to A must be of the form
xsA = c for an arbitrary value of c, that is for any given i, all of the nodes

G
F

E
D

C

B

A
level 1

k nodes

level2
2k nodes

level 3
4k nodes

Fig. 5. A sample SkipTree for a two dimensional space. Nodes A to G have depths 1 to
7 respectively. A and B are on level 1; C, D, E and F are on level 2 and G is on level
3. The relative depth are: d′

A = 1, d′
B = 2, d′

C = 1, d′
D = 2, d′

E = 3, d′
F = 4, d′

G = 1.

SkipTree: A Scalable Range-Queryable Distributed Data Structure 305

A

1

0

2

3

54

6

7
8

9

0

1

2

3

4

5

6

7

8

9

A

y = c0

x = c1

y = c2

y = c3

x = c4

x = c5

y = c6

y = c7

y = c8

y = c9

Fig. 6. The left is a sample partitioning of a 2-dimensional space under the memory
optimization constraints, from the view point of node A and the right is the principal
path of node A. The plane equations assigned to the internal nodes are shown in the
arrows.

whose section numbers are i are assigned plane equations of the form xi = c.
A typical 2-dimensional space partitioned under the above constraints and
its associated tree are shown in Figure 6.

Lemma 1. In any principal path of length h nodes are partitioned to at most
k�log2 (h

k + 1)� different sections.

Proof: Since we defined the level of a node at depth d to be �log2(d
k + 1)�,

nodes in any principal cannot be partitioned to more than �log2(h
k + 1)� levels.

Nodes at each level are further partitioned to k sections so there can be at most
k�log2(h

k + 1)� sections in any principal path.

Lemma 2. For any leaf node A in a SkipTree, A needs to store only two plane
equations for each section of its principal path. we call the sequence of these
pairs of plane equations that node A stores, the Reduced-Characteristic Plane
Equations of node A or for short the RCPE of node A.

Proof: All of the planes on the same section partition the space based on the
value of the same field xi. So for each of the sections, A needs to store an
inequality of the form a ≤ xi < b. Therefore an RCPE can be stored as an
ordered sequence of inequalities of the form a ≤ xi < b, one for each section in
the principal path. When a node like A receives a point query it finds the first
inequality in the RCPE sequence that does not hold for the queried point. Then
the first constraint we introduced on the beginning of this section ensures that
the destination node which is responsible for the queried point will be to the left
of the current node if the point is to the left of the interval represented by the
first unsatisfied inequality and the destination node will be to the right of the
current node otherwise. The situation with range queries is quite similar. The
sequence of inequalities in the RCPE for the node A in Figure 6 is shown bellow:
level=1, section=1 : c0 ≤ y < +∞; level=1, section=2 : c1 ≤ x < +∞; level=2,
section=1 : c0 ≤ y < c3; level=2, section=2 : c4 ≤ x < c5; level=3, section=1 :
c8 ≤ y < c9.

306 S. Alaei, M. Toossi, and M. Ghodsi

6.1 Node Join and Departure

Joining mechanism is the same as before except that a new node must obey the
constraints mentioned earlier. However, when leaving, the situation is a little
different since deleting a node may cause an internal node and its associated
plane to be deleted which in turn may invalidate the memory optimization con-
straints. If this is the case we can swap the node to be deleted with a lower node
in the tree which can be deleted without causing any problem. and then we can
delete the node.

6.2 Complexity

The memory requirement of any node A for storing its RCPE as well as the
RCPE of its links as described earlier is of O(log h logn) where h is the height
of the tree which is a major improvement over the O(min(h logn, n)) memory
requirement in the default case.

7 Conclusion and Future Work

In this paper we introduced the SkipTree which is designed to handle point
and range queries over a multidimensional space in a distributed environment.
Our data structure maintains O(log n) links at each node and guarantees an
upper bound of O(log n) messages w.h.p for point queries and also guarantees
range queries with depth of O(log n) message w.h.p. Besides, using the memory
optimization of section 6, each node needs only to store the RCPE of itself
and its links that requires O(log h logn). We also adapted some load balancing
techniques and a memory optimization technique to improve our data structure.
Another important areas which needs further investigation is fault tolerance in
presence of node failures.

References

1. K. Aberer. Scalable data access in p2p systems using unbalanced search trees. In
Proceedings of Workshop on Distributed Data and Structures(WDAS-2002), 2002.

2. K. Aberer, P. Cudr-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva,
and R. Schmidt. P-grid: a self-organizing structured p2p system. SIGMOD Rec.,
32(3):29–33, 2003.

3. N. HARVEY, M. JONES, S. SAROIU, M. THEIMER, and A. WOLMAN. Skipnet:
A scalable overlay network with practical locality properties, 2003.

4. M. Kaashoek and D. Karger. Koorde: A simple degree-optimal distributed hash
table, 2003.

5. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-
peer systems. In SPAA ’04: Proceedings of the sixteenth annual ACM symposium
on Parallelism in algorithms and architectures, pages 36–43. ACM Press, 2004.

6. B. Kroll and P. Widmayer. Distributing a search tree among a growing number of
processors. In SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 265–276. ACM Press, 1994.

SkipTree: A Scalable Range-Queryable Distributed Data Structure 307

7. D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of peer-
to-peer systems. In PODC ’02: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pages 233–242. ACM Press, 2002.

8. W. Litwin, M.-A. Neimat, and D. A. Schneider. Rp*: A family of order preserving
scalable distributed data struc tures. In J. B. Bocca, M. Jarke, and C. Zaniolo,
editors, VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, sep 1994.

9. W. Litwin, M.-A. Neimat, and D. A. Schneider. Lh* – a scalable, distributed data
structure. ACM Trans. Database Syst., 21(4):480–525, 1996.

10. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scalable and dynamic emulation
of the butterfly. In PODC ’02: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pages 183–192. ACM Press, 2002.

11. H. Nazerzadeh and M. Ghodsi. RAQ: A range-queriable distributed data structure
(extended version). In Proceeding of Sofsem 2005, 31st Annual Conference on
Current Trends in Theory and Practice of Informatics, LNCS 3381, pp. 264-272,
February 2005.

12. A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware 2001: Proceed-
ings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 329–350. Springer-Verlag, 2001.

13. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. pages 149–160.

The Phase Matrix

Peter Høyer�

Department of Computer Science, University of Calgary, Canada
hoyer@cpsc.ucalgary.ca

Abstract. Reducing the error of quantum algorithms is often achieved
by applying a primitive called amplitude amplification. Its use leads in
many instances to quantum algorithms that are quadratically faster than
any classical algorithm. Amplitude amplification is controlled by choos-
ing two complex numbers φs and φt of unit norm, called phase factors.
If the phases are well-chosen, amplitude amplification reduces the error
of quantum algorithms, if not, it may increase the error. We give an
analysis of amplitude amplification with a emphasis on the influence of
the phase factors on the error of quantum algorithms. We introduce a
so-called phase matrix and use it to give a straightforward and novel
analysis of amplitude amplification processes. We show that we may al-
ways pick identical phase factors φs = φt with argument in the range
π
3
≤ arg(φs) ≤ π. We also show that identical phase factors φs = φt with

−π
2

< arg(φs) < π
2

never leads to an increase in the error, generalizing a
recent result of Lov Grover who shows that amplitude amplification be-
comes a quantum analogue of classical repetition if we pick phase factors
φs = φt with arg(φs) = π

3
.

Keywords: Quantum Computing. Algorithms. Amplitude Amplifica-
tion. Randomized Algorithms.

1 Introduction to Quantum Searching

A decade ago, Lov Grover [5, 6] discovered a quantum mechanical algorithm that
has since become one of the most famous quantum algorithms. The algorithm
solves one of the most basic problems in algorithmics, that of searching an un-
structured search space. It is based intrinsically on quantum mechanical effects
and demonstrates beautifully a fundamental relationship between quantum me-
chanics and computations. The algorithm is very simple and runs quadratically
faster than any classical algorithm in terms of query complexity. His algorithm is
likely the most studied quantum algorithm ever, seconded only by the quantum
Fourier transform. One of the early work related to Grover’s algorithm is a gene-
ralization called amplitude amplification [2], which in rough terms shows that
the benefits of Grover’s algorithm carry over to arbitrary search processes and
settings [2, 3]. Amplitude amplification is possibly an even simpler concept than
� Supported by the Canadian Institute for Advanced Research (CIAR), Canada’s

Natural Sciences and Engineering Research Council (NSERC), and The Mathema-
tics of Information Technology and Complex Systems (MITACS).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 308–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Phase Matrix 309

Grover’s algorithm. It allows to talk about arbitrary processes and algorithms,
and helps devise simple yet optimal solutions to problems that can be related
to searching. Amplitude amplification is sometimes referred to as quantum sear-
ching when applied specifically to search problems.

Grover’s algorithm [5] and more generally amplitude amplification [2] are
limited by the unitarity condition of quantum mechanics. In popular terms, the
unitarity condition implies that if we run some algorithm and it solves some
problem, then if we keep on running the algorithm (as opposed to stopping it
and outputting the result found at that time), eventually the solution will be
lost. The reason is that unitarity implies reversibility, and it thus seems tempting
to conclude that there thus can be no fixed-point or one-way quantum search
algorithms. However, the unitary limitation applies only if the following three
conditions are satisfied: (1) we keep running the same process, (2) that process
is unitary, and (3) we run it on a closed and finite quantum system. The remedy
is to invalidate one of more of these conditions, which in earlier work [1, 3, 9] is
done by introducing measurements, thus voiding (2), or embedding the quantum
system into a much larger system, thus effectively voiding (3). Though these
proposals certainly are remedies, they come with several downsides: they are
somewhat technical, add to the overall complexity of the algorithm, are harder
to understand that the original algorithm, are rather classical fixes to a quantum
mechanical obstacle, and complicate applications.

In recent work, Grover [7] has suggested an idea that aims at voiding (1).
When applying amplitude amplification, we pick two complex numbers of unit
norm φs, φt ∈ C∗, which are called phase factors. Grover [7] observes that if we
pick the phase factor φs = φt = eıπ/3, then the amplitude amplification process
automatically slows down as the error decreases. This naturally leads to the
question if other phase factors have similar properties, and more generally, what
influence does the phase factors have on the amplitude amplification process.

We first give a novel analysis of amplitude amplification with emphasis on the
choice of phases. Our analysis uses only basic linear algebra, yet still it allows
us to prove new fundamental properties of amplitude amplification, properties
that have not been identified using more involved methods of analysis. As our
main analytical tool, we introduce a so-called phase matrix of dimension 2 × 2.
We use it to explain why eıπ/3 is an appropriate phase factor. We also show
that any nontrivial phase factor with positive real guarantees a reduction in
the error in quantum searching. That is, pick any complex number φ ∈ C∗ of
unit norm with 0 < Re(φ) < 1, and amplitude amplification with φ reduces the
overall error. This is (at least to this author) a somewhat surprisingly strong
result given that amplitude amplification is a very well-studied and often used
primitive. Our analysis yields several other corollaries as well.

2 Amplitude Amplification

Amplitude amplification [2, 3] is a technique for manipulating the amplitudes of
quantum states. One of its uses is to boost the success probability of quantum

310 P. Høyer

algorithms. To keep this paper self-contained, we give a concise description of
amplitude amplification with emphasis on error reduction. Further details and
other applications can be found in e.g. [3].

Consider that we are given, or have developed, some quantum algorithm for
solving some problem. We assume the algorithm does not use any measurements,
so we can describe the algorithm by a unitary operator A. We may run algorithm
A on some initial state |s〉, producing a final state |Ψ〉 = A|s〉. Suppose that
our aim is in producing some target state |t〉 that represents a solution to the
problem. The success probability of algorithm A is the squared overlap |〈t|Ψ〉|2
of the state |Ψ〉 produced by A with the target state |t〉. Let angle 0 ≤ θ < π/2
be such that |〈t|Ψ〉|2 = sin2 θ. Then θ is an angle that represents the success
probability of A. The closer θ is to π/2, the higher success probability. We write1

|Ψ〉 = sin θ|t〉+cos θ|t⊥〉, where |t⊥〉 is the normalized projection of |Ψ〉 onto the
subspace complementary to the subspace spanned by |t〉.

Let ε be such that |〈t|Ψ〉|2 = sin2 θ = 1 − ε, so that ε is the error probability
of A. We want ε to be small. If ε is large, we may want to apply some boosting
method. A standard classical boosting technique is by repetition. If we run A,
say, three times, each time on the initial state |s〉, then the probability of all three
runs failing is ε′ = ε3. Amplitude amplification offers a quantum alternative to
classical repetition. It works as follows. Pick any two complex numbers of unit
norm φs, φt ∈ C∗, which we refer to as phase factors. We define two operators
Rs = I− (1−φs)|s〉〈s| and Rt = I− (1−φt)|t〉〈t|, where I is the identity operator.
These two operators are pseudo-reflections, where the first acts nontrivially on
the ray spanned by |s〉, and the second nontrivially on the ray spanned by |t〉. Set
Q = Q(φs, φt) = −ARsA

−1Rt. Applying operator Q is amplitude amplification.
Operator Q acts invariantly on the two-dimensional subspace spanned by the

orthogonal states |t〉 and |t⊥〉, and with respect to the ordered basis (|t〉, |t⊥〉),
has the following matrix representation [3],

Q =
[
φt

(
(1 − φs) sin2 θ − 1

)
(1 − φs) cos θ sin θ

φt(1 − φs) sin θ cos θ −(1 − φs) sin2 θ − φs

]
. (1)

Analysis on amplitude amplification can be conducted via an analysis of this
matrix, and is thus a basic exercise which surprisingly previously has eluded a
full understanding of the rôle of the phase factors, including the phase factor
of eıπ/3. One aim of this work is to provide such an understanding.

3 The Phase Matrix

Returning to the general setting, consider we apply algorithm A on the initial
state |s〉, hereby producing |Ψ〉 = A|s〉. The probability that a measurement M
of state A|Ψ〉 does not yield the outcome |t〉, is ε. If we repeat this experiment
three times independently, we may reduce the error of never measuring |t〉 to ε3.

1 For simplicity, we ignore a possible global phase factor, which has no consequences
in this work.

The Phase Matrix 311

If we use amplitude amplification instead of classical boosting, we apply Q on
A|s〉, unitarily producing the state ARsA

−1RtA|s〉, using a total number of three
applications of A and its inverse. It is well-established that if we pick phase
factors φs = φt = −1, we may achieve a quadratic improvement over classical
repetition in many settings [5, 1]. The question is what happens for other choices
of φs and φt.

We first write |Ψ〉 = A|s〉 with respect to the ordered basis (|t〉, |t⊥〉) as a
column vector, A|s〉 = [sin θ, cos θ]T . Applying Q on A|s〉 produces the state
QA|s〉 represented by[

φt

(
(1 − φs) sin2 θ − 1

)
(1 − φs) cos θ sin θ

φt(1 − φs) sin θ cos θ −(1 − φs) sin2 θ − φs

] [
sin θ
cos θ

]
.

Our cardinal step is to isolate the influence of the phase factors φs and φt,
rewriting QA|s〉 as[

sin θ 0
0 cos θ

] [
−φsφt 1 − φs − φt

−1 + φt − φsφt −φs

] [
sin2 θ
cos2 θ

]
.

We now define the phase matrix P as

P = P(φs, φt) =
[

−φsφt 1 − φs − φt

−1 + φt − φsφt −φs

]
. (2)

This matrix allows us to give a simple intuitive study of the choices of phases,
expressed independently of angle θ and thus also of the error probability ε. We
may summarize the action of the amplitude amplification operator Q as follows.

Q :
[
sin θ
cos θ

]
'−→

[
α sin θ
β cos θ

]
where

[
α
β

]
= P

[
sin2 θ
cos2 θ

]
= P

[
1 − ε
ε

]
. (3)

Let ε′ be the probability that a measurement M of state QA|Ψ〉 does not yield the
outcome |t〉. Then ε′

ε = β2 is the relative change in error by applying amplitude
amplification operator Q. We want β to be small.

In the next section, we use the above interpretation of amplitude amplification
to give an analysis of the choices of phases.

4 Analysis of the Phase Matrix

Our analysis of the phase matrix P given by Eq. 2 begins with a consideration
of the entry P21. Recall that the phase matrix P is written with respect to the
ordered basis (|t〉, |t⊥〉). The entry P21 thus captures how much amplitude may
potentially be moved out of the solution subspace spanned by |t〉 to the error
subspace spanned by |t⊥〉. If entry P21 is zero, any amplitude that is moved into
the solution subspace, stays in the solution subspace. Conversely, if entry P21 is
non-zero, some amplitude might escape from the solution subspace.

If we insist on picking phase factors so that P21 is zero, then we effectively
eliminate interference between the two subspaces, and the quantum algorithm

312 P. Høyer

becomes classical of nature. Indeed this is our interpretation of the main result
of Grover [7] who shows that if we pick φs = φt = eıπ/3, then if the error of
algorithm A|s〉 is ε, the error of algorithm QA|s〉 is ε3. It achieves the exact same
error reduction as classical repetition. It is different from classical repetition in
that it it does not use intermediate measurements or additional storage space
(e.g., an ancilla used for counting purposes). It is a truly in-place quantum
mechanical version of classical repetition. It is fairly easy to see that this phase
factor is unique up to conjugation, and thus does play a pivotal rôle in amplitude
amplification.

Proposition 1. Entry P21 of the phase matrix is zero iff φs = φt = e±ıπ/3.
With this uplifting simple explanation of Grover’s result, we now study the

phase matrix in more detail. Entry P21 is the sum of three unit numbers. We
say that three unit numbers eıx, eıy, eız lie within a half circle if there exists
a unit number w so that eıxw, eıyw, eızw all have non-negative real part. We
say they lie strictly within a half circle if there exists a unit number w so that
eıxw, eıyw, eızw all have nonzero and positive real part. The three vectors do not
lie within a half circle if and only if every hyperplane strictly separates them.
The sum of three unit vectors is related to whether they lie within a half circle.

Proposition 2. The absolute value of the sum of three unit numbers is greater
than one if they lie strictly within a half circle, is one if two of the numbers are
each others negation, and is less than one otherwise.

Proof. Consider the sum of three unit vectors eıx, eıy, eız. Without loss of gene-
rality, we may assume that 0 ≤ z− y ≤ π. Fix y and z and consider the function
f(x) = |eıx + eıy + eız|. The function is strictly monotonically increasing in the
interval [z+y

2 − π, z+y
2], and it is one when x = z − π. Similarly, the function

strictly monotonically decreasing in the interval [z+y
2 − 2π, z+y

2 − π] and it is
one when x = y − π. In summary, f(x) is bigger than 1 if and only if the three
vectors lie strictly within a half circle, the function is one if and only if x = z−π
or x = y − π, and it is less than one in all other cases. ��

We multiply entry P21 with −φt, apply Proposition 2 on −1, φs, φt, and obtain
the following characterization of |P21|.

Lemma 1 (Contribution from solution subspace to error subspace).

|P21| =

> 1 if −1, φs, φt lie strictly within a half circle
= 1 if φs = 1, φt = 1, or φsφt = −1
= 0 if φs = φt = e±ıπ/3

< 1 otherwise.

To exhibit the significance of Lemma 1, reconsider Equation 3. We are inte-
rested in having |β| < 1 so that the error ε′ of QA|s〉 is smaller than the error ε
of A|s〉, the algorithm without amplitude amplification. The phase matrix P is
multiplied on the right by the column vector [sin2 θ, cos2 θ]T . Since entry |P22|
is of unit norm, if |P21| < 1 then |β| < 1 and hence ε′ < ε.

The Phase Matrix 313

Theorem 1 (Strictly decreasing error). If −1, φs, φt do not lie within a half
circle, ε′ < ε.

The above theorem gives a sufficient condition for strict error reduction in am-
plitude amplification processes. Prior to Grover’s recent work on the phase factor
eıπ/3, no such condition was known. Our general condition is that −1, φs, φt do
not lie close together.

5 Error Reduction with Phase Matching

A desirable property of the phase matrix P is to have arg(P21) = arg(−P22).
If the two entries P21 and P22 point in opposite directions as vectors, the error
introduced by the term P21 sin2 θ partly cancels with the error introduced by the
other term P22 cos2 θ. For fixed |P21|, having arg(P21) = arg(−P22) minimizes ε′

(ε′ is defined in Section 3 above). Our next lemma shows that the only nontrivial
choices of phases for which arg(P21) = arg(−P22) is when φs = φt.

Lemma 2 (Phase matching). arg(P21) = arg(−P22) if and only if φs = φt

and Re(φs) < 1
2 .

Proof. Suppose arg(P21) = arg(−P22). Then arg(1 − φt + φsφt) = arg(−φs),
and by adding −φs on the left hand side, arg((1 − φt)(1 − φs)) = arg(−φs).
Multiplying through by φs, this implies that arg((1 − φs)(1 − φt)) = 0, which is
satisfied only if φs = φt, φs = 1, or φt = 1. Conversely, if φs = φt and Re(φs) <
1
2 , then arg(P21) = arg(−P22), while in the other cases, arg(P21) = arg(P22). ��

Note that for any number 0 ≤ p ≤ 3, there always exists a phase factor φ ∈ C∗

so that if we set φ = φs = φt, then | − 1 + φt − φsφt| = p. This implies that for
any choice of phases φ̃s, φ̃t ∈ C∗, there exists a phase factor φ ∈ C∗ so that the
error if applying Q(φ, φ) is no larger than if applying Q(φ̃s, φ̃t). That is, picking
identical phases is never suboptimal in terms of error reduction.

Picking identical phases is already known to have other advantageous proper-
ties. In work on Grover’s algorithm, Long, Li, Zhang, and Niu [9], consider the
choices of phases for which amplitude amplification may yield exact algorithms
and they derive the phase matching condition φs = φt (the term ‘exact quantum
algorithm’ is explained in the next paragraph). Together with a later paper
by Long, Xiao, and Song [8], they give a general and throughly analysis of
the conditions we must put on φs and φt for obtaining exact algorithms. One
instance of their scenario requires the phase matching condition φs = φt. Phase
matching is particular appealing as then the relationship between φs and φt

does not depend on ε, it helps simplifying the analysis, and it might be easier to
implement just one phase factor instead of working with two.

Suppose we are given a classical randomized algorithm that succeeds in solving
some problem with some probability 1 − ε. Then we may repeat the algorithm
several times, hereby reducing the error probability. With only polynomially
many repetitions, we can reduce the error to being exponentially small. However,

314 P. Høyer

there are no known schemes that would allow us to reduce the error to zero with
only polynomial overhead for arbitrary processes. There are in short no general
derandomization schemes. In contrast, amplitude amplification can be used to
obtain exact quantum algorithms in some settings. We say a quantum algorithm
is exact if its error probability is zero. Exact quantum algorithms for decision
problems that run in polynomial time comprise the quantum analogue EQP of
the classical complexity class P .

Under phase matching, the phase matrix simplifies to

P = P(φ, φ) =
[

−φ2 1 − 2φ
−1 + φ− φ2 −φ

]
. (4)

Theorem 2 gives a necessary and sufficient condition for having ε′ < ε. It genera-
lizes Theorem 1 under phase matching to include necessary conditions, and states
that ε′ < ε if and only if Re(φ) > − ε

1−ε for nontrivial φ. The right hand side,
− ε

1−ε , may be arbitrarily close to 0, and thus if the expression Re(φ) > − ε
1−ε is

to be true for all nonzero ε, we effectively require that Re(φ) ≥ 0. Expressed in
terms of trigonometric functions, ε′ < ε if and only if cos(ϕ) > − tan2(θ) where
φ = eıϕ.

Theorem 2 (Error reduction with phase matching). Suppose that φ =
φs = φt. Then

ε′ =

= 0 if Re(φ) = 1

2

(
1 − ε

1−ε

)
< ε if Re(φ) > − ε

1−ε and φ �= 1
= ε if Re(φ) = − ε

1−ε

> ε if Re(φ) < − ε
1−ε .

Proof. First note that ε′ < ε if and only if the absolute value of P21(1−ε)+P22ε is
less than one. If φ = φs = φt then P21 = φ

(
1− 2Re(φ)

)
and P22 = −φ, and thus

|P21(1−ε)+P22ε| = |(1−2Re(φ))(1−ε)−ε|. If 0 < Re(φ) < 1, then |1−2Re(φ)| <
1 and hence ε′ < ε. Now, suppose Re(φ) ≤ 0. Then (1 − 2Re(φ))(1 − ε) − ε < 1
if and only if Re(φ) > − ε

1−ε .
Similarly, if Re(φ) < − ε

1−ε then ε′ > ε. Finally, (1 − 2Re(φ))(1 − ε) − ε = 0 if
and only if Re(φ) = 1

2

(
1 − ε

1−ε

)
. ��

It follows that any phase factor with positive real ensures strict error reduc-
tion.

Corollary 1 (Strictly decreasing error). If φs = φt �= 1 and 0 ≤ Re(φs) <
1, then ε′ < ε.

It ε is known [1], we can obtain an exact quantum algorithm by choosing the
phase factor φ so that P21(1 − ε) + P22ε = 0.

Corollary 2 (Exact algorithm). If φs = φt and Re(φs) = 1
2

(
1 − ε

1−ε

)
, then

ε′ = 0.

The Phase Matrix 315

Note that the condition Re(φs) = 1
2

(
1 − ε

1−ε

)
can be satisfied if and only if

ε ≤ 3
4 . That is, we can achieve ε′ = 0 by a one-round amplitude amplification

process if and only if the original error ε is at most 3
4 .

The next theorem states that phase matching with a phase factor φ ∈ C∗ with
Re(φ) ≤ 1

2 is never suboptimal in terms of error reduction. This implies that
when applying amplitude amplification (as considered in this paper) we may
restrict our attention to picking a single phase factor φ with −1 ≤ Re(φ) ≤ 1

2 ,
as opposed to considering all possible choices of pairs (φs, φt) ∈ C∗ × C∗.

Theorem 3 (Phase matching with Re(φ) ≤ 1
2). For all phase factors

φs, φt ∈ C∗ there exists a phase factor φ ∈ C∗ with Re(φ) ≤ 1
2 so that the

error of Q(φ, φ)A|s〉 is no larger than the error of Q(φs, φt)A|s〉. Phase factor φ
depends only on φs and φt, and not on A, |s〉, and |t〉.

Proof. Let ε denote the error probability of Q(φs, φt)A|s〉. By the comments
succeeding Lemma 2, we can without loss of generality assume that φ = φs =
φt and thus use the simplified matrix given by Eq. 4. If we pick φ so that
Re(φ) = 1

2 , then |(1 − 2Re(φ))(1 − ε) − ε| = ε whereas if Re(φ) > 1
2 then

|(1 − 2Re(φ))(1 − ε) − ε| > ε. It follows that using φ with Re(φ) > 1
2 is never

better than using φ with Re(φ) = 1
2 . ��

We mention that picking conjugate phases aligns the entries P11 and P12.

Proposition 3 (Conjugate phase matching). arg(P11) = arg(P12) if and
only if (1) φs = φt and Re(φs) > 1

2 , (2) φs = 1, or (3) φt = 1.

6 Computational Considerations

Thus far we have primarily been concerned with error reduction in amplitude
amplification and mostly ignored the computational costs. Amplitude amplifica-
tion maps operator A to operator A1 = QA,

A '→ A1 = ARsA
−1RtA (5)

at the cost of in total three applications of A and its inverse, and one application
of each of Rs and Rt. We may repeat the amplification process on the thus formed
algorithm A1, mapping

A1 '→ A2 = A1RsA1
−1RtA1.

Applying the mapping k times utilizes 1
2 (3k + 1) applications of A, 1

2 (3k − 1)
applications of the inverse A−1, and 1

2 (3k −1) applications of each of the pseudo-
reflections Rs and Rt. That is, we use Θ(K) applications of each of the four
operators A,A−1,Rs,Rt, where K = 3k.

The error ε′ after k recursive applications of the mapping given by Eq. 5
depends on the choice of phase factors. If we apply Q with phase factor eıπ/3,
then ε′ = εK . This error is the exact same error as we could achieve byK classical

316 P. Høyer

repetitions, as exemplified in Section 3. Amplitude amplification with phase
factor eıπ/3 is a genuinely quantum mechanical version of classical repetition.
Note that Re(eıπ/3) = 1

2 . By Theorem 3, applying amplitude amplification with
a phase factor φ having Re(φ) > 1

2 is suboptimal in terms of error reduction.
For matching phases φ with Re(φ) < 1

2 , the error reduction β2 is given by the
square of (1−2Re(φ))(1− ε)− ε, where β is defined by Eq. 3. The factor of error
reduction by three classical repetitions is ε3

ε = ε2. Amplitude amplification is
thus superior to classical boosting if and only if −ε < (1−2Re(φ))(1− ε)− ε < ε
which is valid if and only if 1

2
1−3ε
1−ε < Re(φ) < 1

2 . The left-hand side 1
2

1−3ε
1−ε is less

than −1 if ε > 3
5 , in which case the error reduction β2 in amplitude amplification

Q(−1,−1) with phase factor φ = −1 is better than the classical error reduction
of ε2 obtained by three repetitions.

Theorem 4 (Amplitude amplification works well for large error). For
ε > 3

5 , amplitude amplification with phase factor φ = −1 is superior to classical
repetition.

Buhrman, Cleve, de Wolf, and Zalka show in [4] that any quantum algorithm
for improving the error from a constant, say 1

2 , to δ requiresΩ(log 1
δ) applications

of A. In particular, for small ε, amplitude amplification requires asymptotically
the same number of applications of A as does classical repetition. The above
theorem implies that in the range 1 > ε > 3

5 , standard amplitude amplification
with phase factor φ = −1 is superior to classical boosting in terms of error
reduction.

7 Concluding Remarks

Amplitude amplification is one of the most used and well-studied primitives in
quantum algorithmics. One of its obstacles is that applying standard amplitude
amplification (with phase factor −1) can sometimes be harmful. If the given
quantum algorithm A has small error, then applying amplitude amplification
may produce an algorithm QA that has larger error than A itself. It is in most
cases not desirable to use computational efforts in creating worse algorithms.

In recent work [7], Grover shows that applying amplitude amplification with
phase factor eıπ/3 is never harmful. If the error of algorithm A is ε, then amplitude
amplification produces an algorithm QA with error ε3, which is never larger than ε.
The limitation of the phase factor eıπ/3 is that the exact same error reduction can
be achieved using the same computational efforts by classical repetition.

Applying amplitude amplification as a subroutine, as is done in many quan-
tum algorithms, can be a challenge: Phase factor −1 might be harmful, phase
factor eıπ/3 leads to no better error reduction than classical. Possibly one may
consequently decide to choose phase factors φs, φt somewhere in between in lack
of better.

In this paper, we provide a set of tools and results on picking phase factors.
There is no unifying answer on phase picking—the preferable choice depends on

The Phase Matrix 317

the application at hand. We give a novel and simple, yet rigorous, analysis of
the interplay between phase factors and error reduction. We show that one may
always limit oneself to consider matching phases φ = φs = φt with argument in
the range π

3 ≤ arg(φ) ≤ π. We show that any phase with Re(φ) > 0 reduces the
error for all 0 < ε < 1. The optimal choice in terms of error reduction is to pick
φ = −1 if ε ≥ 3

4 and otherwise to pick φ so that Re(φ) = 1
2

1−2ε
1−ε .

Grover’s work has already lead to new applications based on the pivotal phase
factor eıπ/3 [10, 11]. Our set of analytical tools and results may initiate other
results related to amplitude amplification and quantum error reduction in more
general settings.

References

1. M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum sear-
ching. Fortschr. Phys., 46(4–5):493–505, 1998.

2. G. Brassard and P. Høyer. An exact quantum polynomial-time algorithm for Si-
mon’s problem. In Proc. 5th Israeli Symp. Theory of Comput. and Systems, pp.
12–23, 1997.

3. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplifica-
tion and estimation. In: Quantum Computation and Quantum Information: A
Millennium Volume. AMS Contemp. Math., 305:53–74, 2002.

4. H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error and
zero-error quantum algorithms. In Proc. 40th IEEE Symp. Found. Comput. Sci.,
pp. 358–368, 1999.

5. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc.
28th ACM Symp. Theory Comput., pp. 212–219, 1996.

6. L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett., 79(2):325–328, 1997.

7. L. K. Grover. A different kind of quantum search. quant-ph/0503205, May 2005.
8. G.-L. Long, X. Li, and Y. Sun. Phase matching condition for quantum search with

a generalized initial state. Phys. Lett. A, 294(3-4):143-152, 2002.
9. G.-L. Long, Y. S. Li, W. L. Zhang, and L. Niu. Phase matching in quantum search-

ing. Phys. Lett. A, 262(1):27–34, 1999.
10. T. Tulsi, L. K. Grover, and A. Patel. A new algorithm for directed quantum search.

quant-ph/0505007, May 2005.
11. L. Xiao and J. Jones. An NMR implementation of Grover’s fixed-point quantum

search algorithm. quant-ph/0504054, April 2005.

ISB-Tree: A New Indexing Scheme with Efficient
Expected Behaviour�

Alexis Kaporis1, Christos Makris1, George Mavritsakis1, Spyros Sioutas1,
Athanasios Tsakalidis1,2, Kostas Tsichlas1, and Christos Zaroliagis1,2

1 Dept of Computer Eng and Informatics, University of Patras, 26500 Patras, Greece
2 Computer Technology Institute, N. Kazantzaki Str, Patras University Campus,

26500 Patras, Greece
{kaporis, makri, mayritsa, sioutas, tsak, tsihlas, zaro}@ceid.upatras.gr

Abstract. We present the interpolation search tree (ISB-tree), a new
cache-aware indexing scheme that supports update operations (insertions
and deletions) in O(1) worst-case (w.c.) block transfers and search op-
erations in O(logB log n) expected block transfers, where B represents
the disk block size and n denotes the number of stored elements. The
expected search bound holds with high probability for a large class of
(unknown) input distributions. The w.c. search bound of our indexing
scheme is O(logB n) block transfers. Our update and expected search
bounds constitute a considerable improvement over the O(logB n) w.c.
block transfer bounds for search and update operations achieved by the
B-tree and its numerous variants. This is also suggested by a set of pre-
liminary experiments we have carried out. Our indexing scheme is based
on an externalization of a main memory data structure based on inter-
polation search.

1 Introduction

More than three decades after its invention, B-tree [3, 4] and its variants remain
the ubiquitous (external memory) data structure for indexing and organizing
large data sets with numerous applications, especially in database systems. Its
popularity is mainly due to the stable and guaranteed performance for search
and update (insertion and deletion) operations, which both cost O(logB n) block
transfers in the worst-case, with B and n representing the number of elements
in a disk block and the number of stored elements, respectively. The most heav-
ily used application is the efficient answering of one-dimensional range search
queries using O(logB n + r) block transfers, where R = rB is the number of
elements reported. In such a query, the elements in a range [z1, z2] can be found
by first searching the B-tree for z1 and then performing an in-order traversal
� This work was partially supported by the IST Programme (6th FP) of EC under con-

tracts IST-2001-33058 (PANDA) and IST-2002-001907 (integrated project DELIS),
and by the Action PYTHAGORAS of the Operational Programme for Educational
& Vocational Training II, with matching funds from the European Social Fund and
the Greek Ministry of Education.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 318–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour 319

in the tree from z1 to z2. These bounds hold for any cache-aware disk-access
model, that is, a model that accounts memory transfers in disk blocks, as these
transfers are the dominating operation w.r.t. time. In this paper, we consider one
of the most known and widely used such models, namely the two-level memory
hierarchy model introduced in [1]. In this model, the memory hierarchy consists
of an internal (main) memory and an arbitrarily large external memory (disk)
partitioned into blocks of size B. The data from the external to the main memory
and vice versa are transferred in blocks (one block at a time).

A vast number of variants of the B-tree have been proposed since its ap-
pearance — B+-trees [4] and B∗-trees [4, 11] are some representative examples;
see the excellent survey by Vitter [20] for an extended accounting of these and
other variants and their applications — in order to improve its performance in
practice for various applications, to make it parallel for use in multi-disk envi-
ronments [18], to tune it for concurrency and recovery purposes [19], to extend it
to cover other than the original field [6], etc. However, to the best of our knowl-
edge, the aforementioned search and update bounds of B-tree and its variants
remained untouched all these years. The same applies to the one-dimensional
range search query bound, although some variants (with B+-tree being the most
popular) offer a slightly different procedure, since the leaves are linked together
and hence allow for sequential access. Regarding the update operation, it should
be noted that it consists of three consecutive phases: a search phase (to locate
the element), a value-updating phase (to replace the element’s key with its new
value), and a rebalancing phase (to restore the B-tree structure). Excluding the
first phase (search operation), the dominating phase of an update operation is
the rebalancing one, since the value-updating phase takes typically O(1) block
transfers (and/or time). In the case of B-tree and its variants, the rebalancing
phase requires O(logB n) block transfers in the worst-case. This implies that the
update operation takes O(logB n) block transfers, even in the case where the
update position (block within which the update will take place) is given. Note
that there are certain applications (see e.g., [13]) which justify the exclusion of
the search phase in an update operation: once the requested element has been
found, then the next element to be searched is located “near by” and hence a
new search is redundant.

In this work, we present a new indexing scheme, called ISB-tree (Interpolation
Search B-tree), that supports search operations in O(logB logn) expected block
transfers with high probability (w.h.p.) for a large class of input distributions
(including both uniform and non-uniform classes) that are explained below, and
update operations in O(1) block transfers, provided that the update position is
given. The search bound implies that a one-dimensional range search query can
be supported in O(logB logn+r) expected block transfers w.h.p.. The worst-case
block transfers for the search operation in our indexing scheme are O(logB n).

To achieve our expected search bound we consider a rather general scenario of
µ-random insertions and random deletions, where µ is a so-called smooth proba-
bility density [2, 16]. An insertion is µ-random if the key to be inserted is drawn
randomly with density function µ; a deletion is random if every key present in

320 A. Kaporis et al.

the data structure is equally likely to be deleted (see [12]). Informally, a distri-
bution defined over an interval I is smooth if the probability density over any
subinterval of I does not exceed a specific bound, however small this subinterval
is (i.e., the distribution does not contain sharp peaks). Smooth distributions are
a superset of uniform, bounded, and several non-uniform distributions (e.g., the
class of regular distributions introduced by Willard [21]).

Our indexing scheme is a two-level data structure. The upper level is an
externalization of the static interpolation search tree presented in [9]. The lower
level is a forest of buckets, each of which is implemented by a new variant of
the classical B-tree, the Lazy B-tree, which is introduced in [10]. The lazy B-tree
supports a search operation inO(logB n) block transfers and an update operation
in O(1) block transfers, provided that the update position is given. However, a
straightforward combination of the above structures does not necessarily lead
to better bounds, since: (i) the number of elements within a bucket may grow
arbitrarily large, as insertions are performed; and (ii) we strive for creating a
robust indexing scheme, that is, a data structure that works correctly without
apriori knowledge of the particular smooth distribution µ. To overcome these
problems, we employ the combinatorial game of bins and balls introduced in
[9] that allows to upper bound the number of elements in a bucket, and to
approximate an unknown distribution by an almost uniform one.

To the best of our knowledge, this is the first work that uses the dynamic
interpolation search paradigm in the framework of indexing data in external
memory. External data structures related to our approach are those based on
hashing [11, 15, 20]. The main representatives of external memory hashing meth-
ods are: extendible hashing [5], linear hashing [14], and external perfect hashing
[7]. These hashing schemes and their variants need O(1) expected block transfers
for answering search queries, but they share various disadvantages when com-
pared to our structure: (i) they do not support range queries; (ii) their expected
case analysis usually assumes uniform input distributions (or input distributions
that produce uniform hash key values); and (iii) they exhibit poor worst case
performance.

The remainder of the paper is organized as follows. In Section 2, we discuss
preliminary notions and results that are used throughout the paper. The main
result of this paper, the ISB-tree, with the complexity analysis of its operations
is discussed in Section 3. Section 4 provides an experimental evaluation of our
theoretical findings. We conclude in Section 5. Due to space limitations the full
details of the paper can be found in [10].

2 Preliminaries

The B-tree is a Θ(B)-ary tree (with the root possibly having smaller degree)
built on top of Θ(n/B) leaves. The degree of internal nodes, as well as the
number of elements in a leaf, is typically kept in the range [B/2, B] such that
a node or leaf can be stored in one disk block. All leaves are on the same level
and the tree has height O(logB n). This guarantees that a search operation can

ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour 321

be accomplished within O(logB n) block transfers. An insertion is performed
in O(logB n) block transfers by first searching down the tree for the relevant
leaf l. If there is room for the new element in l, then we simply store it there.
Otherwise, we split l into two leaves l′ and l′′ of approximately the same size
and insert the new element in the relevant leaf. The split of l results in the
insertion of a new routing element in the parent of l, and thus the split may
propagate up the tree. Propagation of splits can often be avoided by sharing
some of the (routing) elements of the full node with a non-full sibling. A new
(degree 2) root is produced when the root splits and the height of the tree grows
by one. Similarly, a deletion can be performed in O(logB n) block transfers by
first searching down the tree for the relevant leaf l and then removing the deleted
element. If this results in l containing too few elements, then we either fuse it
with one of its siblings (corresponding to deleting l and inserting its elements in
a sibling), or we perform a share operation by moving elements from a sibling to
l. Fuse operations may also propagate up the tree and eventually result in the
height of the tree decreasing by one.

One of the first works, in the context of internal memory data structures,
that investigated non-uniform distributions regarding insertions in an update
sequence was that of Willard [21], who introduced the so-called regular distrib-
utions. A probability density µ is regular if there are constants b1, b2, b3, b4 such
that µ(x) = 0 for x < b1 or x > b2, and µ(x) ≥ b3 > 0 and |µ′(x)| ≤ b4 for
b1 ≤ x ≤ b2. This has been further pursued by Mehlhorn and Tsakalidis [16],
who introduced the smooth input distributions, a notion that was further gen-
eralized and refined in [2]. Given two functions f1 and f2, a density function
µ = µ[a, b](x) is (f1, f2)-smooth [2] if there exists a constant β, such that for all
c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b, and all integers n, it holds that∫ c2

c2− c3−c1
f1(n)

µ[c1, c3](x)dx ≤ β · f2(n)
n

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) = µ(x)/p for
c1 ≤ x ≤ c3 where p =

∫ c3

c1
µ(x)dx. Intuitively, function f1 partitions an arbitrary

subinterval [c1, c3] ⊆ [a, b] into f1 equal parts, each of length c3−c1
f1

= O(1
f1

); that
is, f1 measures how fine is the partitioning of an arbitrary subinterval. Function
f2 guarantees that no part, of the f1 possible, gets more probability mass than
β·f2

n ; that is, f2 measures the sparseness of any subinterval [c2 − c3−c1
f1

, c2] ⊆
[c1, c3]. The class of (f1, f2)-smooth distributions (for appropriate choices of f1
and f2) is a superset of both regular and uniform classes of distributions, as well
as of several non-uniform classes [2, 9]. Actually, any probability distribution is
(f1, Θ(n))-smooth, for a suitable choice of β.

The static interpolation search tree [9] is a static, explicit, and refined version
of the search trees used in [2, 16]. A static interpolation search tree containing n
elements can be fully characterized by three nondecreasing functions H(n), R(n)
and I(n), whereH(n) denotes the height of the tree, R(n) denotes the out-degree
of the root, and I(n) denotes how fine is the partition of the set of elements and
is defined by I(n) = n · g(H(n)), where g(n) should satisfy

∑∞
i=1 g(i) = Θ(1).

322 A. Kaporis et al.

To guarantee the height of H(n), it should hold that n/R(n) = H−1(H(n)− 1).
The children of the root have n′ = Θ(n/R(n)) leaves. Their height will be
H(n′) = H(n)−1, their out-degree isR(n′) = Θ(H−1(H(n)−1)/H−1(H(n)−2)),
and I(n′) = n′ · g(H(n′)). In general, consider an internal node v at depth i and
assume that ni leaves are stored in the subtree rooted at v. Then we have that
R(ni) = Θ(H−1(H(n)−i+1)/H−1(H(n)−i)), and I(ni) = ni ·g(H(n)−i). The
node v is associated with an array REP[1..R(ni)] of sample elements, one sample
element for each of its subtrees, and an ID[1..I(ni)] array that stores a set of
sample elements approximating the inverse distribution function. By using the
ID array, we can interpolate the REP array to determine the subtree in which
the search procedure will continue. In particular, the ID array for node v is an
array ID[1..m], where m = I(ni), with ID[i] = j iff REP[j] < �+ i(u − �)/m ≤
REP[j + 1], where � and u are the minimum and the maximum element, resp.,
stored in the subtree rooted at v. Let x be the element we seek. To interpolate
REP, compute the index j = ID[�(m(x− �)/(u− �))�], and then search the REP
array from REP[j+1] until the appropriate subtree is located. For each node we
explicitly maintain parent and child pointers. The required pointer information
can be easily incorporated in the construction of the static interpolation search
tree. Throughout the paper, we say that an event E occurs with high probability
if Pr[E] = 1 − o(1).

3 The ISB-Tree

The ISB-tree is a two-level data structure. The lower level is a set of buckets
each of which contains a subset of the stored elements and is represented by a
unique representative. The representatives of the buckets are stored in the upper
level structure.

The upper level data structure is an external version of the static interpolation
search tree (SIST) described in [9] (see also Section 2), with parameters R(s) =
sδ, I(s) = s/(log log s)1+ε, where ε > 0, δ = 1 − 1

B , and s is the number of
stored elements in the tree. The specific choice of δ guarantees the desirable
O(logB log s) height of the upper level structure. For each node that stores more
than B1+ 1

B−1 elements in its subtree, we represent its REP and ID arrays as
static external sorted arrays; otherwise, we store all the elements in a constant
number of disk blocks. In particular, let v be a node and nv be the number of
stored elements in its subtree, with nv ≥ B1+ 1

B−1 . Node v is associated with
two external arrays EREPv and EIDv that represent the REPv and IDv arrays
of the original SIST structure. The EIDv array uses O(I(nv)

B) contiguous blocks,
the EREPv array uses O(R(nv)

B) contiguous blocks, while an arbitrary element of
the arrays can be accessed with O(1) block transfers, given its index. Moreover,
the choice of the parameter B1+ 1

B−1 guarantees that each of the EREPv and
EIDv arrays contains at least B elements, and hence we do not waste space (in
terms of underfull blocks) in the external memory representation.

On the other hand, the lower level is a set of ρ buckets. Let S0 be the set
of elements to be stored where the elements take values in [a, b]. Each bucket

ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour 323

Bi, 1 ≤ i ≤ ρ, stores a subset of elements and is represented by the element
rep(i) = max{x : x ∈ Bi}. The set of elements stored in the buckets constitute
an ordered collection B1, . . . ,Bρ such that max{x : x ∈ Bi} < min{y : y ∈ Bi+1}
for all 1 ≤ i < ρ − 1. In other words, Bi = {x : x ∈ (rep(i − 1), rep(i)]}, for
2 ≤ i ≤ ρ, and B1 = {x : x ∈ [rep(0), rep(1)]}, where rep(0) = a and rep(ρ) = b.

The elements of each Bi are stored in a Lazy B-tree, which is a new variant
of the classical B-tree. Due to space limitations, the details of the Lazy B-tree
are discussed in the extended version of the paper [10]. The following theorem
summarizes the properties of a Lazy B-tree.

Theorem 1. A Lazy B-Tree supports search operations with O(logB n) worst-
case block transfers and update operations with O(1) worst-case block transfers,
provided that the update position is given.

The ISB-tree is maintained by incrementally performing global reconstruc-
tions [17]. Let S0 be the set of stored elements at the latest reconstruction, and
assume that S0 = {x1, . . . , xn0} in sorted order. The reconstruction is performed
as follows. We partition S0 into two sets S1 and S2, where S1 = {xi·ln n0 : i =
1, . . . , n0

ln n0
− 1} ∪ {b}, and S2 = S0 − S1. The i-th element of S1 is the repre-

sentative rep(i) of the i-th bucket Bi, where 1 ≤ i ≤ ρ and ρ = |S1| = n0
ln n0

.
The representatives rep(i), 1 ≤ i ≤ ρ, are stored in the external SIST (note
that there is no need to store rep(0)). An element x ∈ S2 is stored in Bi, iff
rep(i−1) < x ≤ rep(i), for i ∈ {2, . . . , n0

ln n0
}; otherwise (x ≤ rep(1)), x is stored

in B1. The same condition holds for every new element inserted in the structure.
In order to insert/delete an element, given the position (block) of the update,
we simply have to insert/delete the element to/from the Lazy B-tree storing the
elements of the corresponding bucket. Each time the number of updates exceeds
cn0, where c is a predefined constant, the whole data structure is reconstructed.
Let n be the number of stored elements at this time. After the reconstruction,
the number of buckets is equal to � n

lnn�.
The search procedure for locating a query element x can be decomposed into

two phases: (i) the traversal of internal nodes of the external SIST locating a
bucket Bi, and (ii) the search for x in the Lazy B-tree storing the elements of
Bi. Phase (i) starts from the root of the external SIST. It checks the external
arrays on the root and by interpolating it decides into which child the search
procedure will continue. More specifically, let v be a node in the search path for
query element x, nv be the number of leaves in its subtree, and let lv and uv

be the minimum and the maximum element, resp., stored in the subtree rooted
at v. As we have already mentioned, node v is associated with two external
arrays EREPv and EIDv that implement the REPv and IDv arrays of the SIST
definition. To interpolate, we compute the value i = � x−lv

uv−lv
R(nv)� and find

the index j = EIDv[i], by retrieving the � i
B �-th block of the EIDv array. We

then scan the blocks of the EREPv array, starting from its � j
B �-th block, until

locating an index l such that EREPv[l] ≤ x < EREPv[l+ 1]. If the l-th son of v
is not a bucket, then we continue recursively in the same manner in the l-th son
of v, until we locate the representative of a bucket Bi. In this case, the search

324 A. Kaporis et al.

procedure is concluded by entering phase (ii) and by searching further in the
Lazy B-tree of the bucket Bi.

In the following, we will analyze the bounds of the search and update opera-
tions. Our result holds for the very broad class of (n/(log logn)1+ε, n1−δ)-smooth
densities, where δ = 1− 1

B and includes the uniform, regular, bounded as well as
several non-uniform distributions [2, 9], and is stated by the following theorem.

Theorem 2. Suppose that the upper level of the ISB-tree is an external static
interpolation search tree with parameters R(s0) = sδ

0, I(s0) = s0/(log log s0)1+ε,
where ε > 0, δ = 1 − 1

B , s0 = n0
ln n0

and n0 is the number of elements in the
latest reconstruction, and that the lower level is implemented as a forest of Lazy
B-trees. Then, the ISB-tree supports search operations in O(logB logn) expected
block transfers with high probability, where n denotes the current number of el-
ements, and update operations in O(1) worst-case block transfers, if the update
position is given. The worst-case update bound is O(logB n) block transfers, and
the structure occupies O(n/B) blocks.

Proof. (sketch) As we have already mentioned, the search operation in the ISB-
tree can be decomposed into two basic steps: (i) the traversal of internal nodes
of the external SIST, and (ii) the search for x in the Lazy B-tree in the bucket
that we located from step (i).

We can prove (in a way similar to that in the proof of [9–Theorem 1]) that
the expected number of block transfers for step (i) is O(h) w.h.p, where h is the
height of the external SIST. The main point of the proof is that the expected
number of blocks in the EREPv array, which we need to linearly scan when
interpolating at a node v, is O(1) w.h.p. Since in our case, the height of the
tree is h = O(logB log s0), where s0 is the number of stored elements at the
latest reconstruction and s0 = O(n), we get that the expected number of block
transfers for step (i) is O(logB logn) w.h.p.

Regarding the complexity of step (ii), we can use the same combinatorial
game of balls and bins introduced in [9] and prove (similarly to [9–Theorem 6])
that w.h.p. the expected number of elements in each bucket is O(log n), when
elements are µ-randomly inserted and randomly deleted, and µ is an unknown
smooth probability density. Since we store the elements of each bucket in a
lazy B-tree, we get from Theorem 1 that the block transfers of step (ii) are
also O(logB logn). Consequently, the total expected complexity of the search
procedure is bounded by O(logB logn) block transfers w.h.p.

Let us now consider the update bound. Between reconstructions the block
transfers for an update are clearly O(1), since we only have to update the appro-
priate Lazy B-tree which can be done in O(1) block transfers (cf. Theorem 1).
The reconstructions can be easily handled by using the technique of global re-
building [13]. With this technique the linear work spent during a global recon-
struction of the upper level structure may be spread out on the updates in such
a way that a rebuilding cost of O(1) block transfers is spent at each update.

Finally, the worst-case search complexity of O(logB n) block transfers can
be achieved by using two data structures, an ISB-tree and a Lazy B-Tree, and
hence storing each element twice. A search for a query element is performed

ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour 325

by searching simultaneously both structures and terminating the search when
locating for the first time the sought element. The worst-case update and space
complexity remain asymptotically unaffected and so the theorem is proven. ��

4 Experimental Evaluation

In this section, we investigate the practical merits of the ISB-tree. We have con-
ducted an experimental study making the customary assumption that the page
size is 4096 bytes, the length of each key is 8 bytes, and the length of each pointer
is 4 bytes. Consequently, each block contains B = 341 elements. We considered
data sets of size n0 ∈ [106, 1012] elements generated by a variety of smooth dis-
tributions, namely uniform, regular, normal and Gaussian. We compared the
implementation of the ISB-tree with that of a B-tree on the same data sets (im-
plementations were carried out in C++). Our main concern was to measure the
performance, in simulated block transfers (I/Os), of the search and update op-
erations. The experimental results regarding the search operations are reported
in Fig. 1. The sequence σ of search operations had length equal to its corre-
sponding data set and the reported values are averages over the whole sequence.
Our experiments revealed that the expected number of block transfers in the
ISB-tree remains constant even for gigantic data sets (Terabytes - TB). More-
over, for data sets larger than 100 GB, the expected number of block transfers
is reduced by a factor ranging from 1/3 (for normal and Gaussian distributions)
to 1/2 (for uniform and regular distributions) compared with the B-tree. This
behaviour is justified by the time complexity of the search operation and by the
fact that for data sets up to 1 TB and block size of 341 elements, the ISB-tree is
a two level structure, where the first level (SIST structure) consists of only one
node equipped with the appropriate EID and EREP arrays, while the second
level (lazy B-tree) consists of only one block of elements. Thus, we need 2 block
transfers in the first level (one for each array) and 1 block transfer in the second
level. Our experiments also show that for uniform and regular distributions, the
position of EREP array (which has been located by its corresponding entry in
EID) points in almost all cases to the correct subset within which the search
has to be continued in the second level. For the case of normal and Gaussian
distributions, we often had to move to the immediately next block and this adds
one additional block transfer to the search operation. Naturally, for small data
sets (smaller than 10 MB), our data structure becomes less efficient than B-trees,
due to the overhead of the two-level structure.

As a final remark, we note that there are applications with uniform key sizes
larger than 8 bytes, resulting in a smaller value of B. The main example of such
applications involve manipulation of strings. In this case, the size of the block
may be as small as 2. Consequently, we expect that in such cases the ISB-tree
will have a much better performance.

Regarding the number of block transfers required for rebalancing after an
update operation to the data structure, we again considered the above values
of n0 ∈ [106, 1012] for our initial data sets upon which we performed update

326 A. Kaporis et al.

One-dimensional elements generated by
Uniform or Regular Distribution

0

1

2

3

4

5

6

7

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

Number of stored elements

N
u

m
b

e
r

o
f

I/
O

s

B-tree I/Os ISB-tree I/Os

One-dimensional elements generated by Normal
or Gaussian Distribution

0

1

2

3

4

5

6

7

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

Number of stored elements

N
u

m
b

e
r

o
f

I/
O

s

B-tree I/Os ISB-tree I/Os

Rebalancing Operations

0

1

2

3

4

5

6

7

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

Number of stored elements

N
u

m
b

e
r

o
f

I/
O

s

B-tree worst-case I/Os ISB-tree worst-case I/Os ISB-tree w/o reconstruction I/Os

Fig. 1. Search performance for uniform and regular distributions (upper left) and nor-
mal and Gaussian distributions (upper right). Block transfers of rebalancing operations
after an update (bottom).

sequences of length n0/2 and 2n0. The data structure is reconstructed every
n0 operations (i.e., we chose c = 1). Our experimental results are reported in
Fig. 1. The values represent averages over the smaller update sequence (where no
reconstruction occurs) and the larger one (where a reconstruction indeed occurs).
We have observed that both numbers of rebalancing operations are independent
of the distribution.

5 Conclusions

We presented a new indexing scheme, the ISB-tree, that supports update oper-
ations in O(1) worst-case block transfers and search operations in O(logB logn)
expected block transfers w.h.p. for a large class of input distributions. The ISB-
tree is innovative in the sense that it shoots down for the first time the optimal
O(logB n) block transfer bound of B-tree and its variants when the updates are
drawn from a large class of input distributions. Its analysis is based on the tra-
ditional I/O model of [1], but we feel that it can also be implemented in the
cache-oblivious model [8] with the same complexities.

Acknowledgements. We thank Y. Theodoridis for several interesting
discussions.

ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour 327

References

1. A. Aggarwal and J.S. Vitter. The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM, 31(9):1116-1127, 1988.

2. A. Andersson and C. Mattson. Dynamic Interpolation Search in o(log log n) Time.
In Proc. 14th International Colloquium on Automata, Languages and Programming
(ICALP). LNCS 700, pp. 15-27, 1993.

3. R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Informat-
ica, 1:173-189, 1972.

4. D. Comer. The Ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137, 1979.
5. R. Fagin, J. Nievergelt, N. Pippinger, H.R. Strong. Extendible Hashing-A fast

access method for dynamic files. ACM Transactions on Database Systems, 4(3):315-
344, 1979.

6. P. Ferragina and R. Grossi. The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. Journal of the ACM, 46(2):236-
280, 1999.

7. E. Fox, Q. Chen, A. Daoud. Practical Minimal Perfect Hash Functions for Large
Databases. Communications of the ACM, 35(5):105-121, 1992.

8. M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. In Proc. 40th IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 285-297, 1999.

9. A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas, and C. Zaroliagis:
Improved Bounds for Finger Search on a RAM. In 11th Ann. European Symp. on
Algorithms (ESA), LNCS Vol. 2832, pp. 325-336. Full version as Tech. Rep. TR-
2003/07/01, Computer Technology Institute, Patras, July 2003.

10. A. Kaporis, C. Makris, G. Mavritsakis, S. Sioutas, A. Tsakalidis, K. Tsichlas and C.
Zaroliagis. ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour.
Computer Technology Institute Tech. Report TR 2005/09/02, September 2005.

11. D.E. Knuth. Sorting and Searching, Vol. 3 of The Art of Computer Programming,
Addison-Wesley, 1973.

12. D.E. Knuth. Deletions that preserve randomness. IEEE Trans. Softw. Eng., 3:351-
359, 1977.

13. C. Levcopoulos and M.H. Overmars: Balanced Search Tree with O(1) Worst-case
Update Time. Acta Informatica, 26:269-277, 1988.

14. W. Litwin. Linear Hashing: A new tool for files and tables addressing. In In Proc.
Int. Conf. on Very Large Databases (VLDB), 6:212-223, 1980.

15. Y. Manolopoulos, Y. Theodoridis, V. Tsotras. Advanced Database Indexing. Kluwer
Academic Publishers, 2000.

16. K. Mehlhorn and A. Tsakalidis. Dynamic Interpolation Search. Journal of the
ACM, 40(3):621-634, 1993.

17. M. Overmars, J. van Leeuwen. Worst Case Optimal Insertion and Deletion Methods
for Decomposable Searching Problems. Information Processing Letters, 12(4):168-
173.

18. B. Seeger and P.A. Larson. Multi-Disk B-trees. In Proc. SIGMOD Conference,
pp. 436-445, 1991.

19. V. Srinivasan and M.J. Carey. Performance of B+ Tree Concurrency Algorithms.
VLDB Journal, 2(4):361-406, 1993.

20. J.S. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys, 33(2):209-271, 2001.

21. D.E. Willard. Searching Unindexed and Nonuniformly Generated Files in log log N
Time. SIAM Journal of Computing, 14(4):1013-1029, 1985.

External Data Structures for Shortest Path
Queries on Planar Digraphs

Lars Arge1,� and Laura Toma2

1 Duke University, Durham, NC 27708 USA
large@cs.duke.edu

2 Bowdoin College, Brunswick, ME 04011 USA
ltoma@bowdoin.edu

Abstract. In this paper we present space-query trade-offs for external
memory data structures that answer shortest path queries on planar
directed graphs. For any S = Ω(N1+ε) and S = O(N2/B), our main
result is a family of structures that use S space and answer queries in
O(N2

SB
) I/Os, thus obtaining optimal space-query product O(N2/B). An

S space structure can be constructed in O(
√

S · sort(N)) I/Os, where
sort(N) is the number of I/Os needed to sort N elements, B is the disk
block size, and N is the size of the graph.

1 Introduction

Let G = (V,E) be a directed graph (digraph) with real edge weights. If G has
no negative-weight cycles, the shortest path δ(s, t) from vertex s to vertex t is
the minimum length path from s to t in G, where the length of a path is defined
as the sum of the weights of its edges. The length of the shortest path δ(s, t)
is called the distance from s to t in G. Shortest path computation is a funda-
mental and well-studied problem that appears in a diverse set of applications. In
recent years, an increasing number of these applications involve massive graphs.
Massive planar graph problems and in particular shortest paths computation
arise frequently in Geographic Information System (GIS), where datasets such
as the ones acquired by missions like NASA Earth Observing System (EOS) or
Space Radar Topography Mission (SRTM) are on the order of terabytes. Envi-
ronmental researchers often need to compute shortest paths for instance when
planning and assessing the impact of new development, or modeling the commu-
nication between areas of conservation for endangered species. When working
with such massive graphs that do not fit in the main memory of even state-of-
the-art machines, transfer of data between main memory and external memory
(such as disk), rather than internal computation time, is often the performance
bottleneck. In such cases it is important to consider algorithms that minimize
Input-Output (or simply I/O) communication.
� Supported in part by the National Science Foundation through RI grant EIA–

9972879, CAREER grant CCR–9984099, ITR grant EIA–0112849, and U.S.–
Germany Cooperative Research Program grant INT–0129182.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 328–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

External Data Structures for Shortest Path Queries on Planar Digraphs 329

The most commonly studied shortest path problems are the single-source-
shortest-path (SSSP) problem and the all-pair-shortest-path (APSP) problem,
where the goal is to find the shortest paths from a source vertex s to all other
vertices in G, and between all pairs of vertices in G, respectively. Several au-
thors have considered I/O-efficient algorithms for these problems. In this paper
we study another variant of the problem, namely the design of I/O-efficient
data structures for answering shortest path queries on planar directed graphs
(digraphs that can be embedded in the plane such that no edges intersect). In
particular, we study the space-query trade-off for such structures; using O(N2)
space we can obviously design a structure that can answer a shortest path dis-
tance query in O(1) I/Os, simply by storing the shortest paths between every
pair of vertices in G. At the other extreme, we can design an O(N) space struc-
ture by simply running an SSSP algorithm to answer a query. Since we are
interested in massive graphs, we are of course interested in data structures that
use close to linear space but answer queries more efficiently that by computing
SSSP on-the-fly. In this paper we develop a family of structures with a trade-off
between space use and the number of I/Os needed to answer a query. Although
this problem has been extensively studied in internal memory [7, 13, 12, 10, 9],
this is the first result of its type in external memory.

1.1 I/O-Model and Related Work

We will be working in the standard two-level I/O model [1], where M is the
number of vertices that can fit into internal memory, and B is the number of
vertices that can fit into a disk block, with1 M < N and 1 ≤ B ≤ M/2. An I/O
is the operation of transferring a block of data between main memory and disk,
and the complexity of an algorithm is measured in terms of the number of disk
blocks and I/Os it uses to solve a problem.

In the I/O-model, the minimal number of I/Os needed to read N input ele-
ments (the “linear bound”) is obviously scan(N) = N/B. The number of I/Os
needed to sort N elements is sort(N) = Θ(N

B logM/B N/B) [1]. For realistic val-
ues of N , B, and M , scan(N) < sort(N) , N , and the difference in running
time between an algorithm performing N I/Os and one performing scan(N) or
sort(N) I/Os can be very significant.

On general digraphs the best known algorithm for SSSP, as well the best
algorithms for the simpler BFS and DFS problems, use Ω(|V |) I/Os. More pre-
cisely, their I/O-complexity is O(min{(|V | + |E|/B) · log |V | + sort(|E|), |V | +
|V |
M

|E|
B }) [8, 11, 17] . However, improved algorithms have been developed for pla-

nar digraphs [5, 6, 3]. On such graphs, SSSP and BFS can be solved inO(sort(N))
I/Os [5], and DFS in O(sort(N) logN/M) I/Os [6]; all these algorithms are based
on I/O-efficient reductions [2, 4, 5, 6] and on an O(sort(N)) I/O planar graph
separator algorithm [19].

1 The planar separator algorithm [19] makes the stronger but realistic assumption that
M > B2 lg2 B; we make this assumption indirectly as we rely on planar separators.

330 L. Arge and L. Toma

The only known I/O-efficient external data structure for answering short-
est path queries is a structure for planar digraphs in [16]. The structure uses
O(N

√
N) space and answers shortest path distance queries in O(

√
N/B) I/Os

(and can report the shortest path with additional O(K/B) I/Os, where K is the
number of edges on the path). Note that the space-query product is O(N2/B).
The structure in [16] is based on an internal memory data structure obtained
independently by Arikati et al [7] and Djidjev [12] using planar separators
and ideas due to Frederickson [14, 15]. In internal memory, this structure has
been generalized to obtain a family of structures, such that a structure us-
ing S ∈ [N,N2] space can answer shortest path distance queries in O(N2/S)
time [12, 10]. Note that the space-query product is O(N2). Improved results
have been obtained for values of S larger then N4/3 [12, 10], as well as for spe-
cial classes of graphs [13, 9]. Similar space-query results and improvements have
not been obtained in external memory; the O(N

√
N) space use of the structure

by Hutchinson et al [16] probably means that it is mostly of theoretical interest
if N is large. Ideas from previous work do not extend in external memory to
small space. Finding space-query trade-offs for close to linear S is harder and it
is precisely the small values of S that are interesting in external memory.

1.2 Our Results

In this paper we obtain the first space-query trade-offs for external data struc-
tures for answering shortest path queries on planar digraphs. Our main re-
sult is a family of structures that can answer shortest path distance queries
in O(N2

SB) I/Os using S = Ω(N1+ε) (and S = O(N2/B)) space, for any ε > 0.
Note that, similarly to the internal memory results, the space-query product is
O(N2/B). An S space structure can be constructed in O(

√
S · sort(N)) I/Os.

For values of S = o(N1+ε), we show that we can still achieve a trade-off but at
the cost of an increased space-query product. More precisely, we show that for
any S ∈ [N log2 N

log log N ,
N2

B], there exists a data structure of size S that can answer

distance queries in O(N2

SB · log N
log(S/(N log N))) I/Os. Our structures can be extended

to answer shortest path queries with an extra O(K/B) I/Os, where K is the
number of edges on the path; for brevity we only consider distance queries.

Our results use ideas similar to the ones in the previously developed internal
structures, i.e. planar separators, but with non-trivial external memory modifi-
cations to make the structure efficient for small S. In Sec. 2 we review planar
separators, and in Sec. 4 we present our new structure. It relies on a structure
for computing distances to the boundary of a planar graph presented in Sec. 3.

2 Preliminaries

A f(N)-separator of an N -vertex graph G = (V,E) is a subset VS of the vertices
V of size f(N), such that the removal of VS partitions G into two subgraphs G1
and G2 of size at most 2N/3. Lipton and Tarjan [18] showed that any planar

External Data Structures for Shortest Path Queries on Planar Digraphs 331

i

t

Gj

s

G

(a) (b) (c)

Fig. 1. (a) Partition of G into clusters Gi (boxed) and separators vertices VS (black).
(b) One cluster Gi in the partition and its adjacent boundary sets. (c) The shortest
path from s to t is is δ(s, t) = minv∈∂Gi,w∈∂Gj {δGi

(s, v) + δ(v, w) + δGj
(w, t)}.

graph has an O(
√
V)-separator. Using this result recursively, Frederickson [15]

showed that for any parameter R ≤ N there exists a subset VS of Θ(N/
√
R)

vertices, such that the removal of VS partitions G into Θ(N/R) subgraphs Gi of
size O(R), where (the vertices in) each Gi is (are) adjacent to O(

√
R) vertices

of VS . We call such a partitioning an R-partition. The vertices in VS are called
the separator vertices and each of the graphs Gi a cluster. The set of separator
vertices adjacent to Gi are called the boundary vertices ∂Gi (or simply the
boundary) of Gi. We use Gi to denote the graph consisting of Gi, ∂Gi and the
subset of edges of E connecting Gi and ∂Gi (Fig. 1(a)). The set of separator
vertices can be partitioned into maximal subsets so that the vertices in each
subset are adjacent to the same set of clusters Gi. These sets are called the
boundary sets of the partition (Fig. 1(b)). If the graph has bounded degree, which
can be ensured for planar graphs using a simple transformation, there exists an
R-partition with only O(N/R) boundary sets [15]. It is shown in [19] how to
compute such an R-partition in O(sort(N)) I/Os, provided that M > B2 log2 B.

All the known internal memory shortest path data structures for planar graphs
exploit R-partitions [12, 7, 10]. Consider an R-partition of a planar digraph, and
let δGi

(s, t) denote the length of the shortest path from vertex s to vertex t in
Gi. The shortest path from s ∈ Gi to t ∈ Gj must go through the boundaries
∂Gi and ∂Gj of Gi and Gj , and thus we can compute the distance from s to
t as δ(s, t) = minv∈∂Gi,w∈∂Gj{δGi

(s, v) + δ(v, w) + δGj
(w, t)} (Fig. 1(c)). The

basic idea is to store the distance from a set of vertices of G to the separator
vertices VS in order to be able to efficiently evaluate this formula for given s
and t. The size of this set of vertices is a function of the available space S: For
small values of S (S ∈ [N,N3/2]) we store only the distances between separator
vertices; to answer a query we basically need to solve a SSSP problem in the two
clusters Gi and Gj . For large values of S (S ∈ [N3/2, N2]) we store the distances
from all vertices in G to all separator vertices, as well as a shortest path data
structure [7, 12] for each cluster; answering a query reduces to using the stored
distances if s, t are in different clusters, or querying the cluster, otherwise.

For large values of S (S ∈ [N2/3, N2]) we can adapt the above strategy to
external memory using the known external shortest path data structure [16];
we obtain a structure that answers distance queries in O(N2

SB) I/Os, i.e. has
the desired O(N2/B) space-query product (details in the full version of this

332 L. Arge and L. Toma

paper). However, for small values of S (S ∈ [N,N3/2]), which are the ones we
are normally interested in when handling massive graphs, a similar adaption
leads to an O(sort(N2

S)) query bound, mainly because of the need to solve SSSP
problems in two clusters. For small values of S, this is no better than running
SSSP from scratch. Note the difference between answering distance queries in
internal and external memory: In internal memory small values of S are easy to
handle because the clusters in the R-division are small enough for it to be efficient
to compute SSSP in linear time in the cluster on-the-fly. In external memory the
problem is easy if S is large because we can store enough additional information
using S, and becomes harder as S gets smaller. However it is precisely the small
values of S that are interesting external memory.

In this paper we show how to use the R-partition in a novel way in order to
obtain a small space data structure. One of the main ingredients in our solution is
a structure for answering all-boundary-shortest-path queries, that is, for finding
shortest paths lengths from a vertex s in a cluster Gi to the vertices on the
boundary ∂Gi. We describe such a structure below.

3 All-Boundary-Shortest-Path Structure

Assume we are given a cluster H of size N and its boundary ∂H such that
|∂H | ≤ c ·

√
N , for some constant c ≥ 1. As usual, we denote H ∪ ∂H as H

and let δH(s, t) denote the length of the shortest path from s to t in H . Let
δH(s, ∂H) denote the list of distances from s to the vertices in ∂H , sorted by
the id of the vertices in ∂H . Similarly, let δH(∂H, s) denote the list of distances
from the vertices in ∂H to s, sorted by the id of the vertices in ∂H .

This section describes an I/O-efficient data structure for all-boundary-short-
est-path queries, that is, for finding the shortest paths δH(s, ∂H) and δH(∂H, s)
between a vertex s in the cluster and the vertices on its boundary. Our structure
improves the straightforwardO(sort(N)) I/Os bound obtained by running SSSP
in H. More precisely, we prove the following.

Lemma 1. Given an N -vertex cluster H and its O(
√
N)-vertex boundary ∂H

we can construct a data structure using O(N logN) space such that δH(s, ∂H)
or δH(∂H, s) can be computed in O(N/B) I/Os for any s in H. The structure
can be constructed in O(

√
N · sort(N)) I/Os.

Our all-boundary-shortest-path data structure is constructed as follows2: we
first compute an N/2-partition for H , that is, a partition of H using a set VS

of O(
√
N) separator vertices into O(1) clusters, each of which contains at most

N/2 vertices and is adjacent to at most
√
N/2 separators. As usual define the

boundary ∂Hi of a clusterHi to be the set of vertices in ∂H∪VS that are adjacent
to vertices in Hi. We then recursively construct an all-boundary-shortest-path
data structure for each cluster Hi and its boundary (to do so we first process

2 We only discuss how to compute δH(s, ∂H). Computing δH(∂H, s) can be done
similarly.

External Data Structures for Shortest Path Queries on Planar Digraphs 333

each Hi in turn such that its boundary has at most c ·
√

|Hi| vertices; details in
the full paper). For each separator or boundary vertex u ∈ VS ∪∂H we compute
the shortest paths in H from u to all vertices v in ∂H . We store these distances
ordered by the vertex id of v ∈ ∂H and secondarily by vertex id of u; thus the
list of distances from ∂Hi to a vertex v ∈ ∂H can be retrieved by scanning this
list in |VS ∪ ∂H |/B =

√
N/B I/Os.

Query: Consider an all-boundary-shortest-path query δH(s, ∂H). The interest-
ing case is when s ∈ Hi (if s is a separator vertex we simply return the list of
O(

√
N) pre-computed distances from s to ∂H). Let w be an arbitrary vertex in

∂H ; we compute δ(s, w) as the shortest way to get from s to a boundary vertex v
ofHi inHi and from v to w inH : that is, δ(s, w) = minv∈∂Hi{δHi

(s, v)+δ(v, w)}.
It can be shown that δ(s, w) is indeed the shortest path from s to w in H . To
compute δH(s, ∂H) we first find the all-boundary-shortest-paths δHi

(s, ∂Hi) us-
ing the recursive data structure for the cluster Hi containing s; let L be the
list of shortest paths returned, L = {δHi

(s, v)|v ∈ ∂Hi}, sorted by the id of
the vertex v ∈ ∂Hi. For every vertex w ∈ ∂H , we compute δ(s, w) by scanning
in parallel the list L and the list of distances from v ∈ VS ∪ ∂H to w (stored
in the structure) and compute the minimum sum δ(s, v) + δ(v, w). This takes
O(

√
N/B) I/Os for every w ∈ ∂H , or O(

√
N ·

√
N/B) = O(N/B) I/Os in to-

tal. Thus, the number of I/Os to answer an all-boundary-shortest-path query
δH(s, ∂H) is given by the recurrence Q(N) = O(N/B) +Q(N/2) with solution
Q(N) = O(N/B) I/Os.

Space: Storing the shortest paths in H from u ∈ VS ∪ ∂H to all vertices v in
∂H uses O(

√
N ·

√
N) = O(N) space. Thus the total space is given by S(N) ≤

O(N) + 2S(N/2) with solution S(N) = O(N logN).

Construction: Processing each cluster Hi such that its boundary has at most
c ·

√
|Hi| vertices can be done as in the R-partition algorithm [19]; this uses

O(sort(N)) I/Os in total for all clusters. Computing the shortest paths in H
from any vertex u ∈ VS ∪ ∂H to all vertices v in ∂H can be done in O(

√
N ·

sort(N)) I/Os. Thus the total pre-processing time is given by the recurrence
P (N) ≤ O(

√
N · sort(N)) + 2P (N/2) with solution P (N) = O(

√
N · sort(N))

I/Os. This concludes the proof of Lemma 1.

4 Shortest Path Data Structure

This section describes the main result of this paper, a data structure for shortest
path queries. As all related work, our structure is based on R-divisions and pre-
computing shortest paths between separator vertices, but it combines these ideas
in a novel way that avoids computation of SSSP inside the cluster and obtains
an optimal space-time trade-off.

334 L. Arge and L. Toma

Let R be a parameterB ≤ R ≤ N/2 andG a bounded-degree3 planar digraph.
Our shortest path data structure for G is constructed as follows:

1. Step 1: Compute an R-partition of G.
2. Step 2: Compute and store the distances between the separator vertices
VS , such that the list of distances between a vertex in ∂Gi and the O(

√
R)

vertices on the boundary of any cluster ∂Gj can be retrieved sorted by vertex
id using O(

√
R/B) I/Os.

3. Step 3: Recursively construct a shortest path structure for each cluster Gi.
4. Step 4: We do the following for each cluster Gi

(a) If M < R ≤ N2/3, we compute and store the distances between all ver-
tices in Gi and vertices in ∂Gi, such that for any s ∈ Gi, δGi

(s, ∂Gi) and
δGi

(∂Gi, s) can be retrieved sorted by vertex id using O(
√
R/B) I/Os.

(b) If R > N2/3, we construct an all-boundary-shortest-path data structure
(Lemma 1) for each Gi.

Below we show how to answer distance queries using the data structure and
analyze its space usage and construction time.

Answering distance queries: To find the distance δ(s, t) between two query ver-
tices s and t we consider the following 4 cases:

(1) If both s and t are separator vertices then we know that δ(s, t) is stored
explicitly (Step 2) and we can thus answer a query in O(1) I/Os.

(2) If s is a separator vertex and t is in cluster Gi (or the symmetrical case)
then it can be shown that δ(s, t) = minv∈∂Gi{δ(s, v) + δGi

(v, t)}. To answer the
query we first obtain the list of distances from s to ∂Gi (sorted by vertex id)
using O(

√
R/B) I/Os (they are stored explicitly in Step 2). Then we obtain the

list δGi
(∂Gi, t) of distances from vertices on ∂Gi to t (sorted by vertex id) in

O(R/B) I/Os as follows: If R ≤ M we load Gi in memory using O(R/B) I/Os
and compute the distances on the fly. If M < R ≤ N2/3 the distances δGi

(∂Gi, t)
are stored explicitly in the data structure (Step 4 (a)) and we can retrieve them
in O(

√
R/B) I/Os; If R > N2/3 we obtain δGi

(∂Gi, t) from the all-boundary-
shortest-path data structure for Gi (Step 4(b)) using O(R/B) I/Os (Lemma 1).
Since the two obtained lists of distances (from s to ∂Gi and from ∂Gi to t) are
both sorted by the vertex id of v we can scan them together to compute the min
sum δ(s, v) + δ(v, t); thus we answer the query using O(R/B) I/Os in total.

(3) If s is in cluster Gi and t is in a different cluster Gj then it can be shown
that δ(s, t) = minv∈∂Gi,w∈∂Gj{δGi

(s, v) + δ(v, w) + δGj
(w, t)}. We obtain the

lists of distances δGi
(s, ∂Gi) sorted by vertex id of v ∈ ∂Gi and δGj

(∂Gj , t)
sorted by vertex id of w ∈ ∂Gj using O(R/B) I/Os as in the previous case. We
compute δ(s, t) as follows: scan the list δGi

(s, ∂Gi) and read the distance from
s to the next vertex v on ∂Gi. For each such distance we scan the distances
δ(v, ∂Gj) and δGj

(∂Gj , t). Since these lists are sorted by id of vertex in ∂Gj , we

3 Any graph can easily be transformed into a graph with each vertex having degree
at most 3 [15].

External Data Structures for Shortest Path Queries on Planar Digraphs 335

can compute δGi
(s, v)+ δ(v, w)+ δGj

(w, t) for each vertex w ∈ ∂Gj by scanning

the lists in parallel. Thus, for every vertex in ∂Gi we scan two lists of size
√
R

each. Throughout this step we keep a running minimum of the smallest distance
encountered so far. This takes in total

√
R ·

√
R/B = O(R/B) I/Os.

(4) If s and t are in the same cluster Gi then it can be shown that δ(s, t) =
min{δGi(s, t),minv,w∈∂Gi{δGi

(s, v) + δ(v, w) + δGi
(w, t)}}. To answer a query

in this case we compute δGi(s, t) using the recursive structure for Gi (Step 3)
and the other term in the minimum in O(R/B) I/Os as above. Computing the
overall minimum thus takes O(R/B) I/Os. Overall the number of I/Os used to
answer a query is given by the recurrence Q(N) = O(R/B)+Q(R) with solution
Q(N) = O(R/B).

Construction. An R-partition of G (Step 1) can be computed in O(sort(N)) [19].
The shortest paths in G between the O(N/

√
R) separator vertices (Step 2) can

be computed in O(N/
√
R · sort(N)) I/Os using the O(sort(N)) I/O SSSP algo-

rithm [5] for each separator vertex. Let L be the list containing the shortest paths
between the separator vertices: L = {δ(u, v)|u, v ∈ VS}. We need to store L such
that for any separator vertex u, the distances between u and the boundary of
any cluster Gj can be retrieved from the list in scan(|∂Gj |) = O(

√
R/B) I/Os.

To do so we first tag each separator vertex with the indices of the clusters it is
adjacent to. Then by sorting and scanning, we merge this list with L; this gives
an augmented list that contains, for every pair of separator vertices (u, v), the
distance δ(u, v) and the indices of the clusters that contain u and v respectively
on their boundary; we then scan the augmented list and, for each pair (u, v),
for every i such that u ∈ ∂Gi and for every j such that v ∈ ∂Gj , we output
(u, v, δ(u, v), i, j). Because we assume G to have bounded degree, each separator
vertex is adjacent to O(1) clusters; therefore every pair (u, v) appears in the
list O(1) times and the size of the list remains O(|L|) = O(N2/R). Finally, we
sort this list by (i, j) and, within the same cluster, by vertex id. Overall we use
O(sort(N2/R)) I/Os. It can be seen that the distances between a vertex u ∈ ∂Gi

and all vertices in ∂Gj are adjacent in the constructed list and can thus be re-
trieved in O(

√
R/B) I/Os. Also, the list Lij of O(R) shortest path distances from

∂Gi to ∂Gj can be retrieved in O(R/B) I/Os. Overall the preprocessing required
by Step 2 of our data structure uses O(N/

√
R · sort(N) + sort(N2/R)) I/Os.

Finally, the shortest paths between the boundary vertices of a cluster and all
vertices in the cluster (Step 4 (a)) can be computed in O(

√
R · sort(R)) I/Os

for each cluster using the O(sort(N)) I/O SSSP algorithm [5] for each boundary
vertex. Processing a cluster into an all-boundary-shortest-path data structure
(Step 4 (b)) takes O(

√
R · sort(R)) I/Os by Lemma 1. Thus the preprocessing

required by Step 4 of our data structure uses O(N
R ·

√
R · sort(R)) = O(N/

√
R ·

sort(R)) I/Os.
Overall the total pre-processing time P (N) is given by the following recur-

rence: P (N) = O(sort(N) +N/
√
R · sort(N) + sort(N2/R)+N/

√
R · sort(R)) +

N/R ·P (R) = O(N/
√
R ·sort(N))+N/R ·P (R) with solution P (N) = O(N/

√
R ·

sort(N)) I/Os.

336 L. Arge and L. Toma

Space. Storing the shortest paths between all O(N/
√
R) separator vertices in

the partition (Step 2) uses O(N2/R) space. If M < R ≤ N2/3 (Step 4(a))
we use N/R · R

√
R = O(N

√
R) space in total to store the distances between

each vertex and all vertices on the boundary of its cluster, which is O(N2/R).
If R > N2/3 (Step 4(b)) we use O(R logR) space on the all-boundary-shortest-
path structures (Lemma 1) in each of the N/R clusters, for a total of O(N logR)
space. The total space used by the data structure is thus given by the recur-
rence S(N) = O(N2/R) + O(N logR) + N/R · S(R) with solution S(N) =
O(max{N2/R,N logR} · logN/RN).

Overall we have proved the following result:

Theorem 1. Given a planar digraph G and R ∈ [B,N/2], a data structure of
size O(max{N logR,N2/R} · logN/RN) can be constructed in O(N√

R
· sort(N))

I/Os such that distance queries can be answered in O(R/B) I/Os.

Consider the effect of R on the space and query time of the data structure.
Note that max{N logR,N2/R} is N2/R for any R < N/ logN and N logR
otherwise. Choosing R = B, we obtain a data structure that uses Θ(N2/B) space
and answers distance queries in O(1) I/Os. This corresponds to building a B-
partition and storing APSP between the N/

√
B separators. As R increases, the

space used by the structure decreases and the query time increases. At the other
extreme, choosing R = N

log N we obtain a data structure of size Θ(N log2 N
log log N) that

answers queries in O(N
B log N) I/Os. A simple calculation shows that if R > N

log N

then the space used by the data structure is N logR · logN/RN = Ω(N log2 N
log log N).

This means that when increasing R beyond N/ logN both the space of the data
structure and the query time go up and we can no longer trade query time for
space. Thus, the space used by our structure is lower bounded by Ω(N log2 N

log log N).

One interesting question is whether one can use less then o(N log2 N
log log N) space and

answer distance queries faster than O(sort(N)) I/Os.
To express the query time directly in terms of the space S used by the data

structure we let R such that S = O(N2

R · logN/RN), or 1
R = 1

N
S

N log N log S
N log N .

Substituting in Theorem 1 above, we obtain:

Lemma 2. Given a planar digraph G and S ∈ [N log2 N
log log N ,

N2

B], a data structure

of size S can be constructed in O(
√

S
log N · log S

N log N · sort(N)) I/Os such that

distance queries can be answered in O(N2

SB · log N
log(S/(N log N))) I/Os

The bounds in Lemma 2 simplify if S is such that S/N = Ω(N ε) for some
ε > 0. In this case note that log N

log(Nε/ log N) = 1
ε = O(1). Thus we obtain our main

result stated in Section 1.2:

Theorem 2. Given a planar digraph G and S = Ω(N1+ε) for some 0 < ε ≤ 1,
a data structure of size O(S) can be constructed in O(

√
S · sort(N)) I/Os such

that distance queries can be answered in O(N2

SB) I/Os.

External Data Structures for Shortest Path Queries on Planar Digraphs 337

The space-query product of our data structure is N2

B · log N
log(S/(N log N)) . For

S = Ω(N1+ε) this is N2

B . As S drops below N1+ε the space-query product
increases, up to a maximum of N2

B · log N
log log N , when S = N log2 N

log log N .

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP and multi-
way planar graph separation. Journal of Algorithms, 53(2):186–2006, 2004.

3. L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and
all-pairs shortest-paths on sparse graphs. In Proc. International Colloquium on
Automata, Languages, and Programming, pages 146–157, 2004.

4. L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. Journal of Graph Algorithms, 7(2):105–129, 2003.

5. L. Arge, L. Toma, and N. Zeh. I/O-efficient topological sorting of planar DAGs.
In Proc. ACM Symp. on Parallel Algorithms and Architectures, 2003.

6. L. Arge and N. Zeh. I/O-efficient strong connectivity and depth-first search for
directed planar graphs. In Proc. IEEE Symp. on Foundations of Computer Science,
pages 261–270, 2003.

7. S. Arikati, D. Chen, L. Chew, G. Das, M. Smid, and C. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In Proc.
European Symp. on Algorithms, LNCS 1136, pages 514–528. Springer, 1996.

8. A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On
external memory graph traversal. In Proc. ACM-SIAM Symp. on Discrete Algo-
rithms, pages 859–860, 2000.

9. S. Chaudhuri and C. Zaroliagis. Shortest path queries in digraphs of small
treewidth. In Proc. International Colloquium on Automata, Languages, and Pro-
gramming, LNCS 944, pages 244–255. Springer, 1995.

10. D. Chen and J. Xu. Shortest path queries in planar graphs. In Proc. ACM Symp.
on Theory of Computation, pages 469–478. ACM Press, 2000.

11. Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proc. ACM-SIAM Symp. on Discrete Al-
gorithms, pages 139–149, 1995.

12. H. Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In
Proc. Graph-Theoretic Concepts in Comp. Science, pages 151–165. Springer, 1996.

13. H. Djidjev, G. Pantziou, and C. Zaroliagis. Computing shortest paths and distances
in planar graphs. In Proc. International Colloquium on Automata, Languages, and
Programming, LNCS 510, pages 327–338. Springer, 1991.

14. G. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985.

15. G. Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM Journal on Computing, 16:1004–1022, 1987.

16. D. Hutchinson, A. Maheshwari, and N. Zeh. An external-memory data structure for
shortest path queries. In Proc. Annual Combinatorics and Computing Conference,
LNCS 1627, pages 51–60, 1999.

338 L. Arge and L. Toma

17. V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 169–177, 1996.

18. R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal
of Applied Math., 36:177–189, 1979.

19. A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using sepa-
rators. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 372–381, 2002.

Improved Approximate String Matching Using
Compressed Suffix Data Structures

Tak-Wah Lam1, Wing-Kin Sung2, and Swee-Seong Wong2,�

1 Department of Computer Science, The University of HongKong, HongKong
twlam@cs.hku.hk

2 School of Computing, National University of Singapore, Singapore
{ksung, wongss}@comp.nus.edu.sg

Abstract. Approximate string matching is about finding a given string pattern
in a text by allowing some degree of errors. In this paper we present a space
efficient data structure to solve the 1-mismatch and 1-difference problems. Given
a text T of length n over a fixed alphabet A, we can preprocess T and give an
O(n
√

log n)-bit space data structure so that, for any query pattern P of length m,
we can find all 1-mismatch (or 1-difference) occurrences of P in O(m log log n
+occ) time, where occ is the number of occurrences. This is the fastest known
query time given that the space of the data structure is o(n log2 n) bits.

The space of our data structure can be further reduced to O(n) if we can af-
ford a slow down factor of logε n, for 0 < ε ≤ 1. Furthermore, our solution
can be generalized to solve the k-mismatch (and the k-difference) problem in
O(|A|kmk(k + log log n)+ occ) and O(logε n(|A|kmk(k + log log n)+ occ))
query time using an O(n

√
log n)-bit and an O(n)-bit indexing data structures,

respectively.

1 Introduction

Consider a text T of length n and a pattern P of length m, both strings over a constant
size alphabet A. The approximate string matching problem is to find all approximate
occurrences of P in T . Depending on the definition of “error”, this problem has two
variations: (1) The k-difference problem is to find all occurrences ofP inT that have edit
distance at most k from P (edit distance is the minimum number of character insertions,
deletions and replacements to convert one string to another); and (2) The k-mismatch
problem is to find all occurrences of P in T that have Hamming distance at most k from
P (Hamming distance is the minimum number of character replacements to convert one
string to another). Both k-difference and k-mismatch problems are well-studied and they
found applications in many areas including computational biology, text retrieval, multi-
media data retrieval, pattern recognition, signal processing, handwriting recognition, etc.

Recently, people are interested in the offline approximate matching problem, in
which, we can preprocess the text T and build some indexing data structure so that
any pattern query can be answered in a shorter time. Jokinen and Ukkonen [6] were the
first to treat the approximate offline matching problem. Since then, many different ap-
proaches have been proposed. Some techniques are fast on the average [8, 9]. However,

� Supported by Institute for Infocomm Research, a member of A*STAR, Singapore.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 339–348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 T.-W. Lam, W.-K. Sung, and S.-S. Wong

they incur a query time complexity depending on n, i.e., in the worst case, they are in-
efficient even if the pattern is very short and k is as small as one. The first solution with
query time complexity independent of n is proposed by Ukkonen [13]. When k = 1
(that is, 1-mismatch or 1-difference problem), Cobbs [3] gave an indexing data structure
using O(n log n) bits space and having O(m2 + occ) query time. Later, Amir et al [1]
proposed an O(n log3 n)-bit indexing data structure with O(m log n log logn + occ)
query time. Then, Buchsbaum et al [2] proposed another indexing data structure which
uses O(n log2 n) bits space so that every query can be solved in O(m log logn+ occ)
time. Cole et. al. [4] further improved the query time. They gave anO(n log2 n)-bit data
structure so that both the 1-mismatch and the 1-difference problems can be solved in
O(m+logn log logn+occ) time, respectively. Recently, in order to target large text in-
dexing like in genomic sequences, Trinh et. al. [12] improves upon the space-efficiency.
They proposed two data structures of sizeO(n logn) bits andO(n) bits with query time
O(m log n+ occ) and O(m log2 n+ occ logn), respectively.

Some of the above results can be generalized for k > 1. Cobbs’s O(n logn)-bit in-
dexing data structure can answer both k-mismatch and k-difference queries

in O(mk+2|A|k + occ) time [3]. Cole et. al. [4] proposed an O(n (c3 log n)k

k! logn)-

bit indexing data structure with query times of O((c1 log n)k log log n
k! +m+ occ) and

O((c2 log n)k log log n
k! +m+ 3k · occ) for the k-mismatch and k-difference problems, re-

spectively, where c1, c2, c3 are constants with c2 > c1. Trinh et. al. [12] gave
O(n log n)-bit and O(n)-bit data structures that can answer a k-mismatch (or a k-
difference) query in O(|A|kmk logn + occ) time and O(|A|kmk log2 n + occ logn)
time, respectively.

All previous data structures for supporting the 1-mismatch (or 1-difference) query ei-
ther require a space ofΩ(n log2 n) bits orΩ(m logn+occ) time. It is an open problem
whether there exists an O(n log n) or even o(n logn)-bit data structure so that every
1-mismatch (or 1-difference) query can be answered in o(m logn + occ) time. In this
paper, we resolve this open problem in the affirmative by presenting a data structure
which uses O(n

√
logn) bit space while every 1-mismatch (or 1-difference) query can

be answered in O(m log logn+ occ) time.
Our result can be further extended in two ways. First, we show that the space of the

data structure can be reduced to O(n) bits if we accept a slow down factor of logε n
for the query time where 0 < ε ≤ 1. Second, the data structure can be extended to
solve the k-mismatch (or the k-difference) problem for k ≥ 1. Our solution can solve
the k-mismatch (or the k-difference) problem in O(|A|kmk(k + log log n) + occ) or
O(logε n (|A|kmk(k + log logn) + occ)) query time, when the text is encoded using
O(n

√
logn)-bit or O(n)-bit indexing data structures, respectively.

2 Preliminaries

2.1 Suffix Array, Inverse Suffix Array, and Ψ Function

Let T [0..n] = t0t1 · · · tn−1 be a text of length n over an alphabet A, appended with a
special symbol tn = ‘$′ that is not in A and is smaller than any other symbol in A. The
j-th suffix of T is defined as T [j..n] = tj · · · tn and is denoted by Tj .

Improved Approximate String Matching Using Compressed Suffix Data Structures 341

The suffix array SA[0..n] of T is an array of integers so that TSA[i] is lexicographi-
cally smaller than TSA[j] if and only if i < j. Note that SA[0] = n. The inverse suffix
array of T is denoted as SA−1[0..n], that is, SA−1[i] equals the number of suffixes
which are lexicographically smaller than Ti.

In this paper, an interval [st..ed] is called the range of the suffix array of T corre-
sponding to a string P if [st..ed] is the largest interval such that P is a prefix of every
suffix Tj for j = SA[st], SA[st+ 1], . . . , SA[ed]. We write [st..ed] = range(T, P).

A concept related to the suffix array is the Ψ [0..n] [5], which is defined as follows:

Ψ [i] = SA−1[SA[i] + 1].

Let tSA and tΨ be the access time of each entry on SA and Ψ respectively. In this
paper, we need a data structure D which supports, for any i, the following operations.

• reports SA[i] in tSA time,
• reports SA−1[i] in tSA time,
• reports Ψ [i] in tΨ time, and
• reports substring(i,l) = T [SA[i]..SA[i] + l − 1] in O(ltΨ) time for some length l.

Lemmas 1 and 3 give two implementations of the data structure D.

Lemma 1. [5] The data structure D can be implemented in O(n log |A|) bits so that
tSA = O(logε n) and tΨ = O(1), where 1 ≥ ε > 0.

Below lemma is needed for the second implementation of the data structure D.

Lemma 2. Let X1, ..., X	 be � subsets of {0, ..., n− 1} such that |Xj | = n/�, 1 ≤ j ≤
�. Then {Ψ j [z]|z ∈ Xj} for all j, can be stored in an O(n� log |A| + |A|	 logn)-bit
data structure such that Ψ j [z], for any z ∈ Xj , can be accessed in O(1) time.

Proof. The result follows from data structures described in Rao’s paper [10]. ��

Lemma 3. The data structure D can be implemented in O(n
√

logn log |A|) bits so
that tSA = O(1) and tΨ = O(1).

Proof. Building the O(n log |A|)-bit data structure in Lemma 1, the Ψ function can be
accessed in O(1) time. Below, we describe O(n

√
logn log |A|)-bit data structures so

that both SA and SA−1 can be computed in O(1) time.
For the access of SA value, recall that Rao [10] gives an implementation of the

compressed suffix array that reports SA[i] in O(1) time using O(n
√

logn) bits for
binary text string (refer to Theorem 4 in [10]). For text on a fixed finite alphabet A,
Rao’s idea can be generalized so that SA[i] can be accessed in constant time using an
O(n

√
logn log |A|)-bit data structure.

For the access of SA−1 value, we need the following data structure. Let � =
√

logn.
First, we store SA−1[x�] for all 0 ≤ x ≤ �n/��, which requires O(n

√
logn) bits.

Then, we need a data structure so that Ψ j [z] can be accessed in O(1) time for any
0 ≤ x ≤ �n/�� and any 1 ≤ j ≤ �. By Lemma 2, such data structure can be stored in
O(n

√
logn log |A| + |A|

√
log n logn) = O(n

√
logn log |A|) bits.

342 T.-W. Lam, W.-K. Sung, and S.-S. Wong

Now we show how to access SA−1[i] given i in constant time. Let y = �i/��,
k′ = i − y�, and z′ = SA−1[y�]. We claim that SA−1[i] = Ψk′

[z′] and k′ ≤ �. Then,
using the data structures above, SA−1[i] can be computed in O(1) time.

Note that y� ≤ i ≤ (y + 1)� and thus, k′ = i− y� ≤ �. It is then easy to verify that
SA[Ψk′

[z′]] = SA[z′] + k′. Since SA[z′] = y�, we have SA[Ψk′
[z′]] = y� + k′ = i.

Thus, the claim follows. ��

2.2 Suffix Tree

A suffix tree for the text T is an edge-labeled rooted directed tree with exactly n + 1
leaves numbered 0 to n. Each edge is labeled with a non-empty substring of T such
that no two outgoing edges from a node have labels with the same first character. For
every node v, its path label plabel(v) is constructed by concatenating the edge labels,
in order, from the root to the node. Note that the path label of every leaf i, is a suffix of
T that starts at position i.

We assumed that the suffixes of the leaves in the suffix tree are lexicographically
ordered so that the collection of leaf nodes from left to right will form the suffix ar-
ray denoted by SA[0..n]. For our approach, we require a suffix tree that support the
following operations:

label(u, v) : returns the label on the edge joining node u to v in O(xtSA) time where
x is the length of the edge label of (u, v).

plen(v) : returns the length of the path label plabel(v) in O(tSA) time .
leftmost(v) : returns the SA index of the leftmost leaf in the subtree rooted at node v

in O(1) time.
rightmost(v) : returns the SA index of the rightmost leaf in the subtree rooted at node

v in O(1) time.
slink(v) : returns a node u if there is a suffix link from node v to node u in O(tΨ)

time.
child(v, c) : returns a childw of the node v if c is a prefix character to string label(v, w)

in O(|A|tSA) time.

Lemma 4. A suffix tree with the above properties can be implemented using
(1) O(n log |A|) bits for tSA = O(logε n) and tΨ = O(1), or (2) O(n

√
logn log |A|)

bits for tSA = O(1) and tΨ = O(1).

Proof. We refer to Sadakane’s paper [11] on compressed suffix tree (CST) implementa-
tion that uses data structure D andO(n) bits for the balanced parentheses representation
of the suffix tree [7]. The space complexities follow from Lemmas 1 and 3. ��

The following result on LCP query is also available.

Lemma 5. [11] Given SA indexes i and j, the length of the longest common prefix
(LCP) between suffixes at positions SA[i] and SA[j], denoted by |lcp(i, j)|, can be
computed inO(tSA) time using additionalO(n) bits data structure. The lowest common
ancestor (LCA) node between any two nodes in the suffix tree can also be computed in
O(tSA) time.

Improved Approximate String Matching Using Compressed Suffix Data Structures 343

2.3 Other Data Structures

Given a suffix tree ST built from the text T , and a query pattern P of length m, we
define the following terminologies and data structures:

Definition 1. Given a node x in ST , let xle and xri denote indexes of SA correspond-
ing to the leftmost and rightmost leaf nodes in the subtree spanned by x.

Based on the above definition, for any node x in ST , we have [xle..xri] = range(T,
plabel(x)).

Definition 2. ArraysFst[1..m] andFed[1..m] are such that [Fst[i]..Fed[i]] = range(T,
P [i..m]) for 1 ≤ i ≤ m. We also define Fst[j] = 0 and Fed[j] = n for j > m.

Lemma 6. Fst[1..m] and Fed[1..m] can be constructed in O(mtΨ +m|A|tSA) time.

Proof. This can be done using the suffix links in ST in O(mtΨ) time, given that
range(T, P [1..m]) can be obtained by traversing the suffix tree in O(m|A|tSA) time.

��

Furthermore, the following lemma is needed to support exact pattern search over a
subtree in the suffix tree.

Lemma 7. Given a pattern P , let x be a node such that [xle..xri] = range(T, P). For
any position i in T , P is a prefix of T [i..n] if and only if xle ≤ SA−1[i] ≤ xri. Also,
SA−1[SA[xle] + |P |] < SA−1[SA[xle + 1] + |P |] < . . . < SA−1[SA[xri] + |P |].

2.4 Heavy Path Decomposition

We introduce a standard technique to partitionO(n) nodes of a tree intoO(log n) levels.
The heavy path decomposition scheme is as such: Given a suffix tree ST , we assign a
level to every node in ST . The root is assigned level 1. If a node v has level i, we assign
level i to the single child node of v, that has the largest subtree (in terms of number of
nodes) among all the other child nodes of v. The other child nodes of v are assigned
level i + 1. Edges joining 2 nodes with the same level are denoted as core edges and
the rest of edges that join nodes at level i to nodes at level i + 1 are denoted as side
edges. An internal node will have exactly one outgoing core edge and the rest of the
outgoing edges are side edges. We also denote a node with an incoming core edge as
a core node and otherwise, a side node. The root, is by default, a side node. There are
O(log n) levels. The followings are also observed:

Lemma 8. There are O(log n) side edges on the path from the root to any node in the
suffix tree.

Lemma 9. Consider any two distinct side edges e1 and e2 with end nodes v1 and v2
respectively. If both v1 and v2 have level i, then the two subtrees rooted at v1 and v2
are disjoint. In other words, the subtrees rooted at any two distinct side nodes of the
same level are disjoint.

344 T.-W. Lam, W.-K. Sung, and S.-S. Wong

Lemma 10. Given any side node v, that begins a core path (where all edges in the path
are core edges), we can find the leaf node u that terminates the core path in O(1) time
using additionalO(n) bits data structure.

Proof. Let ui be the i-th node in the suffix tree according to the prefix order, and t =
O(n) be the number of nodes in the suffix tree. LetX [1..t] be an array such that X[i]=‘(’
if ui is an internal side node and X [j] =′)′ if uj is a core leaf node. It can easily
check that the parentheses in X [1..t] is balance. More importantly, for every pair of
parentheses (i, j) in X , ui and uj form the start and the end of some core path. By the
data structure for balanced parentheses [7], the lemma follows. ��

3 1-Approximate String Matching Problem

3.1 The Data Structure for 1-Approximate Matching

Our 1-approximate matching data structure is basically the suffix tree ST of the text T
(see Section 2.2), together with two other data structures. First, for every side node v
(see Section 2.4), let u be the parent node of v, we maintain a set Γv = {SA−1[SA[i]+
plen(u) + 1] | i = 1(mod log2 n) and vle ≤ i ≤ vri}.

Second, for every core leaf node u (whose SA index is k), let v be the start of
the corresponding core path, we maintain 2 lists of SA indexes, H l

u = {i | i =
1(mod log2 n), i ≤ k and |lcp(k, i)| ≥ plen(v)} and Hr

u = {i | i = 1(mod log2 n),
i > k and |lcp(k, i)| ≥ plen(v)}. The values in H l

u and Hr
u are ordered by increasing

longest common prefix length |lcp(k, i)|.

Lemma 11. We can store Γv for all side nodes v using O(n) bit space. In addition, we
can answer any range query in Γv using O(log logn) time.

Proof. By Lemma 9, all subtrees rooted at different side nodes, of the same level-�, are
disjoint. Hence, the total size of Γv for all level-� side nodes v is at most n/ log2 n.
Since there are O(log n) levels, the total size of Γv for all side nodes v is O(n/ logn).
We store Γv , for every side node v, using the y-fast trie [14] data structure. The size of
the data structure isO(|Γv | logn) bits and it allows efficient range query inO(log logn)
time. Since the total size of all Γv is O(n/ logn), the lemma follows. ��

Lemma 12. We can store H l
u and Hr

u for all core leaf nodes u (whose SA index is
k) using O(n) bit space. In addition, for any range [x..y], we can report the values
il ∈ H l

u and ir ∈ Hr
u such that x ≤ lcp(il, k) ≤ y and x ≤ lcp(ir, k) ≤ y using

O(log logn) time.

Proof. There are at most n/ log2 n selected leaf nodes and each leaf node is reachable
from at most logn different core paths. Hence, the total size of H l

u and Hr
u for all core

paths is O(n/ logn). EachH l
u andHr

u is stored using the y-fast trie [14] data structure.
The size of the data structures is O((|H l

u| + |Hr
u|) logn) bits. Since the total size of all

H l
u and Hr

u is O(n/ logn), the lemma follows. ��

Improved Approximate String Matching Using Compressed Suffix Data Structures 345

By Lemmas 4, 11 and 12,

Lemma 13. The 1-approximate matching data structure can be stored in O(n log |A|)
and O(n

√
logn log |A|) bits for tSA = O(logε n) and tSA = O(1) respectively. In

both cases, tψ = O(1).

Below is the key lemma for our algorithm.

Lemma 14. Consider (1) a node u in ST such that P1 = plabel(u), (2) a character c,
and (3) another string P2 with [st..ed] = range(T, P2). Let v = child(u, c). Then, all
occurrences of P1cP2 can be computed in O(tSA(log logn + occ)) time where occ is
the total number of occurrences of P1cP2 in T .

Proof. Note that [vle..vri] = range(T, P1c). If P = P1cP2 occurs in T , as P1c is a
prefix of P , P must occur at position SA[i] for some vle ≤ i ≤ vri. By Lemma 7, we
can verify if P occurs at position SA[i] by checking if st ≤ SA−1[SA[i]+ |P1|+1] ≤
ed. Hence, the occurrence of P can be found by performing the above checking for
all i ∈ [vle..vri]. Moreover, by Lemma 7, SA−1[SA[i] + |P1| + 1] is increasing for
i ∈ [vle..vri]. Note that, for any i, SA−1[SA[i] + |P1| + 1] can be retrieved in O(tSA)
time. Hence, one occurrence of P can be found in O(tSA log(vri −vle)) time by binary
search.

If v is a side node, recall that we associate a set Γv to it, where Γv = {SA−1[SA[i]+
|P1| + 1] | i = 1(mod log2 n) and i ∈ [vle..vri]}. There are 3 cases.

– Case 1: Γv is empty. This means that the number of leaves in the subtree of v
(vri − vle + 1) is < log2 n. Using the method we just discussed, one occurrence of
P can be found in O(tSA log(vri − vle)) = O(tSA log logn) time.

– Case 2: Γv is non-empty and, by Lemma 11, we find some i such that st ≤
SA−1[SA[i] + |P1| + 1] ≤ ed. Since any range query of y-fast trie takes
O(log logn) time, the second case follows.

– Case 3: Γv is non-empty and, by Lemma 11, we cannot find any i such that st ≤
SA−1[SA[i]+ |P1|+1] ≤ ed. In this case, usingO(log logn) time, we apply y-fast
trie to find a and b such that SA−1[SA[a] + |P1| + 1] ∈ Γv is just smaller than st
and SA−1[SA[b] + |P1|+ 1] ∈ Γv is just bigger than ed. Note that b− a ≤ log2 n.
Then, using the method described at the beginning of the proof, we can found one
occurrence of P in O(tSA log(b− a)) = O(tSA log logn) time.

If v is a core node, let CP be the core path containing v. Since the side node lies
on the path from the root node to v and would have been uncovered from traversing
the suffix tree to obtain P1, here we assume that the side node that begins the core path
CP is known. We obtain the terminating leaf node x (whose SA index is k) of CP by
Lemma 10 using O(1) time. Next, we search for the node r ∈ CP whose path label is
of length |P1| + q + 1 where q = |lcp(SA−1[SA[k] + |P1| + 1], st)|. By Lemma 5, q
is computed in O(tSA) time. There are 3 cases.

– Case 1: Hx is empty. This means that the number of leaves hanging from the core
path is < log2 n. We can find one occurrence of P in O(tSA log(vri − vle)) =
O(tSA log logn) time.

346 T.-W. Lam, W.-K. Sung, and S.-S. Wong

– Case 2: q ≥ |P2|. This means that leaf node x corresponds to a suffix with P as its
prefix. We have recovered one occurrence of P .

– Case 3: q < |P2|. First, we would like to find jl ∈ H l
x and jr ∈ Hr

x such that
|lcp(jl − log2 n, k)| ≤ |P1| + q + 1 ≤ |lcp(jl, k)| and |lcp(jr, k)| ≤ |P1| + q +
1 ≤ |lcp(jr + log2 n, k)| respectively. This can be computed in O(log logn) time
given Lemma 12. Next, using binary search, we locate il and ir within the range
of jl − log2 n...jl and jr...jr + log2 n such that |lcp(il, k)| = |P1| + q + 1 and
|lcp(ir, k)| = |P1| + q + 1 respectively. If both jl and jr are not found, the binary
search is performed for k − log2 n ≤ il ≤ k + log2 n. The binary search takes
O(tSA log logn) time. Given il or ir whichever one is found, we can recover node
r by performing a LCA on the leaf node at il or ir with x in O(tSA) time. If P2 is
not completely matched after node r, we can continue to search the outgoing side
edges from node r as described above (case where v is a side node) using additional
O(tSA log logn) time. Overall, the time taken is still O(tSA log logn).

Once we confirm that P occurs in position SA[i], the remaining occurrences of P
can be found by performing, for entries i′ to the left and to the right of i, the above
checking (that is, st ≤ SA−1[SA[i′] + |P1| + 1] ≤ ed), until we reach the boundary of
[vle..vri] or a false case occurs. The time required is O(tSA(occ+ 2)). ��
Here, we define the procedure TreeSearch(u, c, [st..ed]) to be the routine which finds
all the occurrences of P1cP2 where P1 = plabel(u) and [st..ed] = range(T, P2). By
Lemma 14, this procedure runs in O(tSA(log logn+ occ)) time.

3.2 The 1-Approximate Matching Algorithm

The algorithm traverses the suffix tree from the root to find the pattern P character
by character. Then, for every position i, it introduces an “error” at that position and
checks for occurrences by calling TreeSearch. The details of the algorithm is stated
in Figure 1.

Lemma 15. Given the indexing data structure in Section 3.1, we can locate all 1-
mismatch (or 1-difference) occurrences of a length-m pattern P in T , using O(tΨm+
tSA(|A|m log logn+ occ)) time.

Proof. By Lemma 6, Step 1 takes O(mtΨ +m|A|tSA) time. Step 2 takes O(1) time.
When we traverse down the suffix tree to a node u (with plabel(u) = P [1..i − 1]),

we will execute Steps 3(a-c) for the node u. By Lemma 14, Steps 3(a-c) in total takes
O(tSA(|A|m log logn+ occ)) time.

For Step 3(d), it takes O(tSA|A|m) time. The lemma follows. ��
By Lemmas 13 and 15, we get the following 2 theorems:

Theorem 1. Given an O(n
√

logn log |A|)-bit indexing data structure, the 1-mismatch
or 1-difference problem can locate all 1-approximate occurrences of a length-m pattern
P in T , using O(|A|m log logn+ occ) time.

Theorem 2. Given an O(n log |A|)-bit indexing data structure, the 1-mismatch or 1-
difference problem can locate all 1-approximate occurrences of a length-m pattern P
in T , using O(logε n(|A|m log logn+ occ)) time, where 0 < ε ≤ 1.

Improved Approximate String Matching Using Compressed Suffix Data Structures 347

Algorithm 1-approximate match
1. Construct Fst[1..m] and Fed[1..m] such that [Fst[i]..Fed[i]] = range(T,P [i..m]).
2. u = root node, i = 1.
3. Repeat

/* Note: we maintain the invariant that plabel(u) = P [1..i − 1]. */
(a) Deletion at i (find occurrences of P [1..i− 1]P [i + 1..m])

If P [i] �= P [i + 1]
report the occurrences found by TreeSearch(u,P [i+1], [Fst[i+2]..Fed [i+

2]]).
(b) Substitution at i (find occurrences of P [1..i−1]cP [i+1..m] for all c ∈ A−{P [i]})

For c ∈ A− {P [i]},
report the occurrences found by TreeSearch(u, c, [Fst[i + 1]..Fed[i + 1]]).

(c) Insertion at i (find occurrences of P [1..i− 1]cP [i..m] for all c ∈ A− {P [i]})
For c ∈ A− {P [i]},

report the occurrences found by TreeSearch(u, c, [Fst[i]..Fed [i]]).
(d) No insertion, deletion, and substitution at i

Let v = child(u, P [i]), E = label(u, v).
If P [i..i + |E| − 1] = E

u = v, i = i + |E|
Else

Find the smallest j > i such that P [j] �= E[j − i + 1].
Report all the occurrences of P so that the error is at j.
Terminate and return.

Fig. 1. Algorithm for 1-mismatch and 1-difference

3.3 The k-Approximate Matching Problem with k ≥ 1

Theorem 3. After preprocessing the text T of length n and obtain an
O(n

√
logn log |A|) or O(n log |A|) bits data structure, the k-mismatch or k-difference

problem can locate all approximate occurrences of a length-m pattern P in T , using
O(|A|kmk(k + log logn) + occ) or O(logε n(|A|kmk(k + log logn) + occ)) time re-
spectively, where 0 < ε ≤ 1, |A| is the fixed alphabet size and occ is the number of
approximate occurrences of P in T .

Proof. We give a sketch of the proof here. The k-approximate matching problem can be
solved using dynamic programming on the suffix tree in O(|A|kmkmk) time. The fac-
tor |A|kmk is the number of different paths down the suffix tree that are to be traversed,
which is bounded by the number of edit traces [13]. By merging our data structure in
Section 3.1 to compute only for the kth error, with dynamic programming over the suf-
fix tree, we can obtain the stated complexities. ��

4 Conclusion

In this paper, we give an O(n
√

logn)-bit data structure which can answer 1-mismatch
(and 1-difference) query in O(m log logn + occ) time. If we can afford a slow down

348 T.-W. Lam, W.-K. Sung, and S.-S. Wong

factor of logε n for the query time, the size of the data structure can be further reduced
to O(n) bits. We also generalize our solution to solve k-mismatch and k-difference
problems.

Acknowledgments

The authors would like to thank Limsoon Wong for his helpful comments. This work is
supported in part by the NUS Academic Research Grant R-252-000-119-112.

References

1. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M. Rodeh. Text
indexing and dictionary matching with one error. Journal of Algorithms, 37(2):309–325,
2000.

2. A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching over tree cross
products. In Proceedings of the 8th Annual European Symposium on Algorithms, pages 120–
131, 2000.

3. A. L. Cobbs. Fast approximate matching using suffix trees. In Proceedings of the 6th Annual
Symposium on Combinatorial Pattern Matching, pages 41–54, July 1995.

4. R. Cole, L-A. Gottlieb, and M. Lewenstein. Dictionary matcing and indexing with errors and
don’t cares. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 91–100, 2004.

5. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. In Proceedings of the 32nd ACM Symposium on Theory of
Computing, pages 397–406, 2000.

6. P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts. In
Proceedings of the 16th International Symposium on Mathematical Foundations of Computer
Science, pages 240–248, September 1991.

7. J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffix trees. Journal of Algorithms,
39:205–222, 2001.

8. G. Navarro and R.Baeza-Yates. A hybrid indexing method for approximate string matching.
Journal of Discrete Algorithms, 1(1):205–239, 2000.

9. G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximate q-grams.
In Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching, pages
350–365, 2000.

10. S. S. Rao. Time-space trade-offs for compressed suffix arrays. Information Processing
Letters, 82:307–311, 2002.

11. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Systems,
Accepted.

12. H. N. D. Trinh, W. K. Hon, T. W. Lam, and W. K. Sung. Approximate string matching using
compressed suffix arrays. In Proceedings of the 15th Annual Symposium on Combinatorial
Pattern Matching, pages 434–444, 2004.

13. E. Ukkonen. Approximate string-matching over suffix trees. In Proceedings of the 4th
Annual Symposium on Combinatorial Pattern Matching, pages 228–242, 1993.

14. D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Infor-
mation Processing Letters, 17:81–84, August 1983.

Monitoring Continuous Band-Join Queries over
Dynamic Data�

Pankaj K. Agarwal, Junyi Xie, Jun Yang, and Hai Yu

Department of Computer Science, Duke University,
Durham, NC 27708-0129, USA

{pankaj, junyi, junyang, fishhai}@cs.duke.edu

Abstract. A continuous query is a standing query over a dynamic data
set whose query result needs to be constantly updated as new data arrive.
We consider the problem of constructing a data structure on a set of
continuous band-join queries over two data sets R and S, where each
band-join query asks for reporting the set {(r, s) ∈ R×S | a ≤ r−s ≤ b}
for some parameters a and b, so that given a data update in R or S, one
can quickly identify the subset of continuous queries whose results are
affected by the update, and compute changes to these results.

We present the first nontrivial data structure for this problem that si-
multaneously achieves subquadratic space and sublinear query time. This
is achieved by first decomposing the original problem into two indepen-
dent subproblems, and then carefully designing data structures suitable
for each case, by exploiting the particular structure in each subproblem.

A key step in the above construction is a data structure whose perfor-
mance increases with the degree of clusteredness of the band-joins being
indexed. We believe that this structure is of independent interest and
should have broad impact in practice. We present the details in [1].

1 Introduction

In contrast to traditional queries, where each query is executed once on a given
set of items, a continuous query is a standing query over a set of items that,
once issued by the user, needs to keep generating new results (or changes to old
results) subject to the same query condition, as new items continue to arrive in a
stream. Continuous query processing has recently attracted much interest from
the database community because of its wide range of traditional and emerg-
ing applications, especially in data streaming settings; see [3, 4, 6, 13] and the
references therein.

One of the main challenges in continuous query processing is how to monitor
a large number of continuous queries over dynamically changing data. For each
� Research by P.A. and H.Y. is supported by NSF under grants CCR-00-86013, EIA-

01-31905, CCR-02-04118, and DEB-04-25465, by ARO grants W911NF-04-1-0278
and DAAD19-03-1-0352, and by a grant from the U.S.–Israel Binational Science
Foundation. Research by J.X. and J.Y. is supported by NSF CAREER award under
grant IIS-0238386.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 349–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

350 P.K. Agarwal et al.

incoming data update, one needs to identify the subset of continuous queries
whose results are affected by the data update, and compute changes to these
results. If there are many continuous queries, then a brute-force approach that
processes each of them in turn will be too inefficient to meet the response-time
requirement of most target applications, and faster techniques are needed.

An interesting aspect of continuous query processing is the interchangeable
roles played by queries and data: Continuous queries can be treated as data,
while each data update can be treated as a query requesting the subset of con-
tinuous queries affected by the update. Thus, to preprocess simple continuous
queries, it is natural to apply indexing and query processing techniques which
were traditionally intended for preprocessing data. For example, one can simply
use R-trees to monitor a large number of continuous rectangular range queries
over a dynamic point set in R2. However, for more complex continuous queries,
especially those involving joins between multiple dynamic data sets, designing
both space- and query-efficient data structures turns out to be interesting.

Problem Statement. Let R,S ⊆ R be two different data sets. A band-join
query on R and S, denoted by J(a, b) for some parameters a, b ∈ R, asks for
reporting the set J(a, b) =

{
(r, s) ∈ R × S | a ≤ r − s ≤ b

}
. Band-join queries

naturally arise in many continuous query applications, and form the basis of
more complex join queries [5, 6, 9]. In this paper we are interested in monitoring
a set of continuous band-join queries when data are inserted or deleted from R or
S. More precisely, let Q = {Q1, · · · , Qn} be a set of continuous band-join queries
on R and S, where Qi = J(ai, bi) and ai ≤ bi, ai, bi ∈ R. We are interested
in supporting the following two functions when an element s is inserted into or
deleted from S (the case where R is updated is entirely symmetric):

(Maintaining affected joins). Report all pairs (r,Qi), where r ∈ R and Qi ∈
Q, such that ai ≤ r − s ≤ bi. Each reported pair (r,Qi) corresponds to an
element (r, s) ∈ R× S to be inserted into or deleted from the result of Qi.

(Reporting affected joins). Report all Qi ∈ Q such that ai ≤ r − s ≤ bi
for some r ∈ R. They are the subset of queries in Q whose results have
been affected by the insertion or deletion of s. This functionality is useful in
settings in which it suffices to detect and report that Qi has been affected,
while the actual result of Qi may be computed later on demand.

These two functionalities can be reduced to the following abstract problem.
We say that an interval γ ⊂ R is stabbed by a point x ∈ R if x ∈ γ. Let
X = {x1, . . . , xm} be a set of m points in R, and I = {[a1, b1], . . . , [an, bn]}
be a set of n (closed) intervals in R. Consider in the following queries on X
and I: (Q1) Given a displacement ∆x ∈ R, report the set of all point-interval
pairs (x, γ), where x ∈ X and γ ∈ I, so that x + ∆x stabs γ. (Q2) Given a
displacement ∆x ∈ R, report the set of all intervals in I that are stabbed by at
least one point in X +∆x.

We are also interested in the following update operations: (U1) Add/remove
a point in X . (U2) Add/remove an interval in I.

Monitoring Continuous Band-Join Queries over Dynamic Data 351

In the context of monitoring continuous band-joins, note that if we set XR =
R and IQ = {[ai, bi] | Qi ∈ Q}, then maintaining affected joins corresponds
to a (Q1) query on XR and IQ with ∆x = −s, and reporting affected joins
corresponds to a (Q2) query on XR and IQ with the same ∆x. Also note that
when an element is inserted into or deleted from R, or when a query is added
into or deleted from Q, we need to update the data structure for XR and IQ;
this corresponds to the operations (U1) and (U2).

Our Results. As the problem of monitoring continuous band-joins is equivalent
to (Q1) and (Q2) queries, we shall focus our attention on these two queries from
now on. For either query, a straightforward data structure with O(m + n) size
and O(m+n) query time has been known and actually used in practice for some
time in the database community [5]. However, the query time of this approach
is quite unsatisfactory. In the other extreme, a data structure with O(mn) size
and O(log(mn)) query time is not hard to design either (see Lemma 1). But in
this case, the size of the structure becomes problematic.

A natural open problem is whether there exists a data structure that fits
between the above two extremes. We answer this question in the affirmative. In
Section 2, we present the first nontrivial data structure for (Q1) and (Q2) that
simultaneously achieves o(mn) size and o(m+n) query time. This demonstrates
an intriguing tradeoff between the space and query time for both queries. Our
construction proceeds by decomposing the original problem into two independent
subproblems, and then carefully designing data structures suitable for each case,
by exploiting the particular structure in each subproblem.

We should point out that the above structure is mostly of theoretical interest.
However, in solving one of the subproblems, we have devised a data structure
whose performance increases with the degree of clusteredness of the input in-
tervals in I. Because in practice the intervals are often naturally clustered, we
believe that this structure is of independent interest and can lead to a practically
more efficient approach. We further comment on this structure in Section 2.2;
details are given in [1].

Related Work. Since dynamic data is ubiquitous in the real world, there
has been a lot of work on designing efficient dynamic data structures for an-
swering various queries; see, for example, the monograph by Overmars [15] and
the survey by Chiang and Tamassia [7]. Motivated by more recent applications
such as sensor networks, there has also been much research on maintaining var-
ious synopsis structures of the data in the data stream model [14], such as
ε-approximations [2, 16], histograms [12] and so on, so that various statistical
queries can be answered quickly. However, most of the above work only deals
with non-continuous queries (i.e., each query is executed once on the current data
set). Recently, motivated by a wide range of emerging applications, there has be
a flurry of activity on studying continuous queries in the database community
(see e.g., [3, 4]). But to the best of our knowledge, the problem of monitoring
continuous queries has not yet received much attention from algorithms research
community so far.

352 P.K. Agarwal et al.

2 The Construction

The main result of this section is a data structure of size o(mn) that answers (Q1)
and (Q2) queries in o(m+n) time. We first decompose the original problem into
two subproblems, and then solve the two subproblems respectively (Sections 2.1
and 2.2). By putting pieces together and choosing appropriate parameters, we
obtain the desired bounds on the size and query time (Section 2.3).

Let r ∈ N be a parameter to be fixed later. We first partition I into O(n/r)
groups in the following manner (see Figure 1). We sort the 2n endpoints of I
and pick every 2r-th endpoint. Thus a set of n/r points are picked. Let I0 be the
subset of intervals in I that are stabbed by any of these picked points. Note that
each of the remaining intervals in I \ I0 lies entirely between two consecutive
picked points. We let Ii ⊂ I denote the subset of intervals lying entirely between
the (i − 1)-th and the i-th picked points, for 1 ≤ i ≤ n/r + 1, where the 0-th
and (n/r + 1)-th picked points are defined to be −∞ and +∞. In this way, the
set I is partitioned into a collection of disjoint subsets I0, I1, · · · , In/r+1, where
|Ii| ≤ r for all i ≥ 1.

I1 I2 I3

I0

I

Fig. 1. The partition of I . Dashed Intervals belong to I0, and solid intervals belong to
I1, I2, . . ., respectively.

Next, assume that the elements in X = {x1, x2, · · · , xm} are in sorted order.
We also partition X into m/r subsets X1, X2, · · ·, each of size at most r, where
Xi = {x(i−1)r+1, x(i−1)r+2, . . . , xir}, for 1 ≤ i ≤ m/r.

The overall data structure D(X, I) for answering (Q1) and (Q2) queries on
X and I consists of two separate structures: D(X, I0) for answering the same
queries on X and I0, and D(X, I \ I0) for answering the same queries on X and
I \I0. The structure D(X, I \I0) further consists of a collection of data structures
D(Xi, Ij) on Xi and Ij , for every i ≥ 1 and j ≥ 1. We now describe each of these
components.

2.1 Structure D(X, I \ I0)

The structure D(X, I \ I0) consists of a collection of data structures D(Xi, Ij)
for each i, j ≥ 1. We first describe a general data structure of quadratic size
and logarithmic query time for (Q1) and (Q2) queries, and then apply it to each
D(Xi, Ij). In the subsequent discussions, we assume that the reader is familiar
with interval trees [8].

Clearly, an interval [ai, bi] ∈ I is stabbed by xj + ∆x if and only if ∆x ∈
[ai − xj , bi − xj]. Therefore, to answer (Q1), we build an interval tree on the set

Monitoring Continuous Band-Join Queries over Dynamic Data 353

of intervals I−X =
{
[ai−xj , bi−xj] | [ai, bi] ∈ I, xj ∈ X

}
. The size of the tree is

bounded by O(|I−X |) = O(mn), and the preprocessing time is O(mn log(mn)).
Given a query ∆x ∈ R, we find the set of intervals in I −X stabbed by ∆x. For
each such interval [ai − xj , bi − xj], we report the pair (xj , [ai, bi]) ∈ X × I. The
query time is bounded by O(log(mn) + k), where k is the output size. The data
structure can be made dynamic by using a dynamic interval tree [7]. Note that
in our context, insertion or deletion of a point in X or an interval in I involves
inserting or deleting n or m intervals, respectively, in the interval tree.

Similarly, to answer (Q2), observe that an interval [ai, bi] ∈ I is stabbed
by any point of X + ∆x if and only if ∆x ∈

⋃
xj∈X [ai − xj , bi − xj]. The set⋃

xj∈X [ai − xj , bi − xj] can be written as the union of a set Ii of at most m
mutually disjoint intervals. We build an interval tree on intervals in

⋃n
i=1 Ii.

Given a query ∆x ∈ R, we find the set of intervals in
⋃n

i=1 Ii that are stabbed
by ∆x. For each such interval γ, if γ ∈ Ii, we report the interval [ai, bi] ∈ I. Note
that each interval in I is reported at most once, and hence the query time is
O(log(mn)+k), where k is the number of intervals reported. The data structure
can also be made dynamic easily.

Lemma 1. A data structure of size O(mn) can be constructed in O(mn log(mn))
time so that (Q1) and (Q2) can be answered in O(log(mn) + k) time, where k
is the output size. Each (U1) operation takes O(n log(mn)) time, and each (U2)
operation takes O(m log(mn)) time.

We use Lemma 1 to preprocess each pair Xi and Ij (i, j ≥ 1) into a data
structure D(Xi, Ij) of size O(r2) so that (Q1) and (Q2) on Xi and Ij can be
answered in O(log r+ k) time, where k is the output size. Given a displacement
∆x, we can find all stabbing pairs in (X+∆x)× (I \ I0) by scanning X1, X2, . . .
and I1, I2, . . ., and querying at most O((m + n)/r) data structures D(Xi, Ij) as
follows. For convenience, we denote the leftmost point in Xi by l(Xi), and the
rightmost point in Xi by r(Xi). Similarly, we denote the leftmost endpoint in Ii
by l(Ii) and the rightmost endpoint in Ii by r(Ii). Notice that r(Xi) ≤ l(Xi+1)
and r(Ii) ≤ l(Ii+1). A (Q1) or (Q2) query on X and I \ I0 can be answered in
a way similar to the merge procedure of the merge-sort algorithm. Initially we
let Y = X1 and J = I1. Suppose at a certain stage Y = Xi and J = Ij . We first
check whether [l(Y)+∆x, r(Y)+∆x]∩ [l(J), r(J)] �= ∅. If so, there is a potential
stabbing between a point in Y and an interval in J , and we use D(Y, J) to report
all such stabbings; otherwise Y does not stab J , and we report nothing. Then, if
r(Y) +∆x > r(J), we let J = Ij+1; otherwise, we let Y = Xi+1. The procedure
is repeated until all Xi and Ij are processed. Clearly, the above procedure probes
at most O((m + n)/r) data structures D(Xi, Ij), each requiring O(log r) time
plus the time for reporting. Therefore the total time spent is O(m+n

r · log r+ k).
There is one problem: If we rely on Lemma 1 to construct D(Xi, Ij) for each

i, j ≥ 1, we need O(r2) space for each D(Xi, Ij), leading to an overall data
structure of size O(mn). To fix this problem, we store all D(Xi, Ij) compactly,
using a method from Dumitrescu and Steiger [10]. The observation is that, for
the data structure described in Lemma 1 on a point set Y and an interval

354 P.K. Agarwal et al.

set J , the combinatorial description of this structure is fully determined by the
ordering of all the endpoints of J−Y . Using this combinatorial description of the
structure and the values of J and Y , (Q1) and (Q2) can be answered as before.
If the sizes of Y and J are at most r, then the number of possible different
orderings of the endpoints of J − Y is rO(r) [11]. For each possible ordering,
we construct a complete combinatorial description of the data structure with
respect to this ordering. For each pair of Xi and Ij , we determine the ordering
of the endpoints of Ij −Xi, and map this pair to the combinatorial description
of D(Xi, Ij) according to this ordering. Therefore, the total space needed is
O(mn/r2 + rO(r) · r2) = O(mn/r2 + rO(r)).

Lemma 2. The data structure D(X, I \ I0) has size O(mn/r2 + rO(r)), and
answers (Q1) or (Q2) queries on X and I \ I0 in O(m+n

r · log r + k) time.

2.2 Structure D(X, I0)

Given a set I of n intervals, a stabbing set of I is a set P ⊆ R of points so that
each interval in I is stabbed by at least one point of P . We denote by τ(I) the
size of the smallest stabbing set of I. It is well known that a stabbing set of I of
size τ(I) can be computed in O(n logn) time by the following greedy algorithm:
first sort the intervals in I by their left endpoints; then examine each of them
from left to right, and find a maximal number of leftmost intervals so that they
have a nonempty common intersection, stab these intervals by an arbitrary point
from their common intersection, and repeat this step for the remaining intervals.

We first present a general data structure for answering (Q1) and (Q2) queries
on X and I whose size and query time depend on the parameter τ = τ(I). Then
D(X, I0) is constructed by simply applying this data structure on X and I0.
We treat (Q1) and (Q2) separately; in particular, the data structure for (Q1) is
simpler than that for (Q2).

(Q1) queries. The data structure relies on the following observation.

Lemma 3. A data structure of size O(n) can be built in O(n log n) time so that
the stabbing query on a set I of n intervals (i.e., reporting the subset of intervals
in I that are stabbed by a query point x) can be answered in O(log τ + k) time,
where k is the number of reported intervals.

Proof. We first compute a stabbing set P = {p1, p2, . . . , pτ} of size τ using
the greedy algorithm described above. In fact, this algorithm also returns I =
{Ii | 1 ≤ i ≤ τ}, a partition of I into τ subsets, so that every interval in Ii is
stabbed by pi. Let li = min[aj ,bj]∈Ii

aj and ri = max[aj,bj]∈Ii
bj; clearly we have

li ≤ pi ≤ ri. Let H = {[li, ri] | 1 ≤ i ≤ τ} be the covering interval set of I
with respect to P ; intuitively, each covering interval [li, ri] in H is the union of
all intervals in Ii. We construct an interval tree [8] T on the set H. In addition,
for each Ii, we store two copies of Ii: (i) I l

i , which sorts the intervals in Ii in
increasing order of their left endpoints, and (ii) Ir

i , which sorts the intervals in
Ii in decreasing order of their right endpoints. The size of the data structure is
O(τ + n) = O(n), and the preprocessing time is O(n log n).

Monitoring Continuous Band-Join Queries over Dynamic Data 355

Given a query point x, the stabbing query is answered as follows. With the
interval tree T, we find in O(log τ + k′) time the k′ covering intervals in H that
are stabbed by x. If a covering interval [li, ri] ∈ H contains x, we compare pi

and x. If x ≤ pi, then we scan I l
i and report each interval until we encounter an

interval whose left endpoint lies to the right of x. Symmetrically, if x > pi, then
we scan Ir

i and report each interval until we encounter an interval whose right
endpoint lies to the left of x. The correctness of this procedure is easy to verify.
Note that if [li, ri] is stabbed by x, then at least one interval in Ii is stabbed by
x, and therefore k′ ≤ k, where k is the number of reported intervals. Hence, the
total query time can be bounded by O(log τ + k). �

Returning to our original problem, note that a (Q1) query is equivalent to
a stabbing query on I − X with the query point ∆x, as shown in Section 2.1.
Thus naturally we want to apply Lemma 3. Observe that if P = {p1, p2, . . . , pτ}
is a stabbing set for I, then P −X = {pi − xj | pi ∈ P, xj ∈ X} is a stabbing
set of size at most mτ for I −X , and if I = {I1, . . . , Iτ} is a partition of I with
respect to P , then I − X = {Ii − xj | 1 ≤ i ≤ τ, 1 ≤ j ≤ m} is a partition of
I −X with respect to P −X . If we simply apply Lemma 3 directly, we would
get a structure of size O(|I − X |) = O(mn) for (Q1) queries. Hence, we need
to be more careful. Observe that for any 1 ≤ i ≤ τ and 1 ≤ j ≤ m, Ii and
Ii − xj are congruent in the sense that the sequence Ii − xj is obtained from Ii
by translating each interval by −xj . Thus, it suffices to store Ii. In more detail,
we proceed as follows.

Let H be the covering interval set of I with respect to P , as defined in the
proof of Lemma 3. We preprocess the intervals in H −X for stabbing queries,
using an interval tree, as in Lemma 3. In addition, we store the sequences I l

i and
Ir
i for 1 ≤ i ≤ τ . Let ∆x be a query displacement. We first report all intervals

in H − X stabbed by ∆x. Suppose an interval [li − xj , ri − xj] is stabbed by
∆x. We then wish to report all intervals in Ii − xj that contain ∆x, which is
equivalent to reporting the intervals in Ii stabbed by xj + ∆x. This reporting
can be done by the procedure described in Lemma 3. The overall query time is
O(log(mτ) + k), where k is the output size. The data structure uses O(mτ + n)
storage, and can be constructed in O(n log n+mτ log(mτ)) time.

(Q2) queries. Similar bounds for (Q2) can also be obtained. The major differ-
ence is that, we have to make sure each stabbed interval is reported only once.
This is achieved by using the notion of (i, j)-intervals introduced below. Again,
we first compute a stabbing set P = {p1, p2, . . . , pτ}, the corresponding partition
I = {Ii | 1 ≤ i ≤ τ} of I, and the covering interval set H = {[li, ri] | 1 ≤ i ≤ τ}.
For simplicity, let us assume −∞ = x0 < x1 < x2 < · · · < xm < xm+1 = +∞.

Definition 1. Given 1 ≤ i ≤ τ and 0 ≤ j ≤ m, an (i, j)-interval is a maximal
interval γ ⊂ [pi − xj+1, pi − xj) so that for any ∆x ∈ γ, (X +∆x) ∩ [li, ri] �= ∅.

We remark that there may be more than one (but at most two) (i, j)-interval
for a fixed i and j. Intuitively, each (i, j)-interval corresponds to a contiguous
range of displacement values ∆x for which some interval in Ii is stabbed by some

356 P.K. Agarwal et al.

point in X+∆x. Furthermore, as illustrated in Figure 2 (a), given a displacement
value ∆x in an (i, j)-interval, the stabbed intervals in Ii are precisely those
stabbed by either xj +∆x or xj+1 +∆x. This is because pi, the stabbing point
of Ii, lies in between xj +∆x and xj+1 +∆x.

xj+1 + ∆xxj + ∆x pi

Ii

(a) (b)

pi −X

Hi

(i, j)-intervals

Fig. 2. (a) For any displacement ∆x in an (i, j)-interval, an interval of Ii is stabbed
by X + ∆x if and only if it is stabbed by either xj + ∆x or xj+1 + ∆x. (b) Computing
the set of all (i, j)-intervals for a fixed i.

Lemma 4. Let Π be the set of all (i, j)-intervals. Then |Π | = O(mτ), and Π
can be computed in O(m logm+mτ) time.

Proof. For a fixed i, the set of all (i, j)-intervals, for 0 ≤ j ≤ m, can be found
as follows. In order for X + ∆x to stab [li, ri], ∆x has to lie within the range
Hi =

⋃
xj∈X [li −xj , ri −xj]. Regard Hi as the union of a set of mutually disjoint

intervals. We throw the m points from pi − X into Hi. These points further
divide Hi into a set of atomic intervals, each of which is a maximal interval
whose interior does not contain any point from pi − X (see Figure 2 (b)). It
can be easily verified that each such atomic interval is an (i, j)-interval, if it lies
between pi − xj+1 and pi − xj . Clearly, there are O(m) such atomic intervals,
all of which can be computed in O(m) time, once X is sorted. Thus, the total
time for computing all these intervals, for i = 1, · · · , τ , is O(m logm+mτ). �

We preprocess Π into an interval tree, and store the sequence I l
i and Ir

i for
each Ii ∈ I. By Lemma 4, the size of the structure is O(mτ +n). To answer (Q2)
for a displacement ∆x, we first report in O(log(mτ) + k′) time all k′ intervals
of Π that are stabbed by ∆x. Suppose an (i, j)-interval of Π is reported. We
scan the sequence I l

i and report all of its intervals whose left endpoints lie to
the left of xj + ∆x. We also report all intervals in the sequence Ir

i whose right
endpoints lie to the right of xj+1 + ∆x but left endpoints lie to the right of
xj +∆x (as otherwise they would have already been reported when we scan I l

i);
see Figure 2 (a).

Clearly, the overall query time is O(log(mτ)+k′ +k), where k′ is the number
of intervals in Π stabbed by ∆x, and k is the output size. Note that for a fixed
i, an (i, j1)-interval is disjoint from an (i, j2)-interval if j1 �= j2. Therefore at
most one (i, j)-interval is reported for any fixed i. Moreover, for each reported
(i, j)-interval, at least one interval of Ii is stabbed by X+∆x. This implies that
k′ ≤ k. Hence the overall query time is in fact O(log(mτ) + k).

Monitoring Continuous Band-Join Queries over Dynamic Data 357

We thus have the following lemma.

Lemma 5. A data structure of size O(mτ +n) can be constructed in total time
O(mτ log(mτ)+n log n) so that (Q1) and (Q2) can be answered in O(log(mτ)+
k) time, where k is the output size.

Note that τ(I0) = O(n/r). Applying Lemma 5 on X and I0, we thus obtain:

Lemma 6. The data structure D(X, I0) has size O(mn/r + n), and answers
(Q1) or (Q2) queries on X and I0 in O(log(mn/r) + k) time.

Remark. As shown by Lemma 5 above, the size and query time size and query
time of this data structure depend on the parameter τ(I) of the input I. We call
this an input-sensitive data structure. For small values of τ(I), i.e., when input
intervals are highly clustered, this data structure almost achieves both linear
size and logarithmic query time.

Recall that in (Q1) and (Q2) queries, the input intervals come from the contin-
uous band-joins being indexed. These intervals naturally reflect users’ interests
on the data, and it is plausible to assume that in practice most of the users’
interests would gather around a small number of “hotspots.” In other words,
in practice the intervals involved in continuous band-joins often admit a small
stabbing set.1 To exploit this pleasant property further, an alternative is to ap-
ply Lemma 5 to the entire set of intervals to be indexed (as opposed to just
I0). The result, described in detail in [1], is a dynamic practical structure whose
performance increases with the degree of clusteredness of the input intervals. We
also show in [1] how to dynamize that structure to support (U1) and (U2) oper-
ations, which is nontrivial because the smallest stabbing set of a set of intervals
can completely change after every constant number of update operations.

2.3 Putting It Together

Overall, a query on X and I is answered by processing the query on X and I0 as
well as on X and I \ I0 as described in the previous two sections. By Lemmas 2
and 6, the total size of the data structure is bounded by

S = O(mn/r + n+mn/r2 + rO(r)) = O(mn/r + rO(r)),

and the query time is bounded by

T = O(log(mn/r) + (m/r + n/r) log r + k) = O((m/r + n/r) log r + k).

Finally, we choose r = c log(mn)/ log log(mn), where c > 0 is a sufficiently
small constant, so that S = O(mn log log(mn)/ log(mn)) = o(mn) and T =

1 For example, in practice most band-join queries are only interested in the absolute
difference of the data (i.e, query of the form J(−a, a) = {(r, s) ∈ R×S | |r−s| ≤ a}),
or the one-sided difference of the data (i.e., query of the form J(−∞, a) or J(a, +∞)).
These query intervals can be all stabbed by one of the three points: 0, −∞ and +∞.

358 P.K. Agarwal et al.

O((m + n) log2 log(mn)/ log(mn) + k) = o(m + n) + O(k), as desired. We also
note that the total preprocessing time can be bounded by

O(m logm+n logn+(mn/r) log(mn/r)+mn log r+rO(r)) = O(mn log log(mn)).

Theorem 1. A data structure of size o(mn) can be constructed in total time
O(mn log log(mn)) so that (Q1) and (Q2) can be answered in o(m + n) + O(k)
time, where k is the output size.

Remark. (1) The data structure supports each (U1) or (U2) operation in near-
linear time. We omit the details here. Note that although the near-linear bound
appears horrible, we show in [1] that it is essentially the best possible.

(2) Although we have been careful in the construction, the size of the data
structure is only slightly subquadratic, and the query time is only slightly sub-
linear. We leave finding the best tradeoff between the space and query time for
(Q1) and (Q2) queries as an interesting open problem.

References

1. P. K. Agarwal, J. Xie, J. Yang, and H. Yu. Monitoring continuous band-join
queries over dynamic data. Technical report, Department of Computer Sci-
ence, Duke University, Durham, North Carolina, USA, Sept. 2005. Available at
http://www.cs.duke.edu/dbgroup/papers/2005-axyy-joinidx.pdf.

2. A. Bagchi, A. Chaudhary, D. Eppstein, and M. Goodrich. Deterministic sampling
and range counting in geometry data streams. In Proc. 20th ACM Sympos. Comput.
Geom., pages 144–151, 2004.

3. D. Carney et al. Monitoring streams: A new class of data management applications.
In Proc. 28th Intl. Conf. on Very Large Data Bases, pages 215–226, 2002.

4. S. Chandrasekaran and M. J. Franklin. Streaming queries over streaming data. In
Proc. 28th Intl. Conf. on Very Large Data Bases, pages 203–214, 2002.

5. S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming queries over
streaming data. The VLDB Journal, 12(2):140–156, 2003.

6. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagraCQ: A scalable continuous
query system for internet databases. In Proc. 19th ACM SIGMOD Intl. Conf. on
Management of Data, pages 379–390, 2000.

7. Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry.
Computational Geometry: Theory & Applications, 80(9):1412–1434, 1992.

8. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

9. D. DeWitt, J. Naughton, and D. Schneider. An evaluation of nonequijoin algo-
rithms. In Proc. 17th Intl. Conf. on Very Large Data Bases, pages 443–452, 1991.

10. A. Dumitrescu and W. Steiger. Space-time tradeoffs for some ranking and searching
queries. Inform. Process. Lett., 79(5):237–241, 2001.

11. M. Fredman. How good is the information theory bound on sorting? Theoret.
Comput. Sci., 1:355–361, 1976.

12. S. Guha, N. Koudas, and K. Shim. Data streams and histograms. In Proc. 33rd
ACM Sympos. Theory of Computing, pages 471–475, 2001.

13. L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE Trans. on Knowledge and Data Engineering, 11(4):610–
628, 1999.

Monitoring Continuous Band-Join Queries over Dynamic Data 359

14. S. Muthukrishnan. Data streams: algorithms and applications. Available at
http://www.cs.rutgers.edu/~muthu.

15. M. H. Overmars. The Design of Dynamic Data Structures. Lecture Notes in
Computer Science. Springer-Verlag, NY, 1987.

16. S. Suri, C. Toth, and Y. Zhou. Range counting over multidimensional data streams.
In Proc. 20th ACM Sympos. Comput. Geom., pages 160–169, 2004.

Approximate Colored Range Queries�

Ying Kit Lai, Chung Keung Poon, and Benyun Shi

Dept. of Computer Science, City U. of Hong Kong, China

Abstract. In this paper, we formulate a class of colored range query
problems to model the multi-dimensional range queries in the presence
of categorical information. By applying appropriate sketching techniques
on our framework, we obtained efficient data structures that provide
approximate solutions to these problems. In addition, the framework can
be employed to attack other related problems by finding the appropriate
summary structures.

1 Introduction

Range query problems are concerned with the storage and maintenance of a set
of multi-dimensional data points so that given any query region, certain infor-
mation about the data points lying within the region can be answered efficiently.
Typical information of interest includes the set of points, the number of them,
the sum, maximum and minimum of their associated values, etc. The corre-
sponding problems are referred to as the range report, count, sum, max and min
queries respectively.

In many applications, the data points are associated with categorical at-
tributes and we are interested in information about the categories of the points
lying within a query region, instead of the individual points themselves. Such
problems can be abstracted as colored range query problems in which points
in the given dataset are labeled with colors and we ask for information about
the colors of points within a query region. As pointed out by Agarwal et al.
[1], colored range queries are highly prevalent in database queries. Applications
of such queries can also be found in document retrieval [13] and in indexing
multi-dimensional strings [9].

To give a concrete example and to motivate our definition of a whole class
of colored range queries, consider a database of sales records, each of which
consisting of the following attributes: time, branch location (x, y-coordinates),
product ID and sales. Suppose we are interested in information about sales
grouped by product. Then we can model the database as a set of points in a 3-
dimensional space (defined by the time and branch attributes) where each point
is associated with a color (the product ID) as well as a value (the sales).

A specific query to the database can be to ask for the number of different
products sold during a period of time within a region of branch locations. In
� The work described in this paper was fully supported by a grant from the Research

Grants Council of the Hong Kong Special Administrative Region, China [Project
No. CityU 1198/03E].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 360–369, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximate Colored Range Queries 361

other words, we want to compute the number of distinct colors for the points
lying within the corresponding query region. This is called the colored range
counting problem. Another possible query is to ask for the best-selling products,
i.e., we group the individual points in the region by product ID, sum the sales
of each group and then find those groups that contribute most for the total
sales of all products. This is a query that has not been formulated and studied
before.

1.1 Problem Formulation

Generalizing the above sample queries, we can say that a general class of queries
is to aggregate the points by colors (where the aggregation can be a simple
count of points or a sum of values associated with points having that color) and
then extract certain information about the colors. To capture such queries, we
formalize the following class of colored range query problems. We will assume
that our dataset consists of n points lying over a d-dimensional space and each
point is associated with a color as well as a numeric value. We also assume there
are m distinct colors in the universe of colors where m is large. Otherwise, one
can construct an ordinary data structure for each color and solve the colored
range queries by querying the m structures one by one.

Conceptually, one can view the set of all possible colors as a colored dimension.
After the aggregation by colors, we have a set of points (colors) along the colored
dimension, each associated with a value. Now, consider the set F of possible
functions on the colored dimension. One may be interested in reporting the set
or number of colors. These we denote by report and count respectively. One can
also ask for the total, maximum or minimum value associated with the colors.
These are denoted as sum, max and min respectively. We denote by heavy the
query that asks for the colors with values above a certain threshold. Thus, we
define F = {sum, count,max,min, report, heavy}. Then for any f ∈ F , a colored
range-f query on a query regionR1×R2×· · ·×Rd (where each Ri is an interval in
dimension i) is to apply f on the set of colors within the query region. Depending
on whether the value associated with a color is: (1) a count of points having that
color, or (2) a sum of values associated with points having that color, we called
the corresponding query unweighted or weighted respectively.

Note that for f = sum, the weighted and unweighted colored range-f queries
are just ordinary range sum and range count queries (without colors) respec-
tively. Nevertheless, this gives an alternative formulation of these ordinary range
query problems. Also, both the weighted and unweighted colored range-report
queries are equivalent to the colored range reporting problem. For f = count,
both the weighted and unweighted queries are equivalent to the colored range
counting problem we mentioned earlier.

1.2 Previous Work

Except for the colored range reporting and counting problems, none of the prob-
lems we defined above have been investigated before. As one will see below, many

362 Y.K. Lai, C.K. Poon, and B. Shi

of these problems are difficult and it is not clear if existing techniques for range
query problems can yield efficient data structures for them.

The colored range reporting problem is probably the most studied among
all the known colored range query problems and there are rather efficient so-
lutions. To our knowledge, Janardan and Lopez [12] were the first to investi-
gate the static case for 1- and 2-dimensional points. Gupta et al [11] devised
a chaining technique that transforms a set of 1-dimensional colored points into
a set of 2-dimensional points (without colors). Using this technique, they ob-
tained dynamic structures for colored range reporting up to 2 dimensions and
a static structure for 3 dimensions. The structures of [12,11] generally require
O(n · polylog(n)) space and O(polylog(n) + k) query time (where k is the num-
ber of distinct colors in the result set) and O(polylog(n)) update time. Recently
Agarwal et al. [1] studied the variant of the problem where the data points are
lying on an integer grid. In terms of techniques, they adapted the intuition and
ideas from [12,11] and extended them to work for higher dimensions. Motivated
by a number of document retrieval problems, Muthukrishnan [13] studied yet
another variant where the points are stored in a 1-dimensional array. Nanopou-
los et al. [14] studied the problem in the context of large, disk resident data sets.
They proposed a multi-tree index to solve the problem but did not provide any
analytical bound for their method.

For the colored range counting problem, much less is known. In the 1-
dimensional case, Gupta et al. [11] obtained several efficient static and dynamic
data structures with O(n · polylog(n)) space and O(polylog(n)) query/update
time. Using their chaining technique (mentioned above) and the best-known
results on 2-dimensional range counting [15,6], one can actually improve their
bounds, see Table 1. For 2 dimensions, their approach is to first obtain a per-
sistent 1-dimensional data structure and then apply a standard line-sweeping
approach. This results in static 2-dimensional structures with high (quadratic
and cubic) storage requirement. Moreover, the approach does not readily yield
a dynamic 2-dimensional structure.

There are other variants of colored queries which are outside the scope of
this paper, . This includes the various colored intersection problems studied in
[12,11] and the colored significant-presence queries proposed in [4]. The colored
significant-presence queries is to report only those colors with at least a certain
fraction of their points fallen into the query range. It looks similar but is in fact
different from our colored range-heavy queries.

Table 1. Summary of results on colored range counting

Problem Space Query Time Update Time Reference
exact dynamic 1-d n log n log2 n log2 n Gupta et al. [11]

n log n log n log n Gupta et al. [11] + Willard [15]
n log2 n log2 n Gupta et al. [11] + Chazelle [6]

approx. dynamic 1-d n log2 n log2 n this paper
exact static 2-d n2 log2 n log n Gupta et al. [11] + Willard [15]
approx. dynamic 2-d n log n log3 n log3 n this paper

Approximate Colored Range Queries 363

1.3 Our Contribution

In this paper, we propose a general methodology for constructing randomized
data structures that can produce approximate answers. Our approach signifi-
cantly differs from previous techniques for colored range queries in that sketching
techniques are employed. For most of the problems, our method yields efficient
solutions. In particular, our colored range counting structure has much smaller
space than previous structures for 2-dimensions or above, as shown in Table 1.

We now illustrate our methodology using 1-dimensional range queries. A com-
mon technique for (1-dimensional) range query is to build a balanced binary
search tree T where each leaf represents a data point and each internal node
represents a group of data points, i.e., those represented by the leaves in the
subtree of that internal node. Denote by S(u) the set of points represented by
node u. It is well-known that given any query range (an interval), one can always
represent the set of points within the query range as a disjoint union of S(u)’s
for at most O(log n) u’s, with no more than two such u’s in each level of the tree
T . This union of sets can be obtained by traversing T with the left and right
boundaries of the query interval in O(log n) time. Thus, if we store with each
node u certain summary information about S(u), a range query may be solvable
in O(log n) time. For example, for range sum queries, the relevant information
about S(u) would be the sum of values among all points in S(u).

Unfortunately, the success of this approach very much depends on the addi-
tivity of the summary information. Consider the colored range counting problem
in which we are to find the number of distinct colors in a query range. Suppose
we store the number of distinct colors in S(u) for each tree node u. However,
the number of distinct colors in the query range cannot be computed by simply
adding the count for each S(u) for the O(log n) u’s that partitions the query
region. Similarly, problems such as colored range minimum cannot be solved
by associating with each node u in T the minimum aggregate value among the
colors of points in S(u).

To overcome the problem, our approach is to store an appropriate sketch with
each node u to summarize the relevant information about S(u). Specifically, the
sketch should possess the following properties: (1) the size of a sketch is small, (2)
the sketches are additive, and (3) an approximate answer can be obtained from
the sketch. Property (1) ensures that the time and space of the data structure
are within good bounds. Property (2) allows us to generate the required sketch
for any query region on-the-fly (i.e., during the query time). By the structure
of T , we only need to add O(log n) sketches to form the desired sketch. Finally,
property (3) is essential if the sketch is to be useful for our problem at all.

Using this approach, we obtain a data structure for the 1-dimensional colored
range counting problem withO(hn) space and O(h logn) query and update times
where h = O(1

ε2 logn) is the size of an appropriate sketch. The data structure
is randomized in the sense that with probability 1 − n−Ω(1), it produces an ap-
proximate answer accurate to within ε factor of error for all possible queries.
We can further reduce the storage to O(n) without increasing the asymptotic

364 Y.K. Lai, C.K. Poon, and B. Shi

complexities of queries and updates (treating ε as a fixed constant). Applying
standard techniques [3], we obtain multi-dimensional colored range query struc-
tures with a blow-up factor of logn in storage and operation time per dimen-
sion. More specifically, we utilize the additivity of the appropriate sketches to
obtain a sketch that summaries the d-dimensional query region and then obtain
the desired information from the sketch. In general, our data structures require
O(dn logd−1 n) space and support queries and updates in O(d logd+1 n) time.

Using the same methodology but with different sketches, we obtain data struc-
tures with similar performance bounds for many other colored range query prob-
lems we defined here.

2 Preliminaries

2.1 Notations and Sketches

We will represent information about colors using vectors. Thus, we will be con-
sidering vectors and their norms. For a vector a = (a1, a2, . . . , am), we denote
by ||a||p its lp-norm, i.e., ||a||p = (

∑m
i=1 |ai|p)1/p. When p = 0, ||a||0 is defined

as the number of non-zero components in a.
The sketch of a vector a is the projection of a onto a set of random basis

vectors. The purpose of a sketch is to estimate certain quantities about a to
within certain error with high probability. The number, h, of required random
basis vectors, and hence the size of the sketch, depends on the two parameters, ε
and δ, that controls the error and failure probability respectively; and may also
depend on m. Usually, we have h , m so that storage reduction is achieved.
Another important property of sketches is that additivity holds for many types
of sketches, i.e., the sketch of a ± b can be computed by adding/subtracting
the sketch of a with that of b. Below we describe two sketches that we will em-
ploy, namely the Count-Min or CM sketch and the l0-sketch. They both possess
properties (1) and (2) mentioned in section 1.3.

2.2 Count-Min Sketch

When the components of a vector a are all non-negative, its CM sketch ([8]),
denoted CM(a), allows us to estimate any component, ai, of a by specifying its
index i. We call this a point estimate on a. A certain collection of CM sketches,
denoted CCM(a), allows us to report the set of indices i such that ai is larger
than a certain threshold fraction φ of ||a||1. We call this heavy hitters estimate.

Point Estimates. We first describe the construction of CM(a) and the algo-
rithm for point estimate. The sketch is essentially a two-dimensional array of
counts with width w = � e

ε � and depth d = �ln 1
δ �, given the sketch parameters

of ε and δ. The size of the sketch is thus h = wd = O(1
ε log 1

δ). We represent the
counts in the sketch by count(1, 1), ..., count(d, w).

Given a, we choose d hash functions h1, . . . , hd (hi : {1, . . . ,m} → {1, . . . , w})
uniformly at random from a family of pairwise independent hash functions ([5]).
We initialize all the counts in the sketch to 0. Then for each j ∈ {1, . . . , d}, we

Approximate Colored Range Queries 365

hash the components of a into different cells of row j according to hj . That is,
for each i ∈ {1, . . . ,m}, the value ai is added to the cell count(j, hj(i)). Besides
the sketch, we also store d hash functions which takes negligible storage. Any
component ai of a is estimated as âi = mind

j=1{count(j, hj(i))}.
Theorem 1. [8] For any vector a = (a1, . . . , am) and any pair of parameters
ε, δ > 0, the CM sketch of a, CM(a), has size h = O(1

ε log 1
δ) and supports point

estimates in g = O(log 1
δ) time. The estimate âi of ai satisfies: (1) ai ≤ âi and

(2) with probability 1 − δ, âi ≤ ai + ε||a||1. Further, the sketch can be updated
(for changes in a component of a) in O(g) and constructed in O(gm+ h) time.

Heavy Hitters Estimates. We first explain the notion of dyadic intervals. For
convenience, we assume m is a power of 2. A dyadic interval Ij,k on the universe
{1, . . . ,m} is an interval of the form [k2j, (k + 1)2j − 1], for j ∈ {1, . . . , logm}
and k ∈ {0, . . . ,m/2j − 1}. The parameter j of a dyadic interval is its res-
olution level from the finest: I0,i = {i} where i ∈ {1, . . . ,m} to the coarsest
Ilog m,0 = {1, . . . ,m}. There are logm resolution levels and 2m− 1 dyadic inter-
vals altogether, organized in a binary tree-like structure.

To support heavy hitter estimates, the collection CCM(a) consists of logm
CM sketches, each of size dw = log(log m

δφ) × e
ε = O(1

ε log(log m
δφ)). The first

sketch is just CM(a). The second sketch is the CM sketch on a vector with m/2
components, each being the sum of ai’s over all i in a dyadic interval I1,k where
0 ≤ k ≤ m/2 − 1. The third up to the logm-th sketch are CM sketches of a at
a progressively coarser and coarser resolution.

To find the heavy hitters, we start from the sketch of the coarsest resolution
level and check for the dyadic interval(s) with (estimated) weights exceeding the
threshold (φ + ε)||a||1. We then explore their children dyadic intervals at the
next finer level of resolution. Repeating this until we arrive at dyadic intervals of
length 1, we can locate all the components ai such that the estimated ai exceeds
(φ+ε)||a||1. Note that in each sketch, at most 2/φ dyadic intervals are examined.
As for updates, since each point in the universe {1, . . . ,m} is a member of logm
sketches, each of the sketches are updated when an update on a point arrives.

Theorem 2. [8] For any a = (a1, . . . , am) and ε, δ, φ > 0, the collection of
sketches CCM(a) has size h = O(1

ε logm log(log m
δφ)). In O(εh/φ) time, it can

report all the components with weight at least (φ + ε)||a||1, and with probability
1 − δ, it reports no component with weight less than φ||a||1. The sketch can be
updated in g = O(logm log(log m

δφ)) time and constructed in O(gm+ h) time.

2.3 l0-Sketch

When the magnitude of each component of a is bounded from above by some
value U , we can compute its l0-sketch ([7]), denoted L0(a), which allows us to
approximate, ||a||0, the number of non-zero entries in a.

Theorem 3. [7] For any a = (a1, . . . , am) such that |ai| ≤ U for every i, and
any ε, δ > 0, the l0-sktech of a, L0(a), has size h = O(1

ε2 log(1
δ)). Using the

sketch, the l0-norm, ||a||0, can be approximated to within a factor of 1 ± ε with

366 Y.K. Lai, C.K. Poon, and B. Shi

probability 1 − δ in O(h) time. Further, it can be updated in O(h) time and
constructed in O(hm) time.

3 Colored Range Counting

Construction and Storage. To solve for the 1-dimensional case, we construct a
balanced binary search tree T to store the points. For each node u in T , we
apply the l0-sketch to summarize the at most m distinct colors present in S(u).
More precisely, we define a = (a1, a2, . . . , am) to be the color frequency vector so
that ai represents the number of occurrences of color i in a region. In the region,
we would like to know the number of non-zero components of the vector a, or
formally the l0-norm of a. In general m can be very large and hence storing an a
explicitly for each node u will be very space-consuming. Therefore, we will store
the l0-sketch of a so that we only need h = O(1

ε2 log(1
δ)) space per sketch. (The

value of ε and δ will be determined later.) Hence in total we need O(hn) space.
The l0-sketch of a leaf u (representing one data point) can be constructed

in O(h) time. By additivity, the l0-sketch of an internal node v can be com-
puted by adding that of its two children. This takes again O(h) time. Hence, the
construction of the whole data structure requires O(hn) time.

Querying. To handle a query [x, y], we search T for x and y in order to identify
the set V of internal nodes the union of whose leaves is the set of points lying
within [x, y]. Note that |V | = O(log n). By additivity, the l0-sketch of any query
region can be computed by adding the corresponding O(log n) many l0-sketches.
Thus, a query takes O(h log n) time. We ignore the query time for the resulting
sketch here as the time for the additions clearly dominates.

Updating. When inserting or deleting a point x without changing the structure
of T , the update can be done straightforwardly. Suppose the point has color
i and value µ. Then for each node v along the path from the root to x, its
sketch has to be updated. Let a be the color frequency vector associated with v.
Then inserting (deleting) the point will cause ai to increase (decrease) by µ. Let
b = (b1, b2, . . . , bm) such that bi = µ and bj = 0 for all j �= i. Then L0(a) should
be updated to L0(a) ± L0(b) by additivity and this takes O(h) time. The total
update time along the path is O(h logn).

When the update causes the structure of T to change, we need to modify
the sketches of all the affected nodes. For each such node, its sketch can be
re-computed by adding the sketches of all its children (in the new tree). For
example, if we use a red-black tree [2,10] for T , an update requires at most 3
rotations and propagating the change from the points of rotation to the root by
adding sketches takes O(h log n) time in the worst case. (For higher dimensions,
the update time can be made worst case using standard techniques [16].)

Storage Reduction. We can reduce the space requirement of the data structure
to be independent of ε and δ. The idea is to store the sketch only for nodes v in
T with sufficient number of leaves. More precisely, let F be the set of internal
nodes v ∈ T such that v has fewer than O(h) leaves while parent of v has at least
O(h) leaves. We call the nodes in F the frontier nodes. Clearly, there are O(n/h)

Approximate Colored Range Queries 367

of them. We will only store the l0-sketch for nodes above the frontier F . Then
the storage requirement is reduced to O(n). When querying for a range [x, y],
we search for x and y in T as before. When the search reaches a node v in F , we
construct the l0-sketch for the portion of the subtree rooted at v that lies within
the query region on the fly. This is done by traversing the subtree of T rooted at
v to construct the color frequency vector a for only the points lying within the
query region. This takes O(h) time by definition of F . Then we construct L0(a)
using O(h2) time. The total query time now becomes O(log n+ h2).

Choosing δ. Now we consider the value of δ which controls the failure proba-
bility. We will generate all the O(n) sketches using the same set of basis vectors.
Moreover, for each query region, we will also generate the corresponding sketch
on the fly. In total, there are at most O(n2) query regions. We want to have a
random basis such that with high probability (i.e., 1 − δ′ where δ′ = n−Ω(1))),
all the O(n2) sketches give good enough approximations. Clearly, δ′ = O(n2δ).
Thus, we set δ = n−Ω(1) and so h = O(log n) for constant ε. In general for d
dimensions, number of query regions become O(n2d) and thus h = O(d log n).

Since the size of sketches now depends on n, we may have to change the size
of the sketches as n changes. However, it can be shown that by buidling the
structure with sketch size h doubled and rebuilding the whole structure when n
becomes too large, one can achieve an amortized update bound of O(log2 n).

4 Colored Range-Min Queries

Construction and Storage. For the 1-dimensional case, we consider the base tree
T . For each node u in T , we will store the CM sketch of the color vector a =
(a1, a2, . . . , am) associated with u. Each ai represents the sum or count of the
individual point values with color i under the subtree T (u).

However, instead of estimating individual component, we use CM(a) to esti-
mate the minimum component of a. We do this by finding the minimum value
in each row of CM(a) and then taking the minimum among the �ln 1

δ � rows. In
other words, we find the minimum value within the whole sketch CM(a).

There is a small technical issue. It is possible that some cells in CM(a) are
not hashed into by any index i ∈ {1, . . . ,m}. Then our method will return a
zero value (the initial sketch cell value). To identify and exclude those cells, we
slightly modify the sketch construction. First, we initialize the whole table to
some negative values. Then, when hashing the components of a into the table,
the first component hashed into a cell will overwrite the initial negative value
while subsequent components will add to the existing value. When computing
the minimum cell value, we only consider those non-negative cells. The following
lemmas prove that the estimated minimum is accurate with high probability.

Lemma 1. [8] For any i ∈ {1, . . . ,m}, j ∈ {1, . . . , �ln 1
δ �}, E[count(j, hj(i)) −

ai] ≤ ε
e ||a||1.

Lemma 2. Let at = minm
i=1{ai}. For all j, define mj = min{count(j, i′)|count

(j, i′) ≥ 0}. Then E[mj − at] ≤ ε
e ||a||1.

368 Y.K. Lai, C.K. Poon, and B. Shi

Lemma 3. Let at = minm
i=1{ai}. Define cmm = minj{mj}. Then cmm ≥ at

and cmm ≤ at + ε||a||1 with probability 1 − δ.

We need h = O(1
ε log 1

δ) space to store a CM sketch and thus for all node u
of tree T , we need O(hn) space where n is the total number of points. The CM
sketch of a leaf can be constructed in O(h) time. By additivity, the sketch of an
internal node can be constructed by adding those of its two children using O(h)
time. The construction of the whole data structure thus requires O(hn) time.

Querying. Like the query in colored range counting, we first identify the set
V of O(log n) internal nodes corresponding to the query range. Then, by the
additivity, we compute the sketch of the query range by adding the corresponding
O(log n) sketches. So, it takes O(h log n) time for a query.

Updating. In the case where structure of T remains unchanged, the update
procedure is just similar to Section 3 and the only difference is the update time.
Note that we need only O(g) = O(log 1

δ) time to update a node in T with a
single value. So the total time we need for updating will be O(g logn). In case
where rotations occur due to changes in the structure of T (implemented as a
red-black tree), the time required to update the sketch of an affected node by
adding those of its children is O(h). Since the number of affected nodes is at
most O(log n), an update requires O(h logn) time in the worst case.

Storage Reduction and choosing δ. If we just store the CM sketches for nodes
above the frontier F as defined in Section 3, h = O(1

ε log 1
δ) in this case, we

can reduce the storage requirement to O(n) while the query time increases to
O(h log n+hg) and update time remains to be O(h logn). Choosing δ = n−Ω(1),
the asymptotic complexity of query and update times are both O(log2 n).

5 Heavy Colors

Construction and Storage. Our main result in this section is the solution to the
approximate colored range-heavy problem, i.e. f = heavy. We will focus on the
unweighted case. (The weighted case is very similar.) Again, we associate with a
node u in T the vector a = (a1, . . . , am) such that ai is the number of occurrences
of color i in the region (ai is the sum of values with color i when weighted). We

f
urther assume all components of a to be non-negative. Our problem then is
to report those colors with ai ≥ φ||a||1, where φ ∈ [0, 1]. We store for each
node u the collection of sketches CCM(a) for the vector a. Each of the sketches
represents a level of dyadic intervals (as described in Section 2.2). In this setting,
we require only h = O(1

ε log(m) log(log m
δφ)) space per node. Thus, the total space

needed is O(hn) for the whole tree T .
Using similar idea as in the previous section, the construction time of sketches

for the whole tree takes O(hn) time. Querying takes O(h log n + εh/φ) =
O(h log n) time according to Theorem 2 and since φ is constant. Updating takes
O(h log n) time. Furthermore, the storage can be reduced to O(n) while the query
time is increased to O(h log n+ h2) and update time remains to be O(h log n).

Approximate Colored Range Queries 369

6 Conclusion

In this paper, we have formulated a new class of colored range problems and
proposed a general approach of using sketches to solve many of them approxi-
mately. We believe that there are two benefits in adopting this approach. First,
advancements in the research on sketches and summary structures with the re-
quired properties immediately improve the solutions for the corresponding col-
ored range query problems. Second, by finding the appropriate summary struc-
tures, the method can be employed to solve other unsolved problems. Also, our
approach can be applied to other indexing structures, e.g. R-tree and its variants.

References

1. P.K. Agarwal, S. Govindarajan, and S. Muthukrishnan. Range searching in cate-
gorical data: colored range searching on grid. In ESA’02, pages 17–28, 2002.

2. R. Bayer. Symmetric binary B-trees: data structures and maintenance algorithms.
Acta Informatica, 1:290–306, 1972.

3. J.L. Bentley. Multidimensional divide-and-conquer. Comm. ACM, 23(4):214–228,
April 1980.

4. M. Berg and H.J. Haverkort. Significant-presence range queries in categorical data.
In WADS’03, LNCS 2748, pages 462–473, 2003.

5. J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. Computer
and System Sciences, 18:143–154, 1979.

6. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Computing, 17(3):427–462, June 1988.

7. G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams
using Hamming norms (how to zero in). In Proc. of 28th Int’l Conf. on Very Large
Data Bases, pages 335–345, 2002.

8. G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. In 6th Latin American Theoretical Informatics
(LATIN), LNCS 2976, pages 29–38, 2004.

9. P. Ferragina, N. Koudas, D. Srivastava, and S. Muthukrishnan. Two-dimensional
substring indexing. In Proc. 20th ACM Symp. on Principles of Database Systems,
pages 282–288, 2001.

10. L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
FOCS’78, pages 8–21, 1978.

11. P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection
searching problems: counting, reporting, and dynamization. J. Algorithms, 19:282–
317, 1995.

12. R. Janardan and M. Lopez. Generalized intersection searching problems. Int’l J.
Computational Geometry and Applications, 3(1):39–69, 1993.

13. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In
SODA’02, pages 657–666, 2002.

14. A. Nanopoulos and P. Bozanis. Categorical range queries in large databases. In
SSTD’03, LNCS 2750, pages 122–139, 2003.

15. D.E. Willard. New data structures for orthogonal queries. SIAM J. Computing,
14(1):232–253, February 1985.

16. D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic
data structures. J. ACM, 32(3):597–617, July 1985.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 370 – 379, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Complexity and Approximation of the Minimum
Recombination Haplotype Configuration Problem

Lan Liu1, Xi Chen3, Jing Xiao3, and Tao Jiang1,2

1 Department of Computer Science and Engineering, University of California,
Riverside, CA 92521, USA

2 Center for Advanced Study, Tsinghua University, Beijing, China
{lliu, jiang}@cs.ucr.edu

3 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, P.R. China

{xichen00, xiaojing00}@mails.tsinghua.edu.cn

Abstract. We study the complexity and approximation of the problem of
reconstructing haplotypes from genotypes on pedigrees under the Mendelian
Law of Inheritance and the minimum recombinant principle (MRHC). First, we
show that MRHC for simple pedigrees where each member has at most one mate
and at most one child (i.e. binary-tree pedigrees) is NP-hard. Second, we present
some approximation results for the MRHC problem, which are the first
approximation results in the literature to the best of our knowledge. We prove
that MRHC on two-locus pedigrees or binary-tree pedigrees with missing data
cannot be approximated (the formal definition is given in section 1.2) unless
P=NP. Next we show that MRHC on two-locus pedigrees without missing data
cannot be approximated within any constant ratio under the Unique Games
Conjecture and can be approximated within ratio O(). Our L-reduction for
the approximation hardness gives a simple alternative proof that MRHC on
two-locus pedigrees is NP-hard, which is much easier to understand than the
original proof. We also show that MRHC for tree pedigrees without missing data
cannot be approximated within any constant ratio under the Unique Games
Conjecture, too. Finally, we explore the hardness and approximation of MRHC
on pedigrees where each member has a bounded number of children and mates
mirroring real pedigrees.

Keywords: Haplotyping, pedigree, recombinant, SNP, complexity, approxima-
tion, L-reduction, positive result, negative result, bounded number, children,
mates.

1 Introduction and Definitions

The secret mechanism behind phenotypic variation and inheritance has intrigued the
study of genetic markers. With the discovery of genetic markers such as microsatellite
DNA sequences and Single Nucleotide Polymorphisms (SNPs), it is now possible to
provide a unique genetic map to track the variation and inheritance of genetic markers.
The international HapMap project launched in October 2002, aims to discover the
haplotype structure of human beings and examine the common haplotypes among
populations [17].

)log(n

 Complexity and Approximation of the MRHC Problem 371

Homologous recombination, the combination of genetic material between
chromosome pairs during meiosis, is essential in diploid organisms such as humans [7].
Unfortunately, the diploid structure of humans makes it very expensive to collect
haplotype data directly to display the recombination events. In a large-scale sequencing
project, genotype data instead of haplotype data are collected. However, haplotype data
are required in many genetic marker applications, such as linkage disequilibrium
analysis and disease association mapping to name a few [12,13]. Therefore,
combinatorial algorithms and statistical methods to reconstruct haplotypes from
genotypes (i.e. the haplotype phasing or inference problem) are urgently needed.

The input data for this problem can be SNP fragments from an individual, genotype
data in a population or genotype data in a family [8,9,10,11,15]. There are many
combinatorial [1,2,14,16] and statistical ways [11,19] of tackling the phasing problem.
They are usually quite computationally demanding.

Some of the commonly used combinatorial methods [1,2,14,16] take advantage of
the availability of pedigree data. In other words, given a pedigree and the genotype
information, they reconstruct a haplotype configuration for each individual in the
pedigree by trying to solve the Minimum Recombinant Haplotype Configuration
(MRHC) problem [1]. During the process of reconstruction, the minimum recombinant
criterion is used as the objective function. Because this objective attempts to reduce the
number of candidate haplotype configurations, it naturally preserves common
haplotype structures.

All the existing methods to the MRHC problem are time and space consuming for
realistic applications. For example, a Pentium IV computer with 256MB RAM is used
to solve MRHC on an input pedigree with 29 members and 51 SNP markers. An
effective combinatorial algorithm ILP takes about 5 hours to find an exact solution,
whereas a well-known statistical approach SimWalk2 takes even more than 6 days to
find a haplotype configuration with the maximum likelihood [21]. While over 5
millions of SNPs have been identified in the public database dbSNP [17], there is a
great need for efficient algorithms that could scale up to the whole genome level. This
difficulty motivates us to analyze the hardness and approximability of MRHC problems
from a theoretical point of view.

1.1 Formal Definition of the MRHC Problem

In this subsection, we give a formal definition of the MRHC problem as well as the
issue of pedigree representation and biological background. We follow the conventions
in [1].

Definition 1. A pedigree graph is a connected directed acyclic graph (DAG) G={V, E},
where V= M F N, M represents the male nodes, F represents the female nodes, N
represents the matting nodes, and E= { (u, v): u M F and v N or u N and v M F}. M

F is called individual nodes. The in-degree of each individual node is at most one.
The in-degree of a mating node must be two, with one edge starting from a male (called
the father) node and the other edge from a female node (called the mother) and the
out-degree of a mating node must be larger than zero.

In a pedigree, the individual nodes outgoing from a mating node are called the
children. The individual nodes with zero in-degree are called the founders. The induced

372 L. Liu et al.

subgraph by the father, the mother and one child adjacent to the same mating node is
called a family trio. If there are two node-disjoint paths between two mating nodes in
the pedigree graph, this pedigree has a mating loop. A pedigree without mating loops is
called a tree pedigree. A pedigree where each member has at most one mate and at most
one child looks like a binary tree, so this kind of pedigree is called a binary-tree
pedigree. Fig. 1 demonstrates an example pedigree drawn in both the formal and
conventional ways. In the conventional way, the mating nodes are omitted. For
convenience, we use conventional drawings of pedigrees throughout this paper.

(a) (b) (c)

Fig. 1. (a) A pedigree drawn in the formal way. (b) The pedigree drawn in the conventional way.
(c) A pedigree with a mating loop.

A genetic marker is a short non-redundant discriminative DNA sequence that can be
used to trace inheritance. Some common genetic markers are microsatellite DNA
sequences or SNP data. Each polymorphism state of a genetic marker is called an allele.
Different kinds of markers have different numbers of alleles. For instance, a
microsatellite marker has multiple possible alleles occurring at a locus, which is called
multi-allelic. An SNP marker commonly has only two possible alleles occurring at a
locus, which is called bi-allelic. We will mostly be interested in bi-allelic markers
because they are becoming the most popular markers in practice. Bi-alleles can be in
exactly one of the two alternative states, such as 1 or 2. If an allele is missing at some
locus, it is denoted as a “*”.

In diploid organisms, because chromosomes come in pairs, at each locus there is a
pair of alleles, which is referred to the genotype of this locus. If these alleles are the
same, the genotype at this locus is homozygous; otherwise, the genotype is
heterozygous. The alleles on the same chromosome form a haplotype. Each individual
has a pair of haplotypes.

If there is no genetic mutation in a meiosis process, the child inherits one haplotype
from the mother and the other one from the farther. This is the well-known Mendelian
law of inheritance. The haplotype inherited from the mother is called the maternal
haplotype while the one from the father is called the paternal haplotype. Given a pair of
haplotypes of an individual, if it is known which one was inherited from his (or her)
father and which was from his (or her) mother, the haplotypes and the inheritance
information together are called a haplotype configuration (i.e. a configuration in short);
otherwise, the haplotypes without inheritance information form a haplotype grouping
(i.e. a grouping in short).

 Complexity and Approximation of the MRHC Problem 373

Usually, an entire haplotype of the mother’s (or father’s) haplotype pair is passed
onto the child during meiosis. However, crossover between the haplotype pair might
occur, where the haplotype pair gets shuffled and one of the mixed haplotypes is passed
onto the child. This crossover is called a recombinant.

A PS (or phase) value represents the paternal or maternal information about the
alleles at a locus. The PS value can take the values 0 or 1, where 1 means that the allele
with the smaller identification number is from the mother and the allele with the larger
identification number is from the father, and 0 otherwise. Thus, the reconstruction of
haplotype configuration for an input pedigree can be viewed as assigning PS values to
each locus of every member of the pedigree.

Now, the MRHC problem is defined as follows:

Definition 2 (MRHC [1]). Given a pedigree and genotype information for each
member of the pedigree, find a haplotype configuration of the pedigree that obeys the
Mendelian law of inheritance and requires the minimum number of recombinants.

1.2 Variants of MRHC and Some Related Problems

We give the definitions of the variants of MRHC and list the related problems that are
going to be discussed later in the paper.

Definition 3. MRHC(k, j) is defined the same as MRHC except that each member in the
pedigree has at most k mates and at most j children with each mate. Binary-tree-MRHC
is defined as MRHC on a binary-tree pedigree. Binary-tree -MRHC* is defined the
same as binary-tree-MRHC except it is allowed to have missing alleles. 2-locus-MRHC
is MRHC on a two-locus pedigree without missing data. 2-locus-MRHC* is defined the
same as 2-locus-MRHC except it is allowed to have missing data. Tree-MRHC is
MRHC on a pedigree without mating loops or missing data.

In order to discuss the hardness and approximation of the variants, we are going to

make use of some related problems or properties, such as the Min UnCut [5] (i.e.
2-Linear-Equations Mod 2 [4]), Min UnCut(k) (the same definition as Min UnCut
except that each variable occurs at most k times), Min 2CNF Deletion [4, 5] problems,
consistency and satisfiablility property. The Min UnCut and Min 2CNF Deletion
problems are known to be NP-hard [5]. We will show that the Min UnCut(k) problem is
also NP-hard in this paper.

For any NP-hard minimization (or maximization) problem, if there is some
polynomial time algorithm to give a solution with the objective value no more (or less,
respectively) than f(n)·OPT (or OPT/f(n), respectively), where f(n) can be any function
of the input size n, the problem can be approximated within ratio f(n); otherwise, the
problem cannot be approximated.

1.3 Previous Complexity Results on MRHC

Qian and Bechmann proposed a ruled-based algorithm to reconstruct haplotype
configurations based on six rules [16]. Their algorithm is a heuristic without theoretical

374 L. Liu et al.

analysis. Li and Jiang first proved that MRHC on two-locus pedigree is NP-hard [1].
Doi, Li and Jiang further proved that MRHC on tree pedigrees is also NP-hard in the
general case [2], even though MRHC can be solved by dynamic programming
algorithms when the number of members or loci in the input pedigree is bounded by a
constant. However, the NP-hardness proof requires pedigrees containing individuals
with an unbounded number of mates or children. It was left as an open question if the
proof can be improved to work for tree pedigrees where every individual has a bounded
number of mates and children.

Consistency checking of the Mendelian law of inheritance (i.e. the Mendelian law
checking problem) is closely related to the MRHC problem. The purpose of Mendelian
law checking is to determine whether the given genotype data obey the classic
Mendelian law of inheritance. Mendelian law checking usually needs to be done ahead
of phasing haplotype configurations. Aceto et al. showed that the Mendelian law
checking problem is NP-hard in general, although checking the consistency on
pedigrees with bi-allelic data or with no mating loops [3] can be done in polynomial
time.

In this paper, we consider a simple variant of MRHC, which involves pedigrees with
members that has at most one mate and one child (i.e. binary-tree-MRHC). It is an open
question if binary-tree MRHC is NP-hard. A polynomial-time algorithm for it, if exists,
could be useful for solving the general-case MRHC problem. Another important
question is whether a good approximation algorithm exists for MRHC. Here, in terms
of computing the minimum-recombinant haplotype, the accuracy is sacrificed to
improve the efficiency. Previously, there is no known polynomial-time approximation
algorithm for MRHC with guaranteed ratio.

Table 1. The known hardness results of the Mendelian law checking and MRHC problems

 Pedigree
 Problem

Loop? Multi-allelic? Hardness

Yes Yes NP-hard [3]

Yes No NP-hard [1]

No P [3]

No P [3]

Unbounded
number of loci?

No
No No No P [2]

Unbouned number
of members?

Yes
Yes

No No Yes No P [2]

No No Yes Yes NP-hard [2]

Mendelian law
checking

M R H C

1.4 Our Results

We will consider pedigrees with bi-allelic genotype data throughout this paper. First,
we reduce 3SAT to the binary-tree-MRHC problem and show that this problem is
NP-hard, which answers an open question in [2]. Second, we study the approximability
of MRHC on pedigree data with the following restrictions: (I) 2-locus genotype data
with missing alleles, (II) binary tree pedigrees with missing alleles, (III) 2-locus
genotype data without missing alleles, and (IV) tree pedigrees without missing alleles.
These four restricted cases of MRHC are NP-hard problems shown either in the
literature [1,2] or in this paper. We demonstrate that for MRHC in the former two cases
I and II cannot be approximated unless P = NP. We also prove that it is NP-hard to
approximate problems III and IV within any constant ratio under the Unique Games

 Complexity and Approximation of the MRHC Problem 375

Conjecture [4]. Moreover, we show that problem III can be approximated with ratio
O() in polynomial time by reducing it to the Min 2CNF Deletion problem, Fin-
ally, we discuss the approximation of MRHC on pedigrees where each member has a
bounded number of children and mates, mirroring pedigrees in real applications.

1.5 Organization of the Paper

The paper is organized as follows. We briefly give definitions of the MRHC problem
and other closely related problems, introduce the related biological background in
section 1. We prove binary-tree-MRHC is NP-hard and state the approximatability of
MRHC on pedigrees with missing data in section 2. We show the approximation lower
bound of MRHC on pedigrees without missing data and the approximation upper
bound of 2-locus-MRHC in section 3. In section 4, we tentatively explore the
approximation hardness of MRHC on the pedigrees where each member has a bounded
number of mates and children. We organize our hardness results and conclude this
paper with a few remarks in section 5. Due to space limitations, the proofs are omitted
in the main text and are given in the full version [22].

2 Approximation of MRHC on Pedigrees with Missing Data

In this section, we prove the hardness of approximating MRHC on pedigree data with
missing alleles. Two variants are considered.

Lemma 1. If it is NP-hard to decide whether OPT(R)=0 for a minimization problem R,
R cannot be approximated unless P=NP.

2.1 Hardness and Approximation of Binary-Tree-MHRC(*)

Theorem 2. Binary-tree-MRHC is NP-hard.

Theorem 3. It is NP-hard to decide whether OPT(binary-tree-MRHC*)=0.

Corollary 4. Binary-tree- MRHC* cannot be approximated unless P=NP.

2.2 Approximation of 2-Loop-MHRC*

Theorem 5. It is NP-hard to decide whether OPT(2-locus-MRHC*)=0

Corollary 6. 2-locus-MRHC* cannot be approximated unless P=NP.

3 Approximation of MRHC on Pedigrees Without Missing Data

In this section, we consider the approximability of the same variants of MRHC without
missing data. In order to show the negative result, we need to use some gap-introducing
reduction (or gap-preserving reduction) for MRHC. We will use the concept of
L-reduction proposed by Papadimitriou and Yannakakis [18].

)log(n

376 L. Liu et al.

3.1 Approximation of Tree-MRHC

Lemma 7. There is an L-reduction from Min UnCut to tree-MRHC that transforms a
set of Boolean constraints to a tree pedigree such that:

(i) OPTMin UnCut() = OPTtree-MRHC(), and
(ii) Given a haplotype solution for with k recombinants, we can construct a solution

for with at most k unsatisfied clauses.

Theorem 8. It is NP-hard to approximate tree-MRHC within any constant ratio under
the Unique Games Conjecture [4].

3.2 Approximation of 2-Locus-MRHC

We will present a lower bound and an upper bound on the approximation ratio for the
2-locus-MRHC problem.

3.2.1 Negative Result for Approximating 2-Locus-MRHC
Lemma 9. There is a polynomial-time L-reduction from Min UnCut to 2-locus-MRHC
that transforms a Boolean constraints set to a pedigree such that

(i) OPT Min UnCut() = OPT2-locus-MRHC(), and
(ii) Given any haplotype solution for with k recombinants, we can find in

polynomial time a truth assignment for with at most k unsatisfied constraints.

Theorem 10. It is NP-hard to approximate 2-locus-MRHC within any constant ratio
under the Unique Games Conjecture [4].

3.2.2 Positive Result for Approximating 2-Locus-MRHC
We first would like to reduce an instance of 2-locus-MRHC so that each member of the
pedigree can be described by one Boolean variable. Since only two loci are involved,
there are three types of members in a pedigree: (I) both loci are homozygous, (II) one
locus is homozygous, and (III) both loci are heterozygous. A type I (or II) member has
a fixed haplotype grouping. A type III member has a variable haplotype grouping.

Agarwal and Charikar recently presented a randomized polynomial-time O()
approximation algorithm for the Min 2CNF Deletion problem [5], where n is the
number of variables in the input 2CNF constraints.

Theorem 11. There is a randomized polynomial-time O() approximation algo-
rithm for 2-locus-MRHC, where n is the number of members in the input pedigree.

Observe that the results in this section show that, in terms of approximability, the
2-locus-MRHC problem is easier than the Min 2CNF Deletion problem and harder than
the Min UnCut problem. Also, Lemma 9 presents an alternative proof that
2-locus-MRHC is NP-hard, which is much easier to understand than the original proof
in [1].

4 Approximation of MRHC(k, j)

The proof of Lemma 7 uses a pedigree that contains members with a variable number of
children, although every member in the pedigree has only one mate. Can we get the

)log(n

)log(n

 Complexity and Approximation of the MRHC Problem 377

same hardness result for tree-MRHC if we bound the number of mates instead of the
number of children? In addition, the pedigrees in the proofs of Theorem 5 and Lemma 9
contain members with a variable number of children or mates. Another question is
whether MRHC on two-locus pedigrees with a bounded number of children and mates
leads to the same hardness result. In this section, we discuss the approximation of
MRHC on pedigrees with bounded number of children and mates. For the convenience
of comparison, we state strengthened versions of the previous theorems in the order
they appear in this paper. We use u to present an integer variable.

First, we refine Theorem 5. The hardness result in this theorem holds for
2-locus-MRHC(u,1), because some member might appear in every clause gadget and
every member has at most one child in the proof of Theorem 5.

Theorem 12. 2-locus-MRHC*(4,1) cannot be approximated unless P=NP.

Next, let us look at Lemma 7. This lemma actually works for tree-MRHC(1,u). It is
natural to consider tree-MRHC on pedigrees where members have a bounded number
of children with each mate. In order to decrease the number of children and mates in the
pedigree, we need a bounded version of Min UnCut like the one for Max 3SAT.

In fact, there is an L-reduction from Min UnCut to Min UnCut(15) that transforms a
Boolean constraints set to another Boolean constraints set such that

(i) OPTUnCut() = OPTUnCut(15) (), and
(ii) Given any truth assignment for with k unsatisfied constraints, we can find in

polynomial time a truth assignment for with at most k unsatisified constraints.
This L-reduction from Min UnCut to Min UnCut(15) can be constructed using the

same idea as the L-reduction that transforms Max 3SAT to Max 3SAT(29) in [6] with
just a few minor modifications. The details of this L-reduction are omitted here. Based
on the property of this L-reduction, we know that it is NP-hard to approximate Min
UnCut(15) within any constant ratio under the Unique Games Conjecture [4].

Theorem 13. It is NP-hard to approximate tree-MRHC(u,1) within any constant ratio
under the Unique Games Conjecture [4].

Finally, we consider Lemma 9. The hardness result actually holds for
2-locus-MRHC(u, u), because neither the number of mates nor the number of children
for a member is bounded by any constant.

Theorem 14. It is NP-hard to approximate 2-locus-MRHC(16,15) within any constant
ratio under the Unique Games Conjecture [4].

5 Discussion and Conclusion

The results presented in this paper are organized in Table 2. First, we showed that
binary-tree-MRHC is NP-hard. Binary-tree-MRHC is a simplest variant of MRHC
because one mate and one child are the minimum requirement to express the
inheritance of human beings. Second, we showed some approximability results
concerning the MRHC problem. With the presence of missing data, it is NP-hard to tell
if an instance of 2-locus-MRHC* and binary-tree-MRHC* requires any recombinant.

378 L. Liu et al.

)log(n

This gives an interesting contrast to the results in [1] where the problem of finding a
zero-recombinant haplotype solution for MRHC was shown to be solvable in
polynomial time. This result also implies that 2-locus-MRHC* and
binary-tree-MRHC* is not approximable in polynomial time. Without the presence of
missing data, 2-locus-MRHC can be approximated with the ratio O(). In add-
ition it is NP-hard to approximate 2-locus-MRHC and tree-MRHC within any constant
ratio under the Unique Games Conjecture [4]. Our final results concern the
inapproximability of MRHC on pedigrees where each member has a bounded number
of mates and/or a bounded number of children with each mate.

Table 2. Our hardness and approximation results for MRHC with bi-alleles

Loop
?

Lower bound
of approx.

ratio

Yes Any f(n)

No

 Miss-
 ing
 data?

No

Yes

No Yes Any f(n)

 Unbounded
number of
members?

Yes

Yes

Yes

Yes No Yes Any constant

Assumption

 P NP

 P NP

 P NP,
the Unique Games

Conjecture

Unbounded
Number of

loci?

Yes

No

Yes

No

Binary-tree-
MRHC

2-locus-MRHC*

Binary-tree-
MRHC*

2-locus-MRHC

Hardness

NP

Tree-MRHC No No Yes Yes Any constant
 P NP,

the Unique Games
Conjecture

Upper bound
of approx. ratio

O ()

The lower bound
holds for

2-locus-MRHC*
(4,1)

Binary-tree-
MRHC*

2-locus-MRHC
(16,15)

Tree-MRHC(1,u)
Tree-MRHC(u,1)

)log(n

Acknowledgement

We would like to thank Dr. Neal Young and Dr. Marek Chrobak for their valuable
suggestions and discussion. This research is supported in part by NSF grant
CCR-0309902, National KeyProject for Basic Research (973) grant 2002CB512801,
and a fellowship from the Center for Advanced Study, Tsinghua University.

References

1. J. Li and T. Jiang: Efficient rule-based haplotyping algorithm for pedigree data. Proc. of the
7th Annual Conference on Research in Computational Molecular Biology (RECOMB’03),
pages 197-206, 2003.

2. K. Doi, J. Li and T. Jiang: Minimum recombinant haplotype configuration on tree pedigrees.
Proc. of the 3rd Annual Workshop on Algorithms in Bioinformatics (WABI'03), pages
339-353, 2003.

3. L. Aceto et al.: The complexity of checking consistency of pedigree information and related
problems. J. Comp. Sci. Tech., 19(1): 42–59, 2004.

4. S. Khot: On the power of 2-Prover 1-Round Games. Proc. of the 34th ACM Symposium on
Theory of Computing (STOC’02), pages 767-775, 2002.

5. A. Agarwal, M. Charikar: O() approximation algorithms for min UnCut, min 2CNF
deletion, and directed cut problems. Proc. STOC’05, pages 573-581, 2005.

6. G. Ausiello et al.: Complexity and approximation: combinatorial optimization problems and
their approximability properties, pages 276-279, Springer, 1999.

7. L. Jorde: Where we are hot, they are not. Science, Volume 308, pages 60-62, 2005.

)log(n

 Complexity and Approximation of the MRHC Problem 379

8. L. Li, J.H. Kim, and M. S. Waterman: Haplotype reconstruction from SNP alignment. Proc.
RECOMB’03, pages 207-216, 2003.

9. R. Lippert, et al.: Algorithmic strategies for the single nucleotide polymorphism haplotype
assembly problem. Briefings in Bioinformatics 3(1): 23-31, 2002.

10. E. Eskin E. Halperin, and R.M. Karp: Large scale reconstruction of haplotypes from
genotype data. Proc. RECOMB’03, pages 104-113, 2003.

11. L. Excoffier and M. Slatkin: Maximum–likelihood estimation of molecular haplotype
frequencies in a diploid population. Mol. Biol. Evol., 12: 921-927, 1995.

12. H. Seltman, K. Roeder, and B. Devlin: Transmission/disequilibrium test meets measured
haplotype analysis: family-based association analysis guided by evolution of haplotypes.
Am. J . Hum. Genet., 68(5): 1250-1263, 2001.

13. S. Zhang et al.: Transmission/ disequilibrium test based on haplotype sharing for tightly
linked markers. Am. J. Hum. Genet., 73(3): 556-579, 2003.

14. J. Li and T. Jiang: An exact solution for finding minimum recombinant haplotype
configurations on pedigrees with missing data by integer linear programming. Proc.
RECOMB’04, pages 20-29, 2004.

15. J.R. O’Connell: Zero-recombinant haplotyping: applications to fine mapping using SNPs.
Genet. Epidemiol., 19 Suppl. 1: S64-70, 2000.

16. D. Qian and L. Beckmann: Minimum-recombinant haplotyping in pedigrees. Am. J. Hum.
Genet., 70(6): 1434-1445, 2002.

17. The International HapMap Consortium: The International HapMap Project. Nature, Volume
426, pages 789-796, December 2003.

18. C.H. Papadimitriou and M. Yannakakis: Optimization, Approximation, and Complexity
Classes. J. Comp. System Sci., pages 425-440, 1991.

19. M. Stephens, N. J. Smith, and P. Donnelly: A new statistical method for haplotype
reconstruction from population data. Am. J. Hum. Genet., 68(4):978–989, 2001.

20. T.J. Schaefer: The complexity of satisfiability problems. Proc. of the 10th STOC, pages
216-226, 1978.

21. J. Li and T. Jiang: Computing the Minimum Recombinant Haplotype Configuration from
incomplete genotype data on a pedigree by integer linear programming. Proc.
RECOMB’04, pages 20-29, 2004.

22. Available at http://www.cs.ucr.edu/~lliu/App_MRHC.pdf.

Space Efficient Algorithms for Ordered Tree
Comparison

Lusheng Wang1 and Kaizhong Zhang2

1 Department of Computer Science, City University of HongKong, HongKong
cswangl@cityu.edu.hk

2 Dept. of Computer Science, University of Western Ontario,
London, Ont. N6A 5B7, Canada

kzhang@csd.uwo.ca

Abstract. In this paper we present techniques to significantly improve
the space complexity of several ordered tree comparison algorithms with-
out sacrificing the corresponding time complexity. We present new algo-
rithms for computing the constrained ordered tree edit distance and the
alignment of (ordered) trees. The techniques can also be applied to other
related problems.

Keywords: Space efficient algorithms, Constrained tree edit distance,
Alignment of trees.

1 Introduction

Ordered labeled trees are trees whose nodes are labeled and in which the left
to right order among siblings is significant. Comparing such trees with distance
and/or similarity measures has applications in several diverse areas such as com-
putational molecular biology [8,5], computer vision, pattern recognition, pro-
gramming compilation and natural language processing.

Algorithms have been developed for ordered labeled tree comparisons
[10,9,14,5,12]. The degree-one edit distance was introduced by Selkow [9] in which
insertions and deletions are restricted to the leaves of the trees. The degree-two
edit distance was introduced by Zhang et al. [13,16] in which insertions and dele-
tions are restricted to tree nodes with zero or one child. Zhang [12] introduced
the constrained edit distance which is a bit more general than degree-two edit
distance. The (general) edit distance between ordered labeled trees was intro-
duced by Tai [10]. His algorithm has been improved by several authors [14,6,3].
The alignment of trees was introduced by Jiang et al. in [5].

Given two ordered trees T1 and T2, the degree-one edit distance, the degree-
two edit distance, and the constrained edit distance can all be computed in
(|T1||T2|) time and space [9,12,13], where | · | is the number of nodes in the
tree. Richter [7] presented an algorithm for the constrained edit distance with
O(|T1||T2|deg(T1)deg(T2)) time and O(|T1|dep(T2)deg(T2)) space, where deg(·)
is the degree of the tree and dep(·) is the depth of the tree. For small degree
and low depth trees, this is a space improvement. According to a recent survey

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 380–391, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Space Efficient Algorithms for Ordered Tree Comparison 381

on tree edit distance by Bille [1], the algorithms of Zhang [12] and Richter
[7] are currently the best for the constrained tree edit distance. In this paper,
we present an algorithm for the constrained tree edit distance with O(|T1||T2|)
time and O(log(|T1|)|T2|) space. The techniques used can also be used for the
degree-one and the degree-two edit distance to achieve the same time and space
complexities.

For alignment of trees, the algorithm in [5] runs in O(|T1|T2|(deg(T1) +
deg(T2))2) time and needs O(|T1||T2|(deg(T1) + deg(T2)) space. Recently, there
is a strike to reduce the space [11]. The space required for the new algorithm
is O(log(|T1|)|T2|(deg(T1) + deg(T2))deg(T1)). However, the running time is in-
creased to O(|T1|2|T2|(deg(T1) + deg(T2))2). In this paper, we proposed a new
algorithm that keeps the same space complexity and reduces the run timep by
a factor of O(|T1|).

2 Constrained Edit Distance Between Ordered Trees

The nodes in an ordered tree of size n are numbered from 1 to n according
to the postorder, where the left siblings are ordered before the right siblings.
Given an ordered labeled tree T , the ith node of tree T is represented as t[i], the
subtree of T rooted at node t[i] is represented as T [i], and the subforest obtained
by deleting t[i] from T [i] is represented as F [i]. The parent of node t[i] in T is
denoted as t[p(i)]. The number of nodes in a tree T is denoted as |T |.

Let θ be the empty tree, and λ a inserted space. γ(a, λ), γ(λ, a), and γ(a, b)
denote the cost of deleting a, inserting a, and substituting a with b, respectively.

Consider two trees T1 and T2 to compare. Suppose that the degrees of node
t1[i] and node t2[j] are mi and nj , respectively. Denote the children of t1[i]
from left to right as t1[i1], ..., t1[imi] and children of t2[j] from left to right as
t2[j1], ..., t2[jnj].

The constrained edit distance metric is based on a constrained edit mapping
allowed between two trees. We will first give the definition of constrained editing
mapping and then use it to define the constrained editing distance metric.

Formally we define a triple (M,T1, T2) to be a constrained edit mapping from
T1 to T2, where M is any set of pairs of integers (i, j) satisfying:

(1) 1 ≤ i ≤| T1 |, 1 ≤ j ≤| T2 |;
(2) For any pair of (i1, j1) and (i2, j2) in M ,

(a) i1 = i2 iff j1 = j2 (one-to-one)
(b) t1[i1] is to the left of t1[i2] iff t2[j1] is to the left of t2[j2] (sibling order

preserved);
(c) t1[i1] is an ancestor of t1[i2] iff t2[j1] is an ancestor of t2[j2] (ancestor

order preserved);
(3) For any triple (i1, j1), (i2, j2) and (i3, j3) in M , let lca() represent least

common ancestor function,
t1[lca(i1, i2)] is a proper ancestor of t1[i3] iff t2[lca(j1, j2)] is a proper ancestor
of t2[j3].

382 L. Wang and K. Zhang

This definition adds constraint (3) to the definition of the edit mapping [14].
This is why we call it a constrained edit mapping. The intuitive idea behind this
definition is that two separate subtrees of T1 should be mapped to two subtrees
of T2 and vice versa.

We will use M instead of (M,T1, T2) if there is no confusion. Let M be a
constrained editing mapping from T1 to T2. We can define the cost of M :

γ(M) =
∑

(i,j)∈M

γ(t1[i], t2[j]) +
∑
i∈M

γ(t1[i], λ) +
∑
j ∈M

γ(λ, t2[j])

We can now define the constrained edit distance between T1 and T2 as:

D(T1, T2) = min
M

{γ(M) | M is a constrained edit mapping between T1toT2}

2.1 A Simple Algorithm

We now present an algorithm for computing the constrained edit distance be-
tween two ordered trees. This algorithm is given in [12] and is the basis of our
new space efficient algorithm.

The algorithm in [12] for the constrained edit distance between two ordered
trees is given in Figure 1. While we do not show the details of the correctness of
the algorithm, we now explain the ideas of the algorithm.

The computation of D(T1[i], T2[j]) has several cases. In one case, T1[i] is
matched to a child subtree of T2[j]. In a symmetric case, T2[j] is matched to a
child subtree of T1[i]. In the last case, t1[i] is matched with t2[j] and therefore
F1[i] is matched with F2[j] which means that we need to know D(F1[i], F2[j]).

Similarly, the computation of D(F1[i], F2[j]) has several cases. In the first
case, F1[i] is matched to F2[jk], 1 ≤ k ≤ nj , a subforest of a child of F2[j]. In
the second case, F2[j] is matched to F1[ik], 1 ≤ k ≤ mi, a subforest of a child
of F1[i]. In the third case, there is a matching between T1[i1], ..., T1[imi] and
T2[j1], ..., T2[jnj]. We uae E(mi, nj) to denote the optimal matching between
T1[i1], ..., T1[imi] and T2[j1], ..., T2[jnj]. E(mi, nj) can be computed using the
sequence edit distance algorithm treating each subtree as an unit. The recurrence
equations are shown in Figure 1. All the values can be computed in a bottom
up fashion.

The time and space complexity for computing E(mi, nj) is obviously O(mi ×
nj). The complexity of computing D(T1[i], T2[j]) is bounded by O(mi +nj). The
complexity of computing D(F1[i], F2[j]) is bounded by the O(mi + nj).

Hence for any pair i and j, the complexity of computing D(T1[i], T2[j]) and
D(F1[i], F2[j]) is bounded by O(mi × nj). Therefore the complexity of the algo-
rithm is

|T1|∑
i=1

|T2|∑
j=1

O(mi × nj) = O(
|T1|∑
i=1

mi ×
|T2|∑
j=1

nj) = O(|T1| × |T2|)

Space Efficient Algorithms for Ordered Tree Comparison 383

E(s, t) = min

E(s, t− 1) + D(θ, T2[jt])
E(s− 1, t) + D(T1[is], θ)
E(s− 1, t− 1) + D(T1[is], T2[jt]),

D(F1[i], F2[j]) = min

D(F1[i], θ) + min

1≤s≤mi

{D(F1[is], F2[j]) −D(F1[is], θ)}
D(θ, F2[j]) + min

1≤t≤nj

{D(F1[i], F2[jt])−D(θ, F2[jt])}
E(ni, nj),

D(T1[i], T2[j]) = min

D(T1[i], θ) + min1≤s≤mi{D(T1[is], T2[j]) −D(T1[is], θ)}
D(θ, T2[j]) + min1≤t≤nj {D(T1[i], T2[jt])−D(θ, T2[jt])}
D(F1[i], F2[j]) + γ(t1[i]→ t2[j]).

Fig. 1. The equations for the simple algorithm

2.2 Reducing the Space Complexity

In practice, the space required for the simple algorithm maybe a bottleneck.
In this section, we propose a method to modify Algorithm 1 so that the space
required is reduced to O(log(|T1|) · |T2|).

The basic idea is straightforward. In order to compute the constrained edit
distance, some computed values are no longer useful after they were used. We
simple release the space that is no longer useful. To achieve our goal, we need
to be more careful about the computational order of nodes of tree T1, not just
an arbitrary postorder. We also modify the computation of node t1[i] slightly.
When the computation for node t1[i1] is completed, we immediately start the
computation of E[i, j] without waiting for the computation of t1[i2].

Here we give a more restricted order for the nodes in T1. Consider a node
t1[i] in T1. Let t1[i1], t1[i2], . . ., t1[imi] be the children of t1[i] in T1 and |T1[ik]|
be the number of nodes in the subtree T1[ik]. The computational order of the
children of t1[i] is that the child with largest number of nodes, which we refer to
as the favorable child, would be the first one and then from left to right for the
rest of children. This order is applied to all the nodes and if t1[u] and t1[v] are
siblings in T1 and t1[u] is ordered before t1[v] then all nodes in T1[u] are ordered
before any node in T1[v]. Figure 2 gives an example of the new order.

The modified algorithm will use this new order for T1 and the same post
order as in the simple algorithm for T2. For each node t1[i], we will compute
D(F1[i], F2[j]) and D(T1[i], T2[j]) for all nodes t2[j] in T2. Now suppose that
t1[p(i)] is the parent of t1[i], then we can immediately use D(F1[i], F2[j]) and
D(T1[i], T2[j]) for the computation of D(F1[p(i)], F2[j]) and D(T1[p(i)], T2[j]).
There are two cases. One case is that t1[i] is the favorable child of t1[p(i)] and
it is not the leftmost child of t1[p(i)]. In this case, we need to keep the values of
D(F1[i], F2[j]) and D(T1[i], T2[j]) since the computation of E(p(i), j) is from left
to right. The other case is that t1[i] is not the favorable child or it is the favorable
child and also the leftmost child. In this case, we can use it immediately for the
computation of E(p(i), j). Therefore for each node t1[i] in T1 such that at least
its favorable child’s computation is completed, we at most will need to keep two
sets of values: the values for its favorable child and the partial computation of

384 L. Wang and K. Zhang

����
����

�
�

�
�����

�
�
�

�
�

�
�

�
�

�

12

10 11
9

87

6
5

4
3

1 2

Fig. 2. An example of the new order

E(mi, nj). Notice that for any node t1[i] in T1, if the computation of its favorable
child is not completed, we do not need to store any value and if the computation
of all its children have been completed, then in next step the computation for
node t1[i] is completed and we can release the space used.

By using such a new order for T1 and the above straightforward idea we now
have an algorithm with much less space. Assuming the initial values are set, the
modified algorithm is given in Figure 3 as Algorithm 2.

The following lemma shows that the space complexity of Algorithm 2 is
reduced to O(log(|T1|)|T2|).

Lemma 1. The time and space complexities of Algorithm 2 are O(|T1||T2|) and
O(log(|T1|)|T2|).

Proof. From the algorithm, it is clear that for each i of T1, the number of steps
is bounded by O(

∑|T2|
j=1 nj). Therefore the time complexity of Algorithm 2 is

O(
∑|T1|

i=1
∑|T2|

j=1 nj) = O(|T1||T2|).
For the space complexity, let us consider the status of a node in T1 with

respect to the space requirement. We say a node t1[i] in T1 is active if the
computation of its favorable child is completed and the computation for node
t1[i] itself has not been completed. Therefore a node is inactive if the computation
of its favorable child has not been completed or if the computation for node i is
completed.

If a node is inactive because its computation is completed and this node is
the favorable child of its parent, then we cannot immediately release the space
used since these values will be used for the computation of its parent. However
in this situation, we can contribute the space requirement of the favorable child
to its parent, which is active, when counting the space requirement. Therefore,
we can assume that if a node is inactive, then we can release the space used
for that node. This means that we only have to check maximum space used by
active nodes during the execution of the algorithm.

For any active node t1[p], assuming that its favorable child is t1[pf], then we
need O(|T2|) to store D(F1[pf], F2[j]) and D(T1[pf], T2[j]) for 1 ≤ j ≤ |T2|, and

Space Efficient Algorithms for Ordered Tree Comparison 385

Input: T1 and T2

Output: D(T1, T2[j]), where 1 ≤ j ≤ |T2|

for i = 1 to |T1| (the new order)
for j = 1 to |T2|

D(F1[i], F2[j]) = min

D(θ, F2[j]) + min

1≤t≤nj

{D(F1[i], F2[jt])−D(θ, F2[jt])}
Fi

Ei(nj);

D(T1[i], T2[j]) = min

D(θ, T2[j]) + min1≤t≤nj {D(T1[i], T2[jt])−D(θ, T2[jt])}
Gi

D(F1[i], F2[j]) + γ(t1[i], t2[j]);

Let t1[p(i)] be the parent of t1[i] and t1[pf] be the favorable child of t1[p(i)]
if t1[i] is the favorable child of t1[p(i)] then

Ep(0) = 0;
Fp = D(F1[p(i)], θ) + D(F1[i], F2[j]) −D(F1[i], θ);
Gp = D(T1[p(i)], θ) + D(T1[i], T2[j]) −D(T1[i], θ);
for t = 1 to nj

Ep(t) = E(t− 1) + D(θ, T2[jt]);
if t1[i] is not the favorable child of t1[p(i)] or t1[i] is the leftmost child of t1[p(i)]
then

Fp = min{Fp, D(F1[p(i)], θ) + D(F1[i], F2[j]) −D(F1[i], θ)};
Gp = min{Gp, D(T1[p(i)], θ) + D(T1[i], T2[j]) −D(T1[i], θ)};
for t = 0 to nj

E0
p(t) = Ep(t);

Ep(0) = E0
p(0) + D(T1[i], θ);

for t = 1 to nj

Ep(t) = min

Ep(t− 1) + D(θ, T2[jt])
E0

p(t) + D(T1[i], θ)
E0

p(t− 1) + D(T1[i], T2[jt]);
if t1[i] is the left sibling of the favorable child t1[pf] of t1[p(i)] then

Fp = min{Fp, D(F1[p(i)], θ) + D(F1[pf], F2[j]) −D(F1[pf], θ)};
Gp = min{Gp, D(T1[p(i)], θ) + D(T1[pf], T2[j]) −D(T1[pf], θ)};
for t = 0 to nj

E0
p(t) = Ep(t);

Ep(0) = E0
p(0) + D(T1[pf], θ);

for t = 1 to nj

Ep(t) = min

Ep(t− 1) + D(θ, T2[jt])
E0

p(t) + D(T1[pf], θ)
E0

p(t− 1) + D(T1[pf], T2[jt]).

Fig. 3. A more space efficient algorithm, Algorithm 2

O(
∑|T2

j=1 nj) = O(|T2|) to store Ep(t) where 1 ≤ t ≤ nj for all j in T2. There-
fore for each active node, the space required is O(|T2|). Because of the new order,
if two nodes are active at the same time, then one has to be the ancestor of the
other. Therefore all active nodes of T1 are on a path in T1. Let t1[s] and t1[t] be
two neighboring active nodes on this path and t1[s] is an ancestor of t1[t], then

386 L. Wang and K. Zhang

|T1[s]| ≥ 2|T1[t]| since the computation of t1[sf], the favorable child of t1[s] with
maximum size, is already completed and therefore t1[t] is not a descendant of t1[sf].

This means that there are at most O(log(|T1|)) active nodes. Therefore the
space complexity is O(log(|T1|)|T2|).

2.3 Finding the Optimal Constrained Edit Mapping Between Two
Trees

In previous section we show that D(T1, T2) can be computed in O(|T1||T2|) time
and O(log(|T1|)|T2|) space. However in real application the optimal mapping
that achieves D(T1, T2) maybe required.

Finding the optimal mapping in O(log(|T1|)|T2|) space is in fact a more dif-
ficult task. This is similar to the situation of computing edit distance between
two sequences. Computing the edit distance in linear space is easy, but finding
the optimal edit script in linear space is more involved. Hirschberg [4] presented
a clever way to do this.

In this section we will present a method that can find the optimal mapping
between two ordered trees in O(|T1||T2|) time and O(log(|T1|)|T2|) space. When
the input is two sequences (trees such that each node only has one child), then our
method produces the optimal edit script for sequence edit distance in O(|T1||T2|)
time and O(|T2|) space.

The main idea is as the follows. Given T1 and T2, there is a unique node,
called key node, t1[k] in T1 such that in O(|T1||T2|) time and O(log(|T1|)|T2|)
space we can determine, in the optimal mapping, what subtree and subforest in
T2 that T1[k] and F1[k] would match to produce D(T1, T2). With this informa-
tion, we then decompose the optimal mapping into several components mapping
such that for each component the subtree or subforest of T1 involved has a size
less than or equal to half of |T1. This means that in the next step if we repeat
the same process for each component then the total cost for all the components
is O(0.5|T1||T2|) time using O(log(|T1|)|T2|) space. Therefore, repeating this pro-
cess at most log(|T1|) times, we can compute the optimal mapping in O(|T1||T2|)
time and O(log(|T1|)|T2|) space.

Given T1, the unique key node t1[k], with children t1[k1], t2[k2], ..., t1[kmk
], is

a node satisfying the following properties.

– |T1[k]| > 0.5|T1|,
– |T1[ks]| ≤ 0.5|T1| for 1 ≤ s ≤ mk.

With a small modification of algorithm 2, when computing D(T1, T2), we can
also compute two integers t1 and t2 for subtree T1[k] and two integers f1 and f2
for subforest F1[k].

We now define the meaning of t1 and t2. If in the optimal mapping T1[k] is
deleted, then t1 = t2 = 0. If in the optimal mapping subtree T1[k] is matched with
subtree T2[l] such that in this mapping T1[ks] is matching with T2[l] and the rest
of T1[k] is deleted, then t1 = ks and t2 = l. If in the optimal mapping node t1[k] is
matched with node t2[l], then t1 = k and t2 = l. If in the optimal mapping t1[k] is
deleted and F1[k] is matched with F2[l], then t1 = k + 1 and t2 = l.

Space Efficient Algorithms for Ordered Tree Comparison 387

f1 and f2 are defined similarly. Note that f1 and f2 are only meaningful when
t1 = k or t1 = k + 1, Otherwise f1 = f2 = −1. If in the optimal mapping F1[k] is
deleted, then f1 = f2 = 0. If in the optimal mapping F1[k] is matched with F2[l]
such that in this mapping F1[ks] is matching with F2[l] and the rest of F1[k] are
deleted, then f1 = ks and f2 = l. If in the optimal mapping F1[k] is matched with
F2[l] and D(F1[k], F2[l]) = E(mk, nl), then f1 = k and f2 = l.

We now give the formulae for computing t1, t2, f1, and f2. We use t T (i, j)
to represent (t1, t2) in the optimal mapping of D(T1[i], T2[j]). We use f T (i, j) to
represent (f1, f2) in the optimal mapping of D(T1[i], T2[j]). We use t F (i, j) to
represent (t1, t2) in the optimal mapping of D(F1[i], F2[j]). We use f F (i, j) to
represent (f1, f2) in the optimal mapping of D(F1[i], F2[j]).

Lemma 2. Let t1[k] be the key node of T1, then

f F (k, j)=

(k, j) if D(F1[k], F2[j])=E(mk, nj)
(ks, j) if D(F1[k], F2[j])=D(F1[k], θ)+D(F1[ks], F2[j])−D(F1[ks], θ)
f F (k, jt) if D(F1[k], F2[j])=D(θ, F2[j])+D(F1 [k], F2[jt])−D(θ, F2[jt]),

t T (k, j)=

(k, j) if D(T1[k], T2[j])=D(F1[k], F2[j])+γ(t1[k], t2[j])
(ks, j) if D(T1[k], T2[j])=D(T1[k], θ)+D(T1[ks], T2[j])−D(T1[ks], θ)
t T (k, jt) if D(T1[k], T2[j])=D(θ, T2[j])+D(T1[k], T2[jt])−D(θ, T2[jt]),

f T (k, j)=

f F (k, j) if D(T1[k], T2[j])=D(F1[k], F2[j])+γ(t1[k], t2[j])
(−1,−1) if D(T1[k], T2[j])=D(T1[k], θ)+D(T1[ks], T2[j])−D(T1[ks], θ)
f T (k, jt) if D(T1[k], T2[j])=D(θ, T2[j])+D(T1[k], T2[jt])−D(θ, T2[jt]).

Lemma 3. Let t1[i] be the parent of t1[k]. Let x be t or f in the following formula
for x T (i, j).

t F (i, j)=

(0, 0) if D(F1[i], F2[j]) = E(mi, nj) and T1[k] is deleted
t T (k, jt) if D(F1[i], F2[j]) = E(mi, nj) and T1[k] is matched to T2[jt]
(0, 0) if D(F1[i], F2[j]) = D(F1[i], θ) + D(F1[is], F2[j]) −D(F1[is], θ)

is �= k
(k + 1, j) if D(F1[i], F2[j]) = D(F1[i], θ) + D(F1[k], F2[j]) −D(F1[k], θ)
t F (i, jt) if D(F1[i], F2[j]) = D(θ, F2[j]) + D(F1[i], F2[jt])−D(θ, F2[jt]),

f F (i, j)=

(0, 0) if D(F1[i], F2[j]) = E(mi, nj) and T1[k] is deleted
f T (k, jt) if D(F1[i], F2[j]) = E(mi, nj) and T1[k] is matched to T2[jt]
(0, 0) if D(F1[i], F2[j]) = D(F1[i], θ)+D(F1[is], F2[j])−D(F1[is], θ)

is �= k
f F (k, j) if D(F1[i], F2[j]) = D(F1[i], θ)+D(F1[k], F2[j])−D(F1[k], θ)
f F (i, jt) if D(F1[i], F2[j]) = D(θ, F2[j])+D(F1[i], F2[jt])−D(θ, F2[jt]),

x T (i, j)=

x F (i, j) if D(T1[i], T2[j]) = D(F1[i], F2[j]) + γ(t1[i], t2[j])
(0, 0) if D(T1[i], T2[j]) = D(T1[i], θ) + D(T1[is], T2[j]) −D(T1[is], θ)

is �= k
x T (k, j) if D(T1[i], T2[j]) = D(T1[i], θ) + D(T1[k], T2[j]) −D(T1[k], θ)
x T (i, jt) if D(T1[i], T2[j]) = D(θ, T2[j]) + D(T1[i], T2[jt]) −D(θ, T2[jt]).

Lemma 4. Let t1[i] be a proper ancestor of t1[p(k)] and t1[ik] be the child of t1[i]
which is an ancestor of t1[k]. Let x be t or f in the following formulae for x F (i, j)
and x T (i, j).

388 L. Wang and K. Zhang

x F (i, j)=

(0, 0) if D(F1[i], F2[j]) = E(mi, nj) and T1[ik] is deleted
x T (ik, jt) if D(F1[i], F2[j]) = E(mi, nj) and T1[ik] is matched to T2[jt]
(0, 0) if D(F1[i], F2[j]) = D(F1[i], θ)+D(F1[is], F2[j])−D(F1 [is], θ)

s �= k
x F (ik, j) if D(F1[i], F2[j]) = D(F1[i], θ)+D(F1[ik], F2[j])−D(F1[ik], θ)
x F (i, jt) if D(F1[i], F2[j]) = D(θ, F2[j])+D(F1 [i], F2[jt])−D(θ, F2[jt]),

x T (i, j)=

x F (i, j) if D(T1[i], T2[j]) = D(F1[i], F2[j]) + γ(t1[i], t2[j])
(0, 0) if D(T1[i], T2[j]) = D(T1[i], θ) + D(T1[is], T2[j]) −D(T1[is], θ)

s �= k
x T (ik, j) if D(T1[i], T2[j]) = D(T1[i], θ) + D(T1[ik], T2[j]) −D(T1[ik], θ)
x T (i, jt) if D(T1[i], T2[j]) = D(θ, T2[j]) + D(T1[i], T2[jt])−D(θ, T2[jt]).

From these formulae, it is clear that we can computer t T (|T1|, |T2|) and
f T (|T1|, |T2|) with a small modification of Algorithm 2.

We now consider how to use t T (|T1|, |T2|) = (t1, t2) and f T (|T1|, |T2|) =
(f1, f2) to decompose the optimal mapping into smaller component mappings.

case 1: t1 = t2 = 0. In this case, since T1[k] is deleted, it is not in the optimal
mapping for D(T1, T2). Therefore the optimal mapping for D(T1, T2) would
be the optimal mapping for D(T1/T1[k], T2) where T1/T1[k] is T1 with T1[k]
deleted. Note that |T1/T1[k]| < 0.5|T1|.

case 2: t1 = ks and t2 = l. In this case, T1[k] is matched with T2[l] and in
this matching, T1[ks] is matched with T2[l] and the rest of T1[k] is deleted.
Therefore the optimal mapping for D(T1, T2) has two component mappings.
One component is the optimal mapping for D(T1/F1[k], T2/F2[l]) with addi-
tional condition that t1[k] has to match with t2[l] though (k, l) is not in the
optimal mapping of D(T1, T2) since t1[k] is deleted. The other component is
the optimal mapping of D(T1[ks], T2[l]. Note that |T1/F1[k]| ≤ 0.5|T1| and
|T1[ks]| ≤ 0.5|T1|.
Computing D(T1/F1[k], T2/F2[l]) with condition that some of the leaves of
the two trees are forced to match would not be more difficult then computing
D(T1/F1[k], T2/F2[l]) without any condition. In fact the condition will force
the ancestors of these matched leaves of the two trees to match making the
computation less expensive.

case 3: t1 = k and t2 = l, f1 = f2 = 0. In case 3, case 4 and case 5, t1 = k and t2 =
l. This means that in the optimal mapping forD(T1, T2), t1[k] is matched with
t2[l]. Therefore one component mapping (for case 3-5) is the optimal mapping
for D(T1/F1[k], T2/F2[l]) with additional condition that t1[k] matched with
t2[l]. Note that |T1/T1[k]| < 0.5|T1|.
In this case, since f1 = f2 = 0 there is no additional component.

case 4: t1 = k and t2 = l, f1 = ks and f2 = l. In this case, one component
mapping is the same as that in case 3 and the other component mapping is the
optimal mapping for D(F1[ks], F2[l]). Note that |F1[ks]| ≤ 0.5|T1|).

case 5: t1 = k and t2 = l, f1 = k and f2 = l. In this case, one component
mapping is the same as that in case 3 and the other component mapping is

Space Efficient Algorithms for Ordered Tree Comparison 389

the optimal mapping for D(F1[k], F2[l]). Since in this case, D(F1[k], F2[l]) =
E(mk, nl), the optimal mapping forD(F1[k], F2[l]) can be further decomposed
into the optimal mappings of the matching subtree pairs of E(mk, nl). Note
that |T1[ks]| ≤ 0.5|T1|) for 1 ≤ s ≤ mk.

case 6-8: t1 = k + 1 and t2 = l. This means that in the optimal mapping
for D(T1, T2), t1[k] is deleted and F1[k] is matched with F2[l]. Therefore
one component mapping (for case 6-8) is the optimal mapping for
D(T1/F1[k], T2/F2[l]) with additional condition that t2[l] matched with
a proper ancestor of t1[k]. Note that |T1 − T1[k]| < 0.5|T1|.
There is no additional component for case 6. The other component for case 7 is
exactly the same as that of case 4. The other components for case 8 are exactly
the same as that of case 5.

In all the above cases, with t1, t2, f1, and f2, we can determine components
needed except matching subtree pairs of E(mk, nl) for case 5 and case 8. Find-
ing the matching subtree pairs of E(mk, nl) can be done in O(|F1[k]||F2[l]|)
time and O(log(|F1[k]|)|F2[l]|) space. First we find T1[ks] such that∑s−1

i=1 |T1[ki]| ≤ 0.5|F1[k]| and
∑s

i=1 |T1[ki]| > 0.5|F1[k]|. We then determine
T2[lt], in O(|F1[k]||F2[l]|) time and O(log(|F1[k]|)|F2[l]|) space, such that either
T1[ks] matched with T2[lt] in E(mk, nl) or T1[ks] is deleted, T1[k1], ..., T1[ks−1]
are matched with T2[l1], ..., T2[lt], and T1[ks+1], ..., T1[kmk

] are matched with
T2[lt+1], ..., T2[lnl

] in E(mk, nl). In both cases, since
∑s−1

i=1 |T1[ki]| ≤ 0.5|F1[k]
and

∑mk

i=s+1 |T1[ki]| ≤ 0.5|F1[k], we can repeat and get all the subtree matching
pairs for E(mk, nl) in O(|F1[k]||F2[l]|) time and O(log(|F1[k]|)|F2[l]|).

Therefore using c|T1||T2| time for some constant c and O(log(|T1|)|T2|) space
we can decompose the optimal mapping forD(T1, T2) in to some components such
that for each component the involved subtree or subforest of T1 has a size less or
equal to 0.5|T1|.

In the next step we will use the same algorithm for all the components and the
total time is bounded by c0.5|T1||T2|.

The above analysis means that for our algorithm the space complex-
ity is bounded by O(log(|T1|)|T2|) and the time complexity is bounded by
c|T1||T2| + c 1

2 |T1||T2| + c 1
4 |T1||T2| + ≤ 2c|T1|T2| = O(|T1||T2|).

Theorem 1. Given two ordered trees T1 and T2, the constrained edit distance and
the optimal constrained mapping between them can be computed inO(|T1||T2|) time
and O(log(|T1|)|T2|) space.

Proof. Immediately from the above analysis.

3 Alignment of Trees

The alignment of tree is another measure for comparison of ordered trees [5]. The
definition of alignment of trees is as follows: Inserting a node u into T means that
for some node v (could be a leaf) in T , we make u the parent of the consecutive

390 L. Wang and K. Zhang

subsequence of the children of v (if any) and then v the parent of u. We also allow
to directly add/insert a node as a child of a leaf in the tree. Given two trees T1 and
T2, an alignment of the two trees can be obtained by first inserting nodes labeled
with spaces into T1 and T2 such that the two resulting tree T ′

1 and T ′
2 have the same

structure, (i.e., they are identical if labels are ignored,) and then overlayingT ′
1 and

T ′
2. A score is defined for each pair of labels. The value of an alignment is the total

score of all the opposing labels in the alignment. The problem here is to find an
alignment with the optimal (maximum or minimum) value.

Theorem 2. There exists an algorithm for alignment of trees that runs in
O(|T1||T2|(deg(T1) + deg(T2))2) time and requires O(log(|T1|)|T2|(deg(T1)+
deg(T2))deg(T1)) space.

The basic ideas of the algorithm are similar to that for constrained edit dis-
tance. We first use the method in [11] to compute the cost of an optimal alignment.
The remaining task is to get the alignment.

Let q be the node in T1 such that |T1[q]| ≥ 0.5|T1| and for any child qi of node
q, |T1[qi]| < 0.5|T1|. q is refereed to as a cutting point in T1. By definition, there
always exists a cutting point for any T1.

By the definition of the alignment, node q is either aligned with a node T2[j] or
aligned with an inserted node (labeled with empty). We can modify the algorithm
for computing the cost of an optimal alignment so that when the cost of an optimal
alignment is computed, we immediately know the configuration of node q in the
alignment. Thus, we can decompose the alignment of the whole two tree T1 and T2
into two parts (1) the alignment of subtree T1[q] with a subtree or subforest of T2,
and (2) the alignment of the remaining parts of T1 and T2.

Repeating the process, we can get the alignment. We can show that the time
required is still O(|T1||T2|(deg(T1) + deg(T2))2).

4 Conclusion

We have presented space efficient algorithms for the computation of constrained
edit distance and tree alignment for ordered rooted trees. The techniques can also
be applied to other tree comparison problems such as degree-one and degree-two
edit distance between ordered trees.

Acknowledgements. This work is supported by a grant from City University
of Hong Kong (Project No. 7001696) and the Natural Sciences and Engineering
Research Council of Canada under Grant No. OGP0046373.

References

1. P. Bille, “A survey on tree edit distance and related problems”, Theoretical Computer
Science, no. 337, pp. 217-239, 2005.

2. Y. C. Cheng and S. Y. Lu, “Waveform correlation by tree matching”, IEEE Trans.
PAMI, vol. 7, pp.299-305, 1985

Space Efficient Algorithms for Ordered Tree Comparison 391

3. S. Dulucq and H. Touzet, “Decomposition algorithm for tree editing distance”, Jour-
nal of Discrete Algorithms, 2004.

4. D.S. Hirschberg, “A linear space algorithm for computing maximal common subse-
quences”, Communications of the ACM, no. 18, pp. 341-343, 1975.

5. T. Jiang, L. Wang and K. Zhang, ‘Alignment of trees - an alternative to tree edit’,
Theoretical Computer Science vol. 143, no. 1, pp. 137-148, 1995.

6. P. Klein, “Computing the edit-distance between unrooted ordered trees”, Proceed-
ings of 6th European Symposium on Algorithms, pp. 91-102, 1998.

7. T. Richter, “A new measure of the distance between ordered trees and its applica-
tions”, Technical Report 85166-cs, Department of Computer Science, University of
Bonn, 1997.

8. B. Shapiro and K. Zhang, ‘Comparing multiple RNA secondary structures using tree
comparisons’, Comput. Appl. Biosci vol. 6, no.4, pp.309-318, 1990

9. S.M. Selkow, “The tree-to-tree editing problem”, Information Processing Letters,
vol. 6, pp.184-186, 1977.

10. K.C. Tai, “The tree-to-tree correction problem”, J. ACM, vol. 26, pp.422-433, 1979.
11. L. Wang and J. Zhao, “Parametric alignment of ordered trees”, Bioinformatics, vol.

19, pp. 2237-2245, 2003.
12. K. Zhang, “Algorithms for the constrained editing distance between ordered labeled

trees and related problems”. Pattern Recognition, vol.28, no. 3, pp. 463-474, 1995.
13. K. Zhang, “Efficient parallel algorithms for tree editing problems”, Proceedings of the

Seventh Symposium on Combinatorial Pattern Matching, Laguna Beach, California,
June 1996, Springer-Verlag’s Lecture Notes in Computer Science 1075, pp 361-372.

14. K. Zhang and D. Shasha, ‘Simple fast algorithms for the editing distance between
trees and related problems’, SIAM J. Computing vol. 18, no. 6, pp.1245-1262, 1989

15. K. Zhang, L. Wang, and B. Ma, ‘Computing similarity between RNA structures’,
Proceedings of the Tenth Symposium on Combinatorial Pattern Matching. LNCS
1645, pp. 281-293, 1999.

16. K. Zhang, J.T.L. Wang and D. Shasha, ‘On the editing distance between undirected
acyclic graphs’, International Journal of Foundations of Computer Science, vol. 7,
no. 1, pp. 43-57, 1996.

A 1.75-Approximation Algorithm for Unsigned
Translocation Distance

Yun Cui1, Lusheng Wang2, and Daming Zhu1

1 School of Computer Science and Technology,
Shandong University, PR China

yuncui@cityu.edu.hk

dmzhu@sdu.edu.cn
2 Department of Computer Science,

City University of HongKong, HongKong
cswangl@cityu.edu.hk

Abstract. The translocation operation is one of the popular opera-
tions for genome rearrangement. In this paper, we present a 1.75-approxi-
mation algorithm for computing unsigned translocation distance which
improves upon the best known 2-approximation algorithm [1].

Keywords: Unsigned translocation distance, Approximation algorithm.

1 Introduction

A chromosome X = x1, x2, . . . , xp is a sequence of genes, where each gene xi

is represented by an integer. A gene xi has a direction. When the direction of
every gene is known, we use a signed integer to indicate the direction. When the
directions of genes are unknown, we use unsigned integers to represent the genes.
Throughout this paper, each xi in a signed chromosome is a signed integer, and
each xi in an unsigned chromosome is an unsigned integer. A signed genome
is a set of signed chromosomes and an unsigned genome is a set of unsigned
chromosomes.

For two unsigned chromosomes X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn in
a genome, a translocation swaps the segments in the chromosomes and generates
two new chromosomes. A prefix-prefix translocation ρpp(X,Y, i, j) generates two
new chromosomes: x1, . . . , xi−1, yj , . . . , yn and y1, . . . , yj−1, xi, . . . , xm. A prefix-
suffix translocation ρps(X,Y, i, j) generates two new chromosomes: x1, . . . , xi−1,
yj−1, . . . , y1 and xm, . . . , xi, yj , . . . , yn.

For two signed chromosomes X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn in
a genome, a prefix-prefix translocation ρpp(X,Y, i, j) generates two new chro-
mosomes: x1, . . . , xi−1, yj, . . . , yn and y1, . . . , yj−1, xi, . . . , xm. A prefix-suffix
translocation ρps(X,Y, i, j) generates two new chromosomes: x1, . . . , xi−1,
−yj−1, . . . ,−y1 and −xm, . . . ,−xi, yj , . . . , yn.

The translocation distance between two (signed/unsigned) genomes is the min-
imum number of translocations used to transform one genome into the other.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 392–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A 1.75-Approximation Algorithm for Unsigned Translocation Distance 393

Hannenhalli designed the first O(n3) algorithm [2] for computing transloca-
tion distance for signed genomes. The time complexity was improved to O(n2)
in [3]. In [5], an error originated in [2] was fixed. The problem of computing
translocation distance for unsigned genomes was recently proved to be NP-hard
[4]. Kececioglu and Ravi gave a ratio-2 approximation algorithm for the translo-
cation distance for unsigned genomes [1].

In this paper, we present a ratio-1.75 approximation algorithm for computing
the translocation distance of unsigned genomes which improves upon the best
known 2-approximation algorithm [1]. Our algorithm uses the maximum match
method to find a cycle decomposition that contains enough number of 2-cycles
(cycle containing exactly two black edges). By doing this, we give each unsigned
gene a sign and the problem becomes the computation of translocation distance
for signed genomes. Thus, we can use the algorithm in [3, 5] for signed genomes
to finally get an approximation solution.

2 Signed and Unsigned Translocation

The basic idea of our approximation algorithm for unsigned genomes is to care-
fully assign a sign to each gene in the genomes and use the algorithm for signed
genomes to compute the translocation distance. The approximation ratio purely
depends on the quality of the sign assignment of each gene.

First, let us introduce the computation method for signed genomes.

2.1 Signed Translocation

Given signed genomes A and B, the breakpoint graph Gs(A,B) can be obtained
as follows: for every chromosome X = x1, x2, . . . , xn of A, replace each xi with
an ordered pair (l(xi), r(xi)) of vertices. If xi is positive, (l(xi), r(xi)) = (xt

i,
xh

i); if xi is negative, (l(xi), r(xi)) = (xh
i , xt

i). The vertices r(xi) and l(xi+1) are
neighbors in A. The neighbors in B are defined analogously. For two vertices u
and v, if they are neighbors in A, then we use a black edge to connect them; if
they are neighbors in B, then we use a grey edge to connect them.

Every vertex in Gs(A,B) is incident with at most one black and one grey
edge. Therefore, Gs(A,B) can be uniquely decomposed into cycles. A cycle
containing exactly i black (grey) edges is called an i-cycle. A cycle is long if it is
not a 1-cycle.

Let X = x1, x2, . . . , xp be a chromosome in A. A subpermutation (SP) is an
interval xi, xi+1, . . . , xi+l in X containing at least three genes such that there
is another interval of the same length yj , yj+1, . . . , yj+l in a chromosome Y of
B satisfying {|xi| , |xi+1| , . . . , |xi+l|} = {|yj| , |yj+1| , . . . , |yj+l|}, xi = yj , xi+l =
yj+l and xi, xi+1, . . . , xi+l−1, xi+l �= yj , yj+1, . . . , yj+l−1, yj+l. Here xi and xi+l

are the two ending genes of the SP. A minimal subpermutation (minSP) is a
SP not containing any other SP. By the definition of SP, we have

394 Y. Cui, L. Wang, and D. Zhu

Lemma 1. Let I = r(xi), l(xi+1), r(xi+1), . . . , l(xj−1), r(xj−1), l(xj) denote a
SP in Gs(A,B), then the grey edge (r(xi), l(xj)) is not in Gs(A,B). Moreover,
the two (ending) genes xi and xj cannot be neighbors in B.

The translocation distance for signed genomes is closely related to the number
of cycles and the number of minSP ’s. If all minSP ’s in Gs(A,B) are in a SP ,
say, I, and the total number of minSP ’s is even, then call I an even-isolation.
Clearly there is at most one even-isolation in Gs(A,B).

Let n be the number of genes in the two genomes and N the number of chro-
mosomes in the genomes. c denotes the total number of cycles in the breakpoint
graph and s denotes the number of minSP ’s. f is the remaining index which is
defined as follows: (1) f = 1 if s is odd; (2) f = 2 if there is an even-isolation;
(3) f = 0 otherwise. Lemma 2 gives the formula to compute the translocation
distance ds(A,B) for the two signed genomes A and B.

Lemma 2. [2]

ds(A,B) = n−N − c+ s+ f. (1)

2.2 Unsigned Translocation

Consider unsigned genomes A and B. For every chromosomeX = x1, x2, . . . , xn

of A, xi and xi+1 are neighbors in A. The neighbors in B are defined analogously.
To define the breakpoint graph G(A,B), we use a vertex to represent a gene.
Two vertices are connected with a black edge if they are neighbors in A and two
vertices are connected with a grey edge if they are neighbors in B.

Note that every vertex is incident either with one black and one grey edge,
or with two black and two grey edges. Therefore, the cycle decompositions for
G(A,B) are not unique. Once we have a cycle decomposition for the breakpoint
graph of two unsigned genomes, we actually assign a sign to each gene in the
genomes. Thus, one way to compute the translocation distance for two unsigned
genomes is to (1) try all possible ways to get cycle decomposition (thus we can
get a sign for each gene), and (2) compute the translocation distance for signed
genomes and select the minimum value among all possible cycle decompositions.

3 The Approximation Algorithm

If we can give a good approximation of the cycle decomposition of the unsigned
case, we can get a good approximation solution for the unsigned translocation
distance. Our main idea of the approximation algorithm is to give a cycle de-
composition of G(A,B) that contains the maximum number of 1-cycles and a
sufficient number of 2-cycles.

Why the ratio could be better than 2?
Now, we give an intuitive explanation that if we keep the maximum number of
1-cycles and maximum number of 2-cycles in assigning signs to genes, then the
best performance ratio we can expect is 1.5.

A 1.75-Approximation Algorithm for Unsigned Translocation Distance 395

Suppose that we ignore the effect of s and f in formula (1). That is, we assume
that s = 0 and f = 0 in the optimal cycle decomposition. Then ds(A,B) =
n−N − c. Let c∗i be the number of i-cycles in the optimal cycle decomposition.
Then

ds(A,B) = n−N − c = n−N − c∗1 − c∗2 −
∑
i≥3

c∗i . (2)

n − N is the number of black edges in the breakpoint graph. We further
assume that c∗1 = 0, c∗2 = 0 and all black edges are in 3-cycles in the optimal
cycle decomposition. In this case, ds(A,B) = n −N − n−N

3 = 2
3 (n − N). If in

the approximation solution, we do not care about i-cycles for i ≥ 3, the distance
for the approximation solution could be n − N . Thus, the ratio becomes 3

2 . In
our approximation algorithm, we cannot get the maximum number of 2-cycles,
but we get a large number of 2-cycles. Besides, we have to design sophisticated
ways to deal with the other two parameters s and f in the analysis.

The cycle decomposition algorithm
Given unsigned genomes A and B, a cycle decomposition of G(A,B) can be
computed in the following three steps.
Step 1: Decomposition of 1-cycles

If two vertices are joined by a black edge and a grey edge in G(A,B), then
assign proper signs to the two vertices to obtain the 1-cycle containing the black
edge and the grey edge. Thus, if two genes are neighbors in both genomes, the
corresponding 1-cycle is kept in the cycle decomposition.
Step 2: Decomposition of 2-cycles

From G(A,B), we define a new graph, called match graph, FAB as follows: (1)
For every black edge in G(A,B) with at least one end not assigned a sign in Step
1, we create a vertex of FAB. (2) For every two vertices of FAB (representing two
black edges in G(A,B)), we create an edge connecting them in FAB if the two
black edges in G(A,B) can form a 2-cycle. FAB can be constructed in O(n2)
time where n is the number of genes.

Let M denote a maximum match of FAB. |M | is the size of the match. A
maximum match of any graph can be found in O(|V | |E|

1
2) time, where |V | is

the number of vertices and |E| is the number of edges [11]. Since FAB contains
at most n vertices and O(n) edges, M can be found in O(n

3
2) time. Every edge

in M represents a 2-cycle of G(A,B). By the construction, two 2-cycles in M
cannot share any black edge of G(A,B). However, they may share a grey edge in
G(A,B). In that case, the two 2-cycles cannot be kept in the cycle decomposition
simultaneously. A 2-cycle in M is isolated if it does not share any grey edge with
any other 2-cycles in M . Otherwise, the 2-cycle is related. Since a 2-cycle has
two grey edges, it is related to at most two 2-cycles.

A related component U consists of related cycles C1, C2, . . . , Ck, where Ci is
related to Ci−1 (2 ≤ i ≤ k), and every 2-cycle in U is not related to any 2-cycle
not in U . A related component involves at most two chromosomes, and can be
one of the four types shown in Figure 1.

396 Y. Cui, L. Wang, and D. Zhu

In our cycle decomposition, we keep all the isolated 2-cycles and alternatively
select 2-cycles from every related component. Assume that a maximum match
M of FAB contains z isolated 2-cycles. In our cycle decomposition approach, we
can keep at least � |M|−z

2 � + z, i.e., � |M|+z
2 � 2-cycles in Step 2.

Fig. 1. The four cases of related components including three 2-cycles

Step 3: Decomposition of other long cycles
After the decomposition of 2-cycles, the other long cycles can be arbitrarily

selected from the remaining graph.
The long cycles created in Step 2 are called selected cycles and the cycles

created in Step 3 are called arbitrary cycles.
Our approximation algorithm for unsigned translocation problem is as follows:

Algorithm1:

Input: G(A,B)

1. Compute the cycle decomposition of G(A,B) as described before. Denote
the resulting graph as GA

s (A,B).

2. Solve the signed case using the standard algorithm.

Let n be the number of genes in the given genomes. G(A,B) and FAB can
be constructed in O(n2) time. A maximum match of FAB can be found in
O(n

3
2) time. The algorithm in [3] requires O(n2) time to compute an optimal

sequence of translocations for signed case. Thus, the total time required for our
approximation algorithm is O(n2).

A minSP I = r(xi), xi+1, . . . , xj−1, l(xj) contains a cycles C if all vertices of
C are in {r(xi), l(xi+1), r(xi+1) . . . , l(xj−1), r(xj−1), l(xj)}. A cycle C is outside
I if no vertex of C is in {r(xi), l(xi+1), r(xi+1) . . . , l(xj−1), r(xj−1), l(xj)}.

Lemma 3. If a minSP contains a selected related 2-cycle in GA
s (A,B), then

this minSP contains at least one arbitrary cycle.

Cl Cr Cl Cr

xi−1 xj−1xi+1 xj+1xi xj

e

(a) (b)

(c) (d)

A 1.75-Approximation Algorithm for Unsigned Translocation Distance 397

4 Analysis of the Performance Ratio

In this section, we will show that the performance ratio of the algorithm is 1.75.
We use several new bounds in our analysis.

Suppose that each of the given genomes has n genes and N chromosomes.
Let d(A,B) denote the (optimal) translocation distance between two unsigned
genomes A and B, and Gopt

s (A,B) the breakpoint graph of an optimal cycle
decomposition.

4.1 1-Cycles

In this subsection, we will show that Step 1 in the cycle decomposition algorithm
always leads to a good approximation solution.

Lemma 4. We modify Gopt
s (A,B) as follows: if two vertices in G(A,B) are

connected by a black edge and a grey edge in G(A,B), then we re-assign the
signs of the two genes to obtain a 1-cycle. Assume that the resulting breakpoint
graph has c′ cycles and s′ minSP ’s. We have d(A,B) ≥ n−N − c′ + s′ + fo,
where fo is the remaining index for Gopt

s (A,B).

4.2 A Lower Bound

In this subsection, we give a lower bound for d(A,B). This lower bound will be
used as the starting point of our analysis.

Note that every minSP contains at least one long cycle. A simple minSP (S-
MSP) is a minSP containing one 2-cycle as its unique long cycle. By definition,
a simple minSP is a segment of genes in a chromosome containing 1-cycle(s) in
the middle of the segment and a 2-cycle containing the two black edges at the
two ends of the segments. The two grey edges in the 2-cycle must be “twisted”
since by Lemma 1 (r(xi), l(xj)) cannot be a grey edge for the two ending genes
xi and xj . The whole analysis of the approximation algorithm depends heavily
on the special treatment of simple minSP ’s.

Given unsigned genomes A and B, a candidate simple minSP (CS-MSP for
short) is defined as an interval Ic = xi, xi+1, . . . , xi+l−1, xi+l containing at least
four genes in a chromosome of A such that there is another interval of the same
length yj , yj+1, . . . , yj+l in a chromosome Y of B satisfying xi = yj, xi+l = yj+l

and xi+k = yj+l−k (1 ≤ k ≤ l − 1). Any CS-MSP can be turned into a S-MSP
by assigning proper signs to all genes in it. For convenience, we also call the
unique 2-cycle in the S-MSP, the unique 2-cycle in the CS-MSP.

Given signed genomes A and B, let Is = xi, xi+1, . . . , xj−1, xj be a S-
MSP in Gs(A,B). A cycle C = r(xi−1), l(xi), . . . , l(xj+1), r(xj), . . . , r(xi−1)
in Gs(A,B) containing the two black edges (r(xi−1), l(xi)) and (r(xj), l(xj+1))
on the left and right of Is is called a removable cycle. (See Figure 2 (a).) If
there is a removable cycle C for Is, then Is is called a removable simple minSP
(RS-MSP for short).

398 Y. Cui, L. Wang, and D. Zhu

Lemma 5. Given a RS-MSP Is = xi, xi+1, . . . , xj−1, xj, if we change the signs
of xi and xj, then we have

(a) I1 = −xi, xi+1, . . . , xj−1,−xj is no longer a minSP ;
(b) the number of cycles in the new breakpoint graph remains the same and

the number of minSP ’s is not increased.
(c) every black edge in the CS-MSP is in a long cycle containing a black edge

that is either (r(xi−1), l(xi)), or (r(xj), l(xj+1)).

Fig. 2. The breakpoint graphs before and after a RS-MSP is destroyed

The lower bound of d(A,B) we are going to develop is based on the modifi-
cation of CS-MSP’s in an optimal cycle decomposition Gopt

s (A,B).

Modifying an optimal cycle decomposition Gopt
s (A,B)

Let Ic be a CS-MSP and l(Ic) and r(Ic) denote the leftmost and rightmost genes
of Ic. The modification method is as follows:

ModificationMethod:
Input: Gopt

s (A,B)
1. For every chromosome X of A,
2. Obtain possible 1-cycles as described in Step 1 of cycle decomposition.
3. For every chromosome X of A,
4. Process each CS-MSP Ic in X from left to right:
5. Assign proper signs to l(Ic) and r(Ic) to turn Ic into a S-MSP Is.
6. If Is is a RS-MSP, then remove it by changing the signs of

both l(Is) and r(Is).

Theorem 1. c∗ and s∗ denote the number of cycles and number of minSP ’s
in the new breakpoint graph after ModificationMethod. We have d(A,B) ≥ n−
N − c∗ + s∗ + fo, where fo is the remaining index for Gopt

s (A,B).

4.3 A Key Inequality

Given unsigned genomes A and B, let sc denote the number of CS-MSP’s in
G(A,B). Let c∗i denote the number of i-cycles and s∗e the number of S-MSP’s
in the new breakpoint graph after applying ModificationMethod.

xi−1 xi xi+1 xj−1 xj xj+1 xi−1 xi xi+1 xj−1 xj xj+1

(a) (b)

A 1.75-Approximation Algorithm for Unsigned Translocation Distance 399

Theorem 2.
∑

i≥2(i− 1)c∗i ≥ 2(sc − s∗e).

For unsigned genomes A and B, let G∗
s(A,B) be the breakpoint graph pro-

duced by running ModificationMethod on Gopt
s (A,B). GA

s (A,B) is the break-
point graph produced by Algorithm 1. f is the remaining index for GA

s (A,B).
We use dA(A,B) to represent the translocation distance obtained by Algorithm
1. Let d(A,B) be the (optimal) translocation distance between the two unsigned
genomes. Now, we are ready to show the performance ratio.

4.4 The Performance Ratio When f = 0

Assume that GA
s (A,B) contains z isolated 2-cycles. Let z(o) denote the number

of isolated 2-cycles outside all minSP ’s. Consider the minSP ’s containing only
isolated 2-cycles and 1-cycles. Let s(s) denote the number of (simple) minSP ’s
containing only one isolated 2-cycle. s(m) denotes the number of minSP ’s con-
taining at least two isolated 2-cycles without any selected related 2-cycle or
arbitrary 2-cycle. Let c(o)

i be the number of arbitrary i-cycles (i ≥ 2) outside all
minSP ’s in GA

s (A,B).

Theorem 3. If f=0, then dA(A,B) ≤ 7
4d(A,B). That is, the performance ratio

of Algorithm 1 is 1.75 if f = 0.

Proof. By definition, 2s(m) + s(s) ≤ z − z(o). Thus, we have

s(m) ≤ z − z(o) − s(s)

2
. (3)

Suppose that GA
s (A,B) has s minSP ’s. ci (i ≥ 1) denotes the number of i-

cycles in GA
s (A,B). Similarly, c∗i denotes the number of i-cycles in G∗

s(A,B).
By Lemma 3, a minSP contains (at least) an isolated 2-cycle or an arbitrary
cycle. Thus, there are s − s(m) − s(s) minSP ’s, each containing at least one
arbitrary cycle. Since there are at least � |M|+z

2 � selected 2-cycles created in
Step 2 of the cycle decomposition algorithm, the number of arbitrary cycles in
minSP ’s is less than or equal to

∑
i≥2 ci − (|M|

2 + z
2) −

∑
i≥2 c

(o)
i . We have

s− s(m) − s(s) ≤
i≥2

ci − (
|M |
2

+
z

2
)−

i≥2

c
(o)
i . (4)

Combining (3) and (4), we have

s ≤
i≥2

ci −
i≥2

c
(o)
i − |M |

2
− z(o)

2
+

s(s)

2
. (5)

By Lemma 2,

dA(A, B) = n−N − c1 − c2 −
i≥3

ci + s + f. (6)

400 Y. Cui, L. Wang, and D. Zhu

From Theorem 1, we have

d(A, B) ≥ n−N − c∗
1 − c∗

2 −
i≥3

c∗
i + s∗ + fo. (7)

Let � = 7
4d(A,B) − dA(A,B). Since G∗

s(A,B) and GA
s (A,B) contain all

possible 1-cycles, c1 = c∗1. Since a cycle decomposition of G(A,B) contains at
most |M | 2-cycles, then c∗2 ≤ |M |. From (7) and (6), we have

� =
7
4
d(A, B)− dA(A, B)

≥ 7
4
(n−N − c∗

1 − c∗
2 −

i≥3

c∗
i + s∗ + fo)− (n−N − c1 −

i≥2

ci + s + f)

=
3
4
(n−N − c∗

1)−
5
4
c∗
2 −
|M |
2
− 7

4
i≥3

c∗
i +

7
4
s∗ +

7
4
fo +

i≥2

ci − s− f. (8)

From (8) and (5), we have

� ≥ 1
4
(n−N − c∗

1 − c∗
2 −

i≥3

c∗
i) +

1
2
(n−N − c∗

1 − 2c∗
2 − 3

i≥3

c∗
i)−

|M |
2

+
7
4
s∗ +

7
4
fo +

i≥2

c
(o)
i +

|M |
2

+
z(o)

2
− s(s)

2
− f. (9)

Since there are n−N black edges in G∗
s(A,B) and each black edge is in a cycle,

we have n−N ==
∑

i≥1 ic
∗
i . That is,

n−N − c∗
1 − c∗

2 −
i≥3

c∗
i =

i≥2

(i− 1)c∗
i . (10)

From (9) and (10), we can immediately obtain

� ≥ 1
4
(

i≥2

(i− 1)c∗
i + 2s∗ − 2s(s)) +

1
2

i≥4

(i− 3)c∗
i +

5
4
s∗ +

7
4
fo

+
i≥2

c
(o)
i +

z(o)

2
− f. (11)

From Theorem 2,
∑

i≥2(i−1)c∗i ≥ 2(sc − s∗e). Moreover, by definitions, sc ≥ s(s)

and s∗ ≥ s∗e. Thus, we have

i≥2

(i− 1)c∗
i + 2s∗ − 2s(s) ≥ 0. (12)

From (12), (11) becomes

� ≥ 1
2

i≥4

(i− 3)c∗
i +

5
4
s∗ +

7
4
fo +

i≥2

c
(o)
i +

z(o)

2
− f. (13)

From the fact that all variables in (13) are non-negative, we can immediately
conclude that � ≥ 0 when f = 0. ��

A 1.75-Approximation Algorithm for Unsigned Translocation Distance 401

Corollary 1. There exists an polynomial time algorithm with ratio-(1.75 + ε)
for computing the translocation distance for unsigned genomes.

Proof. For any constant d, if the translocation distance between A and B is
less than d, we can give an optimal solution in polynomial time. The ratio of
Algorithm 1 could be large than 1.75 when f = 1 or f = 2. However, if the
distance between A and B is large enough, the ratio is at most 1.75 + ε.

With a more precise analysis, we can show that

Theorem 4. The performance ratio of Algorithm 1 is 1.75.

The details will be given in the full paper.

Acknowledgements. The work is supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China [Project
No. CityU 1070/02E].

References

1. J. Kececioglu and R. Ravi. Of mice and men: Algorithms for evolutionary distances
between genomes with translocation. In 6th ACM-SIAM Symposium on Discrete
Algorithms, 604-613, 1995.

2. Sridhar Hannenhalli. Polynomial-time Algorithm for Computing Translocation
Distance between Genomes. CPM’95, 162-176, 1995.

3. Lusheng Wang, Daming Zhu, Xiaowen Liu, and Shaohan Ma. An O(n2) algorithm
for signed translocation, Journal of Computer and System Sciences, 70, 284-299,
2005.

4. Daming Zhu and Lusheng Wang. On the Complexity of Unsigned Translocation
Distance. submited to theoretical computer science.

5. Anne Bergeron, Julia Mixtacki, Jens Stoye, On sorting by translocation, RE-
COMB’05, 615-629, 2005.

6. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). STOC’95, 178-189, 1995.

7. H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for sorting
signed permutations by reversals. SIAM Journal on Computing, 29(3), 880-892,
2000.

8. A.Caprara. Sorting by reversals is difficult. Proceedings of the 1st Annual Inter-
national Conference on Research Computational Molecular Biology, 84-93, 1999.

9. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM
Journal on Computing, 25(2), 272-289, 1996.

10. D.A. Christie. A 3/2 Approximation Algorithm for Sorting by Reversals. Proceed-
ings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,244-252,
1998.

11. L. Lovász and M. D. Plummer. Annals of Discrete Mathematics (29): Matching
Theory. North-Holland, Amsterdam, 1986

Fast Algorithms for Computing the
Tripartition-Based Distance Between

Phylogenetic Networks

Nguyen Bao Nguyen, C. Thach Nguyen, and Wing-Kin Sung

National University of Singapore, 3 Science Drive 2, Singapore 117543
{baonguyen, thachnguyen, dcsswk}@nus.edu.sg

Abstract. Consider two phylogenetic networks N and N ′ of size n. The
tripartition-based distance finds the proportion of tripartitions which
are not shared by N and N ′. This distance is proposed by Moret et
al (2004) and is a generalization of Robinson-Foulds distance, which is
orginally used to compare two phylogenetic trees. This paper gives an
O(min{kn log n, n log n + hn})-time algorithm to compute this distance,
where h is the number of hybrid nodes in N and N ′ while k is the max-
imum number of hybrid nodes among all biconnected components in N
and N ′. Note that k << h << n in a phylogenetic network. In addition,
we propose algorithms for comparing galled-trees, which are an impor-
tant, biological meaningful special case of phylogenetic network. We give
an O(n)-time algorithm for comparing two galled-trees. We also give an
O(n + kh)-time algorithm for comparing a galled-tree with another gen-
eral network, where h and k are the number of hybrid nodes in the latter
network and its biggest biconnected component respectively.

1 Introduction

Phylogenetic trees are traditionally used to describe evolutionary relationships
among a set of objects. However, evolutionary events such as horizontal gene
transfer or hybrid speciation (often referred to as recombination events) which
suggest convergence between objects cannot be adequately represented in a single
tree structure. In the famous Science paper [3] by Doolittle, he also pointed
out that the phylogenetic tree is inadequated to represent the “true” evolution
history. To solve the shortcoming, phylogenetic networks were introduced. A
phylogenetic network is a distinctly leaf-labeled directed acyclic graph where the
in-degree and out-degree of all nodes are bounded above by 2. The nodes with
in-degree 2 are called hybrid nodes and they are used to model the recombination
events. Fig. 1(a) shows an example of a phylogenetic network.

Recently, a lot of works have been proposed to reconstruct phylogenetic net-
works [1,4,5,6,8,9,10,11,15,16,17,19]. To access the topological accuracy of differ-
ent construction methods, two measurements were proposed for comparing net-
works. They are Maximum Agreement Phylogenetic Subnetwork (MASN)[2,13],
andTripartition-baseddistance[14].This paper focuses on the lattermeasurement.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 402–411, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Algorithms for Computing the Tripartition-Based Distance 403

The tripartition-based distance is a generalization of the Robinson-Foulds
measure [18], which is a well-known method for comparing phylogenetic trees.
Given two phylogenetic networks N and N ′ which have the same leaf set, the
tripartition-based distance tri(N,N ′) computes the proportion of tripartitions
(defined in Section 2.3) which are not shared byN andN ′. The tripartition-based
distance is shown to be a distance metric[14]. More importantly, when both N
and N ′ are trees, tri(N,N ′) equals the Robinson-Foulds distance between them.

In this paper, we compute tri(N,N ′) in O(min{kn logn, n logn+ hn}) time
where n = max{V (N), V (N ′)}, h is the maximum number of hybrid nodes
in N and N ′, and k is the maximum number of hybrid nodes among all the
biconnected components in N and N ′. As the number of hybrid nodes in a
network is relatively rare (recombination events do not happen frequently),
k << h << n. Thus, in practice, the running time of our algorithm achieves
O(n log n).

We also consider comparing an important, biologically motivated special
case of phylogenetic networks, known as galled-trees. A galled-tree
[2,5,10,11,12,13,16,19] (also referred to in the literature as a a level-1 network
[2,12], a gt-network [16], or a topology with independent recombination events
[19]) is a phylogenetic network in which all cycles in the underlying undirected
graph are node-disjoint (see the network N in Fig. 2 for an example). When
both N and N ′ are galled-trees, we show that tri(N,N ′) can be computed in
O(n) time. If only N is known to be a galled-tree, tri(N,N ′) can be computed
in O(n + kh) where h and k are the number of hybrid nodes in N ′ and in the
biggest biconnected component of N ′ respectively.

Our improvement is stemmed from a novel labeling technique which labels the
nodes of the networks to facilite efficient identification of common tripartitions
between two networks.

The rest of the paper is organized as follows. We first present the preliminaries
in Section 2. Section 3 details the results for computing tri(N,N ′) when at least
one of N and N ′ is a galled-tree. Finally, we present the result for computing
the tripartition-based distance for two general networks in Section 4.

2 Preliminaries

2.1 Phylogenetic Network

A phylogenetic tree is a binary, rooted, unordered tree whose leaves are distinctly
labeled. A phylogenetic network is a generalization of a phylogenetic tree formally
defined as a rooted, connected, directed acyclic graph in which: (1) exactly one
node has indegree 0 (the root), and all other nodes have indegree 1 or 2; (2) all
nodes with indegree 2 (referred to as hybrid nodes) have outdegree 1, and all
other nodes have outdegree 0 or 2; and (3) all nodes with outdegree 0 (the leaves)
are distinctly labeled.

For each hybrid node h, there are several nodes, called split nodes of h, from
which there are two disjoint paths, called merge paths, to h. Two merge paths of

404 N.B. Nguyen, C.T. Nguyen, and W.-K. Sung

h starting from the same split node u form a simple cycle, called the recombinant
cycle of u. For example, in Fig. 2, the root of N ′ and v2 are split nodes of v5.

For any phylogenetic network N , let U(N) be the undirected graph obtained
from N by replacing each directed edge by an undirected edge. The level of N
[2] is the maximum number of hybrid nodes among all biconnected components
of U(N). A galled-tree is a network of level 1.

In the following, we will use V (N), E(N), L(N), h(N) and k(N) to denote
the set of nodes, edges, leaves, the number of hybrid node and the level of the
network N .

2.2 Component Tree of a Network

We decompose U(N) into biconnected components (or simply components). In
each biconnected component C in U(N), there is a node being an ancestor of
all the others, called the component’s sub-root and denoted by r(C). For a node
x ∈ C, a child u of x is called its internal child if u ∈ C; otherwise, u is
x’s external child. Internal descendants and external descendants of a node are
similarly defined.

Given a component C, its reduced component Cr is obtained by contracting
all nodes which have one external and one internal children (by “contracting”
a node, we mean deleting it and letting all its children become its parent’s
children). The reduced network N r is obtained by replacing each component of
N by its reduced component. Fig. 1(a) and (c) show a networkN and its reduced
network N r.

If we consider every biconnected component in N as a node, the resulting
graph is a tree and we denoted it as biconnected component tree T (N) (see
Fig. 1(b) for an example). One property of T (N) is that edges from one compo-
nent to another have the sub-roots of the latter as their heads.

We will use the term children to indicate both children of a node in a net-
work N as well as children of a component in T (N). Parents, ancestors and
descendants will also be used in this way. Thus, children, parents, descendants
and ancestors of a node are nodes in N whereas those of a component are com-
ponents in T (N).

a b dc

u2

r

u3

u1

u4

u6

u7u8

u9 u10

u5

C1

C2

C5C4C3 C6

a b dc

u2

r

u1

u6

u7u8

u10

u5

a c

u2

r

u3

u1

u5

u2

u4

a c

r

u3

u1

u5

(a) (b) (c) (d) (e)

Fig. 1. (a) A network N . (b) The reduced network Nr. (c) The component tree T (N).
(d) N∗

{a,c}. (e) N{a,c}.

Fast Algorithms for Computing the Tripartition-Based Distance 405

The following lemma states an important property of the reduced components.

Lemma 1. Each reduced component contains O(t) nodes and O(t) internal
edges where t is the number of its hybrid nodes.

Proof. A node in a reduced component belongs to one of 4 types A,B,C and
D whose internal in and out degrees are 0 and 2, 1 and 2, 2 and 1 and 2
and 0 respectively. Let a, b, c, d be the numbers of nodes belong to each type
respectively. We have c + d = t and 2a + 2b + c = b + 2c + 2d. This implies
a+ b ≤ 2a+ b = c+ 2d ≤ 2(c+ d) = 2t. Thus a+ b+ c+ d ≤ 3t. ��

2.3 Tripartition-Based Measure

Consider a phylogenetic network N leaf-labeled by S. For a node u ∈ V (N), an
ancestor v of u is called its strict ancestor if all paths from the root of N to
u contain v. Otherwise, v is called a non-strict ancestor of u. The tripartition
of u is (A(u), B(u), C(u)) where A(u) = {s ∈ S|u is a strict ancestor of s};
B(u) = {s ∈ S|u is a non-strict ancestor of s}; and C(u) = {s ∈ S|u is not an
ancestor of s}. We also denote A(u) ∪B(u) as D(u).

Given two networks N and N ′ having the same leaf set, a node u in one
network is unmatched if and only if there is no node v in the other network such
that A(u) = A(v), B(u) = B(v) and C(u) = C(v). An edge (u, v) is unmatched
if and only if v is unmatched. The tripartition-based distance tri(N,N ′) between
N and N ′ is defined by:(|{e ∈ E(N)|e is unmatched}|

|E(N)| +
|{e ∈ E(N ′)|e is unmatched }|

|E(N ′)|
)
/2

Fig. 2 shows an example of how to compute tripartition of all nodes in N
and N ′. All the nodes are unmatched. Hence, all the edges whose heads are of
these nodes are unmatched and tri(N,N ′) = (7/10 + 7/10)/2 = 0.7.

N

N’

a b c

v1
v2

v3
v5

v4

a b c

u2

u1
u3

u4 u5

Node A(u) B(u) C(u)

u1 {a} ∅ {b,c}
u2 {b,c} {a} ∅
u3 {b,c} ∅ {a}
u4 {b} {c} {a}
u5 {c} ∅ {a,b}

Node A(u) B(u) C(u)
v1 {a} {b} {c}
v2 {c} {b} {a}
v3 ∅ {b} {a,c}
v4 {c} {b} {a}
v5 {b} ∅ {a,c}

Fig. 2. Two networks N and N ′ whose tripartition-based distance tri(N, N ′) = 0.7

406 N.B. Nguyen, C.T. Nguyen, and W.-K. Sung

3 Comparing a Galled-Tree and a General Network

Given a galled-tree N and a general network N ′ having the same leaf set, this
section describes an algorithm to identify their unmatched nodes. Once all such
nodes are identified, tri(N,N ′) can be readily computed. The algorithm pro-
cesses in 3 steps as in Fig. 3.

Algorithm UnmatchedNode

Input: A galled-tree N and a general network N ′ of the same leaf set

Output: The unmatched nodes in the two networks

1 Label the nodes of N and N ′ such that two nodes u ∈ V (N) and u′ ∈ V (N ′)
have the same label if and only if they induce the same tripartition.

2 Sort the nodes of both networks by their labels.
3 Compare the sorted lists of labels to identify unmatched nodes in the two

networks.
End UnmatchedNode

Fig. 3. Algorithm to identify all unmatched nodes in two phylogenetic networks

The first step of Fig. 3 is achieved in two phases. Phase 1 reindexes the leaves
by numbers from 1 to |L(N)| so that for each node u of the galled-tree N , both
D(u) and B(u) form sub-intervals of [1..|L(N)|]. Phase 2 labels each non-leaf
node u by a 6-tuple of integers (md(u), Md(u), nd(u), mb(u), Mb(u), nb(u))
whose meaning is:

– md(u),Md(u), nd(u) indicate the minimum leaf index, maximum leaf index
and the number of leaves, respectively, in D(u).

– mb(u),Mb(u), nb(u) indicate the minimum leaf index, maximum leaf index
and the number of leaves, respectively, in B(u).

The labeling satisfies the following property.

Lemma 2. For u ∈ V (N) and u′ ∈ V (N ′), (md(u), Md(u), nd(u)) = (mb(v),
Mb(v), nb(v)) if and only if u and v induce the same tripartition.

Given the labeling, Steps 2 and 3 can identify all unmatched nodes. Below,
we detail the reindexing and the labeling.

3.1 Reindexing the Leaves of a Galled-Tree

We now describe how to index the leaves of a galled-tree so that for each internal
node u, both D(u) and B(u) are sub-intervals of [1, l]. First, we state a property
of the biconnected components of a galled-tree.

Lemma 3. Each biconnected component C of a galled-tree consists of either a
single node or the (only) recombinant cycle of its sub-root.

Fast Algorithms for Computing the Tripartition-Based Distance 407

Algorithm Reindex

Input: A galled-tree N of l leaves and an integer i

Output: A new indexing of N ’s leaves so that for each node u ∈ V (N), both
D(u) and B(u) are sub-intervals of [i, i + l − 1].

1 if N consists of a single leaf then

1.1 reindex the leaf as i

elseif the root of N is a tree node then

1.2 let Nl and Nr be the left and right subnetworks attached to the left and
right children of the root of N

1.3 Reindex(Nl, i)
1.4 Reindex(Nr , i + |L(Nl)|)

elseif the root of N is a split node then

1.5 let N1, N2, . . . Nx be the list of subnetworks attached to the recombinant
cycle of the root of N in counter clockwise order

1.6 for j = 1 to x do

1.6.1 Reindex(Nj , i + |L(N1)|+ |L(N2)|+ · · · |L(Nj−1)|)
endfor

endif

End Reindex

Fig. 4. Algorithm to reindexing the leaves of a galled-tree

Based on the lemma, we design the reindexing algorithm as in Fig. 4. The
correctness and time complexity of this algorithm is stated above.

Lemma 4. Reindex(N , 1) runs in O(|E(N)|) time and it reindexes the leaves
of a galled-tree N such that, for each u ∈ V (N), both D(u) and B(u) are sub-
intervals of [1, |L(N)|].

3.2 Labeling the Nodes of a Network

Given a network N , we go bottom up on T (N) and label the nodes in each com-
ponent visited. To reduce the time of labeling the nodes in each component, we
divide the process into two steps. First, all the nodes in the reduced component
are labeled. Then the remaining nodes are labeled based on the labeled nodes.

For every x ∈ V (Cr), let Ex(x) and In(x) be the set of external children
and internal descendants of x, respectively, i.e., Ex(x) = {v|(x, v) ∈ E(N r) and
v /∈ V (Cr)} and In(x) = {v|v ∈ V (Cr) and v is a descendant of x}. In addition,
let e(x) =

∑
v∈Ex(x) nd(v) and H(x) = {v|v ∈ V (Cr) and x is a non-strict

ancestor of v}.
The following lemmas help us label the nodes of N . Lemma 5 and Lemma 6

compute the labels of nodes in a reduced component Cr whereas Lemma 7
computes the labels of the other nodes.

408 N.B. Nguyen, C.T. Nguyen, and W.-K. Sung

Lemma 5. For each node x ∈ V (Cr) whose children are u and v, we have:
nd(x) = e(x) +

∑
w∈In(x) e(w), md(x) = min{md(u),md(v)}, and Md(x) =

max{Md(u),Md(v)}.

Lemma 6. For each node x ∈ V (Cr), nb(x) =
∑

v∈H(x) e(v), mb(x) =
minv∈H(x)md(v) and Mb(x) = maxv∈H(x)Md(v).

Lemma 7. For each node x having an internal child u and an external child v.

nd(x) = nd(u) + nd(v)
md(x) = min{md(u),md(v)}
Md(x) = max{Md(u),Md(v)}
nb(x) = nb(u) if u is a tree node or nd(u) if u is a hybrid node
mb(x) = mb(u) if u is a tree node or md(u) if u is a hybrid node
Mb(x) = Mb(u) if u is a tree node or Md(u) if u is a hybrid node

Lemma 8. The tripartition distance between a galled-tree N and a general net-
work N ′ can be computed in O(|E(N)| + |E(N ′)| + k(N ′)h(N ′)).

Proof. (Sketch) The time needed to compute e(x), In(x) and H(x) for all x ∈
V (N r) is O(|E(N)| +

∑
i h(Ci)2) = O(|E(N)| + k(N)h(N)) where Ci for i =

1, 2, . . . is a non-singleton biconnected component of N and h(Ci) is the number
of hybrid nodes in Ci. Then, by Lemmas 5 and 6, the labels of all x ∈ V (N r)
can be computed in O(|V (N)| + k(N)h(N)). Finally, the labels of other nodes
are computed by Lemma 7 using O(|E(N)|) time. The lemma then follows. ��

Corollary 1. The tripartition distance between two galled-tree N and N ′ can
be computed in O(|E(N)| + |E(N ′)|).

4 Comparing Two General Networks

4.1 The Subnetwork Induced by a Set of Leaves

We first define the subnetwork induced by a set of leaves, which will play an
important role in comparing two general networks.

Given a network N and a set of leaves X = {l1, l2, . . . lt}, we denote TX(N)
be a subtree of T (N) induced by X , which is a tree such that (1) whose nodes
are X and their lowest common ancestors in T (N); and (2) whose edges preserve
the ancestor-descendant relationship of T (N).

Let E′
X = {(u, v)|u ∈ C1, v ∈ C2, (C1, C2) ∈ V (TX(N)) and there exists a

path from u to v which does not pass through any nodes belonging to some
components in V (TX(N))}. Let N∗

X be a subnetwork of N such that (1) whose
node set is

⋃
C∈V (TX(N)) V (C) and (2) whose edge set is E′

X∪
⋃

C∈V (TX(N))E(C).
We denote NX be the subnetwork of N induced by X , which is a network formed
by contracting all nodes in N∗

X whose in-degree and out-degree are equal to 1.
Fig. 1(d) and (e) show example of N∗

{a,c} and N{a,c} where N is the network in
Fig. 1(a).

Fast Algorithms for Computing the Tripartition-Based Distance 409

Lemma 9. |E(NX)| = O(min{h(N) + |X |, k(N)|X |}).

Lemma 10. Given t disjoint leaf sets X1, X2, . . . Xt such that
⋃
Xi = L(N),

the subnetworks NX1 , NX2 , . . .NXt can be computed in total O(
∑

|NXi |) time.

4.2 DB-labeling

We also use UnmatchedNode (Fig. 3) to identify all unmatched nodes of two
general networks N and N ′. However, the non-leaf nodes of the networks are
labeled in a different way. Each of them is assigned a DB-label, which is a pair
of integers (d(u),b(u)) such that (1) d(u) = d(v) if and only if D(u) = D(v);
(2) b(u) = b(v) if and only if B(u) = B(v); and (3) d(u) = b(v) if and only if
D(u) = B(v). Furthermore, d(u) = 0 if and only if D(u) = ∅ and b(v) = 0 if and
only if B(v) = ∅.

It is clear that two nodes have the same DB -label if and only if they induce
the same tripartition. The above labeling is called a DB-labeling of N and N ′.

Algorithm DBlabeling

Input: two networks N and N ′ of the same leaf set S

Output: the DB -labeling of N and N ′

1 Consider the singleton sets X1, X2, . . . X|S|, each containing a distinct leaf in
S. For each i, find the DB -labeling for NXi and N ′

Xi
.

2 Repeat the following for log |S| rounds: Let X1, X2, . . . be the sets of leaves
considered in last round. Pair up Xi’s and let X2i−1 = X2i−1 ∪X2i. Delete all
X2i’s and rename X2i−1’s as Xi’s. For each i, compute the DB -labeling of NXi

and N ′
Xi

based on the result of last round.
End DBlabeling

Fig. 5. Algorithm to compute the DB -labeling of two networks of the same leaf set

We compute the DB -labeling of N and N ′ incrementally in a way similar
to [7] as in Fig. 5. In step 2, given the DB -labeling of NX and NY , we find
a DB -labeling of NX∪Y by the following relabeling procedure. This procedure
utilizes the concept of Z-stamp of a node u where Z is a set of leaves, which
is a pair of integers (dZ(u), bZ(u)) such that (1) dZ(u) = dZ(v) if and only if
D(u)∩Z = D(v)∩Z; and (2) dZ(u) = bZ(v) if and only if D(u)∩Z = B(v)∩Z;
and (3) bZ(u) = bZ(v) if and only if B(u) ∩ Z = B(v) ∩ Z.

Relabeling procedure:

1. For each u ∈ V (NX∪Y), compute its X-stamp and Y -stamp as follow. If u ∈
V (NX), by Lemma 11, the X-stamp of u equals its label in NX . Otherwise,
itsX-stamp is computed by Lemmas 12 and 13. The Y -stamps are calculated
similarly.

410 N.B. Nguyen, C.T. Nguyen, and W.-K. Sung

2. Sort all the pairs (dX(u), dY (u)) and (bX(u), bY (u)) together and replace
each pair by a number such that two pairs are replaced by the same number
if and only if they are identical.

Lemma 11. Let the tripartition of u in NX be (AX(u), BX(u), CX(u)). We
have AX(u) = A(u) ∩X, BX(u) = B(u) ∩X and CX(u) = C(u) ∩X.

Lemma 12. Let u be a node in a component C which is in V (TX(N)). If u is
in V (NX∪Y) but not in V (NX) then it must have an internal child v and an
external child w. Furthermore, dX(w) = 0, dX(u) = dX(v) and bX(u) = dX(v)
if v is a hybrid node and bX(v) otherwise.

Lemma 13. Each component C in V (TX∪Y (N)) − V (TX(N)) has at most one
child C′ in TX∪Y (N) such that D(r(C′)) �= ∅. If no such C′ exists, DX(u) = ∅
for all u ∈ C. Otherwise, for each u ∈ V (C) ∩ V (NX∪Y), dX(u) = dX(r(C′))
if u is an ancestor of r(C′) and 0 otherwise and bX(u) = dX(r(C′)) if u is a
non-strict ancestor of r(C′) and 0 otherwise.

From the above two lemmas, we can compute the X-stamps and Y - stamps
of nodes in NX∪Y and N ′

X∪Y separately. To achieve good running time, for
each node in a reduced component, we store the sets of its ancestors and non-
strict ancestors in that reduced component. These sets for all nodes in N can be
pre-calculated in total O(k(N)h(N)) time.

Lemma 14. The sets of ancestors and non-strict ancestors of any node u ∈
V (C) ∩ V (NX∪Y) can be computed in O(|V (C) ∩ V (NX∪Y)).

Let k = max{k(N), k(N ′)}, h = max{h(N), h(N ′)} and n = max{|V (N)|,
|V (N ′)|}. The following lemmas state the time complexity of comparing two
general networks.

Lemma 15. Given the DB-labeling of NX, N ′
X , NY and N ′

Y , the above proce-
dure computes DB-labeling of NX∪Y and N ′

X∪Y using O(min{h+ |X∪Y |, k|X∪
Y |}) time.

Lemma 16. The tripartition-based distance between two general networks N
and N ′ can be computed in O(min{hn+ n logn, kn logn}) time.

References

1. D. Bryant and V. Moulton.NeighborNet: an agglomerative method for the construc-
tion of planar phylogenetic networks. In Proc.of the 2nd Workshop on Algorithms in
Bioinformatics (WABI 2002), volume 2452 of LNCS, pages 375–391. Springer,2002.

2. C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung. Computing the maximum agr-
eement of phylogenetic networks. Theoretical Computer Science, 335(1):93–107,
2005.

3. W. F. Doolittle. Phylogenetic classification and the universal tree. Science,
284:2124–2128, 1999.

Fast Algorithms for Computing the Tripartition-Based Distance 411

4. D. Gusfield and V. Bansal. A fundamental decomposition theory for phylogenetic
networks and incompatible characters. In Proc. of the 9 th Annual International
Conf. on Research in Computational Molecular Biology (RECOMB 2005), pages
217–232, 2005.

5. D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic
networks with constrained recombination. In Proc. of the Computational Systems
Bioinformatics Conference (CSB2003), pages 363–374, 2003.

6. J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Mathematical Biosciences, 98(2):185–200, 1990.

7. Wing-Kai Hon, Ming-Yang Kao, Tak Wah Lam, Wing-Kin Sung, and Siu-Ming
Yiu. Non-shared edges and nearest neighbor interchanges revisited. Inf. Process.
Lett., 91(3):129–134, 2004.

8. D. H. Huson, T. Dezulian, T. Klöpper, and M. Steel. Phylogenetic super-networks
from partial trees. In Proc. of the 4 thWorkshop on Algorithms in Bioinformatics
(WABI 2004), pages 388–399, 2004.

9. D. H. Huson, T. Klopper, P. J. Lockhart, and M. A. Steel. Reconstruction of reticu-
late networks from gene trees. In Proc.of the 9 thAnnual International Conf. on Re-
search in Computational Molecular Biology (RECOMB 2005), pages 233–249, 2005.

10. T. N. D. Huynh, J. Jansson, N. B. Nguyen, and W. K. Sung. Constructing a small-
est refining galled phylogenetic network. In Proc. of the 9 thAnnual International
Conf. on Research in Computational Molecular Biology (RECOMB 2005), pages
265–280, 2005.

11. J. Jansson, N. B. Nguyen, and W. K. Sung. Algorithms for combining rooted
triplets into a galled phylogenetic network. In Proc.of the 16 thAnnual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2005), pages 349–358, 2005.

12. J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network from a dense
set of rooted triplets. In Proc. of the 10 th International Computing and Combina-
torics Conference (COCOON 2004), 2004.

13. J. Jansson and W. K. Sung. The maximum agreement of two nested phylogenetic
networks. In Proc. of the 15 thAnnual International Symposium on Algorithms and
Computation (ISAAC 2004), pages 581–593, 2004.

14. B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A. Padolina,
J. Sun, and R. Timme. Phylogenetic networks: Modeling, reconstructibility, and ac-
curacy. IEEE Transactions on Computational Biology and Bioinformatics, 1(1):1–
12, 2004.

15. L. Nakhleh, J. Sun, T. Warnow, C. R. Linder, B. M. E. Moret, and A. Tholse.
Towards the development of computational tools for evaluating phylogenetic re-
construction methods. In Proc. of the 8 th Pacific Symposium on Biocomputing
(PSB 2003), pages 315–326, 2003.

16. L. Nakhleh, T. Warnow, and C. R. Linder. Reconstructing reticulate evolution in
species – theory and practice. In Proc. of the 8 thAnnual International Conf. on Re-
search in Computational Molecular Biology (RECOMB 2004), pages 337–346, 2004.

17. D. Posada and K. A. Crandall. Intraspecific gene genealogies: trees grafting into
networks. TRENDS in Ecology & Evolution, 16(1):37–45, 2001.

18. D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53:131–147, 1981.

19. L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombina-
tion. Journal of Computational Biology, 8(1):69–78, 2001.

Improved Algorithms for Largest Cardinality
2-Interval Pattern Problem

Hao Yuan, Linji Yang, and Erdong Chen

Department of Computer Science and Engineering,
Shanghai Jiao Tong University,
200030 Shanghai, P.R. China

{hyuan, ljyang, edchen}@cs.sjtu.edu.cn

Abstract. The 2-Interval Pattern problem is to find the largest con-
strained pattern in a set of 2-intervals. The constrained pattern is a sub-
set of the given 2-intervals such that any pair of them are R-comparable,
where model R ⊆ {<, �, () }. The problem stems from the study of gen-
eral representation of RNA secondary structures. In this paper, we give
three improved algorithms for different models. Firstly, an O(n log n+L)
algorithm is proposed for the case R = { () }, where L = O(dn) = O(n2)
is the total length of all 2-intervals (density d is the maximum number
of 2-intervals over any point). This improves previous O(n2 log n) algo-
rithm. Secondly, we use dynamic programming techniques to obtain an
O(n log n + dn) algorithm for the case R = {<, � }, which improves
previous O(n2) result. Finally, we present another O(n log n + L) algo-
rithm for the case R = {�, () } with disjoint support(interval ground
set), which improves previous O(n2√n) upper bound.

1 Introduction

In the area of prediction and analysis of RNA secondary structures, arc-
annotated sequence focuses on the very detailed description of the structure
itself — the sequence of the bases and the bonds between the bases [1]. How-
ever, using arc-annotated sequence to further predict other homogeneous RNA
structures is proved sometimes hard. Derived from arc-annotated sequence, 2-
intervals representation considers only the bonds between the bases and the
patterns of the bonds, such as knots, hairpin structures and pseudoknots [2].
Thus, it has become a well macroscopic describer of RNA secondary structures.

A 2-interval is two disjoint intervals on a line. Two disjoint 2-intervals can
be defined in the relations of precedence(<), nest(�) or cross(()). A constrained
pattern is a set of 2-intervals such that any pair of them areR-comparable, where
R ⊆ {<, �, () }. 2-Interval Pattern problem introduced by Vialette [2] is to
find the largest constrained pattern in a set of 2-intervals, and it is closely related
to the problem of Pattern Matching Over Set of 2-Intervals [2,3] and
Longest Arc-Preserving Common Subsequence [1,4,5].

The R-comparable relations of 2-intervals can be formulated in different graph
classes [6], and some graph-theoretic algorithms have been used to solve the 2-
Interval Pattern problem efficiently [2,7]. In the paper of Blin et al.[7], they

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 412–421, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem 413

almost complete the NP-Completeness results for 2-Interval Pattern prob-
lems under three different types of support models (unlimited, unitary, disjoint)
classified by Vialette[2]. Recently, Crochemore et al. studied the approximation
algorithms for 2-Interval Pattern problem [8]. In our paper, we give several
algorithms to improve the time complexity of finding optimal solutions for some
models to O(n log n+ L), which is worst-case quadratic.

The rest of this paper is organized as follows. In Section 2, we define some
basic terminologies for 2-Interval Pattern problem. In Section 3, 4 and 5,
we will give improved algorithms for R = { () }, R = {<, � } and R = {�, () }
respectively. Finally, conclusions are made in Section 6. Due to space limit, some
obvious proofs are omitted.

2 Preliminaries

First, we’ll review the terminologies used in [2,7]. Let I = [a, b] be an interval
(a ≤ b), define l(I) = a and r(I) = b. A 2-interval is the union of two disjoint
intervals I and J , denoted by D = (I, J) such that I < J , where the strict
precedence order < means I is strictly to the left of J , i.e. r(I) < l(J). The
left interval I and right interval J of D are denoted by Left(D) and Right(D)
respectively.

For any two 2-intervals D1 = (I1, J1) and D2 = (I2, J2), we say they are
disjoint if and only if (I1 ∪ J1) ∩ (I2 ∪ J2) = ∅. Any pair of disjoint 2-intervals
must satisfy one of the following three relations:

PRECEDE D1 < D2 ⇔ I1 < J1 < I2 < J2; transitive
NEST D1 � D2 ⇔ I2 < I1 < J1 < J2; transitive
CROSS D1 () D2 ⇔ I1 < I2 < J1 < J2; not symmetric

D1 and D2 are called τ -comparable if D1τD2 for some τ ∈ {<, �, ()}. A 2-
interval set is called R-comparable if and only if for any two elements of it,
there exists a relation τ ∈ R such that they are τ -comparable. Let D =
{D1, D2, . . . , Dn} denote a set of n 2-intervals. The support (or interval ground
set) of D is denoted by Support(D) =

⋃{
Ii, Ji

∣∣ Di = (Ii, Ji)
}
. Let X denote

the set of interesting coordinates
⋃

D∈D {r(Left(D)), l(Right(D))}. Assume that
the elements ofX = {x1, x2, . . . , x|X|} are sorted, i.e. x1 < x2 < · · · < x|X|. Since
|X | ≤ 2n, the sorting process takes O(n logn) time.

Given a 2-interval set D and a model R ⊆ {<, �, () }, the 2-Interval Pat-
tern problem is to find the largest cardinality subset D ′ ⊆ D , so that D ′ is
R-comparable. In [2], Vialette classified the problem into three types:

– UNITARY: All the intervals in Support(D) are of the same size;
– DISJOINT: The elements of Support(D) are disjoint, and have equal size;
– UNLIMITED: No restriction on the support of D .

In our paper, we only concern the cases of DISJOINT and UNLIMITED.
To better illustrate our improvements, we define a parameter L, which means

the total length of 2-intervals. The length of a 2-interval D is defined to be

414 H. Yuan, L. Yang, and E. Chen

Length(D) = k2 − k1, where xk1 = r(Left(D)) and xk2 = l(Right(D)). The
density of D , denoted by d, is the maximum number of 2-intervals over any
point. Formally, d = max

x∈X

∣∣ {D = (I, J) ∈ D
∣∣ r(I) ≤ x < l(J)

} ∣∣. It is easy to

see L ≤ dn ≤ n2. The following table summarizes the results of our work.

Table 1. Summarized results for different models of 2-Interval Pattern problem.
The improved results of this paper are marked by �.

MODEL
SUPPORT

DISJOINT UNLIMITED

{<, �, () } O(n
√

n) [9] APX-Hard [10]
{<, () } ? NP-Complete [7]
{�, () } O(n log n + L) � NP-Complete [2]
{<, � } O(n log n + dn) �
{ () } O(n log n + L) �
{< } O(n log n) [2]
{� } O(n log n) [7]

3 Improved Algorithm for { () }-Structured Pattern

In this section, we will give an O(n logn+L) algorithm for the model R = { () }.
This improves the O(n2 logn) algorithm given in [2].

Our algorithm is based on a sweep-line method. Let D [x] be the set of 2-
intervals crossing a vertical line whose horizontal coordinate is x, that is D [x] ={
Di ∈ D

∣∣ r(Left(Di)) ≤ x and l(Right(Di)) > x
}
. For convenience, set x0 =

−∞ and let D(k) denote D [xk] for 0 ≤ k ≤ |X |, hence D(0) = ∅. When the
vertical line sweeps from left to right (Fig. 1) passing an interesting point xk ∈ X ,
some 2-intervals may be added to D [x], and some may be removed. Let P (k) and
Q(k) be the differences between D(k−1) and D(k), we have

P (k) = D(k) \ D(k−1) =
{
D ∈ D

∣∣ r(Left(D)) = xk

}
,

Q(k) = D(k−1) \ D(k) =
{
D ∈ D

∣∣ l(Right(D)) = xk

}
.

Theorem 1. Let ω(D) be the cardinality of the largest { () }-comparable subset
of D , then ω(D) = max

1≤k≤|X|
ω(D(k)).

Proof. Observe that for any two 2-intervals Di and Dj which are ()-comparable,
we have r(Left(Dj)) < l(Right(Di)). Thus for any subset D ′ ⊆ D which is { () }-
comparable, we have max

D′
j∈D′

r(Left(D′
j)) < min

D′
i∈D′

l(Right(D′
i)). This implies that

D ′ is also a subset of D(k), where xk = max
D′∈D′

r(Left(D′)). Hence, ω(D) must be

equal to ω(D(k)) for a specific k. ��

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem 415

Fig. 1. A sweep-line sweeps from left to right

By Theorem 1, we can get ω(D) by computing ω(D(k)) for each k. Vialette
shows that ω(D(k)) can be computed by finding a maximum independent set of
corresponding trapezoid graphs in O(n log n) time [11], so his algorithm works
in O(n2 logn) total time. To improve the complexity, we utilize the dynamic
structure of D(k) by discovering the relationship between ω(D(k−1)) and ω(D(k)).

Definition 1. The height of D under D(k), denoted by Hk(D), is the cardinality
of the largest { () }-comparable subset of D(k), whose maximal element must be
D under the relation (). That is Hk(D) = ω

(
{D′ ∈ D(k)

∣∣ D′ () D}
)

+ 1 for
D ∈ D(k), and Hk(D) = 0 for D �∈ D(k).

Obviously, we have ω(D(k)) = max
D∈D(k)

Hk(D). If we can compute Hk(D) for each

k and D efficiently, then we can get a better upper bound. To achieve this, we
first exam the the relationship between Hk(D) and Hk−1(D), and show that
every non-zero Hk(D) can be computed efficiently.

Lemma 1. For any k, the () relation is transitive in D(k) .

Theorem 2. For D ∈ D(k−1), after the sweep-line goes from xk−1 to xk, the
height of D decreases by at most one, or remains the same, i.e. Hk−1(D) − 1 ≤
Hk(D) ≤ Hk−1(D).

Proof. First, we can see that Hk(D) = h > 1 if and only if there exists a D′ ∈
D(k) so that Hk(D′) = h−1 and D′ () D (due to Lemma 1). Since no 2-interval
in P (k) can cross D, the height of D will not increase. Let {D1, D2, . . . , Dh−1, D}
be a { () }-comparable subset of D(k−1), where h = Hk−1(D). Because no pair of
2-intervals in Q(k) are ()-comparable, at least h − 1 elements from the previous
set will be preserved in D(k), hence Hk(D) ≥ h− 1 = Hk−1(D) − 1. ��

Let C(k)
h =

{
D ∈ D(k)

∣∣ Hk(D) = h
}
. The key issue is to test efficiently for a

2-interval D ∈ C
(k−1)
h whether there exists a D′ ∈ C

(k)
h−1 such that D′ () D. In

other words, we have to check whether the following set is empty{
D′ ∈ C

(k)
h−1

∣∣∣ r(Left(D′)) < l(Left(D)) and r(Right(D′)) < l(Right(D))
}
.

Alternatively, it is to test whether

min
{
r(Left(D′))

∣∣∣ D′ ∈ C
(k)
h−1 and r(Right(D′)) < l(Right(D))

}
< l(Left(D)).

416 H. Yuan, L. Yang, and E. Chen

This property could be tested efficiently by a merge-like process, when the 2-
intervals in C

(k)
h−1 are sorted by the key r(Right(D′)), and those in C

(k−1)
h are

sorted by l(Right(D)). By the discussion above, we have following procedure
FallDown(k) to computeHk(D) fromHk−1(D) forD ∈ D(k−1) inO(|D(k−1)|+
|D(k)|) time. For a fixed k that 0 < k ≤ |X |, the procedure partitions D(k) into
|D(k)| 2-interval set C(k)

1 , C(k)
2 , . . . , C(k)

|D(k)|.

Procedure 3.1 FallDown(k)
Function: Compute Hk(D) for every D ∈ D(k−1) from Hk−1(D).
Notation: Let C

(k)
h [i] denote the ith element in sorted C

(k)
h .

1: Sort the 2-intervals in each C
(k−1)
h according to the key l(Right(D)).

2: C
(k)
1 ← C

(k−1)
1 \Q(k), sort it by the key r(Right(D))

3: for h← 2 to |D(k−1)| do

4: C
(k)
h ← C

(k−1)
h ; j ← 1, i← 1; LEFTMOST← +∞;

5: while j ≤ |C(k−1)
h | do

6: while r(Right(C(k)
h−1[i])) < l(Right(C(k−1)

h [j])) do

7: LEFTMOST← min LEFTMOST, r(Left(C(k)
h−1[i]))

8: i← i + 1
9: end while

10: if LEFTMOST < l(Left(C(k−1)
h [j])) then

11: Do nothing. // the height of C
(k−1)
h [j] remains the same

12: else
13: C

(k)
h−1 ← C

(k)
h−1 ∪ C

(k−1)
h [j] // the height of C

(k−1)
h [j] decreases by one

14: C
(k)
h ← C

(k)
h \ C

(k−1)
h [j]

15: end if
16: j ← j + 1
17: end while
18: Sort the 2-intervals in C

(k)
h by the key r(Right(D))

19: end for

FallDown(k) over all k can be implemented in O
(
n logn+

∑
|D(k)|

)
time.

Next, we will give a procedure to compute Hk(D) for D ∈ P (k). From the fact
that there is not any pair of 2-intervals in P (k) that are ()-comparable, the height
of Dj ∈ P (k) under D(k) can be calculated by Hk(Dj) = max

Di () Dj

Hk(Di) + 1 if

there is at least one Di ∈ D(k) \ P (k) which cross Dj. Otherwise, Hk(Dj) = 1.

Definition 2. For each 0 < h ≤ |D(k)|, define the boundary with respect to y,

B
(k)
h (y) = min

D∈C
(k)
h

{
r(Left(D))

∣∣∣ r(Right(D)) < y
}
. (1)

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem 417

Lemma 2. For any 0 < h1 < h2 ≤ |D(k)|, we have B(k)
h1

(y) < B
(k)
h2

(y)

Proof. For a fixed k and y, let Dh2 denote the 2-interval from C
(k)
h2

which mini-

mizes B(k)
h2

in Equation (1). Since h2 > h1, there must be at leat one Dh1 ∈ C
(k)
h1

that Dh1 () Dh2 . Since r(Right(Dh1)) < r(Right(Dh2)) < y, therefore, we have
B

(k)
h1

(y) ≤ r(Left(Dh1)) < r(Left(Dh2)) = B
(k)
h2

(y). ��

Procedure 3.2 JumpUp(k)

Calculate the Heights of P (k) under D(k)

1: set B
(k)
h ←∞ for each 1 ≤ h ≤ |D(k)| and set B

(k)
0 ← −∞

2: sort 2-intervals in D(k) according to key(D), where

key(D) =
r(Right(D)), if D ∈ D(k) \ P (k)

l(Right(D)), if D ∈ P (k)

If there is a tie, let the elements in P (k) go first.
3: for i← 1 to |D(k)| do
4: let D be ith element in D(k)

5: if D ∈ P (k) then
6: find the largest h such that B

(k)
h < l(Left(D))

7: Hk(D)← h + 1
8: else
9: let h← Hk(D), then set B

(k)
h ← min{B(k)

h , r(Left(D))}
10: end if
11: end for
12: for each 0 < h ≤ |D (k)| do

13: C
(k)
h ← C

(k)
h ∪ Hk(D) = h D ∈ P (k)

14: end for

The procedure JumpUp(k) is used for computing the heights of 2-intervals in
P (k) under D(k). The sorting process in Line 2 and the merge process in Lines
12-14 can be done in O

(
|D(k)|

)
time, if we first sort each P (k) in a global stage.

Line 6 can be implemented by binary search (Lemma 2) in O
(
log|D(k)|

)
time.

So the total complexity for all JumpUp(k) is
∑
O
(
|D(k)| + |P (k)| log|D(k)|

)
= O

(∑
|D(k)| +

∑
|P (k)| logn

)
= O(

∑
|D(k)| + n logn).

Combining procedures FallDown(k) and JumpUp(k), we finally obtain al-
gorithm 3.3. It is easy to see that the space complexity is O(n). By the equation∑

|D(k)| = L, we have the total time complexity O (n logn+ L).

Proposition 1. The { () }-Structured 2-Interval Pattern problem can be
solved in O(n logn+ L) time.

For the case of disjoint support, it can be transformed to the problem of
finding a maximum clique in circle graphs [6]. Each 2-interval maps to a vertex,
and two vertices are adjacent if and only if their corresponding 2-interval are
()-comparable. By the result of Masuda et al. [12], we have

418 H. Yuan, L. Yang, and E. Chen

Algorithm 3.3 { () }-Structured 2-Interval Pattern
1: sort the 2-intervals and their endpoints
2: calculate P (k) and Q(k) for each 1 ≤ k ≤ |X|
3: set C

(0)
h = ∅ for all 1 ≤ h ≤ n

4: for k← 1 to |X| do
5: call Procedure FallDown(k)
6: call Procedure JumpUp(k)
7: ω(D(k)) equals to the largest h such that C

(k)
h �= ∅, or zero if D(k) = ∅

8: end for
9: return max ω(D (k))

Proposition 2. The Disjoint Support { () }-Structured 2-Interval Pat-
tern problem can be solved in O (n logn+ min{m, dn}) time, where m is the
number of 2-interval pairs that are ()-comparable.

4 Improved Algorithm for { <, � }-Structured Pattern

In this section, we will give an O(n logn + dn) algorithm for {<, � }-
Structured 2-Interval Pattern problem, and it is O(n log n + L) for the
case that no 2-intervals share the same rightmost endpoint. Our algorithm im-
proves the O(n2) upper bound given in [2] since d = O(n), and it is similar
to the maximum weighted independent set algorithm for circle graphs which is
proposed recently by Valiente [13].

Definition 3. Let D [x1, x2] represent the 2-intervals lie in [x1, x2], where x1 <
x2, i.e. D [x1, x2] =

{
D ∈ D

∣∣ x1 ≤ l(Left(D)) < r(Right(D)) ≤ x2
}
.

Definition 4. Let α(D) be the cardinality of largest {<, � }-comparable sub-
set of D . Take α[x1, x2] instead of α(D [x1, x2]) for short. Let α(D) denote the
cardinality of largest {<, � }-comparable subset of D [l(Left(D)), r(Right(D))]),
with the constraint that D must be in that largest cardinality subset.

Lemma 3. α(D) = 1 + α[r(Left(D)) + 1, l(Right(D)) − 1].

Lemma 4. Let α′[x1, x2] = max {α [x1, l(Left(D)) − 1] + α(D)}, where D ∈
D [x1, x2] and r(Right(D)) = x2. We have α[x1, x2] = max {α[x1, x2 − 1],
α′[x1, x2]} .

Combining the two Lemmas above, we have a dynamic programming algo-
rithm working in O(n2) time. To achieve a tighter bound, we can first compute
α(D) for every D ∈ D in the order of their lengths (see Lemma 5). After that,
α(D) = α[x1, x|X|] can be calculated by Lemma 4 in O(|X |) time.

Lemma 5. For an 2-interval Di ∈ D , if we know the values of α(D′) for
all D′ � Di that Length(D′) < Length(Di), then we can compute α(Di) in
O(Length(Di) +mi) time, where mi is the number of 2-intervals nested in Di.

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem 419

The total complexity is O (n logn+ L +
∑
mi + |X |). It is not too difficult to

see that
∑
mi ≤ dn. If no 2-intervals share the same rightmost endpoint, then

it is easy to see that mi ≤ Length(Di), hence we have
∑
mi ≤ L in this case.

Proposition 3. The {<, � }-Structured 2-Interval Pattern problem
can be solved in O(n log n + dn) time. If no 2-intervals share the same right-
most endpoint, then the complexity can be improved to O(n log n+ L).

5 Improved Algorithm for { �, () }-Structured Pattern

In this section, we will give anO(n log n+L) algorithm for the model R = {�, () }
with disjoint support. This improves the O(n2√n) algorithm given by Blin et
al. [7].

In the case with disjoint support, define l(D) and r(D) to be the left and
right endpoints respectively for a 2-interval D ∈ D , i.e. l(D) = l(Left(D)) =
r(Left(D)) and r(D) = l(Right(D)) = r(Right(D)).

Lemma 6. Let D ′ be a {�, () }-comparable subset of D , then

max
D′

j∈D′
l(D′

j) < min
D′

i∈D′
r(D′

i).

Define ϕ(D) to be the largest largest {�, () }-comparable subset of D with dis-
joint support. Similar to section 3, we have ϕ(D) = maxϕ(D(k)). Blin et al.
calculate each ϕ(D(k)) by finding the maximum cardinality matching in the
corresponding bipartite graphs. We still apply this idea, but the complexity is
improved by discovering the dynamic structure of the bipartite graphs.

Definition 5. For a fixed 0 < k ≤ |X |, let G(k) = (U (k), V (k), E(k)) be a bipar-
tite graph corresponding to D(k) defined as follows: U (k) =

{
x ∈ X

∣∣ x ≤ xk

}
,

and V (k) =
{
x ∈ X

∣∣ x > xk

}
, the edges E(k) =

{
〈l(D), r(D)〉

∣∣ D ∈ D(k)
}
.

Obviously, a maximum matching of G(k) corresponds to a maximum cardinality
{�, () }-comparable subset of D(k). Let M (k) be a maximum matching in G(k).

Theorem 3. The cardinality of maximum matching in G(k) and G(k−1) differs
at most one, i.e. |M (k−1)| − 1 ≤ |M (k)| ≤ |M (k−1)| + 1.

Proof. Define the differences of E(k) and E(k−1) by

F
(k)
+ = E(k) \ E(k−1) =

{
〈xk, xj〉

∣∣ xj = r(D) for D ∈ D where l(D) = xk

}
,

F
(k)
− = E(k−1) \ E(k) =

{
〈xi, xk〉

∣∣ xi = l(D) for D ∈ D where r(D) = xk

}
.

Let M = M (k−1) \ {〈xi, xk〉} if there is an edge 〈xi, xk〉 ∈ F
(k)
− , otherwise

M = M (k−1). Obviously, M is a matching of G(k), so |M (k−1)| − 1 ≤ |M | ≤
|M (k)|. The second part of inequalities can be proved in the same way. Let
M ′ = M (k) \{〈xk, xj〉} if there is an edge 〈xk, xj〉 ∈ F

(k)
+ , otherwise M ′ = M (k).

Now M ′ is a matching of G(k−1), so |M (k)| − 1 ≤ |M ′| ≤ |M (k−1)|. ��

420 H. Yuan, L. Yang, and E. Chen

Theorem 4 (Hopcroft and Karp[14]). Let M1 and M2 be two matchings, if
|M1| = s, |M2| = r and r > s, then there M1 ⊕M2 contains at least r− s vertex
disjoint augmenting paths relative to M1. Where the operation ⊕ means

M1 ⊕M2 =
{
e
∣∣ e ∈ M1 and e �∈ M2

}
∪
{
e
∣∣ e �∈ M1 and e ∈ M2

}
.

By Theorem 3 and Theorem 4, we have Algorithm 5.1 to find the maximum
matching of G(k) for each 0 < k ≤ |X | efficiently. Since the number of edges
is at most |D |, so the space complexity is O(n). It is easy to see that the time
complexity from Line 4 to Line 9 is O(

∑
|E(k)|) = O(

∑
|D(k)|) = O(L). Thus,

our algorithm is worst-case quadratic, which improves the previous best known
upper bound O(n2√n).

Algorithm 5.1 Disjoint Support {�, () }-Structured 2-Interval Pat-
tern
1: sort the endpoints of D
2: calculate F

(k)
+ and F

(k)
− for every 0 < k ≤ |X|

3: E ← ∅, M ← ∅
4: for k← 1 to |X| do

5: E ← E \ F
(k)
− , M ←M \ F

(k)
−

6: if there exist an augmenting path P ∈ E relative to M , then M ←M ⊕ P
7: E ← E ∪ F

(k)
+

8: if there exist an augmenting path P ∈ E relative to M , then M ←M ⊕ P
9: end for

Proposition 4. The Disjoint Support {�, () }-Structured 2-Interval
Pattern problem can be solved in O (n logn+ L) time.

6 Conclusions

In this paper, we give several improved algorithms for different models of 2-
Interval Pattern problem. The case of R = { () } and R = {�, () } with
disjoint support are solved both in O(n log n + L) time by sweep-line based
method. An O(n log n + dn) algorithm is given to solve the case R = {<, � },
which is similar to previous known maximum independent set algorithm for circle
graphs. All of our algorithms require only linear space.

Acknowledgements

Thanks to Hong Zhu, Binhai Zhu, Yunfeng Tao and the reviewers for their helpful
comments. Thanks to Prof. Yong Yu1 for his support on this work.

1 The advisor of the undergraduate program in Department of Computer Science and
Engineering, Shanghai Jiao Tong University.

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem 421

References

1. Patricia A. Evans. Finding common subsequences with arcs and pseudoknots. In
Maxime Crochemore and Mike Paterson, editors, Combinatorial Pattern Matching,
10th Annual Symposium, CPM 99, Proceedings, pages 270–280. Springer, 1999.

2. Stéphan Vialette. On the computational complexity of 2-interval pattern matching
problems. Theoretical Computer Science, 312(2-3):223–249, 2004.

3. Jens Gramm. A polynomial-time algorithm for the matching of crossing contact-
map patterns. In Algorithms in Bioinformatics, 4th International Workshop,
WABI 2004, Proceedings, pages 38–49. Springer, 2004.

4. Jochen Alber, Jens Gramm, Jiong Guo, and Rolf Niedermeier. Computing the
similarity of two sequences with nested arc annotations. Theoretical Computer
Science, 312(2-3):337–358, 2004.

5. Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subse-
quence problem for arc-annotated sequences. J. Discrete Algorithms, 2(2):257–270,
2004.

6. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, NY, 1980.

7. Guillaume Blin, Guillaume Fertin, and Stéphane Vialette. New results for the 2-
interval pattern problem. In Combinatorial Pattern Matching, 15th Annual Sym-
posium, CPM 2004, Proceedings, pages 311–322. Springer, 2004.

8. Maxime Crochemore, Danny Hermelin, Gad M. Landau, and Stephane Vialette.
Approximating the 2-Interval Pattern problem. To be appeared in 13th Annual
European Symposium on Algorithms, ESA 2005.

9. S. Micali and V.V. Vazirani. An O(|V ||E|) algorithm for finding maximum
matching in general graphs. In Proceedings of the 21st Annual Symposium on
Foundation of Computer Science, pages 17–27. IEEE, 1980.

10. Reuven Bar-Yehuda, Magnús M. Halldórsson, Joseph Naor, Hadas Shachnai, and
Irina Shapira. Scheduling split intervals. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 732–741, 2002.

11. Stefan Felsner, Rudolf Müller, and Lorenz Wernisch. Trapezoid graphs and gener-
alizations, geometry and algorithms. Discrete Applied Mathematics, 74(1):13–32,
1997.

12. Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara, and Toshio Fujisawa.
Efficient algorithms for finding maximum cliques of an overlap graph. Networks,
20:157–171, 1990.

13. Gabriel Valiente. A new simple algorithm for the maximum-weight independent
set problem on circle graphs. In Algorithms and Computation, 14th International
Symposium, ISAAC 2003, Proceedings, pages 129–137. Springer, 2003.

14. John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, (4), 1973.

Preemptive Semi-online Scheduling on Parallel
Machines with Inexact Partial Information�

Yong He and Yiwei Jiang

Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University,
Hangzhou 310027, P.R. China

jywzju@163.com

Abstract. In semi-online scheduling problems, we always assume that
some partial additional information is exactly known in advance. This
may not be true in some application. This paper considers semi-online
problems on identical machines with inexact partial information. Three
problems are considered, where we know in advance that the optimal
value, or the largest job size are in given intervals, respectively, while
their exact values are unknown. We give both lower bounds of the prob-
lems and competitive ratios of algorithms as functions of a so-called dis-
turbance parameter r ∈ [1,∞). We establish that for which r the inexact
partial information is useful to improve the performance of a semi-online
algorithm with respect to its pure online problem. Optimal preemptive
semi-online algorithms are then obtained.

1 Introduction

In scheduling theory, a problem is called offline if we have full information on
the job data before constructing a schedule. If jobs arrive one by one over list
and are required to be scheduled irrevocably on machines as soon as they are
given, without any knowledge of the jobs that will arrive later, the problem is
called online. If some partial additional information about the jobs is available in
advance, and we cannot rearrange any job that has been assigned to machines,
then the problem is called semi-online. Different partial information produces
different semi-online problems. Algorithms for (semi-) online problems are called
(semi-) online algorithms. Naturally, one wishes to achieve improvement of the
performance of a semi-online algorithm with respect to its corresponding online
problem by exploiting additional information. Though it is a relatively new area,
various papers and a number of results on semi-online algorithms for scheduling
problems have been published in the last decade. This paper will also consider
the design and analysis of algorithms for semi-online scheduling.

We use the competitive ratio to measure the the performance of an (semi-)
online algorithm. For an algorithm A and a job sequence J and let cA(J) (or
in short cA) denote the objective function value produced by A and let c∗(J)
(or in short c∗) denote the optimal value in an offline version. Then the com-
petitive ratio of A is defined as the smallest number C such that for any J ,
� Research supported by the TRAPOYT of China and NSFC (10271110, 60021201).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 422–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Preemptive Semi-online Scheduling on Parallel Machines 423

c∗(J) ≤ CcA(J). If A is randomized, we use E(cA(J)) instead of cA(J) in the
above definition. An (semi-) online problem has a deterministic or randomized
lower bound ρ if no (semi-) online deterministic or randomized algorithm has a
competitive ratio of smaller than ρ. An (semi-) online algorithm is called optimal
if its competitive ratio matches the lower bound. With these definitions, we say
that an information is useful if it can admit an optimal semi-online algorithm
with a competitive ratio smaller than that of an optimal online algorithm or the
lower bound of the pure online problem.

In semi-online research, it is crucial to determine which type of partial infor-
mation, and in how much extent, can improve the performance of a semi-online
algorithm. To illustrate our idea and method, we consider the classical parallel
machine scheduling in this paper. It can be described as follows. We are given a
sequence J of independent jobs with positive sizes p1, p2, . . . , pn, which must be
scheduled onto m uniform machines M1,M2, · · · ,Mm. We identify the jobs with
their sizes. Machine Mi has speed si ≥ 1. Without loss of generality, we assume
1 = s1 ≤ s2 ≤ · · · ≤ sm = s. If job pj is completely assigned to machine Mi,
then pj/si time units are required to process this job. Machines are available at
time zero. Our aim is to minimize the maximum machine completion time Cmax,
called makespan.

We consider preemptive algorithms in this paper, hence each job may be cut
into a few pieces. These pieces are to be assigned to possibly different machines,
in non-overlapping time slots. It is not required that a machine is busy all the
time until the last piece of a job being processed on the machine is completed.
A period of time when a machine is not processing a job, while it has not yet
completed all the pieces of the jobs assigned to it (i.e., it is assigned to process
a job at a later time), is called idle time. Although it is not common to design
algorithms that introduce idle time during the assignment procedure, it may be
beneficial to keep room for jobs that arrive later in the online and semi-online
problems, for example, see Refs. [5],[11], [12]. Using the three-field notation for
scheduling problems [10], we denote our problem as Q|pmpt|Cmax for the general
case of s ≥ 1 (uniform machines) and P |pmpt|Cmax for the special case of s = 1
(identical machines).

The study of preemptive online algorithms for parallelmachine scheduling prob-
lems date back to Chen et al. [2], who presented an optimal algorithm with a com-
petitive ratio of mm

mm−(m−1)m → e
e−1 forPm|pmpt, online|Cmax, where e ≈ 2.7183.

Wen and Du [16] and Epstein et al. [6] independently presented an optimal algo-
rithm with a competitive ratio of (s+1)2

s2+s+1 for the problem Q2|pmpt, online|Cmax.
Those results are extended to a class of m uniform machines with the non-
decreasing speed ratios in [3]. All the algorithms for the above preemptive online
problems are deterministic and their competitive ratios also match their respective
randomized lower bounds. Hence, randomization does not help for these problems.
Ebenlendr and Sgall [8] presented an algorithmwith a competitive ratio of 4 for the
problem Qm|pmpt, online|Cmax, and a randomized algorithm with a competitive
ratio of e. A randomized lower bound of 2 was given in [7].

424 Y. He and Y. Jiang

Several basic semi-online variants have been studied so far. Among others,
Epstein [4] considered the information that the optimal value c∗ is known in
advance (denoted by opt), which is also called the online bin stretching prob-
lem [1]. She presented an optimal algorithm with a competitive ratio of 1 for
Q2|pmpt, online|Cmax. Ebenlendr and Sgall [8] further presented an optimal al-
gorithm with the same competitive ratio forQm|pmpt, online|Cmax. It is remark-
able that by combining this optimal semi-online algorithm with a doubling strat-
egy for guessing the optimal value, Ebenlendr and Sgall obtained a deterministic
algorithm with a competitive ratio of 4 for the problem Qm|pmpt, online|Cmax,
and a randomized algorithm with a competitive ratio of e. It shows that the re-
search of semi-online algorithms is also of theoretical significance, besides their
important applications. Seiden et al. [15] considered the information that jobs
arrive in an order of decreasing job sizes (denoted by decr). They proposed an
optimal algorithm with a competitive ratio of max

k=0,···,m
m2+2mk

m2+k2+2k →
√

3+1
2 for

Pm|pmpt, decr|Cmax. Furthermore, they showed that the algorithm still works
with the same competitive ratio for Pm|pmpt,max|Cmax, where max denotes
the semi-online version that the largest job size pmax = maxj=1,···,n pj is known
in advance. Epstein and Favrholdt [5] considered Q2|pmpt, decr|Cmax. They pro-
posed an optimal algorithm with a competitive ratio of 3(s+1)

3s+2 if s ∈ [1, 3], and
2s(s+1)
2s2+s+1 if s ∈ [3,+∞). He and Jiang [11] considered Q2|pmpt,max|Cmax. They

proposed an optimal algorithm with a competitive ratio of 2s2+3s+1
2s2+2s+1 . It follows

that the usefulness of the information max is weaker than that of decr for uni-
form machine case with regard to competitive analysis, which is unlike that for
identical machine case. Note that randomization does not help for all above
semi-online problems, too.

In all the above considered semi-online problems, we assume that the known
partial information is exact. However, this assumption may not be true in some
application. Instead, we may know some partial information in advance, but
this information is sensitive and not accurate, or with uncertainty. That is, we
only know some disturbed partial information in advance. We would like to see
whether it is still useful, and how to design an algorithm based on this inexact
information accordingly. In this paper, we propose to introduce this concept in
the context of semi-online scheduling. Two variants regarding the basic semi-
online versions opt,max will be studied. For the first variant, dist opt, we know
in advance that there exist some p > 0 and r ≥ 1 such that c∗ ∈ [p, rp]. For
the second one, denoted by dist max, we know in advance that there exist
some p > 0 and r ≥ 1 such that pmax ∈ [p, rp]. We call r the disturbance pa-
rameter. Three problems, Pm|pmpt, dist opt|Cmax, Q2|pmpt, dist opt|Cmax and
Q2|pmpt, dist max|Cmax, will be considered. We will present their respective
optimal semi-online algorithms.

The competitive ratio is a function of the r for each problem, by which we can
see in what extent the disturbed information is useful. For example, since the
competitive ratio (i.e., lower bound) of the first problem Pm|pmpt, dist opt|Cmax
is mm

mm−(m−1)m when r ≥ (m
m−1)m−1, we conclude that the disturbed

Preemptive Semi-online Scheduling on Parallel Machines 425

information becomes useless. When 1 ≤ r < (m
m−1)m−1, the disturbed infor-

mation is still useful. Further, we can also see how the disturbance parameter
affects the performance guarantee from the obtained parametric competitive ra-
tios. The results are summarized in Table 1.

Table 1. The obtained results in this paper

the problem the competitive ratio of the interval of r where
the optimal algorithm the information is useless

mr
mr(1−qk)+m−k

if r ∈ [(1
q
)k−1, (1

q
)k),

Pm|pmpt, dist opt|Cmax k = 1, 2, · · · , m− 1 r ∈ [(1
q
)m−1, +∞)

(q = m−1
m

) 1

1−(1
q
)m if r ∈ [(1

q
)m−1, +∞)

r(s+1)
rs+1

if r ∈ [1, s + 1]

Q2|pmpt, dist opt|Cmax
(s+1)2

s2+s+1
if r ∈ [s + 1, +∞) r ∈ [s + 1, +∞)

(s+1)(1+s+rs)

1+2s+s2+rs2 if r ∈ [1, s + 1]

Q2|pmpt, dist max|Cmax
(s+1)2

s2+s+1
if r ∈ [s + 1, +∞) r ∈ [s + 1, +∞)

The paper is organized as follows. Section 2 presents some preliminary results
and lower bounds of the considered problems. Sections 3-5 present respective
optimal semi-online algorithms for Pm|pmpt, dist opt|Cmax and Q2|pmpt, dist
opt|Cmax and Q2|pmpt, dist max|Cmax, respectively.

2 Preliminary and Lower Bounds

Let L∗
j be the makespan of an optimal schedule for the first j jobs. Thus c∗ = L∗

n.
Denote Sj =

∑j
i=1 pi and pmax

j = max{pi|i = 1, · · · , j}. The following result is
well-known.

Lemma 1. (1) ([14]) For any instance of the problem Pm|pmpt|Cmax, we
have c∗ = max{Sn

m , pmax
n }. (2) ([9],[13]) For any instance of the problem

Q2|pmpt|Cmax, we have c∗ = max{ Sn

s+1 ,
pmax

n

s }.

Define q = m−1
m , αk(r) = mr

mr(1−qk)+m−k
for k = 1, 2, · · · ,m− 1 and αm(r) =

1
1−qm . To simplify presentation, we will drop the dependence on r and always
write αk instead of αk(r) for k = 1, 2, · · · ,m. Define

α =
{
αk, if (1

q)k−1 ≤ r < (1
q)k, k = 1, 2, · · · ,m− 1,

αm, if r > (1
q)m−1.

Theorem 1. Any deterministic or randomized preemptive semi-online algo-
rithm A for the problem Pm|pmpt, dist opt|Cmax has a competitive ratio α.

Proof. First we assume that r satisfy (1/q)k−1 ≤ r < (1/q)k for some k =
1, 2, · · · ,m − 1. Let A be a randomized algorithm with a competitive ratio of

426 Y. He and Y. Jiang

C. Consider the sequence p1 = (m − 1)(qk−1r − 1), p2 = · · · = pm = 1 and
pm+i = qk−ir, i = 1, 2, · · · , k. It is clear that the total size is mr for any k, and
thus c∗ = r ∈ [1, r].

Let Xi, i = 1, 2, · · · ,m, be the last time when at least i jobs are running (after
scheduling all m+ k jobs). Note that Xi is a random variable. For i = 1, · · · ,m,
as long as i jobs are running, at least one of the first m + k + 1 − i jobs is
running. Therefore, the average makespan of the first m + k + 1 − i jobs is at
least E[Xi]. Since by Lemma 1(1) the optimal schedule for these m+ k + 1 − i
jobs has makespan qi−1r if 1 ≤ i ≤ k and 1 if k + 1 ≤ i ≤ m, we have

E[Xi] ≤
{
C · qi−1r, if 1 ≤ i ≤ k,
C, if k + 1 ≤ i ≤ m.

So, we have

m∑
i=1

E[Xi] ≤ C(
k∑

i=1

qi−1r+m−k) = C(
1 − qk

1 − q
r+m−k) = C((1−qk)mr+m−k).

Combining it with
m∑

i=1
Xi ≥

m+k∑
i=1

pi = mr, we obtain C ≥ mr
(1−qk)mr+m−k

= αk.

For any r ≥ (1/q)m−1, it suffices to consider the sequence p1 = · · · = pm = 1,
and pm+i = (1/q)i, i = 1, · · · ,m−1. Then a similar argument as above can reach
the goal. ��

Theorem 2. Any semi-online algorithm A for Q2|pmpt, dist opt|Cmax has a

competitive ratio of at least

{
r(s+1)
rs+1 , if 1 ≤ r < s+ 1,
(s+1)2

s2+s+1 , if r ≥ s+ 1.

Theorem 3. Any semi-online algorithm A for Q2|pmpt, dist max|Cmax has a

competitive ratio of at least

{
(1+s)(1+s+rs)
1+2s+s2+rs2 , if 1 ≤ r < s+ 1,
1+2s+s2

1+s+s2 , if r ≥ s+ 1.

3 Optimal Algorithm for Pm|pmpt, dist opt|Cmax

This section considers the preemptive scheduling problem on m identical ma-
chines, where we know in advance that the optimal value is in the interval [p, rp].
By normalization, we assume p = 1, resulting in c∗ ∈ [1, r].

Since the lower bound for Pm|pmpt, dist opt|Cmax is the same as the compet-
itive ratio of the optimal algorithm for the problem Pm|pmpt, on − line|Cmax
when r ≥ (1/q)m−1 [2], we focus on the case 1 ≤ r < (1/q)m−1 in the remainder
of this section. We will present a semi-online algorithm A1 that is optimal for
every 1 ≤ r < (1/q)m−1. The algorithm consists of m− 1 procedures which are
identical except for the value of a parameter. We first define the procedure.

Preemptive Semi-online Scheduling on Parallel Machines 427

Procedure A0(a)
0. Let j = 0.
1. If no new job arrives, stop. Otherwise, set j = j + 1.
2. Compute L∗

j according to Lemma 1(1).
2.1 If pj ≤ amax{1, L∗

j} − L1
j−1, schedule pj on machine M1.

2.2 If pj > amax{1, L∗
j}−L1

j−1, compute lj = max{1 ≤ i ≤ m : Li
j−1+pj ≥

amax{1, L∗
j}}. Schedule amax{1, L∗

j}−L
lj
j−1 part of pj on Mlj , and the

leftover of pj , if any, on Mlj+1.
3. Re-index the machines with respect to their current loads such that L1

j ≥
L2

j ≥ · · · ≥ Lm
j , and return 1.

Algorithm A1
If (1/q)k−1 ≤ r < (1/q)k for some k = 1, · · · ,m − 1, let a = αk and run

A0(αk) .
Remember that in this section the moment j represents the moment right

after the j -th job has been scheduled and the machines have been re-indexed in
non-decreasing order of their current loads. Hence, if we say ”right after assigning
job pj”, it means that machines are not yet re-indexed in non-decreasing order
of their current loads.

In the remainder of this section, let pji be the first job (or a part of it)
processed on the i-th machine at moment ji.

Lemma 2. L1
ji

≥ · · · ≥ Li−1
ji

≥ αk at moment ji for every 2 ≤ i ≤ m.

Proof. We prove the result by induction. For i = 2, we claim that pj2 must be
assigned by step 2.2. Otherwise, we have pj2 ≤ αk max{1, L∗

j2} − L1
j2−1, and

pj2 is assigned to machine M1 by the algorithm rule, a contradiction. Hence, the
algorithm assigns the portion αk max{1, L∗

j2
}−L1

j2−1 to machine M1 (as lj2 = 1)
and the leftover to machine M2. Right after assigning pj2 , we have

L1
j2 = L1

j2−1 + (αk max{1, L∗
j2} − L1

j2−1) = αk max{1, L∗
j2} ≥ αk,

so we conclude that L1
j2 ≥ αk still holds at moment j2.

Assume that the result is true when i = t, that is, we have L1
jt

≥ · · · ≥
Lt−1

jt
≥ αk at moment jt. Next we consider the case i = t + 1. Since for any

job pj , jt < j < jt+1, no new machine starts to process jobs by the definition
of pjt+1 . Then all these jobs are assigned to machine M1, and we can conclude
that L1

j ≥ · · · ≥ Lt−1
j ≥ αk holds at any moment jt < j < jt+1. Now we focus

on the moment jt+1. We can also conclude that pjt+1 is scheduled by step 2.2,
and pjt+1 is the first job processed on the t+ 1-th machine. Hence, we see that
lj = t, i.e., we have

Lt
jt+1

= Lt
jt+1−1 + (αk max{1, L∗

jt+1
} − Lt

jt+1−1) = αk max{1, L∗
jt+1

} ≥ αk,

right after assigning pjt+1 . Moreover, the loads of the first t − 1 machines are
unchanged at that time. Hence, we have one more machine with load at least
αk. It implies that L1

jt+1
≥ L2

jt+1
≥ · · · ≥ Lt

jt+1
≥ αk at moment jt+1. Therefore,

the result is true for i = t+ 1. The lemma follows. ��

428 Y. He and Y. Jiang

The next two lemmas show that the algorithm A1 is well defined, and it
maintains the following invariants at any moment j ≥ 1:

(I1) L1
j ≤ αk max{1, L∗

j};

(I2) for any 1 ≤ t ≤ k − 1,
t∑

i=1
Li

j ≥ (1 − qt)Sjαk.

Lemma 3. If (I1) and (I2) are fulfilled at moment j − 1, then the assignment
of job pj is feasible, and (I1) is still fulfilled at moment j.

Lemma 4. If (I1) and (I2) are fulfilled at moment j−1, then (I2) is still fulfilled
at moment j.

Theorem 4. The competitive ratio of A1 is at most αk when (1/q)k−1 ≤ r <
(1/q)k for some k = 1, · · · ,m − 1, and thus it is optimal for any 1 ≤ r <
(1/q)m−1.

Proof. It is easy to verify that both (I1) and (I2) are fulfilled at moment 1.
Combining it with Lemmas 3 and 4, we conclude that the assignment of all jobs
is feasible, and both (I1) and (I2) are fulfilled at any moment. Together with the
condition L∗

n = c∗ ∈ [1, r], (I1) implies that cA1

c∗ = LA1
n

max{1,L∗
n} ≤ αk. Moreover,

algorithm A1 is optimal by Theorem 1. ��

4 Optimal Algorithm for Q2|pmpt, dist opt|Cmax

This section considers the preemptive scheduling problem on two uniform ma-
chines, where we know in advance that the optimal value is in the interval [p, rp].
By normalization, we assume p = 1, resulting in c∗ ∈ [1, r], and 1 = s1 ≤ s2 = s.

Since the lower bound forQ2|pmpt, disturbed opt|Cmax is the same as the com-
petitive ratio of the optimal algorithm for the problem Q2|pmpt, on− line|Cmax
when r ≥ s + 1 [6, 16], we focus on the case 1 ≤ r < s + 1 in the remainder of
this section. We will present an semi-online algorithm A2 which is optimal for
any 1 ≤ r < s+ 1.

Let β = r(s+1)
rs+1 and t = min{j|Sj > β}.

Algorithm A2:

0. j = 0.
1. If no new job arrives, stop. Otherwise, set j = j + 1.
2. If j < t, schedule pj on M1 completely, and return 1.
3. If j = t, we do

3.1 If pt < β + (s− 1)L1
t−1, schedule the portion β − L1

t−1 (denoted by p1
t)

of pt on M1 at time L1
t−1, and the leftover (if exists, denoted by p2

t) on
M2 at time zero. Return 1.

3.2 If β+(s−1)L1
t−1 ≤ pt < (β−L1

t−1)s, schedule the portion (β−L1
t−1)s−pt

s−1
(denoted by p1

t) of pt on M1 at time L1
t−1 and the leftover (denoted by

p2
t) on M2 at time L1

t . Return 1.

Preemptive Semi-online Scheduling on Parallel Machines 429

3.3 If (β −L1
t−1)s ≤ pt < sβ, schedule pt on M2 completely at time β − pt

s .
Return 1.

3.4 If pt ≥ sβ, schedule pt on M2 completely at time zero. Return 1.
4. If j > t, we do

4.1 If pt is scheduled by step 3.1, schedule job pj on M2. Return 1.
4.2 If pt is scheduled by step 3.2 or 3.3, schedule pj in the idle time on M2,

once the idle time is fully occupied, scheduled the leftover (if exists) on
M1 until time β. Once exceed, scheduled the leftover (if exists) on M2.
Return 1.

4.3 If pt is scheduled by step 3.4, schedule it on M1 until time β. Once
exceeded, scheduled the leftover (if exists) on M2. Return 1.

Remark 1. Note that before we run algorithm A2, we do not need to know the
value of t in advance. In fact, in the description of the algorithm, the expressions
t > j, t < j and t = j only represent the situations that the current total job
size Sj is larger/smaller than, and equal to β, respectively, which can be checked
online. Hence, our algorithm runs in a semi-online way. It is also valid for the
later algorithm.

Remark 2. The following four figures show the different situations with respect
to the assignment of pt. It is clear that in Figures 2 and 3 idle time is introduced
on M2 when assigning the job pt, later jobs will be scheduled during the idle
time window and no more idle time will be introduced.

Fig. 1. Step 3.1 Fig. 2. Step 3.2

Fig. 3. Step 3.3 Fig. 4. Step 3.4

Lemma 5. The algorithm A2 is feasible.

Lemma 6. The makespan yielded by algorithm H2 satisfies one of the two fol-
lowing conditions: (i) cA2 ≤ β; (ii) cA2 ≤ max{(Sn − β)/s, pmax

n /s}.

430 Y. He and Y. Jiang

Proof. If n < t, i.e., all the jobs have a total size not greater than β. Hence, we
obtain that cA2 = Sn ≤ β. Hence, we obtain the result.

If n = t, we see that cA2 = β if pt is scheduled by one of steps 3.1, 3.2 and
3.3, and cA2 = pt/s ≤ pmax

t /s if pt is assigned by step 3.4. The result is true.
If n > t, by the algorithm, we still have cA2 = LA2

t = β if the idle time slots
before time β are not fully occupied (see Figures 1-4). Now we consider the case
that the idle time slots before time β have been fully occupied. If cA2 = LA2

t ,
then either cA2 = β or cA2 = pt. Hence, the result is true trivially by the above
argument for the case n = t. Then we assume that cA2 > LA2

t ≥ β. We deduce
that the load of machine M1 must be β because no more jobs (or parts of jobs)
are scheduled on M1 by the rule of step 4 starting from the time β. Therefore,
we can obtain that the makespan of A2 is L2

n = (Sn −L1
n)/s = (Sn −β)/s, which

is the desired result. The proof is complete. ��

Theorem 5. The algorithm A2 has a competitive ratio of β, thus it is optimal
for any 1 ≤ r < s+ 1 and s ≥ 1.

Proof. Recall that c∗ ∈ [1, r]. By Lemma 6, we have cA2 ≤ β or cA2 ≤ max{(Sn−
β)/s, pmax

n /s}. If cA2 ≤ β, then from c∗ ≥ 1, we have cA2/c∗ ≤ β. If cA2 ≤ (Sn −
β)/s, then since c∗ ≥ Sn

s+1 due to Lemma 1 and c∗ ≤ r, we have Sn ≤ r(s + 1).
Hence, we have

cA2

c∗
≤ (Sn − β)/s
Sn/(s+ 1)

=
s+ 1
s

(1 − β

Sn
) ≤ s+ 1

s
(1 − β

r(s+ 1)
) = β.

If cA2 ≤ pmax
n /s, we have cA2 ≤ c∗ because Lemma 1 states that c∗ ≥ pmax

n /s.
Therefore, we have shown that the competitive ratio of the algorithm A2 is

at most β. Its optimality is a direct consequence of Theorem 2. ��

5 Optimal Algorithm for Q2|pmpt, dist max|Cmax

This section considers the preemptive problem on two uniform machines, where
we know in advance that the largest job size is in the interval [p, rp]. By normal-
ization, we assume that p = 1, and 1 = s1 ≤ s2 = s.

Since the lower bound for Q2|pmpt, dist max|Cmax is the same as the com-
petitive ratio of the optimal algorithm for the problem Q2|pmpt, on− line|Cmax
when r ≥ s + 1 [6, 16], we focus on the case 1 ≤ r < s + 1 in the remainder
of this section. We will present a semi-online algorithm A2 which is optimal for
every 1 ≤ r < s+ 1.

Define γ = (s+1)(1+s+rs)
1+2s+s2+rs2 , bj = γmax{ 1

s , L
∗
j} and t = min{j|Sj > bj}.

Algorithm A3:

0. j = 0.
1. If no new job arrives, stop. Otherwise, set j = j + 1
2. If j < t, schedule pj on M1 completely. Return 1.

Preemptive Semi-online Scheduling on Parallel Machines 431

3. If j = t, we do

3.1 If pt < (bj −L1
t−1)s, schedule the portion (bj−L1

t−1)s−pt

s−1 (denoted by p1
t)

of pt on M1 at time L1
t−1 and the leftover (denoted by p2

t) on M2 at time
L1

t . Return 1.
3.2 If pt > (bj − L1

t−1)s, schedule pt on M2 completely at time bj − pt

s .
Return 1.

4. If j > t, schedule the portion p1
j = (bj − L2

j−1)s of pj on M2 at time L2
j−1,

and the leftover (if exists) in the idle time on M2. Once the idle time is fully
occupied, scheduled the leftover (if exists) on M1. Return 1.

Remark 3. As the descriptions in precious section, we can obtain the following
two figures which show the different situations with respect to the assignment of
pt. It is clear that in both figures idle time is introduced on M2 when assigning
the job pt, subsequent arriving jobs will be scheduled to filling up the idle time
period and no more idle time will be introduced.

Fig. 5. Step 3.1 Fig. 6. Step 3.2

Theorem 6. The competitive ratio of A3 is γ, and thus it is optimal.

References

1. Y. Azar, O. Regev, Online bin stretching, Theoretical Computer Science, 268, 2001,
17-41.

2. B. Chen, A. van Vliet, G. Woeginger, An optimal agorithm for preemptive on-line
scheduling, Operations Research Letters, 18, 1995, 127-131.

3. L. Epstein, Optimal preemptive on-line scheduling on uniform processors with non-
decreasing speed ratios, Operations Research Letters, 29, 2001, 93-98.

4. L. Epstein, Bin stretching revisited, Acta Informatica, 39, 2003, 97-117.
5. L. Epstein, L. Favrholdt, Optimal preemptive semi-online scheduling to minimize

makespan on two related machines, Operations Research Letters, 30, 2002, 269-275.
6. L. Epstein, J. Noga, S. Seiden, J. Sgall, G. Woeginger, Randomized on-line schedul-

ing on two uniform machines, Journal of Scheduling, 4, 2001, 71-92.
7. L. Epstein, J. Sgall, A lower bound for on-line scheduling on uniformly related

machines, Operations Research Letters, 26, 2000, 17-22.
8. T. Ebenlendr, J. Sgall, Optimal and online preemptive scheduling on uniformly re-

lated machines, Lecture Notes in Computer Science 2996, pages 199-210. Springer,
2004.

9. T. Gonzalez, S. Sahni, Preemptive scheduling of uniform processor systems, Journal
of the Association for Computing Machinery, 25, 1978, 92-101.

432 Y. He and Y. Jiang

10. R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling: a survey, Annals
of Operations Research, 5, 1979, 287-326.

11. Y. He, Y.W. Jiang, Optimal algorithms for semi-online preemptive scheduling prob-
lems on two uniform machines, Acta Informatica, 40, 2004, 367-383.

12. Y. He, Y.W. Jiang, Optimal semi-online preemptive algorithms for machine cover-
ing on two uniform machines, Theoretical Computer Science, 339, 2005, 293-314.

13. E. C. Horvath, S. Lam, R. Sethi, A level algorithm for preemptive scheduling,
Journal of the Association for Computing Machinery, 24, 1977, 32-43.

14. R. McNaughton, Scheduling with deadlines and loss functions, Management Sci-
ences, 6, 1959, 1-12.

15. S. Seiden, J. Sgall, G. Woeginger, Semi-online scheduling with decreasing job sizes,
Operations Research Letters, 27, 2000, 215-221.

16. J. Wen, D. Du, Preemptive on-line scheduling for two uniform processors, Opera-
tions Research Letters, 23, 1998, 113-116.

On-Line Computation and Maximum-Weighted
Hereditary Subgraph Problems

Marc Demange1, Bernard Kouakou2, and Éric Soutif3

1 ESSEC, SID department, Avenue Bernard HIRSH, BP 105,
F-95021 Cergy Pontoise Cedex, France

demange@essec.fr
2 CERMSEM, Université Paris 1, 106–112 bd de l’Hôpital, F-75013 Paris, France

kouakou@univ-paris1.fr
3 CEDRIC, CNAM, 292 rue Saint-Martin, F-75003 Paris, France

soutif@cnam.fr

Abstract. In this paper, we study the on-line version of maximum-
weighted hereditary subgraph problems. In our on-line model, the final
instance-graph (which has n vertices) is revealed in t clusters, 2 ≤ t ≤ n.
We first focus on the on-line version of the following problem: finding a
maximum-weighted subgraph satisfying some hereditary property. Then,
we deal with the particular case of the independent set. For all these prob-
lems, we are interested in two types of results: the competitivity ratio
guaranteed by the on-line algorithm and hardness results that account
for the difficulty of the problems and for the quality of algorithms devel-
oped to solve them.

Keywords: on-line algorithm, hereditary property, independent set, com-
petitivity ratio.

1 Introduction

On-line computation aims to solve combinatorial problems with the constraint
that the instance is not a priori completely known before one begins to solve it.
In other words, the data-set is revealed step-by-step and one has, at the end of
each step, to irrevocably decide on the final solution dealing with this step. On-
line algorithms deal with a large class of problems subjected to time constraints
(one must take decisions before knowing all data). An on-line problem is defined
by:

– a combinatorial optimisation problem,
– a set of rules R describing how the final instance will be revealed,
– a set of rules R′ defining what kind of decisions are allowed.

1.1 Maximum Weighted Hereditary Subgraph Problems

In this paper, we deal with on-line versions of the problem of finding, in a
weighted graph G, a maximum weighted subgraph satisfying a non-trivial hered-
itary property π.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 433–442, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 M. Demange, B. Kouakou, and É. Soutif

Definition 1. Let us consider a graph-property π from the set of graphs to
{0, 1}. π is said to be satisfied for a graph G if and only if π(G) = 1. Prop-
erty π is hereditary if, whenever it is satisfied by a graph, it is also satisfied by
each of its induced subgraph; it is non-trivial if it is true for an infinite number of
graphs and false for an infinite number of graphs. If G = (V,E) is a graph, then
a set of vertices V ′ ⊂ V is said to satisfy π if and only if the induced subgraph
G[V ′] satisfies π.

Since π is assumed to be non trivial, then for every n there exists a graph of
order at least n satisfying π; which implies that an isolate vertex satisfies π.

Definition 2. Given a graph G = (V,E), the maximum hereditary subgraph
problem, HG, consists of finding a subgraph of maximum order of G satisfying
a given non-trivial hereditary property π.

WHG denotes the weighted version of HG: the input is a weighted graph
(each vertex x has a weight w(x)) and one looks for a maximum-weighted sub-
graph satisfying π. Some on-line versions of HG have been studied in [3]. This
paper is devoted to extend the results to the weighted case.

1.2 On-Line Models and Competitive Analysis

Let LWHG denote the on-line version of WHG. By using the framework de-
scribed in [7], it is defined by (WHG,R,R′). Given a problem, we can pass from
an on-line version to another by changing only the rules R and R′. For LWHG
we consider the same model as in [3]:

R: the graph G is revealed in t steps. At each step, a weighted subgraph Gi =
(Vi, Ei) (called cluster) of G is revealed together with the edges linking the
vertices of Gi and already revealed vertices. Consequently at step i, the graph
already revealed is G[V1, · · · , Vi], the subgraph of the whole instance induced by
V 1, · · · , Vi.
R′: at each step, one irrevocably decides which new vertices are introduced in
the solution.

The quality of an on-line algorithm is expressed by the competitive ratio defined
below.

Let us consider a maximization on-line problem P , an instance σ of P and
an algorithm LA for solving P . Furthermore, we consider a function cLA(n) (n
denotes the order of the instance). Let LA(σ) denote the value of the solution
of P computed by the algorithm LA and β(σ) the value of the solution returned
by an optimal algorithm knowing beforehand the final instance. The algorithm
LA is said to guarantee the competitivity ratio cLA(n) if, for any instance σ of
P :

cLA(n)×β(σ) ≤ LA(σ) (cLA(n)×LA(σ) ≤ β(σ) for a minimization problem).
LA is also said to be cLA(n)-competitive.

In what follows, we supposed that the number of vertices and the total weight of
the final graph are known at the beginning of the on-line process. In the opposite

On-Line Computation and Maximum-Weighted Hereditary 435

case, it is easy to see that no interesting result can be found; only the trivial ratio
Wmin

W (G)−Wmin
can be guaranteed (where W (G) and Wmin denote respectively the

total and the minimum weight of the final graph G).

1.3 Approximation Ratio

In the case of approximation, given a polynomial-time algorithm A computing,
for every instance σ of an NP −hard (off-line) minimization problem (the max-
imization case is defined in a similar manner), a feasible solution, A is said to
guarantee an approximation ratio of ρA if, for every instance σ of order n, the
approximation value A(σ) satisfies: ρA(n) × β(σ) ≤ A(σ) where β(σ) denotes
the value of the optimal solution of the instance.

For LWHG(t) (t steps with t << n), we are interested in links between off-
line and on-line algorithms. A central question in this work is how it is possible
to exploit (polynomial-time) algorithms in order to devise (polynomial-time) on-
line algorithm and moreover, is it possible to transfer performance guarantees
from off-line to on-line framework?

For this study, we suppose we are given a ρ(n)-approximation algorithm FWA
for WHG such that the following hypotheses H hold:

1. The considered approximation algorithm FWA solving WHG is supposed
to guarantee ratio of the form f(n)

n , where f is an increasing function in n
beyond k.

2. Algorithm FWA satisfies w(FWA(G)) ≥ w(V)
n , ∀G (the ratio 1/n is always

guaranteed, i.e f(n) ≥ 1);

These hypotheses are not restrictive (see also [3]); in particular item 1 is sat-
isfied for every known approximation ratios for HG and WHG: both problems
can be polynomially approximated within O(log n/n) and this ratio can be im-
proved to O(log2 n/n) for maximum independent set [4, 2]. Condition 2 is also
natural since the ratio w(V)

n can always be guaranteed.
In section 2, we show that LWHG(t) reduces to WHG. More precisely, we

show that a (polynomial-time) f(n)/n-approximation algorithm leads to a (poly-
nomial) on-line algorithm with competitive ratio cLWA(G) ≥ 1−f(n)1/t

1−f(n)
f(n)

n . For
t = 2, it leads to a result of [3] which was obtained by adapting to LWHG(2)
the methodology used for LHG(t). The proof of our result is totally different
while the on-line algorithm is quite similar. At each step, it computes a solution
of the problem restricted to the new cluster and decides either to include the
whole solution performed if its value is sufficiently good or to reject it. We call
such an algorithm a threshold algorithm.

In section 3, we perform lower and upper bounds for a class of algorithms
including threshold ones. The main result is shown in the case where π is either
clique or independent set. Finally, section 4 deals with on-line independent set
problem for which we propose an hardness result that bounds below the com-
petitive ratio of any algorithm (not only threshold ones). It points out that, for
this problem, threshold algorithms are almost optimal.

436 M. Demange, B. Kouakou, and É. Soutif

1.4 Notations

We will consider only simple graphs G = (V,E), n = |V | denotes the order
of G. Every edge in G will be denoted either by (i, j) = (j, i) or simply by
ij = ji. Ḡ = (V, Ē), Ē = {(i, j), i �= j, ij /∈ E} denotes the complement of
G. If V ′ ⊂ V, G[V ′] is the subgraph of G induced by V ′. An independent set
of G is a set of vertices which are mutually not linked by an edge: V ′ ⊂ V ,
∀(i, j) ∈ V ′ × V ′, ij /∈ E, in other words, G[V ′] has no edge. A clique of G is
a set of vertices such that G[V ′] is a complete graph or, equivalently, V ′ is an
independent set of Ḡ. w(G) denotes the sum of the weights of the vertices of G.
The on-line version of any hereditary weighted graph problem in which the final
instance is revealed in t steps will be denoted by LWHG(t). LWIS denotes the
on-line version of the weighted independent set problem.

2 Competitive Ratio for LWHG

Recall that the total number of vertices and the total weight are supposed to be
known in advance. This section is devoted to prove the following result:

Theorem 1. Suppose that WHG admits a polynomial-time ρ(n)−approximat−
ion algorithm FWA with ρ(n) = f(n)

n . Then, under the hypotheses H, there ex-
ists an on-line polynomial-time algorithm LWA, for LWHG, achieving for all
graph G of order n a competitive ratio of:

cLWA(G) ≥ 1 − f(n)1/t

1 − f(n)
ρ(n).

Moreover, for ε > 0 and n large enough: cLWA(G) ≥ (1 − ε) f(n)1/t

n .

Proof. Let us consider LWA, the following algorithm which receives the input-
graph G in t subgraphs G1, G2, . . . , Gt of respective order n1, n2, . . . , nt, and
returns the solution LWA(G) for the LWHG problem :

Algorithm 1
1. i ← 1;
2. W ← w(G);
3. r ← n;
4. while w(FWA(Gi)) <

W−w(Gi)
r−ni

f(r − ni)
1/t and i < t do

5. W ← W − w(Gi);
6. r ← r − ni;
7. i ← i+ 1;
8. end while
9. return LWA(G) ← FWA(Gi);

On-Line Computation and Maximum-Weighted Hereditary 437

Remark 1. This is a “threshold-algorithm” using the threshold W −w(Gi)
r−ni

f(r − ni)1/t. It is polynomial since algorithm FWA is polynomial-time.

For i ≤ t− 1, we denote Ri = G[Vi+1 ∪ · · · ∪Vt], and ri = ni+1 + · · ·+nt. Let us
denote by k ≤ t the value of i at the end of the while loop. We will consider two
cases whether k < t or k = t. In the first case, the following statements hold:

w(FWA(Gi)) <
w(Ri)
ri

f(ri)
1/t ∀i < k (1)

w(FWA(Gk)) ≥ w(Rk)
rk

f(rk)1/t ≥ w(Rk)
rk

(2)

In the second case, only relation 1 holds.
We first point out the following result:

Lemma 1.

∀i < k, w(FWA(Gi)) ≤ f(n)
k−i

t w(FWA(Gk))

Proof. (of lemma 1)
Let us first consider that k < t. For i < k, since w(Ri) = w(Gi+1)+· · ·+w(Gk)+
w(Rk), relation 1 becomes

w(FWA(Gi)) <
w(Gi+1) + · · · + w(Gk) + w(Rk)

ni+1 + · · · + nk + rk
f(ri)

1/t
.

By using item 1 of H, we deduce:
w(FWA(Gi)) ≤ ni+1w(FWA(Gi+1))+···+nkw(FWA(Gk))+rkw(FWA(Gk))

ni+1+···+nk+rk
f(n)1/t

which implies w(FWA(Gi)) ≤ f(n)1/t supi+1≤q≤k w(FWA(Gq)).
Then, a simple backward induction concludes the result. The case k = t is

simmilarly solved by putting w(Rt) = 0 and rt = 0, which concludes the proof
of lemma 1.

Let us continue the demonstration of the theorem:
Case 1 : algorithm stops with k < t. Heredity implies that β(G) ≤ β(G1)+ · · ·+
β(Gk) + β(Rk), moreover, β(Rk) ≤ w(Rk) ≤ rk

f(rk)1/tw(FWA(Gk)), which
implies:
β(G) ≤ ρ(n1)

−1
w(FWA(G1)) + · · ·+ ρ(nk)−1

w(FWA(Gk)) + rk

f(rk)1/tw(FWA
(Gk))
By using the increasing of f and the decreasing of ρ(n) = f(n)/n (item 1 of
hypothesis H), we deduce:
β(G) ≤ ρ(n)−1(

w(FWA(G1)) + · · · + w(FWA(Gk)) + f(n)
t−1

t w(FWA(Gk))
)

Then lemma 1 implies

β(G) ≤ ρ(n)−1(
f(n)

t−2
t + · · · + f(n)

1
t + 1 + f(n)

t−1
t)w(FWA(Gk)

)
and finally

β(G) ≤ ρ(n)−1 1 − f(n)

1 − f(n)
1
t

w(FWA(Gk))

438 M. Demange, B. Kouakou, and É. Soutif

The related ratio is:
w(S)
β(G)

≥ ρ(n)
1 − f(n)

1
t

1 − f(n)
.

Case 2 : the algorithm runs until the tth iteration.
By using similar arguments to the first case, we successively get:
β(G) ≤ β(G1) + · · · + β(Gt)
β(G) ≤ ρ(n1)

−1w(FWA(G1)) + · · · + ρ(nt)
−1w(FWA(Gt))

β(G) ≤ ρ(n)−1((w(FWA(G1)) + · · · + w(FWA(Gt))
)

β(G) ≤ ρ(n)−1(f(n)
t−1

t + · · ·+ f(n)
1
t + 1

)
w(FWA(Gt)) so w(S)

β(G) ≥ ρ(n)1−f(n)
1
t

1−f(n)
Since f is supposed to infinitly increase, the asymptotic equivalent immediately
follows.

We deduce from approximation results for WHG and WIS:

Corollary 1. For fixed values of t,

i LWHG(t) admits a polynomial O((log n)1/t/n)-competitive algorithm;
ii LWIS(t) admits a polynomial O((log n)2/t/n)-competitive algorithm.

If we consider not only polynomial-time algorithms, the result also holds with
ρ(n) = 1:

Corollary 2. For fixed values of t, LWHG(t) (and also LWIS(t)) admits a
O(n1/t−1)-competitive algorithm.

3 Limit of Threshold-Algorithms (Hardness Result)

In this section, we first suppose that π is either a clique or an independent set.
Let us consider an approximation algorithm FWA forWHG satisfying the set

of hypotheses H. In [1], for problem LWHG(2), a lower bound of 2
√

1 + µ

√
f(n)
n

for the competitive ratio of threshold-algorithm is devised by assuming the fol-
lowing hypothesis H ′(µ):

H ′(µ): There existsG1, a graph of order n1 such that β(G1)ρ(n1) ≤ FWA(G1)<
(1 + µ)β(G1)ρ(n1).

If µ is close to 0, H ′(µ) means that the approximation ratio of the algorithm
FWA cannot be significantly improved.

We show that this result can be generalized for any t ≥ 2; moreover, it shows
that the analysis performed in the proof of Theorem 1 is asymptocally tight.

Proposition 1. If π is either clique or independent set and if FWA satisfies
H ′(µ) for a given approximation ratio ρ(n) = f(n)/n and µ > 0, then the
corresponding threshold-algorithm (algorithm 1, section 2) cannot guarantee the

competitive ratio t(1 + µ)1−
1
t

f(n)
1
t

n .
The result holds even if the sequence of the weights is known at the beginning of
the on-line process and if clusters are of the same size.

On-Line Computation and Maximum-Weighted Hereditary 439

Proof. FWA satisfies H ′(µ). So there exists a graph G1 of order n1 such that
β(G1)ρ(n1) ≤ FWA(G1) < (1 + µ)β(G1)ρ(n1). We consider t− 1 real numbers
x1, x2, . . . , xt strictly positive such that:

FWA(G1) < xt < · · · < x2 < x1 < (1 + µ)β(G1)ρ(n1).

Set wk = nxk

t (1 + µ)
k−t−1

t f(n)
1−k

t , ∀k ≥ 2.

We apply the algorithm LWA to a graph of n = tn1 vertices and of total
weight W = w(G1) + w2 + · · · + wt, and we suppose that G1 is revealed at the
first step. Then we apply the following strategy to reveal a final graph having
n vertices and whose total weight is W so that the algorithm cannot return a
good solution (actually the worst one).

1. For i < t, if the algorithm selects some vertices in Gi, we reveal, for k =
1 · · · t − i, clusters Gi+k so that : for the independent set problem, Gi+k is
an independent set of order n1; every vertex of Gi+k is of weight wi+k

n1
and

is linked to all vertices in G[V1 · · ·Vi], i.e vertices revealed at steps 1, · · · , i.
(For the clique problem, Gi+k will be a clique with no link with G[V1 · · ·Vi]).

2. For i < t, if the algorithm does not select vertices in Gi, we reveal Gi+1 a
graph of order n1 so that: for the independent set problem, Gi+1 is a clique
with vertices of weight wi+1

n1
and is linked to all vertices in G[V1 · · ·Vi].

(With a similar construction one can deal with the case of the clique prob-
lem).

We then distinguish the following three cases (recall that vertices of the final
solution returned by algorithm LWA are all in a same cluster Gi):
i)We first consider the case where the solution returned by LWA contains ver-
tices of G1.
ii) Then, we deal with the case where the first selected vertices belong to Gi,
with 1 < i < t. In this case, the result returned by LWA is FWA(Gi) since rule
1 is applied to i.
iii) Finally, we study the case where the algorithm does not select vertices in
the subgraphs G1, G2, . . . , Gt−1 (so the algorithm returns FWA(Gt)). Rule 2 is
applied at step t− 1.

In three cases one can establish that LWA(G)
β(G) < t(1 + µ)1−

1
t

f(n)
1
t

n .

We have thus shown that there exists a graph having n vertices such that

cLWA(n) < t(1 + µ)1−
1
t

f(n)
1
t

n .

Corollary 3. Under hypotheses H and H ′(µ), for any ε and for n large enough,
we have:

(1 − ε)
f(n)

1
t

n
< cLWA(n) < t(1 + µ)

f(n)
1
t

n

This bound is asymptotically tight since the ratio between the upper and the
lower bounds is t (1+µ)

1−ε .

440 M. Demange, B. Kouakou, and É. Soutif

4 On-Line Maximum-Weighted Independent Set Problem
(LWIS)

Theorem 1 holds for maximum independent set problem. The lower bound de-
vised for threshold algorithms also applies to this problem. Roughly speaking,
those results show that the only way to improve the competitive ratio of al-
gorithm 1 (LWA) for LWIS is to improve the performance guarantee of the
off-line algorithm FWA used by LWA. Netherless, this method is limited by
the bound O(n1/t−i) obtained by using an optimal algorithm as LWA. This
raises the following question: is it possible to get a best competitive ratio by
using another type of algorithms? In this section, we bring a negative answer to
this question.
Theorem 2. Let LWA be an on-line algorithm solving LWIS for t ≥ 2 (the
graph is revealed in t clusters). Assume that the weights of clusters are known
by the algorithm as soon as the game starts, then its competitivity ratio cLWA

satisfies for every n: cLWA(n) ≤ tn
1
t

n .

Proof. Let LWA be an on-line algorithm solving LWIS; consider t ≥ 2 and
n = kt, k ≥ 2. Set wi = k1− i−1

t ; the total weight of the final graph is then
W = k−1

k
1
t −1

+ q (if we suppose k > 1, i.e. n > 2t− 2).

We apply algorithm LWA to a graph of order n and of total weight W . A
first cluster consisting of a clique of q+1 vertices of weight 1, is revealed. Then,
we apply the following strategy.

1. If at step i < t, LWA has not selected any vertex yet; a clique Gi+1 of
k vertices is revealed. Each vertex of the clique is of weight 1

k
i
t

and is not
linked to vertices already revealed.

2. If LWA selects some vertices at the step i, then clusters Gi+1, Gi+2, . . . , Gt

are independent sets of size k. Their vertices are respectively of weights
1

k
i
t
, . . . , 1

k
t−1

t

, and are (all) linked to an already selected vertex.

We distinguish two cases.

Case 1 : rule 2 has never been used, namely the algorithm has only taken some
vertices in the last cluster which is a clique; so w(LWA(G)) = 1

k
t−1

t

.

Now α(G) ≥ α(G1) = 1, so w(LWA(G))
α(G) ≤ k

1−t
t .

Case 2 : rule 2 has been used at the step i, i < t. It is clear that only one vertex of
weight 1

k
i−1

t

has been selected (in Gi) since only cliques have been revealed until

the ith step and all the next vertices are linked to an already selected vertex:
w(LWA(G)) = 1

k
i−1

t

.

Moreover, α(G) ≥ α(Gi+1) = k
i
t

k , So w(LWA(G))
α(G) ≤ k

1−t
t .

In conclusion, we get (since n = kt): cLWA(n) ≤ k
1−t

t ≤ (n
t)

1−t
t

So, cLWA(n) ≤ tn
1
t

n .

On-Line Computation and Maximum-Weighted Hereditary 441

5 Concluding Remarks

This work points out that results for LGH and LWHG(2) can be generalized to
the weighted class LWHG. In the off-line case, HG and WHG are equivalently
solved by polynomial-time algorithms ([2, 7]). The situation is rather different
in on-line framework.

Indeed, the comparison between theorem 1 and result of [3] brings to the fore
a gap between competitive ratio of LHG(t) and LWHG(t), which is asymptot-
ically: ρLW IS

ρLIS
∼ f(n)

1
t −

1
2
√
t. More generally, weights induce many questions in

on-line framework. In this work, we focused on an on-line model in which weights
are revealed on-line together with vertices. But one can also study either a model
where the sequence of the weights is revealed at the beginning while the graph
is revealed on-line or a model where the graph is known in advance and weight
are on-line.

Such models being particular cases of the ones we deal with in this paper, the
competitive analysis performed in Theorem 1 remains valid in both cases. Let us
now consider this question from the hardness results point of view. By revisiting
the proof of theorem 2, let us point out of that weights are known beforehand.
So this hardness result also holds for a model in which weights are removed from
the on-line process.

Let us now consider a dual situation where the graph is fixed and weights
are given on-line. The following proposition shows that the same hardness result
raises for this model:

Proposition 2. Let LWA be an on-line algorithm solving the problem LWIS
for t ≥ 2 (the set of weights is completely revealed in t steps); the total weight of
each cluster is known at the beginning of the process. Then, there exists a graph

of order n for which the competitivity ratio cLWA satisfies: cLWA(n) ≤ tn
1
t

n .

Proof. We set n = tk where k ≥ 2, k ∈ N. wi = k1− i−1
t , ni = k, ∀i ≥ 1. So the

total weight of the final graph is W = k k−1

k
1
t −1

.

This time, we apply the algorithm LWA to a complete graph of order n and of
weight W . The first cluster contains (q+1) weights, each of them being 1. Then
we use the following strategy.

1. If at step i < t, LWA has not selected any vertex yet, we reveal a set of
k identical weights wi+1

k = 1

k
i
t
, in order to form the cluster Gi+1 of total

weight wi+1 = k1− i
t .

2. If LWA selects vertices at step i, then the next clusters, Gi+1, Gi+2, . . . , Gt

(each of them has k vertices) are such that:
for each of the clusters, k − 1 vertices have a null weight and only one vertex
supports the weight of the whole cluster.

We conclude by using the same arguments as in Theorem 2.

Let us finally underline a main difference between Theorems 1 and 2. The
first one is only valid for a class of algorithms, nevertheless, it gives some infor-
mations not only about general algorithms but also about polynomial-time ones

442 M. Demange, B. Kouakou, and É. Soutif

while the second one does not allow us to take complexity considerations into
account. Theorem 1 brings to the fore that a threshold algorithm parametrized
by an exact off-line algorithm is almost optimal among on-line algorithms. An
interesting question is to know if the same holds for polynomial time on-line
algorithms. Theorem 2 induces that any improvement dealing with the approxi-
mation of WHG would immediately induce an improvement of the competitive
ratio that can be guaranteed in polynomial-time. What about the converse? In
[1] a reduction from WIS to LWIS(2) is proposed, with improvement of the
ratio allowing to show that any improvement of LWIS(2)’s competitive ratio
would imply an improvement of WIS’s approximation ratio. A consequence is
an hardness result for polynomial-time algorithms. A generalization of this re-
sult to LWIS(t) or, more generally, the design of such reductions from off-line
to on-line seems to be a fruitful research area.

References

1. Demange, M.: Reduction off-line to on-line: an example and its applications. Yu-
goslav Journal of Operations Research 13(1), 3-24, 2003

2. Demange, M., Paschos, V. Th.: Improved approximations for weighted and un-
weighted graph problems. Theory of Computing Systems. To appear

3. Demange, M., Paradon, X., Paschos, V. Th.: On-line maximun-order induced hered-
itary subgraph problems. International Transaction in Operational Research, 12(2),
185-201, 2005

4. Halldòrsson M.M.: Approximations of weighted independent set and heditary subset
problems. Proc. 5th Ann. Int. Conf. on Computing and Combinatories, Lecture
Notes in Computer Science, Springer-Verlag, 261-270, 1999

5. Crescenzi P., Silvestri R., Trevisan L.:, To weight or not to weight: where is the
question? In Proc. 4th Israel Symposium on Theory and Computing and Systems,
IEEE Computer Society, 68-77, 1996

6. Garey M.R., Johnson. D.S:, Computers and intractability. A guide to the theory of
NP-completness. CA.Freeman, San Francisco, 1979

7. Paradon X.:, Algorithmique on-line. Thèse de doctorat, Université Paris Dauphine,
2000 (in french)

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 443 – 452, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Novel Adaptive Learning Algorithm for Stock
Market Prediction

Lean Yu1,2, Shouyang Wang1,2,3, and Kin Keung Lai3,4

1 Institute of Systems Science, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100080, China

2 School of Management, Graduate University of Chinese Academy of Sciences,
Chinese Academy of Sciences, Beijing 100039, China

{yulean, sywang}@amss.ac.cn
3 College of Business Administration, Hunan University, Changsha 410082, China

4 Department of Management Sciences, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong

mskklai@cityu.edu.hk

Abstract. In this study, a novel adaptive learning algorithm for feed-forward
network based on optimized instantaneous learning rates is proposed to predict
stock market movements. In this new algorithm, the optimized adaptive learn-
ing rates are used to adjust the weight changes dynamically. For illustration and
testing purposes the proposed algorithm is applied to two main stock price indi-
ces: S&P 500 and Nikkei 225. The experimental results reveal that the proposed
algorithm provides a promising alternative to stock market prediction.

1 Introduction

Stock market prediction is regarded as a challenging task because of high fluctuation
and irregularity. There have many studies using artificial neural networks (ANNs) in
this area. Back-propagation neural network (BPNN) is the most popular class of
ANNs which have been widely applied to time series prediction. The basic learning
rule of BPNN is based on the gradient descent optimization method and the chain
rule, as initially proposed by Werbos [1] in the 1970s. Since the basic learning rule is
based on the gradient descent method, which is known for its slowness and its fre-
quent confinement to local minima [2], many improved BP algorithms are developed
such as variable step size, adaptive learning [3-4] and others [5-6]. Generally, these
algorithms have an improved convergence property, but most of these methods do not
use the optimized instantaneous learning rates. In their studies, the learning rate is set
to a fixed value when learning. However, it is critical to determine a proper fixed
learning rate for the applications of the BPNN. If the learning rate is large, learning
may occur quickly, but it may also become unstable and even will not learn at all. To
ensure stable learning, the learning rate must be sufficiently small, but with a small
learning rate the BPNN may be lead to a long learning time. Also, just how small the
learning rate should be is unclear. In addition, for different structures of BPNN and
for different applications, the best fixed learning rates are different.

444 L. Yu, S. Wang, and K.K. Lai

There are other ways to accelerate the network learning using second-order gradi-
ent based nonlinear optimization methods, such as the conjugate gradient algorithm
[6] and Levenberg-Marquardt algorithm [7]. The crucial drawbacks of these methods,
however, are that in many applications computational demands are so large that their
effective use in many practical problems is not viable.

A common problem with the all above mentioned methods is a non-optimal choice
of the learning rate even with the adaptive change of the learning rate. A solution is to
derive optimal learning rate formulae for BPNN and then allow an adaptive change at
each iteration step during the learning process. The resulting algorithm will eliminate
the need for a search for the proper fixed learning rate and provide fast convergence.

Due to the highly nonlinearity of neural networks, it is difficult to obtain the opti-
mum learning rate. In this paper, a new method based on matrix and optimization
techniques is proposed to derive the optimal learning rate and construct an adaptive
learning algorithm. To test the efficiency of the proposed algorithm, two important
stock indices, S&P500 and Nikkei225, are used. The rest of this work is organized as
follows. In Section 2, the proposed adaptive learning algorithm with optimal learning
rate is presented. In order to testing the proposed algorithm, Section 3 gives an ex-
periment and reports the results. Finally, the conclusions are made in Section 4.

2 The Proposed Adaptive Learning Algorithm

Consider a three-layer BPNN, which has p nodes in the input layer, q nodes in the
hidden layer and k nodes in the output layer. Mathematically, the basic structure of
the BPNN model is described by

++

++

++

=

+

+
+

=+

= =

= =

= =

])()())()()(([

])()())()()(([

])()())()()(([

)1(

)1(

)1(

)1(

1 1 0012

1 1 202012

1 1 101012

2

1

q

i

p

j kkiijij

q

i

p

j iijij

q

i

p

j iijij

k tvtvtwtxtwff

tvtvtwtxtwff

tvtvtwtxtwff

ty

ty

ty

tY
LL

==

= =

= =

= =

)])()(([

)])()(([

)])()(([

])())()(([

])())()(([

])())()(([

12

122

112

0 012

0 0 212

0 0 112

tXtWFVf

tXtWFVf

tXtWFVf

tvtxtwff

tvtxtwff

tvtxtwff

T
k

T

T

q

i

p

j kijij

q

i

p

j ijij

q

i

p

j ijij

LL

)])()()([12 tXt(WFtVF T= (1)

where xj(t), j = 1, 2, …, p, are the inputs of the BPNN; y is the output of the BPNN;
wij(t), i = 1, …, q, j = 1, …, p, are the weights from the input layer to the hidden layer;
wi0(t), i = 1, …, q, are the biases of the hidden nodes; vij(t), i = 1, …, q, j = 1, …, k, are
the weights from the hidden layer to the output layer; vi0(t) is the bias of the output
node; t is a time factor; f1 is the activation function of the nodes for the hidden layer
and f2 is the activation function of the nodes for the output layer. Generally, the acti-
vation function for nonlinear nodes is assumed to be a symmetric hyperbolic tangent

 A Novel Adaptive Learning Algorithm for Stock Market Prediction 445

function, i.e.,)tanh()(1
01 xuxf −= , and its derivative is)](1[)(2

1
1

01 xfuxf −=′ − ,

)](1)[(2)(2
11

1
01 xfxfuxf −−=′′ − , where u0 is the shape factor of the activation func-

tion. Specially, some notations in Equation (1) are defined as follows:
1)1(

10),,,(×+∈= pT
p RxxxX L , 1

10),,,(×∈= kT
k RyyyY L ,

,),,,()1(
10

10

22120

11110

+×∈== pq
p

qpqq

p

p

RWWW

www

www

www

W L

L

LLLL

L

L

 ,),,,()1(
21

21

12111

02010

kq
k

kqqq

k

k

RVVV

vvv

vvv

vvv

V ×+∈== L

L

LLLL

L

L

() 1)1(
111011))(())(())(())()((×+∈= qTH

q
HH RtnetFtnetFtnetFtXtWF L ,

=
=

p

j jij
H
i txtwtnet

0
),()()(i = 0, 1, … , q.

Usually, by estimating model parameter vector (W, V) via BPNN training and
learning, we can realize the corresponding tasks such as function approximation,
system identification or prediction. In fact, the model parameter vector (W, V) can be
obtained by iteratively minimizing a cost function E(X: W, V). In general, E(X: W, V)
is a sum of the error squares cost function with k output nodes and N training pairs or
patterns, that is,

= == = −−=== N

j

N

j jj
T

jjj
T
j

N

j

p

i ij VWXyyVWXyyeeeVWXE
1 11 1

2)],:([)],:([
2

1

2

1

2

1
),:((2)

where yj is the jth actual value and yj(X: W,V) is the jth estimated value.
Given the time factor t, Equation (2) can be rewritten as

= == = −−=== N

j

N

j jj
T

jjj
T
j

N

j

k

i ij tyytyytetetetE
1 11 1

2)]([)]([
2

1
)()(

2

1
)(

2

1
)((3)

where .,,2,1,)]()()([)(1
21 NjRtetetete kT

kjjjj LL =∈= ×

By applying the steepest descent method to the error cost function E(t) (i.e., Equa-
tion (3)), we can obtain the gradient of E(t) with respect to V and W, respectively.

===

= == =

′−=′−=′′−=

∂
∂

−=
∂
∂

=
∂
∂=∇

N

j j
T
jj

N

j j
T
jj

N

j j
T

jj

N

j

k

i

ij
ij

N

j

k

i

ij
ijV

FteFFteWXFWXFVFte

tV

ty
te

tV

te
te

tV

tE
tE

1)(2)(11)(2)(11)(1)(2

1 11 1

)()()(])([)(

)(

)(
)(

)(

)(
)(

)(

)(
)(

===

= == =

′′−=′′−=′′−=

∂
∂

−=
∂
∂

=
∂
∂=∇

N

j

T
jjjj

N

j

T
jjjj

N

j j
T

jj

N

j

k

i

ij
ij

N

j

k

i

ij
ijW

xeFVFtxteFVFWXFVFte

tW

ty
te

tW

te
te

tW

tE
tE

1)(2)(11)(2)(11)(1)(2

1 11 1

)()(])([)(

)(

)(
)(

)(

)(
)(

)(

)(
)(

So, the updated formulae of weights are given by, respectively

=
′=∇−=∆ N

j j
T
jjV FeFtEV

1)(2)(1)(ηη (4)

446 L. Yu, S. Wang, and K.K. Lai

=
′′=∇−=∆ N

j

T
jjjjW xeFVFtEW

1)(2)(1)(ηη (5)

where η is the learning rate;

qq
qj RfffF ×∈′′′=′] [diag)(1)2(1)1(1)(1 L , qi

net

netf
netff

H
i

H
iH

ii ,,2,1,
)(

)(1
1)(1 L=

∂
∂

=′=′ ,

qiRvvv qT
iqii ,,2,1,] [1

1 LL =∈= × , kk
k RfffdiagF ×∈′′′=′] [)(2)2(2)1(22 L ,

pq
k

kqqq

k

k

Rvvv

vvv

vvv

vvv

V ×∈==] [21

21

22212

12111

L

L

LLLL

L

L
, ki

WXFv

WXFvf
WXFvff

T
i

T
iT

ii L,2,1,
)]([

)]([
)]([

1

12
12)(2 =

∂
∂

=′=′ .

To derive the optimal learning rate, let ∆ be an increment operator and consider
the general error equation:

)1()()1()()1()1(+∆−=+−+−=−+=+∆ tytyytyytetete (6)

where 0)1(≡+∆ ty . This means there is no change in the pattern during the neural

networks’ learning procedure and the change of output of neural networks is

)()()1(tetty ηξ=+∆ (7)

where
211112)]()()[()(2 FFFXXIFFF ′′′×+⊗′= VVt T

k
Tξ with

′

′
′

=′

)(2

)2(2

)1(2

2

00

00

00

NF

F

F

L

LLLL

L

L

F
,

=

)(1)(1)2(1)(1)1(1)(1

)(1)2(1)2(1)2(1)1(1)2(1

)(1)1(1)2(1)1(1)1(1)1(1

11

N
T

N
T

N
T

N

N
TTT

N
TTT

T

FFFFFF

FFFFFF

FFFFFF

L

LLLL

L

L

FF
,

=

N
T
N

T
N

T
N

N
TTT

N
TTT

T

xxxxxx

xxxxxx

xxxxxx

L

LLLL

L

L

21

22212

12111

XX

,

′′′′′′

′′′′′′
′′′′′′

=′′

)(1)(1)2(1)(1)1(1)(1

)(1)2(1)2(1)2(1)1(1)2(1

)(1)1(1)2(1)1(1)1(1)1(1

11

NNNN

N

N

FFFFFF

FFFFFF

FFFFFF

L

LLLL

L

L

FF

.

Here, ⊗ indicates a direct product, and × indicates a cross product.
In order to prove Equation (7), a lemma must be introduced.

Lemma: The total time derivative of the BPNN single output)(1 WXFv T is given

by

X
dt

dW
WXFvWXF

dt

dv
X

dt

dW
WXFv

dt

dv
WXF

dt

WXFvd T
T

T
T

)()()()(
)]([

1111
1 ′+=′+=

Proof: Derivation of
dt

WXFvd T)]([1 is as follows:

()[]
dt

xwfvd

dt

WXFvd
q

i

p

j jiji
T

= == 0 011)]([

 A Novel Adaptive Learning Algorithm for Stock Market Prediction 447

()[] ()[]

dt

dv
netf

dt

dv
netf

dt

dv
netf

dt

dw
xxwfv

dt

dv
xwf

dt

dw

w

xwfv

dt

dv

v

xwfv

q
q

ij
j

q

i

p

j

p

j
jiji

i
q

i

p

j
jij

q

i

p

j

ij

ij

q

i

p

j jiji
q

i

i

i

q

i

p

j jiji

)()()(1
1

11
0

01

0 0 0
1

0 0
1

0 0

0 01

0

0 01

+++=

′+=

∂

∂
+

∂

∂
=

= = == =

= =

= =

=

= =

L

+++′+

+++′+

+++′+

dt

dw
x

dt

dw
x

dt

dw
xnetfv

dt

dw
x

dt

dw
x

dt

dw
xnetfv

dt

dw
x

dt

dw
x

dt

dw
xnetfv

qp
p

qq
qq

p
p

p
p

L

L

L

1
1

0
01

111
1

10
0111

001
1

00
0010

)(

)(

)(

[]

[]
()

()

×

=′
≡

′

′
+

=

p
qpqq

p

p

q

q

T
q

q

x

x

x

dt

dw

dt

dw

dt

dw

dt

dw

dt

dw

dt

dw
dt

dw

dt

dw

dt

dw

netf

netf

netf

netf

vvv

dt

dv

dt

dv

dt

dv
netfnetfnetf

L

L

LLLL

L

L

L

LLL

L

L

L

1

0

10

11110

00100

0

0
1

21

10
11101

0)(

1,)(todue

0

0

)()()(

X
dt

dW
WXFvWXF

dt

dv
X

dt

dW
WXFv

dt

dv
WXF T

T
T)()()()(1111 ′+=′+=

In the following, we start to prove Equation (7). Let us consider the change of out-
put of BPNN for the mth pattern first. The above Lemma together with Equations (4)
and (5) gives

()[]

∆′+∆⋅′

∆′+∆⋅′

∆′+∆⋅′

=

∆′+∆⋅′

∆′+∆⋅′
∆′+∆⋅′

=

∆

∆
∆

=∆=+∆

=

=

=

)(

)(

)(

)(

)(

)(

)1(

,11,1),(2

,121 2,1),2(2

,111 1,1),1(2

,1,1),(2

,122,1),2(2

,111,1),1(2

),(2

),2(2

),1(2

12

mm
T
k

N

j kj
T
mmk

mm
TN

j j
T
mm

mm
TN

j j
T
mm

mm
T
kk

T
mmk

mm
TT

mm

mm
TT

mm

mk

m

m

m
T

m

WxFvvFf

WxFvvFf

WxFvvFf

WxFvvFf

WxFvvFf

WxFvvFf

f

f

f

WxFVFty

L

LL

448 L. Yu, S. Wang, and K.K. Lai

() ()[]
() ()[]
() ()[]

=

==

==

==

′′′+′⋅′

′′′+′⋅′
′′′+′⋅′

=

′′′+′⋅′

′′′+′⋅′

′′′+′⋅′

=

N

j

m
T
jjjjm

T
kjkkjj

T
mmk

m
T
jjjjm

T
jjj

T
mm

m
T
jjjjm

T
jjj

T
mm

m

N

j

T
jjjjm

T
k

N

j jkkjj
T
mmk

m

N

j

T
jjjjm

TN

j jjj
T
mm

m

N

j

T
jjjjm

TN

j jjj
T
mm

xxeFVFFvfeFFf

xxeFVFFvfeFFf

xxeFVFFvfeFFf

xxeFVFFvfeFFf

xxeFVFFvfeFFf

xxeFVFFvfeFFf

1

21,1),(21,1),(2

21,12),2(221,1),2(2

21,11),1(211,1),1(2

1 21,11),(21,1),(2

1 21,121),2(221,1),2(2

1 21,111),1(211,1),1(2

)(

)(

)(

L

L

η

ηη

ηη

ηη

jj
N

j m
T
jjm

T
kj

T
mm

N

j m
T
jjjjm

T
j

T
mjjm

N

j

m
T
jjjjm

T
kjkkjj

T
m

m
T
jjjjm

T
jjj

T
m

m
T
jjjjm

T
jjj

T
m

mk

m

m

eFxxVFFVIFFF

xxeFVFFVFFeFF

xxeFVFFvfeFF

xxeFVFFvfeFF

xxeFVFFvfeFF

f

f

f

21 1,11,1,2

1 21,11,12,2

1

21,1),(21,1

21,12),2(221,1

21,11),1(211,1

),(2

),2(2

),1(2

)(

)(

00

00

00

2 ′⋅′′+⋅′=

′′′+′⋅′=

′′′+′

′′′+′
′′′+′

′

′
′

=

=

=

=

η

η

η
L

L

LLLL

L

L

So, the total change caused by all patterns is

′

′
′

=

′⋅′′+⋅′

′⋅′′+⋅′

′⋅′′+⋅′

′⋅′′+⋅′

=

+∆

+∆

+∆
+∆

=+∆

=

=

=

=

N

jj
N

j N
T
jjN

T
kj

T
NN

jj
N

j m
T
jjm

T
kj

T
mm

jj
N

j
T
jj

T
kj

T

jj
N

j
T
jj

T
kj

T

N

m

F

F

F

eFxxVFFVIFFF

eFxxVFFVIFFF

eFxxVFFVIFFF

eFxxVFFVIFFF

ty

ty

ty

ty

ty

,2

2,2

1,2

21 1,11,1,2

21 1,11,1,2

21 212,112,12,2

21 111,111,11,2

2

1

00

00

00

)(

)(

)(

)(

)1(

)1(

)1(

)1(

)1(

2

2

2

2

L

LLLL

L

L

L

L

L

L

η

η

η

η

η

′′+′′+′′+

′′+′′+′′+

′′+′′+′′+

×

)()()(

)()()(

)()()(

1,11,1212,112,1111,111,1

212,112,122122,1122,112112,1112,1

111,111,121121,1121,111111,1111,1

222

222

222

N
T
NNN

T
kN

T
N

T
NN

T
k

T
N

T
NN

T
k

T
N

N
T

N
T

kN
TTT

k
TTT

k
T

N
T

N
T

kN
TTT

k
TTT

k
T

xxVFFVIFFxxVFFVIFFxxVFFVIFF

xxVFFVIFFxxVFFVIFFxxVFFVIFF

xxVFFVIFFxxVFFVIFFxxVFFVIFF

L

LLLL

L

L

′

′
′

=

′

′
′

×

222

222

222

11121111

11212121112

11112111111

2

22

21

2

222

121

00

00

00

kN
T
Nk

T
Nk

T
N

kN
T

k
T

k
T

kN
T

k
T

k
T

NNN IFFIFFIFF

IFFIFFIFF

IFFIFFIFF

F

F

F

eF

eF

eF

L

LLLL

L

L

L

LLLL

L

L

L
η

 A Novel Adaptive Learning Algorithm for Stock Market Prediction 449

′′′′′′

′′′′′′
′′′′′′

×+ V

FFFFFF

FFFFFF

FFFFFF

V

xxxxxx

xxxxxx

xxxxxx

NNNN

N

N

T

N
T
N

T
N

T
N

N
TTT

N
TTT

11121111

11212121112

11112111111

21

22212

12111

L

LLLL

L

L

L

LLLL

L

L

′

′
′

×

NN e

e

e

F

F

F

L

L

LLLL

L

L

2

1

2

22

21

00

00

00

)()()()]()()[(211112 2 tetteVVT
k

T ηξη =′′′×+⊗′= FFFXXIFFF

Substituting (7) into (6), we obtain

)()()()1(tettete ηξ−=+ (8)

The objective here is to derive an optimal learning rate η . That is, at iteration t, an

optimal value of the learning rate,)(* tη , which minimizes E(t+1) is obtained. Define

the cost function:

)1()1(
2

1
)1(++=+ tetetE T (9)

Using Equation (8), Equation (9) may be written as

[] [])()()()()()(5.0)1(tettetettetE T ηξηξ −−=+ (10)

which gives the error e, at iteration t+1, as a function of the learning rate η , which

minimizes E(t+1). Now we use the first and second order conditions

[] 0)()()]()()()([
2

1
)]()()()([)()(

2

1)1(**

)(*

=−−−−=+

=
tettetttetetttetet

d

tdE TT

t

ξξηξηξ
η ηη

0)()()()(
)1(

)(
2

2

*

>=+

=

tettte
d

tEd TT

t

ξξ
η ηη

Since)(tξ is positively defined, the second condition is met and the optimum

value of the learning rate is found to be

)()()()(

)()()(
)(*

tettte

tette
t

TT

TT

ξξ
ξη = (11)

Finally, the increments of the BP neural network parameters, by using the optimal
learning rate, are obtained by replacing the * given by Equation (11) to Equations
(4) and (5), which yield

=
′=∇−=∆ N

j j
T
jjTT

TT

V FeF
tettte

tette
tEV

1)(2)(1)()()()(

)()()(
)(

ξξ
ξη

(12)

450 L. Yu, S. Wang, and K.K. Lai

=
′′=∇−=∆ N

j

T
jjjjTT

TT

W xeFVF
tettte

tette
tEW

1)(2)(1)()()()(

)()()(
)(

ξξ
ξη � (13)

Using the new weight update formulae with optimal learning rates, a new learning
algorithm is generated. To verify the effectiveness of the proposed adaptive learning
model, two major stock indices (S&P500 and Nikkei225) are used as testing targets.
A detailed experiment is presented in the following.

3 Empirical Study

3.1 Data Description

In the experiments, two stock indices, S&P500 and Nikkei225, are daily and are ob-
tained from Datastream. The entire data set covers the period from January 1 2000 to
December 31 2004. The data sets are divided into two periods: the first period covers
from January 1 2000 to December 31 2003 while the second period is from January 1
2004 to December 31 2004. The first period, which is assigned to in-sample estima-
tion, is used to network learning and training. The second period is reserved for out-
of-sample evaluation. For brevity, the original data are not listed in the paper, and
detailed data can be obtained from the sources.

To examine the forecasting performance, the root mean squared error (RMSE) and
directional change statistics (Dstat) of stock index movement are employed in this
study. The directional change statistics (Dstat) can be expressed as

NaD
N

t tstat =
=

1
 (14)

where ta =1 if 0)ˆ)((11 ≥−− ++ tttt xxxx , and ta =0 otherwise.

3.2 Experiment Results

When the data are prepared, we begin to train BPNN model. In these experiments,
we prepare 5 years’ daily data. We use the first 4 years’ daily data to train and vali-
date the network, and use the last one years’ data to test the prediction performance.
For comparison, the standard three-layer BP neural network is used as benchmark
model. This study varies the number of nodes in the hidden layer and stopping crite-
ria for training. In this study, 5, 10, 20 hidden nodes for each stopping criteria be-
cause the BP network does not have a general rule for determining the optimal
number of hidden nodes. The study uses 500, 1000, 2000 and 4000 learning epochs
for the stopping criteria of BPNN. For standard BPNN model, the learning rate is
set to 0.25. The hidden nodes use the sigmoid transfer function and the output node
uses the linear transfer function. The study allows 5 input nodes in terms of the
results of auto-regression testing. The comparison of experiment results are reported
in Table 1.

 A Novel Adaptive Learning Algorithm for Stock Market Prediction 451

Table 1. The prediction performance comparison of various BPNN models

RMSE Dstat(%) Stock
indices

Train-
ing

epochs

Number
of hidden

nodes
Standard
BPNN

Adaptive
BPNN

Standard
BPNN

Adaptive
BPNN

500 5 35.3315 24.5342 50.36 61.02
 10 31.3562 20.3236 52.34 63.38
 20 30.2489 18.2457 51.58 64.47

1000 5 27.5533 22.3589 52.63 62.38
 10 20.3658 15.3547 55.68 66.71
 20 21.8145 14.9631 56.74 68.36

2000 5 14.5741 8.7423 54.35 70.25
 10 7.4984 1.5843 57.88 75.24
 20 9.3657 3.5138 57.37 72.35

4000 5 11.2547 9.8566 52.24 68.78
 10 8.7534 5.4237 55.68 69.14

S&P
500

 20 8.1254 5.5243 58.75 70.25
500 5 100.3541 70.1124 49.63 59.44

 10 89.6472 54.3589 51.58 63.38
 20 70.5428 41.2547 52.63 62.38

1000 5 81.5477 50.3584 50.36 58.76
 10 51.8545 39.6874 52.05 61.02
 20 37.5426 21.2387 52.63 64.47

2000 5 40.3376 14.3541 53.54 66.71
 10 22.5474 8.4579 55.68 70.25
 20 16.3785 5.4763 55.41 72.39

4000 5 35.4754 20.2378 52.24 65.65
 10 36.3687 13.3782 54.35 72.35

Nikkei
225

 20 21.3523 7.8524 52.63 68.36

As can be seen from Table 1, for different stock indices, the neural network archi-
tecture is different. For S&P 500, the best prediction performance for the testing data
is produced when the number of hidden neurons is 10 and the training epochs are
2000 for both standard BPNN and adaptive BPNN. For the best standard BPNN, the
RMSE of the testing data is 7.4984 and Dstat of the testing data is 57.88, while for the
best adaptive BPNN, the RMSE is 1.5843 and the Dstat is 75.24. For Nikkei 225, the
best prediction performance for the testing data is generally produced when the num-
ber of hidden nodes is 20 and the training epochs are 2000. Interestingly, we find that
the number of hidden nodes for the case of Nikkei 225 is larger than that of S&P 500.
The main reason may be that Nikkei 225 has high volatility relative to the S&P 500.

Focusing on the RMSE indicator, we can find (1) the performance of the proposed
adaptive BPNN model is much better than that of the standard BPNN model in both
S&P 500 and Nikkei 225. (2) Generally speaking, the prediction performance im-
proves with the increase of training epochs and hidden nodes. (3) Usually, the few
training epochs and hidden nodes can not lead to a good forecasting result.

Focusing on Dstat of Table 1, we find the proposed adaptive BPNN model performs
much better than the standard BPNN models in all testing cases. These results indi-

452 L. Yu, S. Wang, and K.K. Lai

cate the feasibility of the adaptive BPNN model in stock index forecasting. Further-
more, from the business practitioners’ point of view, Dstat is more important than
RMSE because the former is an important decision criterion. With reference to Table
1, the differences between the different models are very significant. For example, for
the S&P 500 test case, the Dstat for the best standard BPNN model is only 57.88%;
while for the proposed adaptive BPNN forecasting model, Dstat reaches 75.24%,
which is much higher than the standard BPNN model, implying that the adaptive
BPNN is an efficient algorithm for stock market prediction.

4 Conclusions

In this study, an adaptive BP learning algorithms with optimal learning rate is first
proposed. And then this exploratory research examines the potential of using an adap-
tive BPNN model to predict two main international stock indices, S&P 500 and Nik-
kei 225. Our empirical results suggest that the adaptive BPNN model may provide
better forecasts than the standard BPNN model. The comparative evaluation is based
on a variety of statistics such as RMSE and Dstat. For two stock indices included in our
empirical investigation, the adaptive BPNN model outperforms the standard BPNN
model in terms of RMSE and Dstat. Furthermore, our experimental analyses reveal that
the RMSE and Dstat for two stock indices using the proposed adaptive BPNN model
are significantly better than those obtained using the standard BPNN model. This
implies that the proposed adaptive BPNN model can be used as a feasible solution for
stock market prediction.

References

1. Widrow, B., Lehr, M.A.: 30 Years of Adaptive Neural Networks: Perception, Madaline, and
Backprpagation. Proceedings of the IEEE Neural Networks I: Theory & Modeling (Special
issue) 78 (1990) 1415-1442

2. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing. MIT Press, Cambridge,
MA 1986

3. Tollenaere, T.: SuperSAB: Fast Adaptive Back Propagation with Good Scaling Properties.
Neural Networks 3 (1990) 561-573

4. Park, D.C., El-Sharkawi, M.A., Marks II, R.J.: An Adaptive Training Neural Network.
IEEE Transactions on Neural Networks 2 (1991) 334-345

5. Jacobs, R.A.: Increase Rates of Convergence through Learning Rate Adaptation. Neural
Networks 1 (1988) 295-307

6. Brent, R.P.: Fast Training Algorithms for Multilayer Neural Nets. IEEE Transactions on
Neural Networks 2 (1991) 346-35

7. Hagan, M.T., Menhaj, M.: Training Feedforward Networks with Marquardt Algorithm.
IEEE Transactions on Neural Networks 5 (1994) 989-993

Uniformization of Discrete Data

Lei Yang�

Tsinghua University, Beijing 100084, China
yanglei96@mails.tsinghua.edu.cn

Abstract. Some kind of discrete data sets can be practically trans-
formed into uniform by the related distribution function. By addressing
the sparsity of data which measures the discreteness, this paper demon-
strates that the sparsity decides the uniformity of the transformed data,
and that could be a good reason to explain both the success of the
bucket sort in PennySort 2003 and the failure for the same algorithm
with the data modified. So the sparsity provides a good criterion to pre-
dict whether the algorithm works or not.

1 Introduction

Uniform data is favored in general. In theory any data pattern may be recreated
out of uniform, and algorithms such as bucket sort and Hash Tables[1] have
been affectively used with uniform data. As the standard method, any continu-
ous data may be transformed into uniform by the distribution function (named
as d-transformation in this paper). In PennySort 2003 [2,?] a revised bucket
sort algorithm achieved high performance[4]. The original PennySort data were
found to be not uniform and the direct application of bucket sort was prohibited.
But by a roughly-estimated distribution function the PennySort data were suc-
cessfully transformed into uniform, enabling the bucket sort algorithm to work.
The powerful ability of the d-transformation was well shown by the success of
the bucket sort algorithm in PennySort.

But the algorithm failed in our further experiments where the data were
modified into discrete by cutting some of the key bits away. It seems that the
d-transformation handles only continuous data, but strictly the unmodified Pen-
nySort data were also discrete. Then what made the difference? In fact the
continuous cases exist only in theory and all practical data are discrete, how can
they be treated as continuous and then transformed into uniform?

The hint is that the failure lied not on the discreteness but on the degree of
the discreteness. By examining the distribution D(x) = Pr(X ≤ x), 1 this paper
presents the concept of sparsity to measure the discreteness of a data set X. The

� Supported by the Chinese National Key Foundation Research & Development Plan
(2004CB318108), Natural Science Foundation (60223004, 60321002, 60303005) and
the Key Project of Chinese Ministry of Education (No.104236).

1 We take Pr(X ≤ x) as the proportion of data no greater than x. Treat each record
as a random variable X then it equals to the probability Pr(X ≤ x). See appendix.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 453–462, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

454 L. Yang

d-transformation transforms X into dX = D(X) and the derived distribution
Pr(dX ≤ x) is calculated where dX = D(X). 2 The mathematics states that the
sparsity ε decides the uniformity of the transformed data set, and experiments
show that the algorithm in [4] failed only with small sparsity. The failure could
not be avoided by more precisely estimated distribution because the sparsity is an
internal property. Though fortunately the sparsity of the unmodified PennySort
data is so small that such risk could be ignored, we must still be aware that the
d-transformation works only with small sparsity.

The paper is organized as below. Section 2 clarifies the concept of continuous
and uniform, and then presents sparsity to measure discreteness. In Sect.3 the
distribution of the transformed data set Pr(dX ≤ z) is calculated to show that
the uniformity of dX is decided by the sparsity of X. Section 4 presents the
experiments to demonstrate how bucket sort algorithm fails with large sparsity.
In Sect.5 a brief summarization is presented together with some discussions.

2 Preparations

As in PennySort we are just interested in real data set X ⊂ IR with records
independent to each other but following identical distributions. The distribution
D(x) = Pr(X ≤ x) ∈ [0, 1] is defined as the proportion of data no greater than
x ∈ X, and the concepts of continuous is defined as below[5]:

Definition 1 (Continuous). A set X is continuous if there exists the density
function p(x) ≥ 0 defined on X that D(x) =

∫ x

−∞ p(t)dt.

A data set is discrete when not continuous. Obviously dX ⊂ [0, 1] where
dX = D(X) = {D(x)|x ∈ X} is the transformed set and also the range of
D(x). With continuity we get:

Lemma 1. dX = [0, 1] if X is continuous.

The unit interval [0, 1] is of special interest in this paper, implying a simplified
definition of uniform:

Definition 2 (Uniform). The continuous Z with distribution function D(z)
is called uniform on [0, 1] when D(z) = z, ∀z ∈ [0, 1].

By Lemma 1, X is discrete when dX �= [0, 1]. Since no irrational number
can be the ratio of two finite integers, all finite sets are in theory discrete. But
in PennySort the discreteness is weak enough to be ignored. To measure how
discrete the data set is we introduce the concept of ε-dense:

Definition 3 (ε-Dense). Given ε ≥ 0. A set Z ⊂ [0, 1] is called ε-dense in
[0, 1] if Z ∩ (w − ε− δ, w + δ) �= Ø for all w ∈ (ε, 1) and any δ > 0.
2 In this paper we abbreviate the distribution D(·) into the d-operator, for example,

dx = D(x). Here dX = D(X) is the transformed set. In appendix we also have
dX = D(X) where X is a random variable and dX is the transformed variable by
the distribution function D(·).

Uniformization of Discrete Data 455

Note that if Z is ε0-dense in [0, 1], it is ε-dense for all ε > ε0. So the definition
below is valid:

Definition 4 (Sparsity). The smallest ε ≥ 0 for dX to be ε-dense in [0, 1] is
called the sparsity of X.

Sparsity instead of density is named since it decreases as the set gets denser.
This concept measures how dense dX is or how discrete X is. The sparsity is 0
for all continuous X, while with a positive sparsity X must be discrete.

For example when X = {1, 2, · · · , N} we have D(x) =
x�
N , x ∈ [0, N]. As

the range of D(x) the transformed set is dX = {D(x)|x ∈ X} = {0, 1
N ,

2
N , · · · ,

N−1
N , 1}. The sparsity is calculated to be 1

N which diminishes to zero as N goes
to infinity.

3 Transformation by Distribution

Now we are to transform data set X using the distribution function D(x) as we
did in PennySort to see whether the transformed set is uniform or how uniform
it is. For simplicity we abbreviate the transformation into a new term:

Definition 5 (d-Transformation). For data set X with distribution D(x), the
transformation from each record x to dx = D(x) is called the d-transformation
on X which transforms X into dX = D(X).

To apply the bucket sort algorithm in PennySort, a uniform dX is expected
by the d-transformation. Specially when X is already uniform on [0, 1], Definition
2 tells us that the distribution is identical on [0, 1] and dX = X, both are
uniform. The Lemma 2 below shows that dX is still uniform when dX = [0, 1]:

Lemma 2. Given data set X ⊂ IR. For all x ∈ X we have

DdX(dx) = dx (1)

where dx=D(x) and the function DdX(z) is the distribution of the d-transformed
set dX ⊂ [0, 1], namely, the proportion of data in dX no greater than z.

Lemma 2 is just another form of (2.3C) on pp.8 in [7]. It shows that dX is
uniform once for any z ∈ [0, 1] exists x ∈ X that dx = z, that is, dX = [0, 1].
By Lemma 1 we get:

Theorem 1. The d-transformation transforms X into uniform if dX = [0, 1].
Especially the d-transformation transforms continuous data into uniform.

Practically the original PennySort data were regarded as satisfying dX =
[0, 1] that they were transformed into uniform and the bucket sort algorithm
worked well. But as a finite subset of [0, 1] the data are in fact discrete. In
our further experiments such approximation resulted in failure where less key
bits were kept. How such approximation affects the transformation? Theorem 2
calculates the exact distribution of dX without assuming it to cover [0, 1] 3:
3 Readers unfamiliar with the notion sup may simply take it as max. See the appendix.

456 L. Yang

Theorem 2. Given data set X ⊂ IR. For all x ∈ X we have

DdX(dx) = sup {dx|x ∈ X : dx ≤ z} . (2)

Theorem 2 states that the distribution of dX on z ∈ [0, 1] is the greatest
number no greater than z in dX . It may be strictly smaller than z when z /∈
dX and hense declares a nonuniform dX. For the original PennySort data the
probability for any single key to occur is about ε(10) = (1/95)10 ≈ 10−20, and
such x ∈ X that dx ≤ z can always be found above z − ε(10). So Pr(dX ≤
z) = sup {dx|x ∈ X : dx ≤ z} is rather close to z which implies almost uniform
dX by Def.2. While with less key-bits the key probability gets much greater, for
example, ε(1) = 1/95 ≈ 10−2 when with only one byte and Pr(dX ≤ z) may
be about 10−2 smaller than z. Theorem 3 below shows that about 1% records
might crowd in one bucket which should contain only 1

b records in average where
b = 300 in [4]. Once a bucket exceeded the memory capacity, the algorithm failed.
Intuitively more key bits generate data of smaller sparsity, and formally we have:

Theorem 3. Given data set X ⊂ IR with sparsity ε, ∀z ∈ [0, 1] we have

z − ε ≤ Pr(dX ≤ z) ≤ z (3)

Then the uniformity of the transformed data is decided by the sparsity which
measures how discrete X is. A parallel result is Pr(dX ∈ [s, s+ δ]) ≤ δ + ε. In
the algorithm in [4] each bucket was defined by two boundaries xL and xU . The
bucket probabilities would be Pr(xL < X ≤ xU) = 1

b where b = 300 in [4] had
the transformed data been uniform. While considering the discreteness these
probabilities became 1

b + ε. For the original PennySort data, the sparsity was as
low as 10−20 and the additional ε might be completely ignored. But when leaving
only one byte as the key, the sparsity increased to about 1

95 which influenced
the probability greatly. Chances were good for much more records than average
to crowd in just several buckets, and the algorithm failed once any bucket could
no longer be held in memory.

4 Transforming PennySort Data

PennySort is one of the sort benchmarks proposed by Jim Gray, the 1998 Tur-
ing Award winner, to follow the world computer developement [2,?]. In 2003 a
revised external bucket sort algorithm won in the PennySort Indy group[4]. Tra-
ditionally the bucket sort distributes data into some predefined buckets that the
records in one bucket are smaller than those in the next. Then sort the records in
each bucket and join them in order, we get the sorted file. Bucket sort is rather
efficient except for that the memory must be large enough to hold the greatest
bucket and to sort all its records internally. The exact number of records in a
bucket won’t be known until all records have been distributed. Once any bucket
exceeds the memory capacity, the algorithm fails.

So bucket sort works best with uniform data. PennySort records keys are
made up of 10 random bytes ranging from 32 to 126. It is found that for 7

Uniformization of Discrete Data 457

Fig. 1. Bucket sizes in [4] (433M records, 70K samples, 300 buckets)

out the 10 bytes (byte 2, 3, 4, 6, 7, 8, 10) the values appear evenly with constant
frequency 1/95 = 1.05%. For the other three bytes (byte 1, 5, 9) peaks are found:
2% records take their values on 32, 1.3% on 33, and only 1.03% elsewhere. The
peaks prohibit the direct application of bucket sort.

To overcome this, [4] tried to transform the PennySort data into uniform
by the distribution function (the d-transformation) and to generate buckets of
approximate sizes. By sampling a rather small fragment of the data to estimate
the distribution, that was successfully done. Figure 1 shows that the maximal
bucket was only 18% greater than average.

But the results changed with some modifications on data. In our further
experiments we devised more data by cutting some PennySort key bits away
(unused bits were manually set into zero). Like in [4] we still took 70K records
as the sample set to calculate the boundaries of the 300 buckets (estimating the
distribution function) and then distributed the whole data set (433M records
where 1K = 1024 and 1M = 1024K) into each bucket. The average bucket size
kept constant: 433M/300 =1.44M. Figure 2 shows that the maximum/minimum
bucket sizes remained almost unchanged with keys of more than 14 bits but
grew/dropped rapidly of less bits. For example, when with the 12-bit keys more
than 2M records crowded in the largest bucket, breaking down the sorting system
designed in [4] because it is too large.

The sparsity explains the failure. For finite set like in PennySort, the sparsity
is calculated to be the highest probability of a single key to occur. With the
full 10-byte keys, the sparsity of the original PennySort data is ε = (2.00%)3 ×
(1.03%)7 ≈ 10−19 (slightly greater than (1

95)10 ≈ 10−20 when taking the bytes
as uniform in the last section). Far less than the bucket probability 1

300 , this
sparsity was overwhelmed and the transformed data might be securely treated as
uniform. But with the 12-bit keys, the sparsity exceeded the bucket probability:
2.00%×24×1.05% = 3.37×10−3. The term 1

b +ε doubled the bucket probability
for such a large ε and chances for data to fall into some buckets became much
larger. Figure 3 calculates the sparsities, showing that the maximum bucket sizes
relate closely to the sparsity compared with the bucket probability 1

b .
Figure 3 tells that bucket sort works only with PennySort keys of 14 bits or

more. To exclude the influence of the the roughly estimated distribution, exper-

458 L. Yang

�

bucket size (106 records)

�key width(bit)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

80 32 24 16 15 14 13 12 11 10 9 8

1.26

1.79

1.26

1.79

1.29

1.83

1.19

1.79

0.79

1.99

2.38

3.17
6.25

9.43
9.43

Fig. 2. Min/max bucket size v.s. key width (433M records, 70K samples, 300 buckets)

�

sparsity

�key width(bit)

���
1

300

��� 1
1000

10−20

10−15

10−10

10−5

10−0

80 32 24 16 15 14 13 12 11 10 9 8

Fig. 3. Sparsities of the PennySort data v.s. key width

iments were repeated with a larger sample of 1M records, see Fig.4. With more
precisely calculated distribution the maximal bucket size got smaller for keys
of more than 12 bits. But for the 12-bit keys, the largest bucket still contained
2.38×106 records, no less than in Fig.2. Actually the distribution helps only the
bucket probability 1

b . Given large ε, the upper bound 1
b + ε kept large even with

precisely calculated distribution. The algorithm could not be saved.
In our last experiment we take 1000 buckets (still 1M samples to calcuate

distribution), see Fig.5. With 15 or more key bits where sparsities were less than
1

1000 the buckets generated were of approximate sizes around average: 433M/1000
= 4.54 × 105. While with less key bits that the sparsities were large relative to

1
1000 , the largest buckets were much more crowded than average(for example,
75% more records than average were contained in the largest bucket for 14-bit
keys). Actually the bucket probability 1

b acted as a threshold because bucket
that doubled the average size could seldom be hold in memory in practice.

Uniformization of Discrete Data 459

�

bucket size (106 records)

�key width(bit)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

80 32 24 16 15 14 13 12 11 10 9 8

1.44

1.60

1.44

1.60

1.39

1.64

1.19

1.59

0.79

1.59

2.38

3.17
6.25

9.43
9.43

Fig. 4. Min/max bucket size v.s. key width (433M records, 1M samples, 300 buckets)

�

bucket size (105 records)

�key width(bit)
0.0

2.0

4.0

6.0

8.0

80 32 24 16 15 14 13 12 11 10 9 8

4.02

5.02

4.02

5.02

3.47

5.96

3.46

7.947.96

15.9
31.7

62.5
94.2

94.2

Fig. 5. Min/max bucket size v.s. key width (433M records, 1M samples, 1000 buckets)

5 Conclusions and Discussions

By the distribution function, some discrete data may be transformed into prac-
tically uniform so that algorithms like bucket sort can be applied. While for
some other data the d-transformation does not work and bucket sort fails. By
analyzing the behavior of the transformed data in theory, this paper shows that
the uniformity is decided by the sparsity which measures how discrete the data
are before transformation. Discrete data can be transformed into uniform if the
sparsity is small enough. Otherwise, the d-transformation does not work.

In spite of the success in 2003 PennySort Indy, the algorithm in [4] failed
when some key bits were cut away. The failure was imputed to the discreteness
because less key bits produced more discrete data. The discreteness disabled the

460 L. Yang

d-transformation which ensured bucket sort to generate buckets of approximate
sizes. It is also found in experiments that large buckets always came with large
sparsity where the d-transformation did not work. As an internal property of the
data, the sparsity could not be changed by a more precisely estimated distribu-
tion function and the failure of the bucket sort algorithm could not be avoided
by a larger sample set. Fortunately the sparsity of the original PennySort data
was so small that it gives little chance for the algorithm to fail.

The main purpose of this paper is to clarify the ability of the d-transformation
to see how uniform a discrete data set can be transformed into. This explains
the failure of the bucket sort algorithm on discrete data as an application. The
sparsity introduced in this paper is proved to be a good criterion to predict
whether the algorithm works. But how to resolve the failure is not yet presented.
Had the PennySort data been more discrete, the multi-line merging algorithm
might win because it does not rely on buckets and such failure never occurs[8].
For data of large sparsity, can they be transformed into more uniform than d-
transformation? Further work is needed so that bucket sort might be applied to
more discrete PennySort data and would win again.

References

1. Knuth, D. E.: The Art of Computer Programming, vol3: Sorting and Searching.
Addison-Wesley Inc., Reading, Mass.(1973) 506-549

2. Sort Benchmark homepage. http://research.microsoft.com/barc/SortBenchmark/.
3. Gray, J., Coates, J., Nyberg C.: Performance/price sort and PennySort. Technical

Report, MS-TR-98-45, Microsoft Research (1998)
4. Yang, L., Huang H., Song T.: The sample-seperator based distributing scheme of

the external bucket sort algorithm. Journal of Software, 16(5)(2005) 643-651
5. Giri, N. C.: Introduction to Probability and Statistics(2ed), ch3:random variables,

probability distributions and characteristic functions. Marcel Dekker Inc., New
York(1993) 55-135

6. Wade, W. R.: An Introduction to Analysis(2ed), ch1:the real number system.
Prentice-Hall International Inc., Upper Saddle River, NJ(2000) 1-33

7. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions(3ed), ch2:terms and
symbols. John Wiley & Sons, Inc., New York(2000) 3-17

8. Shi, Y., Zhang, L., Liu, P.: THSORT: A single-processor parallel sorting algorithm.
Journal of software, 14(2)(2003) 159-165

A The Mathematic Deductions

Given data set X ∈ IR, we may take each record as a random variable before
observation. Under the assumption of independence and identical distributions,
the probability distribution of each data record DX(x) = Pr(X ≤ x) ∈ [0, 1] is
approached by the statistical distribution D(x) ∈ [0, 1]. So all results on random
variables below may be applied directly to data sets. Like the previous notions
dX and DdX(z) (X in bold face) we also have dX = D(X), the transformed

Uniformization of Discrete Data 461

variable by the distribution function and DdX(z) = Pr(dX ≤ z), the probability
distribution function of dX .

In Sect.2 we mention the supreme of set S defined as its lowest upper bound
denoted as sup S. As a fundamental property of the real numbers, any bounded
set has its unique supreme in IR unless it is empty[6].

Lemma 3. For any subset S ⊂ IR, we can always find an ascendent sequence
x1 ≤ x2 ≤ · · · (xn ∈ S, n = 1, 2, · · ·) such that S =

⋃
n=1,2,···

{x ∈ S|x ≤ xn}.

Proof. If S is not bounded in IR then ∀n ∈ IN we may find some xn ∈ S that
xn ≥ n. Given any x ∈ S exists n ∈ IN that x ≤ n ≤ xn.

When S is bounded we can always find a finite supS = sup {x|x ∈ S} ∈ IR.
If supS ∈ S we simply take xn = sup S, n = 1, 2, · · · and {x ∈ S|x ≤ xn} =
{x ∈ S|x ≤ sup S} = S.

Otherwise when sup S /∈ S we have ∀n > 0, ∃xn ∈ S that xn ≥ sup S − 1
n .

For any y ∈ S we may find some n ∈ IN that 1
n ≤ sup S − y because sup S /∈ S,

implying y ≤ sup S − 1
n ≤ xn.

An ascendent sequence may be created by taking the maximums. ��

Lemma 4 (2’). Given variable X ∈ IR, for all x ∈ X we have

Pr(dX ≤ dx) = Pr(X ≤ x) = dx where dx = DX(x) .

Proof. Note that y ≤ x ⇒ dy ≤ dx we get {y ∈ X|dy ≤ dx} = {y ∈ X|y ≤ x}
∪{y ∈ X|(y > x) ∧ (dy = dx)}. Let S = {y ∈ X|(y > x) ∧ (dy = dx)} and we
are to prove Pr(X ∈ S) = 0.

By Lemma 3 we may find an ascendent sequence x1 ≤ x2 ≤ · · · (xn ∈ S, n =
1, 2, · · ·) such that S =

⋃
n=1,2,···

{y ∈ S|x < y ≤ xn}. Then

Pr(X ∈ S) = Pr

(⋃
n=1,2,···

{y ∈ S|x < y ≤ xn}
)

(4)

≤ Pr

(⋃
n=1,2,···

{y ∈ IR|x < y ≤ xn}
)

(5)

= lim
n→∞

Pr(x < X ≤ xn) (6)

= lim
n→∞

(dxn − dx) (7)

= 0 since xn ∈ S . (8)

��

Theorem 4 (2’). Given variable X ∈ IR, for all z ∈ [0, 1] we have:

DdX(z) = Pr(dX ≤ z) = sup {dx|x ∈ X : dx ≤ z} .

462 L. Yang

Proof. By Lemma 2 we have ∀x ∈ X:

dx ≤ z ⇒ dx = Pr(dX ≤ dx) ≤ Pr(dX ≤ z) (9)
⇒ sup {dx|x ∈ X : dx ≤ z} ≤ Pr(dX ≤ z) . (10)

On the other hand let S = {x ∈ X|dx ≤ z} we may find an ascendent
sequence x1 ≤ x2 ≤ · · · where xn ∈ S and S =

⋃
n=1,2,···

{x ∈ S|x ≤ xn}. The

countable additivity of probability ensures that

Pr(dX ≤ z) = Pr(X ∈ S) (11)

= Pr

(⋃
n=1,2,···

{x ∈ S|x ≤ xn}
)

(12)

≤ Pr

(⋃
n=1,2,···

{x ∈ IR|x ≤ xn}
)

(13)

= sup {dxn|n = 1, 2, · · ·} (14)
≤ sup {dx|x ∈ X : dx ≤ z} . (15)

��

Theorem 5 (3’). Given X ∈ IR with sparsity ε. For all z ∈ [ε, 1] we have:

z − ε ≤ Pr(dX ≤ z) ≤ z .

Proof. The sparsity implies that X is ε-dense in [0, 1].
By Theorem 2 we have DdX(z) = sup {dx|x ∈ X : dx ≤ z} ≤ z.
On the other hand ∀δ > 0, ∃x ∈ X that dx ≥ z− ε− δ because dX is ε-dense

in [0, 1], ensuring sup {dx|x ∈ X : dx ≤ z} ≥ z − ε. ��

A Practical Algorithm for the Computation
of Market Equilibrium with Logarithmic

Utility Functions
(Extended Abstract)

Li-Sha Huang1,�

State Key Laboratory of Intelligent Technology and Systems,
Dept. of Computer Science and Technology,

Tsinghua Univ., Beijing, 10084, China

Abstract. We develop an algorithm for computing the equilibrium price
in the Fisher’s exchange market model with logarithmic utility functions.
The algorithm is proved to converge to the equilibrium price in finite
time and performs better than existing polynomial-time algorithms in
experimental tests.

1 Introduction

The paper studies the computation of equilibria in exchange markets. The prob-
lem has been an active research area in the economists’ society since Arrow and
Debreu published their classical paper [1] on the existence of market equilibria
in 1954. Recently, the problem is attracting the computer scientists’ attention
after Deng, Papadimitriou and Safra’s study [2] from the algorithmic complexity
point of view.

Within three years, various approaches are developed to solve the problem for
different settings. The most successful approaches include [3,4,5,6,7]. Codenotti,
Pemmaraju and Varadarajan have a comprehensive survey [8] for this topic.

The paper studies the algorithm of computing the equilibrium in the Fisher’s
model with logarithmic utility functions. The logarithmic utility function, which
was first studied by Chen et al [9], has the form

ui(xi) =
∑

j

αij log(βij + xij).

The logarithmic utility function has an interesting property that the equilibrium
point of the market is rational, whenever the input data are rational. Up till now,
only linear function and logarithmic function are known to possess the property.
Assume the number of agents is n and the number of commodities is m. Chen et
al [9] propose a polynomial-time algorithm for the Fisher’s model, when either
� Supported by Natural Science Foundation of China (No.60135010,60321002) and the

Chinese National Key Foundation Research and Development Plan (2004CB318108).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 463–472, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

464 L.-S. Huang

m or n is bounded. In fact, the general model can be solved in polynomial time
by convex programming [3,4,10] or ellipsoid methods [7]. Deng et al [10] analyze
the time complexity and conclude that the interior-point algorithm can reach
the exact equilibrium point in O((n +m)n1.5m3.5L) time.

In the paper, we propose a primal-dual type algorithm for computing the equi-
librium price in the Fisher’s model with logarithmic utility functions. We prove
that the algorithm will converge in finite steps. Although its time complexity is
unknown, the algorithm is easy to implement and performs well in experiments.
The algorithm can also be applied as a black box to solve the general model.

2 Preliminaries

2.1 Model and Definitions

Let |m| denote the set {1, 2, ...,m}. Let Rn
+ denote the set of nonnegative vectors

in n-dimensional Euclidean spaces and Rn
++ denote the set of positive vectors

in Rn
+.

Assume there are n agents and m kinds of commodities in the market and
each agent is both a seller and a buyer. The agents are endowed with bundles
of commodities initially, denoted by n nonnegative vectors

{
ei ∈ Rm

+ | i ∈ |n|
}
.

Without loss of generality, assume that the total amount of each commodity is

normalized to 1, i.e.,
n∑

i=1
eij = 1, (∀j ∈ |m|).

Each agent has a utility function to express his utility for bundles of commodi-
ties. In the paper, we assume that the utility functions are logarithmic functions.
The utility function of agent i is

ui(xi) = ui(xi1, xi2, ..., xim) =
m∑

j=1

αij ln(βij + xij)

where xi ∈ Rm
+ is the bundle of commodities distributed to agent i and αij and

βij are non-negative constants. W.l.o.g, we assume that for any agent i, there
exists a commodity j such that αij > 0 and for any commodity j, there exists
an agent i such that αij > 0. This assumption guarantees that the price p is
strictly positive, i.e., p ∈ Rm

++.
Given a certain price p, the agents exchange their commodities. Each agent

tries to maximize his utility under the budget constraint. An equilibrium of the
market is defined as follows.

Definition 1. An equilibrium in an exchange economy is a price p̄ ∈ Rm
+ and

distributions of commodities
{
x̄i ∈ Rm

+ , i ∈ |n|
}
, such that

x̄i ∈ argmax {ui(xi)|xi ≥ 0, 〈xi, p̄〉 ≤ 〈ei, p̄〉} , ∀i ∈ |n|
n∑

i=1
x̄ij ≤ 1, ∀j ∈ |m|

A Practical Algorithm for the Computation of Market Equilibrium 465

A special case of the above exchange market is the Fisher’s model. In the
model, the initial endowments of agents are money and the commodities are
held by the market. Each agent buys goods from the market to maximize his
utility under the budget constraint. Assume agent i’s money is wi ∈ R+, then
the equilibrium in the Fisher’s model is defined as follows.

Definition 2. An equilibrium in the Fisher’s model is a price vector p̄ ∈ Rm
+

and bundles of commodities
{
x̄i ∈ Rm

+ , i ∈ |n|
}
, such that

x̄i ∈ argmax {ui(xi)|xi ≥ 0, 〈xi, p̄〉 ≤ wi} , ∀i ∈ |n|
n∑

i=1
x̄ij ≤ 1, ∀j ∈ |m|

m∑
j=1

pj = 〈p,
∑n

i=1 x̄i〉

Usually, computing the equilibrium in the Fisher’s model is much easier than
the general model.

2.2 Equilibrium Conditions

In the subsection, we propose sufficient and necessary equilibrium conditions for
the Fisher’s model with logarithmic utility functions. First, we write the utility
function ui(xi) in a more convenient form by substituting xij with yij/pj , where
yij is the amount of money agent i spends on commodity j and pj is the price
of the commodity j.

Given a price p = (p1, ..., pm)T ∈ Rm
+ , consider the following optimization

problem for agent i:

max
m∑

j=1
αij ln(βij + yij/pj)

s.t.
m∑

j=1
yij ≤ wi

yij ≥ 0, ∀j

(2.1)

Since the utility function is strictly concave, the solution of Problem (2.1) is
unique. By the KKT theorem, we have the following lemma:

Lemma 1. yi ∈ Rm
+ is the optimum of Problem (2.1) if and only if there exists

an index set Γi ⊆ |m| and λi ∈ R++ such that

λi = (wi +
∑

l∈Γi

βilpl)/(
∑

l∈Γi

αil)

yij =
{
αijλi − βijpj for j ∈ Γi

0 for j /∈ Γi

For an instance of our problem, a configuration is a couple (Γ, p), where
Γ = {Γ1, Γ2, ..., Γn} are collection of n subsets of |m| and p ∈ Rm

+ is the price.

466 L.-S. Huang

For a configuration (Γ = {Γ1, ..., Γn} , p), we introduce the following functions:

λi(Γ, p) = (wi +
∑
l∈Γi

βilpl)/(
∑
l∈Γi

αil) (2.2)

yij(Γ, p) =
{
αijλi(Γ, p) − βijpj for j ∈ Γi

0 for j /∈ Γi
(2.3)

Fij(Γ, p) =
βij

αij
pj − λi(Γ, p) (2.4)

Dj(Γ, p) = pj −
n∑

i=1

yij(Γ, p) (2.5)

Intuitively, λi is the incremental value that the trader i would gain from
another dollar of wealth at current spend. The function Fij can be viewed as
the difference between λi and the incremental value of good j. Dj represents the
excess demands of good j. With these notations, Lemma 1 can be restated as
the follow lemma:

Lemma 2. Given a configuration (Γ, p), {yij(Γ, p)} maximize every agent’s util-
ity if and only if: {

Fij(Γ, p) ≤ 0 , ∀j ∈ Γi, ∀i ∈ |n|
Fij(Γ, p) ≥ 0 , ∀j /∈ Γi, ∀i ∈ |n|

In order to make the market clear, we further require that

Dj(Γ, p) = pj −
n∑

i=1

yij(Γ, p) = 0, ∀j ∈ |m|

Combining the preceding discussions, we have proved the sufficient and nec-
essary conditions for a configuration (Γ, p) to be a market equilibrium:

Theorem 1. A configuration (Γ, p) is an equilibrium in the Fisher’s model with
logarithmic utility functions if and only if

Fij(Γ, p) ≤ 0 , ∀j ∈ Γi, ∀i ∈ |n| (2.6)
Fij(Γ, p) ≥ 0 , ∀j /∈ Γi, ∀i ∈ |n| (2.7)
Dj(Γ, p) = 0 , ∀1 ≤ j ≤ m (2.8)

Remark 1. The advantage of the substitution of yij/pj to xij is that the functions
λi(Γ, p), yij(Γ, p), Fij(Γ, p) andDj(Γ, p) are all linear to p. The linearity can help
us to build a primal-dual type algorithm.

3 The Primal-Dual Algorithm

Given a configuration (Γ, p), we define two subsets of |m| = {1, ...,m}:

TIGHT (Γ, p) = {j ∈ |m|, s.t. Dj(Γ, p) = 0}
ACTIV E(Γ, p) = {j ∈ |m|, s.t. Dj(Γ, p) < 0}

A Practical Algorithm for the Computation of Market Equilibrium 467

Due to Theorem 1, finding an equilibrium is equivalent to finding a configu-
ration (Γ, p) such that:

TIGHT (Γ, p) = |m|;
ACTIV E(Γ, p) = ∅;
Fij(Γ, p) < 0, ∀j ∈ Γi, ∀i ∈ |n|;
Fij(Γ, p) ≥ 0, ∀j /∈ Γi, ∀i ∈ |n|.

Lemma 3. For any instance of the Fisher’s model with logarithmic utility func-
tions, there exists a configuration (Γ = {Γ1, ..., Γn} , p) such that

Γi = |m|, ∀i ∈ |n|;
TIGHT (Γ, p) = ∅;
ACTIV E(Γ, p) = |m|;
Fij(Γ, p) < 0, ∀i, j

Proof. Assume Γ = {Γi = |m|, i ∈ |n|}. For any i, we have

lim
p→0

λi(Γ, p) = wi/
∑
l∈Γi

αil > 0

And for any j,

lim
p→0

Dj(Γ, p) = −
n∑

i=1
lim
p→0

yij(Γ, p)

= −
n∑

i=1
αij lim

p→0
λi(Γ, p) < 0

Hence there exists a price p small enough to guarantee that Fi,j(Γ, p) < 0 for
all i, j and Dj(Γ, p) < 0 for all j. �

Lemma 3 guarantees that the algorithm can starts from a very low price p
such that all commodities are active and Γ = (|m|, |m|, ..., |m|). After that, the
algorithm increases the price linearly. The increase is parameterized by p(t) =
p0 + rt, where r ∈ Rm is the velocity of the price. We require that the velocity r
should preserve the TIGHT set. The requirement is satisfied by solving a linear
system that will be explained later.

Since all the functions λi(Γ, p), yij(Γ, p), Fij(Γ, p), and Dj(Γ, p) are linear
functions of p, their partial derivatives to p are quantities that only depend
on Γ :

∂λi

∂pk
=

{
βik/

∑
l∈Γi

αil for k ∈ Γi

0 for k /∈ Γi

(3.1)

∂yij

∂pk
=
{
αij

∂λi

∂pk
− δjkβij for j ∈ Γi

0 for j /∈ Γi
(3.2)

∂Fij

∂pk
=
βij

αij
δjk − ∂λi

∂pk
(3.3)

∂Dj

∂pk
= δjk −

n∑
i=1

∂yij

∂pk
(3.4)

468 L.-S. Huang

Here δjk = 1 if j = k, otherwise δjk = 0.
Let p(t) = p0 + rt, where r ∈ Rm is the velocity of the price. Let Dj(t) denote

Dj(Γ, p(t)). Note that dpk

dt = rk, then

dDj

dt
=

m∑
k=1

∂Dj

∂pk
rk (3.5)

In the algorithm, we require the velocity r to preserve the set TIGHT. There-
fore, the velocity r should satisfy the following linear equations:

dDj

dt
=

∑
k∈TIGHT

∂Dj

∂pk
rk +

∑
l∈ACTIV E

∂Dj

∂pl
rl = 0, ∀j ∈ TIGHT

Without loss of generality, assume that TIGHT = {1, ..., N} and ACTIV E =
{N + 1, ...,m}. We set rk = 1 for k ∈ ACTIV E.

Lemma 4. The linear equation

dDj

dt
=

N∑
k=1

∂Dj

∂pk
rk +

m∑
l=N+1

∂Dj

∂pl
= 0 (1 ≤ j ≤ N) (3.6)

always admits a solution. Moreover, the solution r satisfies that
m∑

j=1
rj > 0.

Proof. The matrix on the l.h.s of the equation is non-degenerated since it is diag-
onal dominated. Therefore, the linear system (3.6) always has a unique solution.

Note that dDj(Γ,p(t))
dt > 0 for any j ∈ ACTIV E and

m∑
j=1

yij(Γ, p) = wi. Then

m∑
j=1

pj(t) =
m∑

j=1
Dj(Γ, p(t)) +

n∑
i=1

m∑
j=1

yij(Γ, p(t))

=
∑

j∈ACTIV E

Dj(Γ, p(t)) +
n∑

i=1
wi ⇒

m∑
j=1

rj =
∑

j∈ACTIV E

dDj(Γ,p(t))
dt > 0

�

Lemma 4 shows that we can always find a velocity of the price which preserves
the set TIGHT and the total price is monotonous increasing.

Let Fij(t) = Fij(Γ, p(t)). Given the velocity of the price, we can calculate the
velocities of {Fij(t), ∀i, j}:

dFij

dt
=

m∑
k=1

∂Fij

∂pk
rk (3.7)

When the prices p(t) linearly increase with the parameter t, three events may
happen:

A Practical Algorithm for the Computation of Market Equilibrium 469

Event 1. A commodity j leaves Γi, i.e., Fij(0) < 0 and Fij(∆t1) = 0 for some
∆t1 > 0;
Event 2. A commodity j enters Γi, i.e., Fij(0) ≥ 0 and Fij(∆t2) = 0 for some
∆t2 > 0.
Event 3. A commodity j moves from ACTIV E to TIGHT , i.e., Dj(0) < 0 and
Dj(∆t3) = 0 for some ∆t3 > 0.

Notice that Fij(t) and Dj(t) are all linear functions with respect to t. Hence,
it is easy to determine which event happens first during the increase of the price.

When one of the three events happens, the algorithm updates the configura-
tion and recompute the velocity (solves the linear system (3.6)). The algorithm
repeats the process iteratively until all commodities are tight.

Let a+ denote max {a, 0}. According to the above discussion, we have the
pseudo-codes for the algorithm.

pj = ε for some ε > 0, ∀j; Γi ← |m| for all i;
ACTIV E ← |m|; TIGHT ← ∅.
While #ACTIV E > 0 do
Compute λi(Γ, p), yij(Γ, p), Fij(Γ, p) and Dj(Γ, p) according to (2.2)-(2.5).
Compute ∂Dj

∂pk
and ∂yij

∂pk
according to (3.2) and (3.4).

Set rj = 1 for j ∈ ACTIV E
compute rk for k ∈ TIGHT by solving the equations (3.6).
Compute Ḟij = dFij

dt and Ḋj = dDj

dt according to (3.5) and (3.7).
Let ∆t1 = min

{
(−Fij/Ḟij)+ | ∀i and ∀j ∈ Γi

}
∆t2 = min

{
(−Fij/Ḟij)+ | ∀i and ∀j /∈ Γi

}
∆t3 = min

j∈ACTIV E

{
(−Dj/Ḋj)+

}
and ∆t = min {∆t1, ∆t2, ∆t3}.

If ∆t = ∆ti, handle Event i.
End While

Algorithm 1: The Primal-Dual Algorithm

4 Convergence and Performance Test

4.1 Convergence of the Algorithm

The algorithm adjusts the price in the space Rm
+ . It starts from the point near the

origin and raises the price step by step until it reaches the plane
m∑

j=1
pj =

n∑
i=1

wi.

During the adjustment process, the algorithm may encounter three types of
events (see Sec. 3). Note that the algorithm keeps the invariants:

– Invariant 1 Dj < 0 for j ∈ ACTIV E and Dj = 0 for j ∈ TIGHT .
– Invariant 2 Fij < 0 for j ∈ Γi and Fij ≥ 0 for j /∈ Γi.

470 L.-S. Huang

Due to Invariant 1, the third event (a commodity becomes tight) happens
exactly m times. For the first and second events, we consider an arbitrary Γ =
{Γ1, ..., Γn}, a collection of n subsets of |m|, which naturally corresponds to a
polyhedron in the price space:

βij

αij
pj < (wi +

∑
l∈Γi

βilpl)/(
∑

l∈Γi

αil), ∀i ∈ |n|, ∀j ∈ Γi

βij

αij
pj ≥ (wi +

∑
l∈Γi

βilpl)/(
∑

l∈Γi

αil), ∀i ∈ |n|, ∀j /∈ Γi

Let P (Γi, j) denote the plane βij

αij
pj = (wi +

∑
l∈Γi

βilpl)/(
∑

l∈Γi

αil) in the price

space. The cone
{
p ∈ Rm

+ |
∑m

j=1 pj ≤
∑n

i=1 wi

}
can be divide into finite number

of polyhedrons, whose boundary are such planes.
When the first or second event happens, the price crosses a plane and moves

from one polyhedron to another. We can project the path drawn by the price
in the adjustment process to the line l ⊂ Rm

+ , where l is parameterized by the
equation l(t) = 1 · t. The projected path starts from a point near the origin and

ends at l(
n∑

i=1
wi/m). By Lemma 4, the total price increases monotonously, thus

the projected path never turns back. Hence, the algorithm will converge to an
equilibrium point in finite number of steps.

The algorithm and its convergence also builds a constructive proof of the
existence of equilibrium in the Fisher’s setting with logarithmic utilities.

4.2 Performance Test

Although the speed of convergence of this algorithm is unknown, it does well
in practice. The algorithm has been implemented on a PC and tested against
markets of various sizes. We randomly generate markets with n agents and
m commodities, for n = 50, m = 20, 40, 60, 80, 120, 160 and m = 50, n =
20, 40, 60, 80, 120, 160. For each pair of n and m, we generate 5 instances and
record the average running time. The running time is measured by the number
of steps, where a step is a single loop with an events happens in Algorithm 1.
Note that the time complexity of each step is O(m3), which is spent on solving
the linear equation (3.6).

The results are plotted in Fig 4.2 and Fig 4.2. We can see from the figure
that the number of steps is almost a perfect linear function with respect to the
number of agents or the number of commodities.

The algorithm can also be utilized as a black box to solve general models. In
order to do so, we adopt the welfare adjustment scheme. Given a certain price,
the scheme turns a general market model to a Fisher’s model and computes the
Fisher’s equilibrium price by calling a solver of the Fisher’s model. The procedure
naturally yields a map from the space of price to itself whose fixed points are the
equilibrium points in the general model. We may expect that the simple iteration
can converge to one of the fixed points. The details of the welfare adjustment
scheme can be found in [8]. We test the scheme on the markets with hundreds

A Practical Algorithm for the Computation of Market Equilibrium 471

20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. 1. The X-axis is the number of com-
modities. The Y-axis is the number of run-
ning steps. The number of agents is fixed
to 50.

20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. 2. The X-axis is the number of agents.
The Y-axis is the number of running steps.
The number of commodities is fixed to 50.

of agents and commodities and usually reach the equilibrium price within ten
oracle invocations.

5 Conclusion

In this paper, we propose a primal-dual type algorithm to solve the equilibrium
problem in the Fisher’s market model with logarithmic utility functions. The
logarithmic function is interesting because it is non-homogenous and always
admits rational equilibrium point, whenever the input data are rational. With a
tricky transformation of the utility function, the equilibrium conditions become
linear functions of the price, so that the algorithm can increase the price linearly
and predict all events during the increase. The algorithm is proved to converge
in finite steps and performs well in practice. From the experimental tests, we
may conjecture that the algorithm can reach the equilibrium point in O(m4n)
time, which is better than existing techniques (convex programming or ellipsoid
algorithms).

Acknowledgment

The author thanks an anonymous referee for pointing out a few errors and some
valuable comments.

References

1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy.
Econometrica 22 (1954) 265–290

2. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price equilibria.
Journal of Computer and System Sciences 67 (2003) 311–324

472 L.-S. Huang

3. Nenakhov, E., Primak, M.: About one algorithm for finding the solution of the
Arrow-Debreu model. Kibernetica (1983) 127–128

4. Jain, K.: A polynomial time algorithm for computing the Arrow-Debreu market
equilibrium for linear utilities. In: Proceeding of FOCS’04. (2004) 286–294

5. Ye, Y.: A path to the Arrow-Debreu competitive market equilibrium. to appear
in Math. Programming (2004)

6. Devanur, N.R., Vazirani, V.V.: The spending constraint model for market equilib-
rium: algorithmic, existence and uniqueness results. In: Proceedings of STOC’04.
(2004) 519–528

7. Codenotti, B., Pemmaraju, S., Varadarajan, K.: On the polynomial time compu-
tation of equilibria for certain exchange economies. In: Proceedings of SODA’05.
(2005) 72–81

8. Codenotti, B., Pemmaraju, S., Varadarajan, K.: Algorithms column, the compu-
tation of market equilibria. ACM SIGACT News 35 (2004)

9. Chen, N., Deng, X., Sun, X., Yao, A.C.: Fisher equilibrium price with a class of
concave utility functions. In: Proceedings of ESA’04. (2004) 169–179

10. Deng, X., Huang, L.S., Ye, Y.: Computation of the Arrow-Debreu equilibrium for
a class of non-homogenous utility functions. (Manuscript)

Boosting Spectral Partitioning by Sampling
and Iteration�

Joachim Giesen and Dieter Mitsche

Institute for Theoretical Computer Science, ETH Zürich, CH-8092 Zürich
{giesen, dmitsche}@inf.ethz.ch

Abstract. A partition of a set of n items is a grouping of the items
into k disjoint classes of equal size. Any partition can be modeled as a
graph: the items become the vertices of the graph and two vertices are
connected by an edge if and only if the associated items belong to the
same class. In a planted partition model a graph that models the planted
partition is obscured by random noise, i.e., edges within a class can
get removed and edges between classes can get inserted at random. We
study the task to reconstruct the planted partition from this graph whose
complexity can be controlled by the number k of classes if the noise level
is fixed. The best bounds on k where the classes can be reconstructed
correctly almost surely are achieved by spectral algorithms. We show that
a combination of random sampling and iterating the spectral approach
can boost its performance in the sense that the number of classes that
can be reconstructed correctly asymptotically almost surely can be as
large as k = c

√
n/ log log n for some constant c. This extends the range

of k for which such guarantees can be given for any efficient algorithm.

1 Introduction

The partition reconstruction problem that we study in this paper is related to
the k-partition problem. In the latter problem the task is to partition the vertices
of a given graph into k equally sized classes such that the number of edges be-
tween the classes is minimized. This problem is NP-hard already for k = 2, i.e.,
in the graph bisection case [5]. This worst case complexity need not necessarily
show up in specialized but from an application point of view (especially clus-
tering) meaningful graph families - especially families of random graphs, see for
example [2,1,3] and the references therein. The random graph families typically
assume a given partition of the vertices of the graph (planted partition modeled
as cliques), which is obscured by random noise (randomly removed or inserted
edges). The goal becomes to assess the ability of a partitioning algorithm to re-
construct the planted partition. This ability can be measured by the probability
that the algorithm can reconstruct the planted partition.

The best studied random graph family for the partition reconstruction prob-
lem is the following: an edge in the graph appears with probability p if its two
� Partly supported by the Swiss National Science Foundation under the grant “Non-

linear manifold learning”.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 473–482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

474 J. Giesen and D. Mitsche

incident vertices belong to the same planted class and with probability q < p
otherwise, independently from all other edges. The probabilities p and q control
the density / sparsity of the graph and can depend on the number n of vertices.
In general there is a trade-off between the sparsity of the graph and the number
k of classes that can be reconstructed, i.e., the sparser the graph the less classes
can be reconstructed correctly and vice versa the larger k the denser the graph
has to be in order to reconstruct the classes correctly. Here we assume that p
and q are fixed, i.e., we deal with dense graphs only. That leaves only k as a free
parameter. We believe that this should be enough to assess the power of most
partitioning algorithms.

In this model the most powerful efficient (polynomial in n) algorithms known
so far are the algorithm of Shamir and Tsur [10], which builds on ideas of Condon
and Karp [2], and the algorithm of McSherry [9]. Both algorithms can with high
probability reconstruct correctly up to k = O(

√
n/ logn) planted classes. The

algorithm of McSherry falls in the category of spectral clustering algorithms that
make use of the eigenvalues and eigenvectors of the adjacency matrix of the input
graph. In [6] we design an efficient spectral algorithm for which we cannot show
that it reconstructs the planted partition with high probability even for quite
small values for k, but we can prove that the relative number of misclassifications
for k = o(

√
n) goes to zero with high probability. In [7] we design an algorithm,

which with high probability can reconstruct up to k = c
√
n partitions, where c

is a small constant. However this algorithm needs super-polynomial time in n.
Here we design an efficient spectral algorithm and prove that it asymptotically

almost surely reconstructs a planted k-partition for k ≤ c
√
n/ log logn for some

constant c. At the core of this algorithm is a spectral algorithm with weaker
guarantees. This algorithm uses a small random sub-matrix of the adjacency
matrix of the input graph to correctly reconstruct a large fraction of the planted
classes. Iterating this algorithm allows us to reconstruct the remaining classes.
Doing this in the naive way would allow us to correctly reconstruct up to k =
O(

√
n/ logn) classes. In order to boost the power of the algorithm we prune from

the small random sub-matrix the algorithm is currently working with all entries
that correspond to classes that were already reconstructed in earlier iterations.
This means that the number of entries in this matrix that correspond to a not
yet reconstructed class is increasing relatively to the size of the matrix. This
makes the reconstruction problem easier and thus the relative fraction of not yet
reconstructed classes that the algorithm reconstructs increases in every iteration.

2 Planted Partitions

In this section we introduce the planted partition reconstruction problem, see [3]
for a motivation of this problem and the underlying model. We first define the
A(ϕ, p, q) distribution, see also McSherry [9].

A(ϕ, p, q) distribution. Given a surjective function ϕ : {1, . . . , n} → {1, . . . , k}
and probabilities p, q ∈ (0, 1) with p > q. The A(ϕ, p, q) distribution is a

Boosting Spectral Partitioning by Sampling and Iteration 475

distribution on the set of n × n symmetric, 0-1 matrices with zero trace. Let
Â = (âij) be a matrix drawn from this distribution. It is âij = 0 if i = j and for
i �= j,

P (âij = 1) = p if ϕ(i) = ϕ(j)
P (âij = 0) = 1 − p if ϕ(i) = ϕ(j)
P (âij = 1) = q if ϕ(i) �= ϕ(j)
P (âij = 0) = 1 − q if ϕ(i) �= ϕ(j),

independently. The matrix of expectations A = (aij) corresponding to the
A(ϕ, p, q) distribution is given as

aij = 0 if i = j
aij = p if ϕ(i) = ϕ(j) and i �= j
aij = q if ϕ(i) �= ϕ(j)

Lemma 1 (Füredi and Komlós [4], Vu [12], Krivelevich and Vu [8]).
Let Â be a matrix drawn from the A(ϕ, p, q) distribution and A be the matrix of
expectations corresponding to this distribution. Let c = min{p(1 − p), q(1 − q)}
and assume that c2 " (logn)6/n. Then

|A− Â| ≤
√
n

with probability at least 1− 2e−c2n/8. Here | · | denotes the L2 matrix norm, i.e.,
|B| = max|x|=1 |Bx|.

Planted partition reconstruction problem. Given a matrix Â drawn from
from the A(ϕ, p, q) distribution. Assume that all classes C	 := ϕ−1(l), l ∈
{1, . . . , k} have the same size n/k. Then the function ϕ is called a partition
function. The planted partition reconstruction problem asks to reconstruct ϕ up
to a permutation of {1, . . . , k} only from Â (up to permutations of {1, . . . , k}).

3 Spectral Properties

Any real symmetric n × n matrix has n real eigenvalues and Rn has a corre-
sponding eigenbasis. Here we are concerned with two types of real symmetric
matrices. First, any matrix Â drawn from an A(ϕ, p, q) distribution. Second, the
matrix A of expectations corresponding to the distribution A(ϕ, p, q).

We want to denote the eigenvalues of Â by λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n and the
vectors of a corresponding orthonormal eigenbasis of Rn by v1, . . . , vn, i.e., it is
Âvi = λ̂ivi, vT

i vj = 0 if i �= j and vT
i vi = 1, and the v1, . . . , vn span the whole

Rn.
For the sake of analysis we want to assume here without loss of generality that

the matrix A of expectations has a block diagonal structure, i.e., the elements in
the i-th class have indices from n

k (i−1)+1 to n
k i in {1, . . . , n}. It is easy to verify

that the eigenvalues λ1 ≥ . . . ≥ λn of A are (n
k −1)p+(n− n

k)q, n
k (p−q)−p and

−p with corresponding multiplicities 1, k− 1 and n− k, respectively. A possible

476 J. Giesen and D. Mitsche

orthonormal basis of the eigenspace corresponding to the k largest eigenvalues
of A is ui, i = 1, . . . , k, whose j-th coordinates are given as follows,

uij =

{√
k
n , j ∈ {n

k (i− 1) + 1, . . . , n
k i}

0, else.

Spectral separation. The spectral separation δk(A) of the eigenspace of the
matrix A of expectations corresponding to its k largest eigenvalues from its
complement is defined as the difference between the k-th and the (k + 1)-th
eigenvalue, i.e., it is δk(A) = n

k (p− q).

Projection matrix. The matrix P̂ that projects any vector in Rn to the
eigenspace corresponding to the k largest eigenvalues of a matrix Â drawn from
the distribution A(ϕ, p, q), i.e., the projection onto the space spanned by the
vectors v1, . . . , vk, is given as

P̂ =
k∑

i=1

viv
T
i .

The matrix P that projects any vector in Rn to the eigenspace corresponding to
the k largest eigenvalues of the matrix A of expectations can be characterized
even more explicitly. Its entries are given as

pij =
{

k
n , ϕ(i) = ϕ(j)
0, ϕ(i) �= ϕ(j)

In [7] we prove the following two lemmas.

Lemma 2. All the k largest eigenvalues of Â are larger than
√
n and all the

n − k smallest eigenvalues of Â are smaller than
√
n with probability at least

1 − 2e−c2n/8 provided that n is sufficiently large and k < p−q
4

√
n.

Lemma 3. With probability at least 1 − 2e−c2n/8,

q ≤ k

k − 1
λ̂1

n
+

k

k − 1
1√
n

and q ≥ k

k − 1
λ̂1

n
− k

k − 1

(
1√
n

+
1
k

)
and with the same probability

p ≤
kλ̂2 + k

k−1 λ̂1

n− k
+

k
√
n

(n− k)(k − 1)
+

k
√
n

n− k
and

p ≥
kλ̂2 + k

k−1 λ̂1

n− k
− k

√
n

(n− k)(k − 1)
− n

(n− k)(k − 1)
− k

√
n

n− k
.

Theorem 1 (Stewart [11]). Let P̂ and P be the projection matrices as defined
above. It holds

|P − P̂ | ≤ 2|A− Â|
δk(A) − 2|A− Â|

if δk(A) > 4|A− Â| where | · | is the L2 matrix norm.

Boosting Spectral Partitioning by Sampling and Iteration 477

4 An Iterative Spectral Algorithm

Now we have all prerequisites at hand that we need to describe our spectral
algorithm to solve the planted partition reconstruction problem.

SpectralReconstruct(Â)
1 k̂, k′ := number of eigenvalues λ̂i of Â that are larger than

√
n.

2 p̂ := k̂

k̂−1
λ̂1
n

3 q̂ :=
k̂λ̂2+ k̂

k̂−1
λ̂1

n−k̂

4 m := n/c log logn
5 Randomly partition {1, . . . , n} into c log logn equal size subsets Ii.
6 i := 1; C := ∅
7 while i < c log logn− 1 do
8 Âi := restriction of Â to Ii.
9 P̂i := projector onto the space spanned by the k′ largest eigenvectors of
Âi.
10 mi := |Ii|
11 for j := 1 to mi do
12 for l := 1 to mi do

13 (cj)l :=
{

1 : (P̂i)lj ≥ k̂
2m

0 : otherwise
14 end for
15 if 0.89m

k̂
≤ |cj |2 ≤ 1.11m

k̂
do

16 mark the element of rank j in Ii.
17 end if
18 end for
19 while {l ∈ Ii : l marked} �= ∅ do
20 choose arbitrary l ∈ {l′ ∈ Ii : l′ marked} and unmark l.
21 C1 :=

{
l′ ∈ Ii : l′ marked, crki(l)

T crki(l′) ≥ 0.79m
k̂

}
22 if 0.89m

k̂
≤ |C1| ≤ 1.11m

k̂
do

23 C2 :=
{
l ∈ Ii+1 :

∑
l′∈C1

âll′ ≥ 3
4 |C1|p̂+ 1

4 |C1|q̂
}

24 if |C2| ≥ 3
4

m
k̂

do
25 C3 :=

{
l ∈ Ii+2 :

∑
l′∈C2

âll′ ≥ 3
4 |C2|p̂+ 1

4 |C2|q̂
}

26 C4 :=
{
l ∈ Ii+3 :

∑
l′∈C3

âll′ ≥ 3
4 |C3|p̂+ 1

4 |C3|q̂
}

27 C1 :=
{
l ∈ Ii :

∑
l′∈C3

âll′ ≥ 3
4 |C3|p̂+ 1

4 |C3|q̂
}

28 C2 :=
{
l ∈ Ii+1 :

∑
l′∈C4

âll′ ≥ 3
4 |C4|p̂+ 1

4 |C4|q̂
}

29 C := C1 ∪C2 ∪ C3 ∪ C4
30 for j := 1 to c log logn do
31 if j /∈ {i, i+ 1, i+ 2, i+ 3} do
32 C := C ∪

{
l ∈ Ij :

∑
l′∈C âll′ ≥ 3

4 |C|p+ 1
4 |C|q

}
33 end if
34 Ij := Ij \ (Ij ∩ C)
35 end for
36 C := C ∪ {C}; k′ := k′ − 1

478 J. Giesen and D. Mitsche

37 end if
38 end if
39 end while
40 i := i+ 4
41 end while
42 return C

In a nutshell the algorithm SpectralReconstruct works as follows: in lines
1 to 6 we do some pre-processing. The main loop of the algorithm is enclosed
by lines 7 and 41. In lines 8 to 18 we compute binary vectors cj of size mi that
potentially are close in Hamming distance to characteristic vectors of planted
classes C	 restricted to the index set Ii. Note that very likely these vectors are
not exactly characteristic vectors of planted classes. To account for this we have
to work with four index sets Ii, . . . , Ii+3. In lines 19 to 39 we use the vectors cj to
reconstruct whole classes, i.e., not just the restriction to Ii∪ . . .∪Ii+3. Removing
reconstructed elements from not yet processed index sets Ij in line 34 boosts the
performance of the algorithm as a potential source of inter class noise between
an already reconstructed and a not yet reconstructed class gets removed. That
is, in subsequent iterations we expect to get relatively more vectors that are close
to characteristic vectors of restricted planted classes. Our subsequent analysis
shows that this is indeed the case.

The running time of the algorithm is determined by c log logn times the time
to compute the k′ largest eigenvectors of an m×m matrix. In the following we
give a more detailed description of the algorithm.

PREPROCESSING: In line 1 we estimate the number of classes k by the
number of eigenvalues of Â larger than

√
n, which by Lemma 2 is a.a.s. correct.

In lines 2 and 3 we estimate the parameters p and q of the A(ϕ, p, q) distribution
from which the matrix Â is drawn. By Lemma 3 these estimates almost surely
converge to the true values when n goes to infinity, provided k = o(

√
n). In line

5 we randomly partition the index set {1, . . . , n} into c log logn sets of equal
size. We choose the constant c such that m and c log logn are integers and
c log logn is divisible by 4. In line 6 we initialize the C that is going to contain
the reconstructed classes.

MAIN LOOP: In line 9 we compute the projector P̂i onto the space spanned
by the eigenvectors that correspond to the k′ largest eigenvalues of Âi. In the
variable k′ we store the number of classes that still have to be reconstructed.
In lines 11 to 18 we compute for every column of P̂i a binary vector cj . If we
did this for the projector derived from the unperturbed adjacency matrix Ai

then this would be the characteristic vectors of planted classes C	 restricted to
the index set Ii. Thus if the noise is small most of the vectors should be close
to characteristic vectors. In lines 15 to 17 we discard cj if it does not have the
right size in order to be close to a characteristic vector. In the loop enclosed
by lines 19 and 39 the actual reconstruction takes place. In lines 20 and 21
we use the binary vectors that belong to marked elements in Ii to compute a
first rough reconstruction C1 of some class C	 restricted to Ii. In order to do

Boosting Spectral Partitioning by Sampling and Iteration 479

so we have to use the rank function rki(·), which gives the rank of an element
in Ii, to map the elements of Ii into {1, . . . ,mi}, i.e., the set that contains the
column indices of P̂i. The intuition behind the computations in line 21 is that if
crki(l) and crki(l′) are close in Hamming distance to the characteristic vector of
the same class C	 restricted to Ii then their dot product should be large. Note
that very likely C1 does not contain all elements from C	 ∩ Ii and may contain
elements from other classes than C	. If C1 contains roughly as many elements
as we expect to be in C	 ∩ Ii then it likely contains many elements from C	 and
few elements from other classes. In this case we compute in line 23 a set C2 that
contains the elements from Ii+1 such that every column of the matrix Â with
index in C2 ∩C	 has many entries that are ’1’ at row indices in C1. We will show
that with high probability C2 contains only elements from C	, but maybe not
all of them. If C2 is large enough then we can use it in line 23 to compute (as
we computed C2 from C1) a set C3 ⊂ Ii+2, for which we can show that with
high probability C3 = C	 ∩ Ii+2. Similarly we compute C4 and re-compute C1
from C3 and re-compute C2 from C4. We will show that with high probability
it also holds that C1 = C	 ∩ Ii, C2 = C	 ∩ Ii+1 and C4 = C	 ∩ Ii+3. The reason
for computing four sets is that we need some probabilistic independence in the
analysis of the algorithm. In practice it probably is sufficient to re-compute C1
from C2 and afterwards C2 from C1. Similarly we will show that we compute
with high probability the set C	 ∩ Ij in line 32 and put it into the reconstruction
C of C	. In line 34 we remove all elements in C from the sets Ij . In line 36 we
add C to the set of reconstructed classes.

5 Analysis of the Algorithm

In the following we use the notation as in the algorithm SpectralRecon-
struct and let C	i = C	 ∩ Ii for Ii as computed in line 5 of the algorithm.
We say that an event occurs asymptotically almost surely, or short a.a.s., if the
probability that it holds goes to 1, as n tends to infinity. Instead of the spectral
matrix norm | · | we will often use the related Frobenius norm | · |F , which is
bounded by the spectral norm times the square root of the rank of the matrix.
The Frobenius norm, which is the square root of the sum of the squared entries
of the matrix, makes it easier to deal with individual entries of matrices.

Here is a short outline of the proof, which is by induction on the number
of iterations of the algorithm. The induction is anchored in Lemmas 6 and 7
and the induction step is proved in Theorem 2 and Corollary 2. But at first we
state two technical lemmas, whose proofs are almost identical to proofs of similar
statements in [7], and derive a simple corollary from them.

Lemma 4. The size of C	i is a.a.s. contained in the interval[
(1 − δ)

mi

k
, (1 + δ)

mi

k

]
with δ := 3(km−3/4

i)1/3.

480 J. Giesen and D. Mitsche

Lemma 5. The spectral separation δk(A1) is a.a.s. at least (1 − δ)m1
k (p − q),

where δ as in Lemma 4.

Corollary 1. If k < c′
√
m1 then a.a.s. |P1 − P̂1|2 <

(
(1 − δ) p−q

2c′ − 1
)−1

=: ε,
where δ as in Lemma 4.

Proof. Follows immediately from Stewart’s theorem and the theorem of Füredi
and Komlós and Lemma 5.

In the following we will use δ from Lemma 4 and ε from Corollary 1. Note
that we have that δ goes to 0 and ε goes to 1/

(
p−q
c′ − 1

)
as n (and thus also

m1) goes to infinity.

Dangerous element. Let x ∈ C	i and ri(x) be the rank of x in Ii. The element
x is called dangerous if the ri(x)’th column in the matrix Pi − P̂i has more than
1
10

m
k entries whose absolute value is at least 1

3
k
m .

Safe class. A class C	 is called safe with respect to Ii if it satisfies the following
two conditions:

(1) At most 1
10

m
k elements of C	i are dangerous.

(2) At most 1
10

m
k columns of P̂i whose index is the rank ri(·) of an element in

Ii \C	 have at least 1
10

m
k entries of value at least 1

3
k
m at row indices that are

the ranks of elements in C	i.

Lemma 6. If k < c′
√
m then a.a.s. there are at least (1−3600ε)k classes C	 that

are safe with respect to I1, provided that c′ is small enough such that 3600ε, 1.

Proof. The event whose probability we want to lower bound here can also be
stated as: there are at most 3600εk classes C	 that are not safe with respect to
I1. Here it is easier to work with the latter formulation of the event. For a class
to be not safe either condition (1) or condition (2) in the definition of a safe
class has to be violated.

For condition (1), observe that for every dangerous element x ∈ C	1 the
contribution of the r1(x)’th column to the Frobenius norm |P1 − P̂1|2F is at least
(k
3m)2 m

10k = k
90m . Hence, for a class C	 to violate condition (1), the contribution

to |P1 − P̂1|2F is at least k
90m

m
10k = 1

900 . Since we have chosen c′ sufficiently small
Corollary 1 gives |P1 − P̂1| < ε < 1 a.a.s. This implies that a.a.s. |P1 − P̂1|2 ≤
|P1 − P̂1|. Using that |P1 − P̂1|2F ≤ rk(P1 − P̂1)|P1 − P̂1|2 and given that the
rank rk(P1 − P̂1) is at most 2k with the probability stated in the theorem of
Füredi and Komlós, we have for the Frobenius norm |P1 − P̂1|2F ≤ 2εk a.a.s.
Thus we obtain for the number y of classes violating condition (1), 1

900y ≤ 2εk
and equivalently y ≤ 1800εk a.a.s.

For condition (2), let C	 be a class that violates condition (2). That is, there
are at least m

10k elements x ∈ I1 \ C	 such that the columns with index rank
r1(x) each have at least m

10k entries of value at least k
3m at row indices that

are the ranks of elements in C	1. Hence the contribution of these columns to

Boosting Spectral Partitioning by Sampling and Iteration 481

the Frobenius norm |P1 − P̂1|2F is at least (k
3m)2 m

10k
m
10k = 1/900. If we denote

by y the number of classes violating condition (2), we get using as above that
|P1 − P̂1|2F ≤ 2εk a.a.s. that 1

900y ≤ 2εk and equivalently y ≤ 1800εk a.a.s.
In combination we get that a.a.s. there are at most 3600εk classes which are

not safe with respect to I1. This proves the statement of the lemma.

Lemma 7. A.a.s., the following holds, provided k < c′
√
m:

(1) Every class C	 that is safe with respect to I1 is reconstructed correctly.
(2) Every class C	 that is not safe with respect to I1 is either reconstructed

correctly or none of its elements gets removed from any index set Ii.

Proof. Is left for the full version of the paper.

Lemma 7 basically states that after the first iteration of the outer while-loop
of the algorithm all classes C	 that are safe with respect to I1, but probably
even more classes, are reconstructed correctly. Thus we get from Lemma 6 that
after the first iteration of the outer while-loop a.a.s. at least (1−3600ε)k classes
are reconstructed correctly, or equivalently a.a.s. at most 3600εk remain to be
reconstructed.

Theorem 2. A.a.s., after the j’th iteration of the outer while loop of the algo-
rithm SpectralReconstruct there remain at most

(3600ε′)2(1.5j−1)k with ε′ =
2
√
m(1 + δ)

m
k (p− q)(1 − δ) − 2

√
m(1 + δ)

classes to be reconstructed and all other classes have been reconstructed correctly,
provided k < c′

√
m and c′ sufficiently small.

Proof. Is left for the full version of the paper.

Note that in the statement of Theorem 2 the boosting reflects itself in the
double exponential dependence of the decrease factor on j. Without boosting we
would only have a single exponential dependence on j.

Corollary 2. A.a.s., the algorithm SpectralReconstruct reconstructs all k
classes correctly, provided k ≤ c′

√
n

log log n for a small enough constant c′.

Proof. By Theorem 2, we have that after the
(

c
4 log logn

)
’th iteration of the

outer while-loop, a.a.s., the number of not yet reconstructed classes is at most
(3600ε′)2(1.5

c
4 log log n−1)k. If c′ is small enough then we have 3600ε′ , 1 and

lim
n→∞

(3600ε′)2(1.5
c
4 log log n−1)k = 0.

Hence, for n sufficiently large, (3600ε′)2(1.5
c
4 log log n−1)k is strictly less than 1.

Since the number of not yet reconstructed classes is an integer, it has to be 0
for n large enough. Thus a.a.s. all classes are reconstructed correctly.

482 J. Giesen and D. Mitsche

6 Conclusion

The simple technique of sampling and iteration that we used here to boost spec-
tral partitioning should also be applicable to other partitioning and clustering
algorithms, e.g., [9,10]. It would be interesting to see if one could also boost their
performance with this technique.

References

1. B. Bollobas and A.D. Scott. Max cut for random graphs with a planted partition.
Combinatorics, Probability and Computing, 13:451–474, 2004.

2. A. Condon and R. Karp. Algorithms for graph partitioning on the planted partition
model. Random Structures and Algorithms 8, 2:116–140, 1999.

3. A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random
Structures and Algorithms, 10:5–42, 1997.

4. Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combi-
natorica I, 3:233–241, 1981.

5. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete
graph problems. Theoretical Computer Science, 1:237–267, 1976.

6. J. Giesen and D. Mitsche. Bounding the misclassification error in spectral par-
titioning in the planted partition model. Proceedings of the 31st International
Workshop on Graph-Theoretic Concepts in Computer Science, 2005.

7. J. Giesen and D. Mitsche. Reconstructing many partitions using spectral tech-
niques. Proceedings of the 15th International Symposium on Fundamentals of Com-
putation Theory, 2005.

8. M. Krivelevich and V. H. Vu. On the concentration of eigenvalues of random
symmetric matrices. Microsoft Technical Report, 60, 2000.

9. F. McSherry. Spectral partitioning of random graphs. Proceedings of 42nd IEEE
Symosium on Foundations of Computer Science, pages 529–537, 2001.

10. R. Shamir and D. Tsur. Improved algorithms for the random cluster graph model.
Proceedings 7th Scandinavian Workshop on Algorithm Theory, pages 230–259,
2002.

11. G. Stewart and J. Sun. Matrix perturbation theory. Academic Press, Boston, 1990.
12. V. H. Vu. Spectral norm of random matrices. In STOC ’05: Proceedings of the

thirty-seventh annual ACM symposium on Theory of computing, pages 423–430,
New York, NY, USA, 2005. ACM Press.

Smoothed Analysis of Binary Search Trees�

Bodo Manthey�� and Rüdiger Reischuk

Universität zu Lübeck, Institut für Theoretische Informatik,
Ratzeburger Allee 160, 23538 Lübeck, Germany
{manthey, reischuk}@tcs.uni-luebeck.de

Abstract. Binary search trees are one of the most fundamental data
structures. While the height of such a tree may be linear in the worst case,
the average height with respect to the uniform distribution is only loga-
rithmic. The exact value is one of the best studied problems in average-
case complexity.

We investigate what happens in between by analysing the smoothed
height of binary search trees: Randomly perturb a given (adversarial)
sequence and then take the expected height of the binary search tree
generated by the resulting sequence. As perturbation models, we consider
partial permutations, partial alterations, and partial deletions.

On the one hand, we prove tight lower and upper bounds of roughly
Θ(
√

n) for the expected height of binary search trees under partial per-
mutations and partial alterations. This means that worst-case instances
are rare and disappear under slight perturbations. On the other hand,
we examine how much a perturbation can increase the height of a binary
search tree, i.e. how much worse well balanced instances can become.

1 Introduction

To explain the discrepancy between average-case and worst-case behaviour of
the simplex algorithm, Spielman and Teng introduced the notion of smoothed
analysis [5]. Smoothed analysis interpolates between average-case and worst-case
analysis: Instead of taking the worst-case instance or, as in average-case analysis,
choosing an instance completely at random, we analyse the complexity of (worst-
case) objects subject to slight random perturbations, i.e. the expected complexity
in a small neighbourhood of (worst-case) instances. Smoothed analysis takes into
account that a typical instance is not necessarily a random instance and that
worst-case instances are often artificial and rarely occur in practice.

Let C be some complexity measure. The worst-case complexity is maxxC(x),
and the average-case complexity is Ex∼∆C(x), where E denotes the expectation
with respect to some probability distribution ∆. The smoothed complexity is
defined as maxx Ey∼∆(x,p)C(y). Here, x is chosen by an adversary and y is ran-
domly chosen according to some probability distribution ∆(x, p) that depends

� A full version of this work with all proofs and experimental data is available as
Report 05-063 of the Electronic Colloquium on Computational Complexity (ECCC).

�� Supported by DFG research grant RE 672/3.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 483–492, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

484 B. Manthey and R. Reischuk

on x and a parameter p. The distribution ∆(x, p) should favour instances in the
vicinity of x, i.e. ∆(x, p) should put almost all weight on the neighbourhood of x,
where “neighbourhood” has to be defined appropriately depending on the prob-
lem considered. The smoothing parameter p denotes how strong x is perturbed,
i.e. we can view it as a parameter for the size of the neighbourhood. Intuitively,
for p = 0, smoothed complexity becomes worst-case complexity, while for large
p, smoothed complexity becomes average-case complexity.

The smoothed complexity of continuous problems seems to be well under-
stood. There are, however, only few results about smoothed analysis of discrete
problems. For such problems, even the term “neighbourhood” is often not well
defined. Thus, special care is needed when defining perturbation models for dis-
crete problems. Perturbation models should reflect “natural” perturbations, and
the probability distribution for an instance x should be concentrated around x,
particularly for small values of the smoothing parameter p.

Here, we will conduct a smoothed analysis of an ordering problem, namely the
smoothed height of binary search trees. Binary search trees are one of the most
fundamental data structures and, as such, building blocks for many advanced
data structures. The main criteria of the “quality” of a binary search tree is
its height. Unfortunately, the height is equal to the number of elements in the
worst case, i.e. for totally unbalanced trees generated by an ordered sequence of
elements. On the other hand, if a binary search tree is chosen at random, then
the expected height is only logarithmic in the number of elements. Thus, there
is a huge discrepancy between the worst-case and the average-case behaviour of
binary search trees.

We analyse what happens in between: An adversarial sequence will be per-
turbed randomly and then the height of the binary search tree generated by the
sequence thus obtained is measured. Thus, our instances are neither adversarial
nor completely random.

The height of a binary search tree obtained from a sequence of elements
depends only on the ordering of the elements. Therefore, one should use a per-
turbation model that slightly perturbs the order of the elements of the sequence.
We consider the perturbation models partial permutations, partial alterations,
and partial deletions. For all three, we show tight lower and upper bounds. As
a by-product, we obtain tight bounds for the smoothed number of left-to-right
maxima, which is the number of new maxima seen when scanning a sequence
from the left to the right. This improves a result by Banderier et al. [1].

In smoothed analysis one analyses how fragile worst-case instances are. We
suggest examining also the dual property: Given a good instance, how much
can the complexity increase by slightly perturbing the instance? In other words,
how stable are best-case instances? We show that there are best-case instances
that indeed are not stable, i.e. there are sequences that yield trees of logarithmic
height, but slightly perturbing them yields trees of polynomial height.

Existing Results. Spielman and Teng introduced smoothed analysis as a hy-
brid of average-case and worst-case complexity [5]. Since then, smoothed analysis
has been applied to a variety of fields [4].

Smoothed Analysis of Binary Search Trees 485

Banderier, Beier, and Mehlhorn [1] applied smoothed analysis to ordering
problems. In particular, they analysed the number of left-to-right maxima of a
sequence. Here the worst case is the sequence 1, 2, . . . , n, which yields n left-
to-right maxima. On average we expect

∑n
i=1 1/i ≈ lnn left-to-right maxima.

Banderier et al. used the perturbation model of partial permutations, where each
element of the sequence is independently selected with a probability of p ∈ [0, 1]
and then a random permutation on the selected elements is performed. They
proved that the number of left-to-right maxima under partial permutations is
O(

√
(n/p) logn) in expectation for 0 < p < 1. Furthermore, they showed a lower

bound of Ω(
√
n/p) for 0 < p ≤ 1/2.

Given a sequence σ = (σ1, σ2, . . . , σn) of n distinct elements from any ordered
set, we obtain a binary search tree T (σ) by iteratively inserting σ1, σ2, . . . , σn

into the initially empty tree (this is formally described in Section 2). The study
of binary search trees is one of the most fundamental problems in computer
science since they are the building blocks for a large variety of data structures.

The worst-case height of a binary search tree is obviously n: just take the
sequence σ = (1, 2, . . . , n). (We define the length of a path as the number of
vertices.) The expected height of the binary search tree obtained from a random
permutation (with all permutations being equally likely) has been the subject of
a considerable amount of research in the past, culminating in Reed’s result [3]
that the expectation of the height is α lnn+ β ln(lnn) +O(1) with α ≈ 4.31107
being the larger root of α ln(2e/α) = 1 and β = 3

2 ln(α/2) ≈ 1.953. Drmota [2]
and Reed [3] proved independently of each other that the variance of the height
is O(1).

Although the worst-case and average-case height of binary search trees are
very well understood, nothing is known in between, i.e. when the sequences are
not completely random, but the randomness is limited.

New Results. We consider the height of binary search trees subject to slight
random perturbations, i.e. the expected height under limited randomness.

We consider three perturbation models, which will formally be defined in
Section 3. Partial permutations, introduced by Banderier et al. [1], rearrange
some elements, i.e. they randomly permute a small subset of the elements of the
sequence. The other two perturbation models are new. Partial alterations do not
move elements, but replace some elements by new elements chosen at random.
Thus, they change the rank of the elements. Partial deletions remove some of
the elements of the sequence without replacement, i.e. they shorten the input.
This model turns out to be useful for analysing the other two models.

We prove matching lower and upper bounds for the expected height of binary
search trees under all three perturbation models (Section 5). More precisely: For
all p ∈ (0, 1) and all sequences of length n, the expectation of the height of a
binary search tree obtained via p-partial permutation is at most 6.7·(1−p)·

√
n/p

for sufficiently large n. On the other hand, the expected height of a binary search
tree obtained from the sorted sequence via p-partial permutation is at least
0.8 · (1−p) ·

√
n/p. This lower bound matches the upper bound up to a constant

factor.

486 B. Manthey and R. Reischuk

For the number of left-to-right maxima under partial permutations, we are
able to prove an even better upper bound of 3.6 ·(1−p) ·

√
n/p for all sufficiently

large n and a lower bound of 0.4 · (1 − p) ·
√
n/p (Section 4).

All these bounds hold for partial alterations as well.
For partial deletions, we obtain (1 − p) · n both as lower and upper bound.
In smoothed analysis one analyses how fragile worst case instances are. We

suggest examining also the dual property: Given a good instance, how much can
the complexity increase if the instance is perturbed slightly?

The main reason for considering partial deletions is that we can bound the
expected height under partial alterations and permutations by the expected
height under partial deletions (Section 6). The converse holds as well, we only
have to blow up the sequences quadratically.

We exploit this when considering the stability of the perturbation models
in Section 7: We prove that partial deletions and, thus, partial permutations
and partial alterations as well can cause best-case instances to become much
worse. More precisely: There are sequences of length n that yield trees of height
O(log n), but the expected height of the tree obtained after smoothing the se-
quence is nΩ(1).

2 Preliminaries

For any n ∈ N, let [n] = {1, 2, . . . , n} and [n− 1
2] = { 1

2 ,
3
2 , . . . , n− 1

2}.
Let σ = (σ1, . . . , σn) ∈ Sn for some ordered set S. We call σ a sequence of

length n. Usually, we assume that all elements of σ are distinct. In most cases, σ
will simply be a permutation of [n]. We denote the sorted sequence (1, 2, . . . , n)
by σn

sort. When considering partial alterations, we define σn
sort = (1

2 ,
3
2 , . . . , n− 1

2)
instead (this will be clear from the context).

Let σ = (σ1, . . . , σn) be a sequence. We obtain a binary search tree T (σ)
from σ by iteratively inserting the elements σ1, σ2, . . . , σn into the initially empty
tree as follows: The root of T (σ) is the first element σ1 of σ. Let σ< = σ{i|σi<σ1}
be σ restricted to elements smaller than σ1. The left subtree of the root σ1
of T (σ) is obtained inductively from σ<. Analogously, let σ> = σ{i|σi>σ1} be
σ restricted to elements greater than σ1. The right subtree of σ1 of T (σ) is
obtained inductively from σ>. Figure 1 shows an example. We denote the height
of T (σ), i.e. the number of nodes on the longest path from the root to a leaf, by
height(σ).

The element σi is called a left-to-right maximum of σ if σi > σj for all
j ∈ [i− 1]. Let ltr(σ) denote the number of left-to-right maxima of σ. We have
ltr(σ) ≤ height(σ) since the number of left-to-right maxima of a sequence is
equal to the length of the right-most path in the tree T (σ).

3 Perturbation Models for Permutations

Since we deal with ordering problems, we need perturbation models that slightly
change a given permutation of elements. There seem to be two natural

Smoothed Analysis of Binary Search Trees 487

1

2

3

4

5

6 8

7

Fig. 1. The tree T (σ) obtained from σ = (1, 2, 3, 5, 7, 4, 6, 8). We have height(σ) = 6

possibilities: Either change the positions of some elements, or change the ele-
ments themselves.

Partial permutations implement the first option: A subset of the elements is
randomly chosen, and then these elements are randomly permuted.

The second possibility is realised by partial alterations. Again, a subset of
the elements is chosen randomly. These elements are then replaced by random
elements.

The third model, partial deletions, also starts by randomly choosing a subset
of the elements. These elements are then removed without replacement.

For all three models, we obtain the random subset as follows. Let σ be a
sequence of length n and p ∈ [0, 1] be a probability. Every element of σ is
marked independently of the others with probability p.

By height-permp(σ), height-alterp(σ), and height-delp(σ) we denote
the expected height of the binary search tree T (σ′), where σ′ is the sequence
obtained from σ by performing a p-partial permutation, alteration, and dele-
tion, respectively (all three models will be defined formally in the following).
Analogously, by ltr-permp(σ), ltr-alterp(σ), and ltr-delp(σ) we denote the
expected number of left-to-right maxima of the sequence σ′ obtained from σ via
p-partial permutation, alteration, and deletion, respectively.

Partial Permutations. The notion of p-partial permutations was intro-
duced by Banderier et al. [1]. Given a random subset Mn

p of [n], the elements at
positions in Mn

p are permuted according to a permutation drawn uniformly at
random: Let σ = (σ1, . . . , σn). Then the sequence σ′ = Π(σ,Mn

p) is a random
variable with the following properties:

– Π chooses a permutation π of Mn
p uniformly at random and

– sets σ′
π(i) = σi for all i ∈ Mn

p and σ′
i = σi for all i /∈ Mn

p .

Figure 2 shows an example of a partial permutation.
By varying p, we can interpolate between the average and the worst case:

for p = 0, no element is marked and σ′ = σ, while for p = 1, σ′ is a random
permutation of the elements of σ with all permutations being equally likely.

Partial permutations are a suitable perturbation model since the distribution
of Π(σ,Mn

p) favours sequences close to σ. To show this, we have to introduce
a metric on sequences. Let σ and τ be two sequences of length n. We assume that

488 B. Manthey and R. Reischuk

2 3 65 81 7 4

675324 18

(a)

4

2

31 7

5

86

(b)

Fig. 2. A partial permutation. (a) Top: The sequence σ = (1, 2, 3, 5, 7, 4, 6, 8); Figure 1
shows T (σ). The first, fifth, sixth, and eighth element is (randomly) marked, thus
Mn

p = {1, 5, 6, 8}. Bottom: The marked elements are randomly permuted. The result
is the sequence σ′ = Π(σ, µ), in this case σ′ = (4, 2, 3, 5, 7, 8, 6, 1). (b) T (σ′) with
height(σ′) = 4.

both are permutations of [n] and define the distance d(σ, τ) between σ and τ as
d(σ, τ) = |{i | σi �= τi}|, thus d is a metric.

The distribution of Π(σ,Mn
p) is symmetric around σ with respect to d. Fur-

thermore, the probability that Π(σ,Mn
p) equals some τ decreases exponentially

with d(σ, τ). Thus, the distribution ofΠ(σ,Mn
p) is highly concentrated around σ.

Partial Alterations. Let us now introduce p-partial alterations. For this
perturbation model, we restrict the sequences of length n to be permutations of
[n− 1

2] = { 1
2 ,

3
2 , . . . , n− 1

2}.
Every element at a position in Mn

p is replaced by a real number drawn uni-
formly and independently at random from [0, n) to obtain a sequence σ′. All
elements in σ′ are distinct with probability one.

Instead of considering permutations of [n − 1
2], we could also consider per-

mutations of [n] and draw the random values from [12 , n + 1
2). This would not

change the results. Another possibility would be to consider permutations of [n]
and draw the random values from [0, n+ 1). This would not change the results
by much either. However, for technical reasons, we consider partial alterations
as introduced above.

Like partial permutations, partial alterations interpolate between theworst case
(p = 0) and the average case (p = 1). Partial alterations are somewhat easier to
analyse: The majority of results on the average-case height of binary search trees
is actually not obtained by considering random permutations. Instead, the binary
search trees are grown from a sequence of n random variables that are uniformly
and independently drawn from [0, 1). This corresponds to partial alterations for
p = 1. There is no difference between partial permutations and partial alterations
for p = 1. This appears to hold for all p in the sense that the lower and upper bounds
obtained for partial permutations and partial alterations are equal for all p.

Partial Deletions. As the third perturbation model, we introduce p-partial
deletions: Again, we have a random marking Mn

p . Then we remove all marked
elements.

Partial deletions do not really perturb a sequence: any ordered sequence re-
mains ordered even if elements are deleted. The reason for considering par-
tial deletions is that they are easy to analyse when considering the stability of

Smoothed Analysis of Binary Search Trees 489

perturbation models (Section 7). The results obtained for partial deletions then
carry over to partial permutations and partial alterations since the expected
heights with respect to these three models are closely related (Section 6).

4 Tight Bounds for the Number of Left-to-Right Maxima

Partial Permutations. The main idea for proving the following theorem is to
estimate the probability that one of the k largest elements of σ is among the
first k elements, which would bound the number of left-to-right maxima by 2k.

Theorem 1. Let p ∈ (0, 1). Then for all sufficiently large n and for all sequences
σ of length n,

ltr-permp(σ) ≤ 3.6 · (1 − p) ·
√
n/p .

The following lemma is an improvement of the lower bound proof for the num-
ber of left-to-right maxima under partial permutations presented by Banderier
et al. [1]. We obtain a lower bound with a much larger constant that holds for all
p ∈ (0, 1); the lower bound provided by Banderier et al. holds only for p ≤ 1/2.

The idea of the proof is as follows. Let Kc = c
√
n/p and let σ = (n −Kc +

1, . . . , n, 1, . . . , n − Kc). The probability that none of the first Kc elements of
σ, which are also the Kc largest elements of σ, is moved further to the front
is bounded from below by exp(−c2/α) for any fixed α > 1. In such a case, all
unmarked elements of the first Kc elements are left-to-right maxima.

Lemma 1. Let p ∈ (0, 1), α > 1, and c > 0. For all sufficiently large n, there
exists a sequence σ of length n with ltr-permp(σ) ≥ exp(−c2α) · c · (1−p) ·

√
n/p.

We obtain the strongest lower bound from Lemma 1 by choosing α close to 1
and c = 1/

√
2α. This yields the following theorem.

Theorem 2. For all p ∈ (0, 1) and all sufficiently large n, there exists a sequence
σ of length n with

ltr-permp(σ) ≥ 0.4 · (1 − p) ·
√
n/p .

Theorem 2 also yields the same lower bound for height-permp(σ) since the
number of left-to-right maxima of a sequence is a lower bound for the height of
the binary search tree obtained from that sequence. We can, however, prove a
stronger lower bound for the smoothed height of binary search trees (Theorem 4).

A consequence of Lemma 1 is that there is no constant c such that the num-
ber of left-to-right maxima is at most c · (1 − p) ·

√
n/p with high probability,

i.e. with a probability of at least 1 − n−Ω(1). Thus, the bounds proved for the
expected tree height or the number of left-to-right maxima cannot be generalised
to bounds that hold with high probability. However, we can prove that with high
probability, the height under partial permutations is O(

√
(n/p) · logn). Clearly,

this bound holds for the number of left-to-right maxima as well.

490 B. Manthey and R. Reischuk

Partial Alterations. Similar to the results for partial permutations, we obtain
an upper bound of 3.6 · (1 − p) ·

√
n/p and a lower bound of 0.4 · (1 − p) ·

√
n/p.

Again, we cannot achieve a bound of O((1 − p) ·
√
n/p) for the number of

left-to-right maxima that holds with high probability, but we can show that the
height after partial alteration is O(

√
(n/p) · logn) with high probability.

5 Tight Bounds for the Height of Binary Search Trees

Partial Permutations. The following theorems is one of the main results of
this work. The idea for proving it is as follows: We divide the sequence into
blocks B1, B2, . . ., where Bd is of size cd2

√
n/p for some c > 0. Each block Bd is

further divided into d4 parts A1
d, . . . , A

d4

d , each consisting of cd−2
√
n/p elements.

Assume that on every root-to-leaf path in the tree obtained from the perturbed
sequence, there are elements of at most two such Ai

d for every d. Then the height
can be bounded from above by

∑∞
d=1 2 · cd−2

√
n/p = (cπ2/3)

√
n/p.

The probability for such an event is roughly O(exp(−c2)2/(1−exp(−c2))). We
obtain the upper bound claimed in the theorem mainly by carefully applying this
bound and by exploiting the fact that only a fraction of (1 − p) of the elements
are unmarked. Marked elements contribute at most O(log n) to the expected
height of the tree.

Theorem 3. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences
σ of length n,

height-permp(σ) ≤ 6.7 · (1 − p) ·
√
n/p .

We can also prove the following bound for the tree height: With probability 1−
n−Ω(1), the height is at most O(

√
(n/p) · logn). More precisely: The probability

that the height after partial permutation is at most c ·
√

(n/p) · logn is at least
1 − n−(c/3)2/α+0.5 for sufficiently large n and arbitrary α > 1.

As a counterpart to Theorem 3, we prove the following lower bound. Inter-
estingly, the lower bound is obtained for the sorted sequence, which is not the
worst case for the expected number of left-to-right maxima under partial per-
mutation; the expected number of left-to-right maxima of the sequence obtained
by partially permuting the sorted sequence is only logarithmic [1].

Theorem 4. Let p ∈ (0, 1). Then for all sufficiently large n ∈ N,

height-permp(σ
n
sort) ≥ 0.8 · (1 − p) ·

√
n/p .

Partial Alterations. The results proved for partial permutation can be carried
over to partial alterations. This means particularly that we obtain the same
upper bound of height-alterp(σ) ≤ 6.7 · (1 − p) ·

√
n/p for all p ∈ (0, 1) and all

sequences σ with elements from [n− 1
2] for sufficiently large n.

Furthermore, we obtain the same upper bound of n−(c/3)2/α+0.5 on the prob-
ability that the height after partial alteration is greater than c ·

√
(n/p) · logn

Finally, we have height-alterp(σn
sort) ≥ 0.8 · (1 − p) ·

√
n/p for all p ∈ (0, 1)

and sufficiently large n.

Smoothed Analysis of Binary Search Trees 491

6 Partial Deletions Versus Permutations and Alterations

For partial deletions, we easily obtain height-delp(σ) ≤ (1−p)·n for all sequences
σ of length n and all p ∈ [0, 1] as an upper bound and height-delp(σn

sort) =
(1 − p) · n as a lower bound.

Partial deletions are in some sense the worst of the three models: Trees are
usually expected to be higher under partial deletions than under partial permu-
tations or alterations, even though they contain fewer elements. The expected
height under partial deletions yields upper bounds (up to an additional O(log n)
term) for the expected height under partial permutations and alterations. The
same holds for the number of left-to-right maxima.

Lemma 2. For all sequences σ of length n and p ∈ [0, 1], height-permp(σ) ≤
height-delp(σ)+O(log n). If σ is a permutation of [n− 1

2], then height-alterp(σ) ≤
height-delp(σ) +O(log n).

The converse is not true, but we can bound the expected height under partial
deletions by the expected height under partial permutations or alterations by
padding the sequences considered. The following lemma holds also for partial
alterations if the sequence σ is a permutation of [n− 1

2].

Lemma 3. Let p ∈ (0, 1) be fixed and let σ be a sequence of length n with
height(σ) = d and height-delp(σ) = d′. Then there exists a sequence σ̃ of length
O(n2) with height(σ̃) = d+O(log n) and height-permp(σ̃) ∈ Ω(d′).

7 The (In-)Stability of Perturbations

Having shown that worst-case instances become much better when smoothed,
we now provide a family of best-case instances for which smoothing results in
an exponential increase in height. We consider the following family of sequences:
σ(1) = (1) and σ(k+1) = (2k, σ(k), 2k + σ(k)), where c+ σ = (c+ σ1, . . . , c+ σn)
for a sequence σ of length n. For instance, σ(3) = (4, 2, 1, 3, 6, 5, 7). Let n =
2k − 1. Then σ(k) contains the numbers 1, 2, . . . , n, and we have height(σ(k)) =
ltr(σ(k)) = k ∈ Θ(log n).

Deleting the first element of σ(k) roughly doubles the number of left-to-right
maxima in the resulting sequence. This is the idea behind the following theorem.

Theorem 5. For all p ∈ (0, 1) and all k ∈ N, ltr-delp(σ(k)) = 1−p
p ·((1+p)k−1).

Since the number of left-to-right maxima is a lower bound for the height of a
binary search tree, we obtain height-delp(σ

(k)) ≥ 1−p
p · ((1 + p)k − 1).

We conclude that there are some best-case instances that are quite fragile
under partial deletions: From logarithmic height they “jump” via smoothing to
a height of Ω(nlog(1+p)). (We have 1−p

p · ((1 + p)k − 1) ∈ Θ(nlog(1+p)).)
We can transfer this result to partial permutations due to Lemma 3. The

result holds also for partial alterations. This means that there are sequences that
yield trees of height O(log n), but perturbing them with partial permutations or
partial alterations yields trees of height Ω(nδ) for some fixed δ > 0.

492 B. Manthey and R. Reischuk

8 Conclusions

We have analysed the height of binary search trees obtained from perturbed
sequences and obtained asymptotically tight bounds of roughly Θ(

√
n) for the

height under partial permutations and alterations. This stands in contrast to
both the worst-case and the average-case height of n and Θ(log n), respectively.

Interestingly, the sorted sequence turns out to be the worst-case for the
smoothed height of binary search trees in the sense that the lower bounds are
obtained for σn

sort. This is in contrast to the fact that the expected number of
left-to-right maxima of σn

sort under p-partial permutations is roughly O(log n) [1].
We believe that for binary search trees, σn

sort is indeed the worst case.
We performed experiments to estimate the constants in the bounds for the

height of binary search trees. The results led to the conjecture that the expected
height of trees obtained by performing a partial permutation on σn

sort is (γ+o(1))·
(1 − p) ·

√
n/p for some γ ≈ 1.8 and for all p ∈ (0, 1). Proving this conjecture

would immediately improve our lower bound. Provided that the sorted sequence
is indeed the worst case, this conjecture would also improve the upper bound for
binary search trees and left-to-right maxima.

The bounds obtained in this work for partial permutations and partial alter-
ations are equal. We suspect that this is always true for binary search trees.

Finally, we are interested in generalising these results to other problems based
on permutations, like sorting (Quicksort under partial permutations has already
been investigated by Banderier et al. [1]), routing, and other algorithms and
data structures. Hopefully, this will shed some light on the discrepancy between
the worst-case and average-case complexity of these problems.

References

1. Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three com-
binatorial problems. In Branislav Rovan and Peter Vojtás, editors, Proc. of the 28th
Int. Symp. on Mathematical Foundations of Computer Science (MFCS), volume
2747 of Lecture Notes in Computer Science, pages 198–207. Springer, 2003.

2. Michael Drmota. An analytic approach to the height of binary search trees II.
Journal of the ACM, 50(3):333–374, 2003.

3. Bruce Reed. The height of a random binary search tree. Journal of the ACM,
50(3):306–332, 2003.

4. Daniel A. Spielman. The smoothed analysis of algorithms. In Maciej Lískiewicz
and Rüdiger Reischuk, editors, Proc. of the 15th Int. Symp. on Fundamentals of
Computation Theory (FCT), volume 3623 of Lecture Notes in Computer Science,
pages 17–18. Springer, 2005.

5. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–
463, 2004.

Simple and Efficient Greedy Algorithms for
Hamilton Cycles in Random Intersection

Graphs�

C. Raptopoulos1,2 and P. Spirakis1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
spirakis@cti.gr, raptopox@ceid.upatras.gr

2 University of Patras, 26500 Patras, Greece

Abstract. In this work we consider the problem of finding Hamilton
Cycles in graphs derived from the uniform random intersection graphs
model Gn,m,p. In particular, (a) for the case m = nα, α > 1 we give a
result that allows us to apply (with the same probability of success) any
algorithm that finds a Hamilton cycle with high probability in a Gn,k

graph (i.e. a graph chosen equiprobably form the space of all graphs with
k edges), (b) we give an expected polynomial time algorithm for the
case p = constant and m ≤ α n

log n
for some constant α, and (c) we show

that the greedy approach still works well even in the case m = o(n
log n

)
and p just above the connectivity threshold of Gn,m,p (found in [21]) by
giving a greedy algorithm that finds a Hamilton cycle in those ranges of
m, p with high probability.

1 Introduction

Random graphs, introduced by P. Erdös and A. Rényi, still continue to attract
a huge amount of research and interest in the communities of Theoretical Com-
puter Science, Graph Theory and Discrete Mathematics.

There exist various models of random graphs. The most famous is the Gn,p

random graph, a sample space whose points are graphs produced by randomly
sampling the edges of a graph on n vertices independently, with the same proba-
bility p. Other models have also been quite a lot investigated: Gn,r (the “random
regular graphs”, produced by randomly and equiprobably sampling a graph from
all regular graphs of n vertices and vertex degree r) and Gn,k (produced by ran-
domly and equiprobably selecting an element of the class of graphs on n vertices
having k edges). For an excellent survey of these models, see [1, 3].

In this work we address the problem of finding Hamilton cycles in the Uni-
form Random Intersection Graphs Model Gn,m,p, which was introduced by

� This work has been partially supported by the IST Programme of the European
Union under contract number 001907 (DELIS) and by the GSRT PENED 2003
ALGO.D.E.S. Project.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 493–504, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

494 C. Raptopoulos and P. Spirakis

M. Karoński, E.R. Sheinerman and K.B. Singer-Cohen [13] and K.B. Singer-
Cohen [21]. Also, Godehardt and Jaworski [11] considered similar models. The
formal definition of this model is given below.

Definition 1 (Uniform random intersection graph). Let us consider a uni-
verse M = {1, 2, . . . ,m} of elements and a set of vertices V = {v1, v2, . . . , vn}.
If we assign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj of M
by choosing each element i ∈ M independently with probability p and put an
edge between two vertices vj1 , vj2 if and only if Svj1

∩Svj2
�= ∅, then the resulting

graph is an instance of the uniform random intersection graph Gn,m,p. In this
model we also denote by Ll the set of vertices that have chosen label l ∈ M .

The representation matrix of a random intersection graph Gn,m,p is a matrix
R that has n rows and m columns corresponding to the vertices and the labels of
the graph respectively. Element Rij equals 1 if the i-th vertex has selected the j-th
label (for some prespecified ordering of the vertices and labels) and 0 otherwise.

Importance and Motivation. First of all, we note that (as proved in [14]) any
graph is a random intersection graph. Thus, the Gn,m,p model is very general.
Furthermore, for some ranges of the parameters m, p (m = nα, α > 6) the spaces
Gn,m,p and Gn,p are equivalent (as proved by Fill, Sheinerman and Singer-Cohen
[10], showing that in this range the total variation distance between the graph
random variables has limit 0).

Second, random intersection graphs may model real-life applications more
accurately (compared to the Gn,p case). This is because in many cases the inde-
pendence of edges is not well-justified. In fact, objects that are closer (like moving
hosts in mobile networks or sensors in smart dust networks) are more probable
to interact with each other. Even epidemiological phenomena (like spread of dis-
ease) tend to be more accurately captured by this “proximity-sensitive” random
intersection graphs model. Other applications may include oblivious resource
sharing in a distributed setting, interactions of mobile agents traversing the web
etc.

Other Related Work. The question of how close Gn,m,p and Gn,p̂ are for var-
ious values of m, p (the value of p̂ is also given as a function of m, p) has been
studied by Fill, Sheinerman and Singer-Cohen in [10]. In [17] the authors intro-
duce two variations of the uniform random intersection graphs model, i.e. the
general and the regular random intersection graph models, and address the prob-
lem of finding large independent sets of vertices in these models. Also, geometric
proximity between randomly placed objects is nicely captured by the model of
random geometric graphs (see e.g. [6, 8, 19]) and important variations (like ran-
dom scaled sector graphs, [7]). Other extensions of random graph models (such
as random regular graphs) and several important combinatorial properties (con-
nectivity, expansion, existence of a giant connected component) are performed in
[16, 18]. Thresholds for the existence of Hamilton cycles in random intersection
graphs were given by members of our team in [9].

An expected polynomial time algorithm for finding a Hamilton path in a Gn,p

graph with p ≥ 1
2 was developed in [12]. In [22] Thomason gave a linear expected

Simple and Efficient Greedy Algorithms for Hamilton Cycles 495

time algorithm for the Hamilton cycle problem in the case where p > 0 is any
constant probability. Also the authors in [4] propose a polynomial time algorithm
that finds a Hamiltonian cycle in a random graph with high probability. Other
NP-hard problems for which expected polynomial time algorithms exist when
the input follows some specific distribution are the colouring of random graphs
[5], the random knapsack [2] etc.

Our Contribution.

1. We first make a reduction of the Gn,m,p model to the model Gn,k (i.e. the
model where we randomly and equiprobably select an element of the class
of graphs on n vertices and k edges) in the case where m = nα, α > 1. In
particular, for this range of m and p we give a way to apply any result (algo-
rithmic and combinatoric) concerning increasing properties of Gn,k graphs
to the Gn,m,p graphs.

2. We give a polynomial expected time algorithm for finding Hamilton cycles
in a Gn,m,p graph, in the case where p is constant and the number of labels is
at most α

√
n

log n for some constant α. The algorithm uses first a randomized

greedy algorithm and if it fails it then uses an exhaustive algorithm to solve
the problem.

3. Finally we show that the greedy approach gives an algorithm that succeeds
with high probability in the case m = o(n

log n) and p is not constant. We give
a polynomial time randomized algorithm that finds with high probability a
Hamilton cycle in the case where p is just above the connectivity threshold for
these graphs. This algorithm also serves as a way to find a quite tight bound
on the probability p that ensures that with high probability the uniform
random intersection graph has a Hamilton cycle.

2 A Reduction to the Gn,k Model

Let Gn,1,p be a random intersection graph with only one label. It is obvious from
the definition of the random intersection graphs model that this graph will either
contain a single clique, or it will be the empty graph. We note that given that
the Gn,1,p graph has a clique of size k, then this clique is equiprobably any of
the

(
n
k

)
cliques of size k. Let now p̂ denote the probability that the Gn,1,p graph

has at least one edge. Then, for np → 0 we get

p̂
def= P{Gn,1,p is non-empty} = 1 − (1 − p)n − np(1 − p)n−1 ∼ 1

2
n2p2.

Now, let us return to the case of m labels. We construct a graph H in the
following way:

1. Initially H is the empty graph with n vertices.
2. In each step i = 1, 2, . . . ,m we independently add a single edge to H with

probability 1
2n

2(1 + ε)2p2. This edge can be any of the
(
n
2

)
possible edges

of H with equal probability. Also, with probability 1 − 1
2n

2(1 + ε)2p2 we do
nothing.

496 C. Raptopoulos and P. Spirakis

We note that the graph H constructed above is a multigraph, since a single
edge may appear more than once. Furthermore, given that H has exactly k
edges, then the graph H is with equal probability any of the multigraphs with k
edges. The mean number of all edges of H is m 1

2n
2(1+ ε)2p2. By using Chernoff

bounds we get for any constant β in (0, 1) that

P{# of all edges of H ≤ (1 − β)m
1
2
n2(1 + ε)2p2 } ≤ e−β2mn2(1+ε)2p2/4.

So, if we choose mn2(1 + ε)2p2 → ∞, then with high probability H will have
at least (1 − β)m 1

2n
2(1 + ε)2p2 edges (counting multiple eges as many times as

their multiplicity).
Let now e(H) be the number of different edges of H (i.e. we count mul-

tiple edges as one). Then, by a slightly modified coupon collector’s problem
(see Appendix in the full version of this paper [20]), we can see that e(H)
must satisfy the inequality e(H) ≥ 1−β

1+γmn
2(1 + ε)2p2, with probability at least

1 − e−β2mn2(1+ε)2p2/4 − 1
γ2(n

2)
→ 1, where γ is any positive constant.

We note here that given that e(H) = k, the graph H is with equal probability
any graph with n vertices and k edges, hence it is distributed like Gn,k. We can
therefore prove the following:

Theorem 1. Let Q be an increasing property on the number of edges and sup-
pose that for some integer k we have

P{Gn,k has property Q} = 1 − g(n)

where g(n) = o(1). Let also m, p, ε be such that m = nα, α > 1, np → 0, ε is a
(small) positive constant and

k ≤ 1 − β

1 + γ
mn2(1 + ε)2p2 (1)

where β, γ are any two small positive constants. Then

P{H has property Q} ≥ 1 − g(n) − e−β2mn2(1+ε)2p2/4 − 1
γ2
(
n
2

) → 1

We now use Theorem 1 for the case where Q is the property “existence of a
Hamilton cycle”. We can prove the following

Corollary 1. If m = nα, α > 1, p =
√

log n
nm and ε is a small constant 1, then

P{Gn,m,(1+2ε)p has a Hamilton cycle} ≥ 1−g(n)−e−β2mn2(1+ε)2p2/4− 1
γ2
(
n
2

) → 1.

1 In fact the constant ε can be as small as to ensure that the constant quantity 1−β
1+γ

(1+
ε)2 is as close to 1 as possible (but greater than 1). Since β, γ are small (and can be
controlled to become as small as possible), we can get a quite small value for ε.

Simple and Efficient Greedy Algorithms for Hamilton Cycles 497

Proof. See full paper [20]. �

We finally note that, as shown in [21], the value p =
√

log n
nm is exactly the

connectivity threshold of a random intersection graph with m = nα, α > 1.

3 Hamilton Cycles in Gn,m,p with Constant p

In this section we provide an expected polynomial time algorithm for Hamilton
Cycles in random intersection graphs with constant p and m ≤ α

√
n

log n , where

α < βp√
2

and β ∈ (0, 1) are positve constants. By a straightforward analysis (see
Appendix in the full version of this paper [20]) we can show that even in this
restricted range of values of p,m the problem of finding a hamilton cycle in
Gn,m,p is non-trivial. Before presenting the algorithm we give some preliminary
results.

It is easy to see that if the Gn,m,p has a Hamilton cycle, then there exists a
sequence

HC := l1 → v1 → l2 → · · · → lk → vk → lk+1(= l1) (2)

that satisfies the following four conditions:

1. li ∈ M and vi ∈ V ,
2.

⋃k
i=1 Lli = V ,

3. li, li+1 ∈ Svi , i = 1, 2, . . . , k and
4. vi �= vj , for any i �= j.

We note here that given an HC sequence of the form (2) that satisfies the
four constraints above we can construct a Hamilton cycle in time Θ(n ·m) (we
give such a construction in the algorithm that follows this section).

Suppose now that our graph has a Hamilton cycle hence there is a sequence
HC of the form (2) satisfying the four constraints above. We will refer to the
integer k as the size of the sequence HC. Let x denote the number of different
labels used by HC and let HCmin be a sequence of the form (2) that satisfies the
four conditions, uses exactly the labels used by HC and has minimum length. If
we denote by kmin the size of HCmin then it is obvious that x ≤ kmin. We can
also prove the following:

Lemma 1. If kmin and x are defined as above, then kmin ≤ 1 + x(x−1)
2 .

Proof. See full paper [20]. �
Suppose now that we are interested in the number of different sequences

HCmin that use x specific labels. Because of Lemma 1 we know that their size
must be at most 1 + x(x−1)

2 . We now suppose that we have to fill in 1 + x(x−1)
2

label-cells by choosing for each one any of x different labels and 1+ x(x−1)
2 vertex-

cells by chosing for each any of n different vertices. In that way, sequences with
size less than the maximum will correspond to some sequence of size 1 + x(x−1)

2

498 C. Raptopoulos and P. Spirakis

that has at least one label that repeats itself in the following label-cell. We easily
see then that the total number of ways to fill in these cells is an upper bound to
the number of different HCmin sequences.

In view of the above, the number of sequences of the form (2) that an exhaus-
tive algorithm that searches for a Hamilton cycle needs to check is at most

m∑
x=1

(
m

x

)
(x · n)1+

x(x−1)
2 ≤

m∑
x=1

mx

x!
(x · n)

x2
2 ≤ exp

{
m2 logn

}
= nm2

. (3)

where in the last inequality we used the upper bound on m.

3.1 Expected Polynomial Time Algorithm for Constant p

In this section we use the previous results in order to present an algorithm for
finding Hamilton Cycles in a Gn,m,p graph with constant p and m ≤ α

√
n

log n ,

where α < βp√
2

and β ∈ (0, 1) are positve constants.
The algorithm first uses a greedy algorithm (steps 1-10) to form a sequence

HC sequence of the form (2) that uses all the labels and if this fails (which
happens with some small probability of failure) it runs the exhaustive algorithm
(step 12) implied in the previous section. Both the randomized algorithm and
the exhaustive algorithm try to find a sequence HC of the form (2) that satisfies
all four constraints. If either of them succeeds in finding one, then they run the
following procedure that constructs a Hamilton cycle.

procedure CONSTRUCT HAM(HC)

1. let HC := l1 → v1 → l2 → · · · → lk → vk → lk+1(= l1);
2. i = 1; A = V \

⋃k
i=1{vi};

3. while i ≤ k do
4. let Di be any ordered list of Lli ∩A;
5. A = A\{Di}; i = i+ 1;
6. output D1 → v1 → D2 → · · ·Dk → vk;

We now show that if the HC sequence satisfies all four constraints, then the
output of procedure CONSTRUCT HAM(HC) is a Hamilton cycle. First, we
note that since HC satisfies the 2nd constraint, all vertices are contained at
most once in the output. Second, because of the definition of the sets Di, step 5
of the algorithm and the 4th condition, each vertex is contained exacty once in
the output. Third, because of the definition of the sets Di and the 3rd condition,
every two consecutive vertices of the output have at least one label in common,
hence they are connected. Finally, we close the Hamilton cycle by noting that
vk has at least one label in common with any vertex in D1 (i.e. label l1).

The expected polnomial time algorithm is shown below. We denote by Ly

the set of vertices having chosen label y ∈ M .

Simple and Efficient Greedy Algorithms for Hamilton Cycles 499

Algorithm I:
Input: The representation matrix Rn,m,p of a graph Gn,m,p.
Output: A Hamilton cycle of the graph corresponding to Rn,m,p.

1. let l1, l2, . . . , lm be a random ordering of the labels;
2. consider the sequence l1, l2, . . . , lm, lm+1 = l1;
3. if

⋃m
i=1 Lli �= V then

4. output “The graph has no Hamilton Cycle”; exit;
5. i = 1; A = V ; HC = empty list;
6. while i < m+ 1 do
7. if Lli ∩ Lli+1 ∩A = ∅ then goto L1;
8. select a random vertex vi ∈ Lli ∩ Lli+1 ∩A;
9. set HC = HC → {li} → {vi};

10. set A = A\{vi}; i = i+ 1;
11. goto L2

12. L1: if there is a sequence of the form (2) and size k ≤ 1 + m(m−1)
2 that

satisfies all four costraints then
13. let HC be such a sequence; goto L2;
14. else
15. output “The graph has no Hamilton Cycle”; exit;
16. L2: CONSTRUCT HAM(HC);

3.2 Analysis of Algorithm I

We will first find an upper bound for the probability of failure of the greedy part
of the algorithm (lines 1-10). Notice that the greedy algorithm can fail to output
a solution only because of step 7. That is, the algorithm fails only in the case
where two consecutive labels in the sequence l1, l2, . . . , lm, lm+1 = l1 do not have
a common vertex that is also not used to “connect” two previous consecutive
labels.

Let us now denote by Xij the number of verices having chosen both labels
i, j ∈ M . Obviously, Xij is a random variable that is binomially distributed with
parameters n and p2. So, E[Xij] = np2. But from Chernoff bounds we have that
for any constant β in (0, 1)

P{Xij ≤ (1 − β)np2} ≤ e−β2p2n/2

and by applying Boole’s inequality

P{∃i, j ∈ M : Xij ≤ (1 − β)np2} ≤
(
m

2

)
e−β2p2n/2 def

= φ.

We have thus proven that with probability at least 1 −
(
m
2

)
e−β2p2n/2 every

pair of labels has Θ(n) vertices in common. Bearing in mind that the vertices
used by the greedy algorithm are exactly m = o(n), every pair of labels is left
with at least Θ(n) − o(n) = Θ(n) vertices in common. So, the probability that

500 C. Raptopoulos and P. Spirakis

the greedy algorithm fails is at most
(
m
2

)
e−β2p2n/2. Moreover, it is easy to see

that the running time of the greedy algorithm is O(n ·m) in the worst case.
If the greedy algorithm fails (which means that it does not output a Hamilton

cycle nor does it output “The graph has no Hamilton Cycle”) then we run the
exhaustive part of the algorithm (included in step 12). In order to check if a
particular sequence of the form (2) and of size at most 1 + x(x−1)

2 satisfies the
four constraints we need O(n ·m) time in the worst case.

Finally, the running time time of the procedure CONSTRUCT HAM is O(n ·
k) in the worst case, where k is the size of the HC sequence. If the HC sequence
is the one produced by the greedy algorithm, then k = m, otherwise k ≤ 1 +
m(m−1)

2 . Therefore, by using inequality (3), it is easy to see that

E[running time of Algorithm I] ≤ (1 − φ)O(n ·m) + φnm2
O(n ·m)

which becomes O(n ·m) for m ≤ α
√

n
log n , where α < βp√

2
is a constant. It follows

then that Algorithm I runs in polynomial expected time.

4 A Second Greedy Algorithm for Smaller p

In this section we will see that the greedy approach still works quite well for
smaller p, in the case where m is at most o(n

log n). More specifically, we will
present an algorithm that with high probability finds a Hamilton cycle in a
Gn,m,p graph, in the case where m = o(n

log n) and p is just above the connectivity

threshold of Gn,m,p, i.e. p = log n+h(n)
m , for any function h(n) that goes to ∞ as

slowly as possible (see [21]).
Suppose that we partition the set of vertices V into two sets V1, V2 of n

2
vertices each. We then use only vertices in V1 to make an HL sequence of the
form

HL := l1 → v1 → l2 → · · · → lk (4)

that is as long as possible and satisfies the following conditions:

1. li ∈ M and vi ∈ V1,
2. li, li+1 ∈ Svi , i = 1, 2, . . . , k − 1,
3. vi �= vj , for any i �= j and
4. lx �= ly, for any x �= y.

We use the following procedure in order to construct a sufficiently large HL
sequence:

procedure MAKE HL(V1,M)

1. set FV = V1; set FM = M ;
2. select a random label l ∈ M ; set FM = FM\{l}; set HL = l;
3. L1: if |Ll ∩ FV | < logn then goto Lo;

Simple and Efficient Greedy Algorithms for Hamilton Cycles 501

4. else
5. let v1, . . . , vlog n ∈ Ll ∩ FV ;
6. if ∃l′, v : l′ ∈ FM , v ∈ {v1, . . . , vlog n} and l′ ∈ Sv then
7. set FM = FM\{l′}; FV = FV \{v1, . . . , vlog n};
8. set HL = HL → v → l′; set l = l′; goto L1;
9. else goto Lo;

10. Lo: output HL

If we assume that we can perform a random selection of an element in a set
of n items in constant time, the above procedure runs obviously in polynomial
time. Indeed, the loop between steps 3 to 9 is executed at most n

2 log n times
because in step 7 we reduce the set FV by logn vertices. Furthermore, the most
expensive steps of the loop are the if-condition of step 3 which can take at most
n2/4 time steps (because FV and FM have at most n/2 vertices each) and the
if-condition of step 6 which can take at most m2 logn time steps (because FM

has at most m labels and each set Sv has at most m labels). Hence, taking into
consideration that m = o(n

log n), we have proved the following:

Lemma 2. Procedure MAKE HL terminates in at most O(n3

log n) time steps.

As we will now see, procedure MAKE HL produces with high probability an
HL sequence of the form (4) that has the following additional properties:

1. The size of HL is at least m− m
log n and

2.
⋃k

i=1 li = V .

We will prove these in that order. First we note that steps 6-9 of the procedure
can be executed at most m times, since each time step 7 is executed, the set
FM loses one label. Hence, whenever step 3 is executed, the set FV will always
consist of at least |V1| − m logn = n

2 − o(n) vertices. Also, it is easy to see
that the label l selected in step 6 of the procedure chooses each vertex in FV

independently with probability p. So, |Ll| is stochastically greater than a random
variable X ∼ B(|V1| − m logn, p). Clearly, E[X] = µ = (|V1| − m logn)p ≥
(n

2 − m logn) log n
m = Θ(n log n

2m).By Chernoff bounds and Boole’s inequality we
then have, for any constant β,

P{an execution of step 3 finds |Ll ∩ FV | ≤ (1 − β)µ} ≤ me−β2µ/2 → 0.

We have thus proved that with probability at least 1− exp
{
−β2n log n

6m

}
→ 1,

the procedure never stops due to the if-condition of step 3.
The only other way to end the procedure is by step 6 (and as we said before

the number of executions of step 7 is at most m). Suppose then that at some
point of the execution of the procedure the HL sequence has been extended so as
to contain m− k labels (i.e. the test of step 6 has been passed m− k− 1 times),
leaving exactly k “free” labels in FM . It is true that these labels continue to

502 C. Raptopoulos and P. Spirakis

select each member of FV independently with probability p. This means that the
probability that none of the free labels contains some of the vertices v1, . . . , vlog n

of step 5 is exactly (1 − p)k log n. Now, by Boole’s inequality, for k = m
log n , the

probability that some of the m− k − 1 first tests of step 6 fails is at most

m(1 − p)k log n ≤ exp {logm− pm} ≤ exp {logm− log n} → 0.

So, with probability 1 − exp {logm− logn} → 1 the HL sequence of procedure
MAKE HL(V1,M) has size at least m− m

log n .
Given now that the size of the HL sequence is at least m − m

log n we can see
that the mean number of vertices not covered by (i.e. not contained in) any label
of HL is at most

E[# vertices not covered by HL] ≤ n(1 − p)m− m
log n

≤ exp
{

logn−mp+
mp

logn

}
→ 0

for the values of m, p we have assumed. So, by Markov’s inequality, the HL
sequence of procedure MAKE HL(V1,M) covers all the vertices in V with prob-
ability at least 1 − exp

{
−h(n) + 1 + h(n)

log n

}
→ 1. We have thus proved the fol-

lowing:

Theorem 2. With probability at least

1 − exp
{
−β

2n logn
6m

}
− exp {logm− logn} − exp

{
−h(n) + 1 +

h(n)
logn

}
→ 1

procedure MAKE HL(V1,M) constructs an HL sequence of the form (4) that
covers all the vertices of the graph.

We now notice that if we manage to “close” the sequence HL in order to get a
sequence HC of the form (2), then we can run CONSTRUCT HAM(HC) to get
a Hamlilton cycle. This is where we use the set of vertices V2. Suppose that we
run MAKE HL(V2,M) but instead of choosing a random label to begin with at
step 2, we select label l1 of the HL sequence constructed by MAKE HL(V1,M).
By symmetry, a theorem similar to theorem 2 is also true in this case. This means
that all the vertices of V will be covered by the HL′ sequence constructed by
MAKE HL(V2,M). Also, by Chernoff bounds we can see that if lf is the last
label of HL, then

P{|Ll ∩ V2| ≤ (1 − β)
np

2
} ≤ e−β2np/4 → 0

for any constant β. Hence, label l has almost definitely some vertices in V2.

Simple and Efficient Greedy Algorithms for Hamilton Cycles 503

Suppose then that at some point of the execution of MAKE HL(V2,M) HL′

has the form

HL′ := l1 → v′1 → · · · → l′k

and that Llf ∩ Ll′
k
∩ FV �= ∅ (because of theorem 2 such a point always exists

with high probability). Then, if v ∈ Llf ∩ Ll′k
∩ FV , we can stop the procedure

and set

HC := HL → v → l′k → · · · → v′1 → l1.

Then it is easy to see that the sequence HC is of the form (2) and sat-
isfies all four conditions specified in section 3 so that we may run CON-
STRUCT HAM(HC) to get a Hamilton cycle.

Consequently, we have shown a polynomial (due to Lemma 2) greedy way
of finding a Hamilton cycle in a Gn,m,p graph with probability at least 1 −
2 exp

{
−h(n) + 1 + h(n)

log n

}
→ 1.

5 Conclusions and Further Work

We studied the problem of finding Hamilton cycles in uniform random inter-
section graphs. The discovery of efficient algorithms for other interesting graph
objects (e.g. long paths, giant components, dominating sets etc) is a subject of
our future work.

References

1. N. Alon and J.H. Spencer, “The Probabilistic Method”, Second Edition, John Wiley
& Sons, Inc, 2000.

2. Rene Beier and Berthold Vöcking, “Random Knapsack in Expected Polynomial
Time”, in the Proc. of the 35th Annual ACM Symposium on Theory of Computing,
ACM Press, 2003, pp. 232-241.

3. B. Bollobás, “Random Graphs”, Second Edition, Cambridge University Press, 2001.
4. B. Bollobás, T.I. Fenner and A.M. Frieze, “An algorithm for Finding Hamilton

Paths and Cycles in Random Graphs”, Combinatorica 7, 327-341.
5. Amin Coja-Oghlan and Anusch Taraz, “Colouring Random Graphs in Expected

Polynomial Time”, in the Proc. of the 20th Symposium of Theoretical Computer
Science (STACS 2003), Springer-Verlag, 2003, pp. 487-498.

6. J. Dı́az, M.D. Penrose, J.Petit and M. Serna, “Approximating Layout Problems on
Random Geometric Graphs”, Journal of Algorithms, 39:78-116, 2001.

7. J. Dı́az, J.Petit and M. Serna, “A Random Graph Model for Optical Networks of
Sensors”, in the 1st International Workshop on Efficient and Experimental Al-
gorithms, (WEA), 2003. Also in the IEEE Transactions on Mobile Computing
Journal, 2(3):186-196, 2003.

8. J. Dı́az, J.Petit and M. Serna, “Random Geometric Problems on [0, 1]2”, in
J. Rolim, M. Luby and M. Serna, editors, Randomization and Approximation Tech-
niques in Computer Science, volume 1518 of Lecture Notes in Computer Science,
pages 294-306, Springer Verlag, Berlin, 1998.

504 C. Raptopoulos and P. Spirakis

9. H. Efthymiou and P. Spirakis, “On the Existence of Hamiltonian Cycles in Ran-
dom Intersection Graphs”, in the Proc. of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP), Lecture Notes in Computer
Science, Vol. 3580 (Springer Verlag), pp. 690-701, 2005.

10. J.A. Fill, E.R. Sheinerman and K.B Singer-Cohen, “Random Intersection Graphs
when m = ω(n): An Equivalence Theorem Relating the Evolution of the G(n, m, p)
and G(n, p) models”, http://citeseer.nj.nec.com/fill98random.html

11. E. Godehardt and J. Jaworski, “Two models of Random Intersection Graphs for
Classification”, Studies in Classification, Data Analysis and Knowledge Organisa-
tion, Opitz O., Schwaiger M, (Eds), Springer Verlag, Berlin, Heidelberg, New York
(2002), 67-82.

12. Y. Gurevich and S. Shelah, “Expected Computation Time for Hamiltonian Path
Problem”, SIAM Journal on Computing, 16:486-502, 1987.

13. M. Karoński, E.R. Scheinerman and K.B. Singer- Cohen, “On Random Intersec-
tion Graphs: The Subgraph Problem”, Combinatorics, Probability and Computing
journal (1999) 8, 131-159.

14. E. Marczewski, “Sur deux propriétés des classes d’ ensembles”, Fund. Math. 33,
303- 307 (1945).

15. R. Motwani and P. Raghavan, “Randomized Algorithms”, Cambridge University
Press, 1995.

16. S. Nikoletseas, K. Palem, P. Spirakis and M. Yung, “Short Vertex Disjoint Paths
and Multiconnectivity in Random Graphs: Reliable Network Computing”, in the
Proceedings of the 21st International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Computer Science Vol. 820 (Springer
Verlag), pp. 508-519, 1994. Also, in the Special Issue on Randomized Computing
of the International Journal of Foundations of Computer Science (IJFCS), Vol. 11
No. 2 (2000), pp. 247-262, World Scientific Publishing Company, 2000

17. S. Nikoletseas, C. Raptopoulos and P. Spirakis, “The Existence and Efficient Con-
struction of Large Independent Sets in General Random Intersection Graphs”, in
the Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP), Lecture Notes in Computer Science (Springer Ver-
lag), 2004.

18. S. Nikoletseas and P. Spirakis, ”Expander Properties in Random Regular Graphs
with Edge Faults”, in the Proceedings of the 12th Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS), Lecture Notes in Computer Science
Vol. 900 (Springer Verlag), pp. 421-432,1995

19. M. Penrose, “Random Geometric Graphs”, Oxford Studies in Probability, 2003.
20. C. Raptopoulos and P. Spirakis, “Simple and Efficient Greedy Algorithms

for Hamilton Cycles in Random Intersection Graphs”, accepted paper in the
16th International Symposium on Algorithms and Computation (ISAAC), 2005,
http://students.ceid.upatras.gr/∼raptopox/fullpaper.ps.

21. K.B. Singer-Cohen, “Random Intersection Graphs”, PhD thesis, John Hopkins Uni-
versity, 1995.

22. A. Thomason, ”A simple linear expected time algorithm for the Hamilton cycle
problem”, Discrete Math., 75 (1989), pp. 373–379.

Counting Distinct Items over Update Streams

Sumit Ganguly

Indian Institute of Technology, Kanpur
sganguly@cse.iitk.ac.in

Abstract. We present two novel algorithms for tracking the number of
distinct items over high speed data streams consisting of insertion and
deletion operations that improves on the space and time complexity of
existing algorithms.

1 Introduction

Data streaming applications occur naturally in many established and emerging
application areas, such as database systems, network monitoring, sensor net-
works etc.. These applications are characterized by rapidly arriving voluminous
data and require algorithms that, (a) have low time complexity of processing
each stream update, and, (b) have sub-linear space complexity. In this paper,
we consider a class of data streaming applications that correspond to the update
model of streaming, that is, records arriving over a stream correspond to both
insertion and deletion of data (e.g., establishment and termination of a network
connection). In particular, consider the problem of estimating the number of
distinct items that have arrived over an update stream. Queries that count the
number of distinct items in a stream(s) satisfying given predicates play a signif-
icant role in decision-support applications. For example, consider the following
network monitoring query: find the number of distinct connections that have
been routed through router R1 and R2 but not through router R3.

We view update data streams as a sequence of arrivals of the form (i, v), where,
i is the identity of an item, assumed to be from the domain D = {0, 1, . . . , N−1},
and v is the change in frequency of i. That is, v > 0 specifies v insertions of the
item i and v < 0 correspondingly specifies v deletions of i. The frequency of
an item i, denoted by fi, is defined as fi =

∑
(i,v)∈S v. We assume that items

cannot have negative frequency. The metric F0 of a stream is defined as the
number of distinct items i in the stream whose frequency fi is positive (i.e., the
zeroth frequency moment F0 =

∑
fi>0 f

0
i). A canonical problem in the class

of distinct item queries is to estimate F0. The problem of estimating the size
of distinct item queries over stream(s) is a straightforward generalization of the
problem of estimating F0 [8]. We therefore restrict ourselves to the problem of
estimating F0.

Previous work. The append only model of streaming data refers to streams with-
out deletion operations. . The problem of estimating F0 has received considerable
attention for append-only data streams [7,1,2,4,5,10,11,12,3,13]. The algorithm

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 505–514, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

506 S. Ganguly

of [3] is the most time and space efficient among the algorithms that are ap-
plicable to append-only streams only. [13] presents a lower bound of Ω(1

ε2) for
estimating F0 to within an accuracy factor of 1± ε. (We use ε > 0 and 0 < δ < 1
to denote the accuracy and confidence parameters, respectively) The algorithms
of [10,11,12,3] use the technique of distinct samples[10,11,12,3], which is a simple
and elegant technique for estimating F0.

Algorithms for estimating F0 over streams with deletion operations [1,2,8,9]
use the technique of hashing introduced in [7]. The algorithms of [1,2,8] use
space O(1

ε2 · logN logm · log 1
δ) bits (where, m is the sum of frequencies of the

items in stream) and are the most space-economical among the algorithms for
estimating F0 over update streams. However, they require time O(1

ε2 log 1
δ) op-

erations for processing each stream update. The algorithm of [9] is the most
time-efficient among algorithms that estimate F0 over update streams and re-
quires time O(logN · (log 1

ε + log 1
δ)) to process each stream update. However, it

uses an additional factor of O(logN log 1
δ) in space, as compared to [1,2,8], that

is, its space complexity is O(1
ε2 log2N logm log2 1

δ) bits. This algorithm designs
an updatable distinct sample, which is a data structure that can be used for
both insertions and deletions of items and effectively yields a distinct sample
[10,11,12,3].

Our Contributions. We present two novel algorithms for estimating F0 over
update streams that improves upon the time and space complexity of existing
algorithms. Our first algorithm has time complexity O(log 1

ε + log 1
δ), which is

a logarithmic factor smaller than the time complexity of the most time effi-
cient algorithm currently known for this problem [9]. Its space complexity is
O(1

ε2 (logm+ logN) logN(log 1
δ + log 1

ε) log 1
δ) bits, which is lower than that of

[9] by a logarithmic factor. The improvement is a consequence of a more efficient
design of the updatable distinct samples structure. Our second algorithm for es-
timating F0 presents a time versus space tradeoff vis-a-vis our first algorithm. It
takes O

(
(log 1

ε)(log 1
δ)
)

time to process each stream update and requires space
O(1

ε2 (logN + logm) logN log 1
δ) bits, thus, using a logarithmic factor less space

and an extra logarithmic factor in time, in comparison with our first algorithm.

Organization. Sections 2 and 3 present the first and second algorithms respec-
tively.

2 Algorithm I

The distinct samples data structure [10,11,12] was used to estimate F0 over
append-only or sliding window data streams. In this section, we generalize the
structure so that it can be used to estimate F0 for streams with deletion opera-
tions. We begin with the TestSingleton data structure.

2.1 TestSingleton Data Structure

A TestSingleton data structure supports two operations, namely, (a) an
update operation corresponding to insertion and deletion operations over the

Counting Distinct Items over Update Streams 507

stream, called TestSingletonUpdate, and, (b) a procedure TestCard that
tests whether F0 is either 0, 1 or greater than 1, and accordingly returns Empty,
Singleton or Collision, respectively. Further, if TestCard returns
Singleton, then the unique member i comprising the singleton set and its
frequency fi is also returned.

A straightforward counting argument shows that a TestSingleton struc-
ture must use Ω(logN) bits. We keep three counters m,U and V (all initialized
to zero) with the following properties.

m =
∑

i∈ stream

fi, U =
∑

i∈ stream

fi · i, and V =
∑

i∈stream

fi · i2 .

The counters are easily maintained in the face of stream updates as shown below.

TestSingletonUpdate(i, v): m := m+ v; U := U + v · i ; V :=V + v · i2;

The space required is O(logm+logN) bits and the time required for the update
operation is O(1). The operation TestCard is given below.

TestCard: if (m = 0) return Empty
else if (U2 = m · V) then return (Singleton, U

m , m)
else return Collision

The correctness of this test is proved below.

Theorem 1. F0 = 1 if and only if m > 0 and U2 = m · V . If F0 = 1, then, the
unique item in the stream has identity U

m and has frequency m.

Proof. Let the stream consist of a single item i with frequency fi > 0. Then,
m = fi > 0, U = m · i and V = m · i2. Therefore, U2 = m ·V , m > 0 and i = U

m .
To prove the converse, let x be a random variable such that for 0 ≤ i ≤ N−1,

x = i with probability fi

m . Then, E [x] =
∑N−1

i=0
fi

m · i and E
[
x2
]

=
∑N−1

i=1
fi

m · i2.
Since m > 0, the condition, U2 = mV is equivalent to the condition, (E [x])2 =
E
[
x2
]
, or that, Var [x] = 0. Therefore, the set of items in the stream is either

empty or consists of a singleton item. Since, m > 0, the stream is not empty.
Therefore, F0 = 1. ��

2.2 K-Set Structure

A k-set structure, for parameter k, is a dictionary data structure that supports
insertion and deletion of items and an operation Retrset, that either returns
the set of items S present in the dictionary or returns nil. Further, if the number
of items |S| in the dictionary is at most k, then Retrset returns S (i.e., does
not return nil in this case).

Classic dictionary structures including heaps, binary search trees, red-black
trees, AVL trees etc., satisfy the requirements of a k-set data structure for all
values of k. However, these structures require space Ω(|S|), whereas, we require
a design whose space complexity is close to the lower bound of Ω(k log N

k) bits.

508 S. Ganguly

A randomized k-set data structure takes a confidence parameter δ such that if
|S| ≤ k, then Retrset returns S with probability 1 − δ.

We now present a design for a k-set structure. Our structure is a two dimen-
sional array H [R× B] and can be thought of as consisting of R = �log k

δ � hash
tables, each consisting ofB buckets indexed from 0 throughB−1, where,B = 2k.
Each bucket H [r, b] is a TestSingleton data structure. The rth hash table uses
a randomly chosen pair-wise independent hash function hr : {0, 1, . . . , N − 1} →
{0, 1, . . . , B − 1}; the random bits used by each of the R hash tables are in-
dependent. Further, we maintain a variable m that tracks the total sum of the
frequencies, that is, m =

∑
i∈S fi. The structure is initialized so that all counters

are initially zeros. For every stream update of the form (i, v), and for every hash
table index r, we hash the item to its bucket number hr(i) and propagate the
update to the corresponding TestSingleton structure in that bucket.

KsetUpdate(i, v): H [r, hr(i)].TestSingletonUpdate(i, v), for 1 ≤ r ≤ R.

The space used by the k-set structure is O(k(logm+ logN) log k
δ) bits and the

time complexity of processing each stream update is O(log k
δ).

The Retrset operation works as follows. We iterate over each of the B
buckets of each of the R hash tables checking whether the bucket H [r, b] is a
singleton or not, for r = 1, . . . , R, b = 0, . . . , B − 1. If the bucket is a singleton,
then the item and its frequency is retrieved using the TestCard subroutine
of the TestSingleton structure. In this manner, we retrieve the union Ŝ of
all the distinct items and their frequencies. Next, we preform a verification step,
that is, the frequencies of the (distinct) retrieved items are added and compared
with m. If they match, then Ŝ is returned, otherwise, nil is returned. The
correctness of the Retrset procedure is proved below.

Theorem 2. If Retrset �= nil, then Retrset = S. Further, if |S| ≤ k, then
Pr {Retrset = S} ≥ 1 − δ.

Proof. If a bucket H [r, b] is singleton, then, the TestSingleton structure cor-
rectly retrieves the item and its frequency. Therefore, the set Ŝ of retrieved items
is always a subset of S and

∑
i∈Ŝ fi ≤ m. Retrset returns non-nil only if∑

i∈Ŝ fi = m, which implies that Ŝ = S. Now suppose that |S| = s ≤ k. Fix an
item i ∈ S and a hash table index r. Let Ci be the number of items from S−{i}
that collide with i. Then, E [Ci] =

∑
j∈S,j =i Pr {hr(i) = hr(j)} = s−1

B , by pair-
wise independence of hr. By Markov’s inequality, Pr {Ci = 0} ≥ 1 − s−1

B > 1
2 ,

since, s ≤ k and B ≥ 2k. Therefore, the probability that i is not returned from
any of the R hash tables is less than 1

2R . Thus, the total error probability is at
most k

2R ≤ δ. ��

2.3 Updatable Distinct Samples Structure

A distinct sample of a stream with sampling probability p is a set D of items
such that each of the F0 distinct items in the stream has an equal and inde-
pendent chance of p of being included in D. An updatable distinct sample is

Counting Distinct Items over Update Streams 509

a data structure that enables the extraction of a distinct sample over streams
with insertions and deletion operations, thereby enabling distinct sampling based
estimation algorithms to be used for update streams.

Let F = GF (2d) be a field such that |F | ≥ N2, where, N is the size of the
domain of the items in the stream. An updatable distinct sample, with capacity
parameter s, can be implemented using an array D[1, . . . , log|F |], where, each
entry of the array, namely, D[r], is a k-set structure with k = s. A d-wise
independent random hash function h : F → F is chosen (d is a parameter) and
is used to define the function level : F → {1, . . . , log|F |} function as follows.
level(i) = 1 if h(i) = 0; otherwise, level(i) = lsb(h(i)). Here, lsb(a) denotes the
least significant bit position of a. Corresponding to a stream update of the form
(i, v), the data structure is updated by invoking the update operation of the
s-set structure D[level(i)].

DistSampUpdate(i, v): D[level(i)].KsetUpdate(i, v)

The current level lcurr of the updatable distinct sample is the lowest value of
1 ≤ l ≤ logN such that D[l].Retrset is non-nil. The distinct sample is defined
as D[lcurr].Retrset. The space required to store an updatable distinct sample
with capacity parameter s is O(s · (logm + logN) · logN · log s

δ) and the time
required to process each stream update is O(log s

δ + log 1
ε).1

F0 can be estimated for append-only streams using distinct samples of size
s = O(1

ε2 log 1
δ) items and using a degree of independence of d = O(log 1

ε) for the
hash family [3]. By using updatable distinct samples in place of distinct samples,
we obtain an algorithm for estimating F0 over update streams, that processes
each stream update in time O(log 1

ε +log 1
δ) and uses space O(1

ε2 ·(logm+logN)·
logN · (log 1

δ + log 1
ε) · log 1

δ) bits.

3 Algorithm II

In this section, we present our second algorithm2 for estimating F0.
The basic data structure is a two-dimensional table T [L × K], where, L =

log |F | (F is a field containing {0, 1, . . . , N − 1} and such that |F | ≥ N2)
and K = 720

ε2 . We keep two random hash functions namely, h : F → F and
g : F → {0, 1, . . . ,K− 1} that are d-wise independent, where, d = O(log 1

ε). h is
used to define a randomized level function as in Section 2.3, that is, level(i) = 1
if h(i) = 0, else level(i) = lsb(h(i)). Corresponding to each stream update of the
form (i, v), the data structure is updated as follows.

Algo2Update(i, v) : T [level(i), g(i)].TestSingletonUpdate(i, v)

That is, the item i is first hashed using the hash function h to obtain its level,
say l. Next, the item is hashed to a bucket index 0 ≤ g(i) ≤ K − 1 and the
1 In comparison, the updatable distinct samples structure of [9] requires space O(s ·

log m · log2 N · log s
δ
) bits and time O(log N · log s

δ
+ log 1

ε
) to process each stream

update.
2 We do not optimize the constants used in the algorithm.

510 S. Ganguly

TestSingleton structure at the entry T [l, g(i)] is updated accordingly. We
keep R = 96 · log 2

δ independent copies of the basic data structure. Finally, we
also keep a k-set structure, where, k = 126

ε2 , as explained in Section 2.2, and
maintain it in the presence of stream updates. The space used by the data
structure is O(1

ε2 logN(logm + logN) log 1
δ) bits and the time complexity of

processing each stream update is O(log 1
ε · log 1

δ) operations.
Each copy of the basic data structure yields an estimate F̂0 for F0 as follows.

We find the lowest level l such that the number X of the singleton buckets at
this level exceeds 12

ε2 and the number Z of the non-empty buckets exceeds 7K
8 . If

there is no such level, then, we return F̂0 = ⊥. Otherwise, we (numerically) solve

the equation X = F̂0
2l

(
1 − 1

K

) F̂0
2l −1 and return the smaller of the two possible

roots of this equation as F̂0. The median of the observations, denoted F̂median
0

from the copies is computed (ignoring those copies which have returned ⊥). If
the median value is at least 126

ε2 , then, the median value is returned, otherwise,
an estimate for F0 is obtained from the parallel k-set structure and returned.

The procedure is different from past work [1,2,3,8] in that, in previous work,
the count of the number of singleton buckets (or, a similar measure, such as
the number of non-empty buckets) was taken across independent observations.
In our case, the sum is taken across the buckets in the same hash table, and
hence, the observations are not even pair-wise independent. We are not aware of
Chernoff-like tail inequalities that are applicable in such a scenario3. Theorem 3
states the correctness property of the algorithm. Its proof relies on Lemma 1,
which is the main technical lemma of this section.

Theorem 3. Suppose ε ≤ 1
8 , K = 720

ε2 , d = O(log 1
ε) and R = 96 log 2

δ . Then,
the estimate returned by Algorithm II is within (1 ± 3ε)F0 with probability at
least 1 − 2δ.

Proof. Suppose F̂median
0 ≥ (1+ 3

4)72
ε2 = 126

ε2 . Then, by Lemma 1, this observation
happens with probability at most δ, provided, F0 <

72
ε2 . In this case, with prob-

ability 1− δ, the algorithm returns the estimate from the k-set structure, where,
k = 126

ε2 , which is exactly correct with probability 1−δ. Otherwise, by Lemma 1,
the algorithm returns F̂median

0 , which is within (1±3ε)F0 with probability 1− δ.
��

Lemma 1. Suppose ε ≤ 1
8 , K = 720

ε2 , F0 ≥ 72
ε2 , d = O(log 1

ε) and R = 96 · log 2
δ .

Then, Pr
{
|F̂median

0 − F0| ≤ 3εF0

}
> 1 − δ.

Analysis. Fix a level l. Consider the set of items in the stream that hash to
level l (i.e., level(i) = l). For each such item, let p denote the probability that
an item i is placed in a given bucket, that is, p = 1

K . Corresponding to bucket

3 [6] presents tail inequalities for sums of negatively dependent boolean variables that
assume that the hash function that distributes the balls to the buckets is fully in-
dependent. The techniques of [6] do not apply to the scenario when hash functions
have limited dependence.

Counting Distinct Items over Update Streams 511

numbered i at level l, 1 ≤ i ≤ K, we define an indicator variable xi that is 1 if
exactly one ball has mapped to this bucket and is 0 otherwise. Let X denote the
number of singleton buckets at this level, that is, X =

∑K
i=1 xi. If the random

hash functions are chosen from a d-wise independent hash family, then, we de-
note the corresponding probability function by Prd {·}, and the corresponding
expectations by Ed [·]. If the random hash function is chosen from a fully inde-
pendent hash family, then, we denote the corresponding probability function by
Pr {·} and the corresponding expectations as E [·]. Suppose that the number of
items that have hashed to level l is n, and let Pr {xi = 1} be denoted by q, then,
q = n

K (1 − 1
K)n−1, and E [X] = Kq. The following lemma can be used to obtain

bounds for Ed [X].

Lemma 2 ([3,8]). If h is d = O(log 1
ε)-wise independent and q ≤ 1

4 , then
|Prd {xi = 1} − q| ≤ ε4q. Therefore, |Ed [X] −Kq| ≤ ε4Kq. ��

The majority of the analysis is devoted to showing that X ∈ (1 ± ε)E [X]
(with probability at least 7

8). Lemma 3 justifies this line of argument by showing
that if X is close to E [X], then, F̂0(X), calculated as the smaller of the two

roots of the equation X = F̂0
2l (1 − 1

K)
F̂0
2l −1) is also close to F0. We denote

f(x) = x
2l (1− 1

K)
x

2l −1, so that, f(F0) = E [X]. Lemma 3 also shows that the gap
between the two roots is substantial.

Lemma 3. Let x = F0 and ε ≤ 1
8 . If x

2l ≤ 5K
24 , |f(x)−f(y)| ≤ εf(x) then either

|y − x| ≤ 3εx or y > 12x.

Proof. Let 0 < γ ≤ 1 and x = F0. f(x + γx) = f(x)(1 + γ)
(
1 − 1

K

)xγ/2l

.

Therefore, |f(x+γx)−f(x)| = f(x)|((1+γ)
(
1 − 1

K

)xγ/2l

−1)| ≥ f(x)((1+γ)(1−
γ
4)−1) ≥ f(x)14γ

24 . Since, |f(x+γx)−f(x)| ≤ εf(x), therefore, εf(x) ≥ 14
24 |γ|f(x),

or that, γ ≤ 24
14ε. If −1 < γ < 0, then a similar analysis holds.

Another solution to f(x + γx) = (1 + ε)f(x) occurs when γ ≥ γ′, where, γ′

satisfies the equation 1+γ′

1+ε = e
5γ′
24 . For ε ≤ 1

8 , γ′ > 11. ��

We now present an overview of the analysis, leading to a proof of Lemma 3.
The main article of interest is the following lemma that bounds the variance of
X . Let n denote the number of items that have mapped to the level l.

Lemma 4. Suppose that n ≤ K
4 , ε ≤ 1

4 and d ≥ max(3 + e, 2 logK). Then,
Vard [X] ≤ 2Kq + 2ε4K2q2 +K−2.

Proof. Pr {xi = 1} can be calculated to be n(K−1)n−1

Kn . For a fixed pair of distinct
buckets, i and j, let φ = φ(i, j) denote the event that after a random experiment,
buckets i and j are singleton. Therefore, Pr {φ} = Pr {xi = 1 and xj = 1} =
n(n−1)(K−2)n−2

Kn = n(n− 1)p2(1− 2p)n−2 < Pr{xi = 1}Pr{xj = 1}. The expres-
sion Pr {φ} = n(n− 1)p2(1 − 2p)n−2 can be viewed as a polynomial in p = 1

K .
Using the principle of inclusion and exclusion, an expression can be obtained for
Prd {φ} that is identical to the terms of this polynomial from degree 2 through d

512 S. Ganguly

(inclusive). Let Td denote the coefficient of pd in the polynomial and let Sd denote
the partial sum from s = 0 through d− 2 , that is, until the term for pd. Since,
the polynomial expression Pr{φ} is an alternating sum, |Pr {φ}−Sd| ≤ |Td| and
|Prd {φ} − Sd| ≤ |Td|. Therefore, using triangle inequality and the assumptions
that p = 1

K and n ≤ K
4 ,

|Prd {φ} − Pr {φ}| ≤ 2|Td| = 2d−1n(n− 1)pd

(
n− 2
d− 2

)
< K−4 .

Further, Pr {φ} < q2. Therefore, Ed [xixj] < q2 +K−4.

Vard [X] = Ed

[
X2]− (Ed [X])2 = Ed [X] + 2

∑
i<j

Ed [xixj] − (Ed [X])2

≤ Kq(1 + ε4) + 2
(
K

2

)(
q2 +K−4)− (Kq)2(1 − 2ε4)

≤ 2Kq + 2ε4K2q2 + 2K−2 . ��

Using Chebychev’s inequality and Lemma 4, the following lemma can be shown.

Lemma 5. If ε ≤ 1
4 , Ed [X] ≥ 8

ε2 , n ≤ K
4 and d ≥ 4 logK, then,

Prd {|X − Ed [X]| ≥ εEd [X]} ≤ 1
8 . ��

Our proof obligation is now two-fold, namely, (a) if a level satisfying the above
conditions on X and Z are found, and F0 ≥ 72

ε2 , then, Prd {|X − E [X]| > εE [X]}
< 1

8 , and, (b) if F0 ≥ 72
ε2 , then, there is a level l such that X ≥ 12

ε2 and Z ≥ 7K
8 .

We consider part (a) first. Lemma 5 assumes that E [X] ≥ 8
ε2 and n ≤ K

4 .
Assuming that we have found a level satisfying X ≥ 12

ε2 , Lemmas 6 shows that
E [X] ≥ 8

ε2 .

Lemma 6. If X ≥ 12
ε2 and K ≥ 512

ε2 then E [X] ≥ 8
ε2 .

Proof. Clearly, n ≥ X ≥ 12
ε2 . For 12

ε2 ≤ n ≤ K
4 ,Kq = n(1− 1

K)n−1 is an increasing

function of n. Therefore, in this range of n, Kq ≥ 12
ε2 (1 − 12/ε2

512/ε2) > 8
ε2 . ��

We now show in Lemma 7 that if we have observedX ≥ 12
ε2 , then, n ∈ (1±ε)Ed [n]

with reasonable probability.

Lemma 7. If ε ≤ 1
4 , X ≥ 12

ε2 and d ≥ 2, then, Prd {|n− Ed [n]| ≥ εEd [n]} ≤ 1
8 .

Proof. Since, X ≥ 12
ε2 , n ≥ 12

ε2 . Assuming d ≥ 2, Var [n] ≤ E [n]. If E [n] ≥
8
ε2 , then, Pr {|n− Ed [n]| ≥ εEd [n]} < Var[n]

(εEd[n])2 ≤ 1
ε2Ed[n] = 1

8 . Otherwise,

Pr
{
n ≥ 12

ε2

}
≤ Ed[n]

(12/ε2−Ed[n])2 ≤ 8/ε2

16/ε4 ≤ 1
32 . ��

We now return to the proof obligation of n ≤ K
4 . This follows from the observa-

tion that Z, the number of non-empty buckets, is at least 7K
8 , since, intuitively,

as n becomes a larger proportion of K, the number of empty buckets observed

Counting Distinct Items over Update Streams 513

must drop. Let yi be an indicator variable that is 1 if bucket i is non-empty and is
0 otherwise. Let Y =

∑K−1
i=0 yi denote the number of non-empty buckets. Then,

r = Pr {yi = 1} = 1 −
(
1 − 1

K

)n and E [Y] = Kr. Further, using the arguments
above, |Prd {yi = 1} − r| ≤ ε4r.

Lemma 8. Suppose ε ≤ 1
4 , n ≥ K

4 and K ≥ 512
ε2 , then, Prd

{
Y ≤ K

8

}
≤ 1

8 .

Proof. Since n ≥ K
4 , r ≥ 1 − (1 − 1

K)
K
4 ≥ 3

4 . Arguing similarly as in Lemma 4,
Vard [Yd] ≤ 2Kr+ 2ε4K2r2 + 2K−2. Further, if n ≥ K

4 , then, E [Y] = Kr ≥ 3K
4 .

The lemma now follows by applying Chebychev’s inequality. ��

Adding error probabilities in Lemmas 5, 7 and 8, we obtain that if X ≥ 12
ε2 and

Z ≥ 7K
8 , then, E [X] ≥ 8

ε2 , X ∈ (1 ± ε)E [X] and n ≤ K
4 , with probability at

least 1− 1
8 − 1

8 − 1
8 = 5

8 . We now consider the second part of the proof obligation,
namely, to show that there is a reasonable probability of finding a level l such
that X ≥ 12

ε2 and Z ≥ 7K
8 , provided, F0 ≥ 72

ε2 .

Lemma 9. Suppose ε ≤ 1
8 , K = 720

ε2 , F0 ≥ 72
ε2 and l = �log F0

36/ε2 �. Then,
Z ≥ 7K

8 and 12
ε2 ≤ X ≤ 81

ε2 is satisfied with probability 7
8 .

Proof. The expected number of items that map to level l is Ed [n] = F0
2l which

lies in the range of 36
ε2 and 72

ε2 . Arguing as in Lemma 7, it follows that Prd{|n−
Ed [n]| ≥ εn} < 1

24 . Therefore, we have 36
ε2 (1−ε) ≤ n ≤ 72

ε2 (1+ε), with probability
at least 23

24 . Therefore Z ≥ K − 81
ε2 = 720

ε2 − 81
ε2 > 7K

8 . Further, E [X] = Kq =
n(1 − 1

K)n−1 ≥ n(1 − n
K) > 30

ε2 and X ≤ n ≤ 72(1+ε)
ε2 = 81

ε2 . Therefore, by
Chebychev’s inequality, it follows that,

Prd

{
X ≤ 12

ε2

}
≤ Vard[X]

(Ed[X]− 12
ε2

)2 ≤ 2Kq+2ε4K2q2+K−2

(Kq(1−ε4)− 12
ε2

)2 ≤ 1
16 .

Total error probability is 1
16 + 1

24 = 1
8 . ��

Proof (Of Lemma 1). If F0 ≥ 72
ε2 , then, by Lemma 9, there exists a level with

probability at least 7
8 such that 12

ε2 ≤ X ≤ 81
ε2 and Z ≥ 7K

8 . In this case, the
algorithm returns a non-⊥ value as the estimate of F0. Since we keep keep 96 ·
log 2

δ independent copies, by Chernoff bounds, the probability that the number of
copies that returns a non-⊥ value is at least 60·log 2

δ is at least 1− δ
8 . By previous

arguments, for each such estimate, the probability that X ∈ (1 ± ε)E [X] is at
least 1− 3

8 = 5
8 . By Lemma 3, in each of these cases, F̂0 ∈ (1±3ε)F0. Therefore, by

a standard application of Chernoff’s bounds of returning the median of 60 log 2
δ

estimates F̂0, the error probability is reduced to δ
2 . Adding the error probabilities

δ
8 + δ

2 < δ, we obtain the statement of the lemma. ��

Acknowlegement

The author thanks Barna Saha for comments on the paper.

514 S. Ganguly

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Ap-
proximating the Frequency Moments”. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing STOC, 1996, pages 20–29, Philadelphia,
Pennsylvania, May 1996.

2. Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of ap-
proximating frequency moments”. Journal of Computer Systems and Sciences,
58(1):137–147, 1998.

3. Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
“Counting distinct elements in a data stream”. In Proceedings of the 6th Interna-
tional Workshop on Randomization and Approximation Techniques in Computer
Science, RANDOM 2002, Cambridge, MA, 2002.

4. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
“Min-wise independent permutations (Extended Abstract)”. In Proceedings of the
30th Annual ACM Symposium on the Theory of Computing STOC, 1998, pages
327–336, Dallas, Texas, May 1998.

5. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
“Min-wise independent permutations”. Journal of Computer Systems and Sciences,
60(3):630–659, 2000.

6. Devdatt Dubhashi, Volker Priebe, and Desh Ranjan. “Negative Dependence
through the FKG Inequality”. Basic Research in Computer Science, Report Series,
BRICSRS-96-27.

7. Philippe Flajolet and G.N. Martin. “Probabilistic Counting Algorithms for
Database Applications”. Journal of Computer Systems and Sciences, 31(2):182–
209, 1985.

8. Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. “Processing Set Expres-
sions over Continuous Update Streams”. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, CA, 2003.

9. Sumit Ganguly, Minos Garofalakis, Rajeev Rastogi, and Krishna Sabnani.
“Streaming Algorithms for Robust, Real-Time Detection of DDoS Attacks”. Bell
Laboratories Technical Memorandum, 2004.

10. Philip B. Gibbons. “Distinct Sampling for Highly-accurate Answers to Distinct
Values Queries and Event Reports”. In Proceedings of the 27th International Con-
ference on Very Large Data Bases, Roma, Italy, September 2001.

11. Philip B. Gibbons and Srikant Tirthapura. “Estimating simple functions on the
union of data streams”. In Proceedings of the 13th Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 2001, pages 281–291, Heraklion,
Crete, Greece, July 2001.

12. Philip B. Gibbons and Srikant Tirthapura. “Distributed streams algorithms for
sliding windows”. In Proceedings of the 14th Annual ACM Symposium on Paral-
lel Algorithms and Architectures, SPAA 2002, pages 63–72, Winnipeg, Manitoba,
Canada, August 2002.

13. Piotr Indyk and David Woodruff. “Tight Lower Bounds for the Distinct Elements
Problem”. In Proceedings of the 35th ACM Symposium on Theory of Computing
(STOC), 2003, San Diego, CA, 2003.

Randomized Algorithm for the Sum
Selection Problem�

Tien-Ching Lin�� and D.T. Lee��

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
{kero, dtlee}@iis.sinica.edu.tw

Abstract. Given a sequence of n real numbers A = a1, a2, . . . , an and a
positive integer k, the Sum Selection Problem is to find the segment
A(i, j) = ai, ai+1, . . . , aj such that the rank of the sum s(i, j) = j

t=i at

is k over all n(n−1)
2

segments. We will give a randomized algorithm
for this problem that runs in expected O(n log n) time. Applying
this algorithm we can obtain an algorithm for the k Maximum Sums
Problem, i.e., the problem of enumerating the k largest sum segments,
that runs in expected O(n log n + k) time. The previously best known
algorithm for the k Maximum Sums Problem runs in O(n log2 n + k)
time in the worst case.

Keywords: computational geometry, randomized algorithm, random
sampling, order-statistic tree, k maximum sums problem, sum selection
problem, maximum sum problem, maximum sum subarray problem.

1 Introduction

Given a sequence A of real numbers a1, a2, . . . , an, the Maximum Sum Problem
is to find the segment A(i, j) = ai, ai+1, . . . , aj whose sum s(i, j) =

∑j
t=i at is the

maximum among all possible 1 ≤ i ≤ j ≤ n. This problem was first introduced
by Bentley [1,2] and can be easily solved in O(n) time [2,3].

Given anm×nmatrix of real numbers (assuming thatm ≤ n), the Maximum
Sum Subarray Problem is to find the submatrix, the sum of whose entries
is the maximum among all O(m2n2) submatries. The problem can be solved in
O(m2n) time [2,3,4]. Tamaki and Tokuyama [5] gave the first sub-cubic time
algorithm for this problem and Takaoka [6] later gave a simplified algorithm
achieving sub-cubic time as well. Many parallel algorithms under different par-
allel models of computation were also obtained [4,7,8,9].
� Research supported in part by the National Science Council under the Grants NSC-

92-3112-B-001-018-Y, NSC-92-3112-B-001-021-Y, NSC-92-2218-E-001-001, NSC 93-
2422-H-001-0001, NSC 93-2213-E-001-013 and NSC 93-2752-E-002-005-PAE, and by
the Taiwan Information Security Center (TWISC), National Science Council under
the Grants NSC 94-3114-P-001-001-Y and NSC 94-3114-P-011-001.

�� Also with Institute of Information Science, Academia Sinica, Nankang, Taipei 115,
Taiwan.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 515–523, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

516 T.-C. Lin and D.T. Lee

The Maximum Sum Problem can find many applications in pattern recog-
nition, image processing and data mining [10,11]. A natural generalization of the
above Maximum Sum Problem is to find the k segments such that their sums
are the k largest over all n(n−1)

2 segments. Bae and Takaoka [12] presented an
O(kn) time algorithm for this problem. Bengtsson and Chen [13] recently gave
an algorithm that runs in O(n log2 n + k) time in the worst case. In this paper
we will give an expected O(n log n + k) time algorithm based on a randomized
algorithm which finds in expected O(n log n) time the segment whose sum is the
kth smallest, for any given positive integer 1 ≤ k ≤ n(n−1)

2 . The latter problem
is referred to as the Sum Selection Problem. The randomized algorithm is
based on a random sampling technique given in [14,15].

The rest of the paper is organized as follows. Section 2 gives three subrou-
tines for solving the Sum Selection Problem. Section 3 gives a randomized
algorithm for the Sum Selection Problem and and a randomized algorithm
of the k Maximum Sums Problem. Section 4 gives some conclusion.

2 Subroutines for Sum Selection Problem

We define the rank r(x, P) of an element x in a set P to be the number of elements
in P no greater than x, i.e. r(x, P) = |{y|y ∈ P, y ≤ x}|. Given a sequence A
of real numbers a1, a2, . . . , an, and a positive integer 1 ≤ k ≤ n(n−1)

2 , the Sum
Selection Problem is to find the segment A(i, j) over all n(n−1)

2 segments
such that the rank of the sum s(i, j) =

∑j
t=i at in the set of possible subsequence

sums is k. We will give a randomized algorithm for this problem that runs in
expected O(n log n) time. Our randomized algorithm for the Sum Selection
Problem is based on three subroutines. In this section we will consider these
three subproblems first.

For ease of notation, we assume each sum s(i, j) =
∑j

t=i at is associated with
the indices i and j of the segment, and only the sum will be produced rather
than the actual segment itself. For convenience we shall without confusion use
the segment A(i, j) and its corresponding sum s(i, j) interchangeably.

We define the set P = {x0, x1, . . . , xn}, where xi =
∑i

t=1 at, i = 1, 2, . . . , n
and x0 = 0 is the prefix sum A(1, i) of the sequence A(1, n). Thus, s(i, j) of
A(i, j) is then equal to xj −xi−1. Let Pj = {x0, x1, . . . , xj}. We will maintain an
order-statistic tree T (Pj) on Pj . An order-statistic tree [16] is simply a balanced
binary search tree with additional information, size[z], stored in each node z of
the tree, containing the total number of nodes in the subtree rooted at z. size[z]
is defined as size[z] = size[left[z]]+size[right[z]]+1, where left[z] and right[z],
denote respectively the left and right children of node z, and size[z] = 1, if z
is a leaf node. The order-statistic tree T (Pj) allows the rank of an element x
to be determined in O(log n) time, i.e. we can find the rank r(x, Pj) = |{y|y ∈
Pj , y ≤ x}| for any x not necessarily in Pj in O(log n) time, retrieve an element
in T (Pj) with a given rank in O(log n) time and maintain both insertion and
deletion operations in T (Pj) in O(log n) time.

Randomized Algorithm for the Sum Selection Problem 517

The first subproblem, called reporting version of Sum Range Query Prob-
lem, is considered as follows: Given a sequence A of n real numbers a1, a2, . . . , an

and two real numbers s	, sr with s	 ≤ sr, find all segments A(i, j), 1 ≤ i ≤ j ≤ n,
among all n(n−1)

2 segments such that their sums s(i, j) satisfy s	 ≤ s(i, j) ≤ sr.
To solve this subproblem, it suffices to iterate on each j finding all xi ∈ Pj−1
such that s	 ≤ xj − xi ≤ sr. At each iteration j, we can maintain T (Pj−1) dy-
namically such that we can find all the numbers xi ∈ [xj − sr, xj − s] by binary
search in O(log n + hj) time, where hj is the total number of segments s(i, j),
for all i < j such that s	 ≤ s(i, j) ≤ sr and then we can insert xj into T (Pj−1)
to obtain T (Pj) in O(log n) time.

Lemma 1. The reporting version of the Sum Range Query Problem can be
solved in O(n) space and O(n log n+ h) time, where h is the output size.

The second subproblem, called counting version of Sum Range Query
Problem, is defined as before, except that we want to find the number of seg-
ments that satisfy the range query.

To solve this subproblem, it suffices to iterate on each j counting the total
number of elements xi in Pj−1 such that s	 ≤ xj − xi ≤ sr. At each iteration
j, we can make a rank query to the order-statistic tree T (Pj−1) to count the
total number, say αj , of elements xi ∈ Pj−1 such that xi < xj − sr and make
another rank query to count the total number, say βj , of elements xi ∈ Pj−1
such that xi ≤ xj − s	. After these two queries we insert xj into T (Pj−1) to
obtain T (Pj). We get tj = βj − αj to be the total number of elements in Pj−1
lying in [xj − sr, xj − s]. Hence t = t1 + t2 + . . . + tn is the total number of
segments such that their sums are between s	 and sr.

Lemma 2. The counting version of the Sum Range Query Problem can be
solved in O(n) space and O(n log n) time.

We now address the third subproblem called, Random Sampling Sum Se-
lection Problem which is defined as follows: Given a sequence A of n real
numbers a1, a2, . . . , an and two real numbers s	, sr with s	 ≤ sr, randomly gen-
erate n segments among all n(n−1)

2 segments such that their sums are between
s	 and sr. Let N ≥ n be the total number segments among all n(n−1)

2 segments
such that their sums are between s	 and sr. Note that N = t1+t2+. . .+tn can be
obtained by running the counting algorithm for Sum Range Query Problem,
where tj is the total number of segments s(i, j), i < j, such that s	 ≤ s(i, j) ≤ sr.
We first select allowing duplicates, n random integers R = {r1, r2, . . . , rn} dis-
tributed uniformly in the range from 1 to N . Since N = O(n2) we can sort
them by radix sort and rename them such that r1 ≤ r2 ≤ . . . ≤ rn in O(n)
time. Let τj = t1 + t2 + . . . + tj . For each j there exist rc, rc+1, . . . , rc+d ∈ R
such that τj−1 < rc ≤ rc+1 ≤ . . . ≤ rc+d ≤ τj . We would like to find
segments sc, sc+1, . . . , sc+d with a one-to-one correspondence respectively to
rc, rc+1, . . . , rc+d. To do so, we first make a rank query to the order-statistic
tree T (Pj−1) to count the total number αj of elements xi ∈ Pj−1 such that
xi < xj−sr. We then retrieve the element xqi ∈ Pj−1 so that xqi has a rank equal

518 T.-C. Lin and D.T. Lee

to (αj+rc+i−τj−1) in Pj−1, and let sc+i = s(qi, j) for each i = 0, 1, ..., d. We thus
can obtain the set of random sampling sums or segments, S = {s1, s2, . . . , sn}.

Lemma 3. The Random Sampling Sum Selection Problem can be solved
in O(n) space and O(n log n) time.

3 Algorithm for Sum Selection Problem and k Maximum
Sums Problem

In this section we consider the Sum Selection Problem and then use it to
solve the k Maximum Sums Problem. Given a sequence A of real numbers
a1, a2, . . . , an, and a positive integer k, the Sum Selection Problem is to
find the segment A(i, j) over all n(n−1)

2 segments such that the rank of the sum
s(i, j), 1 ≤ i ≤ j ≤ n is k. We will give a randomized algorithm for this problem
by random sampling technique [14,15].

We shall consider a more general version, called Sum Selection Range
Query Problem defined as follows. Given an interval [sl, sr] which contains N
segments whose sums are between sl and sr, we would like to find the kth smallest
segment among these N segments in the interval. Let s∗ denote the sum of the
kth smallest segment in the interval. Note that the Sum Selection Problem is
just a special case of this problem such that N = n(n−1)

2 and [s	, sr] = (−∞,∞).
The randomized algorithm for the Sum Selection Range Query Problem

will contract the interval [sl, sr] into a smaller subinterval [sl′ , sr′] such that it
also contains s∗ and the new subinterval [sl′ , sr′] contains at most O(N/

√
n)

segments. It will repeat to contract the interval several times until the interval
[sl′ , sr′] contains not only s∗ but also at most O(n) segments. It then outputs all
the segments in [sl′ , sr′] by the reporting algorithm of the Sum Range Query
Problem and find the solution segment with an appropriate rank and whose
sum is s∗ by using any standard selection algorithm.

Our randomized algorithm for the Sum Selection Range Query Problem
runs as follows: We first use the random sampling subroutine to select out of
a total of N segments, n randomly independent segments S = {s1, s2, . . . , sn}
whose sums lie in the interval [sl, sr] in O(n log n) time.

Whenever we select a random segment in [sl, sr], it has the probability
k
N such that it is smaller than s∗. Consider such an event as a “success” in
performing n independent Bernoulli trials, each with a probability of p = k

N .
Let m be a random number denoting the total number of successes in the n
independent Bernoulli trials. It is easy to see that random variable m will obey
binomial distribution with probability density function

b(n,m, p) =
(

n
m

)
pm(1 − p)n−m.

The expected value of m is µ = np = n k
N and the standard deviation is

σ =
√
np(1 − p) ≤

√
n

2 . Hence we expect that the wth smallest element in S,

Randomized Algorithm for the Sum Selection Problem 519

where w = �np� = �n k
N � should be a good approximation for the kth smallest

segment s∗. Let l
′

= max{1, �n k
N − t

√
n

2 �} and r
′

= min{n, �n k
N + t

√
n

2 �}, for
some constant t to be determined later. After random sampling, we can find the
l
′th smallest element s	′ and the r

′th smallest element sr′ in S by any standard
selection algorithm in O(S) time to obtain the subinterval [s	′ , sr′].

The key step of the randomized algorithm is as follows. We check the following
two conditions by the counting algorithm of Sum Range Query Problem in
O(n log n) time:

(1) The sum s∗ of the kth smallest segment lies in the subinterval [s	′ , sr′].
(2) The subinterval [s	′ , sr′] contains at most t2N/((t − 1)

√
n) (< 2tN/

√
n)

segments.

Let k1 and k2 be the total number of segments lying in [s	, s	′) and [s	, sr′]
respectively. Note that s∗ lies in the subinterval [s	′ , sr′] if and only if k1 < k and
k2 ≥ k. If both of these conditions hold, we replace the current interval [s	, sr]
by the subinterval [s	′ , sr′] and let k

′
= k − k1. If either (1) or (2) is violated,

we repeat the algorithm from scratch again until both (1) and (2) are satisfied:
i.e. We need to select n random independent segments with replacement in the
interval [s	, sr] by running the random sampling algorithm again to obtain a new
subinterval [s	′ , sr′] and then check the above two conditions (1) and (2) for the
new subinterval [s	′ , sr′].

Since the algorithm of Sum Selection Problem starts withN = n(n−1)
2 seg-

ments in the initial interval [s	, sr] = (−∞,∞), after the first successful random
sampling which satisfies conditions (1) and (2) we have an interval [s	′ , sr′] which
contains the k

′th smallest segment with sum s∗ and has O(n2/
√
n) = O(n

3
2)

segments and after the second successful random sampling which satisfies condi-
tions (1) and (2) we have an interval [s	′′ , sr′′] which contains the k

′′th smallest
segment with sum s∗ and has O(n

3
2 /

√
n) = O(n) segments. Then, we can enu-

merate all segments in the interval [s	′′ , sr′′] in O(n log n+n) = O(n log n) time
by the reporting algorithm of Sum Range Query Problem and select the
k

′′th smallest segment with sum s∗ from those segments by using any standard
selection algorithm in O(n) time.

We now show that with a high probability, the kth smallest segment with sum
s∗ lies in the subinterval [s	′ , sr′] and the subinterval [s	′ , sr′] contains at most
t2N/((t− 1)

√
n) segments.

Let us introduce the famous Chernoff’s bound in probability theory.

Lemma 4 (Chernoff’s bound [17,18]). Let X1, X2, · · · , Xn be independent
random variables, each attaining value 1 with probability p and value 0 with
probability 1 − p. Let X = X1 +X2 + · · · +Xn and µ = np be the expectation of
X. Then for any t ≥ 0 we have

(1) Pr[X ≤ µ− t
√
n] ≤ e−2t2 .

(2) Pr[X ≥ µ+ t
√
n] ≤ e−2t2 .

520 T.-C. Lin and D.T. Lee

(3) Pr[X ≤ (1 − t)µ] ≤ e−t2µ/2.
(4) Pr[X ≥ (1 + t)µ] ≤ (et

(1+t)(1+t))µ.

Lemma 5. For a random choice of n independent segments with replacement
among the N segments in the interval [s	, sr], the probability that the subinterval
[s	′ , sr′] contains at least t2N/((t − 1)

√
n) segments is at most e−

√
n/(2(t−1)),

where �
′
and r

′
are as defined earlier .

Proof. Assume that a random sampling S in the algorithm of the Sum Se-
lection Range Query Problem obtains a subinterval [s	′ , sr′] contain-
ing more than t2N/((t − 1)

√
n) segments for a random choice of n indepen-

dent segments with replacement among the N segments in the interval [s	, sr].
Hence, whenever we select a random segment si in [s	, sr], it has probabil-
ity larger than t2N/((t−1)

√
n)

N = t2

(t−1)
√

n
such that si lies in [s	′ , sr′]. We

again think such an event as a “success”, each with a probability of suc-
cess equal to p ≥ t2/((t − 1)

√
n). Let Xi be the random variable, attain-

ing value 1 with probability p ≥ t2/((t − 1)
√
n) if the ith selected segment

falls in [s	′ , sr′] and value 0 with probability 1 − p if the ith selected segment
falls outside [s	′ , sr′]. Let X = X1 + X2 + · · · + Xn be the total number of
selected segments falling in [s	′ , sr′]. The expectation of the random experi-
ment is µ = np ≥ nt2/((t − 1)

√
n) = t2

√
n/(t − 1). Note that s	′ and sr′

are the l
′th and r

′th smallest elements in the random sampling S respectively.
It means that the random sampling S contains exactly r

′ − �
′

(≤ t
√
n) suc-

cessful sample segments lying in [s	′ , sr′]. By the Chernoff bound, we have
Pr[X ≤ t

√
n] ≤ Pr[X ≤ (1 − 1

t)µ] ≤ e−µ/2t2 ≤ e−
√

n/2(t−1).

Lemma 6. For a random choice of n independent segments with replacement
among the N segments in the interval [s	, sr], the probability that the kth smallest
segment with sum s∗ not lying in the subinterval [s	′ , sr′] is at most 2e−t2/2,
where �

′
and r

′
are defined as earlier.

Proof. LetXi be the random variable, attaining value 1 with probability p = k
N if

the ith sample segment is smaller than or equal to s∗ and value 0 with probability
1− p if the ith sample segment is larger than s∗. If the r

′th smallest segment sr′

in S smaller than s∗, it means that at least r
′

among the n randomly sample
segments fall before s∗. Let X = X1 + X2 + · · · + Xn be the total number of
sample segments falling before s∗ and µ = np. By the Chernoff bound, we have
Pr[X ≥ r

′
] = Pr[X ≥ µ+ t

√
n

2] ≤ e−t2/2. Similarly, By the Chernoff bound, we
have Pr[X ≤ l

′
] = Pr[X ≤ µ− t

√
n

2] ≤ e−t2/2.

Now, we can choose t large enough such that 2e−t2/2 ≤ 1
4 and then we can

find some large enough positive integer n0 such that e−
√

n/(2(t−1)) ≤ 1
4 for all

n ≥ n0. For example, we can choose t = 3 and n0 = 31 respectively. Therefore,
if the size n of the input sequence is larger than or equals to n0, we just need to
repeat the key step at most twice on the average in the randomized algorithm

Randomized Algorithm for the Sum Selection Problem 521

of the Sum Selection Range Query Problem. Otherwise we can solve the
Sum Selection Range Query Problem directly by brute force.

We thus conclude with the following theorem.

Theorem 1. The Sum Selection Problem can be solved in O(n) space and
expected O(n logn) time.

Theorem 2. The k Maximum Sums Problem can be solved in O(n) space
and expected O(n logn+ k) time.

Proof. Let � = n(n−1)
2 − k + 1 and r = n(n−1)

2 . We can run the randomized
algorithm of the Sum Selection Problem to obtain the �th smallest segment
s	 and rth smallest segment sr respectively in expected O(n logn) time and then
we can enumerate them by the algorithm for the reporting version of the Sum
Range Query Problem in the interval [s	, sr] in O(n log n+ k) time.

Remark 1. Combining the algorithm for the Sum Selection Problem and
the algorithm for the reporting version of the Sum Range Query Problem not
only allows us to find the first k largest sum segments in expected O(n log n+k)
time but also allows us to find all segments the ranks of whose sum, are between
k1 and k2 in expected O(n log n + (k2 − k1)) time, where k1 and k2 are two
positive integers such that 1 ≤ k1 ≤ k2 ≤ n(n−1)

2 .

We now consider the k Maximum Sums Problem for higher dimensional
case. Bengtsson and Chen [13] use one-dimensional algorithm of k Maximum
Sums Problem as a subroutine to solve the problem for higher dimensional case.
We will follow their idea but use our one-dimensional randomized algorithm of k
Maximum Sums Problem as a subroutine. We consider the two-dimensional k
Maximum Sums Problem as an example. Given an m×n matrix A = (ai,j) of
real numbers (assuming that m ≤ n), the objective is to find the k submatrices
such that their sums are the k largest values over all O(m2n2) submatrices. The
pseudo-code of our two-dimensional randomized algorithm of k Maximum Sums
Problem is as follows:

1. Compute a new matrix B = (bi,j), where bi,j =
∑i

t=1 at,j , in O(mn) time;
2. For each i and j, 1 ≤ i ≤ j ≤ m

(a) Create a sequence Ai,j = a1, a2, . . . , an, where at = bj,t − bi−1,t;
(b) Solve the k Maximum Sums Problem on Ai,j by one-dimensional al-

gorithm and output the set Si,j of the k segments such that their sums
are the k largest values over all segments in Ai,j ;

3. Select the k largest elements in
⋃

1≤i≤j≤m Si,j by any standard selection
algorithm in O(m2k) time;

Theorem 3. The two-dimensional k Maximum Sums Problem of an m × n
matrix can be solved in expected O(m2(n logn+ k)) time.

We can further apply the Bengtsson and Chen’s d-dimensional algorithm to
solve the d-dimensional k Maximum Sums Problem in O(n2d−2(n logn+ k))
time. It improves the previous algorithm [13] that runs in O(n2d−2(n log2 n+k))
time in the worst case.

522 T.-C. Lin and D.T. Lee

4 Conclusion

In the paper we have presented a randomized algorithm for the Sum Selection
Problem that runs in expected O(n log n) time. We have applied it to give
a more efficient algorithm for the k Maximum Sums Problem that runs in
expected O(n logn+ k) time. It is better than the previously best known result
for the problem, but whether one can find a deterministic algorithm for the
problem that runs within the same time bound is still open.

References

1. Bentley, J. Programming perals: algorithm design techniques. Commun. ACM, 27,
9:865-873, 1984.

2. Bentley, J. Programming perals: algorithm design techniques. Commun. ACM, 27,
11:1087-1092, 1984.

3. Gries, D. A note on the standard strategy for developing loop invariants and loops.
Science of Computer Programming, 2:207-214, 1982.

4. Smith, D. Applications of a strategy for designing divide-and-conquer algorithms.
Science of Computer Programming, 8:213-229, 1987.

5. Tamaki, H., Tokuyama, T. Algorithms for the maximum subarray problem based
on matrix multiplication. Proceedings of the ninth annual ACM-SIAM symposium
on Discrete algorithms, 446-452, 1998.

6. Takaoka, T. Efficient algorithms for the maximum dubarray problem by fistance
matrix multiplication. Proceedings of the 2002 australian theory symposium, 189-
198, 2002.

7. Alk, S., Guenther, G. Application of broadcasting with selective reduction to the
maximal sum subsegment problem. International journal of high speed computat-
ing, 3:107-119, 1991.

8. Qiu, K., Alk, S. Parallel maximum sum algorithms on interconnection networks.
Technical Report No. 99-431, Jodrey School of Computer Science, Acadia Univer-
sity, Canada, 1999.

9. Perumalla, K., Deo, N. Parallel algorithms for maximum subsequence and maxi-
mum subarray. Parallel Processing Letters, 5:367-373, 1995.

10. Fukuda, T., Morimoto, Y., Morishita, S. Tokuyama, T. Mining association rules
between sets of items in large databases. Proceedings of the 1996 ACM SIGMOD
international conference on management of data, 13-23, 1996.

11. Agrawal, R., Imielinski, T. Swami, A. Data mining using two-dimensional opti-
mized association rules: scheme, algorithms, and visualization. Proceedings of the
1993 ACM SIGMOD international conference on management of data, 207-216,
1993.

12. Bae, S. E., Takaoka, T. Algorithms for the problem of k maximum sums and a VLSI
algorithm for the k maximum subarrays problem. 2004 International Symposium
on Parallel Architectures, Algorithms and Networks, 247-253, 2004.

13. Bengtsson, F., Chen, J. Efficient Algorithms for k Maximum Sums. Algorithms
and Computation, 15th International Symposium, ISAAC 2004, 137-148.

14. Michael H. Dillencourt, David M. Mount, and Nathan S. Netanyahu. A Ran-
domized Algorithm for slope selection. International Journal of Computational
Geometry and Applications, vol. 2, No. 1:1–27, 1992.

Randomized Algorithm for the Sum Selection Problem 523

15. J. Matoušek. Randomized optimal algorithm for slope selection. Information
Processing Letters, 39(4):183–187, 1991.

16. Thomas. H. Cormen, Charles. E. Leiserson. and Ronald L. Rivest. Introdution to
Algorithms, MIT Press.

17. Noga Alon, Joel H. Spencer and Paul Erdǒs. The Probabilistic Method, Wiley-
Interscience Series.

18. Rajeev Motwani, Probhakar Raghavan. Randomized Algorithms, Cambridge.

An Improved Interval Routing Scheme for
Almost All Networks Based on

Dominating Cliques
(Extended Abstract)

Martin Nehéz1 and Daniel Olejár2

1 Department of Computer Science and Engineering,
FEE CTU Prague, Karlovo náměst́ı 13,

121 35 Praha 2, Czech Republic
nehez@fel.cvut.cz

2 Department of Computer Science,
FMPI, Comenius University in Bratislava,

Mlynská dolina,
842 48 Bratislava, Slovak Republic

Abstract. Motivated by the peer-to-peer content sharing systems in
large-scale networks, we will study interval routing schemes in Erdös-
Rényi random graphs. C. Gavoille and D. Peleg [13] posed an open
question of whether almost all networks support a shortest-path interval
routing scheme with 1 interval. In this paper, we answer this question
partially by proving that in almost all networks, there is an interval rou-
ting scheme with 1 interval up to additive stretch 2. Our proof is based
on the properties of dominating cliques in random graphs.

Keywords: Interval routing, random graphs, dominating cliques, addi-
tive stretch routing scheme.

1 Introduction

Routing in networks is a fundamental operation in distributed computing. How-
ever, the effectiveness of routing can deteriorate rapidly especially in large net-
works such as Internet in case of heavy traffic. Hence, the question of effectiveness
of routing strategies is of great significance. Several universal routing techniques
are known. We will focus of one of them in this paper - interval routing.

The interval routing is space-efficient routing method which historically has
been implemented in INMOS C104 router [22] and recently, in Freenet peer-
to-peer (shortly P2P) content sharing system [3]. The latter one uses the idea
of interval routing for retrieving files from local datastores according to keys.
This application has been successfully implemented in decentralized large-scale
distributed systems based on the P2P paradigm. An interesting question arises in
this context that what is an authentic model of typical large-scale decentralized
networks. Based on the several previous works, we will focus on the networks
modelled by random graphs [4,9,13,19].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 524–532, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Improved Interval Routing Scheme for Almost All Networks 525

1.1 Model of Random Graphs

We consider a point-to-point communication network modeled by a simple con-
nected graph G = (V,E), where V is the set of nodes (or processors or routers)
and E is a set of edges (or bidirectional communication links). To describe al-
most all networks we will use the random graph model defined as follows. Let
p, 0 ≤ p ≤ 1, be a probability of an edge. The (probabilistic) model of random
graphs G(n, p) consists of all graphs with n-node set V such that each graph has
at most

(
n
2

)
edges being inserted independently with probability p. Equivalently,

if G is a graph with node set V and it has |E(G)| edges, then:

Pr[G] = p|E(G)|(1 − p)(
n
2)−|E(G)| ,

where Pr is a probability measure defined on G(n, p). This model is also called
Erdös-Rényi random graph model [1,16].

Let A be any set of graphs from G(n, p) with a property Q. We say that
almost all graphs (networks) have the property Q iff:

Pr[A] → 1 as n → ∞ .

1.2 Interval Routing

Given an n-node graph G = (V,E), an interval routing is based on a suitable
labeling scheme for nodes and edges in G. A node label is an element of the set
{1, . . . , n} and an arc label (i.e., outgoing edge label) is a cyclic interval [a, b]
with a, b ∈ {1, . . . , n}, where [a, b] = {a, a + 1, . . . , b} for a ≤ b and [a, b] =
{a, a+ 1, . . . , n, 1, . . . , b} for a > b. Formally, a pair (L, I) is an interval labeling
scheme on G (shortly ILS), if:

1. L : V → {1, . . . , |V |} is one-to-one mapping (labeling) of V ,
2. I is an arc-labeling I : E → 2L(V), such that:

– for every v ∈ V, { I(v, u) | (v, u) ∈ E } ∪ L(v) = {1, . . . , |V |};
– for every distinct arcs (v, u), (v, w) of E, I(v, u) ∩ I(v, w) = ∅.

If the edge labeling assigns at most k intervals per arc and the routing strategy
guarantees that the messages always arrive at their destinations, then the ILS
is said to be a k interval routing scheme (k-IRS).

We will deal with additive stretched routing schemes, rather than multiplica-
tive stretched ones. A path of a graph is δ-stretched if the length of the path is at
most the length of a shortest path between its extremities plus δ. A δ-stretched
k-IRS, denoted by (k, δ)-IRS, is a k-IRS for which all the routes are δ-stretched
paths. A (k, 0)-IRS is also called a shortest-path k-IRS. Fig. 1 depicts two in-
terval routing schemes on a 6-cycle. For more precise formulations and other
details, see [11,12,26]. The problem of determining whether a graph supports a
shortest path 1-IRS is NP-complete [6].

If G is a connected graph, then we denote by IRNδ(G) the smallest integer
k such that G supports a (k, δ)-IRS. The number IRN0(G) is also called the
compactness of G.

526 M. Nehéz and D. Olejár

[6, 2]

[3, 4]
[5, 1]

[4, 6]

[6, 1]

1

2

35

6 [1, 3]
[5, 6] [2, 4]

[2, 3]

[4, 5] [3, 5]

[5, 6]

4

[6, 3]

[4]
[5, 2]

[4, 1]

1

3

6 [1, 4]
[6] [2, 5]

[3]

[3, 6]

[2]

4

2

5

[1]
[5]

Fig. 1. A shortest-path 1-IRS (left side) and a 2-stretched 1-IRS (right side)

1.3 Previous Works and Our Result

Flammini, van Leeuwen, and Marchetti-Spaccamela [7] proved a non-constant
lower bound on (k, 0)-IRS on G(n, p). They pointed out that, with high prob-
ability, a random graph from G(n, p) requires Ω(n1−1/Θ(

√
log n)) intervals per

outgoing edge for some specific value of p, namely for p = 1/n1−1/Θ(
√

log n). On
the other hand, Gavoille and Peleg [13] proved that almost all graphs (that is a
fraction of 1 − o(1) of all n-node graphs, or equivalently the graphs of G(n, p)
for p = 0.5 and with high probability) support a (2, 0)-IRS. Actually, they con-
structed a routing scheme such that every node has at most O(log3 n) outgoing
edges with 2 intervals, all the other ones having 1 interval. They also posed an
open question of whether almost all graphs support (1, 0)-IRS.

Our main result is a refinement of the result from Gavoille and Peleg [13]. We
prove that almost all graphs support a (1, 2)-IRS.

Theorem 1. For every fixed p > 1/2, a random graph G ∈ G(n, p) satisfies
IRN2(G) = 1 with probability 1 −O

(
(logn)−3

)
.

The rest of this paper contains the proof of the Theorem 1. The main idea
is based on the properties of dominating cliques in graphs. Conditions for the
existence of dominating cliques in random graphs are analyzed in Section 2.
A construction of a (1, 2)-IRS for graphs that contain dominating cliques is
described in Section 3. By combining of these two results we prove Theorem 1.

2 Dominating Cliques in Random Graphs

To obtain our main result it is necessary to study properties of dominating
cliques in random graphs. Given a graph G = (V,E), a set S ⊆ V is said to be
a dominating set of G if each node v ∈ V is either in S or is adjacent to a node

An Improved Interval Routing Scheme for Almost All Networks 527

in S. The domination number γ(G) is the minimum cardinality of a dominating
set of G.

There are several alternative definitions of the dominating set [15]. The follow-
ing one is important for the our purpose. Given two nodes u, v ∈ V , let dG(u, v)
denote the distance between u and v in G. Let Γ (u) = {v ∈ V | dG(u, v) ≤ 1}
denote a ball of radius 1 centered at u. For every subset S ⊆ V , let Γ (S) =
∪u∈SΓ (u). A subset S is said to be a dominating set of G if Γ (S) = V .

A clique in G is a maximal set of mutually adjacent nodes of G, i.e., it is
a maximal complete subgraph of G. The clique number, denoted cl(G), is the
number of nodes of clique of G. If a subgraph induced by a dominating set
is a clique in G then the induced subgraph is called a dominating clique in
G. Dominating sets and cliques are basic structures in graphs that have been
investigated very intensively. To determine whether the domination number of a
graph is at most r is an NP-complete problem [10]. The maximum-clique problem
is one of the first shown to be NP-hard [18]. A well-known celebrated result of
B. Bollobás, P. Erdös et al. is a proof that the clique number in random graphs
is bounded by a very tight bounds [1,2,17,21,24,25]. The domination number
of a random graph have been studied by B. Wieland and A. P. Godbole in
[28].

2.1 Results for Random Graphs

For r > 1, let S be a r-node subset of an n-node graph G. Let A denote the event
that ”S is a dominating clique of G ∈ G(n, p)”. Let inr be the associated 0-1
(indicator) random variable on G(n, p) defined as follows: inr = 1 if G contains
a dominating clique S and inr = 0, otherwise. Let Xr be a random variable that
denotes the number of r-node dominating cliques. More precisely, Xr =

∑
inr

where the summation ranges over all sets S. The following lemma expresses the
expectation of Xr.

Lemma 1. For the expectation E(Xr) of the random variable Xr

E(Xr) =
(
n

r

)
p(

r
2)(1 − pr − (1 − p)r)n−r . (1)

Proof. The linearity of the expectation leads to

E(Xr) =
∑

E(inr) =
∑

inr · Pr[A] ,

over all r-node sets S. The nodes of the S can be chosen in
(
n
r

)
ways. Since S is

a complete subgraph, every of its r nodes has to be joined with the remaining
r − 1 nodes of S. Hence, the probability of this fact is p(

r
2). The last term in

(1) expresses the probability that S is a clique spanning a dominating set of
G ∈ G(n, p). More precisely, let v be an arbitrary but fixed node, v /∈ V (S); v
is said to be a ”good” node (i.e., the node which does not spoil the ”cliqueness”
and the ”domination” of S), if it cannot be joined neither with all nodes of S

528 M. Nehéz and D. Olejár

nor with none of them. It follows that v has to be joined at least with one and
at most with r − 1 of nodes of S. Therefore,

Pr[v is a ”good” node with respect to S] =
∑

0<j<r

(
r

j

)
pj(1 − p)r−j =

=

 r∑
j=0

(
r

j

)
pj(1 − p)r−j

− pr − (1 − p)r = 1 − pr − (1 − p)r .

All of (n − r) nodes from V (G) \ V (S) must be ”good”. Hence, the proof is
complete. ��

The estimation of the variance V ar(Xr) seems to be more difficult problem. How-
ever, we can use the fact that the clique number in random graphs is bounded
within the tight interval. This assumption leads to the simplification of the enu-
meration of the variance. Therefore, we introduce the following notations.

Let us denote 1/p by b. Let

r0 = logb n− 2 logb logb n+ logb 2 + logb logb e , (2)

r1 = 2 logb n− 2 logb logb n+ 2 logb e+ 1 − 2 logb 2 . (3)

J. G. Kalbfleisch and D. W. Matula [17,21] proved that a random graph from
G(n, p) does not contain cliques of the order greater than �r1� and less or equal
than �r0�. (See also [2,24,25].) D. Olejár and E. Toman [24] used the bounds (2)
and (3) to obtain an estimation of the number of cliques in random graphs. To
obtain an estimation of the V ar(Xr) we will apply a similar approach.

Lemma 2. Let p be fixed, 0 < p < 1 and �r0� ≤ r ≤ �r1�. Let

β = min{ 2/3, − 2 logb(1 − p) } .

Then:

V ar(Xr) = E(Xr)2 ·O
(

(log n)3

nβ

)
. (4)

The following claim expresses the number of the dominating cliques in random
graphs.

Lemma 3. Let p, r and β be as before, and

Xr =
(
n

r

)
p(

r
2)(1 − pr − (1 − p)r)n−r ×

{
1 +O

(
(logn)3

nβ/2

)}
. (5)

With probability 1 − O
(
(logn)−3

)
, a random graph from G(n, p) contains Xr

dominating cliques on r nodes.

An Improved Interval Routing Scheme for Almost All Networks 529

Proof. It follows from the Chebyshev’s inequality [16]: if V ar(X) exists, then:

Pr[|X − E(X)| ≥ t] ≥ V ar(X)
t2

, t > 0 .

Letting t = E(Xr) · (logn)3 · n−β/2 and using lemma 2, we obtain the assertion
of lemma 3. ��

For r > 1, let Yr be the random variable on G(n, p) which denotes the number
of r-node cliques. According to [24],

Yr =
(
n

r

)
p(

r
2)(1 − pr)n−r ×

{
1 +O

(
(log n)3√

n

)}
(6)

with probability 1 − O
(
(logn)−3

)
.

The ratio Xr/Yr expresses the relative number of dominating cliques to all
cliques of G(n, p) and it attains the value within the interval [0, 1]. By analysis
of cases whether Xr/Yr tends to 1, we obtain the main result of this section.

Lemma 4. For every fixed p > 1/2, a random graph from G(n, p) contains a
dominating clique with probability 1 −O

(
(logn)−3

)
.

3 Interval Routing in Dominating Cliques

In this section, we will construct an (1, 2)-IRS for graphs that contains dominating
cliques. According to Lemma 4, it completes the proof of the Theorem 1.

Lemma 5. Let a graph G contains a nonempty dominating clique. Then:

IRN2(G) = 1 .

Sketch of the proof. Let G = (V,E) be an n-node graph that contains a nonempty
dominating clique S ⊆ V in G. Assume S to be maximal. Assume S ⊆ V with
|S| = 1. Then G is a complete bipartite graph K1,n−1. Hence, G is a tree and
IRS0(G) = 1, as was stated in [27]. The assertion trivially holds.

Let |S| = ν ≥ 2. We will describe a linear-time algorithm that constructs
an interval routing scheme R = (L, I) on G. The motivation for this algorithm
comes from the fact that each n-node complete graphKn supports an 1-IRS. The
general idea of our construction is based on the partition of the node-set V into
ν mutually disjoint subsets X1, . . . , Xν such that each Xi contains exactly one
node from S. Consequently, the all nodes from the partition ∪ν

i=1Xi will attain
labels from the set {1, . . . , n} such that L(Xi) forms one particular interval of
the node label set {1, . . . , n}, where

L(X) = ∪v∈XL(v) .

We will proceed by induction.

530 M. Nehéz and D. Olejár

First, select an arbitrary node x ∈ S and let X1 contain x and all nodes
from V \ S that are adjacent to x. Set the label of x to be 1 and label any
other node u ∈ X1 by a distinct number from {2, . . . , |X1|} such that for all
u,w ∈ X1 : L(u) �= L(w) whenever u �= w.

Assume that X1, . . . , Xm are mutually disjoint sets such that each of which
contains exactly one node from S and 2 ≤ m < ν. It holds that all nodes from
the union ∪m

i=1Xi are labeled by the numbers from the set {1, . . . , l}, where
l = | ∪m

i=1 Xi |. Select an arbitrary node x∗ ∈ (S \ (∪m
i=1Xi)) and construct

Xm+1 such that it contains the node x∗ and all the nodes from V \[(∪m
i=1Xi) ∪ S]

that are adjacent to x∗. Label each node from Xm+1 by a distinct number from
{l + 1, . . . , l + |Xm+1|} such that for all u,w ∈ Xm+1 it holds L(u) �= L(w)
whenever u �= w.

The node labeling construction is done if m = ν. Observe that for m = ν it
holds that ∪m

i=1Xi = V and each Xi, Xj are mutually disjoint (1 ≤ i, j ≤ ν).
The properties of the node labeling algorithm and the fact that S is dominating
set yield that the function L is one-to-one mapping. It implies that each Xi

corresponds to one unique interval of labels from {1, . . . , n}. For each i such
that 1 ≤ i ≤ ν, let us denote the interval of the labels from {1, . . . , n} by Ii iff
it corresponds to the labels for all nodes from Xi. Formally,

Ii = ∪v∈XiL(v) , for i = 1, . . . , ν .

Note that ∪ν
i=1Ii = {1, . . . , n} and each Ii, Ij are mutually disjoint (1 ≤ i, j ≤ ν).

The construction of the arc-labeling follows accordingly from the node labe-
ling. We will distinguish two cases.

Case 1. Let v ∈ S. For each x ∈ S such that x �= v set the label of the outgoing
edge (v, x) to be interval Ij corresponding to the set Xj such that x ∈ Xj . (Note
that there exists exactly one such j.) It means that the messages from v and
addressed for the all nodes from Xj will be sent via the arc (v, x) with the label
Ij . For each w ∈ (V \ S) with label L(w) such that v and w are adjacent, let
us set the label of the outgoing edge (v, w) to be the one-member interval that
contains only label L(v).

Case 2. Let v ∈ (V \ S) and let L(v) denote its label. Thus, there exists a
unique index j such that v ∈ Xj and the intersection S ∩Xj contains exactly
one node, say x. Hence, the nodes v and x are adjacent. Let the label of the
outgoing edge (v, x) be the interval [L(v) + 1,L(v) − 1]. It is the cyclic interval
that contains all labels from the set {1, . . . , n} except the number L(v). It means
that all messages sent from v will be routed via the arc (v, x). The correctness of
such a routing scheme follows from the fact that x is the node of the dominating
set which is also the complete subgraph. It means that x is adjacent to each
node from S and each node from V \ S is adjacent to any node from S, since it
is a dominating set.

We have obtained the interval routing scheme R. According to R, the length
of the longest routing path between two arbitrary nodes of G is at most 3, since
the length of the shortest path between them may be 1. Hence, R is δ-stretched
path for δ = 2. The correctness of R follows from the previous description. Thus,
R induces an (1, 2)-IRS for G and consequently, IRN2(G) = 1. ��

An Improved Interval Routing Scheme for Almost All Networks 531

4 Conclusions

We have proved that almost all networks support interval routing scheme with 1
interval and additive stretch at most 2. The summary of the results for random
graphs is listed in Table 1. Our result (the 3rd line of the table) is a refinement
of the result of C. Gavoille and D. Peleg [13] (the 2nd line). These both results
hold also for the Kolmogorov model of almost all networks [4] which is closely
related to G(n, 1/2) [5]. Clearly, the question of C. Gavoille and D. Peleg about
the existence (1, 0)-IRS for random graphs remains open.

Table 1. Summary of results for random graphs G(n, p)

Probability p IRNδ(G) δ Reference

1/n1−1/Θ(
√

log n) Ω(n1−1/Θ(
√

log n)) 0 [7]
constant ≤ 2 0 [13]
p > 1/2 1 2 Theorem 1

Another interesting problem is to extend our result to more realistic networks.
It is known that real-world networks (e.g., small world networks, internet-like
networks) have several characteristics different from random graphs [20]. How-
ever, the main idea of our routing scheme could be applied if we were able to
decompose large real-world networks into subnetworks (e.g., clusters) with do-
minating cliques.

Acknowledgement. The authors thank prof. Pavel Tvrd́ık for valuable com-
ments and fruitful discussion.

This research has been supported by MŠMT under research program MSM
6840770014.

References

1. B. Bollobás: Random Graphs (2nd edition), Cambridge Studies in Advanced
Mathmatics 73, 2001.

2. B. Bollobás, P. Erdös: Cliques in random graphs, Math. Proc. Cam. Phil. Soc.
(1976), 80, pp. 419–427.

3. L. Bononi: A Perspective on P2P Paradigm and Services, Slide courtesy
of A. Montresor, URL: http://www.cs.unibo.it/people/faculty/bononi//

AdI2004/AdI11.pdf

4. H. Buhrman, J.-H. Hoepman, P. M. B. Vitányi: Space-efficient Routing Tables for
Almost All Networks and the Incompressibility Method, SIAM Journal on Comput-
ing, 28(4), 1999, pp. 1414–1432.

5. H. Buhrman, M. Li, J. Tromp, P. M. B. Vitányi: Kolmogorov Random Graphs
and the Incompressibility Method, SIAM Journal on Computing, 29(2), 1999, pp.
590–599.

532 M. Nehéz and D. Olejár

6. T. Eilam, S. Moran, S. Zaks: The Complexity of the Characterization of Networks
Supporting Shortest-Path Interval Routing, In Proc. 4th Int. Colloquium on Struct.
Information & Communication Complexity SIROCCO’97, (D. Krizanc and P. Wid-
mayer, eds.), Carleton Scientific, 1997, pp. 99–111.

7. M. Flammini, J. van Leeuwen, A. Marchetti-Spaccamela: The complexity of interval
routing on random graphs, The Computer Journal, 41(1), 1998, pp. 16–25.

8. P. Fraigniaud, C. Gavoille: Interval Routing Schemes, Algorithmica 21(2), 1998,
pp. 155–182.

9. A. J. Ganesh, A.-M. Kermarrec, L. Massoulié: Peer-to-Peer Membership Manage-
ment for Gossip-Based Protocols, IEEE Trans. Computers, 52(2), 2003, pp. 139–149.

10. M. R. Garey, D.S. Johnson: Computers and Intractability, Freeman, New York,
1979.

11. C. Gavoille: A survey on interval routing, Theoretical Computer Science, 245(2),
2000, pp. 217–253.

12. C. Gavoille, M. Nehéz: Interval routing in reliability networks, Theoretical Com-
puter Science, 333(3), 2005, pp. 415–432.

13. C. Gavoille, D. Peleg: The compactness of interval routing for almost all graphs,
SIAM Journal on Computing, 31(3), 2001, pp. 706–721.

14. C. Gavoille, D. Peleg, A. Raspaud, E. Sopena: Small k-Dominating Sets in Planar
Graphs with Applications, In Proc. 27th Int. Workshop Graph-Theoretic Concepts
in Comp. Sci. WG 2001, LNCS 2204, Springer-Verlag, 2001, pp. 201–216.

15. J. L. Gross, J. Yellen: Handbook of Graph Theory, CRC Press, 2003.
16. S. Janson, T. Luczak, A. Rucinski: Random Graphs, John Wiley & Sons, New

York, 2000.
17. J. G. Kalbfleisch: Complete subgraphs of random hypergraphs and bipartite graphs,

In Proc. 3rd Southeastern Conf. of Combinatorics, Graph Theory and Computing,
Florida tlantic University, 1972, pp. 297–304.

18. R. M. Karp: Reducibility among combinatorial problems, In Complexity of Com-
puter Computation, (R. E. Miller and J. W. Thatcher, eds.), Plenum Press, 1972,
24, pp. 85–103.

19. A.-M. Kermarrec, L. Massoulié, A. J. Ganesh: Probabilistic Reliable Dissemination
in Large-Scale Systems, IEEE Trans. Parallel Distrib. Syst. 14(3), 2003, pp. 248–
258.

20. D. Krioukov, K. R. Fall, X. Yang: Compact Routing on Internet-like Graphs, IN-
FOCOM 2004 (full version published in CoRR cond-mat/0308288, 2003).

21. D. W. Matula: The largest clique size in a random graph, Technical report CS 7608,
Dept. of Comp. Sci. Southern Methodist University, Dallas, 1976.

22. D. May, P. Thompson: Transputers and Routers: Components for concurrent ma-
chines, INMOS Ltd. 1990.

23. M. Nehéz: The compactness lower bound of shortest-path interval routing on n ×
n tori with random faulty links, Technical Report 582, KAM-DIMATIA Series,
Charles University, Praha, 2002.

24. D. Olejár, E. Toman: On the Order and the Number of Cliques in a Random Graph,
Math. Slovaca, 47(5), 1997, pp. 499–510.

25. E. M. Palmer: Graphical Evolution, John Wiley & Sons, Inc., New York, 1985.
26. P. Ružička: On efficiency of path systems induced by routing and communication

schemes, Computing and Informatics, 20(2), 2001, pp. 181–205.
27. J. van Leeuwen, R. B. Tan: Interval routing, The Computer Journal, 30(4), 1987,

pp. 298–307.
28. B. Wieland, A. P. Godbole: On the Domination Number of a Random Graph,

Electronic Journal of Combinatorics, 8(1), #R37, 2001.

Basic Computations in Wireless Networks�

Ioannis Caragiannis1, Clemente Galdi1,2, and Christos Kaklamanis1

1 Research Academic Computer Technology Institute,
Department of Computer Engineering and Informatics,

University of Patras, 26500, Rio Greece
2 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,

Universitá di Salerno, 84081, Baronissi (SA), Italy

Abstract. In this paper we address the problem of estimating the num-
ber of stations in a wireless network. Under the assumption that each
station can detect collisions, we show that it is possible to estimate the
number stations in the network within a factor 2 from the correct value
in time O(log n log log n). We further show that if no station can detect
collisions, the same task can be accomplished within a factor of 3 in time
O(log2 n) and maximum energy O(log n) per node, with high probability.
Finally, we present an algorithm that computes the minimum value held
by the stations in the wireless network in time O(log2 n).

1 Introduction

In the last years wireless networks have attracted a lot of attention of the sci-
entific community. Such networks essentially constitute large scale dynamic dis-
tributed systems in which each node has a low computational power and limited
lifetime. An extreme example of wireless networks are sensor networks in which,
thousands of low-cost, independent entities are deployed in an area and their task
is to self-organize a network in order to accomplish a specific task. Each node is
equipped with sensing devices and, depending on the specific task, the sensors
may be identical or there may be different kinds of nodes. The communication
among the nodes is guaranteed by means of radio or laser transmitters/receivers.

One of the assumptions that facilitate the design of algorithms in wireless
networks is the knowledge of the number (or an upper bound on the number)
of stations in the network. However, especially in highly dynamic networks this
assumption seems to be strong.

Network models. The radio network consists of n stations, devices running on
batteries and with low computational capabilities. The stations communicate by
means of a shared channel. The stations are anonymous, in the sense that they
do not have, or it is not feasible to retrieve any ID or serial number.

Each station has a local clock and all the clocks are synchronized. Although
such devices may have limited computational capabilities, this is not a strong as-
sumption because of the existence of various protocols for clock synchronization
� This work was partially supported by the European Union under IST FET Integrated

Project 015964 AEOLUS.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 533–542, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

534 I. Caragiannis, C. Galdi, and C. Kaklamanis

(e.g., [4]). During each time step, each station can send and/or receive a message.
We assume a reliable single-hop network, that is, whenever exactly one station
transmits a message, all the other stations receive it. If two or more stations
send a message in the same time slot, a collision occurs. We distinguish three
different models, depending on the information obtained by a station whenever a
collision occurs: (a) CD: All the stations can detect collisions; (b) strong-noCD:
The stations that send a message can detect a collision while the other stations
cannot distinguish between channel noise and a collision; (c) weak-noCD: No
station can detect a collision.

As usual, the time needed by an algorithm to execute a task is one per-
formance measure we will consider. Furthermore, since stations have limited
lifetime, energy saving is an important issue to consider. We assume that each
station can be in two different states: active/awake or inactive/sleep. When a
station is active, it can send and or receive messages and execute computations
and we assume consumes energy 1 for each time step. When a station is in a sleep
state it neither sends/receives messages nor executes computations. A station,
before switching to the sleep state, sets a timer. Whenever the timer expires,
the station goes back to the active state. In the sleep state we assume that the
station consumes no energy.

Previous work. Various computation problems have been studied in the litera-
ture in the above models. In the case of reliable radio networks, specific solutions
have been designed for computing the function sum ([1]), sorting and ranking
([3]), and for solving the problem of leader election [9,12] and network initializa-
tion, i.e., the problem of assigning unique identifiers to stations in anonymous
networks, [8]. More generally, the authors in [11] present an energy efficient algo-
rithm to simulate parallel algorithms on mesh-like wireless networks. In [6], it is
proved that any algorithm designed for a single-hop network in the strong-noCD
model can be simulated in the weak-noCD model, with no slowdown. However,
for this solution, a O(n) preprocessing time is needed. Notice that both the above
solution assume the knowledge of the number of stations in the network.

All the algorithms above can be divided essentially in two (or three) differ-
ent classes depending on whether or not the number of stations (or an upper
bound for it) is known. It is immediate that the second scenario is much more
realistic. On the other hand, designing algorithms in such a scenario is a much
more complicated task. In [5] the authors provide an algorithm that computes
an approximation of the number of stations in the network in the strong-noCD
model, in time O(log2+ε n) where each station spends energy O((log logn)ε),
for any constant ε > 0. Note that in [5], the energy is assumed to be propor-
tional to the number of messages transmitted/listened and not to their total size.
However, several messages in that protocol may have size of Ω(log n) bits. The
algorithm presented in [5] assumes no collision detection capability and outputs,
with high probability, an estimation n0 of the number of stations that satisfies
the following: n/26 ≤ n0 ≤ 2n. The authors in [6] claim that similar techniques
can be used also in the weak-noCD model.

Basic Computations in Wireless Networks 535

Our results. In this paper we present algorithms that compute the number of
stations in the network in the CD and the weak-noCD models. Let n be the
number of stations in the network. We show that if each station can detect col-
lisions, in time O(log n log logn) the algorithm outputs an estimation m of the
number of stations such that m/2 < n < 2m, where m denotes the output of
the algorithm. In the weak-noCD model, we present an algorithm that accom-
plishes the same task in time O(log2 n), maximum energy O(log n) per station
and outputs an estimation m such that m/3 < n < 3m. Finally we show that,
under the assumption that the approximate number of station is known, there
exists an algorithm that computes the minimum in the weak-noCD model in
time O(log2 n). Our algorithms are randomized and the results hold with high
probability (i.e., probability 1 −O(n−c) for some positive constant c). Our pro-
tocols for estimating the number of stations use only bit messages. Due to lack
of space, we only outline the proofs here. Formal proofs will appear in the final
version of the paper.

2 Estimating the Number of Stations

In this section we present two algorithms to estimate the number of stations in
the network. We first start by describing the algorithm in the CD model. Then,
we present an algorithm in the weak-noCD model.

2.1 Estimating the Number of Stations in the CD Model

In this section we present an algorithm that computes an approximation of the
number of stations based on the assumption that, whenever a collision occurs,
each station in the network detects it.

The basic idea of the algorithm is the following. Assume m is an estimation
of the number of stations in the network. In each phase of the algorithm, each
station may select uniformly at random and independently from the other sta-
tions, an integer r between 1 and m. At this point, the algorithm consists of
m rounds. During round r, all the stations that hold a value equal to r send a
message on the channel. Since stations can detect collisions, each station counts
the number of “empty” slots, i.e., the number of rounds in which no station
sent a message. This number is a random variable occurring in the well-known
occupancy problem where k balls are randomly thrown into b bins and is known
to be sharply concentrated around its expected value as the following theorem
states.

Theorem 1 ([7]). Let r = k/b, and let Z be the number of empty bins when k
balls are thrown randomly into b bins. For λ > 0 it holds that:

µ = E(Z) = b

(
1 − 1

b

)k

/ be−r Pr [|Z − µ| ≥ λ] ≤ 2 exp
(
−λ2

2k

)
By Theorem 1, if the estimation is close to the actual number of stations, the

number of empty slots will be around m/e. So, if the number of empty bins is

536 I. Caragiannis, C. Galdi, and C. Kaklamanis

much higher (resp. much smaller) than m/e, the estimation m is increased (resp.
decreased) and a new phase is executed. The above solution clearly needs Ω(n)
rounds to terminate.

In order to avoid this unnecessary waste of time, we would like to use an algo-
rithm in which each phase is executed by a polylogarithmic number of stations.
Indeed, in this case, the number of stations is big enough to guarantee a good
estimation of the actual number of stations in the network and, at the same
time, the number of rounds needed to execute the algorithm is low. Notice that,
from the point of view of energy consumption, this strategy also leads to low
consumption since, in each phase, most of the stations will be in a sleep state.
Unfortunately, the above strategy seems to require the knowledge of the number
of stations.

One issue to address is the function we use to compute the new estimation
of the number of stations. A first idea could be to simply double (or reduce by
a half) the current estimation in order to obtain the new one. It is immediate
that using this strategy, O(log n) phases will be enough in order to compute a
good approximation of the number of sensors. On the other hand it is possible to
reduce this number phases by choosing a function that reaches n more quickly,
say in O(log logn) phases. The problem with this second type of function is
that if we compute an estimation m that is much higher than the actual value
n, we may end up spending a huge number of rounds before realizing that the
estimation is wrong.

What we are going to use is somehow derived by the strategy above. During
each phase, a station decides to sleep or to execute the algorithm with a prob-
ability that is (roughly) inversely proportional to the current estimation of m.
The reason of such relation is based on the idea that, whenever m grows, the
number of stations executing each phase decreases. Using this relation between
the number of active stations and the estimation, we guarantee that, with high
probability each step in the algorithm is correct. On the other hand, the number
of time slots in each phase is, of course, a function that is increasing as m in-
creases. However, this function is polylogarithmic in m and this guarantees that
every phase does not take too much time. This also allows us to use a “quick”
way to compute a very rough estimation of n, starting from which we refine the
estimation using a binary search.

We are now ready to define algorithm CountCD. We will use a simple building
block, the procedure CountEmpty. This procedure takes as input the current
estimation m of the number of sensors and works as follows. Let f(m) = α logm,
for sufficiently large α. When invoked, a station switches to the sleep mode for
f(m) time slots with probability 1 − f(m)/m, or stands awake and participates
in the current phase with probability f(m)/m. If the station is awake, it selects
an integer r between 1 and f(m) and, during round r, it sends a message on
the channel. Based on the number of empty slots, each node participating in
the current phase decides whether the current estimation is higher than, lower
than, or very close to the actual number of stations. At the end of the phase, all
the stations wake up and the station that first transmitted successfully during

Basic Computations in Wireless Networks 537

the current phase announces whether the current estimation is higher than,
lower than, or very close to the actual number of stations. In case no station
successfully sent a message during a given phase, we distinguish between two
cases. If the participating stations have decided that the current estimation is
lower than the actual number of stations then they all send a “lower” message
at the last round. If a collision appears, then this is realized by all stations as a
“lower” message. Otherwise, if the participating stations have decided that the
current estimation is higher than the actual number of stations then no station
sends any message and this silence is realized as a “higher” message.

As stated above, we divide algorithm CountCD into two epochs which we call
QuickStart and SlowEnd. In the first epoch, starting with an estimation m = 2,
each station runs the procedure CountEmpty with input the current estimation,
sets the current estimation to m2 and repeats until the call of CountEmpty on
input the current estimation returns that the current estimation is higher than or
very close to the number of stations. If an estimation very close to the number
of stations is found, then the algorithm CountCD terminates. Otherwise, let
m be the estimation which CountEmpty found to be higher than the actual
number of stations. Then, the second epoch begins and executes a binary search
in the set {i, i+ 1, . . . , 2i} where i is such that

√
m = 2i ≤ n ≤ 22i = m (i.e.,

i = O(log n)), based on the outcomes of CountEmpty. Assuming that procedure
CountEmpty correctly decides whether the current estimation is much higher,
much lower, or very close to the actual number of stations, algorithm CountCD
runs in O(log n log logn) time (i.e., O(log logn) calls of CountEmpty in each of
the two epochs QuickStart and SlowEnd).

It is clear that one of the crucial points in the algorithm is the correct es-
timation of the range in which the number of empty slots should belong to in
order for the current estimation of the number of stations to be accepted by
CountEmpty. The next lemma provides bounds on the number of empty slots in
a phase depending on whether the estimation is much higher than, much lower
than, or very close to the actual number of stations. Intuitively, the number of
stations that are awake in this round will be much higher, much lower, or very
close to f(m) and the number of empty slots will be much higher, much lower,
or very close to f(m)/e, respectively. The proof uses Theorem 1 and Chernoff
bounds.

Lemma 1. Consider a phase of algorithm CountCD, let m be the current esti-
mation of the number of stations in the network and denote by O the number
of empty time slots. There exist positive constants α1, α2 and α3 such that the
following hold:

– If m ≥ 2n, then Pr [O < 0.55f(m)] < 2n−α1.
– If m ≤ n/2, then Pr [O > 0.2f(m)] < 2n−α2.
– If n/

√
2 ≤ m ≤ n

√
2, then Pr [O < 0.2f(m) or O > 0.55f(m)] < 2n−α3 .

By Lemma 1, procedure CountEmpty suffices to compare the number of empty
slots O in each phase with the lower and upper thresholds 0.2f(m) and 0.55f(m).
If O is higher than the upper threshold or lower than the lower threshold, then

538 I. Caragiannis, C. Galdi, and C. Kaklamanis

the current estimation is almost surely larger than 2n or smaller than n/2, while
if O is between the two thresholds, then the current estimation is almost surely
correct.

We can thus prove the following statement.

Theorem 2. Let n > 2 be the number of stations in the network. With high
probability, algorithm CountCD runs in time O(log n log logn) and outputs an
estimation m of the number of stations such that n/2 < m < 2n.

2.2 Estimating the Number of Stations Without Collision
Detections

The algorithm presented in the previous section exploits the collision detection
capability in order to verify whether the current estimation is smaller or bigger
than the actual number of stations. As stated above, during each round, each
station can determine whether or not a message was sent. More specifically,
when the estimation is smaller than the actual number of stations, the number
of rounds in which no station sends a message is small. Conversely, when the
current estimation is bigger than the number of stations, the number of rounds
in which no station sends a message is high.

It could be tempting to use similar arguments in the weak no-CD model.
In this model we may count the number of time slots in which a message was
successfully sent. In order to use this idea, we need the following counterpart of
Theorem 1 for the number of bins containing exactly one ball in the classical
balls-to-bins process.

Theorem 3. Let r = k/b, and let Z be the number of bins containing exactly
one ball when k balls are thrown randomly into b bins. For λ > 0 it holds that:

µ = E(Z) = k

(
1 − 1

b

)k−1

/ ke−r Pr[|Z − µ| ≥ λ] ≤ 2 exp
(
−λ2

2k

)
It turns out that in the case of no collision detection, it is not possible to

use the QuickStart algorithm to obtain a rough estimation of the number of
stations. Consider the case in which the current estimation is smaller than the
number of stations. In this case, the number of collision is high and the number
of slots containing exactly one message is small. Conversely, consider the case
in which the estimation is bigger than the number of stations. In this case, the
number of empty bins will be high and, again, the number of rounds in which
a message is successfully sent is small. Since in the weak no-CD model it is
not possible to distinguish between a collision and an empty slot, an algorithm
cannot distinguish between the two cases.

On the other hand, whenever the current estimation is close to the number of
stations, the number of rounds in which a message is successfully sent should be
around f(m)/e. For this reason, starting from an estimation m = 2, whenever
m is wrong, we can double it until we reach a value close to the actual number
of stations. We are left to determine the thresholds to be used in the algorithm

Basic Computations in Wireless Networks 539

for deciding whether or not the current estimation should be accepted. We call
CountSingle the procedure that checks whether the current estimation is close
to the number of stations or not. Again, each station wakes up at the end of
each phase in order to realize whether or not the algorithm should continue. The
station that first transmitted successfully in the current phase will announce the
result at the end of the phase. Silence is realized as a ”continue” message.

As described so far, we have outlined the algorithm CountnoCD which works
in the strong-noCD mode. The main problem in the weak-noCD model is that
the station that first transmitted successfully during a phase does not know it
(since it cannot detect whether its message was successfully sent) in order to
announce the result at the end of the phase. To overcome this and extend our
protocol in the weak-noCD model, we can use messages of two bits in each round.
The first bit is used as above while the second bit is used to encode the binary
representation of the round of the first successful transmission. After i successful
transmissions in the current phase (for i ≥ 1), the second bit of the message of
any transmitting node is set to the i-th least significant bit of the round in which
the first node successfully transmitted.

Using Theorem 3 and Chernoff bounds we can prove the following lemma.

Lemma 2. Consider a phase of algorithm CountnoCD, let m be the current
estimation of the number of stations in the network and denote by O the number
of time slots with successful transmissions. There are positive constants β1 and
β2 such that the following hold:

– If m ≤ n/3 or m ≥ 3n, then Pr
[
O > f(m)

4

]
< 2n−β1.

– If 2n/3 ≤ m ≤ 4n/3, then Pr
[
O < f(m)

4

]
< 2n−β3.

By Lemma 2, procedure CountSingle suffices to compare the number O of time
slots with successful transmissions in each phase with the threshold f(m)/4. If O
is lower than the threshold, then the current estimation is almost surely wrong,
while if O is higher than the threshold, then the current estimation is almost
surely correct.

We can also show the following technical lemma which can be used to compute
an upper bound of O(log n) on the energy of each node (i.e., total number of
rounds at which a node is awake). The same bound holds for algorithm CountCD
as well.

Lemma 3. Consider the sequence of independent random variables Xi for i =
1, ..., k, such that Xi ∈ {0, i} with Pr[Xi = i] = i/2i. Let X =

∑k
i=1Xi. It holds

that Pr[X > 6k] < 4−k.

We can thus prove the following statement for algorithm CountnoCD.

Theorem 4. Let n > 2 be the number of stations in the network. With high
probability, the algorithm CountnoCD runs in time O(log2 n), requires maximum
energy O(log n) per node and outputs an estimation m of the number of stations
such that n/3 < m < 3n.

540 I. Caragiannis, C. Galdi, and C. Kaklamanis

3 Computing the Minimum

We now turn to the problem of computing the minimum in the weak-noCD
model. Assume each station possesses a value chosen with unknown distribution
from an unknown range. We wish to design an algorithm that outputs the min-
imum value in the network. We assume that an upper bound on the number of
stations in the network is known, otherwise we can use the algorithm presented
in the previous section to estimate its value.

Let us assume that the stations hold different values. A simple idea is the
following: each station randomly selects a round between 1 and n during which
it sends its value on the channel. Whenever a value is successfully transmitted,
all the station that hold a value bigger than the one sent, switch to the sleep
state. The remaining stations continue the algorithm until a single station is
alive. It is immediate that, whenever the probability distribution of the values
is unknown, such an algorithm requires O(n2).

Ideally, the above algorithm tries to divide into two sets the stations so that
all the station in the first set, i.e., the ones with value bigger than the received
one, switch to the sleep state, while the station in the second set continue the
execution. If, in each phase, we could guarantee that the set of awake stations
is a constant fraction of the corresponding set in the previous phase, we could
reduce the number of phases to O(log n).

To solve this problem, we will use the oversampling technique introduced
in [10] that can be described as follows: from a set of n values, select equiprobably
ps samples. Let x1, . . . , xps be the sorted sequence. Consider the subsequence
xs, x2s, . . . , x(p−1)s and assign to the set j = 2, . . . , p − 1 all the values in the
range (x(j−1)s, xjs). All the values less than xs will be assigned to the set with
index 1 and, similarly, all the values greater than x(p−1)s will be assigned to the
set p.

The next theorem states that the size of the sets constructed using the above
technique is approximately the same with high probability:

Theorem 5 ([2]). Let n be the number of values, let p be the number of sets1,
and let s be the oversampling ratio. Then, for any α ≥ 1 + 1/s, the probability
that a set contains more than αn/p values is at most ne−(1−1/α)2αs/2

Given the above theorem, we can divide the set of values held by the stations
into two subsets, of approximately the same size with high probability, by using
s = O(log n). As discussed above, this reduces the number of phases to O(log n).

One of the hidden assumption of Theorem 5 is the fact that the values are
distinct. In order to meet this requirement, the station will randomly select in
the first phase a value r in the range {1, . . . , n2}. A station holding a value m
will broadcast the pair (m, r). We write (m1, r1) < (m2, r2) iff m1 < m2 or
(m1 = m2 and r1 < r2).
1 Notice that in [10] the value p represents the number of processors in a parallel

machine. However, this restriction is immaterial as in the proof of the theorem p is
used as a parameter in the selection probability.

Basic Computations in Wireless Networks 541

In order to reduce the number of rounds within each phase, we need to reduce
the number of stations that send a message. As in the previous sections, we
will use self-selection during each phase. More specifically, let c be a constant.
During phase i, for i = 0, . . . , logn− log logn, executes phase i with probability
2i logn/n. Each awake station selects a round in the range {1...12ce logn} in
which it will send its value on the channel. At the end of phase i, on average,
each station has received 12c logn values. By Theorem 5, with α = 3/4 and
p = 2, the probability that the number of awake stations in the subsequent
phase is at least 3n/4 is at most n−c.

The algorithm works as follows: All stations are initially awake. Each station
runs 3 logn− log logn phases. Each phase has logn rounds. For i = 0, ..., logn−
log logn − 1, each station which is awake at the beginning of phase i, partic-
ipates to the algorithm with probability 2i

n logn. If it participates to phase i,
it equiprobably selects one of the rounds of phase i to transmit its value. For
i = logn − log logn, ..., 3 logn − log logn, each station which is awake at the
beginning of phase i equiprobably selects one of the rounds of phase i to trans-
mit its value. When a station hears a value smaller than its value, it becomes
sleeping. The minimum value is the last transmitted value.

We will show that the algorithm correctly computes the minimum value with
high probability. Let ni be the number of awake stations at the beginning of phase
i. If ni ≤ n/2i+1, then, it is certainly ni+1 ≤ n/2i+1. Assume that n/2i+1 <
ni ≤ n/2i. Then, the number of successfully transmitted values in phase i is at
least α logn for some positive constant α. This follows by considering stations
transmitting within the phase as balls and rounds as bins; then the number of
successful transmissions within the phase is the number of bins receiving exactly
one ball in the corresponding balls-to-bins game. The probability that more than
half of the ni stations that are awake at the beginning of phase i will still be
awake at the beginning of phase i + 1 is the probability that the transmitted
values will be larger than the values stored in the ni/2 stations holding the
smallest values, i.e., at most n−α.

Now consider a phase of the last 2 logn phases. Each of the stations that are
awake at the beginning of phase logn− log logn has constant probability (say β)
of neither transmitting successfully nor sleeping during each of the next phases.
So, the probability that some node is still awake after the last phase is at most
logn · β2 log n ≤ n−c for some constant c.

Theorem 6. There exists an algorithm that computes the minimum in the weak-
noCD model in time O(log2 n), with high probability.

4 Conclusions

In this paper we have presented an algorithm for estimating the number of
stations in an anonymous wireless network. The algorithm is based on the as-
sumptions the station can detect collisions. The algorithm presented runs in time
O(log n log logn), its expected energy consumption is O(log logn) and it outputs
and estimation m such that n/2 ≤ m ≤ 2n. Furthermore we have shown that a

542 I. Caragiannis, C. Galdi, and C. Kaklamanis

similar technique can be used to compute in time O(log2 n) and maximum energy
O(log n) an estimation of the number of stations in the weak noCD model. In this
case the estimation m computed by the algorithm is such that n/3 ≤ m ≤ 3n.
Finally we have shown that in the weak-noCD model it is possible to compute
the minimum in time O(log2 n).

References

1. R. S. Bhuvaneswaran, J. L. Bordim, J. Cui, and K. Nakano. Fundamental Proto-
cols for Wireless Sensor Networks. In Proc. of the 15th International Parallel and
Distributed Processing Symposium (IPDPS ’01), 2001.

2. G.E. Blelloch, C.E. Leiserson, B.M. Maggs, G.C. Plaxton, S.J. Smith and M. Zagha.
An Experimental Analysis of Parallel Sorting Algorithms. Theory of Computing
Systems, 31(2), pp. 135-167, 1998.

3. J. L. Bordim, K. Nakano, and H. Shen. Sorting on Single-Channel Wireless Sen-
sor Networks. In Proc. of the International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN ’02), pp 153-158, 2002.

4. J. Elson and D. Estrin. Time Synchronization for Wireless Station Networks. In
Proc. of the 15th International Parallel and Distributed Processing Symposium
(IPDPS ’01), Workshop on Parallel and Distributed Computing Issues in Wireless
and Mobile Computing, 2001.

5. T. Jurdzinski, M. Kutylowski, J. Zatopianski. Energy-Efficient Size Approximation
of Radio Networks with No Collision Detection. In Proc. of the 8th Annual Interna-
tional Conference on Computing and Combinatorics (COCOON ’02), LNCS 2387,
Springer, pp. 279-289, 2002.

6. T. Jurdzinski , M. Kutylowski , J. Zatopianski. Weak Communication in Radio
Networks. In Proc. of the 8th International Euro-Par Conference (EuroPar ’02),
LNCS 2400, Springer, pp. 965-972, 2002.

7. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

8. K. Nakano, S. Olariu. Energy-Efficient Initialization Protocols for Radio Networks
with No Collision Detection. In Proc. of the 2000 International Conference on
Parallel Processing (ICPP ’00), pp. 263-270, 2000.

9. K. Nakano, S. Olariu. Randomized Leader Election Protocols in Radio Networks
with No Collision Detection. In Proc. of the 11th International Conference on
Algorithms and Computation (ISAAC ’00), LNCS 1969, Springer, pp. 362-373,
2000.

10. J.H. Reif and L.G. Valiant. A Logarithmic Time Sort for Linear Size Networks.
Journal of the ACM, 34(1), pp. 60-75, 1987.

11. M. Singh, V. Prasanna, J. Rolim, and C. Raghavendra. Collaborative and Dis-
tributed Computation in Mesh-Like Wireless Sensor Arrays. In Proc. of the 8th
IFIP-TC6 International Conference on Personal Wireless Communications (PWC
’03), LNCS 2775, Springer, pp. 1-11, 2003.

12. D. E. Willard. Log-logarithmic Selection Resolution Protocols in a Multiple Access
Channel. SIAM Journal on Computing, 15, pp. 468-477, 1986.

A Simple Optimal Randomized Algorithm for
Sorting on the PDM�

Sanguthevar Rajasekaran1 and Sandeep Sen2

1 Department of CSE, University of Connecticut
rajasek@engr.uconn.edu

2 Department of CSE, IIT Kharagpur
ssen@cse.iitkgp.ernet.in

Abstract. The Parallel Disks Model (PDM) has been proposed to al-
leviate the I/O bottleneck that arises in the processing of massive data
sets. Sorting has been extensively studied on the PDM model due to the
fundamental nature of the problem. Several randomized algorithms are
known for sorting. Most of the prior algorithms suffer from undue com-
plications in memory layouts, implementation, or lack of tight analysis.
In this paper we present a simple randomized algorithm that sorts in
optimal time with high probablity and has all the desirable features
for practical implementation.

1 Introduction

When the amount of data an application has to deal with is enormous, out-of-core
computing techniques have to be invoked. In this case, the I/O bottleneck has
to be dealt with. The PDM has been proposed to alleviate this I/O bottleneck.
In a PDM, there is a (sequential or parallel) computer that has access to D(≥ 1)
disks. In one I/O operation, it is assumed that a block of size B can be fetched
into the main memory. One typically assumes that the main memory has size
M where M is a (small) constant multiple of DB1.

Efficient algorithms have been devised for the PDM for numerous fundamen-
tal problems. In the analysis of these algorithms, typically, the number of I/O
operations needed are optimized. Since local computations take much less time
than the time needed for the I/O operations, these analyzes are reasonable. Since
sorting is a fundamental and highly ubiquitous problem, a lot of effort has been
spent on developing sorting algorithms for the PDM. It has been shown by Ag-
garwal and Vitter [2] that Ω

(
N

DB
log(N/B)
log(M/B)

)
2 I/O operations are needed to sort

N keys (residing in D disks) when the block size is B. Here M is the size of the
internal memory. Many asymptotically optimal algorithms have been devised
� This research been supported in part by the NSF Grants CCR-9912395 and ITR-

0326155.
1 This is the hardest case as we will show later.
2 In this paper we use log to denote logarithms to the base 2 and ln to denote loga-

rithms to the base e.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 543–552, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

544 S. Rajasekaran and S. Sen

as well (see e.g., Arge [3], Nodine and Vitter [16], and Vitter and Hutchinson
[22]). The LMM sort of Rajasekaran [18] is optimal when N,B, and M are poly-
nomially related and is a generalization of Batcher’s odd-even merge sort [7],
Thompson and Kung’s s2-way merge sort [21], and Leighton’s columnsort [14].

Notation. We say the amount of resource (like time, space, etc.) used by a
randomized algorithm is Õ(f(N)) if the amount of resource used is no more
than cαf(N) with probability ≥ (1−N−α) for any N ≥ n0, where c and n0 are
constants and α is a constant ≥ 1. We could also define the asymptotic functions
Θ̃(.), õ(.), etc. in a similar manner.

2 Prior Algorithms and Our Result

Most of the previous PDM sorting algorithms can be categorized under two
families - ones based on bucketsort and the others on mergesort. The first kind
is based on distribution sort [23,22,15] where keys are classified into buckets
depending on their values and this is repeated recursively within each bucket
till each bucket reaches a managable size (corresponding to the base case). The
randomized versions of distribution sort (like quicksort) are often simpler than
their deterministic counterparts. The basic idea is sampling and due to Frazer
and McKellar. Given a sequence X of n keys to sort: 1) a random sample of
s keys are picked from X ; 2) these sample keys are sorted to get the sequence
l1, l2, . . . , ls; 3) X is partitioned into s+1 parts X0, X1, . . . , Xs using the sample
keys as splitters. In particular, X0 = {q ∈ X : q ≤ l1}, Xi = {q ∈ X : li <
q ≤ li+1} for 1 ≤ i ≤ (s − 1), and Xs = {q ∈ X : q > ls}; and 4) the parts
X0, X1, . . . , Xs are sorted recursively and independently.

The second kind of sorting algorithms on the PDM are based on R-way merg-
ing for some suitable value of R that minimizes the number of passes through
the data for the given size of internal memory [1,6,11,16,18].

The primary dificulty in both the approaches is exploiting parallelism in writ-
ing (in the case of distribution sort) or reading (in mergesort). That is, how do
we come up with balanced read/write schedules across the D disks when the data
is aritrarily distributed at the beginning.

In this context the algorithm of Barve, Grove, and Vitter [6] deserves special
mention. It uses a value of R = M/B. This algorithm stripes the runs across the
disks such that for each run the first block is stored in a random disk and the
other blocks are stored in a cyclic fashion starting from the random disk. They
only analyze the expected performance of the algorithm (and no high probability
bounds have been derived). Their algorithm called Simple Randomized Mergesort
(SRM), has an optimal expected performance only when the internal memory
size M is Ω(BD logD). However, the standard assumption on M is that M =
O(DB).

This problem has been redressed by the algorithm of Hutchinson, Sanders
and Vitter [13]. By using locally randomized scheduling like Fully Random (FR)
or Random Cycling (RC) for writing blocks to the disks in parallel, the expected

A Simple Optimal Randomized Algorithm for Sorting on the PDM 545

number of write steps can be bounded by its optimal value. The core of the anal-
ysis can be found in Sanders, Egner and Korst [20] and Vitter and Hutchinson
[22], who used asymptotic queueing theoretic analysis to bound the expected
number of writes in a batched arrival queueing system with a bounded buffer. A
batch corresponds to a memory-load of keys that we are trying to classify into
buckets and the bounded buffer is a part of the memory. The FR schedule is more
complicated to implement and is not read-optimal for M = o(BD logD). The
RC scheduling resulted in optimal distributed sort (RCD) and optimal merge-
sort (RCM) via duality [13]. These have been shown to be very practical [11].
However, these algorithms have been shown to be optimal only in expectation
and no high probability bounds have been derived.

Recently a third approach has been pioneered by [10], where the focus is
to maximize the problem size for a fixed number of passes. Being inherently
oblivious in nature, they are able to achieve the desired parallelism more easily
(see [8,9] for more details). Unfortunately, the number of passes made by these
algorithms deteriorate rapidly from their optimal values with increasing problem
sizes. The problem sizes have been increased further in [19].

In this paper we present a simple randomized algorithm for sorting on the
PDM that makes only Õ

(
log(N/M)
log(M/B)

)
passes through the data. Note that this

bound holds with high probability for any value of N unlike the previous
randomized algorithms for which only expected bounds have been proved. In
our analysis we rely only on standard tools that do not rely on asymptotic con-
vergence. In addition, we are able to adhere to desirable properties like striping
and simplicity. The underlying approach in our algorithm is to first generate
a random permutation and subsequently sort the random permutation using
a simple mergesort. One can easily argue that these are symmetric problems
and we show how to solve them optimally. In the process we introduce some
fundamentally novel ideas that could find independent applications.

3 Integer Sorting and Random Permutation

Often, the keys to be sorted are integers in some range [1, R]. Numerous se-
quential and parallel algorithms have been devised for sorting integers. Several
efficient out-of-core algorithms have been devised by Arge, Ferragina, Grossi,
and Vitter [4] for sorting strings. In [19], two integer sorting algorithms are
given. These algorithms have optimal expected performance, the expectation
being over the space of all possible inputs. In particular, these algorithms have
optimal performance on an overwhelming fraction of all possible inputs. We sum-
marize their results here and more details can be found in [19]. The following
Theorem is proven in [19]:

Theorem 1. N random integers in the range [1, R] (for any R) can be sorted in
an expected (1+µ) log(N/M)

log(M/B) +1 passes through the data, where µ is a constant < 1
and is B is Ω(logN). In fact, this bound holds for a large fraction (≥ 1 −N−α

for any fixed α ≥ 1) of all possible inputs.

546 S. Rajasekaran and S. Sen

The proof of the above Theorem is based on two algorithms. The first algo-
rithm (called IntegerSort) sorts N random keys where each key is an integer in
the range [1, Ω(M/B)]. This algorithm takes O(1) passes through the data. The
second algorithm (called RadixSort) employs forward radix sorting. In each stage
of sorting, the keys are sorted with respect to some number of their MSBs. Keys
that have the same value with respect to all the bits that have been processed
up to some stage are said to form a bucket in that stage. A description of the
algorithm follows. In this algorithm, δ is any constant > 0.

Algorithm RadixSort

for i := 1 to (1 + δ) log(N/M)
log(M/B) do

1. Employ IntegerSort to sort the keys with respect to their ith most
significant log(M/B) bits.

2. Now the size of each bucket is ≤ M . Read and sort the buckets.

We show how to randomly permute N given keys such that each permutation
is equally likely. We employ RadixSort for this purpose. The idea is to assign a
random label with each key in the range [1, N1+β] (for any fixed 0 < β < 1) and
sort the keys with respect to their labels. This can be done in (1+µ) log(N/M)

log(M/B) +1
passes through the data with probability ≥ 1−N−α for any fixed α ≥ 1. Here µ
is a constant < 1. For many applications, this permutation may suffice. But we
can ensure that each permutation is equally likely with one more pass through
the data.

When each key gets a random label in the range [1, N1+β], the labels may not
be unique. The maximum number of times any label is repeated is Õ(1) from the
observation that the number of keys falling in a bucket is binomially distributed
with mean 1/n and applying Chernoff bounds (equation 1 in Appendix A). We
have to randomly permute keys with equal labels which can be done in one more
pass through the data as follows. We think of the sequence of N input keys as
S1, S2, . . . , SN/DB where each Si (1 ≤ i ≤ N/(DB)) is a subsequence of length
DB. Note that keys with the same label can only span two such subsequences.
We bring in DB keys at a time into the main memory. We assume a main
memory of size 2DB. There will be two subsequences at any time in the main
memory. Required permutations of keys with equal labels are done and DB keys
are shipped out to the disks. The above process is repeated until all the keys are
processed.

Remark: With more care we can eliminate this extra pass by combining it with
the last stage of radix sort.

Thus we get the following:

Theorem 2. We can permute N keys in O(log(N/M)
log(M/B)) passes through the data

with probability ≥ 1 − N−α for any fixed α ≥ 1, where µ is a constant < 1,
provided B = Ω(logN).

Remark: In the above Theorem, we assume that B = Ω(logN). This assump-
tion is made in [19] as well. This is a very benign assumption that readily holds

A Simple Optimal Randomized Algorithm for Sorting on the PDM 547

in practice. However, we later show how to eliminate this assumption without
sacrificing the asymptotic performance.

4 Randomized Sorting

In this section we present a randomized sorting algorithm that sorts N given
keys in Õ

(
log(N/M)
log(M/B)

)
passes through the data. Our algorithm employs the per-

mutation algorithm from Section 3.

4.1 First Attempt

We start with a simple version of the algorithm (called sf RSort1). Unfortunately,
RSort1 may not run in an optimal number of I/O’s. This algorithm is modified
in the next subsection to achieve optimality. RSort1 helps one understand the
basic ideas behind the optimal algorithm. In the following algorithm, R = M/B.

Algorithm RSort1

1. Randomly permute the input N keys using the algorithm of Theorem 2.
2. In one pass through the data form runs of length M = DB each.
3. for i := 1 to log(N/M)

log R do

while there are more runs do

Merge the next R runs as follows.

Start by bringing in two blocks from each run. Assume that
R = D = M/B and the main memory is of size 2DB. Merge the
runs to ship M keys out to the disks. This run becomes an in-
put run for the next iteration. If one of the runs becomes empty
before M output keys are formed, start all over again. (We will
show that the probability of this happening is negligible).

From here on, maintain the invariant that for each run we have
two leading blocks in the memory. Form BD output keys and
ship them. Repeat this until the R runs are merged.

Analysis. Let a phase refer to one run of step 3 of RSort1. In the following
discussion ignore the number of parallel I/Os needed to do one scan through the
data while merging the runs.

Consider the problem of merging anyR runs in some phase of RSort1. Consider
some point in time when there are 2D blocks in the main memory with 2 blocks
per run. We merge these blocks to form M output keys. Note that the M output
keys are such that each key is equally likely to have come out of the R runs.
Thus the expected number of keys that come out any particular run is B. Using
Chernoff bounds, this number lies in the interval [(1 − ε)B, (1 + ε)B] with
probability ≥ 2[1 − exp(−ε2B)/3], ε being any constant > 0. In other words,

548 S. Rajasekaran and S. Sen

each run gets consumed at the rate of at least (1 − ε) blocks per (1 + ε) blocks
brought in (from each run). For B ≥ logN , this holds with high probability.
Note that the probability of ε being very close to 1 is very low and hence the
event of two blocks getting consumed before M output keys are formed is very
low.

In summary, with high probability, it takes at most 1/(1− ε) scans through a
run before it gets consumed completely. As a result, RSort1 makes Õ

(
log(N/M)
log(M/B)

)
scans through the input.

Even though RSort1 makes an optimal number of scans through the input,
each scan may take more than an optimal number of I/Os. This can be seen
as follows. At the beginning of the algorithm, the runs are striped in a cyclic
fashion. Let the runs be R1, R2, . . . , Rq. The first block of run i will be in disk
(i−1) mod D+1; the second block of run i will be in disk i mod D+1; and so on
(for 1 ≤ i ≤ q). If whenever blocks are accessed from different runs these blocks
come from different disks, then it will mean that the number of I/O operations is
optimal as well. For instance if each run gets consumed at the rate of one block
per block brought in, then this will hold.

However, the runs get consumed at different rates. For instance, there could
come a time when we need a block from each run and all of these blocks are in
the same disk. An occupancy analysis similar to the one in [6] will imply that
the expected number of I/O operations in the worst case could be nonoptimal
unless M/B is Ω(D logD).

In the next subsection we modify RSort1 to make it optimal and still retain
the simplicity.

4.2 A Second Algorithm: Periodic Resetting

The key ideas to make RSort1 optimal are: 1) Let Q1, Q2, . . . , QR be the runs
to be merged at some point in time. Let a stage refer to the step of bringing in
required keys, merging the 2DB keys in memory and forming M output keys.
We keep the R runs such that the leading blocks for the runs are in successive
disks (or very nearly so); and 2) When there are many blocks in every run, the
above property may be difficult to maintain since as time progresses, the leading
blocks deviate more and more from the expected disk locations. We periodically
rearrange the leadingM keys of each run so that the above property is reinstated
after the rearrangement. Again we assume that R = M/B.

In the description that follows, we use M to denote DB and we assume that
the actual internal memory has size 2DB.

Algorithm RSort2

1. Permute the input N keys using the algorithm of Theorem 2.
2. In one pass through the data form runs of length M = DB each.
3. for i := 1 to log(N/M)

log R do

A Simple Optimal Randomized Algorithm for Sorting on the PDM 549

while there are more runs do
Merge the next R runs as follows.

Begin by bringing in 2M
RB = 2 blocks from each run. Merge the

runs to ship M keys out to the disks to be used as an input run
for the next iteration. If one of the runs becomes empty before
M output keys are formed, start all over again. The probability
of this happening is low.

Maintain the property that there are exactly 2M
RB = 2 leading

blocks per run. Form BD output keys and ship them. Call the
step of bringing in enough keys to have 2M/(RB) blocks per run,
merging them and outputting M keys as a stage of the algorithm.
After every (M/B) stages perform a rearrangement of runs. In
particular, read the leading M keys of each run and write them
back so that the leading blocks of the runs are in successive disks.
Use separate areas in the disks for the purpose of rewriting.

Repeat the above step until the R runs are merged.

Theorem 3. RSort2 takes Õ
(

log(N/M)
log(M/B)

)
read passes through the data provided

B = Ω(
√
M logN).

Proof. Let a phase of the algorithm refer to one run of step 3 and let a stage
of the algorithm refer to bringing in enough keys per run (i.e. 2M/R keys per
run), merging the runs, and shipping M keys out to the disks.

It suffices to prove that each phase of the algorithm takes Õ(N/DB) I/Os.
In each stage of the algorithm the expected number of blocks consumed from

each run is 1. If the starting block of a run is i then after q stages, the leading
block of this run is expected to be in disk (i + q − 1) mod D + 1. Assume that
the leading block of each run continues to be within one disk of its expected
disk. Consider the task of bringing into main memory at most K leading blocks
of each run. How many I/Os will be needed? It is easy to see that in the worst
case, 3 ·K I/Os will suffice as each disk can have at most 3 of the leading blocks.
Thus when K = 1, three I/O’s suffice.

We can actually obtain a stronger result:

Lemma 1. Consider D disks and R runs with R ≤ D. The runs are striped in
the usual way. Let the leading block of each run stray away from its expected disk
by at most q disks. The problem of bringing in K blocks from each run can be
accomplished in at most K + 2q I/Os.

Proof. Assume that R = D since this corresponds to the worst case. Also assume
that K ≤ D for simplicity (though the result is general). Consider any disk d.
From out of the blocks we want to fetch, how many blcoks will reside in d? If
the starting blocks of the runs are equidistant, then K blocks will reside in d.
The starting blocks of runs can be at most q disks away from their expected
starting disks. The starting disks of some of the runs could be to the right of

550 S. Rajasekaran and S. Sen

their expected disks and the starting blocks of some others could be to the left
of their starting disks. The number of blocks in d (excluding those K runs that
are expected to have a block each in d) from out of the first kind of runs is at
most q and the number of blocks from the second kind is at most q. (We assume
that there is sufficient buffer, i.e. (K + 2q)DB for this purpose.)

When we perform R stages, the expected number of keys coming out of each
run is M . This number will stray away from its expected value by at most√
αM lnN with probability ≥ (1 − N−α). Thus the leading block of each run

will stray away by at most one disk provided B ≥
√
αM lnN . This condition

is readily satisfied in practice. In this case, each stage of the algorithm can be
completed in three I/Os with high probability.

Also, all the rearrangements of keys take an additional
(1 + ν) log(N/M)/ log(M/B) read passes and the same number of write passes,
where ν is any constant > 0.

In summary, the number of read passes taken by the algorithm is 4(1 +
ν) log(N/M)

log(M/B) + (1 + µ) log(N/M)
log(M/B) + 2 with probability ≥ (1 − N−α) for any fixed

α ≥ 1. Here ν is any constant > 0 and µ is a constant < 1.

4.3 Relaxing the Constraint on B

RSort2 assumes that B = Ω(
√
M logN). This assumption can be relaxed with

the following idea. Employ a value of R = (M/B)ε for any constant 1 > ε > 0.
Note that when R = (M/B)ε, we have R < D. If Q1, Q2, . . . , QR are the runs,

we stripe Q1 starting from disk 1, Q2 starting from disk 1 +D/R, Q3 starting
from 1+2D/R, and so on. (Assume w.l.o.g. that D is an integral multiple of R).
In other words, the leading blocks of the runs are D/R disks apart. Therefore,
even if the leading blocks of the runs stray by D/R blocks each stage can be
performed in three I/Os.

The resultant algorithm RSort is the same as RSort2 except that rearrange-
ments are done every (M/B)ε stages and we use a value of R = (M/B)ε.

When (M/B)ε stages are performed, the expected number of keys consumed
from each run is M . The actual value for any run can stray away from its
expected value by

√
αM lnN , with probability ≥ (1 − N−α). We want this

number to be ≤ DB/R. This happens when
√
αM lnN ≤ M1−εBε. This implies

that B ≥ M (ε−1/2)/ε(α lnN)1/(2ε).
When ε = 1/2, the above condition becomes: B ≥ α lnN . This is a benign

condition and readily holds in practice. For a value of ε = 1
2 − δ (for any fixed

δ > 0), the above condition becomes, B ≥ 1, provided N ≤ eMδ/α. For either
choice of ε the number of passes made by the algorithm is no more than 8(1 +
ν) log(N/M)

log(M/B) + (1 +µ) log(N/M)
log(M/B) + 2 with probability ≥ (1−N−α) for any constant

α ≥ 1. Here ν is any constant > 0 and µ is a constant < 1.
Thus we get the following Theorem:

Theorem 4. RSort takes Õ
(

log(N/M)
log(M/B)

)
read passes through the data without

considering the time for random permutation.

A Simple Optimal Randomized Algorithm for Sorting on the PDM 551

Observation 1: Note that the above analysis is very conservative and in practice
the underlying constants will be smaller.

Observation 2: When B is large, we can decrease the number of read passes
made by RSort as follows. Let B = Mβ. When β = 3/4, the number of read
passes is 2(1 + ν) log(N/M)

log(M/B) + (1 + µ) log(N/M)
log(M/B) + 2.

Observation 3: The algorithms IntegerSort and RadixSort assume that B =
Ω(lnN). As a consequence, the algorithm of Theorem 2 also makes this assump-
tion. We can relax this constraint in exactly the same manner as in Section
4.3.

Observation 4: In practice, the internal memory could be larger than a constant
multiple of BD. We prove the following:

Theorem 5. RSort can be modified for the case of M = 2qDB to run in
Õ
(

log(N/(qBD))
log(qD)

)
read passes through the data.

5 Conclusions

In this paper we have presented optimal randomized sorting algorithms for the
PDM model. These algorithms overcome the shortcomings present in prior ran-
domized sorting algorithms on the PDM. These algorithms and the accompa-
nying analyses are quite simple. They have the potential of performing well in
practice.

References

1. A. Aggarwal and G. Plaxton, Optimal parallel sorting in multi-level storage, Proc
of the ACM-SIAM SODA 1994, pp. 659 – 668.

2. A. Aggarwal and J. S. Vitter, The Input/Output Complexity of Sorting and Re-
lated Problems, Communications of the ACM 31(9), 1988, pp. 1116-1127.

3. L. Arge, The Buffer Tree: A New Technique for Optimal I/O-Algorithms, Proc.
4th International Workshop on Algorithms and Data Structures (WADS), 1995,
pp. 334-345.

4. L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter, On Sorting Strings in External
Memory, Proc. ACM Symposium on Theory of Computing, 1995.

5. L. Arge, M. Knudsen, and K. Larsen, A General Lower Bound on the I/O-
Complexity of Comparison-based Algorithms, Proc. Third Workshop on Algorithms
and Data Structures (WADS), 1993.

6. R. Barve, E. F. Grove, and J. S. Vitter, Simple Randomized Mergesort on Parallel
Disks, Parallel Computing 23(4-5), 1997, pp. 601-631.

7. K. Batcher, Sorting Networks and their Applications, Proc. AFIPS Spring Joint
Computing Conference 32, 1968, pp. 307-314.

8. G. Chaudhry and T. H. Cormen, Getting More From Out-of-Core Columnsort,
Proc. 4th Workshop on Algorithm Engineering and Experiments (ALENEX), 2002,
pp. 143-154.

552 S. Rajasekaran and S. Sen

9. G. Chaudhry, T. H. Cormen, and E. A. Hamon, Parallel Out-of-Core Sorting: The
Third Way, to appear in Cluster Computing.

10. G. Chaudhry, T. H. Cormen, and L. F. Wisniewski, Columnsort Lives! An Efficient
Out-of-Core Sorting Program, Proc. 13th Annual ACM Symposium on Parallel
Algorithms and Architectures, 2001, pp. 169-178.

11. R. Dementiev and P. Sanders, Asynchronous Parallel Disk Sorting, Proc. ACM
Symposium on Parallel Algorithms and Architectures, 2003, pp. 138-148.

12. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, W. H. Freeman
Press, 1998.

13. D. Hutchinson, P. Sanders and J. Vitter, Duality between prefetching and queued
writing with parallel disks, 9th European Symposium on Algorithms 2001, LNCS
2161, pp. 62 – 73.

14. T. Leighton, Tight Bounds on the Complexity of Parallel Sorting, IEEE Transac-
tions on Computers C34(4), 1985, pp. 344-354.

15. M. Nodine and J. Vitter, Deterministic distribution sort in shared and distributed
memory multirocessors, Proc. of the ACM SPAA 1993, pp. 120 – 129.

16. M. H. Nodine and J. S. Vitter, Greed Sort: Optimal Deterministic Sorting on
Parallel Disks, Journal of the ACM 42(4), 1995, pp. 919-933.

17. S. Rajasekaran, Sorting and selection on interconnection networks, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 21, 1995, pp. 275-296.

18. S. Rajasekaran, A Framework for Simple Sorting Algorithms on Parallel Disk Sys-
tems, Theory of Computing Systems, 34(2), 2001, pp. 101-114.

19. S. Rajasekaran and S. Sen, PDM Sorting Algorithms That Take A Small Number
Of Passes, manuscript, 2004.

20. P. Sanders, S. Enger and J. Korst, Fast concurrent access to parallel disks, Proc of
the ACM-SIAM SODA 2000, pp. 849 – 858.

21. C.D. Thompson and H.T. Kung, Sorting on a Mesh Connected Parallel Computer,
Communications of the ACM 20(4), 1977, pp. 263-271.

22. J. S. Vitter and D. A. Hutchinson, Distribution Sort with Randomized Cycling,
Proc. 12th Annual SIAM/ACM Symposium on Discrete Algorithms, 2001.

23. J. S. Vitter and E. A. M. Shriver, Algorithms for Parallel Memory I: Two-Level
Memories, Algorithmica 12(2-3), 1994, pp. 110-147.

Appendix A: Chernoff Bounds

If a random vraiable X is the sum of n iid Bernoulli trials with a success proba-
bility of p in each trial, the following equations give us concentration bounds of
deviation of X from the expected value of np. The first equation is more useful
for large deviations whereas the the other two are useful for small deviations
from a large expected value.

Prob(X ≥ m) ≤
(np
m

)m

em−np (1)

Prob(X ≤ (1 − ε)pn) ≤ exp(−ε2np/2) (2)

Prob(X ≥ (1 + ε)np) ≤ exp(−ε2np/3) (3)

for all 0 < ε < 1.

Efficient Parallel Algorithms for Constructing
a k-Tree Center and a k-Tree Core

of a Tree Network

Yan Wang, Deqiang Wang, Wei Liu, and Baoyu Tian

Dalian Maritime University,
Dalian 116026, China

{wangyannihao 199, collionliu}@163.com
dqwang@dlmu.edu.cn

tianbaob@newmail.dlmu.edu.cn

Abstract. In this paper, we propose two efficient parallel algorithms
for constructing a k-tree center and a k-tree core of a tree network,
respectively. Both algorithms take O(log n) time using O(n) work on
the EREW PRAM. Our algorithms improve the algorithms previously
proposed by Wang (IEEE Trans. Par. Dist. Sys. 1998) and Peng et al.
(J. Algorithms 1993).

1 Introduction

Optimally locating a facility in a network is an important problem in the fields
of transportation and communication. Due to the variety of facility kinds and
different criteria for optimality, many location problems have been defined and
studied [3,8,7,12]. These location problems usually have important applications
in transportation and communication and thus have received much attention
from researchers in the fields. The criteria for optimality extensively studied in
the literature are the minimum eccentricity criterion in which the distance to
the farthest vertex from the facility is minimized and the minimum distancesum
criterion in which the total distance from the facility to the vertices is minimized.

Traditionally, network location theory has been concerned with the optimal
location of a single-point facility. Slater [10] extended the network location theory
to include a facility that is not merely a single point but a path. This extended
theory has practical applications in proving a stretch of road in a highway and in
establishing a high-speed transmission line in a communication network. Slater’s
work was confined to tree networks. A path in a tree network with the minimum
eccentricity is defined as a center; a path in a tree network with the minimum
distancesum is defined as a core. In Ref. [6], two kinds of facilities are consid-
ered: paths and trees; and four optimization criteria are considered: minimum
eccentricity, minimum distancesum, maximum eccentricity, and maximum dis-
tancemum. In total, there are eight different problems. In this paper, we only
consider the minimum eccentricity and minimum distancesum on trees.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 553–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

554 Y. Wang et al.

In Ref. [8], Peng et al. first presented an algorithm for constructing a k-tree
core on tree network, which has time complexity of O(kn), where n is the number
of vertices in the tree network. That is a greedy-type procedure that first finds
a core of the tree and then adds to it k-2 paths obtaining a k-tree core. Efficient
algorithm for finding a k-tree core of a tree network has an application in the
placement of the k copies of a data object in the tree network [8]. But Peng et
al.’s algorithm performs in a step-by-step refining manner. Thus, it is hard to
parallelize their algorithms. So, Wang gave an efficient parallel algorithm that
was proposed for finding a k-tree core of a tree network [13]. The proposed
algorithm performs on the EREW PRAM in O(log n log∗ n) time using O(n)
work.

In this paper, two efficient parallel algorithms are proposed for constructing
a k-tree center and a k-tree core of a tree network. Our algorithms perform on
the EREW PRAM in O(log n) time using O(n) work. They are more efficient
than the two algorithms previously proposed in Ref. [8] and simpler than the
algorithm proposed in Ref. [13].

The rest of the paper is organized as follows: Section 2 introduces the notations
and preliminary results. The algorithms on a k-tree center and a k-tree core
can be found in Section 3 and Section 4, respectively. Section 5 concludes this
paper.

2 Notations and Preliminary Results

Let T = (V,E) denote the tree network under consideration, where V is the
vertex set and E is the edge set. Let n = |V |. The n vertices in V are labelled
with 1, 2, . . . , n, respectively. Denote label(v) as the label of the vertex v ∈ V .
The tree network is undirected. Each edge e ∈ E has an arbitrary positive length
w(e). A leaf of T is a vertex with degree one. Let m be the number of leaves of
T . For any two vertices a and b in V , the distance between a and b, denoted by
d(a, b), is the length of the unique path connecting a and b. The distance from
a vertex v to a subtree X is defined as

d(v,X) = min
u∈V (X)

{d(v, u)},

where V (X) is the vertex set of X . The distancesum and eccentricity of a subtree
X of T , denoted by Sum(X) and Ecc(X), defined as follows, respectively,

Sum(X) =
∑
v∈V

d(v,X), Ecc(X) = max
v∈V

{d(v,X)}.

The center of T is any vertex of T whose eccentricity is minimized. Handler and
Mirchandani showed that the center of T can be determined in linear time by
the following technique [3]: First, select any vertex v of T and find a vertex u
that is farthest from v. Then, find a vertex z that is farthest from u. The path
from u to z is called a diameter path of T . The mid-point of any diameter path
of T is the unique center.

Efficient Parallel Algorithms 555

A k-tree center of T is a minimum eccentricity subtree of T , which contains
exactly k leaves. A k-tree core of T is a minimum distancesum subtree of T ,
which contains exactly k leaves.

In this paper, we apply the Euler-tour technique [11] and tree contraction
[5,9], which are two of the major parallel techniques. We assume that the data
structure representing T is an adjacency list, to which Euler-tour technique
and tree contraction can be applied efficiently to construct the process of the
algorithms that we will propose in following section.

The following results are needed for the algorithm we shall propose in the next
section. All the results are derived from the two techniques mentioned above.

Lemma 1 ([7]). The center of a tree can be computed in O(log n) time using
O(n) work on the EREW PRAM.

Lemma 2 ([4]). An undirected tree can be oriented into a rooted tree with a
specified root in O(log n) time using O(n) work on the EREW PRAM.

3 Constructing a k-Tree Center

Let c be the center of T . For easy discussion, we assume that c is a vertex of
T (In case c is a point on an edge (u, v) of T , we can simply introduce a new
vertex at c and split the edge (u, v) into two edges (u, c) and (c, v)). Throughout
the remainder of this section, we assume that T is rooted at c. Denote Tv, p(v),
size(v) and depth(v) as the subtree rooted at v, the parent of v, the number of
vertices contained in the subtree rooted at v and the distance from the root to
v, respectively.

In Ref. [13], Wang defined the terms “beat” and “importance” as follows:
Let l1 and l2 be two leaves of a subtree Tv. Say that l1 beats l2 at the vertex

v if and only if either
(1) d(v, l1) > d(v, l2) or
(2) d(v, l1) = d(v, l2) and label(l1) > label(l2).
If no leaf in Tv beats l at v, then we say that the leaf l of Tv dominates Tv.

Denote DomiLeaf(v) as the leaf dominating Tv. Let l be a leaf in T and the path
Pc,l be given as < u1, u2, . . . , ut >, where u1 = c and ut = l. Clearly, there exists
a vertex uq(1 ≤ q ≤ t), such that the subtrees Tuq , Tuq+1 , . . . , Tut are dominated
by l, but the other subtrees Tu1 , Tu2 , . . . , Tuq−1 are not. Denote DomiEnd(l) as
the vertex uq. The dominated path of l, denoted by DomiPath(l), is the path
from DomiEnd(l) to l. Clearly, DomiPath(l1)

⋂
Domipath(l2) = ∅, for any two

leaves l1 and l2 in T .
The importance of a leaf l is defined as:

R(l) =
{
d(x, l) if l dominates T ,
d(p(x), l) otherwise,

where x = DomiEnd(l). Denote Rank(l) as the number of leaves in T that are
more important than or as important as l. Denote bi(1 ≤ i ≤ m) as the ith

556 Y. Wang et al.

most important leaf in T . Clearly, DomiEnd(b1) = p(DomiEnd(b2)) = c and
the path from b1 to b2 is a diameter path of T .

As an illustrative example, let us consider the tree network depicted in Fig.1.
In the figure, any edge e ∈ E of the tree network has w(e) = 1. The dominated
paths of the leaves of the network are depicted in Fig.2. For each leaf ui in the
network, we list the values of DomiEnd(ui), R(ui), and Rank(ui)in Table 1.

�

�

�

�

�

�

�

�

�

�

� �

��
�

�
�

�
�

�
�

�
�

���
�

�
�

�
�

�
�

�
�

��

�
�
�

�
�
�
�
�
�

�
�

�

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u12 u11

u13

Fig. 1. A tree network

�

�

�

�

�

�

�

�

�

�

� �

��
�

�
�

�
�

�
�

�
�

���
�

�
�

�
�

�
�

�
�

��

�
�
�

�
�
�
�
�
�

�
�

�

�

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u12

u11

u13

root c

��
��

��
��

��
��

��

��

��

��
��

��
��

��
��

��

�
�

�

��

��

�
�

�

�
��

�
��

��

��

�
��

�
��

��
��

��
��

��
��

��
��

��
��

����
��

��
��

��
��

��
��

��
��

��

		

		

Fig. 2. k-tree center: the dominated paths

Let T (i) be a subtree of T with i leaves, and let T (1) = DomiPath(b1).
Clearly, T (m) is just T . T (i)(2 ≤ i ≤ m) is constructed as follows:

T (i) = T \
m⋃

x=i+1

DomiPath(bx)(2 ≤ i ≤ m).

Namely, we apple the upward tree accumulation technique (see Ref. [9]) to
these DomiPath(bx) (i+ 1 ≤ x ≤ m) of T .

Efficient Parallel Algorithms 557

Table 1. k-tree center: DomiEnd(ui), R(ui) and Rank(ui)

ui u1 u4 u7 u12 u13

DomiEnd(ui) u5 u4 u6 u12 u8

R(ui) 4 1 2 1 4
Rank(ui) 2 5 3 4 1

Lemma 3. T (k) is a subtree of T with k leaves (2 ≤ k ≤ m), and,

Ecc(T (k)) =
{
R(bk+1) 2 ≤ k < m,
0 k = m.

Proof. Clearly, T (k) is a subtree of T with k leaves. Since T (m) = T , we have
Ecc(T (m)) = 0. In the following, we show that Ecc(T (k)) = R(bk+1) for 2 ≤ k <
m. Assume 2 ≤ k < m. Let p be the farthest distance vertex in T from T (k). Let
q be the vertex on T (k) that is closest to p and w be second vertex on the path
from q to p. Let x = DomiLeaf(w). Note that x is a leaf in {bk+1, bk+2, . . . , bm}.
Since Tq is not dominated by x, we have d(q, x) = R(x) ≤ R(bk+1). Thus, we
have Ecc(T (k)) = d(q, p) ≤ d(q, x) ≤ R(bk+1). On the other hand, we have
Ecc(T (k)) ≥ d(bk+1, T (k)) ≥ R(bk+1). Combining these two statements, we can
conclude that Ecc(T (k)) = R(bk+1). The lemma holds. ��

Theorem 1. The subtree T (k) is a k-tree center of T (2 ≤ k ≤ m).

Proof. Clearly, the theorem holds for k = m. Assume that T (k) is a k-tree center,
we show that T (k−1) is a (k−1)-tree center. Note that the set of leaves in T (k)
is {b1, b2, . . . , bk}. Let x be any positive number smaller than R(bk). For every
i(1 ≤ i ≤ k), let ui be the points on the path from c to bi and d(ui, bi) = x.
From the Ref. [13], we know that any subtree of T that contains the root c and k
points ui(i = 1, 2, . . . , k), has at least k leaves. Let Y be a (k−1)-tree center of T .
To complete the proof, in the following, we show that Ecc(Y) > Ecc(T (k− 1)).
Since Y has only (k − 1) leaves and Y contains the root c, at least one of
ui(i = 1, 2, . . . , k), is not contained in Y . Thus, at least one of bi(i = 1, 2, . . . , k),
is at a distance not smaller than x from Y . Thus, we have Ecc(Y) > x. Recall
that x is any positive number smaller than R(bk). Therefore, we can conclude
that Ecc(Y) ≥ R(bk). By Lemma 3, we have Ecc(T (k − 1)) = R(bk) ≤ Ecc(Y).
The theorem holds. ��

From the construction of T (k) and Theorem 1, we can easily obtain two
corollaries as follows:

Corollary 1. Every (k− 1)-tree center is contained in a k-tree center (2 ≤ k ≤
m) of an unweighted tree network .

Corollary 2. The vertex p(DomiEnd(bi)) is contained in T (i− 1)(2 ≤ i ≤ m).

Now, we are ready to propose our algorithm for constructing a k-tree center
of T as follows:

558 Y. Wang et al.

Algorithm 1 k-Tree Center(T = (V,E))
Input: a tree T = (V,E)
Output: a k-tree center of T
Begin
Step 1: Identify an endpoint c as the center of T. And then,

orient T into a rooted tree with root c.
Step 2: For each internal vertex v in T, compute DomiLeaf(v).
Step 3: For each leaf l in T, determine DomiEnd(l), R(l) and

Rank(l).
Step 4: Find the dominated Path of each leaf l of T.
Step 5: Compute T (k), which is a k-tree center of T .

T (k) ←− T \
m⋃

x=k+1

DomiPath(bx).

Step6: return T (k).
End

The correctness of the above algorithm is ensured by Lemma 3 and Theorem
1. Now, we discuss the parallel running time of the algorithm as follows: By
Lemmas 1 and 2, step 1 take O(log n) time using O(n) work. Step 2, 3 and 4 can
be done in O(log n) time using O(n) work. It was showed by Cole and Vishkin
that the prefix computation of a linked list can be computed in O(log n) time
using O(n) work on the EREW PRAM [2]. Let

⊙
denote a binary associative

operator. Give an ordered data set {a0, a1, . . . , at−1}, t > 0, computing psj =
a0
⊙
a1
⊙

· · ·
⊙
aj for 0 ≤ j < t is referred to as the prefix computation. Step 5

can be performed in O(log n) time using O(n) work. Therefore, all steps in the
algorithm of constructing a k-tree center can be implemented in O(log n) time
using O(n) work. We have the following theorem.

Theorem 2. A k-tree center of a tree network can be computed in O(log n) time
using O(n) work on the EREW PRAM.

4 Constructing a k-Tree Core

Let r be an endpoint of any diameter path of T . In this section, we assume that
T is rooted at r. For each vertex v in T , the terms of the p(v), Tv, depth(v), and
size(v) are uniform to the above section, respectively.

Let Pv,l be the path from a vertex v to a leaf l of Tv. The distance saving of
this path is defined as [13]

Save(Pv,l) = Sum(v) − Sum(Pv,l) =
∑
u∈V

d(u, v) −
∑
u∈V

d(u, Pv,l),

MaxSave(v) = max{Save(Pv,l) | l is a leaf of Tv}.

Efficient Parallel Algorithms 559

The algorithm we shall propose for constructing a k-tree core is similar to
the algorithm we have proposed for constructing a k-tree center. Here, we quote
several definitions in Ref. [13] as follows:

Let l1 and l2 be two leaves of a subtree Tv . We say that l1 beats l2 at the
vertex v if and only if either

(1) Save(Pv,l1) > Save(Pv,l2) or
(2) Save(Pv,l1) = Save(Pv,l2) and label(l1) > label(l2).

The terms “dominate”,“DomiLeaf(v)”, “DomiEnd(l)” and “DomiPath(l)”
are redefined correspondingly[13].

The importance of a leaf l of T is as follows:

R(l) =
{
Save(Px,l) if l dominates T ,
w(p(x), x) × size(x) + Save(Px,l) otherwise,

where x = DomiEnd(l). Say that the leaf l1 is more important than another
leaf l2 if and only if either

(1)R(l1) > R(l2) or
(2)R(l1) = R(l2)and label(l1) > label(l2).

The rank of a leaf l in T defined as the same as the section 3, denote Rank(l).
Throughout this section, denote ai as the leaf with rank i in T (1 ≤ i ≤ m− 1).
Clearly, a1 is the leaf dominates T and, thus, we have DomiEnd(a1) = r.

Lemma 4 ([13]). If a leaf l1 beats another leaf l2 at some vertex, we have
R(l1) ≥ R(l2) and Rank(l1) < Rank(l2).

Let

Fi = T \
m−1⋃

x=i+1

DomiPath(ax)(1 ≤ i ≤ m− 1).

That is, Fi is a subtree that using upward tree accumulation technique [9] to
these DomiPath(ax)(i+ 1 ≤ x ≤ m− 1) of T .

Lemma 5. The vertex p(DomiEnd(ai)) is contained in Fi−1(2 ≤ i ≤ m− 1)

Proof. Let x = DomiEnd(ai). By definition, the subtree Tp(x) is not dominated
by ai. Let y be the leaf that dominates Tp(x). Since y beats ai at p(x), by
Lemma 4, we have Rank(y) < i. Thus, the path DomiPath(y) is included in
Fi−1(2 ≤ i ≤ m− 1). Since p(x) is a vertex on DomiPath(y), it is contained in
Fi−1(2 ≤ i ≤ m− 1). The lemma holds. ��

From Lemma 5, we can easily conclude that Fi is a subtree of T with i + 1
endpoints(including the root r). The two subtrees Fi−1 and Fi differ only in the
path from p(DomiEnd(ai)) to ai. Thus, we have

Sum(Fi) = Sum(Fi−1) − Save(Pp(DomiEnd(ai)),ai
)

= Sum(Fi−1) −R(ai).
(1)

Since a1 dominates T , among all paths from r to the leaves, DomiPath(a1)
is the one with the maximum distance saving. We obtain the following lemma.

560 Y. Wang et al.

Lemma 6. The subtree F1 is a 2-tree core of T .

Lemma 7 ([8]). For any k-tree core S �= T , there exists a (k + 1)-tree core S∗

such that S ⊂ S∗.

Theorem 3. The subtree Fk−1 is a k-tree core of T (2 ≤ k ≤ m).

Proof. We prove this theorem by induction on k. By Lemma 6, the base case
k = 2 is established. Suppose, by induction, that the theorem is true for all
values less than k: we will show that the theorem holds for k as well.

By the induction hypothesis, Fk−2 is a (k− 1)-tree core of T . For each vertex
ai(k − 1 ≤ i ≤ m− 1), denote Near(ai) as the vertex in Fk−2 that is closest to
ai. Let x be the leaf in the set {ak−1, ak, . . . , am−1} satisfying

Save(PNear(x),x) = max
k−1≤i≤m−1

{Save(PNear(ai),ai
)}

By Lemma 7, we can obtain a k-tree core from Fk−2 by adding one of the
paths PNear(ai),ai

(i = k−1, k, . . . ,m−1). Thus, we can conclude that the subtree
F ∗ = Fk−2 ∪ PNear(x),x is a k-tree core of T with Sum(F ∗) = Sum(Fk−2) −
Save(PNear(x),x). To show that Fk−1 is a k-tree core of T , in the following, we
show that Sum(Fk−1) ≤ Sum(F ∗).

Let y = Near(x) and q be the second vertex on the path from y to x. Since
q is not contained in Fk−2, all leaves of Tq are in the set {ak−1, ak, . . . , am−1}.
Let z = DomiLeaf(q). Note that q = DomiEnd(z). Since the subtree Tz is not
dominated by z. We have

Sum(F ∗) = Sum(Fk−2) − Save(Py,x)
≥ Sum(Fk−2) − Save(Py,z)
≥ Sum(Fk−2) −R(z).

Since z is a leaf in {ak−1, ak, . . . , am−1}, we have R(ak−1) ≥ R(z). From
equation (1), we have Sum(Fk−1) = Sum(Fk−2) − R(ak−1). Thus, we have
Sum(Fk−1) ≤ Sum(F ∗). The theorem holds. ��

Now, we are ready to propose our algorithm for constructing a k-tree core of
T ,which is as follows:

Algorithm 2 k-Tree Core T = (V,E)
Input: a tree T = (V,E)
Output: a k-tree core of T
Begin
Step 1: Identify an endpoint r of a two-core of T. And then,

orient T into a rooted tree with root r.
Step 2: For each vertex v in T, compute size(v) and MaxSave(v).
Step 3: For each vertex v in T, determine DomiLeaf(v).
Step 4: For each leaf l in T, compute DomiEnd(l), R(l) and

Rank(l).

Efficient Parallel Algorithms 561

Step 5: For each leaf l in T, find the DomiPath(l).
Step 6: Compute Fk−1, which is a k-tree core of T,

Fk−1 ←− T \
m−1⋃
x=k

DomiPath(ax).

Step 7: Return Fk−1.
End

The correctness of the above algorithm is ensured by Lemma 7 and Theorem
3. The parallel running time of the algorithm is discussed as follows: By Lemma
1, Step 1 takes O(log n)time using O(n) work. From the Ref. [4], we know the
computation of size(v) takes O(log n) time using O(n) work, using tree con-
traction, MaxSave(v) can be computed in O(log n) time using O(n) work. The
computation of Domileaf(v) and DomiPath(l) is similar to that of size(v). So,
Step 2 and 3 can be done in O(log n) time using O(n) work. Step 4 and 5 can be
done in O(log n) time using O(n) work. It was showed by Cole and Vishkin [2]
that the prefix computation of a linked list can be computed in O(log n) time
using O(n) work on the EREW PRAM. Step 6 can be implemented in O(log n)
time using O(n) work. So, the parallel running time of the algorithm is O(log n)
time using O(n) work on EREW PRAM.

5 Conclusion

Eight different problems are considered by Minieka [6]. In this paper, parallel
algorithms are proposed for only two of the problems, which are minimum eccen-
tricity and minimum distancesum. A k-tree center of T is a minimum eccentricity
subtree of T with exactly k leaves. A k-tree core of T is a minimum distancesum
subtree of T with exactly k leaves. As mentioned in the Introduction, the k-tree
core problem has an application in a distributed database system [8]. basing
on the algorithms in Ref. [13], we proposed the algorithms on a k-tree center
and a k-tree core of a tree network in this paper. We improved the methods of
constructing a k-tree center and a k-tree core of a tree network. Our algorithms
are more effective and simpler than the algorithm proposed by Wang [13], and
they perform on the EREW PRAM in O(log n) time using O(n) work.

References

1. Cole, R.: An Optimally Efficient Selection Algorithm. Information Processing Let-
ters 26(1988) 295–299

2. Cole, R., Vishkin, U.: Approximate Parallel Scheduling, Part I: The Basic Tech-
nique with Applications to Optimal Parallel List Ranking in Logarithmic Time.
SIAM J. Computing 17 (1983) 128–142

3. Handler, G.Y., Mirchandani, P.: Location on Network. Cambridge,Mass:MIT Press
(1979)

562 Y. Wang et al.

4. Jaja, J.: An Introduction to Parallel Algorithms. Addison Wesley (1992)
5. Miller, G.L., Reif, J.: Parallel Tree Contraction and Its Applications. Proc. 26th

Ann. IEEE Symp. Foundations of Computer Science (1985) 478–489
6. Minieka, E., and Patel, N.H.: On finding the core of a tree with a specified length.

Journal of Algorithms 4(1983) 345–352
7. Peng, S., Wang, T.: The Optimal Location of a Structured Facility in a Tree Net-

work. Parallel Algorithms and Applications 2 (1994) 43–60
8. Peng, S., Stephens, A.B., Yesha, Y.: Algorithms for a Core and k-tree Core of a

Tree. J. Algorithms 15(1993) 143–159
9. Sevilgen, F.E., Aluru, S., Futamura, F.: Parallel algorithms for tree accumulations.

J. Parallel Distrib Comput 65(2005) 85–93
10. Slater, P.J.: Locating central paths in a network. Transportation Science 16(1982)

1–18
11. Tarjan, R.E., Vishkin, U.: Finding Biconnected Components and Computing Tree

Functions in Logarithmic Parallel Time. SIAM J. Computing 14(1985) 861–874
12. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on Networks: a Survey. Manage-

ment Science 29(1983) 482–511
13. Wang, B.F.: Finding a k-tree core and a k-tree center of a tree network in parallel.

IEEE Transactions on Parallel and Distributed Systems 9(1998) 186–191

A Tight Bound on the Number of Mobile
Servers to Guarantee the Mutual Transferability

Among Dominating Configurations�

Satoshi Fujita

Department of Information Engineering,
Graduate School of Engineering, Hiroshima University

fujita@se.hiroshima-u.ac.jp

Abstract. In this paper, we propose a new framework to provide con-
tinuous services to users by a collection of mobile servers distributed over
an interconnection network. We model those mobile servers as a subset
of host computers, and assume that a user host can receive the service
if at least one adjacent host computer (including itself) plays the role
of a server; i.e., we assume that the service could not be routed via the
interconnection network. The main results obtained in this paper are
summarized as follows: For the class of trees with n hosts, �(n + 1)/2�
mobile servers are necessary and sufficient to realize continuous services
by the mobile servers, and for the class of Hamiltonian graphs with n
hosts, �(n + 1)/3� mobile servers are necessary and sufficient.

1 Introduction

In recent years, it emerges an increasingly strong requirement for high qual-
ity services provided over a large-scale interconnection network, such as mobile
cellular phone systems and miscellaneous contents delivery systems. In those sys-
tems, on-line services should be provided to the users in a transparent manner;
i.e., it is strongly required to provide a common service to all users at any time.
This motivates the study of a server allocation problem in computer networks;
i.e., the problem of finding an allocation of servers to the hosts that is “good” in
terms of the latency of contents delivery, minimum bandwidth of contents deliv-
ery paths, and the maximum number of clients associated to each server. Many
of such metrics could be treated as a constraint to be satisfied by considering
a logical network derived from the original physical network; e.g., by logically
connecting any two hosts whose round trip time is smaller than a predetermined
threshold, we have a logical network in which at least one end vertex of each
edge must be allocated a server to guarantee the contents delivery within a given
latency, and a similar logical network could also be constructed to guarantee the
minimum communication bandwidth of the contents delivery paths.

In such logical networks, a given constraint could be naturally represented by
using the notion of dominating set. Given a network G = (V,E) with vertex
� This research was partially supported by the Grant-in-Aid for Scientific Research.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 563–572, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

564 S. Fujita

set V and edge set E, a dominating set for G is defined as a subset of vertices
such that for any vertex u ∈ V , either u is contained in the subset or at least one
neighbor of that is contained in the subset. The notion of dominating set has
been extensively studied in the literature during the past three decades, from
various aspects including graph theoretic characterization [2,5,6,13,15,21], com-
putational complexity of finding a dominating set with a minimum cardinality
[10,14,17], and polynomial time algorithms for a special class of graphs such
as interval graphs and perfect graphs [1,3,4,16,18]. It has also been investigated
from a practical point of view, and it is pointed out by many researchers that the
notion of dominating set is closely related with the resource allocation problem
in networks [8], and the design of efficient routing schemes for ad hoc wireless
networks [7,11,19,20].

In this paper, we will consider a model in which servers allocated to hosts
are allowed to move to other hosts distributed over the network. In recent years,
several platforms that allow such a mobility of servers have been implemented
based on the technique of mobile agents, and those systems are expected to re-
alize a transparent service to the users. One of the most important problems
for such systems with mobile servers is how to realize continuous services to
the users, provided that the frequent spatial transitions of those mobile servers.
More concretely, when a server moves to other host, those client hosts that were
assigned to the server must be reassigned to other server to realize a continuous
service subject to such a spatial transition; i.e., the client hosts must be domi-
nated by at least two servers to allow such mobility (a formal definition of the
term “continuous service” will be given later).

This paper proposes a new framework to realize such a continuous service by a
set of mobile servers. We model those mobile servers as a subset of host comput-
ers, i.e., a dominating set for the given network, and model the spatial transition
of servers by a transition between two dominating configurations. Given such a
model of spatial transition, we will consider the following theoretical problem
in this paper: Given two dominating configurations A and B, can we transfer
configuration A to B by keeping continuous services to the users? The main re-
sults obtained here could be summarized as follows: 1) For the classes of tree
networks with n hosts, �(n+ 1)/2� mobile servers are necessary and sufficient to
realize mutual transfers among dominating configurations, and 2) for the classes
of Hamiltonian networks with n hosts, �(n+ 1)/3� mobile servers are necessary
and sufficient. Readers should note that, to the authors’ best knowledge, this is
the first work to investigate the mutual transferability among dominating con-
figurations, although the relation between the notion of dominating set and the
server allocation problem has frequently been pointed out in the literature.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce several necessary notations that will be used throughout of the paper, that
includes the definition of transferability between two dominating sets. Section
3 overviews an outline of our contribution. The proof of each theorem will be
given in Section 4. Finally Section 5 concludes the paper with future problems.

A Tight Bound on the Number of Mobile Servers 565

2 Preliminaries

Let G = (V (G), E(G)) be an undirected graph with vertex set V (G) and edge
set E(G). A dominating set for G is a subset U of V (G) such that for any vertex
u ∈ V (G), either u ∈ U or there exists a vertex v ∈ U such that {u, v} ∈ E(G). In
this paper, by technical reasons, we assume that dominating set is a multiset; i.e.,
it can contain each vertex in V (G) several times. Let D(G) denote an (infinite)
set of all dominating (multi)sets for G. A dominating set is said to be minimal
if the removal of any vertex from that violates the condition of domination (by
definition, any minimal dominating set cannot be a multiset). The domination
number γ(G) of G is the size of a minimum dominating set for G, and the
upper domination number Γ (G) of G is the size of a minimal dominating
set for G with a maximum cardinality [12].

For any S1, S2 ∈ D(G), we say that S1 is single-step transferable to S2,
and denote it as S1 → S2, if there are two vertices u and v in V (G) such that
S1 − {u} = S2 − {v} and {u, v} ∈ E(G). Note that a single-step transfer from
S1 to S2 is realized by moving the “role of dominating vertex” from u ∈ S1
to its neighbor v ∈ S2, where each vertex can own more than one roles, since
each dominating set is assumed to be a multiset. For example, in a ring network
consisting of four vertices {a, b, c, d}, a dominating configuration with vertices
{a, c} is transferred to a dominating configuration with vertices {b, c} in a single-
step by moving the role of dominating vertex from a to its neighbor b. A transitive
closure of the relation of single-step transferability naturally defines the notion of
transferability, that will be denoted as S1

∗→ S2, in what follows. Note that every
subset of vertices appearing in a transfer from S1 to S2 must be a dominating
set for G. A set D′ ⊆ D(G) is said to be mutually transferable if it holds
S1

∗→ S2 for any S1, S2 ∈ D′, where a sequence of single-step transfers from
S1 to S2 can contain a subset not in D′, although all subsets in it must be an
element in D(G).

3 Main Theorems

The first theorem gives a tight bound for the class of trees (proofs of all theorems
will be given in the next section).

Theorem 1 (Trees). For any tree T with n vertices, the set of dominating sets
for T consisting of k ≥ �n/2� vertices is mutually transferable, and there is a
tree T with n vertices such that γ(T) = �n/2�.

Next, we provide a lower bound on the number of dominating vertices that
is necessary to guarantee the mutual transferability among dominating sets, for
all graphs contained in a class of Hamiltonian graphs with n vertices.

Theorem 2 (Lower Bound). For any r ≥ 2 and n ≥ 1, there is a Hamiltonian
r-regular graph G with more than n vertices such that the set of dominating sets
for G with cardinality at least �(n+ 1)/3� − 1 is not mutually transferable.

566 S. Fujita

It is worth noting that for any Hamiltonian graph G consisting of n vertices,
γ(G) ≤ �(n+ 1)/3� − 1, since it contains a ring of size n as a subgraph. It is in
contrast to the case of trees, since the theorem claims that there is a Hamiltonian
r-regular graphG such that �(n+ 1)/3�−1 dominating vertices are not sufficient
to guarantee the mutual transferability among dominating configurations, while
�(n+ 1)/3� − 1 vertices are sufficient to dominate it. By combining Theorem 2
with the following theorem, we could derive the tightness of �(n+ 1)/3� bound
for the class of Hamiltonian graphs with n vertices.

Theorem 3 (Hamiltonian Graphs). For any Hamiltonian graph G with n
vertices, the set of dominating sets for G consisting of k ≥ �(n+ 1)/3� vertices
is mutually transferable.

4 Proofs

4.1 Theorem 1

Let T be a tree with at least two vertices. Let u be a leaf vertex in T and v be
the unique neighbor of u. Any dominating set for T containing u is (single-step)
transferable to a dominating set that contains v instead of u, and this trans-
formation allows us to reduce the problem of dominating a tree with n vertices
by a set with k = �n/2� dominating vertices to the problem of dominating a
tree with at most n − 2 vertices by a set with k − 1 = �(n− 2)/2� dominating
vertices.

By repeatedly applying this operation, we will have a situation in which ei-
ther: 1) a tree consisting of at most three vertices is dominated by one vertex,
or 2) a tree consisting of n′ vertices is dominated by (at least) n′ vertices, and
in each of the cases, dominating configurations corresponding to the case are
trivially mutually transferable. Note that a sequence of such reduction steps
is characterized by a sequence of vertices, that are leaves in the corresponding
reduced trees. Since any dominating configuration with k vertices can be trans-
ferred to such normalized configurations with the same sequence of vertices, we
can conclude that the set of dominating sets for T with k vertices is mutually
transferable via those normalized configurations. Hence the theorem follows.

4.2 Theorem 2

The given claim immediately holds for r = 2 since in ring networks consisting
of 3m vertices, two dominating sets with �(3m+ 1)/3� − 1 = m vertices are not
mutually transferable if m ≥ 2. For r = 3, we may consider the following graph
G1 = (V1, E1) consisting of 24 vertices, where

V1
def= {1, 2, . . . , 24}, and

E1
def= {(i, i+ 1) | 1 ≤ i ≤ 11, 13 ≤ i ≤ 23}

∪{(12, 1), (24, 13)} ∪ {(i, i+ 12) | 1 ≤ i ≤ 12}.

A Tight Bound on the Number of Mobile Servers 567

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

(a) A minimum dominating set for G1.

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

(b) A dominating set for G1.

Fig. 1. Two dominating sets for graph G1 (dominating vertices are painted gray)

Note that G1 is Hamiltonian, cubic, and the domination number ofG1 is six (e.g.,
{1, 5, 9, 15, 19, 23} is a minimum dominating set for G1; see Figure 1 (a) for il-
lustration). Now let us consider a subset of vertices S = {1, 2, 7, 8, 16, 17, 22, 23}.
It is obvious that S is a dominating set for G1 and any vertex in S cannot move
the role of dominating vertex to its neighbor without violating the condition
of domination, since each vertex in S “privately” dominates two vertices. For
example, as is shown in Figure 1 (b), in the dominating set S for G1, vertex 2
dominates vertices 3 and 14 and those two vertices are not dominated by the
other vertices. Thus, in order to realize a mutual transfer among dominating
sets, nine (= �(24 + 1)/3�) vertices are necessary. The above construction can
be directly extended to larger cubic graphs consisting of 24x vertices for all
x ≥ 1; i.e., we can show that 8x+ 1 (= �(24x+ 1)/3�) dominating vertices are
necessary to guarantee the mutual transferability among dominating sets.

An extension to larger r’s can be easily realized as well, i.e., we can show that
there is a Hamiltonian r-regular graph consisting of 3(r− 1)x vertices for x ≥ 2,

2 3 4

1 9 8 567

2 3 4 5

1 12 11 8910 67

101 9
1

19 1

12
11

10
12

11

Fig. 2. Extension to larger r’s (the upper figures represent the basic component and
the lower figures represent how to connect of those components; the label associated
with connecting edges is the label of terminal vertices in each component)

568 S. Fujita

such that (r−1)x+1 dominating vertices are necessary to guarantee the mutual
transferability (see Figure 2 for illustration). Hence the theorem follows.

4.3 Theorem 3

The proof of Theorem 3 consists of two parts. In the first part, we show that the
claim holds if we restrict the underlying Hamiltonian graph to rings (note that
a ring is a “simplest” Hamiltonian graph). The second part gives a transfer of a
dominating set for a Hamiltonian graph to a dominating set for a Hamiltonian
cycle contained in it.

Lemma 1 (Rings). For ring Rn with n vertices, the set of dominating sets for
Rn consisting of k ≥ �(n+ 1)/3� vertices is mutually transferable.

The proof of this lemma can be found in our previous paper [9].

Preprocessing for Reduction. Let G = (V,E) be a Hamiltonian graph with
n vertices, and R be a Hamiltonian cycle in it. In what follows, edges contained
in R will be referred to as ring edges and the other edges in G will be referred to
as chord edges . Let S ⊆ V be a dominating set for G with at least �(n+ 1)/3�
vertices. In the following, we will transfer S to a dominating configuration for
R by consecutively removing chord edges and by moving the role of dominating
vertices accordingly.

In the first step of the transfer, we apply the following rule until it could not
be applied to the resultant graph:

Rule 1: If the removal of a chord edge does not violate the condition of domi-
nation for its end vertices, then remove it.

Let G′ be the resultant graph. Figure 3 (a) illustrates the resultant graph. Note
that S is a dominating set forG′, and graphG′ contains at most n−�(n+ 1)/3�−

removed edges

(a) An example of graph G′. (b) An example of graph G′′.

Fig. 3. Explanation of the proof of Theorem 4

A Tight Bound on the Number of Mobile Servers 569

2 (= |V − S| − 2) chord edges, since there are at most |V − S| vertices to be
dominated by vertices in S, and at least two of them have already been dominated
via ring edges. In addition, for any chord edge inG′, exactly one of the end vertices
must be a member of S and the other vertex must be connected with exactly one
chord edge (otherwise, Rule 1 can be applied to remove a chord edge).

As the next step, we consider a subgraph G′′ of G′ that is obtained by re-
moving all ring edges incident to the vertices dominated via chord edges. Figure
3 (b) shows an example of the resultant graph. By construction, G′′ is a forest
of trees such that every leaf is a member in V − S and every vertex with degree
more than two is a member in S (in what follows, we call such a vertex “branch”
vertex). Since |S| ≥ �(n+ 1)/3� is assumed, in at lease one of the resultant trees,
the number of dominating vertices exceeds one third of the number of vertices.
Let T be one of such trees and ST (⊆ S) be the set of dominating vertices
contained in T .

In the following, we will show that in graph G′′, ST can be transferred to a
dominating configuration for T in which at least one leaf is a dominating one,
by using the fact that |ST | is greater than one third of the number of vertices
in T . Note that the proof of the above claim completes the proof of the theorem
since it implies that at least one chord edge can always be removed from G′

and the same argument holds for the resultant graph as long as there remains
a chord edge in it; i.e., we could transfer the given configuration S for G to a
dominating configuration for R (note that in the sequence of reductions, we will
have to replace G′′ with a new subgraph after removing a chord edge from G′).

Transfer of ST . Tree T contains exactly two leaf vertices dominated via ring
edges. Let u1, u2, . . ., um be the sequence of vertices on the path connecting
those two leaf vertices, i.e., u1 and um are vertices dominated via ring edges and
are connected with vertices dominated via chord edges in G′.

If T contains no branch vertices, i.e., it is a linear path, then the claim ob-
viously holds since we can immediately transfer ST to a configuration in which
either u1 or um is a dominating vertex. Thus the following remark holds.

Remark 1. We may assume that T contains at least one branch.

Let ui be the first branch in T ; i.e., vertices u1, u2, . . . , ui−1 form a linear path
connecting to ui. Note that ui ∈ S. Here, we may assume i = 2, without loss of
generality, by the following two reasons:

– If i �= 3j + 2 for any j ≥ 0, then we can transfer ST in such a way that u1 is
a dominating vertex.

– If i = 3j+2 for j ≥ 1, then we could reduce T to a smaller tree by removing
vertices u1, u2, . . . , ui−2 without violating the condition on the ratio of dom-
inating vertices, since those i− 2 vertices should be dominated by (i− 2)/3
vertices.

Remark 2. We may assume that vertex u2 is the first branch in T .

In addition, if T contains exactly one branch vertex, by the same reason to
above, 1) we can transfer ST to a configuration in which um is a dominating

570 S. Fujita

u1 u2 u3 u4 u5 u6 u7 um

Fig. 4. Example of tree T

domination
u1 u2 u5u4u3 u1 u2 u5u4u3

Subcase 1 Subcase 2

Fig. 5. Case 1

vertex, or 2) we can reduce T to a star-shaped tree with at least four vertices
centered at u2 that is dominated by at least two vertices, i.e., we can transfer
ST to a configuration in which at least one leaf vertex is a dominating one. Thus
in the following, we assume T contains at least two branch vertices. Let uj be
the next branch to u2.

Remark 3. We may assume that T contains its second branch uj (�= u2).

Figure 4 shows an example of tree T . In the following, we show that for any
j ≥ 3, we can reduce T to a smaller tree or we can transfer ST to a configuration
with a dominating leaf, by examining the following four cases separately:

Case 1 (When j = 3): If u3 is connected with two or more leaves, then we can
reduce T by cutting edge {u2, u3}, and could apply the same argument to the
remaining tree containing u3, since u2 dominates three vertices including itself.
If u3 is connected with exactly one leaf, on the other hand, we may consider
the following two subcases separately (see Figure 5 for illustration): 1) if u4 is
commonly dominated by other vertex (i.e., u4 or u5), then u3 can move the
role of dominating vertex to its neighboring leaf (see Figure 5 (a)); and 2) if
u4 is privately dominated by u3 (i.e., u5 �∈ ST), then we could reduce T by
cutting edge {u4, u5} and could apply the same argument to the remaining tree
containing u5, since vertices u2 and u3 dominate at least six vertices and the
domination of u4 by u5 in T allows u3 to move the role of dominating vertex to
a leaf (see Figure 5 (b)).

Case 2 (When j = 4 or 5): We may assume that no vertices from u3 to uj−1
are contained in ST , since otherwise, it could move the role of dominating vertex
to any leaf vertex in T . Then, by a similar reason to Case 1, we can reduce T by

A Tight Bound on the Number of Mobile Servers 571

cutting edge {uj−2, uj−1}, and could apply the same argument to the remaining
tree containing uj−1.

Case 3 (When j = 3k or 3k + 1 for k ≥ 2): Since � j−2
3 � = k, the path con-

necting u1 and uj−2 must be dominated by at least k vertices in ST (including
u2, of course). In the following, we assume that the number of such dominating
vertices is exactly equal to k, since otherwise, we could move the role of domi-
nating vertex to any leaf in T . In addition, since j − 2 �≡ 0 (mod 3), we may
assume uj−1 ∈ ST , without loss of generality (even if ST does not contain uj−1,
we can easily transform it to a dominating configuration containing uj−1). Let
T ′ be the tree containing u2 that is obtained by removing edge {uj−1, uj} from
T . By the above assumptions, in tree T ′, at least j vertices are dominated by
k = � j

3� vertices in ST . Thus we could apply the same argument to Case 1 by
identifying uj−1 with vertex u2 in the proof of Case 1.

Case 4 (When j = 3k + 2 for k ≥ 2): By the same reason to Case 3, we
may assume that the path connecting u1 and uj−2 is dominated by exactly
k (= (j − 2)/3) vertices. Let T ′′ be the tree containing u2 that is obtained by
removing edge {uj−2, uj−1} from T . By the above assumptions, in tree T ′′, at
least j−1 vertices are dominated by k = (j−2)/3 vertices in ST . Thus we could
apply the same argument to Case 2 by identifying uj−3 with vertex u2 in the
proof of the case for j = 5.

Hence the theorem follows.

5 Concluding Remarks

In this paper, we proposed a new framework to provide continuous services to
users by a collection of mobile servers, proved several tight bounds on the number
of mobile servers to guarantee the mutual transferability among dominating
configurations.

There remain several interesting open problems listed below:

– How can we extend the discussion to general graphs ?
– How can we reduce the number of single-step transfers connecting two dom-

inating configurations ? It could be asymptotically bounded as O(n), but we
did not find an exact value of the coefficient.

– Is it possible to construct a distributed scheme that could be executed au-
tonomously with no global information about the overall configuration ?

References

1. M. J. Atallah, G. K. Manacher, and J. Urrutia. Finding a minimum independent
dominating set in a permutation graph. Discrete Appl. Math., 21:177–183, 1988.

2. D. W. Bange, A. E. Barkauskas, and P. T. Slater. Efficient dominating sets in
graphs. In R. D. Ringeisen and F. S. Roberts, editors, Applications of Discrete
Mathematics, pages 189–199. SIAM, 1988.

572 S. Fujita

3. A. A. Bertossi. On the domatic number of interval graphs. Information Processing
Letters, 28(6):275–280, August 1988.

4. G. J. Chang, C. P. Rangan, and S. R. Coorg. Weighted independent perfect dom-
ination on cocomparability graphs. Technical Report 93-24, DIMACS, April 1993.

5. E. J. Cockayne and S. T. Hedetniemi. Optimal domination in graphs. IEEE Trans.
Circuit and Systems, CAS-22:855–857, 1975.

6. E. J. Cockayne and S. T. Hedetniemi. Towards a theory of domination in graphs.
Networks, 7:247–261, 1977.

7. F. Dai and J. Wu. An Extended Localized Algorithm for Connected Dominating
Set Formation in Ad Hoc Wireless Networks. IEEE Transactions on Parallel and
Distributed Systems, 53(10):1343–1354, 2004.

8. S. Fujita, M. Yamashita, and T. Kameda. A Study on r-Configurations – A Re-
source Assignment Problem on Graphs. SIAM J. Discrete Math. 13(2): 227-254
(2000).

9. S. Fujita, Y. Liang. How to Provide Continuous Services by Mobile Servers in
Communication Networks. In Proc. of PDCAT 2004 , LNCS 3320, pp. 326–329
(2004).

10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

11. S. Guha and S. Khuller. Approximation Algorithms for Connected Dominating
Sets. In Proc. European Symposium on Algorithms, 179-193, 1996.

12. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination
in Graphs. Marcel Dekker, Inc., 1998.

13. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in Graphs: Advanced
Topics. Marcel Dekker, Inc., 1998.

14. R. W. Irving. On approximating the minimum independent dominating set. In-
formation Processing Letters, 37:197–200, 1991.

15. M. Livingston and Q. F. Stout. Perfect dominating sets. Congressus Numerantium,
79:187–203, 1990.

16. T. L. Lu, P. H. Ho, and G. J. Chang. The domatic number problem in interval
graphs. SIAM J. Disc. Math., 3:531–536, 1990.

17. L. R. Matheson and R. E. Tarjan. Dominating sets in planar graphs. Technical
Report TR-461-94, Dept. of Computer Science, Princeton University, May 1994.

18. A. Srinivasa Rao and C. P. Rangan. Linear algorithm for domatic number problem
on interval graphs. Information Processing Letters, 33(1):29–33, October 1989.

19. J. Wu and H. Li. Domination and Its Applications in Ad Hoc Wireless Networks
with Unidirectional Links. In Proc. of International Conference on Parallel Pro-
cessing , pages 189–200, 2000.

20. J. Wu. Extended Dominating-Set-Based Routing in Ad Hoc Wireless Networks
with Unidirectional Links. IEEE Transactions on Parallel and Distributed Com-
puting , 22:327–340, 2002.

21. C. C. Yen and R.C.T. Lee. The weighted perfect domination problem. Information
Processing Letters, 35:295–299, 1990.

Bounding the Number of Minimal Dominating
Sets: A Measure and Conquer Approach

Fedor V. Fomin1,�, Fabrizio Grandoni2,��,
Artem V. Pyatkin1,� � �, and Alexey A. Stepanov1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{fomin, Artem.Pyatkin}@ii.uib.no, ljosha@ljosha.org

2 Dipartimento di Informatica, Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

grandoni@di.uniroma1.it

Abstract. We show that the number of minimal dominating sets in
a graph on n vertices is at most 1.7697n, thus improving on the trivial
O(2n/

√
n) bound. Our result makes use of the measure and conquer tech-

nique from exact algorithms, and can be easily turned into an O(1.7697n)
listing algorithm.

Based on this result, we derive an O(2.8805n) algorithm for the do-
matic number problem, and an O(1.5780n) algorithm for the minimum-
weight dominating set problem. Both algorithms improve over the pre-
vious algorithms.

Keywords: exact (exponential) algorithms, minimum dominating set,
minimum set cover, domatic number, weighted dominating set.

1 Introduction

One of the typical questions in graph theory is: how many subgraphs satisfying
a given property can a graph on n vertices contain? For example, the number of
perfect matchings in a simple k-regular bipartite graph on 2n vertices is always
between n!(k/n)n and (k!)n/k. (The first inequality was known as van der Waer-
den Conjecture [22] and was proved in 1980 by Egorychev [6] and the second
is due to Bregman [2].) Another example is the famous Moon and Moser [18]
theorem stating that every graph on n vertices has at most 3n/3 maximal cliques
(independent sets). Such combinatorial bounds are of interests not only on their
own but also because they are used for algorithm design as well. Lawler [17] used
Moon-Moser bound on the number of maximal independent sets to construct an
O((1 + 3

√
3)n) time graph coloring algorithm which was the fastest coloring al-

gorithm for 25 years. Recently Byskov and Eppstein [3] obtain an O(2.1020n)

� Supported by Norges forskningsr̊ad projects 160778/V30 and 162731/V00.
�� Supported by EC Project DELIS, and project WEBMINDS of the Italian Ministry

of University and Research (MIUR).
� � � Additional support by grants of the Russian Foundation for Basic Research

(project code 05-01-00395) and INTAS (project code 04–77–7173).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 573–582, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

574 F.V. Fomin et al.

time coloring algorithm which is, again, based on a 1.7724n combinatorial upper
bound on the number of maximal bipartite subgraphs in a graph.

The dominating set problem is a classic NP-complete graph optimization
problem which fits into the broader class of domination and covering problems.
Hundreds of papers have been written on them; see e. g. the survey [14] by Haynes
et al. However, despite the importance of minimum dominating set problem,
nothing better than the trivial O(2n/

√
n) bound was known on the number of

minimal dominating sets in a graph.
Our interest is motivated by the design of fast exponential-time algorithms for

hard problems. The story of such algorithms dates back to the sixties and seven-
ties. In 1962 Held and Karp presented an O(n2 2n) time algorithm for the trav-
elling salesman problem which is still the fastest one known [15]. In 1977 Tarjan
and Trojanowski [21] gave an O(2n/3) algorithm for maximum independent set
problem. The last decade has seen a growing interest in fast exponential-time al-
gorithms for NP-hard problems. Examples of recently developed fast exponential
algorithms are algorithms for maximum independent set [1], satisfiability [4, 16],
coloring [7], treewidth [10], and many others. For a good overview of the field
we refer to the recent survey written by Woeginger [23].

Previous results. Although minimum dominating set is a natural and very
interesting problem concerning the design and analysis of exponential-time al-
gorithms, no exact algorithm for it faster than 2n · nO(1) had been known un-
til very recently. In 2004 several different sets of authors obtained algorithms
breaking the trivial “2n-barrier”. The algorithm of Fomin et al. [11] runs in
time O(1.9379n). The algorithm of Randerath and Schiermeyer [19] uses a very
nice and cute idea (including matching techniques) to restrict the search space.
The most time consuming part of their algorithm enumerates all subsets of
nodes of cardinality at most n/3, thus the overall running time is O∗(1.8999n).
Grandoni [12, 13], described a O(1.8019n) algorithm and finally, Fomin et al. [9]
reduced the running time to O(1.5137n). All the mentioned results work only
in the unweighted case, and cannot be used to list all the minimal dominating
sets. The best algorithm for the weighted case prior to this paper is the trivial
O(2nnO(1)) one.

There are not so many known exact algorithms for the domatic number.
Applying an algorithm similar to Lawler’s dynamic programming algorithm [17]
to the domatic number problem one obtains an 3n · nO(1) algorithm. Nothing
better was known for this problem. For three domatic number problem, which
is a special case of the domatic number problem, very recently Reige and Rothe
succeed to break the 3n barrier with an O(2.9416n) algorithm [20].

Our results. In this paper we show that the number of minimal dominating
sets in a graph on n vertices is at most 1.7697n. Our result is inspired by the
measure and conquer technique [9] from exact algorithms, which works as follows.
The running time of exponential recursive algorithms is usually bounded by
measuring the progress made by the algorithm at each branching step. Though
these algorithms may be rather complicated, the measures used in their analysis
are often trivial. For example in graph problems the progress is usually measured

Bounding the Number of Minimal Dominating Sets 575

in terms of number of nodes removed. The idea behind measure and conquer is
to chose the measure more carefully: a good choice can lead to a tremendous
improvement of the running time bounds (for a fixed algorithm). One of the
main contributions of this paper is showing that the same basic idea can be
successfully applied to derive stronger combinatorial bounds. In particular, the
inductive proof of Theorem 1 is based on the way we choose the measure of the
problem.

Our combinatorial result is algorithmic in spirit, and can be easily turned
into an algorithm listing all minimal dominating sets in time O(1.7697n). Based
on the listing algorithm, we derive an O(1.5780n) algorithm for the minimum-
weight dominating set problem, and an O(2.8805n) algorithm for the domatic
number. Both algorithms improve on previous best trivial bounds. Note that our
algorithm for the domatic number is even faster than the (non-trivial) algorithm
of Reige and Rothe [20] for the three domatic number problem, which is a special
case.

2 Definitions and Preliminaries

Let G = (V,E) be a graph. A set D ⊆ V is called a dominating set for G if
every vertex of G is either in D, or adjacent to some node in D. A dominating
set is minimal if all its proper subsets are not dominating. We define DOM(G)
to be the number of minimal dominating sets in a graph G. The domination
number γ(G) of a graph G is the cardinality of a smallest dominating set of
G. The Minimum Dominating Set problem (MDS) asks to determine γ(G). The
domatic number DN(G) of a graph G is the maximum k such that the vertex
set V (G) can be split into k pairwise nonintersecting dominating sets. Since any
dominating set contains a minimal dominating set, the domatic number DN(G)
is the maximum number of pairwise nonintersecting minimal dominating sets
in G.

In the Minimum Set Cover problem (MSC) we are given a universe U of
elements and a collection S of (non-empty) subsets of U . The aim is to determine
the minimum cardinality of a subset S∗ ⊆ S which covers U , i. e. such that

∪S∈S∗S = U .

The frequency of u ∈ U is the number of subsets S ∈ S in which u is contained.
A covering is minimal if it contains no smaller covering. We denote by

COV(U ,S) the number of minimal coverings in (U ,S).
The problem of finding DOM(G) can be naturally reduced to finding

COV(U ,S) by imposing U = V and S = {N [v] | v ∈ V }. Note that N [v] =
{v} ∪ {u | uv ∈ E} is the set of nodes dominated by v. Thus D is a dominating
set of G if and only if {N [v]| v ∈ D} is a set cover of (U ,S). So, each minimal
set cover of (U ,S) corresponds to a minimal dominating set of G.

The following properties of minimal coverings are easy to verify.

Proposition 1. Let S∗ be a minimal covering of (U ,S). Then the following
statements hold.

576 F.V. Fomin et al.

– For every subset S ∈ S∗ at least one of the elements u ∈ S is covered only
by S;

– If S∗ contains two subsets S1 and S2 such that S1 \S2 = {u1} and S2 \S1 =
{u2} then no other subset in S∗ may contain u1 or u2.

In the next section we prove an upper bound on DOM(G). Based on this re-
sult we show how to compute the domatic number of a graph in time O(2.8805n).

3 Listing Minimal Dominating Sets

Here we prove the following

Theorem 1. For any graph G on n vertices, DOM(G) < 1.7697n.

Proof. Since every MDS problem can be reduced to MSC problem, we will prove
an upper bound for COV(U ,S) first.

Consider an arbitrary instance of the MSC problem with a universe U of ele-
ments and a collection S of (non-empty) subsets of U . Denote by si the number
of subsets of cardinality i for i = 1, 2, 3 and by s4 the number of the subsets of
cardinality at least 4 in S. We use the following measure k(U ,S) of (U ,S):

k(U ,S) = |U| +
4∑

i=1

εisi,

where the values of 0 < ε1 < ε2 < ε3 < ε4 will be defined later. We refer to the
value k = k(U ,S) as to the size of the MSC problem (U ,S).

Let COV(k) be the maximum value of COV(U ,S) among all MSC problems
of size at most k. Let d2 = min{ε1, ε2 − ε1}, d3 = min{d2, ε3 − ε2}, and d4 =
min{d3, ε4 − ε3}. We need the following

Lemma 1. COV(k) ≤ αk, where α satisfies the following inequalities:

αk ≥ max

rαk−rε1−1, r ≥ 2
αk−ε4 + αk−5−ε4

αk−ε4 + αk−4−ε4−4d4

αk−1−ε1−ε2 + αk−2−ε1−ε2−d3

2αk−2−2ε2

2αk−2−2ε2−d3 + αk−3−2ε2−2d3

αk−ε3 + αk−3−ε3−6d3

αk−ε2 + αk−2−ε1−ε2−3d2

αk−ε2 + αk−2−2ε2−2d2

3αk−2−3ε2−2d2 + 3αk−3−6ε2 + αk−4−6ε2

αk−ε2 + 2αk−2−4ε2−3d2

(1)

Proof. We use induction on k. Clearly, COV(0) = 1. Suppose that COV(l) ≤ αl

for every l < k. Let S be a set of subsets of U such that the MSC problem (U ,S)
is of size k. We consider different cases.

Bounding the Number of Minimal Dominating Sets 577

Case 0. There is an element u ∈ U of frequency one. Since u must be covered
by the only set S containing it, we have that every minimal cover contains S.
So,

COV(U ,S) ≤ COV(U \ {u},S \ S) ≤ αk−1−ε1 .

Case 1. U has an element u belonging only to subsets of cardinality one. Let
S1 = S2 = · · · = Sr = {u}, where r ≥ 2 be all the subsets containing u. Then by
Proposition 1, every minimal covering should contain exactly one subset from
S1, . . . , Sr. Thus

COV(U ,S) ≤ r · COV(k − rε1 − 1) ≤ rαk−rε1−1.

Case 2. S has a subset with r ≥ 5 elements. Let S = {u1, u2, . . . , ur} be
such a subset. Every minimal set cover either contains S, or does not. The
number of minimal set covers that do not contain S is at most COV(U ,S \ S).
Clearly, the number of minimal set covers containing S is at most COV(U \
{u1, u2, . . . , ur},S′). Here S′ consists of all nonempty subsets S′ \ {u1, u2, . . . ,
ur} where S′ ∈ S. Note that S �∈ S′. Thus

COV(U ,S) ≤ COV(U ,S \ S) + COV(U \ {u1, u2, . . . , ur},S′)
≤ COV(k − ε4) + COV(k − 5 − ε4) ≤ αk−ε4 + αk−5−ε4 .

So, we may suppose that all subsets contain at most four elements and the
minimum frequency of the elements is two.
Case 3. S has a subset of cardinality four. Let S = {u1, u2, u3, u4} be such a
subset. Again, the number of minimal set covers that do not contain S is at most
COV(U ,S \ S) and the number of minimal set covers containing S is at most
COV(U \{u1, u2, u3, u4},S′). Since there are no elements of frequency one and
all subsets have cardinality at most four, removal of every element u1, u2, u3, u4
from U reduces the size of the problem by at least d4 + 1. Thus

COV(U ,S) ≤ COV(U ,S \ S) + COV(U \ {u1, u2, u3, u4},S′)
≤ COV(k − ε4) + COV(k − ε4 − 4(d4 + 1)) ≤ αk−ε4 + αk−4−ε4−4d4 .

Now we may suppose that all subsets contain at most three elements.

Case 4. There is u ∈ U of frequency two. Denote by S1 and S2 the subsets
containing u. Let |S2| ≥ |S1|. Since the condition of Case 1 does not hold, we
have that S2 is of cardinality at least two. There are three subcases.
Subcase 4A. |S1| = 1. Then every minimal cover contains exactly one of these
subsets. If it contains S1, then we remove u, S1, and S2. Otherwise, we remove
also the other element of the subset S2 from U and thus, in addition, reduce the
size of the problem by at least d3 + 1. So we have

COV(U ,S) ≤ COV(k − 1 − ε1 − ε2) + COV(k − 2 − ε1 − ε2 − d3)
≤ αk−1−ε1−ε2 + αk−2−ε1−ε2−d3 .

578 F.V. Fomin et al.

Subcase 4B. |S1| ≥ 2 and S1 ⊆ S2. Again, every minimal cover contains exactly
one of these subsets and we clearly have

COV(U ,S) ≤ 2COV(k − 2 − 2ε2) ≤ 2αk−2−2ε2 .

Subcase 4C. |S1| ≥ 2 and S1 � S2. Now every minimal cover contains either
exactly one of these subsets, or both of them. If the first alternative happens
(there are two possibilities for that), then we remove two subsets, two elements
and reduce the cardinality of at least one other subset. Otherwise, we remove
two subsets, three elements and decrease either the cardinalities of at least two
other subsets by one or the cardinality of one subset by two (anyway, reducing
the size of the instance by at least 2d3). Hence,

COV(U ,S) ≤ 2COV(k − 2 − 2ε2 − d3) + COV(k − 3 − 2ε2 − 2d3)
≤ 2αk−2−2ε2−d3 + αk−3−2ε2−2d3 .

Now we assume that the minimum frequency of the elements is three.
Case 5. S has a subset of cardinality three. This case is analyzed similar to
Case 3, but since now all elements have frequency at least three and all sub-
sets have cardinality at most three, removing each of the elements decrease the
cardinalities of at least two other subsets, reducing the size of the instance by
1 + 2d3. Therefore

COV(U ,S) ≤ COV(k − ε3) + COV(k − ε3 − 3(1 + 2d3))
≤ αk−ε3 + αk−3−ε3−6d3 .

Now we may suppose that all subsets contain either one or two elements.
Case 6. There are S, S′ ∈ S such that S′ ⊂ S. Since we are not in Case 1, we
have that |S| ≥ 2. By Proposition 1, every minimal covering containing S does
not contain S′. Thus for |S′| = 1 we have

COV(U ,S) ≤ COV(k − ε2) + COV(k − 2 − ε1 − ε2 − 3d2)
≤ αk−ε2 + αk−2−ε1−ε2−3d2

and for |S′| > 1, we have

COV(U ,S) ≤ COV(k − ε2) + COV(k − 2 − 2ε2 − 2d2)
≤ αk−ε2 + αk−2−2ε2−2d2 .

(Here we use the fact that by Case 4 the minimum frequency of the elements is
three.)

Now we assume that all subsets are of cardinality two.
Case 7. There is u ∈ U of frequency three. Let Si = {u, ui}, i = 1, 2, 3 be the
subsets containing u. Then

— There are at most 3 ·COV(k−2−3ε2−2d2) minimal covers of S containing
exactly one of these subsets. In each of the three cases we remove three sub-
sets S1, S2, S3, two elements (u and one of ui), and reduce the cardinalities
of at least two other subsets.

Bounding the Number of Minimal Dominating Sets 579

— There are at most 3 · COV(k − 3 − 6ε2) minimal covers containing exactly
two of these subsets. Indeed, if S1 and S2 are in a minimal cover then by
Proposition 1 no other subset containing u1 or u2 may lie in this cover.
Since the frequencies of u1 and u2 are at least three (Case 4) and at most
one subset may contain u1 and u2 together (Case 6) we can remove at least
three other subsets containing u1 or u2.

— There are at most COV(k− 4 − 6ε2) minimal covers containing all three of
these subsets.

Therefore,

COV(U ,S) ≤ 3αk−2−3ε2−2d2 + 3αk−3−6ε2 + αk−4−6ε2 .

Case 8. S does not satisfy any of the conditions from Cases 1–7. Let S = {u, v}
be a subset of S. Denote by Su and Sv all other subsets containing u and v
respectively. Since the minimum frequency of the elements is four (Case 7),
|Su| ≥ 3 and |Sv| ≥ 3. By Proposition 1, if S∗ is a minimal cover containing S,
then S∗ ∩ Su = ∅ or S∗ ∩ Sv = ∅. Thus we have at most COV(k − ε2) minimal
covers that do not contain S and at most 2 · COV(k − 2 − 4ε2 − 3d2) covers
containing S. Then

COV(U ,S) ≤ αk−ε2 + 2αk−2−4ε2−3d2 .

Summarizing Cases 1–7 (recurrence of Case 0 is trivial), we obtain the in-
equalities (1). This completes the proof of Lemma 1. ��

For any graph G on n vertices the size of the corresponding instance of MSC
is at most |U| + ε4|S| = (1 + ε4)n. Thus the estimation of COV(k) boils up to
choosing the weights εi, i = 1, . . . , 4 and α, minimizing α1+ε4 . This optimization
problem is interesting in its own and we refer to Eppstein’s work [8] on quasi-
convex programming for general treatment of such problems. We numerically
obtained the following values of the variables: ε1 = 2.9645, ε2 = 3.5218, ε3 =
3.9279, ε4 = 4.1401, and α < 1.117446. Therefore, DOM(G) ≤ COV((1 +
ε4)n) < 1.1174465.1401n < 1.7697n. This completes the proof of Theorem 1. ��

Using standard methods one can easily transform the proof of the Theorem 1
into an algorithm listing all minimal dominating sets.

Corollary 1. There is an algorithm for listing all minimal dominating sets in
an n vertex graph G in time O(1.7697n).

In the Minimum Weighted Dominating Set problem each vertex v of the
graph has weight w(v) and we search for the dominating set D of minimum
weight w(D) =

∑
v∈D w(v). Clearly, the Corollary 1 allows us to solve this

problem in time O(1.7697n). Note, however, that the running time can be greatly
reduced by exploiting the fact that, if all the subsets have cardinality at most two,
Minimum Weighted Set Cover can be solved in polynomial time via reduction
to the minimum-weight perfect matching problem (see [5]). This way we obtain
the following theorem (we omit the proof details in this extended abstract).

580 F.V. Fomin et al.

Theorem 2. There is an algorithm computing a minimum-weight dominating
set in time O(1.5780n).

4 Algorithm for the Domatic Number

The results of the previous section can be used to compute the domatic number
of a graph G = (V,E). Our algorithm has similarities with the classical algo-
rithm computing the chromatic number due to Lawler [17] (see also [7]), but the
analysis of our algorithm is based on Lemma 1.

For every set X ⊆ V denote by DN(G|X) the maximum number of pairwise
nonintersecting subsets of X such that each of these subsets is a minimal domi-
nating set in G. Clearly, DN(G|V) = DN(G). Note that if X is not dominating,
then DN(G|X) = 0

We use an array A, indexed by the 2n subsets of V , for which we compute the
numbers DN(G|X) for all subsets X ⊆ V . We initialize this array by assigning
0 to all A[X]. Then we run through the subsets X of V in an order such that
all proper subsets of each set X are visited before X . To compute A[X], we run
through all minimal dominating sets D ⊆ X of G, and put

A[X] = max{A[X \D] + 1 | D ⊆ X and D is a minimal dominating set in G}.

Finally, after running through all subsets, we return the value in A[V] as the
domatic number of G.

Theorem 3. The domatic number of a graph G on n vertices can be computed
in time O(2.8805n)

Proof. The correctness of the algorithm DN can be shown by an easy induction.
Let X be a subset of V . Suppose that after running the algorithm, for every
proper subset S of X the value A[S] is equal to DN(G|S). Note that A[∅] = 0.
If X contains no dominating subsets (i. e. X is not dominating), then we have
that A[X] = DN(G|X) = 0. Otherwise, DN(G|X) is equal to max{DN(G|(X \
D)) + 1}, where maximum is taken over all minimal dominating sets D ⊂ X ,
and thus the value A[X] computed by the algorithm is equal to DN(G|X).

For a set X ⊆ V , let DOM(G|X) be the number of minimal dominating sets
of G which are subsets of X . To estimate the running time of the algorithm, let
us bound first DOM(G|X). We use the following reduction to the MSC problem.
Let U = V and S = {N [v] | v ∈ X}. Then, DOM(G|X) = COV(U ,S). Note
that the size of this problem is at most |U|+ ε4 · |S| = n+ ε4 · |X |. By Lemma 1,
COV(U ,S) ≤ COV(n + ε4 · |X |) ≤ αn+ε4·|X|, where α and εi, i = 1, . . . , 4
must satisfy (1). As in Theorem 1, one also can list in time O(αn+ε4·|X|) (and
polynomial space) all minimal dominating sets contained in X . The main loop
of the algorithm generating all minimal dominating sets contained in X can be
performed in time O(αn+ε4·|X|) and the running time of the algorithm can be
bounded by

O(
n∑

i=0

(
n

i

)
αn+ε4·i) = O(αn(1 + αε4)n).

Bounding the Number of Minimal Dominating Sets 581

We numerically found the following values : ε1 = 3.3512, ε2 = 4.0202, ε3 =
4.4664, ε4 = 4.7164, and α < 1.105579. Then O(αn(1+αε4)n) = O(2.8805n) ��

5 Conclusions and Open Problems

We have shown that the number of minimal dominating sets in a graph on n ver-
tices is at most 1.7697n. Dieter Kratsch (private communication) found graphs
(n/6 disjoint copies of the octahedron) containing 15n/6 ≈ 1.5704n minimal
dominating sets. We conjecture that Kratsch’s graphs are the graphs with the
maximal number of minimal dominating sets. This suggests the possibility that
minimal dominating sets can be listed even faster.

As an algorithmic application of our combinatorial bound based on measure
and conquer technique, we obtained a faster exponential algorithm to compute
the domatic number of a graph. We also obtained an algorithm computing a
minimum-weight dominating set in time O(1.5780n). An interesting open ques-
tion is if the analysis of our algorithms can be refined, possibly via a further
refined measure of the size of the set cover.

Acknowledgement. We are grateful to Dieter Kratsch for bringing our atten-
tion to the problem and for many fruitful discussions.

References

1. R. Beigel, Finding maximum independent sets in sparse and general graphs,
in Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms
(SODA’1999), ACM and SIAM, 1999, pp. 856–857.

2. L. M. Brègman, Certain properties of nonnegative matrices and their permanents,
Doklady Akademii Nauk BSSR, 211 (1973), pp. 27–30.

3. M. Byskov and D. Eppstein, An algorithm for enumerating maximal bipartite
subgraphs, manuscript, (2004).

4. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-
padimitriou, P. Raghavan, and U. Schöning, A deterministic (2− 2/(k +1))n

algorithm for k-SAT based on local search, Theoretical Computer Science, 289
(2002), pp. 69–83.

5. J. Edmonds and E. L. Johnson, Matching: A well-solved class of integer linear
programs, in Combinatorial Structures and their Applications, Gordon and Breach,
New York, 1970, pp. 89–92.

6. G. P. Egorychev, Proof of the van der Waerden conjecture for permanents,
Sibirsk. Mat. Zh., 22 (1981), pp. 65–71, 225.

7. D. Eppstein, Small maximal independent sets and faster exact graph coloring,
Journal of Graph Algorithms and Applications, 7 (2003), pp. 131–140.

8. D. Eppstein, Quasiconvex analysis of backtracking algorithms, in Proceedings of
the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA’2004), ACM and
SIAM, 2004, pp. 781–790.

9. F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and conquer: Domination
– a case study, in Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP 2005), LNCS, Springer, Berlin, 2005 (to
appear).

582 F.V. Fomin et al.

10. F. V. Fomin, D. Kratsch, and I. Todinca, Exact algorithms for treewidth and
minimum fill-in, in Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP 2004), vol. 3142 of LNCS, Springer, Berlin,
2004, pp. 568–580.

11. F. V. Fomin, D. Kratsch, and G. J. Woeginger, Exact (exponential) algo-
rithms for the dominating set problem, in Proceedings of the 30th Workshop on
Graph Theoretic Concepts in Computer Science (WG 2004), vol. 3353 of LNCS,
Springer, Berlin, 2004, pp. 245–256.

12. F. Grandoni, Exact algorithms for hard graph problems, PhD thesis, Università
di Roma “Tor Vergata”, Roma, Italy, (March, 2004).

13. , A note on the complexity of minimum dominating set, Journal of Discrete
Algorithms, (to appear).

14. T. W. Haynes and S. T. Hedetniemi, eds., Domination in graphs, Marcel Dekker
Inc., New York, 1998.

15. M. Held and R. M. Karp, A dynamic programming approach to sequencing
problems, Journal of SIAM, 10 (1962), pp. 196–210.

16. J. Iwama and S. Tamaki, Improved upper bounds for 3-sat, in 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004), ACM and SIAM, 2004, p. 328.

17. E. L. Lawler, A note on the complexity of the chromatic number problem, Infor-
mation Processing Lett., 5 (1976), pp. 66–67.

18. J. W. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics,
3 (1965), pp. 23–28.

19. B. Randerath and I. Schiermeyer, Exact algorithms for MINIMUM DOMI-
NATING SET, Technical Report zaik-469, Zentrum für Angewandte Informatik
Köln, Germany, 2004.

20. T. Reige and J. Rothe, An exact 2.9416n algorithm for the three domatic number
problem, in Proceedings of the 30th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2005), LNCS, Springer, Berlin, 2005,
p. to appear.

21. R. E. Tarjan and A. E. Trojanowski, Finding a maximum independent set,
SIAM Journal on Computing, 6 (1977), pp. 537–546.

22. B. van der Waerden, Problem 45, Jahresber. Deutsch. Math.-Verein., 35 (1926),
p. 117.

23. G. Woeginger, Exact algorithms for NP-hard problems: A survey, in Combinato-
rial Optimization - Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag, Berlin,
2003, pp. 185–207.

Collective Tree Spanners in Graphs with
Bounded Genus, Chordality, Tree-Width,

or Clique-Width

Feodor F. Dragan and Chenyu Yan

Department of Computer Science, Kent State University, Kent, OH 44242
{dragan, cyan}@cs.kent.edu

Abstract. In this paper we study collective additive tree spanners for
special families of graphs including planar graphs, graphs with bounded
genus, graphs with bounded tree-width, graphs with bounded clique-
width, and graphs with bounded chordality. We say that a graph G =
(V, E) admits a system of µ collective additive tree r-spanners if there is
a system T (G) of at most µ spanning trees of G such that for any two
vertices x, y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤
dG(x, y)+r. We describe a general method for constructing a ”small” sys-
tem of collective additive tree r-spanners with small values of r for ”well”
decomposable graphs, and as a byproduct show (among other results)
that any weighted planar graph admits a system of O(

√
n) collective

additive tree 0–spanners, any weighted graph with tree-width at most
k− 1 admits a system of k log2 n collective additive tree 0–spanners, any
weighted graph with clique-width at most k admits a system of k log3/2 n
collective additive tree (2w)–spanners, and any weighted graph with size
of largest induced cycle at most c admits a system of log2 n collective ad-
ditive tree (2�c/2�w)–spanners and a system of 4 log2 n collective additive
tree (2(�c/3�+1)w)–spanners (here, w is the maximum edge weight in G).
The latter result is refined for weighted weakly chordal graphs: any such
graph admits a system of 4 log2 n collective additive tree (2w)-spanners.
Furthermore, based on this collection of trees, we derive a compact and
efficient routing scheme for those families of graphs.

1 Introduction

Many combinatorial and algorithmic problems are concerned with the distance
dG on the vertices of a possibly weighted graph G = (V,E). Approximating
dG by a simpler distance (in particular, by tree–distance dT) is useful in many
areas such as communication networks, data analysis, motion planning, image
processing, network design, and phylogenetic analysis. Given a graphG = (V,E),
a spanning subgraphH is called a spanner if H provides a “good” approximation
of the distances in G. More formally, for t ≥ 1, H is called a multiplicative
t–spanner of G [22] if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V. If r ≥ 0 and
dH(u, v) ≤ dG(u, v)+ r for all u, v ∈ V, then H is called an additive r–spanner of
G [21]. The parameters t and r are called, respectively, the multiplicative and the
additive stretch factors. When H is a tree one has a multiplicative tree t-spanner
[4] and an additive tree r-spanner [23] of G, respectively.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 583–592, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

584 F.F. Dragan and C. Yan

In this paper, we continue the approach taken in [6, 10, 11, 18] of studying
collective tree spanners. We say that a graph G = (V,E) admits a system of
µ collective additive tree r-spanners if there is a system T (G) of at most µ
spanning trees of G such that for any two vertices x, y of G a spanning tree
T ∈ T (G) exists such that dT (x, y) ≤ dG(x, y) + r (a multiplicative variant
of this notion can be defined analogously). Clearly, if G admits a system of µ
collective additive tree r-spanners, then G admits an additive r-spanner with
at most µ (n − 1) edges (take the union of all those trees), and if µ = 1 then
G admits an additive tree r-spanner. In particular, we examine the problem of
finding “small” systems of collective additive tree r-spanners for small values of
r on special classes of graphs such as planar graphs, graphs with bounded genus,
graphs with bounded tree-width, graphs with bounded clique-width, and graphs
with bounded chordality.

Previously, collective tree spanners of particular classes of graphs were con-
sidered in [6, 10, 11, 18]. Paper [11] showed that any unweighted chordal graph,
chordal bipartite graph or cocomparability graph admits a system of at most
log2 n collective additive tree 2–spanners. These results were complemented by
lower bounds, which say that any system of collective additive tree 1–spanners
must have Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning

trees for some chordal bipartite graphs and some cocomparability graphs. Fur-
thermore, it was shown that any unweighted c-chordal graph admits a system
of at most log2 n collective additive tree (2�c/2�)–spanners and any unweighted
circular-arc graph admits a system of two collective additive tree 2–spanners.
Paper [10] showed that any unweighted AT-free graph (graph without aster-
oidal triples) admits a system of two collective additive tree 2-spanners and any
unweighted graph having a dominating shortest path admits a system of two
collective additive tree 3-spanners and a system of five collective additive tree
2-spanners. In paper [6], it was shown that no system of constant number of
collective additive tree 1-spanners can exist for unit interval graphs, no system
of constant number of collective additive tree r-spanners can exist for chordal
graphs and r ≤ 3, and no system of constant number of collective additive tree
r-spanners can exist for weakly chordal graphs and any constant r. On the other
hand, [6] proved that any unweighted interval graph of diameter D admits an
easily constructable system of 2 log(D−1)+4 collective additive tree 1-spanners,
and any unweighted House-Hole-Domino–free graph with n vertices admits an
easily constructable system of at most 2 log2 n collective additive tree 2-spanners.
Only paper [18] has investigated (so far) collective (multiplicative) tree spanners
in the weighted graphs (they were called tree covers there). It was shown that
any weighted n–vertex planar graph admits a system of O(

√
n) collective mul-

tiplicative tree 1-spanners (equivalently, additive tree 0-spanners) and a system
of at most 2 log3/2 n collective multiplicative tree 3–spanners.

One of the motivations to introduce this new concept steams from the prob-
lem of designing compact and efficient routing schemes in graphs. In [13, 25], a
shortest path routing labeling scheme for trees of arbitrary degree and diameter
is described that assigns each vertex of an n-vertex tree a O(log2 n/ log logn)-

Collective Tree Spanners in Graphs 585

bit label. Given the label of a source vertex and the label of a destination, it
is possible to compute in constant time, based solely on these two labels, the
neighbor of the source that heads in the direction of the destination. Clearly, if
an n-vertex graph G admits a system of µ collective additive tree r-spanners,
then G admits a routing labeling scheme of deviation (i.e., additive stretch) r
with addresses and routing tables of size O(µ log2 n/ log logn) bits per vertex.
Once computed by the sender in µ time (by choosing for a given destination an
appropriate tree from the collection to perform routing), headers of messages
never change, and the routing decision is made in constant time per vertex (for
details see [10, 11]).
Our results. In this paper we generalize and refine the method of [11] for con-
structing a ”small” system of collective additive tree r-spanners with small values
of r to weighted and larger families of ”well” decomposable graphs. We define a
large class of graphs, called (α, γ, r)–decomposable, and show that any weighted
(α, γ, r)–decomposable graph G with n vertices admits a system of at most
γ log1/α n collective additive tree 2r–spanners. Then, we show that all weighted
planar graphs are (2/3,

√
6n, 0)–decomposable, all weighted graphs with genus at

most g are (2/3, O(
√
gn), 0)–decomposable, all weighted graphs with tree-width

at most k−1 are (1/2, k, 0)–decomposable, all weighted graphs with clique-width
at most k are (2/3, k,w)–decomposable, all weighted graphs with size of largest
induced cycle at most c are (1/2, 1, �c/2�w)-decomposable, (1/2, 6, �(c+2)/3�w)-
decomposable and (1/2, 4, (�c/3�+ 1)w)-decomposable, and all weighted weakly
chordal graphs are (1/2, 4,w)-decomposable. Here and in what follows, w denotes
the maximum edge weight in G, i.e., w := max{w(e) : e ∈ E(G)}.

As a consequence, we obtain that any weighted planar graph admits a sys-
tem of O(

√
n) collective additive tree 0–spanners, any weighted graph with

genus at most g admits a system of O(
√
gn) collective additive tree 0–spanners,

any weighted graph with tree-width at most k − 1 admits a system of k log2 n
collective additive tree 0–spanners, any weighted graph with clique-width at
most k admits a system of k log3/2 n collective additive tree (2w)–spanners, any
weighted graph with size of largest induced cycle at most c admits a system of
log2 n (6 log2 n and 4 log2 n) collective additive tree (2�c/2�w)–spanners (respec-
tively, (2�(c+2)/3�w)–spanners and (2(�c/3�+1)w)–spanners), and any weighted
weakly chordal graph admits a system of 4 log2 n collective additive tree (2w)-
spanners. Furthermore, based on this collection of trees, we derive compact and
efficient routing schemes for those families of graphs.
Basic notions and notation. All graphs occurring in this paper are connected,
finite, undirected, loopless and without multiple edges. Our graphs can have
(non-negative) weights on edges, w(e), e ∈ E, unless otherwise is specified. In a
weighted graph G = (V,E) the distance dG(u, v) between the vertices u and v
is the length of a shortest path connecting u and v. If the graph is unweighted
then, for convenience, each edge has weight 1.

The (open) neighborhood of a vertex u in G is N(u) = {v ∈ V : uv ∈ E} and
the closed neighborhood is N [u] = N(u)∪{u}. Define the layers of G with respect
to a vertex u as follows: Li(u) = {x ∈ V : x can be connected to u by a path

586 F.F. Dragan and C. Yan

with i edges but not by a path with i− 1 edges}, i = 0, 1, 2, In a path P =
(v0, v1, . . . , vl) between vertices v0 and vl of G, vertices v1, . . . , vl−1 are called
inner vertices. Let r be a non-negative real number. A set D ⊆ V is called an r-
dominating set for a set S ⊆ V of a graph G if dG(v,D) ≤ r holds for any v ∈ S.

A tree-decomposition [24] of a graph G is a tree T whose nodes, called bags,
are subsets of V (G) such that: 1)

⋃
X∈V (T)X = V (G); 2) for all {u, v} ∈ E(G),

there exists X ∈ V (T) such that u, v ∈ X ; and 3) for all X,Y, Z ∈ V (T),
if Y is on the path from X to Z in T then X∩Z ⊆Y . The width of a tree-
decomposition is one less than the maximum cardinality of a bag. Among all the
tree-decompositions of G, let T be the one with minimum width. The width of
T is called the tree-width of the graph G and is denoted by tw(G). We say that
G has bounded tree-width if tw(G) is bounded by a constant. It is known that
the tree-width of an outerplanar graph and of a series-parallel graph is at most
2 (see, e.g., [19]).

A related notion to tree-width is clique-width. Based on the following opera-
tions on vertex-labeled graphs, namely (1) creation of a vertex labeled by integer
l, (2) disjoint union, (3) join between all vertices with label i and all vertices with
label j for i �= j, and (4) relabeling all vertices of label i by label j, the notion
of clique-width cw(G) of a graph G is defined in [12] as the minimum number
of labels which are necessary to generate G by using these operations. Clique-
width is a complexity measure on graphs somewhat similar to tree-width, but
more powerful since every set of graphs with bounded tree-width has bounded
clique-width [7] but not conversely (cliques have clique-width 2 but unbounded
tree-width). It is well-known that the clique-width of a cograph is at most 2 and
the clique-width of a distance-hereditary graph is at most 3 (see [17]).

The chordality of a graph G is the size of the largest (in the number of edges)
induced cycle of G. Define c-chordal graphs as the graphs with chordality at
most c. Then, the well-known chordal graphs are exactly the 3-chordal graphs.
An induced cycle of G of size at least 5 is called a hole. The complement of a
hole is called an anti-hole. A graph G is weakly chordal if it has neither holes
nor anti-holes as induced subgraphs. Clearly, weakly chordal graphs and their
complements are 4-chordal. A cograph is a graph having no induced paths on 4
vertices (P4s).

The genus of a graph G is the smallest integer g such that G embeds in a
surface of genus g without edge crossings. Planar graphs can be embedded on
a sphere, hence g = 0 for them. A planar graph is outerplanar if all its vertices
belong to its outerface.

2 (α, γ, r)-Decomposable Graphs and Their Collective
Tree Spanners

Let α be a positive real number smaller than 1, γ be a positive integer and r
be a non-negative real number. We say that an n-vertex graph G = (V,E) is
(α, γ, r)–decomposable if there is a separator S ⊆ V , such that the following
three conditions hold:

Collective Tree Spanners in Graphs 587

Balanced Separator condition - the removal of S from G leaves no connected
component with more than αn vertices;

Bounded r-Dominating Set condition - there exists a setD ⊆ V such that |D| ≤
γ and for any vertex u ∈ S, dG(u,D) ≤ r (we say that D r-dominates S);

Hereditary Family condition - each connected component of the graph, obtained
from G by removing vertices of S, is also an (α, γ, r)–decomposable graph.

Note that, by definition, any graph having an r-dominating set of size at most
γ is (α, γ, r)–decomposable, for any positive α < 1.

Using these three conditions, one can construct for any (α, γ, r)-decomposable
graph G a (rooted) balanced decomposition tree BT (G) as follows. If G has an
r-dominating set of size at most γ, then BT (G) is a one node tree. Otherwise,
find a balanced separator S with bounded r-dominating set in G, which exists
according to the first and second conditions. Let G1, G2, . . . , Gp be the connected
components of the graph G \ S obtained from G by removing vertices of S. For
each graph Gi (i = 1, . . . , p), which is (α, γ, r)-decomposable by the Hereditary
Family condition, construct a balanced decomposition tree BT (Gi) recursively,
and build BT (G) by taking S to be the root and connecting the root of each
tree BT (Gi) as a child of S. Clearly, the nodes of BT (G) represent a partition of
the vertex set V of G into clusters S1, S2, . . . , Sq, each of them having in G an
r-dominating set of size at most γ. For a node X of BT (G), denote by G(↓ X)
the (connected) subgraph of G induced by vertices ∪{Y : Y is a descendent of
X in BT } (here we assume that X is a descendent of itself).

It is easy to see that a balanced decomposition tree BT (G) of a graph G with
n vertices and m edges has depth at most log1/α n, which is O(log2 n) is α is
a constant. Moreover, assuming that a special balanced separator (mentioned
above) can be found in polynomial, say p(n), time, the tree BT (G) can be
constructed in O((p(n) +m) log1/α n) total time.

Consider now two arbitrary vertices x and y of an (α, γ, r)-decomposable
graph G and let S(x) and S(y) be the nodes of BT (G) containing x and y,
respectively. Let also NCABT (G)(S(x), S(y)) be the nearest common ancestor
of nodes S(x) and S(y) in BT (G) and (X0, X1, . . . , Xt) be the path of BT (G)
connecting the root X0 of BT (G) with NCABT (G)(S(x), S(y)) = Xt (in other
words, X0, X1, . . . , Xt are the common ancestors of S(x) and S(y)). Clearly, any
path PG

x,y, connecting vertices x and y in G, contains a vertex from X0 ∪ X1 ∪
· · · ∪Xt. Let SPG

x,y be a shortest path of G connecting vertices x and y, and let
Xi be the node of the path (X0, X1, . . . , Xt) with the smallest index such that
SPG

x,y ∩Xi �= ∅ in G. Then, it is easy to show that dG(x, y) = dG′(x, y), where
G′ := G(↓Xi).

Let Di be an r-dominating set of Xi in G′ = G(↓Xi) of size at most γ. For
the graph G′, consider a set of |Di| Shortest-Path-trees (SP-trees) T (Di), each
rooted at a (different) vertex from Di. Then, there is a tree T ′ ∈ T (Di) which
has the following distance property with respect to those vertices x and y.

Lemma 1. For vertices x, y ∈ G(↓Xi), there exits a tree T ′ ∈ T (Di) such that
dT ′(x, y) ≤ dG(x, y) + 2r.

588 F.F. Dragan and C. Yan

Let now Bi
1, . . . , B

i
pi

be the nodes on depth i of the tree BT (G) and let
Di

1, . . . , D
i
pi

be the corresponding r-dominating sets. For each subgraph Gi
j :=

G(↓Bi
j) of G (i = 0, 1, ..., depth(BT (G), j = 1, 2, . . . , pi), denote by T i

j the set
of SP-trees of graph Gi

j rooted at the vertices of Di
j. Thus, for each Gi

j , we
construct at most γ Shortest-Path-trees. We call them local subtrees. Lemma 1
implies

Theorem 1. Let G be an (α, γ, r)-decomposable graph, BT (G) be its balanced
decomposition tree and LT (G) = {T ∈ T i

j : i = 0, 1, . . . , depth(BT (G)), j =
1, 2, . . . , pi} be its set of local subtrees. Then, for any two vertices x and y of G,
there exists a local subtree T ′ ∈ T i′

j′ ⊆ LT (G) such that dT ′(x, y) ≤ dG(x, y)+2r.

This theorem implies two import results for the class of (α, γ, r)-decomposable
graphs. Let G be an (α, γ, r)-decomposable graph with n vertices and m edges,
BT (G) be its balanced decomposition tree and LT (G) be the family of its local
subtrees (defined above). Consider a graph H obtained by taking the union of
all local subtrees of G (by putting all of them together), i.e.,

H :=
⋃

{T : T ∈ T i
j ⊆ LT (G)} = (V,∪{E(T) : T ∈ T i

j ⊆ LT (G)}).

Clearly, H is a spanning subgraph of G and for any two vertices x and y of
G, dH(x, y) ≤ dG(x, y) + 2r holds. Also, since for any level i (i = 0, 1, . . .,
depth(BT (G))) of balanced decomposition tree BT (G), the corresponding graphs
Gi

1, . . . , G
i
pi

are pairwise vertex-disjoint and |T i
j | ≤ γ (j = 1, 2, . . . , pi), the union⋃

{T : T ∈ T i
j , j = 1, 2, . . . , pi} has at most γ(n− 1) edges. Therefore, H has at

most γ(n− 1) log1/α n edges in total. Thus, we have proven the following result.

Theorem 2. Any (α, γ, r)-decomposable graph G with n vertices admits an ad-
ditive 2r-spanner with at most γ(n− 1) log1/α n edges.

Let T i
j := {T i

j (1), T i
j (2), . . . , T i

j (γ − 1), T i
j (γ)} be the set of SP-trees of graph

Gi
j rooted at the vertices of Di

j . Here, if p := |Di
j| < γ then we can set

T i
j (k) := T i

j (p) for any k, p + 1 ≤ k ≤ γ. By arbitrarily extending each for-
est {T i

1(q), T
i
2(q), . . . , T

i
pi

(q)} (q ∈ {1, . . . , γ}) to a spanning tree T i(q) of the
graph G, for each level i (i = 0, 1, . . . , depth(BT (G))) of the decomposition
tree BT (G), we can construct at most γ spanning trees of G. Totally, this
will result into at most γ depth(BT (G)) spanning trees T (G) := {T i(q) : i =
0, 1, . . . , depth(BT (G)), q = 1, . . . , γ} of the original graph G. Thus, from Theo-
rem 1, we have the following.

Theorem 3. Any (α, γ, r)-decomposable graph G with n vertices admits a sys-
tem T (G) of at most γ log1/α n collective additive tree 2r-spanners.

Corollary 1. Every (α, γ, r)-decomposable graph G with n vertices admits a
routing labeling scheme of deviation 2r with addresses and routing tables of size
O(γ log1/α n log2 n/ log logn) bits per vertex. Once computed by the sender in
γ log1/α n time, headers never change, and the routing decision is made in con-
stant time per vertex.

Collective Tree Spanners in Graphs 589

3 Particular Classes of (α, γ, r)-Decomposable Graphs

Graphs having balanced separators of bounded size. Here we consider
graphs that have balanced separators of bounded size.

To see that planar graphs are (2/3,
√

6n, 0)-decomposable, we recall the fol-
lowing Separator Theorem for planar graphs from [20] (see also [8]) : The vertices
of any n-vertex planar graph G can be partitioned in O(n) time into three sets
A,B,C, such that no edge joins a vertex in A with a vertex in B, neither A
nor B has more than 2/3n vertices, and C contains no more than

√
6n vertices.

Obviously, every connected component of G \ C is still a planar graph. The
Separator Theorem for planar graphs was extended in [9, 14] to bounded genus
graphs: a graph G with genus at most g admits a separator C of size O(

√
gn)

such that any connected component of G \ C contains at most 2n/3 vertices.
Evidently, each connected component of G \ C has genus bounded by g, too.
Hence, the following results follow.

Theorem 4. Every n–vertex planar graph is (2/3,
√

6n, 0)-decomposable. Every
n–vertex graph with genus at most g is (2/3, O(

√
gn), 0)-decomposable.

There is another extension of the Separator Theorem for planar graphs,
namely, to the graphs with an excluded minor [2]. A graph H is a minor of
a graph G if H can be obtained from a subgraph of G by contracting edges. By
an H-minor one means a minor of G isomorphic to H . Thus the Pontryagin-
Kuratowski-Wagner Theorem asserts that planar graphs are those without K5
and K3,3 minors. The following result was proven in [2]: Let G be an n-vertex
graph and H be an h-vertex graph. If G has no H-minor, then the vertices of
G can be partitioned into three sets A,B,C, such that no edge joins a vertex
in A with a vertex in B, neither A nor B has more than 2/3n vertices, and

C contains no more than
√
h3n vertices. Furthermore A,B,C can be found in

O(
√
hn(n+m)) time, where m is the number of edges in G.

Since induced subgraphs of an H-minor free graph are H-minor free, we
conclude.

Theorem 5. Let G be an n-vertex graph and H be an h-vertex graph. If G has
no H-minor, then G is (2/3,

√
h3n, 0)-decomposable.

Note that, any shortest path routing labeling scheme in n-vertex planar graphs
requires at least Ω(

√
n)-bit labels [1]. Hence, by Corollary 1, there must exist n-

vertex planar graphs, for which any system of collective additive tree 0-spanners
needs to have at least Ω(

√
n log logn/ log2 n) trees.

Now we turn to graphs with bounded tree-width. The following theorem is
true (proof is omitted).

Theorem 6. Every graph with tree-width at most k is (1/2, k+1, 0)-decomposable.

Table 1 summarizes the results on collective additive tree spanners of graphs
having balanced separators of bounded size. The results are obtained by com-
bining Theorem 3 with Theorems 4, 5 and 6. Note that, for planar graphs, the

590 F.F. Dragan and C. Yan

number of trees in the collection is at most O(
√
n) (not

√
6n log3/2 n as would

follow from Theorem 3). This number can be obtained by solving the recurrent
formula µ(n) =

√
6n + µ(2/3n). Similar argument works for other two families

of graphs.

Table 1. Collective additive tree spanners of n-vertex graphs having balanced separa-
tors of bounded size

Graph class Number of trees additive stretch
in the collection, µ factor, r

Planar graphs O(
√

n) 0
Graphs with genus g O(

√
gn) 0

Graphs without an h-vertex minor O(
√

h3n) 0
Graphs with tree-width k − 1 k log2 n 0

We conclude this subsection with a lower bound, which follows from a result
in [6]. Recall that all outerplanar graphs have tree-width at most 2.

Observation 1. it No system of constant number of collective additive tree
r-spanners can exist for outerplanar graphs, for any constant r ≥ 0.

Graphs with bounded clique-width. Here we will prove that each graph
with clique-width at most k is (2/3, k,w)-decomposable. Recall that w denotes
the maximum edge weight in a graph G, i.e., w := max{w(e) : e ∈ E(G)}.

Theorem 7. Every graph with clique-width at most k is (2/3, k,w)-decomposable.

Proof. It was shown in [3] that the vertex set V of any graph G = (V,E) with
n vertices and clique-width cw(G) at most k can be partitioned (in polynomial
time) into two subsets A and B := V \A such that both A and B have no more
than 2/3n vertices and A can be represented as the disjoint union of at most
k subsets A1, . . . , Ak (i.e., A = A1∪̇ . . . ∪̇Ak), where each Ai (i ∈ {1, . . . , k})
has the property that any vertex from B is either adjacent to all v ∈ Ai or to
no vertex in Ai. Using this, we form a balanced separator S of G as follows.
Initially set S := ∅, and in each subset Ai, arbitrarily choose a vertex vi. Then,
if N(vi) ∩ B �= ∅, put vi and N(vi) ∩ B into S. Since for any edge ab ∈ E with
a ∈ A and b ∈ B, vertex b must belong to S, we conclude that S is a separator
of G, separating A\S from B \S. Moreover, each connected component of G\S
lies entirely either in A or in B and therefore has at most 2/3n vertices. By
construction of S, any vertex u ∈ B∩S is adjacent to a vertex from A′ := A∩S.
As |A′| ≤ k and w is an upper bound on any edge weight, we deduce that A′

w-dominates S in G. Thus, S is a balanced separator of G and is w-dominated
by a set A′ of cardinality at most k. To finish the proof, it remains to recall
that induced subgraphs of a graph with clique-width at most k have clique-
width at most k, too (see, e.g., [7]), and therefore, by induction, the connected
components of G \ S induce (2/3, k,w)-decomposable graphs.

Collective Tree Spanners in Graphs 591

Combining Theorem 7 with the results of Section 2, we obtain

Corollary 2. Any graph with n vertices and clique-width at most k admits a
system of at most k log3/2 n collective additive tree 2w-spanners, and such a
system of spanning trees can be found in polynomial time.

To complement the above result, we give the following lower bound.

Observation 2. it There are (infinitely many) unweighted n-vertex graphs with
clique-width at most 2 for which any system of collective additive tree 1-spanners
will need to have at least Ω(n) spanning trees.

Graphs with bounded chordality. Here we consider the class of c-chordal
graphs and its subclasses. Proofs of all results of this subsection are omitted.

Theorem 8. Every n-vertex c-chordal graph is (1/2, 1, �c/2�w)-decomposable,
(1/2, 4, (�c/3� + 1)w)-decomposable and (1/2, 6, �(c+ 2)/3�w)-decomposable.

Corollary 3. Every n-vertex c-chordal graph admits a system of at most log2 n
collective additive tree (2�c/2�w)-spanners, a system of at most 4 log2 n collective
additive tree (2(�c/3�+1)w)-spanners and a system of at most 6 log2 n collective
additive tree (2(�(c+2)/3�w)-spanners. Moreover, such systems of spanning trees
can be constructed in polynomial time.

These results can be refined for 4-chordal graphs and weakly chordal graphs.

Theorem 9. Every 4-chordal graph is (1/2, 6,w)-decomposable. Every 4-chordal
graph not containing C6 as an induced subgraph is (1/2, 4,w)-decomposable.

Corollary 4. Any n-vertex 4-chordal graph admits a system of at most 6 log2 n
collective additive tree 2w-spanners. Any n-vertex 4-chordal graph not containing
C6 as an induced subgraph (in particular, any weakly chordal graph) admits a
system of at most 4 log2 n collective additive tree 2w-spanners. Moreover, such
systems of spanning trees can be constructed in polynomial time.

Note that the class of weakly chordal graphs properly contains such known
classes of graphs as interval graphs, chordal graphs, chordal bipartite graphs, per-
mutation graphs, trapezoid graphs, House-Hole-Domino–free graphs, distance-
hereditary graphs and many others. Hence, the results of this subsection gener-
alize some known results from [6, 11]. We recall also that, as it was shown in [6],
no system of constant number of collective additive tree r-spanners can exist for
unweighted weakly chordal graphs for any constant r ≥ 0.

Corollary 5. Any n-vertex 4-chordal graph admits an additive 2w-spanner with
at most O(n logn) edges. Moreover, such a sparse spanner can be constructed in
polynomial time.

The last result improves and generalizes the known results from [5, 11, 22] on
sparse spanners of unweighted chordal graphs.

In full version, we discuss also implication of these results to designing com-
pact routing labeling schemes for graphs under consideration.

592 F.F. Dragan and C. Yan

References

1. I. Abraham, C. Gavoille, and D. Malkhi, Compact routing for graphs excluding a
fixed minor, Proc. of DISC 2005, LNCS 3724, pp. 442-456.

2. N. Alon, P. Seymour, and R. Thomas, A Separator Theorem for Graphs with an
Excluded Minor and its Applications, Proc. of STOC 1990, ACM, pp. 293–299.

3. R. Borie, J.L. Johnson, V. Raghavan, and J.P. Spinrad, Robust polynomial time
algorithms on clique-width k graphs, Manuscript, 2002.

4. L. Cai and D.G. Corneil, Tree spanners, SIAM J. Discr. Math., 8 (1995), 359–387.
5. V. D. Chepoi, F. F. Dragan, and C. Yan, Additive Spanners for k-Chordal Graphs,

Proc. of CIAC 2003, LNCS 2653, pp. 96-107.
6. D.G. Corneil, F.F. Dragan, E. Köhler, and C. Yan, Collective tree 1-spanners for

interval graphs, Proc. of WG 2005, LNCS, to appear.
7. B. Courcelle and S. Olariu, Upper bounds to the clique-width of graphs, Discrete

Appl. Math., 101 (2000), 77-114.
8. H.N. Djidjev, On the problem of partitioning planar graphs, SIAM, J. Alg. Disc.

Meth., 3 (1982), 229-240.
9. H.N. Djidjev, A separator theorem for graphs of fixed genus, Serdica, 11 (1985),

319-329.
10. F.F. Dragan, C. Yan and D.G. Corneil, Collective tree spanners and routing in

AT-free related graphs, Proc. of WG 2004, LNCS 3353, pp. 68-80.
11. F.F. Dragan, C. Yan and I. Lomonosov, Collective tree spanners of graphs, Proc.

of SWAT 2004, LNCS 3111, pp. 64-76.
12. J. Engelfriet and G. Rozenberg, Node replacement graph grammars, Handbook of

Graph Grammars and Computing by Graph Transformation, Foundations, Vol. I,
World Scientific, Singapore, 1997, pp. 1-94.

13. P. Fraigniaud and C. Gavoille, Routing in Trees, Proc. of ICALP 2001, LNCS
2076, pp. 757–772.

14. J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan, A separator theorem for graphs
of bounded genus, Journal of Algorithms, 5 (1984), 391–407.

15. J.R. Gilbert, D.J. Rose, and A. Edenbrandt, A separator theorem for chordal
graphs. SIAM J. Alg. Discrete Meth., 5 (1984), 306–313.

16. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

17. M.C. Golumbic and U. Rotics, On the Clique-Width of Perfect Graph Classes,
Proc. of WG 1999, LNCS 1665, pp. 135-147.

18. A. Gupta, A. Kumar and R. Rastogi, Traveling with a Pez Dispenser (or, Routing
Issues in MPLS), SIAM J. Comput., 34 (2005), pp. 453-474.

19. T. Kloks, Treewidth: Computations and Approximations, Lecture Notes in Com-
puter Science 842, Springer, Berlin, 1994.

20. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J.
Appl. Math., 36 (1979), 346-358.

21. A.L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993),
343–364.

22. D. Peleg, and A.A. Schäffer, Graph Spanners, J. Graph Theory, 13 (1989), 99-116.
23. E. Prisner, D. Kratsch, H.-O. Le, H. Müller, and D. Wagner, Additive tree span-

ners, SIAM J. Discrete Math., 17 (2003), 332–340.
24. N. Robertson and P. D. Seymour, Graph minors II: Algorithmic aspects of tree-

width, Journal of Algorithms, 7 (1986), 309-322.
25. M. Thorup and U. Zwick, Compact routing schemes, Proc. of SPAA 2001, ACM,

pp. 1–10.

Sampling Unlabeled Biconnected Planar Graphs

Manuel Bodirsky1, Clemens Gröpl2,�, and Mihyun Kang1,��

1 Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, D-10099 Berlin, Germany
{bodirsky, kang}@informatik.hu-berlin.de

2 Freie Universität Berlin, Institut für Informatik,
Takustraße 9, D-14195 Berlin, Germany

groepl@inf.fu-berlin.de

Abstract. We present an expected polynomial time algorithm to gen-
erate a 2-connected unlabeled planar graph uniformly at random. To do
this we first derive recurrence formulas to count the exact number of
rooted 2-connected planar graphs, based on a decomposition along the
connectivity structure. For 3-connected planar graphs we use the fact
that they have a unique embedding on the sphere. Special care has to be
taken for rooted graphs that have a sense-reversing or a pole-exchanging
automorphism. We prove a bijection between such symmetric objects
and certain colored networks. These colored networks can again be de-
composed along their connectivity structure. All the numbers can be
evaluated in polynomial time by dynamic programming. To generate 2-
connected unlabeled planar graphs without a root uniformly at random
we apply rejection sampling and obtain an expected polynomial time
algorithm.

1 Introduction

While there is an exact recursive counting formula and an efficient sampling
algorithm for rooted maps [21], for labeled and unlabeled outerplanar graphs [8],
and for labeled planar graphs [7], there is no such counting formula and sampling
algorithm known for unlabeled planar graphs, i.e., graphs that can be embedded
in the plane, considered up to isomorphism. Such a counting formula and sam-
pling algorithm would be useful to verify statements about the random planar
graph, which recently attracted attention [2,9,10,15,18,20], mainly in the labeled
setting due to the lack of techniques for unlabeled planar structures. It is well
known that almost all graphs have a small automorphism group. However, this
is not the case for planar graphs, even if they are 2-connected: Bender, Gao,
and Wormald [2] showed that almost all 2-connected planar graphs have a large
automorphism group. Thus the difference between the labeled and the unlabeled
setting is essential.

� Supported by the German Federal Ministry of Education and Research within the
Berlin Center for Genome Based Bioinformatics (BMBF grant no. 031 2705A).

�� Supported by the Deutsche Forschungsgemeinschaft (DFG Pr 296/7-3).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 593–603, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

594 M. Bodirsky, C. Gröpl, and M. Kang

All approaches to count planar graphs are based on decompositions along the
k-connected components of a graph [2,4,7,16,26]. A graph is decomposed into
components, components into blocks, and blocks into bricks, which are essen-
tially the 3-connected parts of the graph. Three-connected graphs have a unique
embedding on the sphere, and thus can be further decomposed by geometric ar-
guments (as they correspond to isomorphism types of the edge graphs of convex
polyhedra [22]). The asymptotic number [3] and sampling procedures [5,13] for
3-connected planar graphs are known.

In this paper we present an algorithm that generates two-connected graphs
on m edges uniformly at random in expected polynomial time in m. Such graphs
have in general many automorphisms and also might have many embeddings on
the sphere. It is easy to modify the algorithm e.g. to sample graphs with a given
number of edges and vertices.

Strategy. To count and sample unlabeled 2-connected planar graphs, we first
have to root them. Here, the root of a graph is a distinguished directed edge, and
rooted planar graphs are counted up to isomorphisms that map the root of one
graph to the root of the other graph. We also call such a rooted 2-connected pla-
nar graph a (planar) network. Clearly, generating a random rooted planar graph
and then simply ignoring the root edge does not yield the uniform distribution,
since unlabeled graphs might correspond to different numbers of rooted graphs.
But this imbalance can be compensated by rejection sampling, i.e., the sampling
procedure is restarted with a probability that is inverse proportional to the size
of the orbit of the root. In this way we can sample unlabeled 2-connected planar
graphs in expected polynomial time.

We decompose networks along their connectivity structure. Our approach is
related to the one described in [7] for labeled planar graphs, but for unlabeled
structures several new techniques are necessary. A classical theorem of Whit-
ney (see e. g. [12]) says that rooted 3-connected planar graphs, i.e., 3-connected
networks, can have either one or two embeddings in the plane where the root
edge is embedded on the outer face. Such embedded three-connected networks
are called c-nets. If both embeddings of a 3-connected graph are isomorphic,
we say that it has a sense-reversing automorphism or it is symmetric. To count
symmetric c-nets we present a new bijective correspondence to colored networks
(defined below), and a decomposition of these objects. We also have to consider
rooted graphs with an automorphism that reverts the direction of the root; such
a graph is called pole-symmetric. We present a decomposition of pole-symmetric
networks, and finally also that of pole-symmetric c-nets with a sense-reversing
automorphism. We exploit the fact that the dual of a pole-symmetric c-net is a
c-net with a sense-reversing automorphism.

As a final step we use a deterministic polynomial time sampling algorithm for
c-nets described in [5]. A faster algorithm to sample c-nets uniformly at random
in expected polynomial running time can be found in [1]. However, we need the
new algorithm, since it can be adapted to generate c-nets with a certain specified
number of edges on the outer face, which we need in the generation algorithm
for unlabeled 2-connected planar graphs.

Sampling Unlabeled Biconnected Planar Graphs 595

with sense-reversing automorphism

pole-symmetric c-nets

networks

pole-symmetric colored networks

colored networks

c-nets

pole-symmetric networks

pole-symmetric 3-connected networks

3-connected networks

symmetric c-nets

Fig. 1. Dependencies of the sections and concepts in this paper

2 Graph Decompositions

In this section we introduce concepts, which we need for a decomposition of
graphs. A (planar) network N is a simple connected graph with distinguished
vertices s �= t and a directed edge e = st such that if we insert the edge e into N ,
then the resulting multi-graph N∗ is 2-connected and planar. The edge e = st
is called the root of the network, and the vertices s and t are called the poles of
the network; if s and t were already connected by an edge in N , we introduce a
multi-edge in N∗. We say that a network N is k-connected iff N∗ is k-connected.

A k-point set K of a graph G such that G−K becomes disconnected is called
a k-cut of G. A single point that forms a 1-cut is called a cut-vertex. Every
2-cut {k1, k2} of a network N induces a partition of the edge set, and each of the
partition classes is again a network with the poles k1 and k2 . These networks are
called subnetworks of N , and they are called proper if they contain at least two
edges. Every network is either an s-, p-, or h-network ; this appeared in various
slightly different forms in the literature [23,24,25].

Theorem 1. A network N with more than two edges is of precisely one of the
following types:

s: There is a cut-vertex in N that separates s and t.
p: The vertices s and t are adjacent, or {s, t} is a 2-cut of N .
h: The vertices s and t are not adjacent, and N is built from a uniquely deter-

mined 3-connected network H by replacing edges of H with other networks.

For examples of the three types of networks see Figure 2. As already mentioned
in the introduction, a 3-connected network might have one or two embeddings
where the root lies on the outer face. A 3-connected network embedded in one
of these ways is called a c-net.

596 M. Bodirsky, C. Gröpl, and M. Kang

t

s

t

s

t

s

s−network p−network h−network

Fig. 2. Examples of the three types of networks

3 Counting Networks

In this section we present a decomposition of networks and derive recurrence
formulas to count them. Let n(m) be the number of networks with m edges.
According to Theorem 1 we have n(m) = s(m) + p(m) + h(m), where s(m),
p(m), and h(m) counts the number of s-, p-, and h-networks with m edges,
respectively. The generation of these objects can be considered as a reversed
decomposition, where the decisions are made with the right probabilities that
can be computed using the counting formulas.
s-networks. Note that each s-network has a unique cut vertex v that is closest
to the pole s (in this paper, closest is meant with respect to the length of the
shortest connecting path). Then s and v determine a subnetwork, which is a p-
or an h-network, and the remaining network with the poles v and t. Thus we
have:

s(m) =
∑
j=1

(p(j) + h(j))n(m− j) .

p-networks. Let pl(m) denote the number of p-networks where the number of
edges of the largest network that replaces an edge of the core is bounded by l.
The index k in the formula below denotes the number of networks of order l that
replace an edge in the core.

p(m) = pm(m)

pl(m) =

m/l�∑
k=0

(
s(l) + h(l) + k − 1

k

)
pl−1(m− kl) .

h-networks. Let N be an h-network. Theorem 1 asserts that there is a unique
rooted 3-connected network H , such that we can derive N from H by replacing
edges of H with subnetworks. We call H the core of N and denote H = core(N).
We call N symmetric if it has a sense-reversing automorphism ϕ, i. e., ϕ �= id,
but ϕ(s) = s and ϕ(t) = t, and asymmetric otherwise. If N is asymmetric, one
can uniquely order the edges of core(N): The idea is to label the vertices of
the core according to their occurrence in a depth first search traversal of the
core, beginning with the root edge and visiting the neighbors of a vertex in
clockwise order with respect to one of the (at most two) possible embeddings

Sampling Unlabeled Biconnected Planar Graphs 597

of the core. The edges are then labeled by the vertex labels obtained from the
depth first search traversal. Then we lexicographically compare the sequence of
these edge labels in the order they were visited by the depth first search. If
the core is asymmetric, one of the sequences is smaller than the other; thus we
can distinguish between the two embeddings. If the network has a symmetric
core, both edge sequences are the same unless we have inserted two different
subnetworks into a pair of core edges, in which case we can again distinguish
between the two embeddings.

If H is symmetric, we order the edges of the core in the following way. We
start with the edges uv where u = ϕ(u) and v = ϕ(v) according to the traversal;
We call such edges blue. Then we list the edges uv where u = ϕ(v) and v = ϕ(u)
according to the traversal; We call such edges red. We continue with the edges
that are not fixed by the nontrivial automorphism ϕ, and order them according
to the above traversal. Edges and their images, which we call corresponding
edges, are ordered arbitrarily.

To count the number of symmetric and asymmetric h-networks we repeatedly
replace subnetworks in the above order. It is not difficult to fomulate corre-
sponding recursive counting formulas; for details we refer to the full version of
the paper [6]. We are finally left with the problems (a) to count and sample
networks with a pole-exchanging automorphism – see Section 6, (b) to count and
sample 3-connected symmetric networks – see Section 4, and (c) to sample 3-
connected asymmetric networks. For this last task, we apply rejection sampling.
That is, we first generate an arbitrary 3-connected network. We then check
whether it has such a symmetry, which can be done in linear time [17]. If yes,
we restart the algorithm. If no, we output the asymmetric network. Since almost
all 3-connected networks do not have a sense-reversing automorphism (see [3]
for a much stronger result), the expected number of restarts is constant, and we
obtain an expected polynomial time algorithm.

4 Symmetric c-Nets

This section contains one of the main ideas to deal with symmetries when count-
ing unlabeled planar graphs. We want to count 3-connected planar networks
with a distinguished directed edge, up to isomorphisms that fix this edge. There
might be one or two embeddings where the root lies at the outer face. Embed-
ded 3-connected networks are called c-nets. As mentioned in the introduction,
counting formulas and sampling procedures for c-nets are known. If a network
has a nontrivial automorphism that fixes the root edge, we call this automor-
phism sense-reversing, and say that the network is symmetric. Clearly, if we
can compute the number of symmetric 3-connected networks, then we can also
compute the number of asymmetric 3-connected networks.

Let H be a symmetric 3-connected planar network, and ϕ its nontrivial sense-
reversing automorphism. A vertex v of H is called blue if ϕ(v) = v, and red if
v is connected to ϕ(v) by an edge. The edge vϕ(v) is also called red. An edge
uv of a colored network is blue if both u and v are blue. (Red and blue edges

598 M. Bodirsky, C. Gröpl, and M. Kang

s

t

s

t

s

t

Fig. 3. Decomposition of a symmetric h-network

were already defined in Section 3.) Thus a vertex or an edge is either blue, red,
or uncolored, and the poles and the root are blue. We can think of H as being
embedded in the plane in such a way that ϕ corresponds to a reflection, the
blue vertices being aligned on the reflection axis, and the red vertices having an
edge crossing this axis perpendicularly (see Fig. 3, left part). Our arguments,
however, do not rely on such a representation.

If we remove from H the blue vertices and their incident edges, and also
remove the red edges (that is, we cut H along the symmetry axis), then the
resulting graph has exactly two connected components (see Fig. 3). The graphs
induced by these components and the blue vertices are isomorphic and will be
called H1 and H2. We claim that H∗

1 is 2-connected, and hence H1 is a network
rooted at s and t: Suppose there is a cut-vertex in H∗

1 . Then this cut-vertex
together with the corresponding cut-vertex in H∗

2 is a 2-cut in H∗, contradicting
the 3-connectivity of H∗. Now we extract some more properties of the graphs
H1 and H2 and define colored networks. They are defined in such a way that we
can recursively decompose them, and that we can establish a bijection between
symmetric h-networks and certain colored networks.

Definition 1. A colored network is a network N , where some vertices are col-
ored red and blue, satisfying the following.

(P1) N∗ has a plane embedding s.t. all colored vertices and the poles lie on the
outer face.

(P2) N and every proper subnetwork of N contain at least one colored vertex.
(P3) No subnetwork of N has two blue poles.

Then the bijection to symmetric 3-connected networks is as follows. The proof
can be found in the long version of the paper [6].

Theorem 2. For all m, b, r there is a bijection between the following two sets
of objects:

(i) colored networks with (m + b − r)/2 edges and blue poles, where b is the
number of blue edges and r the number of red vertices, and

Sampling Unlabeled Biconnected Planar Graphs 599

(ii) 3-connected networks with m edges having a nontrivial automorphism that
fixes b+ r edges, and point-wise fixes the root and b other edges.

5 Counting Colored Networks

The recurrences to count the number of colored networks follow very much the
decomposition that we had in Section 3, but we have to control the possible
colors of the poles. Another difficulty is that in the recursive decomposition we
might or might not have a blue cut-vertex in the colored network without the
root edge. However, we can handle this with the help of appropriately chosen
counting functions. The details and counting formulas can be found in the full
version of the paper [6]. We briefly comment on all the types of networks.
Colored s-networks. Let u be the cut-vertex in S that is closest to s. If at least
one of the poles s, t is blue, then S can not have a blue cut-vertex (in particular,
u is not blue). The cut-vertex u induces a colored p- or h-network with poles
s, u, and a remaining part with poles u, t, which is an arbitrary colored network
that has no blue cut-vertex.
Colored p-networks. Due to property (P1 − P2) all the colored vertices of a
colored p-network must lie in one of its parts, and the remaining networks must
consist of a single edge. If at least one of the poles is blue, the colored part has
no blue cut-vertex.
Colored h-networks. There is a unique embedding of the core of a colored
h-network H into the plane where the root edge and the core edges replaced by
colored networks lie on the outer face. To decompose H , we need to control the
number of edges on the outer face. If an edge uv on the outer face of the core is
not an edge in H , {u, v} is a 2-cut in H and determines a subnetwork S. Due
to property (P3) it is not possible that both u, v are blue. If either u or v is
blue, then {u, v} induces a colored network with no blue cut-vertex. It might be
the case that all colored vertices lie in S. Then the remaining network after the
replacement of S is 3-connected with a specified number of edges on the outer
face. The number of such graphs is counted in [5].

6 Pole-Symmetric Networks

We saw in Section 3 that in a symmetric h-network with a sense-reversing auto-
morphism ϕ a red edge uv of the core (i.e., ϕ(u) = v and ϕ(v) = u) can only be
replaced by a pole-symmetric subnetwork, that is, a subnetwork with an auto-
morphism ψ that exchanges s and t. Such networks are further decomposed in
this section.
Pole-symmetric s-networks. Here we split off the same p- or h-network at
both poles simultaneously. What remains is either again a pole-symmetric net-
work, or an edge, or a vertex.

600 M. Bodirsky, C. Gröpl, and M. Kang

Pole-symmetric p-networks. There may be several pole- symmetric s- or
h-networks between s and t, and s and t may or may not be adjacent.
Pole-symmetric h-networks. We want to control the number of pole-
symmetric h-networks with and without a sense-reversing automorphism ϕ sat-
isfying ϕ(s) = s and ϕ(t) = t. In the case where we do not have a sense-reversing
automorphism, we order the edges of the core of H in such a way that blue edges
uv where ψ(u) = u and ψ(v) = v come first, followed by the red edges uv where
ψ(u) = v and ψ(v) = u. Finally we have the uncolored edges, ordered in such a
way that corresponding uncolored edges with respect to the pole-symmetry are
consecutive – but we do not care about their order.

In the case that we have a sense-reversing automorphism ϕ, we order the edges
of the core in such a way that we start with the blue edges with respect to ϕ, and
then the blue edges with respect to ψ. Next we list the red edges with respect to
ϕ and then the red edges with respect to ψ. Finally, we list corresponding edges
with respect to ϕ consecutively, which are followed by the two corresponding
edges with respect to ψ, respectively. Similarly as in Section 3 it is now possible
to formulate recurrences for these functions, and a sampling procedure; again
we have to refer to the full version of the paper [6] for details.

7 Pole-Symmetric c-Nets with a Sense-Reversing
Automorphism

To compute the number of pole-symmetric networks with a sense-reversing auto-
morphism, we again use colored networks, but impose the additional constraint
that the colored network has a pole-exchanging automorphism. Along the lines
of Theorem 2 we have a bijection between these pole-symmetric colored networks
and pole-symmetric networks with a sense-reversing automorphism. The decom-
position of pole-symmetric colored networks is a straightforward combination of
the ideas in Section 4 and 6.

When we remove the last colored subnetwork in a pole-symmetric colored
h-network, we have an embedded 3-connected pole-symmetric network with l
edges on the outer face. The dual of such an object is an embedded 3-connected
network with a sense-reversing automorphism where the s-pole has degree l
(blue edges correspond to red edges and vice versa). It is possible to modify the
decomposition of colored networks in Section 4 to control also this parameter.

8 Conclusion

We presented a decomposition strategy for unlabeled 2-connected planar graphs
along the connectivity structure. In order to count these objects we need a unique
decomposition. Thus we used the well-known concept of a root and planar net-
works. For 3-connected networks, however, we also had to control whether there
is a sense-reversing automorphism or not, which in turn required to control
networks that have a pole-exchanging automorphism, and networks that have

Sampling Unlabeled Biconnected Planar Graphs 601

both a sense-reversing and a pole-exchanging automorphism. For this purpose we
introduced the concept of colored networks, and proved several bijections. The
decomposition together with the counting formulas can be used for a polynomial
time sampling procedure for planar networks.

Theorem 3. There is an algorithm that generates an unlabeled 2-connected pla-
nar graph with m edges uniformly at random in expected polynomial time.

Proof. The algorithm first generates a planar network N with m edges, using the
above decomposition and the values of the counting formulas that can be com-
puted efficiently using dynamic programming. Note that the representation size
of all the numbers in this paper is linear, since we deal with unlabeled structures.
We use at most six-dimensional tables (in Section 6). The summation there runs
over one parameter, and within the sum we have to perform a multiplication
with large numbers, which can be done in quadratic time. Hence, the overall
running time for the computation of the values is within O(m9).

With these values we can make the correct probabilistic decisions in a re-
cursive construction of a planar network according to the presented decompo-
sition – this method is standard and known as the recursive method for sam-
pling [19,11,14]. Then the algorithm computes the number of orbits o in the
automorphism group of the unrooted graph, which can be done in linear time,
see e.g. [17], and outputs the graph with probability 1/o. Since the number of
edges in a planar graph is linear, the expected number of restarts is also linear.
Thus the overall expected running time is in O(m9). If we do not charge for the
costs for computing the values in the table and the partial sums of the formulas,
e.g. because we performed a precomputation step, the generation can be done
in cubic time. ��

The counting formulas resulting from the ideas presented in this paper can eas-
ily be extended to graphs with a specified number of vertices. It is also easy to
adapt the enumeration and the sampling procedure for multi-graphs with par-
allel edges and/or self-loops. The recursive formulas have a form that allows to
formulate them with equations between the corresponding generating functions.
It is sometimes possible to solve these equations and obtain closed formulas or
asymptotic estimates from the solutions. However, due to the large number of
parameters needed in the decomposition, it will not be easy to handle these
equations. In the simpler case of labeled planar graphs the equations recently
lead to asymptotic expressions for the number of labeled planar graphs [16].

References

1. C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria. Random maps, coalescing
saddles, singularity analysis, and Airy phenomena. Random Structures and Algo-
rithms, 19:194–246, 2001.

2. A. Bender, Z. Gao, and N. Wormald. The number of labeled 2-connected planar
graphs. Electronic Journal of Combinatorics, 9(43), 2002.

602 M. Bodirsky, C. Gröpl, and M. Kang

3. E. A. Bender and N. Wormald. Almost all convex polyhedra are asymmetric. Can.
J. Math., 27(5):854–871, 1985.

4. M. Bodirsky, O. Giménez, M. Kang, and M. Noy. On the number of series-parallel
and outerplanar graphs. In the Proceedings of European Conference on Combina-
torics, Graph Theory, and Applications (EuroComb 2005), DMTCS Proceedings
Series Volume AE, pages 383 – 388, 2005.

5. M. Bodirsky, C. Gröpl, D. Johannsen, and M. Kang. A direct decomposition
of 3-connected planar graphs. In Proceedings of the 17th Annual International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC05),
Taormina, 2005.

6. M. Bodirsky, C. Gröpl, and M. Kang. Sampling unlabeled biconnected pla-
nar graphs. Full version, available at http://www.informatik.hu-berlin.de/

Forschung_Lehre/algorithmen/en/forschung/planar/.
7. M. Bodirsky, C. Gröpl, and M. Kang. Generating labeled planar graphs uniformly

at random. In Thirtieth International Colloquium on Automata, Languages and
Programming (ICALP’03), pages 1095–1107, 2003.

8. M. Bodirsky and M. Kang. Generating outerplanar graphs uniformly at random.
Accepted for publication in Combinatorics, Probability and Computing. Presented
at the 1st workshop on Algorithms for Listing, Counting, and Enumeration (ALICE
03), 2003.

9. N. Bonichon, C. Gavoille, and N. Hanusse. An information-theoretic upper bound
of planar graphs using triangulation. In In 20th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), 2003.

10. A. Denise, M. Vasconcellos, and D. Welsh. The random planar graph. Congressus
Numerantium, 113:61–79, 1996.

11. A. Denise and P. Zimmermann. Uniform random generation of decomposable
structures using floating-point arithmetic. Theoretical Computer Science, 218:233–
248, 1999.

12. R. Diestel. Graph Theory. Springer–Verlag, New York, 1997.
13. D. P. Eric Fusy and G. Schaeffer. Dissections and trees: applications to optimal

mesh encoding and random sampling. In Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms (SODA05), pages 690 – 699, 2005.

14. P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random gen-
eration of labelled combinatorial structures. Theoretical Computer Science, 132(1-
2):1–35, 1994.

15. S. Gerke and C. McDiarmid. On the number of edges in random planar graphs.
Comb. Prob. and Computing, 13:358–402, 2004.

16. O. Giménez and M. Noy. Asymptotic enumeration and limit laws of planar graphs.
preprint.

17. J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs. Annual ACM Symposium on Theory of Computing, pages 172–184, 1974.

18. C. McDiarmid, A. Steger, and D. Welsh. Random planar graphs. Journal of
Combinatorial Theory, Series B, 93:187–205, 2005.

19. A. Nijenhuis and H. Wilf. Combinatorial algorithms. Academic Press Inc., 1979.
20. D. Osthus, H. J. Prömel, and A. Taraz. On random planar graphs, the number of

planar graphs and their triangulations. J. Combinatorial Theory, Series B, pages
119–143, 2003.

21. G. Schaeffer. Random sampling of large planar maps and convex polyhedra. In
Proc. of the Thirty-first Annual ACM Symposium on the Theory of Computing
(STOC’99), pages 760–769, Atlanta, Georgia, May 1999.

Sampling Unlabeled Biconnected Planar Graphs 603

22. E. Steinitz. Polyeder und Raumeinteilungen. Encyclopädie der mathematischen
Wissenschaften, Band III(9), 1922.

23. B. A. Trakhtenbrot. Towards a theory of non-repeating contact schemes. Trudi
Mat. Inst. Akad. Nauk SSSR, 51:226–269, 1958. [In Russian].

24. W. T. Tutte. Graph Theory. Cambridge University Press, 1984.
25. T. Walsh. Counting labelled three-connected and homeomorphically irreducible

two-connected graphs. J. Combin. Theory, 32:1–11, 1982.
26. T. Walsh and V. A. Liskovets. Ten steps to counting planar graphs. In 18th South-

eastern International Conference on Combinatorics, Graph Theory, and Comput-
ing, Congr. Numer., volume 60, pages 269–277, 1987.

Configurations with Few Crossings
in Topological Graphs

Christian Knauer1, Étienne Schramm2,�,
Andreas Spillner3, and Alexander Wolff2,�

1 Institute of Computer Science, Freie Universität Berlin
christian.knauer@inf.fu-berlin.de

2 Fakultät für Informatik, Universität Karlsruhe, P.O. Box 6980, D-76128 Karlsruhe
i11www.ira.uka.de/algo/group

3 Institute of Computer Science, Friedrich-Schiller-Universität Jena
spillner@minet.uni-jena.de

Abstract. In this paper we study the problem of computing subgraphs
of a certain configuration in a given topological graph G such that the
number of crossings in the subgraph is minimum. The configurations
that we consider are spanning trees, s–t paths, cycles, matchings, and
κ-factors for κ ∈ {1, 2}. We show that it is NP-hard to approximate the
minimum number of crossings for these configurations within a factor
of k1−ε for any ε > 0, where k is the number of crossings in G. We
then show that the problems are fixed-parameter tractable if we use the
number of crossings in the given graph as the parameter. Finally we
present a simple but effective heuristic for spanning trees.

1 Introduction

An undirected graph G(V,E) that is embedded in the plane such that no two
edges share an unbounded number of points is called a topological graph. If all
edges are straight-line embedded, then G is called a geometric graph. A crossing
{e, e′} is a pair of edges in G such that e ∩ e′ �⊆ V . We call µee′ = |(e ∩ e′) \ V |
the multiplicity of the crossing {e, e′}. Note that µ ≡ 1 for geometric graphs.
Let X ⊆

(
E
2

)
be the set of pairs of crossings in E. Note that c edges intersecting

in a single non-endpoint give rise to
(

c
2

)
crossings. We will use n, m, and k

as shorthand for the cardinalities of V , E, and X , respectively. We define the
weighted number of crossings of G as

∑
{e,e′}∈X µee′ .

In this paper we study the problem of computing subgraphs of a certain
configuration in a given topological graph such that the weighted number of
crossings in the subgraph is minimum. The configurations that we consider are
spanning trees, s–t paths, cycles, matchings, and κ-factors, i.e. subgraphs in
which every node v ∈ V has degree κ, for κ ∈ {1, 2}. In the version of matching
that we consider the number M of desired matching edges is part of the input.
We will refer to this version as M -matching.
� Supported by grant WO 758/4-2 of the German Science Foundation (DFG).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 604–613, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Configurations with Few Crossings in Topological Graphs 605

Algorithms that find subgraphs with few crossings have applications in VLSI
design and pattern recognition [3]. For example, a set of processors (nodes) on a
chip and a number of possible wire connections (edges) between the processors
induce a topological graph G. A spanning tree in G with few crossings connects
all processors to each other and can help to find a wire layout that uses few
layers, thus reducing the chip’s cost.

There is also a connection to matching with geometric objects. Rendl and
Woeginger [7] have investigated the following problem. Given a set of 2n points
in the plane they want to decide whether there is a perfect matching (i.e. a 1-
factor) where the matched points are connected by axis-parallel line segments.
They give an O(n log n)-time algorithm for this problem and show that the
problem becomes NP-hard if the line segments are not allowed to cross.

Kratochv́ıl et al. [5] have shown that for topological graphs it is NP-hard to
decide whether they contain a crossing-free subgraph for any of the configura-
tions mentioned above. Later Jansen and Woeginger [3] have shown that for
spanning trees, 1- and 2-factors the same even holds in geometric graphs with
just two different edge lengths or with just two different edge slopes.

These results do not rule out the existence of efficient constant-factor approx-
imation algorithms. However, as we will show in Section 2, such algorithms do
not exist unless P = NP . In Section 3 we complement these findings by a simple
polynomial-time factor-(k − c) approximation for any constant integer c. This
result being far from satisfactory, we turn our attention to other possible ways
to attack the problems: in Section 4 we show that the problems under consider-
ation are fixed-parameter tractable with k being the parameter. While there are
simple algorithms that show tractability, it is not at all obvious how to improve
them. It was a special challenge to beat the 2k-term in the running time of the
simple fixed-parameter algorithm for deciding the existence of a crossing-free
spanning tree. We also give optimization algorithms.

Finally, in Section 5 we give a simple heuristic for computing spanning trees
with few crossings. Due to our findings in Section 2 our heuristic is unlikely
to have a constant approximation factor. However, it performs amazingly well,
both on random examples and on real-world instances. We use a mixed-integer
programming (MIP) formulation (see [4]) as baseline for our evaluation.

Our fixed-parameter algorithm and the MIP formulation for the 1-factor prob-
lem can both be used to solve the above-mentioned problem of Rendl and Woeg-
inger [7]. In our MIP formulation the numbers of variables and constraints de-
pends only linearly on k. This makes the MIP formulation superior to the FPT
algorithm for large values of k. Neither of our exact methods exploits the ge-
ometry of the embedded graph. Thus they also work if we are given an abstract
graph G and a set X of crossings, and we view a crossing simply as a set of two
edges not supposed to be in the solution at the same time.

In the whole paper we assume that the set of crossings X in the input graph
has already been computed. Depending on the type of curves representing the
graph edges this can be done using standard algorithms [2]. Whenever we want
to stress that X is given, we use the notation G(V,E,X).

606 C. Knauer et al.

2 Hardness of Approximation

For each of the configurations mentioned in the introduction we now show that
it is hard to approximate the problem of finding subgraphs of that configura-
tion with the minimum number of crossings in a given geometric graph G. The
reductions are simple and most of them follow the same idea.

We begin with the problem of finding a spanning tree with as few crossings
as possible. We already know [3] that the problem of deciding whether or not G
has a crossing-free spanning tree is NP-hard. Our reduction employs this result
directly. Given a graph G with k crossings and a positive integer d, we build a
new graph G′ by arranging kd copies of G along a horizontal line and by then
connecting consecutive copies by a single edge as in Figure 1. The new graph
G′ has kd+1 crossings. Now if G has a crossing-free spanning tree then G′ has a
crossing-free spanning tree. Otherwise every spanning tree in G′ has at least kd

crossings. Let φ(G) be 1 plus the minimum number of crossings in a spanning
tree of G. Since we can choose d arbitrarily large we have the following theorem.
All theorems in this section hold for any ε ∈ (0, 1].

Theorem 1. It is NP-hard to approximate φ(G) within a factor of k1−ε.

We also consider a kind of dual optimization problem: Find a crossing-free
spanning forest in G with as few trees as possible. Let φ′(G) denote the minimum
number of trees in a spanning forest of G. Since there is a spanning forest with
one tree if and only if there is a crossing-free spanning tree in G, we immediately
have the following theorem.

Theorem 2. It is NP-hard to approximate φ′(G) within a factor of k1−ε.

Next let us briefly consider the problems of finding M -matchings, 1- and 2-
factors in G with as few crossings as possible. Again we already know that the
related decision problems are NP-hard [3]. Let η(G) denote 1 plus the minimum
number of crossings in a subgraph of G of the desired configuration. Arguing
along the same lines as for spanning trees we obtain the following theorem. Note
that in this reduction we do not connect the copies of G in G′.

Theorem 3. It is NP-hard to approximate η(G) within a factor of k1−ε.

Now we turn to the problem of finding a path between two given vertices s and
t (an s–t path for short) with as few crossings as possible. We can show that the
problem of deciding whether or not a given geometric graph has a crossing-free
s–t path is NP-hard by a simple adaption of the reduction from planar 3SAT
presented in [5] for topological graphs. Figure 2 reproduces Figure 7 from [5].
Every clause is represented by a triple of edges between two vertices. Each edge
in such a triple represents a variable occurring in the corresponding clause. It is
shown in [5] that it is possible to draw the edges in such a way that occurrences
of variables that cannot be set true simultaneously correspond to edges that
intersect. Thus there is a satisfying truth assignment if and only if there is a
crossing-free s–t path in the constructed graph. It is not hard to see that we can

Configurations with Few Crossings in Topological Graphs 607

G G G G...

Fig. 1. Graph G′: kd copies of G

c1 c2
s ... cl

t
c3

Fig. 2. The basis of the reduction in [5]

substitute a sequence of straight line segments for the drawing of every edge in
the topological graph.

Now we apply the same trick as in the case of spanning trees to turn the
NP-hardness of the decision problem into a hardness-of-approximation result.
This is indicated in Figure 3. If there is a crossing-free s–t path in G then there
is a crossing-free s1–tkd path in G′. If there is at least one crossing in every s–t
path in G then there are at least kd crossings in every s1–tkd path in G′. Let
γ(G) denote 1 plus the minimum number of crossings in a s–t path in G. Then
we have the following theorem.

Theorem 4. It is NP-hard to approximate γ(G) within a factor of k1−ε.

In [5] it is shown that it is even possible to draw the edges of the graph
in Figure 2 in such a way that in addition to the crossings which ensure the
consistency of the chosen truth setting we can make the edges in every clause
pairwise intersecting. Thus we can choose at most one edge in every clause gadget
and the constructed graph does not contain a crossing-free cycle. Now we connect
vertices s and t by an extra sequence of edges as indicated in Figure 4 and easily
obtain the following corollary.

Corollary 1. It is NP-hard to decide whether or not a geometric graph contains
a crossing-free cycle.

Unfortunately it seems impossible to apply the same trick again to obtain the
hardness of approximation, since there may be cycles that do not pass through
vertices s and t and that have only few crossings. Thus we have to punish the
usage of a crossing in forming a cycle in the graph. To achieve this goal for
every crossing in the constructed graph we make the sequences of straight line
edges cross many times. This is indicated in Figure 5. By choosing the number
of bends large enough we obtain the following theorem where ζ(G) denotes 1
plus the minimum number of crossings in a cycle in G.

Theorem 5. It is NP-hard to approximate ζ(G) within a factor of k1−ε.

3 Approximation Algorithms

After this long list of negative results on approximability let us now give a pos-
itive remark. Trivially, any spanning tree in a geometric graph with k crossings
(k + 1)-approximates φ(G). However, with just a little more effort we can com-
pute a factor-k approximation by checking whether all edges in

⋃
X are cut

edges. If yes, then every spanning tree of G has k crossings (and hence is opti-
mal). Otherwise we can compute a spanning tree that avoids one of the non-cut

608 C. Knauer et al.

G G G Gs1
t1
s2

t2
s3

t3...skd

tkd

Fig. 3. The graph G′

c1 c2
s

c3
...

cl
t

Fig. 4. Adding edges between s and t

a

b

c

d

a

b

c

d

Fig. 5. Punishing the usage of crossings

edges, which yields a factor-k approximation. Along the same lines we obtain
factor-(k − c) approximations for every constant c > 0 in polynomial time.

Theorem 6. For every constant integer c ∈ (0, k) there is a polynomial-time
factor-(k − c) approximation for φ(G).

4 Fixed-Parameter Algorithms

In this section we present fixed-parameter algorithms using the total number k of
crossings as the parameter. The intuition behind the concept of fixed-parameter
algorithms [1] is to find a quantity associated with the input such that the
problem can be solved efficiently if this quantity is small. The number k suggests
itself naturally since on the one hand the problems under consideration become
trivial if k = 0 and on the other hand the reductions in Section 2 employ graphs
with many crossings.

4.1 A Simple General Approach

We assume that the input graph G has a subgraph of the desired configuration
and we only try to find one with the minimum weighted number of crossings.
For example, when looking for spanning trees we assume that the input graph
is connected. We set EX =

⋃
X . Thus EX contains exactly those edges that

participate in a crossing. Note that |EX | ≤ 2k. Now we can proceed as follows:

1. Form the crossing-free graph G′ by removing all edges in EX from G.
2. For all crossing-free subsets H ⊆ EX check whether the graph G′ ∪H has a

subgraph of the desired configuration.

The graph G′ can be constructed in O(m) time. Let checkC(n,m) be the time
needed for checking whether G′ ∪ H has a subgraph of configuration C. Since
checkC(n,m) = poly(n,m) for all the configurations we consider, the two-step
procedure shows that the corresponding decision problems can be solved in
O(m+checkC(n,m) 4k) time and thus are all fixed-parameter tractable. However,
it is easy to do better.

Configurations with Few Crossings in Topological Graphs 609

Observation 1. To check the existence of a crossing-free configuration in G
it suffices to go through all maximal (w.r.t. the subgraph relation) crossing-free
subgraphs of G and check whether one of them has a subgraph of the desired
configuration.

By induction on k we get that EX has at most 2k maximal crossing-free
subsets H . We perform step 2 only on these.

Theorem 7. Given a topological graph G(V,E,X) and a configuration C, we
can decide in O(m+checkC(n,m) 2k) time whether G has a crossing-free subgraph
of configuration C.

If the desired configuration C is an M -matching we have checkC(n,m) ∈
O(

√
nm) [6, 9]. Note that 1-factors are only a special kind of M -matching.

For 2-factors we can employ the graph transformation of Tutte [8] and obtain
checkC(n,m) ∈ O(n4).

Observe that in step 2 the only interesting connected components of G′ are
those that contain an endpoint of an edge from EX . However, there are at most
4k such connected components. For the configurations spanning tree, s–t path
and cycle this observation yields a reduction to a problem kernel [1], i.e. to a
problem whose size depends only on the parameter k, but not on the size of the
input. Now it is clear that for these configurations generating and checking a
subset H can be done in O(k) time.

Corollary 2. Given a topological graph G(V,E,X), we can decide in O(m +
k2k) time whether G has a crossing-free spanning tree, s–t path or cycle.

Finally we want to present a simple approach to deal with the correspond-
ing optimization problems, i.e. the problem of finding a desired configuration
with minimum weighted number of crossings. For every subset X ′ of the set of
crossings X we do the following.

1. Compute the graph G′′ = G′ ∪
⋃
X ′.

2. Compute the subset of crossings X ′′ from X that do not share an edge with
any crossing in X ′.

3. Decide whether there is a crossing-free subset H of
⋃
X ′′ such that G′′ ∪H

contains a desired configuration.

We filter out those subsets of crossings X ′ for which we get a positive answer
in step 3. Among the filtered out subsets we can easily keep track of the one
which yields a minimum weighted number of crossings. Suppose in step 3 we use
a decision algorithm running in O(checkC(n,m)βk) time.

Theorem 8. Given a topological graph G(V,E,X), we can compute in O(m +∑k
j=0

(
k
j

)
checkC(n,m)βk−j) = O(m + checkC(n,m)(1 + β)k) time a subgraph of

configuration C in G with minimum weighted number of crossings.

610 C. Knauer et al.

4.2 Spanning Trees

In this section we want to improve the 2k-term in the running time of the simple
decision algorithm. It will turn out that we barely achieve this goal. We will
get the exponential term in the running time down to 1.9999996k. While this
improvement seems marginal, the fact that we managed to beat the trivial al-
gorithm is of theoretical interest. Moreover, we think that our methods can be
applied in a wider scenario. A similar approach for s–t paths and cycles yields
1.733k, see the long version of this article [4].

Imagine the process of selecting the edges for set H as a search tree. Branch-
ings in the tree correspond to possible choices during the selection process. By
selecting edges in EX to be in H or not to be in H we reduce the number of
crossings from which we can still select edges. The leaves of the search tree cor-
respond to particular choices of H . Let T (k) denote the maximum number of
leaves in the search tree for input graphs with k crossings. Note that T (k) also
bounds the number of interior nodes of the search tree.

First we will see that it is rather easy to speed up the algorithm as long as
the crossings in G are not pairwise disjoint. Let e be an edge such that exactly
z crossings c1 = {e, f1}, . . . , cz = {e, fz} in X share edge e and 2 ≤ z ≤ k. If we
select edge e to be in H then none of the edges f1, . . . , fz can be in H . If we select
edge e not to be in H then we can select edges f1, . . . , fz as if crossings c1, . . . , cz
would not exist. Thus for both choices there are only k − z crossings left from
which we still can select edges. This leads to the recurrence T (k) ≤ 2T (k − z)
which solves to T (k) ∈ O(2k/z).

It remains to consider the case that the crossings in X are pairwise disjoint.
Up to now we concentrated on the set EX . It was only after selecting an edge
e to be in H that we took a look at the connected components of G′ that are
possibly connected by e. Now we also take the connected components of G′

into consideration to guide the selection process. Observe that any connected
component C (in order to make G′ connected) must be connected by at least
one edge from EX to the rest of G′. This puts some restriction on which crossing-
free subsets of the edges in EX with an endpoint in C need to be checked. After
introducing some notation, Lemma 1 will make this more precise.

We can assume that for every crossing c ∈ X none of the two edges in c
connects vertices in the same connected component of G′, since such an edge
cannot help to make G′ connected and thus need not be selected to be in H .

We define the degree of a connected component of G′ as the number of edges
in EX with one endpoint in this component. Now consider some connected com-
ponent C of G′. Let d denote the degree of C and E(C) the set of edges in EX

incident to a vertex of C. Let X(C) denote the set of crossings contained in
E(C). We set x = |X(C)|, R =

⋃
X(C) and S = E(C) \ R. Then S contains

the d− 2x edges in E(C) that do not cross any other edge in E(C). To connect
C with the rest of G′ we select subsets T of E(C) such that T contains exactly
one edge from each crossing in X(C) and a subset of the edges in S.

Lemma 1. It suffices to check 2d−x − 1 subsets of E(C).

Configurations with Few Crossings in Topological Graphs 611

For the proof of Lemma 1 refer to [4]. The result leads to the recurrence
T (k) ≤ (2d−x − 1)T (k − (d − x)) which solves to T (k) ∈ O((2d−x − 1)k/(d−x)).
Of course, this solution is of little use if we cannot guarantee the existence of
a component C with appropriately bounded degree d. It turns out that we can
do that if there is a constant α (0 < α < 1) such that G′ has more than αk
connected components: Let δ denote the minimum degree of a component of G′.
Then we have 4k ≥ 2|EX | > δαk and hence 4/α > δ. It is desirable to choose
α as large as possible. We will use α = 0.211 for reasons that will become clear
soon. Then we can guarantee the existence of a component with degree at most
18 and obtain T (k) ∈ O(βk

18), where βi = i
√

2i − 1 < 2. For each of the at most
T (k) nodes and leaves of the search tree, we need O(k) time.

It remains to treat the case that the crossings are pairwise disjoint and G′

has at most αk connected components. Set l = �αk�. Observe that we can make
G′ connected without crossing edges iff there are l crossings in X such that G′

becomes connected by using one edge from each of these l crossings. Thus we
simply check every subset of l crossings from X , which can be done in O(

(
k
l

)
2lk)

time. Using α = 0.211, this is in O(k1.985k).

Theorem 9. Given a topological graph G(V,E,X), we can decide in O(m +
kβk

18) time whether G has a crossing-free spanning tree (β18 < 1.9999996).

If we are willing to resort to a randomized algorithm we can improve the result
of Theorem 9. We are looking for a new way to treat the case that the crossings
are pairwise disjoint and G′ has at most αk connected components. Observe
that if G has a connected crossing-free spanning subgraph at all, then there are
at least 2(1−α)k maximal crossing-free subsets H ⊆ EX such that G′ ∪ H is
connected. This can be seen as follows: Suppose there is a crossing-free subset
F ⊆ EX that makes G′ connected. Then we can choose such an F with |F | < αk.
Let XF = {c ∈ X | c ∩ F = ∅}. Since the elements of X are pairwise disjoint we
have |XF | > (1 − α)k. If we select one edge from each crossing in XF and add
these edges to F the resulting set of edges is still crossing-free. There are at least
2(1−α)k possible ways to select edges. Thus there are at least 2(1−α)k maximal
crossing-free subsets H ⊆ EX such that G′ ∪H is connected.

This suggests the following randomized algorithm: From each element of X
we randomly select one edge and check if the resulting crossing-free graph is
connected. If the given geometric graphG has a crossing-free connected spanning
subgraph, the probability of success is at least 2(1−α)k/2k = 2−αk. Thus O(2αk)
iterations suffice to guarantee a probability of success greater than 1/2. The
running time is in O(k2αk). Setting α = 4/5 yields the following theorem.

Theorem 10. There is a Monte Carlo algorithm with one sided error, proba-
bility of success greater than 1/2 and running time in O(m + kβk

4) which tests
whether a given topological graph has a crossing-free spanning tree (β4 < 1.968).

For the dual optimization problem of finding a spanning forest of G consisting
of as few trees as possible we can proceed similarly as in the algorithm for the
decision problem above. Thus we can solve the dual optimization problem in
O(m+ kβk

18) time.

612 C. Knauer et al.

5 Heuristic

Due to our inapproximability results in Section 2, we cannot hope to find a
constant-factor approximation for the number of crossings in any of the config-
urations we consider. Instead, we now describe a simple heuristic for computing
spanning trees with few crossings in geometric graphs. Our heuristic uses a set
of rules that simplify the input graph without changing the number of crossings
of an optimal spanning tree. Initially all edges are active. During the process,
edges can be deleted or selected. The solution will consist of the edges that are
selected during the process. The heuristic applies the rules to the input graph
until no more rule can be applied. Then a heuristic decision is taken. We decided
to delete the edge e that maximizes A(e) + 3S(e), where A(e) and S(e) are the
numbers of active and selected edges that e crosses, respectively.

We now specify the rules. They are only applied to active edges. Connected
components refer to the graph induced by all nodes and the selected edges.

1. If an edge has no crossings with other edges, it is selected.
2. If an edge is a cut edge, it is selected.
3. If both endpoints of an edge belong to the same connected component, then

this edge is deleted.
4. If two edges e1 and e2 connect the same connected components, and if every

edge crossed by e1 is also crossed by e2, then e2 is deleted.

Our heuristic always finds a spanning tree since rule 2 makes sure that no cut
edge is deleted. A brute-force implementation runs in O(nm3) time.

We have implemented the heuristic (except for rule 4) in C++ using the
LEDA graph library. It can be tested via a Java applet at http://i11www.ira.
uka.de/few_crossings. To compute optimal solutions at least for small graphs,
we also implemented the MIP formulation described in [4]. We used the MIP
solver Xpress-Optimizer (2004) by Dash Optimization with the C++ interface of
the BCL library. Both heuristic and MIP were run on an AMD Athlon machine
with 2.6 GHz and 512 MB RAM under Linux-2.4.20.

We generated random graphs with 20 nodes and 24, 26, . . . , 80 edges as follows.
Edges were drawn randomly until the desired graph size was obtained. The
edge set was discarded if it was not connected. Vertex coordinates were chosen
uniformly from the unit square. To these graphs we applied our heuristic and the
MIP solver. Figure 6 shows spanning trees of a random graph with 16 vertices
and 26 edges. Figure 7 shows the average number of crossings of the spanning
trees found by the heuristic and the MIP solver, as well as the number of crossings
in the input graph. For each data point, we generated 30 graphs. The average
was taken only over those which were solved by the MIP solver within three
hours (at least 27 of the 30 graphs per data point).

As real-world data we used three graphs whose vertices correspond to airports
and whose edges correspond to direct flight connections in either direction. The
flight-connection graphs had each very few high-degree nodes and many leaves.
We used the Mercator projection for planarization and then embedded the edges
straight-line. The results are given in Table 1.

Configurations with Few Crossings in Topological Graphs 613

Table 1. Number of crossings of spanning trees in airline graphs

Data set Heuristic MIP
nodes edges crossings crossings time [sec.] crossings time [sec.]

Lufthansa Europe 68 283 1760 66 0.2 66 304.1
Air Canada 77 276 1020 83 0.1 83 379.7
Lufthansa World 163 696 8684 128 1.8 121 59.4

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

Heuristic: 5 crossings

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

MIP: 4 crossings

Fig. 6. Solutions for a 16-node random graph

 0

 10

 20

 40 60 80
 0

 200

 400

 600

cr

os
si

ng
s

in
 s

pa
nn

in
g

tr
ee

cr

os
in

gs
 in

 in
pu

t g
ra

ph

edges

heuristic
optimal solution

input graph

Fig. 7. Performance of heuristic and
MIP on 20-node random graphs

Given our inapproximability results in Section 2 we were surprised to see how
well our simple heuristic performs: in 77 % of the random graphs and in two
of the three real-world instances the heuristic performed optimally. For random
graphs it used at most five edge crossings above optimal.

Acknowledgments. We thank Jiong Guo, Georg Kliewer, and Markus Völker.

References

1. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
2. D. Halperin. Arrangements. In Handbook of Discrete and Computational Geometry,

chapter 24, pages 529–562. CRC Press, 2004.
3. K. Jansen and G. J. Woeginger. The complexity of detecting crossingfree configu-

rations in the plane. BIT, 33:580–595, 1993.
4. C. Knauer, É. Schramm, A. Spillner, and A. Wolff. Configurations with few crossings

in topological graphs. Techical Report 2005-24, Universität Karlsruhe, Sept. 2005.
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=/ira/2005/24.

5. J. Kratochv́ıl, A. Lubiw, and J. Nešetřil. Noncrossing subgraphs in topological
layouts. SIAM J. Disc. Math., 4(2):223–244, 1991.

6. S. Micali and V. V. Vazirani. An O(|V ||E|) algorithm for finding maximum match-
ing in general graphs. In Proc. IEEE Symp. Found. Comp. Sci., pp. 17–27, 1980.

7. F. Rendl and G. Woeginger. Reconstructing sets of orthogonal line segments in the
plane. Discrete Mathematics, 119:167–174, 1993.

8. W. T. Tutte. A short proof of the factor theorem for finite graphs. Canad. J. Math.,
6:347–352, 1954.

9. V. V. Vazirani. A theory of alternating paths and blossoms for proving correctness of
the O(|V |1/2|E|) general graph matching algorithm. Combinatorica, 14:71–91, 1994.

On Bounded Load Routings for Modeling
k-Regular Connection Topologies

Adrian Kosowski1, Micha�l Ma�lafiejski1,�, and Pawe�l Żyliński2,��

1 Gdańsk University of Technology, Dept. of Algorithms and System Modeling
2 University of Gdańsk, Institute of Mathematics

{kosowski, mima, buba}@sphere.pl

Abstract. The paper deals with the problem of modeling a k-regular
topology over an existing network architecture by establishing virtual
point-to-point communication paths, referred to as k-routing. We con-
sider the question of the existence and minimisation of edge spread of
k-routings with bounded edge load in undirected networks. Efficient al-
gorithms are presented for determining minimal k-routings with edge
load 1 and for certain cases with edge load 2. On the negative side, the
problems of finding a 6-routing with load 2 and of minimising a 2-routing
with load 2 are proven to be NP -hard (though the latter is approximable
within 7/6). The results imply the NP -hardness of the well known all-
to-all routing problem for bounded edge load.

1 Introduction

Numerous problems related to communication in distributed systems may be
discussed in terms of routing in computer networks. The topology of the network
is modeled in the form of a graph whose vertices correspond to nodes, while edges
— to direct physical connections between nodes.

In the static routing model [3,9,11,13] which is the main topic of interest of
this paper, it is assumed that all pairs of vertices forming the routed instance
are initially known and all paths are determined by the routing algorithm at the
same time. Static routing may be considered as a special case of the problem
of embedding a virtual network topology in an existing physical network. Such
virtual connections are often established for a significant timespan.

The load of the network, and consequently the efficiency of communication,
is influenced by the choice of paths in the routing, and sometimes also other
parameters of the considered paths. The most commonly used criterion for the
assessment of the quality of a routing is the so called edge load, i.e. the maximum
number of paths of the routing containing the same edge. We also give some
attention to criteria applied in optical networks with wave division multiplexing
(WDM), where each fibre-optic link forms a number of optical channels used for
simultaneous communication.

� Supported by the TASK grant.
�� Supported by the KBN Grant No. 4 T11C 047 25.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 614–623, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Bounded Load Routings for Modeling k-Regular Connection Topologies 615

Throughout the rest of the paper we consider a special case of virtual network
topology design in which the routed instance is not fixed, but may be chosen as
any k-regular instance on the set of all nodes (i.e. each node has to be connected
by paths to exactly k other nodes). The routing obtained for such an instance
is required to be legitimate with respect to the stated criteria.

Problem Definition and Motivation. The physical architecture of the net-
work is given in the form of an undirected graph G = (V,E), where V denotes
the set of nodes, while E represents the set of connections between them (we
denote: n = |V |,m = |E|). A sequence of edges P = (e1, e2, . . . , el) ∈ El, such
that ei = {vi, vi+1} for some two vertices vi ∈ V, vi+1 ∈ V , is called a path of
length l = |P | in G, with endpoints v1 and vl+1. The symbol P{u,v} is used to
denote any path in G with endpoints u ∈ V, v ∈ V . A pair of paths P1 and P2 is
called conflicting if there exists an edge e ∈ E such that e ∈ P1 and e ∈ P2.

A virtual network topology for network G is defined as a multigraph H =
(V, I), with the same set of vertices V as G, and a multiset of edges I such that
each edge of I represents a single required virtual connection between a pair of
nodes. In further considerations H will usually be assumed to be a simple graph.
A routing R of instance H in network G is any set of paths of the following
form: R = {P{u,v} : {u, v} ∈ I}. For use in further considerations, we define the
following parameters for any routing R:

– edge load π(R), given by the formula: π(R) = maxe∈E |{P ∈ R : e ∈ P}|,
– dilation d(R), defined as the length of the longest path in routing R: d(R)=

maxP∈R |P |,
– edge spread m(R), defined as the total number of edges of G used in R:

m(R) = |{e ∈ E : ∃P∈R e ∈ P}|,
– number of wavelengths w(R) used in the optimal wavelength assignment for

routing R in WDM network G (w(R) is the chromatic number of graph
(R,C(R)), where C(R) denotes the set of pairs of conflicting paths in R [6]).

Using the introduced terminology, the simplest version of the considered k-
routing problem with bounded edge load may be posed as follows.

The l-loaded k-routing problem [l-loaded k-routing]

Input: A connected graph G representing a network topology.
Problem: Find an instance H for G such that H is a k-regular simple graph,

and a routing R of instance H for which π(R) ≤ l, or decide that such an
instance does not exist.

The above problem models the process of establishing a communication scheme
among nodes in which every node communicates with exactly k other nodes, with
bounded communication load on links. In distributed computing, the problem
is practically feasible for nodes considered indistinguishable from the point of
view of computation. It is worth noting some special cases of extremal values
of k. The case when k = 1 corresponds to computation by nodes coupled in

616 A. Kosowski, M. Ma�lafiejski, and P. Żyliński

pairs, when k = 2 — computations in cycles, k = 3 — computations in 3-
regular structures, etc. Other values of k may also be applied in practice, either
to increase computation speed, or more typically for increased system reliability
and fault detection. Notice that by allowing the value of parameter k to be
directly related to the number of vertices n of G, we may consider the intensively
studied problem of establishing links between all pairs of nodes (so called all-to-
all routing, or routing of the gossiping instance) in terms of k-routing, or more
precisely — as (n− 1)-routing.

When considering solutions to the l-loaded k-routing problem for some
graph G we adopt a natural additional optimisation criterium in the form of
minimisation of the edge spread of the sought routing. Minimising edge spread
decreases the total load of the system resources and operation cost, whilst guar-
anteeing that the mean path length in the routing is not excessively long.

The Minimum l-loaded k-routing Problem [Min l-loaded k-routing]

Input: A connected graph G representing a network topology.
Problem: Find a solution R to the l-loaded k-routing problem for G such

that the value of edge spread m(R) is the minimum possible.

Previous results. The problems of routing with bounded edge load π and with
a bounded number of wavelengths w have been studied in a variety of contexts
[5,6,9,13]. In the case when both the graph G and the instance H are explicitly
given at input, both routing problems are known to be NP-hard [3].

Intensive research has been carried out into the problem of routing the all-
to-all instance ((n − 1)-routing). In the general case, the problem of finding an
all-to-all routing minimising π is known to be approximable within an O(log n)-
factor [4]. Exact minimum values of π and w can be found in polynomial time
for certain special classes of networks G, such as trees of rings [2], complete
2D-grids, tori and hypercubes [5]. In the general case, both the complexity of
minimising π and of w remained open (a problem posed in e.g. [3,4,6,7] and many
other).

Our contribution and outline of the paper. In Subsection 3.1 we provide an
efficient O(m3 logm) algorithm for solving the 1-loaded k-routing problem in
any network G. For k = 1, the 1-loaded 1-routing problem can be solved in
linear time. In Subsection 3.2 we use the results from Subsection 3.1 to formulate
strong sufficient conditions for the existence of a 2-loaded k-routing. We prove
that the 2-loaded k-routing problem can be solved in O(mn) time if the
minimum degree δ(G) ≥ k. However, if δ(G) < k, a 2-loaded k-routing need not
always exist, and we state that the problem of determining its existence is NP-
complete for any constant k ≥ 6. We use this result to prove that determining
the existence of 2-loaded all-to-all routing in a general network is NP-complete.
In Section 4 we discuss the Min l-loaded k-routing problem, showing it to
be easy if the edge load bound is l = 1, and hard for l = 2. We additionally
give a 7/6 approximation algorithm for the NP -hard problem of Min 2-loaded

On Bounded Load Routings for Modeling k-Regular Connection Topologies 617

2-routing. Finally, in Section 5 we briefly summarise our results in the form of
tables and consider their implications for routing in WDM networks.

2 Simple Properties of k-Routings

The existence of a k-routing with bounded load in a graph G has to be regarded
as a feature of the topology of G itself, and not of the potentially routed traffic.
Necessary conditions may be formulated by analysing specific subgraphs of G.

Odd and even factors of a graph. Let Fv be a set of nonnegative integers
defined for each vertex v. An F -factor in G is a set of edges such that the
number of edges of this set incident to vertex v belongs to Fv. A k-odd (k-even,
respectively to the parity of k) factor is defined as an F -factor such that each set
Fv consists of all odd (even) numbers from the range [k,deg(v)], where deg(v)
is the degree of vertex v in graph G (i.e. the number of edges incident to v).

Using results of Tutte [14] and Gabow [10], the problem of determining a k-
odd (k-even) factor with the minimum number of edges may be solved efficiently
by reduction to a minimum weighted perfect matching problem.

Proposition 1. The problem of finding a k-odd (k-even) factor in graph G with
the minimum possible number of edges can be solved in O(m3 logm) time.

Necessary conditions for the existence of a k-routing. Let us consider
a connected graph G and any k-routing R in G. Observe that R can always
be correctly defined provided there exists a k-regular instance H spanning the
vertex set of G. We thus have the following necessary and sufficient condition
for the existence of a k-routing in G.

Proposition 2. For any connected graph G of n vertices there exists a k-routing
in G if and only if there exists a k-regular graph of n vertices (i.e. n > k and
n · k is even).

Next, consider a k-routing R with load equal to 1. Let G′ denote the graph
induced by all the edges from routing R. Each vertex v is adjacent to k edges of
G′ (corresponding to paths ending at v) and an even number of other edges of
G′ (paths crossing v). Consequently we have the following necessary condition.

Proposition 3. If there exists a solution to the 1-loaded k-routing problem in
G then G has a k-odd (k-even) factor.

The converse of Proposition 3 is also true; this fact is proven as Theorem 2.

3 The l-Loaded k-Routing Problem

The l-loaded k-routing problem constitutes the main topic of interest of this
paper. Polynomial time algorithms are discussed in Subsections 3.1 and 3.2,
while completeness results are given in Subsection 3.3.

618 A. Kosowski, M. Ma�lafiejski, and P. Żyliński

3.1 Polynomial-Time Algorithms for 1-Loaded k-Routing

An O(m + n) algorithm for 1-loaded 1-routing

Lemma 1. For any tree T with an even number of vertices there exists a so-
lution R to the 1-loaded 1-routing which can be determined in linear time,
and additionally d(R) ≤ 2.

Proof. Consider a tree T of order n with an arbitrarily chosen root vertex r. By
performing bottom-up search in T we can arrange the vertices of T in a sequence
S according to non-increasing distance from r. Let v be the first non-leaf vertex
of S. All the children of v are obviously leaves. Depending on the number of
children of v, which is obviously positive, we add paths to form the 1-routing R
as follows: if v has an even number of children we connect them in pairs by paths
of length 2; in the opposite case we pair all children of v except one using paths
of length 2 and connect the remaining child to v by a path of length 1. After
adding the appropriate paths to R, all used edges and vertices are removed from
T and the process continues for the next vertices from sequence S. It is easy to
verify that the constructed routing R fulfills the assumptions of the lemma. �

By finding a spanning tree of connected graph G in time O(m + n), and
applying the algorithm stated in Lemma 1 we can construct a 1-loaded k-routing
in G with dilation at most 2.

Theorem 1. For any graph G the 1-loaded 1-routing problem can be solved
in O(n+m) time, additionally preserving the condition d(R) ≤ 2.

An O(m3 log m) algorithm for 1-loaded k-routing
We will now prove that finding a k-routing with load 1 in graph G is equivalent
to finding a k-odd (k-even) factor in graph G.

Theorem 2. For any graph G the 1-loaded k-routing problem can be solved
in O(m3 logm) time, additionally preserving the condition d(R) ≤ 2. The prob-
lem has a solution if and only if graph G has a k-odd (k-even) factor.

Proof. Without loss of generality let us assume that k is odd. If G does not
admit a k-odd factor then by Proposition 3 the 1-loaded k-routing problem
has no solution for G. Otherwise, let M denote any edge-minimal k-odd factor
in G; by Proposition 1 M can be determined in O(m3 logm) time.

The sought 1-loaded k-routing R with d(R) ≤ 2 will be constructed by iter-
ative inclusion of paths. For any vertex v ∈ V we call an edge e, adjacent to v
in M , inaccessible if v is the center of a path of length 2 belonging to R and
containing e; all other edges of M adjacent to v are called accessible. The number
of inaccessible and accessible edges for vertex v is denoted deg+(v) and deg−(v)
respectively. Before the start of the construction of R for every vertex v we have
deg+(v) = degM (v) ≥ k and the value deg−(v) is always even. Routing R may
easily be determined by stating for each vertex which pairs of inaccessible edges
form paths in R.

On Bounded Load Routings for Modeling k-Regular Connection Topologies 619

The construction of R relies upon the iterated choice of edges e1 = {v, u1},
e2 = {v, u2} (e1, e2 ∈ M) in such a way as to fulfill the following assumptions:

1. Edges e1 and e2 are accessible for both their end-vertices.
2. For vertices v, u1, u2 we have deg+(v) ≥ k+2 and deg+(u1) = deg+(u2) = k
3. No path of the form P{u1,u2} belongs to R.

The path P = (e1, e2) is then added to R, the accessible sets for vertices are up-
dated, and the process is repeated. The construction of R is considered complete
when for each vertex v we have deg+(v) = k. Finally, by adding all edges of M
not belonging to any path of R as 1-edge paths to the routing R, we obtain a
correct 1-loaded k-routing with dilation bounded by 2.

It remains to be shown that the presented construction of routing R can
always be performed. By the minimality of factor M we obtain that at every
stage of the construction of routing R, the subgraph F of graph M induced
by the set of vertices U = {v ∈ V : deg+(v) > k} has to be a forest, since
otherwise F would have to contain a cycle whose removal from M would lead
to a smaller k-odd factor in G, a contradiction. Let T be any tree belonging to
forest F and let v be an arbitrary leaf of T . Since v ∈ U we have deg+(v) > k
and consequently deg+(v) ≥ k + 2. Because degF (v) ≤ 1, the set of vertices N
adjacent to v along an edge accessible for v and belonging to V \ U consists of
at least k+ 1 vertices. Let u1 ∈ N be arbitrarily chosen. We have deg+(u1) = k
and the edge {u1, v} is accessible for both its ends; hence from the bound on
cardinality of set N , |N | ≥ k + 1, we immediately obtain that there must exist
a vertex u2 ∈ N , u2 �= u1 such that P{u1,u2} does not belong to R. It is easy to
show that the path P = ({u1, v}, {u2, v}) fulfills assumptions 1, 2 and 3 of the
considered construction and may be added to routing R, which completes the
proof. �

3.2 Polynomial-Time Algorithms for 2-Loaded k-Routing
An O(m + n) algorithm for 2-loaded 2-routing
Let us recall that a spider is a tree of at least 3 vertices with one distinguished
vertex known as the center or corpus of the spider, such that all other vertices
are of degree not more than 2 and at a distance of at most 2 from the center.

Corollary 1. For every spider, there exists a 2-loaded 2-routing with dilation
at most 3.

It is easy to see that for any given graph G, by treating a spanning tree T of G
as rooted at an arbitrary vertex and traversing it in the bottom-up manner, tree
T can be disconnected into a family of spiders. Thus graph G has a spanning
forest with each connected component in the form of a spider and by Corollary 1
we obtain the following theorem.

Theorem 3. Given a connected graph G of order at least 3 there exists an
O(m + n)-time algorithm for finding a 2-loaded 2-routing R in G, additionally
fulfilling the condition d(R) ≤ 3.

620 A. Kosowski, M. Ma�lafiejski, and P. Żyliński

An O(mn) algorithm for 2-loaded k-routing when δ(G) ≥ k
The class of graphs with δ(G) ≥ k is the widest known class which admits a 2-
loaded k-routing (provided any k-routing at all exists in the considered graph).

Theorem 4. Let G be a graph with minimum degree δ(G) ≥ k. Then there
exists an O(nm)-time algorithm for the 2-loaded k-routing problem in G,
and such a routing always exists provided n > k and n · k is even.

Proof (sketch). Let us consider a minimal (not necessarily minimum) subgraph
H ⊆ G such that δ(H) ≥ k. Naturally, the set of vertices U = {v ∈ V :
degH(v) > k} forms an independent set in V . Using a technique similar to that
applied in the proof of Theorem 2, it is possible to find a routing RH in H such
that all vertices from V \U are connected by exactly one path to each of k other
vertices, whereas all vertices from U are connected by exactly one path to each
of either k − 1, or k other vertices from V \ U ; moreover, the load of routing
RH is 1. It now suffices to find a routing RU with load 1 in G which connects
vertices connected by k − 1 paths in RH into pairs. Such a routing may always
be found by an easy modification of Theorem 1. The sought 2-loaded k-routing
R may be given as the sum of the sets of paths RH ∪RU . �

3.3 Hardness Results for 2-Loaded k-Routing and Related
Problems

In the general case, for some values of k the complexity status of 2-loaded
k-routing remains open for graphs with δ(G) < k, even when k = 3, 4 or 5.
However we give a partial answer to the considered question, showing that the
2-loaded 6-routing problem is NP -hard in 4-regular graphs.

Hardness of 2-loaded 6-routing and its implications
The proof of the NP -hardness of the problem of 2-loaded 6-routing in 4-regular
graphs proceeds by reduction from the problem of 3D-matching, restricted to
subcubic instances (details were made available to the reviewers).

Theorem 5. The problem of determining whether there exists a 6-routing with
load 2 in a 4-regular graph is NP-complete.

The 2-loaded 6-routing problem in 4-regular graphs is a good starting point for
proofs of NP -hardness of other problems related to k-routing. For instance, by
an easy reduction from this problem we may write the following statement.

Corollary 2. The problem of determining whether there exists a k-routing with
load 2 in a given graph is NP-complete for any fixed value of parameter k ≥ 6.

Completeness results for the all-to-all routing problem
The problem of laying out paths between all pairs of nodes to form a complete
virtual topology is referred to as all-to-all routing, and in the terminology of
this paper, as (n − 1)-routing. Deciding whether a given physical network G
admits an l-loaded all-to-all routing is highly relevant for both WDM and ATM

On Bounded Load Routings for Modeling k-Regular Connection Topologies 621

networks [3,4,6,7]. We give an answer to the most fundamental question, that
the problem of deciding whether a given network admits a 2-loaded all-to-all
routing is NP -complete.

Theorem 6. The problem of determining whether a network G admits an all-
to-all routing with π ≤ 2 is NP-complete.

Proof (sketch). The proof proceeds by reduction from the problem of 2-loaded
6-routing in 4-regular graphs (see Theorem 5). Consider an instance of the 2-
loaded 6-routing problem, a 4-regular graph G of n ≥ 16 vertices. We construct
the graph G∗ as the product G∗ = G × Kn−7 (i.e. G∗ is a copy of graph G
connected with a copy of the complete graph Kn−7 by all possible edges). The
proof of the observation that there exists a reduction from 2-loaded 6-routing
in G to 2-loaded all-to-all routing in G∗ is constructive and non-trivial; details
were made available to the reviewers.

4 The Minimum l-Loaded k-Routing Problem

Quite naturally, the minimisation version of the l-loaded k-routing problem
with respect to edge spread value m(R) is noticeably harder than the original
version. Although the problem is easy for l = 1 or k = 1 (Subsection 4.1) it
turns out to be APX -hard for l = 2 and any fixed value k ≥ 2 (Subsection 4.2).

4.1 Positive Results for Min l-Loaded k-Routing with l = 1 or k = 1

First, let us consider the Min 1-loaded k-routing problem. By the proof of
Theorem 2, finding a minimum cardinality k-odd (k-even) factor guarantees that
the constructed routing uses the minimum number of edges and consequently is
the optimal solution to the Min 1-loaded k-routing, and can be determined
in O(m3 logm) time.

The case of Min l-loaded 1-routing is even easier to analyse, since for any
graph G the solution to the Min 1-loaded 1-routing is the optimal solution
to Min l-loaded 1-routing, regardless of l. The Min 1-loaded 1-routing
problem may in turn be treated as a special case of Min 1-loaded k-routing,
and solved in O(m3 logm) time.

4.2 Completeness and Approximability of Min 2-Loaded 2-Routing

An equivalent characterisation of the Min 2-loaded 2-routing problem may
be obtained from the following lemma (the proof was provided for inspection by
the reviewers).

Lemma 2. Let p be the number of spiders in a maximum decomposition of
graph G into spiders and let p3 be the cardinality of a maximum P3-matching in
G (i.e. the number of vertices in a packing of vertex-disjoint paths of order 3 in
G). Then p = p3 and solutions to these problems are equivalent in the sense that
one can be constructed from the other.

622 A. Kosowski, M. Ma�lafiejski, and P. Żyliński

By the above Lemma and the proof of Theorem 3 it easy to observe that the
Min 2-loaded 2-routing problem is equivalent to the problem of finding the
maximum number of vertex-disjoint paths of order 3 in a network topology.
However in [12] the authors proved that the maximum P3-matching problem is
APX -hard even for subcubic graphs, thus we get the following theorem.
Theorem 7. The Min 2-loaded 2-routing problem is APX-hard even for
subcubic graphs.
The theorem may easily be generalised to prove the APX -hardness of Min 2-
loaded k-routing, for any k ≥ 2.

Approximation algorithms for Min 2-loaded 2-routing
For general graphs, the best known approximation algorithm for the maximum
P3-matching problem achieves 3/2-ratio [1]. As the number of edges in any spider
decomposition of a graph is equal to n − p, where p is the number of spiders,
then by Lemma 2, it follows that any approximation algorithm to the maximum
P3-matching problem can be applied to the Min 2-loaded 2-routing problem.

Lemma 3. Let A be an r-approximation algorithm for the maximum P3-
matching problem. Then there exists a 3r−1

2r -approximation for the Min 2-
loaded 2-routing problem.

Proof. Let p and a be any optimal solution and any r-approximation for the
maximum P3-matching problem, respectively. As p/a ≤ r and 2

3n ≤ n−p ≤ n−a,
then

n− a

n− p
≤
n− p

r

n− p
≤ 1 +

p r−1
r

n− p
≤ 3r − 1

2r
. �

Theorem 8. There is a polynomial-time 7/6-approximation algorithm for the
Min 2-loaded 2-routing problem.

5 Final Remarks

A summary of the major results presented in this paper for the l-loaded k-
routing problem and its minimisation version is given in Tables 1 and 2.

The problem of k-routing with a bounded number of wavelengths
The question of minimising the parameter w rather than π in routings is usually
discussed in the context of all-optical networks. In the context of the aspects of
k-routing, for load π = 1 and load π = 2, described in previous sections, the
values of w and π were always equal (note that for general instances of routing
this need not hold, and the ratio w/π may be arbitrarily large). In particular, we
can easily formulate Theorem 6 using the parameter w (the same proof holds),
thus closing the open problem of the complexity of all-to-all routing in the optical
version [4,6].

Theorem 9. Determining whether a WDM all-optical undirected network G ad-
mits an all-to-all routing with w ≤ 2 is NP-complete.

On Bounded Load Routings for Modeling k-Regular Connection Topologies 623

Table 1. Complexity of l-loaded k-routing for l = 1 and l = 2

bound k = 1 k = 2 k = 3, 4, 5 k ≥ 6 k = n− 1

l = 1
O(m + n)

O(m3 log m)
l = 2 O(m + n) open NPH ; O(mn) for δ ≥ k

Table 2. Complexity and approximability of Min l-loaded k-routing for l = 1 and
l = 2 (minimisation with respect to edge spread m)

bound k = 1 k = 2 k ≥ 3

l = 1
O(m3 log m)

l = 2 APXH ; 7/6-approx. APXH

References

1. K.M.J. De Bontridder, B.V. Haldórsson, M.M. Haldórsson, C.A.J. Hurkens, J.K.
Lenstra, R. Ravi, L. Stougie, Approximation algorithms for the test cover problem,
Math. Programming 98 (2003), 477–491.

2. B. Beauquier, All-to-all communication in some wavelength-routed all-optical net-
works. Networks, 33 (1999), 179–187.

3. B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S. Pèrennes and U. Vaccaro,
Graph problems arising from wavelength routing in all-optical networks. Proc.
WOCS’97, 1997, Geneve, Switzerland.

4. B. Beauquier, S. Pèrennes, and M. Syska, Efficient Access to Optical Bandwidth
Routing and Grooming in WDM Networks: state-of-the-art survey, CRESCCO
report IST-2001-33135, Universite de Nice-Sophia Antipolis, 2002, France.

5. J.C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U. Vaccaro, Efficient
collective communication in optical networks. Proc. ICALP’96, LNCS 1099 (1996),
574–585.

6. J. Bia�logrodzki, Path Coloring and Routing in Graphs. In: Graph Colorings, Kubale
M. ed., Contemporary Mathematics series 352, AMS (2004), Providence, Rhode
Island, USA, 139–152.

7. S. Choplin, L. Narayanan, and J. Opatrny, Two-Hop Virtual Path Layout in Tori.
Proc. SIROCCO’04, LNCS 3104 (2004), 69–78.

8. F. R. K. Chung, E. G. Coman, M. I. Reiman, and B. E. Simon, The forwarding
index of communication networks. IEEE Trans. on Inf. Theory, 33 (1987), 224–232.

9. T. Erlebach, and K. Jansen, The complexity of path coloring and call scheduling.
Theoret. Comp. Sci. 255 (2001), Elsevier Science, 33–50.

10. H.N.Gabow, Data structures for weighted matching and nearest common ancestors
with linking. Proc. 1st ACM-SIAM SODA (1990) 434–443.

11. P.E. Green, Fiber-optic networks. Prentice-Hall (1992), New Jersey, USA.
12. M. Ma�lafiejski, P. Żyliński, Weakly cooperative guards in grids. Proc. ICCSA’05,

LNCS 3480 (2005), 647–656.
13. R. Raghavan, and E. Upfal, Efficient routing in all-optical networks. Proc. 26th

ACM STOC (1994), 134–143.
14. W.T. Tutte, A contribution to the theory of chromatic polynomials. Canad. J.

Math 6 (1954), 80–91.

On the Complexity of Global
Constraint Satisfaction�

(Extended Abstract)

Cristina Bazgan1 and Marek Karpinski2

1 LAMSADE, Université Paris-Dauphine, Paris
bazgan@lamsade.dauphine.fr

2 Department of Computer Science, University of Bonn, Bonn
marek@cs.uni-bonn.de

Abstract. We study the computational complexity of decision and op-
timization problems that may be expressed as boolean contraint satis-
faction problem with the global cardinality constraints. In this paper we
establish a characterization theorem for the decision problems and derive
some new approximation hardness results for the corresponding global
optimization problems.

1 Introduction

Constraints of the global nature arise naturally in some optimization problems.
For example, Min Bisection can be viewed as Min Cut with the restriction
that the two sets of vertices that determine the cut must be of equal size. It
is known that Min Cut is polynomial while Min Bisection is NP -hard. Min
Bisection, Max Bisection and other optimization problems can be written as
boolean constraint satisfaction problems where a feasible solution is a balanced
assignment (where the number of variables set to 1 is the same as the number of
variables set to 0). It was an increased interest in global optimization problems
recently, cf. [10, 7, 16].

In this paper we study the complexity of decision and optimization problems
of the balanced versions of boolean constraint satisfaction problems depending
on the type of constraints. Schaefer [24] established a dichotomy theorem for
the boolean constraint satisfaction problems distinguishing six polynomial time
solvable cases. For the decision versions we show that if the set of constraints
contains only equations of width 2 or it contains only conjunctions of literals,
then the balanced version is polynomial time solvable and otherwise it is NP -
complete.

Creignou [3] and Khanna and Sudan [18] established a dichotomy theorem for
maximization versions of boolean constraint satisfaction problems that classify
� The first author was partially supported by DAAD grant number A/04/20431 and

PROCOPE Project 333587. The second author was partially supported by a DFG
grant, IST grant 14036, and PROCOPE Project 333587. The full version of this paper
can be found under the URL address http://www.lamsade.dauphine.fr/notes.html

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 624–633, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Complexity of Global Constraint Satisfaction 625

the problems into polynomially solvable or APX -hard. The balanced versions
of these problems where also studied. Sviridenko [25] proved that the balanced
version of Max Sat is 1/(1 − 1

e)-approximable. For the balanced version of
Max 2Sat, Blaser and Manthey [2] established a 1.514-approximation factor
and Hofmeister [12] a 4/3-approximation factor. Lower bound were also studied
for these problems. Holmerin [13] showed that the balanced version of Max
E4-0H-Lin2 (see for the definition Section 2) cannot be approximated within
1.0957 in polynomial time, unless P=NP. Also Holmerin and Khot [14] showed
that balanced version of Max E3-0H-Lin2 is hard to approximate within 4

3 − ε
and in [15] they improved their result showing that this problem is hard to
approximate within 2 − ε, for any ε > 0, if NP �⊆ ∩δ>0 DTIME(2nδ

), thus
obtaining the best possible inapproximability factor result for this problem. We
prove in this paper that all the cases that were considered by Creignou [3] and
Khanna and Sudan [18] in the dichotomy theorem become APX -hard and also
that most of the trivial maximization constraint satisfaction problems have their
balanced version APX -hard.

Khanna, Sudan and Trevisan [19] established a classification theorem for min-
imization versions of boolean constraint satisfaction problems. The complex-
ity of approximation of Min Bisection was for long time widely open. Feige
and Krautghamer [6] established an approximation algorithm for this problem
within O(log2 n) approximation factor. This result has been recently improved
to O(log1.5 n) by the recent result of Arora, Rao and Vazirani [1]. Very recently,
Khot [22] established that under the assumption that NP �⊆ ∩δ>0 BTIME(2nδ

),
for BTIME denoting randomized polynomial time, Min Bisection has no poly-
nomial time approximation scheme. Under the assumption that refuting SAT
formulas is hard to approximate on average, Feige [5] proved also that Min
Bisection is hard to approximate below 4

3 .
Holmerin [13] studied the hardness of approximating some generalizations of

Min Bisection. In particular he showed that the balanced version of Min E4-
1H-Lin2 is not (2 − ε)-approximable for any ε > 0, unless P=NP. We prove
several inapproximability result for balanced minimization problems. In partic-
ular, using the inapproximability result for Densest k Subgraph established
by Khot [22], we prove that the balanced version of Min Monotone-E2Sat
has no polynomial time approximation scheme, if NP �⊆ ∩δ>0 BTIME(2nδ

).
The paper is organized as follows: in Section 2 we introduce some preliminary

notation and definitions, and Section 3 contains our results on decision prob-
lems. In Sections 4 and 5 we present our results concerning maximization and
minimization optimization problems.

2 Preliminaries

We refer a general reader to [19, 21, 20, 4] for a background on the boolean con-
straint satisfaction problems.

A constraint is a boolean function f : {0, 1}k → {0, 1}. A constraint appli-
cation is a pair < f, (i1, . . . , ir) > where r is the arity of f and the i� ∈ [n]

626 C. Bazgan and M. Karpinski

indicate to which r of the n boolean variables a given constraint is applied. This
constraint application will be denoted in the following by f(xi1 , . . . , xir).

Let F = {f1, . . . , ft} be a finite collection of boolean functions. An F -set
of constraints on n boolean variables x1, . . . , xn is a collection of constraint
applications {fj(xj1 , . . . , xjrj

)}m
j=1 for some integer m, where fj ∈ F and rj is

the arity of fj . We say that an assignment satisfies an F -set of constraints if it
satisfies every constraint in the collection.

The satisfiability problem CSP(F) consists of deciding whether there exists
an assignment that satisfies a given F -set of constraints. kCSP(F) (respectively,
EkCSP(F)) is the variant of CSP(F) where each boolean function fj is a
function of at most (respectively, exactly) k variables, for j ≤ t. The problems
Max (Min) CSP(F) consist of finding a boolean assignment that maximizes
(minimizes) the number of constraints that are satisfied. Max (Min) kCSP(F)
(respectively, Max (Min) EkCSP(F)) are variants of Max (Min) CSP(F)
where each constraint depends on at most (respectively, exactly) k literals.

Given a problem A, the Balanced version of A is the problem A with a new
set of feasible solutions being assignments where the number of variables set to
true (denoted by 1) is the same as the number of variables set to false (denoted
by 0). Such assignments will be called balanced assignments.

We consider also a generalization of this problem. Given a problem A, the α-
Balanced version of A, 0 < α < 1, is the problem A with a new set of feasible
solutions being assignments with the number of true variables being an α ratio
of the total number of variables. Such assignments will be called in the following
α-balanced.

In this paper we study the complexity of decision and optimization problems
related to Balanced CSP(F) depending on the type of constraints defined by
a class F .
kSat (respectively, EkSat) is the version of Sat where each clause is of size at

most (respectively, exactly) k. Monotone-EkSat is the variant of the EkSat
problem where either all clauses contain only positive literals or all clauses con-
tain only negative literals.

In this paper we use the notation AND instead of DNF for the problem of
deciding whether a set of conjunctions of literals has a satisfiable assignment.
Monotone-EkAND is the variant of the EkAND problem where either all
conjunctions contain only positive literals or they contain only negative literals.

The input of the EkLin2 problem is a set of equations of the type mod 2 and
we have to decide if there is a satisfiable assignment. In Ek-bH-Lin2, b ∈ {0, 1},
the input consists of a set of equations of the type xi1 ⊕ . . . ⊕ xik

= b on n
boolean variables x1, . . . , xn and the problem is to decide if there is an assignment
satisfying all equations.

Max kSat is the problem of constructing for a given set of clauses an as-
signment satisfying a maximum number of clauses. Max kAND, Max EkLin2,
Min kSat, Min kAND, Min EkLin2 are defined in a similar way.

We will use basic notation of [24]. We refer to [17] for the precise definition
of an E-reduction.

On the Complexity of Global Constraint Satisfaction 627

3 Complexity of Decision Problems

The decision complexity of boolean constraint satisfaction problems is well es-
tablished. In particular, Schaefer [24] established the following remarkable di-
chotomy theorem:

Theorem 1 (Dichotomy Theorem for CSP(F) [24]). Given an F-set of
constraints, the problem CSP(F) is polynomial time computable if F satisfies
one of the conditions below, and CSP(F) is NP-complete otherwise.

1. Every function in F is 0-valid.
2. Every function in F is 1-valid.
3. Every function in F is weakly positive.
4. Every function in F is weakly negative.
5. Every function in F is affine.
6. Every function in F is bijunctive.

Motivated by the above result, we aim at formulating analogous result for
balanced problems. Firstly we show that for any F -set of constraints, Balanced
CSP(F) is at least as difficult as CSP(F).

Lemma 1. If CSP(F) is NP-complete, then Balanced CSP(F) is also NP-
complete.

We turn now to a polynomial time case. We formulate our result in slightly
more general setting of the α-balanced problems.

Theorem 2. For any 0 < α < 1, α-Balanced E2-Lin2 is solvable in polyno-
mial time.

Proof. Let us consider first α = 1
2 . Given an instance I of Balanced E2-Lin2

on n variables and m equations, we construct some equivalence classes on the
set of literals by considering the equations one after another as follows. Given
an equation xi ⊕ xj = 0 (xi ⊕ xj=1), we distinguish the following cases.

– If literals xi, x̄i, xj , x̄j do not appear in a class, then we construct a new class
and we put together xi and xj (xi and x̄j respectively).

– If either xi or x̄i appears in a class Ck and xj , x̄j do not appear in a class,
then
• if xi ∈ Ck then we introduce xj (x̄j respectively) in Ck.
• if x̄i ∈ Ck then we introduce x̄j (xj respectively) in Ck.

– If literals xi or x̄i and xj or x̄j appear in the same class Ck then I is not
satisfiable if {xi, x̄j} ⊆ Ck or {x̄i, xj} ⊆ Ck ({xi, xj} ⊆ Ck or {x̄i, x̄j} ⊆ Ck

respectively).
– If either xi or x̄i appears in a class Ck and either xj or x̄j appears in a class
C� then
• if xi ∈ Ck and xj ∈ C� then we put together the literals of both classes
Ck and C� (we put together the literals of the class Ck with the negated
literals of the class C�).

628 C. Bazgan and M. Karpinski

• if xi ∈ Ck and x̄j ∈ C� then we put together the literals of the class Ck

with the negated literals of the class C� (we put together the literals of
both classes Ck and C�).

Suppose that at the end we obtain t equivalence classes C1, . . . , Ct. Denote
by a2i−1 and a2i the number of literals that appear positive and respectively
negative in Ci. Balanced E2-Lin2 on I consists of deciding if there exists a
partition of these 2t integers in two equal size sets P and N such that P and
N contain exactly one of a2i−1, a2i for i = 1, . . . , t. This problem in solvable in
polynomial time by dynamic programming [8]. If such a partition P , N exists
then the following assignment is balanced and satisfies I:

– if a2i−1 ∈ P then we assign to the positive variables of Ci the value 1 and
to the negated variables of Ci the value 0.

– if a2i−1 ∈ N then we assign to the positive variables of Ci the value 0 and
to the negated variables of Ci the value 1.

If α �= 1
2 then as below we construct equivalence classes C1, . . . , Ct and com-

pute integers a1, . . . , a2t. We add two other integers a2t+1 = n|1−2α|, a2t+2 = 0
and solve the above partition problem on this new instance. �

The above result contrast interestingly with Theorem 3.

Theorem 3. For any k ≥ 3, b ∈ {0, 1}, Balanced Ek-bH-Lin2 is NP-
complete.

Monotone-2Sat is a trivial problem. In contrast to this, we show that α-
Balanced Monotone-E2Sat is, in fact, NP -hard.

Theorem 4. α-Balanced Monotone-E2Sat is NP-complete, for any α > 0.

Proof. We reduce α-Clique (cf. [8]) to α-Balanced Monotone-E2Sat. An
instance of α-Clique has an input a graph on n vertices and we have to decide if
it contains a clique of size at least αn. The reduction is as follows: given a graph
G = (V,E) on n vertices, we construct an instance I on n boolean variables
x1, . . . , xn, one for each vertex of G. For any i, j ∈ V such that (i, j) /∈ E, we
add the clause x̄i ∨ x̄j . It is clear that if C is a clique in G of size αn, then the
assignment xi = 1 if i ∈ C and xi = 0 if i /∈ C satisfies each clause of I since
for each (i, j) /∈ E, xi or xj is false. Conversely, if an α-balanced assignment
satisfies I, then the set C = {i : xi = 1} is a clique of size αn. Since α-Clique
is NP -hard [8], α-Balanced Monotone-E2Sat is NP -hard as well. �

Theorem 5. Balanced Monotone-EkSat is NP-complete for any k ≥ 3.

Since Balanced AND is trivial we can formulate the following

Theorem 6 (Characterization Theorem for Balanced CSP(F)). Given
an F-set of constraints, the problem α-Balanced CSP(F) is polynomial time
solvable (if every function in F is affine with width 2 or if every function in F
is a conjunction of literals), otherwise it is NP-complete.

On the Complexity of Global Constraint Satisfaction 629

4 Approximation of Global Maximum Constraint
Satisfaction

We state first the following known classification theorem of Max CSP(F) (cf.
[3, 18]).

Theorem 7 (Characterization Theorem for Max CSP(F) [3, 18]). Max
CSP(F) is either polynomial time computable or is APX-complete. Moreover,
it is in P if and only if F is either 0-valid or 1-valid or 2-monotone.

Some upper bounds have been established for these balanced versions of Max
CSP(F). α-Balanced Max Sat was proven to be 1/(1 − 1

e)-approximable
([25]). α-Balanced Max 2Sat was proven to be 1.514-approximable ([2]) and
Balanced Max 2Sat was proven to be 4/3-approximable ([12]).

We state first the following direct lemma:

Lemma 2. Max CSP(F) is E-reducible to Balanced Max CSP(F).

The following theorem shows that the three polynomial cases for Max
CSP(F) became difficult for the balanced version.

Theorem 8. Balanced Max Monotone-EkSat is APX-hard, for k ≥ 2.

A particular case of the following problem is equivalent to a Balanced Max
CSP(F) problem for some particular F as it will be proved later.

We introduce now a new problem.
Densest k Subgraph
Input: A graph G = (V,E) on n vertices where n is even.
Output: A subset S ⊆ V of size k that maximize the number of edges with
both extremities in S.

The hardness of the approximation of Densest k Subgraph remained open
for long time. Recently, Khot [22] was able to establish such a result using a
special PCP technique.

Theorem 9 ([22]). Densest k Subgraph has no polynomial time approxi-
mation scheme if NP �⊆ ∩δ>0 BTIME(2nδ

).

More precisely, Khot [22] has proved the previous result for Densest k Sub-
graph when k = cn for c a constant.

Proposition 1. Densest k Subgraph is E-reducible to Densest n
2 Sub-

graph.

Proposition 2. Balanced Max Monotone-E2AND is E-equivalent to
Densest n

2 Subgraph.

Theorem 10. Balanced Max Monotone-EkAND, k ≥ 2, has no polyno-
mial time approximation scheme if NP �⊆ ∩δ>0 BTIME(2nδ

).

630 C. Bazgan and M. Karpinski

Proof (sketch). We can E-reduce Balanced Max Monotone-EkAND to
Balanced Max Monotone-E(k + 1)AND, for k ≥ 2, and thus using Propo-
sitions 1, 2 and Theorem 9 (Khot’s result [22]) the result follows. �

We consider in the following the balanced version of affine constraints.
Max E2-1H-Lin2, that is Max Cut, is known to be APX -hard [23] and

Balanced Max E2-1H-Lin2 that is Max Bisection is known to be APX -
hard [23, 11]. Each instance of Max E2-0H-Lin2 is satisfied by the trivial as-
signment 0. We show a relation between the complexity of Balanced Max
Monotone-E2AND and Balanced Max E2-0H-Lin2 (or Balanced Max
Uncut).

Proposition 3. Balanced Max Monotone-E2AND is E-reducible to Bal-
anced Max E2-0H-Lin2.

Thus we establish an inapproximability result for Balanced Max Uncut.

Theorem 11. Balanced Max UnCut has no polynomial time approximation
scheme if NP �⊆ ∩δ>0 BTIME(2nδ

).

Proof. The result is a consequence of Propositions 2, 3 and Theorem 9. �

When k is odd, Max Ek-bH-Lin2 is trivial since the assignment b for all
variables satisfies all equations. When k is even, Max Ek-0H-Lin2 is also trivial
since the assignment 0 for all variables satisfies all equations. For k ≥ 4 even,
Max Ek-1H-Lin2 is not know to be hard to approximate.

Theorem 12. Balanced Max Ek-bH-Lin2 is APX-hard, for k ≥ 3, b ∈
{0, 1}.

Balanced Max Ek-bH-Lin2 was studied for particular cases of k and b = 0.
More precisely, Holmerin [13] proved that Balanced Max E4-0H-Lin2 can-
not be approximated within 1.0957 in polynomial time, unless P=NP. Also
Holmerin and Khot showed in [14] that Balanced Max E3-0H-Lin2 is hard
to approximate within 4

3 − ε and in [15] they improved their result showing that
Balanced Max E3-0H-Lin2 is hard to approximate within 2−ε if NP �⊆ ∩δ>0

DTIME(2nδ

), thus obtaining the best possible inapproximability bound result
for this problem (under this assumption).

Theorem 13 (Characterization Theorem for Balanced Max CSP(F)).
Balanced Max CSP(F) is APX-hard.

5 Approximation of Global Minimum Constraint
Satisfaction

A classification theorem for Min CSP(F) was formulated in [19].
We can show directly, like for the decision and maximization constraint sat-

isfaction problems, that the balanced version of a minimization problem is at
least as hard as an underlying problem.

On the Complexity of Global Constraint Satisfaction 631

Lemma 3. Min CSP(F) is E-reducible to Balanced Min CSP(F).

Min Monotone-EkSat for k ≥ 2 are trivial problems. For the balanced
situation we formulate

Proposition 4. Balanced Max Monotone-E2AND is E-reducible to Bal-
anced Min Monotone-E2Sat.

We derive now

Theorem 14. Balanced Min Monotone-E2Sat has no polynomial time ap-
proximation scheme if NP �⊆ ∩δ>0 BTIME(2nδ

).

Proof. The result is a consequence of Proposition 4 and Theorem 10. �

We first show that a hardness approximation result for Balanced Min
Monotone-E2Sat implies a hardness approximation result for Min Bisec-
tion.

Proposition 5. Balanced Min Monotone-E2Sat is E-reducible to Min
Bisection.

Proof. Given an instance I of Balanced Min Monotone-E2Sat on n vari-
ables x1, . . . , xn andm clauses, we construct an instance I ′ of Min Bisection on
n+2 variables x1, . . . , xn and two new variables y and z and 3m equations as fol-
lows : for each clause x1∨x2 we add 3 equations x1⊕x2 = 1, x1⊕z = 1, x2⊕z = 1.
We have opt(I ′) ≤ 2opt(I) since the assignment satisfying opt(I) clauses in I and
z = 0 and y = 1 satisfies 2opt(I) equations in I ′. Given a balanced assignment
v for I ′ satisfying val′ equations, we can consider z = 0. If y = 1 then, the
restriction of v on x variables is balanced and satisfies val′

2 clauses. If y = 0 then
the restriction of v on x variables satisfies val′

2 clauses in I but is not balanced.
Observe that the balanced assignment obtained by changing the value of an x
variable from 1 to 0 satisfies at most val′

2 clauses. �

We establish now an E-reduction between Balanced Max UnCut and Min
Bisection.

Proposition 6. Balanced Max E2-0H-Lin2 is E-reducible to Balanced
Min E2-1H-Lin2.

We formulate now

Theorem 15. Balanced Min Monotone-EkSat, k ≥ 2, has no polynomial
time approximation scheme if NP �⊆ ∩δ>0 BTIME(2nδ

).

Proof (sketch). We can E-reduce Balanced Min Monotone-EkSat to Bal-
anced Min Monotone-E(k + 1)Sat, for k ≥ 2, and thus using Theorem 14,
the result follows. �

632 C. Bazgan and M. Karpinski

Min E2-0H-Lin2 is Min UnCut that is known to be APX -hard by [9] and
thus Balanced Min E2-0H-Lin2 is Balanced Min UnCut is also APX -
hard. Min E2-1H-Lin2 that is Min Cut is polynomial solvable. Balanced
Min E2-1H-Lin2 is Min Bisection for which the hardness of approximation
was proved very recently [22]. For k ≥ 3, Min Ek-1H-Lin2 is trivial since
the assignment 0 for all variables satisfies no equation. When k is odd, Min
Ek-0H-Lin2 is also trivial since the assignment 1 for all variables satisfies no
equation and when k ≥ 4 is even, it is not known if Min Ek-0H-Lin2 is hard to
approximate.

Theorem 16 ([14]). Balanced Min E3-bH-Lin2, b ∈ {0, 1}, is NP-hard to
approximate within any constant factor.

The proof of the above result uses a PCP technique. We can prove without
using directly a PCP method a somewhat weaker result

Theorem 17. Balanced Min Ek-bH-Lin2, b ∈ {0, 1}, is APX-hard for every
k ≥ 3.

References

1. S. Arora, S. Rao and U. Vazirani, Expander flows and a
√

log n-approximation
to sparsest cut, Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC 2004), 222 – 231.

2. M. Blaser and B. Manthey, Improved Approximation Algorithms for Max 2Sat with
Cardinality Constraint, The 13th Annual International Symposium on Algorithms
and Computation (ISAAC 2002), LNCS 2518, 2002, 187–198.

3. N. Creignou, A dichotomy theorem for maximum generalized satisfiability problems,
Journal of Computer and System Sciences, 51(3), 1995, 511–522.

4. N. Creignou, S. Khanna and M. Sudan, Complexity Classifications of Boolean Con-
straint Satisfaction Problems, SIAM Monographs on Discrete Mathematics and
Applications, 2001.

5. U. Feige, Relations between average case complexity and approximation complexity,
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), 534–543.

6. U. Feige and R. Krauthgamer, A polylogarithmic approximation of the Minimum
Bisection, Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, 2000, 105–115.

7. U. Feige and M. Langberg, Approximation Algorithms for Maximization Problems
arising in Graph Partitioning, Journal of Algorithms 41 (2001), 174–211.

8. M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory
of NP-completeness, Freeman, C.A. San Francisco (1979).

9. N. Garg, V. Vazirani and M. Yannakakis, Approximate max-flow min-(multi)cut
theorems and their applications, Proceedings of the 25th Annual ACM Symposium
on Theory of Computing (STOC 1993), 698–707.

10. E. Halperin, U. Zwick, A unified framework for obtaining improved approximation
algorithms for maximum graph bisection problems, Proceedings of the 8th Con-
ference on Integer Programming and Combinatorial Optimization (IPCO 2001),
210–225.

On the Complexity of Global Constraint Satisfaction 633

11. J. H̊astad, Some optimal inapproximability results, Proceedings of the 29th Annual
ACM Symposium on Theory of Computing (STOC 1997), 1-10.

12. T. Hofmeister, An Approximation Algorithm for Max 2Sat with Cardinality Con-
straint, Proceedings of the 11th Annual European Symposium on Algorithms, 301–
312, 2003.

13. J. Holmerin, PCP with Global Constraints – Balanced Homogeneous Linear Equa-
tions, Manuscript, 2002.

14. J. Holmerin and S. Khot, A strong inapproximability result for a generalization of
Minimum Bisection, Proceedings of the 18th IEEE Conference on Computational
Complexity, 371–378, 2003.

15. J. Holmerin and S. Khot, A new PCP Outer Verifier with Applications to Homoge-
neous Linear Equations and Max-Bisection, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC 2004), 11–17.

16. G. Jger, A. Srivastav, Improved Approximation Algorithms for Maximum Graph
Partitioning Problems, Proceedings of the 24th International Conference Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2004),
348–359.

17. S. Khanna, R. Motwani, M. Sudan and U. Vazirani, On syntactic versus compu-
tational views of approximability, Proceedings of the 35th Annual IEEE Annual
Symposium on Foundations of Computer Science, 819–830, 1994, Also published
in SIAM Journal on Computing, 28(1), 1999, 164–191.

18. S. Khanna and M. Sudan, The optimization complexity of constraint satisfaction
problems, Technical note STAN-CS-TN-96-29, Stanford University, CA, 1996.

19. S. Khanna, M. Sudan and L. Trevisan, Constraint Satisfaction: the Approximability
of Minimization Problems, Proceedings of 12th IEEE Computational Complexity,
1997, 282–296.

20. S. Khanna, M. Sudan, L. Trevisan and D. P. Williamson, The Approximability of
Constraint Satisfaction Problems, SIAM Journal of Computing, 30(6), 1863-1920
(2001).

21. S. Khanna, M. Sudan and D. Williamson, A Complete Classification of the Approx-
imability of Maximization Problems Derived from Boolean Constraint Satisfaction,
Proceedings of 29th ACM Symposium on Theory of Computing (STOC 1997),
11–20.

22. S. Khot, Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph and Bipar-
tite Clique, Proceedings of the 45th Annual IEEE Annual Symposium on Founda-
tions of Computer Science (FOCS 2004), 136–145.

23. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and com-
plexity classes, Journal of Computing and System Science, 43 (1991), 425-440.

24. T. Schaefer, The complexity of satisfiability problems, In Conference Record of the
10th Annual ACM Symposium on Theory and Computing (STOC 1978), 216–226.

25. M. I. Sviridenko, Best possible approximation algorithm for MAX SAT with cardi-
nality constraint , Algorithmica, 30(3), 2001, 398–405.

Polynomial Space Suffices for Deciding Nash
Equilibria Properties for Extensive Games

with Large Trees�,��

Carme Àlvarez, Joaquim Gabarró, and Maria Serna

Universitat Politècnica de Catalunya,
Jordi Girona, 1-3, Barcelona 08034, Spain
{alvarez, gabarro, mjserna}@lsi.upc.edu

Abstract. We study the computational complexity of deciding the exis-
tence of a Pure Nash Equilibrium or a subgame perfect Nash equilibrium
with a given payoff and other related problems in finite multi-player ex-
tensive games with perfect information. We propose three ways of repre-
senting a game with different degrees of succinctness for the components
of the game. We show that when the number of moves of each player is
large and the player function and the utilities are represented succinctly
the considered problems are PSPACE-complete. In contraposition, when
the game is described extensively by means of its associated tree all the
problems are decidable in polynomial time.

1 Introduction

Many situations involving interactions between independent agents can be mod-
eled and analyzed by game theory. Game theory has been successfully applied to
economics and computer science, among other disciplines. In recent times a lot
of attention has been devoted to the computational aspects of game theory and
specially to the relationship between Internet and games [15]. The design and
analysis of efficient algorithms for computing Nash equilibria are the principal
aims of the algorithmic game theory. The fundamental question posed by Pa-
padimitriou [15] about the complexity of computing a Nash equilibrium in two
players strategic games has initiated a line of research towards understanding the
complexity of computing a pure or a mixed Nash equilibrium [5,6,4,9,2,7,1,3,16].
Recall that strategic games are one shot games as the players play simultaneously
and only once.

Extensive games provide a natural way to model interactions between agents
that involve sequential decisions. The game can be represented by a tree of
decision nodes, and actions are represented as arcs in the tree. In a perfect

� Work partially supported by IST program of the EU under contract IST-2004-015964
(AEOLUS) and by Spanish CICYT under grant TIC2002-04498-C05-03 (Tracer).

�� Due to lack of space proofs are omitted, we refer the interested reader to the extended
version of the paper report LSI-05-39-R available at http://www.lsi.upc.edu.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 634–643, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PSPACE Suffices for Deciding Nash Equilibria on Extensive Games 635

Non-uniform IsPN & IsSPN IsPNOut & IsSPNOut PNGrant & SPNGrant
representation k-players (k ≥ 1) k-players (k ≥ 2) k-players (k ≥ 2)

implicit coNP-complete PSPACE-complete PSPACE-complete

general coNP-complete PSPACE-complete PSPACE-complete

explicit P P P

Fig. 1. Summary of the results of the paper

information game, each player has complete information of the game’s history. In
an imperfect information game, agents are uncertain about which node they are
currently in. Most of the algorithmics and complexity results on extensive games
deal with imperfect information games whose tree is given as input [17,10]. In
terms of Game Theory two notions of equilibria play a fundamental role in the
analysis of extensive games: the Nash equilibrium and subgame perfect Nash
equilibrium. The fundamental question of the existence of a subgame perfect
Nash equilibria, and therefore of a Nash equilibria, has been answered positively
since it is known that any finite extensive game with perfect information has a
subgame perfect Nash equilibrium [11]. Furthermore, one Nash equilibrium can
be compute using backward induction [13]. This is not the case for imperfect
information games.

Backward induction appears to have two limitations. It cannot be used to
compute a Nash equilibrium with a required payoff, for example. Furthermore,
it computes a strategy profile which needs space proportional to the size of the
tree of the game. When one thinks on traditional games that involve sequential
decisions, like Chess, Geography and other games considered in the computa-
tional complexity community [14,8], the tree of the game is exponentially large
with respect to the size of the description of the game, thus backward induction
will require exponential space. This apparent limitations lead us to study the
complexity of deciding the existence of a Nash equilibrium with particular prop-
erties for the case of extensive games with perfect information when the game
trees might have large size with respect to the number of moves of each player,
i.e. the number of sequential decisions that can be taken by all the players.

In this paper we initiate a work towards understanding fully the components
that play a fundamental role in the complexity of problems on extensive games.
We note that games computationally meaningful should have a large number of
players, a large number of actions for each player, or a large number of moves.
Furthermore the set of actions and the payoff functions can be given in some
explicit or implicit way, using more or less space. Particular attention must be
paid to the representability of the data sets appearing in the definition of a
game, the player strategies and the game outcomes. Following the systematic
of [1] for strategic games, we consider three natural ways of describing a game as
the input to a program. Each of them captures a different level of succinctness,
depending on the description explicit or implicit of some of its components.

We study the complexity of the following decisional problems. The IsPN
problem asks whether a given strategy profile is a pure Nash equilibrium. The
IsPNOut problem determines whether a given history is the outcome of a Nash

636 C. Àlvarez, J. Gabarró, and M. Serna

equilibrium. Finally, the PNGrant problem asks whether there is a pure Nash
equilibrium in which the first player gets a payoff u. The same three questions can
be addressed replacing the term pure Nash equilibrium by subgame perfect Nash
equilibrium, giving raise to the problems IsSPN, IsSPNOut and SPNGrant.
Our results, summarized in Figure 1, show that for games represented explicitly
all the problems can be solved in polynomial time. When some of the components
of the game are represented implicitly (by means of Turing machines) the IsPN
and the IsSPN become coNP-complete, while the other four problems become
PSPACE-complete. Furthermore, the hardness results hold also for games with
two players.

The main difficulty in finding algorithms for deciding equilibria properties is
that when the strategy profile is not given as a part of the input then it requires
space proportional to the size of the tree of the game in order to be represented
which might require exponential space in the number of sequential moves. To go
below exponential space we provide recursive characterizations of the existence
of a pure Nash equilibrium, or a subgame perfect Nash equilibrium, with a
guaranteed payoff for the first player in terms of histories instead of strategy
profiles. Those characterizations are crucial from the complexity point of view
since a history requires only polynomial space in the number of sequential moves
(depth of the game tree) and the length of the actions.

The hardness results follows from adequate reductions so that a quantified
boolean formula is described as a game in which the particular equilibria we are
looking for appear only when the quantified boolean formula is satisfiable.

Finally, we want to point out the differences with the case of strategic games
obtained in [1]. For strategic games, the succinctness of the representation of the
set of actions is relevant since the PNE problem that asks for the existence of a
pure Nash equilibrium in a given strategic game is polynomial time solvable when
the representation is explicit, NP-complete when the game is given in general
form, and Σp

2-complete when the game is given in implicit form. The number
of players is also relevant, for a constant number of players k ≥ 2 the PNE is
polynomial time solvable when the game is given in general form. Contrasting
with this, in the extensive games we obtain the same complexity results when
the game is given in general form or in implicit form, even for 2-players games.

2 Extensive Games with Perfect Information

We start introducing some operations and notation on languages and functions.
Given a language L ⊆ Σ∗ and a word a ∈ Σ∗ we define the languages aL =
{aw | w ∈ L} and a−1L = {w | aw ∈ L}. Given a function τ : L → B and
a symbol a ∈ Σ we define the functions aτ : aL → B, where aτ(aw) = τ(w),
and a−1τ : a−1L → B, where a−1τ(w) = τ(aw). The previous operations can
be extended to prefix formed by words in the usual way, (az)L = a(zL) and
(za)−1L = z−1(a−1L) and similarly for functions. Given a collection of pairwise
disjoint languages (L1, . . . , Lk) and a set of functions τ1, . . . , τk where, for each
1 ≤ j ≤ k, τj : Lj → B, their union is the function τ = (τ1, . . . , τk) defined on

PSPACE Suffices for Deciding Nash Equilibria on Extensive Games 637

∪k
i=1Li as τ(w) = τi(w) for w ∈ Li. Given a function τ = (τ1, . . . , τk), for any i,

1 ≤ i ≤ k, τ−i is the function (τ1, . . . , τi−1, τi+1, . . . , τk). For an element b ∈ B,
the function τb is defined on {λ} as τb(λ) = b.

Now we state the definition of finite extensive games with perfect informa-
tion as it is given in [13]. We have expressed some conditions using standard
Computer Science notation for alphabets, words, and concatenation.

Definition 1. A finite extensive game with perfect information is a structure
Γ = (N, (Ai)i∈N , H, Z, P, (ui)i∈N) where

– N = {1, . . . n} is the set of players. For each player i ∈ N , Ai is a finite set
of actions.

– H is a finite set of words defined on the alphabet A1 ∪· · ·∪An. Each element
of H is called a history. H satisfies the following properties: The empty word
λ is a member of H and if h ∈ H all the prefixes of h belong to H.

– Z ⊆ H is formed by the terminal histories. A history h ∈ H is terminal if h
is not a proper prefix of another history.

– P is the player function. P assigns to each nonterminal history, h ∈ H \Z,
a player. P (h) is the player who is allowed to take an action after the history
h. Thus, for any h ∈ H \Z, if for some action a we have that h ·a ∈ H then
a ∈ AP (h).

– For each player i ∈ N , a utility function ui assigning to each terminal history
a rational value.

The simplest extensive game is an empty game denoted by Γλ(v1, . . . , vn).
This game has n players and H = Z = {λ}, therefore Γλ has only one history
that is terminal, and, for any 1 ≤ i ≤ n, ui(λ) = vi. Observe that no player plays,
but player i gets immediately the payoff ui(λ). The length of a game, length(Γ),
is the length of the longest history in the game. Thus length(Γλ(v1, . . . , vn)) = 0.

An alternative definition of game is done by means of a rooted tree. The tree
of a game is a rooted tree with labeled nodes and arcs. We assume that the
arcs of the tree are directed from parent to child. We require all the labels in
the outgoing arcs of a node to be different. Such a tree defines a game Γ =
(N, (Ai)i∈N , H, Z, P, (ui)i∈N) as follows. N is the set of the labels of the internal
nodes. For i ∈ N , Ai is the set formed with the labels of the outgoing arcs of a
node labeled i. The word obtained by the concatenation of the labels in the path
from the root to a node u is the history associated to u. H is the set of histories
associated to the tree nodes and Z is the set of histories associated to the leaves.
The player function assigns to a non terminal history the label of its associated
node. The leaves of the tree hold a table storing one rational for each player,
thus defining the utility of the associated terminal history for each player. The
tree associated to an empty game is a leaf holding the utility values associated
to the history λ. In the following we formalize the notion of subgame.

Definition 2. Given an extensive game Γ = (N, (Ai)i∈N , H, Z, P, (ui)i∈N), the
subgame of Γ after history h is the extensive game

h−1Γ = (N, (Ai)i∈N , h
−1H,h−1Z, h−1P, (h−1ui)i∈N).

638 C. Àlvarez, J. Gabarró, and M. Serna

The following result follows directly from the definitions.

Lemma 1. Given h ∈ H \ Z and an action a such that ha ∈ H it holds
(ha)−1Γ = a−1(h−1Γ).

Our second operation is the composition of games. The intented meaning of
the composition is “player i starts the game and chooses an action, from a set
of actions, each selection makes the players continue playing a particular game
among a set of games”.

Definition 3. Given a collection of games (Γ1, . . . , Γ�) where, for any 1 ≤
α ≤ , Γα = (N, (Ai)i∈N , H

α, Zα, Pα, (uα
i)i∈N), a player i ∈ N , and dif-

ferent actions from Ai, ai1 , . . . ai�
, the composite game Γ (i, ai1Γ1 . . . ai�

Γ�) is
the game (N, (Ai)i∈N , H, Z, P, (ui)i∈N), where H = {λ} ∪ ai1H

1 ∪ · · · ∪ ai�
H�,

Z = ai1Z
1 ∪ · · · ∪ ai�

Z�, P = (τi, ai1P
1, . . . , ai�

P �), and for every player j ∈ N ,
uj = (ai1u

1
j , . . . , ai�

u�
j),

Over the tree of the game, the composition takes the tree of the compo-
nent games, creates a new root with label i and join the new root to the root
of game Γα with an arc labeled aiα . The composition operation allows us to
decompose games with positive length recursively from subgames. Given a non-
terminal history h, let next(h) = {a ∈ AP (h) | ha ∈ H}. Note that, an exten-
sive game with perfect information Γ with length(Γ) > 0 can be factorized as
Γ = (i, ai1Γ1, . . . , ai�

Γ�) where next(λ) = {ai1 , . . . , ai�
}, i = P (λ), and, for any

1 ≤ α ≤ , Γα = a−1
iα
Γ .

Now we turn our attention to how the players play. Let Γ be an extensive game
with perfect information, for any player i ∈ N , define Hi = {h ∈ H | P (h) = i}.
Notice that the languages in the collection (Hi)i∈N are pairwise disjoint. A
strategy of player i ∈ N in Γ is a function si : Hi → Ai. A strategy profile
s = (s1, . . . , sn) is the union of a set of n strategies, one for each player. Note
that over the tree of the game a strategy profile is a selection of an outgoing arc
for every internal node. When Γ = Γλ(v1, . . . , vn) the players can only play the
empty strategy (Hi = ∅) and thus the game has a unique strategy profile, the
empty strategy profile.

For a player i ∈ N , the adversary team is represented by −i meaning all the
other players. Given a strategy profile s the set of strategies for the team −i is
represented by s−i, formally s−i = (s1, . . . , si−1, si+1, . . . , sn).

For each strategy profile s = (s1, . . . sn) the outcome of s, O(s), is the ter-
minal history that results when each player i ∈ N follows the precepts of
si. That is, O(s) = a1 · · · ak where a1 = sP (λ)(λ) and, for any 1 ≤ i < k,
ai+1 = sP (a1...ai)(a1 . . . ai). Looking at the tree of the game, the outcome of
a strategy profile is the history associated to the unique leaf accessible from
the root following the arcs selected by the strategy profile. Note that different
strategy profiles s and s′ might determine the same outcome.

Finally, we define the utility for player i of a strategy profile s as the utility
of the outcome determined by s, that is ui(s) = ui(O(s)).

Let us consider strategies in front of subgames. Let Γ be a game with positive
length and let s = (s1, . . . , sn) be a strategy profile. The strategy profile induced

PSPACE Suffices for Deciding Nash Equilibria on Extensive Games 639

by s in the game after history h, h−1Γ , is the function h−1s. Assuming that Γ
factorizes as (i, ai1Γ1, . . . , ai�

Γ�), for any 1 ≤ α ≤ , the strategy profile profile
induced by s on Γα is a−1

iα
s.

On the reverse side we can define strategies by extension of strategies on
subgames. Assume that Γ = (i, ai1Γ1, . . . , ai�

Γ�). Given β, 1 ≤ β ≤ , and
for any α, 1 ≤ α ≤ , a strategy profile sα. The composite strategy profile is
s = (τaiβ

, ai1s
1, . . . , ai�

s�).
We have given the definitions for strategy profiles, they can be easily extended

to player strategies, replacing s by si, or to strategy profiles for the adversary
teams, replacing s by s−i. Finally, we state the definitions of Pure Nash equilib-
rium and subgame perfect Nash equilibrium as it is done in Game Theory.

Definition 4. A strategy profile s∗ in Γ is a Nash equilibrium if for every
player i ∈ N we have ui(s∗−i, s

∗
i) ≥ ui(s∗−i, si), for every strategy si of player i.

A strategy profile s∗ in Γ is a subgame perfect Nash equilibrium if for every
history h, the strategy profile h−1s∗ is a Nash equilibrium in h−1Γ .

Note that every subgame perfect Nash equilibrium is also a Nash equilib-
rium but the reverse is not always true. Furthermore, for every history h, the
strategy profile h−1s∗ is a subgame perfect Nash equilibrium in h−1Γ . Observe
that, for an empty game, the empty strategy profile is a subgame perfect Nash
equilibrium, and thus a Nash equilibrium.

3 Problems on Games and Their Input Description

As we have pointed out any finite extensive game has a strategy profile that is a
subgame perfect Nash equilibrium [11], and therefore also a pure Nash equilib-
rium. Therefore, we are interested in deciding the existence of Nash equilibria or
subgame perfect Nash equilibria that verify additional properties. We consider
the following problems.
Is pure Nash equilibrium? (IsPN). Given an extensive game Γ and a strategy
profile s, decide whether s is a Nash equilibrium of Γ .
Is pure Nash equilibrium outcome? (IsPNOut). Given an extensive game Γ and
a history h, decide whether h is the outcome of a Nash equilibrium of Γ .
Pure Nash equilibrium with guarantee (PNGrant). Given an extensive game Γ
and a positive number u, decide whether Γ has a Nash equilibrium s such that
uP (λ)(s) = u.
Is subgame perfect Nash equilibrium? (IsSPN). Given an extensive game Γ and a
strategy profile s, decide whether s is a subgame perfect Nash equilibrium of Γ .
Is subgame perfect Nash equilibrium outcome? (IsSPNOut). Given an extensive
game Γ and an history h, decide whether h is the outcome of a subgame perfect
Nash equilibrium of Γ .
Subgame perfect Nash equilibrium with guarantee (SPNGrant). Given an exten-
sive game Γ and a positive number u, decide whether Γ has a Nash equilibrium
s such that uP (λ)(s) = u.

640 C. Àlvarez, J. Gabarró, and M. Serna

The first decision to take is about the representation of a game as an input
to a program. Some of the components of a game can be given with different
degrees of succinctness. For example the player and the utility functions can be
given tabulated or by means of Turing machines. In the following definitions P
and M denote the player and utility tms and t denotes the computation time
bound. The player machine P implements a player function according to the
following convention: Given an input sequence h, P computes in time at most t
an integer i, whenever P (h) ∈ {1, . . . , n} it is interpreted as the player function
on history h; P (h) = 0 indicates that h ∈ Z; otherwise P indicates that h /∈ H .
The utility machine M on input (h, i) outputs in at most t steps ui(h). We
consider three natural ways of giving a game, according to the succinctness of
actions, player function, and utilities. The criteria are similar to those proposed
for strategic games in [1]. In the following definitions t is the computation time
bound for any tm appearing in the description.

Extensive games in implicit form. The tuple Γ = 〈1n, 1m, 1h, P,M, 1t〉 de-
scribes a game with n players, such that for any i, 1 ≤ i ≤ n, the set of actions
of player i is Σm. The set H of histories is a subset of Σmh.

Extensive games in general form. Γ = 〈1n, A1, . . . , An, 1h, P,M, 1t〉. de-
scribes a n-players game, in which, for any i, 1 ≤ i ≤ n, the set of actions of
player i is Ai, which is given explicitly. The set H of histories is a subset of
(∪1≤i≤nAi)h.

Extensive games in explicit form. The tuple Γ = 〈1n, T 〉 represents a game
with n players where T is the game tree.

Observe that an explicit description of a strategy requires space proportional
to the size of the tree associated to a game. Therefore, since strategies can be
given either implicitly or explicitly we take the following natural convention.
When a game Γ is described in a succinct (implicit or general) form, the strate-
gies will be given implicitly. A strategy is represented implicitly by a tm S,
the global strategy tm so that on any non terminal history h ∈ H \ Z out-
puts the action to be undertaken by the player that is allowed to play, formally
S(h) ∈ AP (h). In the case of games given in explicit form, the strategy will be
also represented in explicit form. This is a natural decision, having a strategy
given in explicit form as input will allow us to compute a explicit form of the
game in polynomial time. For sake of simplicity whenever we want to represent
a game and a strategy we will incorporate a unique time bound that will be used
in all the tms involved in the input’s description.

In the following sections we analyze the computational complexity of this set
of six problems depending on the form in which the input game is given.

4 A Characterization of the Outcomes of Nash Equilibria

We provide first a characterization of the existence of a Pure Nash equilibrium
with a particular outcome. This result will be crucial in the classification of prob-
lems because it reduces the computation space from exponential to polynomial.

PSPACE Suffices for Deciding Nash Equilibria on Extensive Games 641

Our recursive characterization will allow us to place the problem in PSPACE. We
start with one technical definition.

Definition 5 ((i, u)-blocking). Let Γ be an extensive game, i a player, and
u a value. We say that Γ is (i, u)-blocking if length(Γ) = 0 and ui(λ) ≤ u,or
if length(Γ) > 0 and either
– P (λ) �= i and there is a ∈ next(λ) such that a−1Γ is (i, u)-blocking, or
– P (λ) = i and, for all a ∈ next(λ), the game a−1Γ is (i, u)-blocking.

Our first result is a characterization of the previous property in terms of an
adversarial team strategy s−i that keeps player i benefit at most u.

Lemma 2. Given an extensive game Γ , a player i and value u, Γ is (i, u)-
blocking if and only if there is a strategy profile s−i such that, for any si it holds
ui(s−i, si) ≤ u.

Our second definition is the key to capture, through a recursive definition,
the concept of outcome of a Nash equilibrium as it is shown in the next result.

Definition 6 (Γ -stable). Let Γ be an extensive game and h be a terminal
history in Γ . We say that h is Γ -stable if |h| = 0 or, otherwise, assuming that
Γ = (i, ai1Γ1, . . . , ai�

Γ�) and that h = ai1h
′,

– h′ is Γ1-stable and
– for all 1 < α ≤ , Γα is (i, ui(h))-blocking.

Theorem 1. Let Γ be an extensive game with perfect information. A terminal
history h is the outcome of some Nash equilibrium iff h is Γ -stable.

The previous result is proved by induction on the length of the game. The
proof that the outcome of a Nash equilibrium is indeed Γ -stable follows from the
definitions of composition and Nash equilibrium. For the reverse side we show
how to extend the Nash equilibrium of a subtree to a Nash equilibrium of the
composition, without changing the outcome, using the definition of Γ -stable and
Lemma 2.

Our PSPACE-harness results follow from reductions from the Quantified bool-
ean formula problem (QBF). We define two extensive 2-player games Γ (Φ) and
Γ ′(Φ) associated to a boolean formula Φ ≡ ∃ x1 ∀ x2 . . .Qxn F (x1, . . . , xn).
In Γ (Φ) we set A1 = A2 = {0, 1}. Player 1 controls all the variables with
an existential quantifier and player 2 controls the other set of variables, they
alternate assigning a truth value to the variables in order, note that Z = {0, 1}n.
The utility function is given by u1(h) = F (h) and u2(h) = 1 − u1(h). In Γ ′(Φ)
we set A1 = {0, 1} and A2 = {A,B, 0, 1}. Let Γ1 = Γλ(1, 0) and set Γ ′(Φ) =
(2, AΓ1, BΓ (Φ)).

Theorem 2. Let Φ be a quantified boolean formula on n variables and let Γ =
Γ (Φ) and Γ ′ = Γ ′(Φ) (defined above). The following statements are equivalent
– Φ is satisfiable.
– Γ has a subgame perfect Nash equilibrium in which the first player gets 1.

642 C. Àlvarez, J. Gabarró, and M. Serna

– Γ has a Nash equilibrium in which the first player gets 1.
– A is the outcome of some subgame perfect Nash equilibrium of Γ ′.
– A is the outcome of some Nash equilibrium of Γ ′.

The next theorem summarizes our complexity results.

Theorem 3. For games given in explicit form, the IsPN, the PNOut and
the PNGrant problems belongs to P. For games given in general or implicit
form, the IsPN problem is coNP-complete while the PNOut and the PNGrant
problems become PSPACE-complete.

The PSPACE hardness follows from Theorem 2 and from the fact that the QBF
problem is PSPACE-complete [8]. PSPACE membership follows from Theorem 1
that allows us to design a recursive algorithm so that the number of successive
recursive calls is bounded by length(Γ) and for each recursive call we need to
store only one action.

5 A Characterization of the Outcomes of Subgame
Perfect Nash Equilibria

An alternative characterization of subgame perfect Nash is given in [12]. Consider
the one-deviation property: no player i can increase their payoff by changing their
action at the start of any subgame in which player i is the first mover, given the
other player’s strategies and the rest of player i strategy.

Lemma 3 (Proposition 438.1 of [12]). A strategy profile in a finite exten-
sive game with perfect information is a subgame perfect Nash equilibrium iff it
satisfies the one-deviation property.

For our complexity results we need a further refinement of the above property
to transfer the existence of a strategy profile to the existence of a terminal history
that is the outcome of some subgame perfect Nash equilibrium. Consider the
following property defined recursively.

Definition 7 (Γ -fixable). Let Γ be an extensive game and h be a terminal
history in Γ . We say that h is Γ -fixable if |h| = 0 or, otherwise, assuming that
Γ = Γ (i, ai1Γ1, . . . , ai�

Γ�) and that h = ai1h
′,

– h′ is Γ1-fixable and
– for all 1 < α ≤ , there is hα ∈ a−1

iα
Z such that ui(aiαh

α) ≤ ui(h) and hα is
Γα-fixable.

Now we can state the characterization of the outcomes of a subgame perfect
Nash equilibrium.

Theorem 4. Let Γ be an extensive game with perfect information. A terminal
history h is the outcome of some subgame perfect Nash equilibrium of Γ iff h is
Γ -fixable.

PSPACE Suffices for Deciding Nash Equilibria on Extensive Games 643

The next theorem summarizes our complexity results. Their proof uses argu-
ments similar to those of the proof of Theorem 3.

Theorem 5. When the game is given in explicit form, the IsSPN, the SP-
NOut and the SPNGrant problems belongs to P. When the game is given in
general or implicit form the IsSPN problem is coNP-complete while the SP-
NOut and the SPNGrant problems become PSPACE-complete.

References

1. C. Àlvarez, J. Gabarro, and M. Serna. Pure Nash equilibrium in strategic games
with a large number of actions. In MFCS 2005, pages 95–106, 2005.

2. V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. In IJCAI
2003, pages 765–771, 2003.

3. K. Daskalakis and C. Papadimitriou. The complexity of games on highly regular
graphs. In ESA 05, LNCS to appear, 2005.

4. A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure Nash
equilibria. In STOC 2004, pages 604–612, 2004.

5. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The structure and complexity of Nash equilibria for a selfish routing game. In
ICALP 2002, pages 123–134, 2002.

6. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. In ICALP
2004, pages 593–605, 2004.

7. M. Gairing, T. Lcking, M. Mavronicolas, B. Monien, and M. Rode. Nash equilibria
in discrete routing games with convex latency functions. In ICALP 2004, pages
645–657, 2004.

8. Garey and Johnson. Computers and intractability. A guide to the NP-completeness.
Freeman, 1979.

9. G. Gottlob, G. Greco, and F. Scarcello. Pure Nash equilibria: Hard and easy games.
In Theoretical Aspects of Rationality and Knowledge., pages 215–230, 2003.

10. D. Koller, N. Megiddo, and B. Stengel. Efficient computation of equilibria for
extensive two-person games. Games and Economic Behavior, 14:247–259, 1996.

11. H.W. Kuhn. Extensive games and the problem of information. In H.W. Kuhn and
A.W. Tucker, editors, Contribution to the theory of games, Volume II, number 28 in
Annals of Mathematics Studies, pages 193–216. Princeton University press, 1953.

12. M.J. Osborne. A Introductions to Game Theory. Oxford University Press, 2004.
13. M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
14. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
15. C. Papadimitriou. Algorithms, games and the Internet. In STOC 2001, pages 4–8,

2001.
16. G.R. Schoenebeck and S. Vadham. The complexity of Nash equilibria in concisely

represented games. Technical Report 52, Electronic Colloquium on Computational
Complexity, 2005.

17. B. Stengel. Computational complexity of correlated equilibria for extensive games.
Technical Report LSE-CDAM-2001-03, CDAM, 2001.

An Improved Õ(1.234m)-Time
Deterministic Algorithm for SAT

Masaki Yamamoto

Tokyo Institute of Technology
masaki.yamamoto@is.titech.ac.jp

Abstract. We improve an upper bound by Hirsch on a deterministic
algorithm for solving general CNF satisfiability problem. With more de-
tail analysis of Hirsch’s algorithm, we give some improvements, by which
we can prove an upper bound O(1.234m) w.r.t. the number m of input
clauses, which improves Hirsch’s bound O(1.239m).

1 Introduction

During the past decades, many algorithms for Boolean satisfiability problems
have been proposed, and some of them were proved to improve the nontrivial
worst-case upper bounds for the problems. Such worst-case analysis was initiated
by Monien and Speckenmeyer [6] for k-SAT. Given a formula F in conjunctive
normal form (in short, a CNF formula), the problem of deciding whether F
is satisfiable is called SAT ; for CNF formulas consisting of clauses at most k-
literals (in short, k-CNF formulas), the problem is called k-SAT. Since the work
of Monien and Speckenmeyer, k-SAT problems, in particular 3-SAT, have been
studied intensively, and various interesting algorithms have been proposed. On
the other hand, not so much improvements have been done for the general SAT
problem, the satisfiability problem for general CNF formulas. Note that CNF for-
mulas with no clause size restriction are useful for expressing some combinatorial
problems such as graph problems. In this paper, we focus on such general CNF
formulas and propose an improved algorithm for the general SAT. Throughout
this paper, we denote by n and m, the number of variables and the number of
clauses, respectively.

We briefly summarize a history of improving the bounds for SAT: randomized
algorithms and deterministic algorithms, respectively. We below give only the
exponential parts of the bounds, omitting polynomial factors.

1.1 Randomized Algorithms for SAT

The first nontrivial upper bound was given by Pudlák [7]: 2n−0.5
√

n. A slightly
better bound was given by Dantsin et al. [1]: 2n−0.712

√
n. These are bounds with

respect to the number of variables. Schuler gave an algorithm with respect to
the number of variables and clauses [8]: 2n(1−1/ log 2m). This bound is better than
2n−c

√
n for any constant c when m = o(2n).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 644–653, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Improved O(1.234m)-Time Deterministic Algorithm for SAT 645

1.2 Deterministic Algorithms for SAT

The first nontrivial upper bound was given by Dantsin et al. [1]: 2n(1−2
√

1/n log m).
A better algorithm was given by Dantsin and Wolpert [2]: 2n(1−1/ log 2m).
This was obtained by derandomizing Schuler’s algorithm [8]. These bounds
are asymptotically 2n as m gets large. Hirsch gave an algorithm of running
time: 20.30897m ≈ 1.239m. This works better than the above algorithms when
m < n/0.30897.

In this paper, we improve on Hirsch’s algorithm [5], and obtain a better algo-
rithm with 1.234m running time, which has not been improved for a few years.
The basic approach of our algorithm is the same as Hirsch’s; in fact, our al-
gorithm is almost the same. By more careful analysis, we guarantees that this
almost the same algorithm indeed achieves the desired upper bound. The ad-
vantage of our analysis is to guarantee some paths of the recursion tree of an
execution reaching a trivial formula while the recursion tree by Hirsch’s analysis
is of depth only two. See Fig. 3.

2 Preliminaries

We give some basic notions and notations, and briefly review how we analyze
the running time of splitting algorithms. Then we present Hirsch’s algorithm [5],
which we will improve in the next section.

2.1 Basic Notions and Notations

Let X be a finite set of Boolean variables. A literal is a variable x ∈ X or
its negation x̄. A clause is a disjunction of literals. We alternatively regard a
clause as a set of literals. The empty clause is interpreted as false. The size
of a clause C (denoted by |C|) is the number of literals in C. A k-clause is a
clause of size k. A k+-clause and a k−-clause are clauses of size at least k and
at most k, respectively. A conjunctive normal form (CNF for short) formula is a
conjunction of clauses. Again, we alternatively regard a CNF formula as a set of
clauses. The empty formula is interpreted as true. The size of a CNF formula F
(denoted by |F |) is the number of clauses in F . A truth assignment (assignment
for short) to X is a mapping from X to {true, false}. We denote true by 1
and false by 0. A clause is said to be satisfied by an assignment if at least
one literal in the clause is assigned 1 by the assignment. A formula is said to
be satisfied by an assignment if every clause in the formula is satisfied by the
assignment. A formula is said to be satisfiable if there exists an assignment by
which the formula is satisfied, otherwise, unsatisfiable. Given a CNF formula F ,
SAT is a problem of deciding whether F is satisfiable.

Let F be a CNF formula, and l be a literal in F . We denote by F |l=1, a formula
obtained from F by an assignment l = 1, that is, a formula transformed from
F by eliminating clauses which contain l and by eliminating l̄. Formula F |l=0 is
defined similarly. For any literal l, if it occurs positively (i.e., as l) occurs i times

646 M. Yamamoto

and occurs negatively (i.e., as l̄) j times in F , then we say that l is a (i, j)-literal.
It is equivalent to saying that l̄ is a (j, i)-literal. We sometimes call a (i, j)-literal
a i-literal for short. Also by, e.g., “(i+, j−)-literal”, we mean a (i′, j′)-literal for
any i′ ≥ i and j′ ≤ j.

As many heuristic algorithms for SAT, our algorithm (as well as Hirsch’s
algorithm) is based on “splitting” [4,3]: Given a CNF formula F . Choose an
appropriate literal l (depending on the heuristics) in F , and split F on l, that is,
obtain two sub-formulas F |l=1 and F |l=0. Then, we have that F is satisfiable iff
one of F |l=1 and F |l=0 is satisfiable. Hence, the splitting algorithm can decide
whether F is satisfiable by recursively calling this procedure above.

Sub-formulas produced by splitting can be simplified by simple transformation
rules: “pure literal elimination”, and “unit clause propagation” [4,3]. The pure
literal elimination is to assign l = 1 for any pure literal, a literal l such that l̄
never occurs in F . The unit clause propagation is to assign l = 1 if F has a clause
consisting only this literal l. Another standard rule for simplifying formulas is
“resolution”. For any literal, let C and C′ be clauses such that l ∈ C and l̄ ∈ C′
1. Then, we call (C ∪C′)\{l, l̄} the resolvent by l of C′ and C. Given a formula
F and a literal l in F , the resolution on l is the following procedure: (1) add to
F all resolvents by l, and (2) eliminate from F all clauses containing l or l̄. Note
that all these three operations do not change the satisfiability of a given formula
F ; that is, letting F ′ be a formula obtained by one of these operation to F , we
have F is satisfiable iff F ′ is satisfiable [4].

The pure literal elimination and unit clause propagation always decrease the
number of variables as well as the formula size, i.e., the number of clauses of
a formula. On the other hand, the resolution does not necessarily decreases
formula size while the number of variables does decrease. There are, however,
we can guarantee some formula size reduction; when a resolution is made on
some 1-literal, then the number of clauses gets decreased. Such a resolution is
called 1-literal resolution.

Hirsch’s algorithm makes use of one more simplification rule, which is based on
the black-and-white literal principle [?]. For a given formula F , suppose that all
(2, 3)-literals appear with some (3, 2)-literals in F ’s clauses; that is, every clause
containing a (2, 3)-literal also has some (3, 2)-literal. Then we can simply assign
false to all (2, 3)-literals, which does not change the satisfiability ofF . This is be-
cause by this assignment, any clause containing (2, 3)-literal is satisfied by some
co-existing (3, 2)-literal that is the negation of some (2, 3)-literal and hence is as-
signed true. We call this simplification (2, 3)-literal elimination by the black-and-
white literal principle. Though the case where this simplification is applicable is
rare, it removes one special case, which helps us to design a splitting algorithm.

2.2 Analysis of the Running Time of Splitting Algorithms

An execution of a splitting algorithm can be considered as a branching tree, whose
nodes are labelled with formulas. That is, given a formula F and a variable x
1 In the standard definition of resolution, it is also required that l is the only literal

such that l ∈ C and l̄ ∈ C′. But here we may remove this restriction.

An Improved O(1.234m)-Time Deterministic Algorithm for SAT 647

which an execution of the splitting algorithm is split on. Then, in the branching
tree, a node labelled with F has two children labelled with F |x=1 and F |x=0,
respectively. We abuse a formula as a node labelled with the formula. Note
that the running time of a splitting algorithm is a polynomial of input length
times the number of leaves of the branching tree. Let F be a formula labelling
a node of a branching tree, and F1, · · · , Fs be its children. A branching vector
of a node is an s-tuple (t1, · · · , ts), where ti is a positive number bounded by
|F | − |Fi|. The characteristic polynomial of a branching vector t is defined by
ht(x) = 1−

∑s
i=1 x

−ti . Then, the equation ht = 0 has exactly one positive root,
which means that it is the largest root of the equation. We denote this root by
τ(t), and call it the branching number at the node of F . The branching number
of a branching tree is the largest branching numbers among all its nodes, denoted
by τmax. The following lemma proved by Kullmann and Luckhardt allows us to
estimate the number of leaves in a branching tree. (See [5] for the details.)

Lemma 1. Let τmax be the branching number of a branching tree representing
an execution of a splitting algorithm which has taken as input a CNF formula
F with m clauses. Then the number of leaves in the branching tree does not
exceed (τmax)m.

2.3 Hirsch’s Algorithm

We now review Hirsch’s algorithm [5], which we denote HIRSCH(·) in this paper.
Hirsch’s algorithm (see below for the description2) makes two types of splits. For
both splits, split literals are chosen among all possible ones so that a branching
number satisfies some specified bounds3. For each splitting (i.e., after fixing
split literal value(s)), the simplification explained above is made on formulas.
For any formula F , let REDUCE(F) be a formula obtained by applying to F
one of the following operations until no further simplification is made: pure
literal elimination, unit clause propagation, resolution such that the number of
clauses doesn’t increase, and (2, 3)-literal elimination by the black-and-white
literal principle.

Function HIRSCH(F)
If F = ∅ (meaning F is satisfiable), then return true.
If ∅ ∈ F (meaning F is unsatisfiable), then return false.

(S1) Splitting into two sub-problems.
For any literal l in F , consider the following split.

F1 = REDUCE(F |l=1) and F0 = REDUCE(F |l=0).

2 For our later explanation, we state a description slightly different from the original
one; but it is not so hard to check that they are equivalent.

3 Intuitively, splitting is better if more clauses are removed with smaller branching
variables, and the optimal one should be chosen. But for our target upper bound,
we only have to choose one satisfying the specified bounds.

648 M. Yamamoto

If there exists some literal l with branching number τ(|F | − |F1|, |F | − |F0|)
≤ τ(3, 4), then execute this split, i.e., call HIRSCH(F1) and HIRSCH(F0)
and return HIRSCH(F1) ∨ HIRSCH(F0).

(S2) (If the condition of (S1) fails, then) Splitting into four sub-problems.
For any literal l in F , and any literals l′ and l′′ in F |l=1 and F |l=0 respec-
tively, consider the following split.

F11 = REDUCE(F |l=1,l′=1), F10 = REDUCE(F |l=1,l′=0), and
F01 = REDUCE(F |l=0,l′′=1), F01 = REDUCE(F |l=0,l′′=0).

Then, as it is shown in [5], there must be some split satisfying τ(|F | −
|F11|, |F | − |F10|, |F | − |F01|, |F | − |F00|) ≤ τ(6, 7, 6, 7). Choose one of such
splits, call HIRSCH(F11), HIRSCH(F10), HIRSCH(F01), and HIRSCH(F00),
and return true iff one of these calls yields true.

Note that τ(6, 7, 6, 7) < τ(3, 4), and in [5], it is shown that branching
number ≤ τ(6, 7, 6, 7) can be achieved at each split in the recursive execution
HIRSCH(F) for any formula F . This proves the following bound.

Theorem 1. (Hirsch [5]) Given a CNF formula F with m clauses as input. The
algorithm HIRSCH(F) decides whether F is satisfiable in time τ(6, 7, 6, 7)m =
20.30897m ≈ 1.239m.

3 Improving on Hirsch’s Algorithm

In this section, we give an algorithm and prove that it runs in time 1.234m. Our
algorithm is almost the same as Hirsch’s, with some very minor modification on
the function HIRSCH(·). What is important is that by careful analysis we prove
that this almost the same algorithm indeed achieves the desired upper bound.
Let us define some terminologies to give an overview of our analysis.

Definition 1. Let F be a CNF formula, and let l and l′ be literals of F such
that a clause of F contains l and l′ both. We say that l and l′ are coincident
(alternatively say that l is coincident with l′) if there is another clause in F
containing l and l′ both.

Definition 2. Let F be a CNF formula. We say that F is normal if there are
only (3−, 3−)-literals in F , and there is no pair of coincident literals in F .

Consider any recursive execution of HIRSCH(·). Suppose that a formula F
input to HIRSCH(F) consists of only (3, 3)-literals. If there exists a pair (l, l′)
of coincident literals in F , we can proceed into step (S1) (not into (S2)), where
we split F on l and resolve F |l=1 on l′ into a formula with size one fewer. Thus,
the branching number at F is τ(3, 4). Otherwise, i.e., if there exists no pair of
coincident literals in F , that is, F is normal with no 2−-literals, then we proceed
into step (S2), where we split F on an arbitrary literal l. and then we choose

An Improved O(1.234m)-Time Deterministic Algorithm for SAT 649

an appropriate literal for each of F1 = F |l=1 and F0 = F |l=0, which has the
branching number τ(3, 4). Since each assignment l = 1 and l = 0 eliminates three
clauses, we can obtain F has the branching number τ(6, 7, 6, 7). This analysis of
the worst case is exactly Hirsch’s, and the recursion tree corresponding to the
analysis is of depth two. See the tree enclosed with the dotted line in Fig. 3. We
will show that in the worst case, for each root node of F1 and F0 there exists at
least one path from the root to a leaf such that every node of the path has the
branching number τ(3, 4). See the recursion tree below in Fig 3. The following
lemma guarantees such a bound.

Lemma 2. Given a CNF formula H with h clauses. Suppose that H is normal,
and contains at least one 2−-literal. Then, one of the followings is satisfied: (a)
H has a 1−-literal, (b) H has one of the following branching numbers: τ(4, 4)
and τ(3, 5), and (c) we have sub-formulas H ′ with |H ′| = h − 3 and H ′′ with
|H ′′| = h− 4 (meaning H has the branching number τ(3, 4)) such that H ′ and
H ′′ are two children of H and at least one of H ′ and H ′′ is normal with a
2−-literal.

This lemma works in our algorithm as follows. Consider the previous formulas
F1 and F0, which are normal with a 2−-literal. Then, we can apply the lemma
to F1 and F0, and split each of F1 and F0 as (a), (b), or (c) of the lemma.
The precise algorithm of the splitting is stated in the proof of the lemma. (We
denote our algorithm by HIRSCH′(·).) According to the lemma, ifH only has the
branching number τ(3, 4), then at least one of the two children has the branching
number τ(3, 4). Furthermore, this recursively repeats to a leaf (meaning a trivial
formula), or until a node with the branching number (3, 5) or (4, 4) (or even
better) found. We call such a path (3, 4)-path. It is not hard to see that the
worst case of possible branching trees is a tree as shown below: a node with the
branching number τ(3, 4) continues to grow along the branch where four clauses
are eliminated.

We call such a tree structure in Fig. 3 the worst case branching tree. In the
branching tree, a black node represents a formula F at which the worst case
branching tree resume, and a white node represents a formula of an inner node
of the worst case branching tree. The number which an edge has in the figure is
the number of eliminated clauses in the transformation from a parent node to
its child node.

The proof of the lemma
We first assume that there is no 1−-literal in H . (We have excluded (a).) Thus,
we only have the following types of literals in H : (3, 3)-literals, (2, 3)-literals,
(3, 2)-literals, and (2, 2)-literals.

We first consider the case that there exists a (2, 3)-literal in H . Let x be a
(2, 3)-literal. We further consider the following sub-cases:

(1) : x occurs with a (3, 3)-literal in any clause
(2) : x occurs with a (2, 2+)-literal in a 2-clause
(3) : x occurs with only (2, 2+)-literals in a 3+-clause

650 M. Yamamoto

F

3 3

3 4

3 4

3 4

3 4

3 4

3 4

F1 F0

Hirsch’s Bound

Fig. 1. The branching tree in the worst case

Let y be a (3, 3)-literal of (1). Branching on y, the assignment y = 1 makes
x become a 1-literal (since exactly one occurrence of x is eliminated because
of no coincidence). Thus, that decreases at least one additional clause by the
resolution on x, and this branch y = 1 totally decreases at least four clauses.
Let H ′′ = resx(H |y=1) where resw(W) is a formula derived from W by the
resolution on w. On the other hand, the assignment y = 0 eliminates three clauses
containing ȳ, that results in H ′ = H |y=0. It is clear that H ′ is normal (since
H ′ is obtained from H just by eliminating literals and clauses). Suppose (on the
contrary to (c)) that H ′ (as well as H ′′) has no 2−-literals, which means that
H ′ consists of only (3, 3)-literals. On this assumption, clauses of H containing ȳ
must have contained a 1-literal since any literal but (1, 1)-literals, (1, 0)-literals,
and (0, 1)-literals becomes a 2−-literal in H ′ (because of no coincidence). This
is a contradiction to our assumption (which is there is no 1-literal in H). Thus,
H ′ is normal with a 2−-literal. (This case satisfies (c).)

Let y be a (2, 2+)-literal of (2), i.e., the 2-clause C is x ∨ y. Branching on x,
the assignment x = 1 makes y become a 1-literal. Thus, this branch x = 1 totally
decreases at least three clauses. (Let H ′ = resy(H |x=1).) On the other hand, the
assignment x = 0 makes C become a unit clause, i.e., C = (y), forcing y = 1.
Thus, the assignment x = 0 and y = 1 eliminates at least four clauses (three
clauses containing x̄ and C itself), that results in H ′′ = H |x=0,y=1. It is clear
that H ′′ is normal. If the other occurrence of y doesn’t occur with x̄ in H , then
the assignment x = 0 and y = 1 eliminates five clauses (|H ′′| = h−5), therefore,
H has the branching number τ(3, 5). Otherwise (i.e., the other occurrence of y
occurs with x̄ in H), the assignment x = 0 and y = 1 eliminates exactly four

An Improved O(1.234m)-Time Deterministic Algorithm for SAT 651

clauses. Suppose (again on the contrary to (c)) that H ′′ (as well as H ′) has no
2−-literals. On this assumption, clauses of H containing x̄ must have contained
a 1-literal. This is a contradiction to our assumption. Thus, H ′′ is normal with
a 2−-literal. (This case satisfies (c).)

Let y and z be those (2, 2+)-literals of (3), i.e., the 3+-clause C is x∨y∨z∨· · · .
Branching on x, the assignment x = 1 makes y and z become 1-literals. Thus,
that decrease at least additional two clauses by each resolution on y and z
(because of no coincidence), and this branch x = 1 totally decreases at least four
clauses. (Let H ′′ = resy,z(H |x=1).) On the other hand, the assignment x = 0
eliminates three clauses containing x̄, that results in H ′ = H |x=0. By the same
argument as the previous, we can conclude that H ′′ is normal with a 2−-literal.
(This case satisfies (c).)

If there is no such (2, 3)-literal x as (1), (2), or (3) above, that means, each
(2, 3)-literal occurs with some (3, 2)-literal, then we can assign true to all of
(3, 2)-literals with no effect on satisfiability of H . (This is by the black-and-
white literals principle.)

We next consider the case that there is no (2, 3)-literal in H , which means
that there are only (2, 2)-literals and (3, 3)-literals in H . Let x be a (2, 2)-literal.
If x occurs with a (3, 3)-literal in any clause, it is the same case as (1). Otherwise,
that is, every (2, 2)-literal occurs with only (2, 2)-literals, let C1, C2 be clauses
containing x, and let D1, D2 be clauses containing x̄. We consider the following
sub-cases:

(4) : for one of Ci, |Ci| ≥ 3 and for one of Di, |Di| ≥ 3
(5) : |C1| = |C2| = 2 and |D1| = |D2| = 2
(6) : either |C1| = |C2| = 2 or |D1| = |D2| = 2

For (4), let |C1| ≥ 3 and |D1| ≥ 3, i.e., C1 = (x∨ y ∨ z ∨ · · ·) for some literals
y, z, and D1 = (x̄ ∨ y′ ∨ z′ ∨ · · ·) for some literals y′, z′. Branching on x, the
assignment x = 1 makes y and z become 1-literals. Thus, this branch x = 1
totally decreases at least four clauses. The assignment x = 0 is the same as
x = 1. Therefore, H has the branching number τ(4, 4).

For (5), let C1 = (x∨y), C2 = (x∨z) for some literals y, z, and D1 = (x̄∨y′),
D1 = (x̄∨z′) for some literals y′, z′. Branching on x, the assignment x = 1 makes
D1 and D2 become unit clauses, i.e., D1 = (y′) and D2 = (z′), forcing y′ = 1
and z′ = 1. Thus, this branch x = 1 totally decreases at least four clauses. The
assignment x = 0 is the same as x = 1. Therefore, H has the branching number
τ(4, 4).

For (6), let |C1| = |C2| = 2, i.e., C1 = (x ∨ y) and C2 = (x ∨ z) for some
literal y, z. Note that for at least one of D1 and D2, the size is at least three.
Branching on x, the assignment x = 1 makes y and z become 1-literals. That
only guarantees to decrease at least one additional clause by the resolution on y
or z because the other occurrences of y and z could be in the same clause. Thus,
this branch x = 1 totally decreases at least three clauses. On the other hand,
the assignment x = 0 makes C1 and C2 become unit clauses, i.e., C1 = (y) and
C2 = (z), forcing y = 1 and z = 1. If one of the other occurrences of y and z
doesn’t occur with x̄, this branch x = 0 totally decreases at least five clauses.

652 M. Yamamoto

Then, H has the branching number τ(3, 5). Otherwise, i.e., the other occurrences
of y and z both occur with x̄, it only guarantees that this branch x = 0 totally
decreases at least four clauses. However, there should be another (2, 2)-literal w
occurring with x̄ (since |D1| ≥ 3 or |D2| ≥ 3). The literal w becomes a 1-literal
by x = 0 and y = z = 1. Thus, the assignment x = 0 decreases at least one more
additional clause by the resolution on w, and this branch x = 0 totally decreases
at least five clauses. Therefore, H has the branching number τ(3, 5). �

Remark 1. We should apply REDUCE(·) where the resolution which doesn’t
decrease the number of clauses is prohibited, to the transformation between
formulas on the (3, 4)-path. This is because otherwise, the resolution could spoil
the coincidence of formulas while the number of clauses does not decrease by
that resolution.

Lemma 3. The number of leaves in the worst case branching tree shown in Fig.
3 whose root is a formula with size m, is at most O(1.234m).

Proof. Let T (m) be the number of leaves in the sub-tree whose root is a black
node with m clauses. Let S(m) be the number of leaves in the sub-tree whose
root is a white node with m clauses. Then, we have recurrent equations:

T (m) = 2S(m− 3)
S(m− 3) = T (m− 6) + S(m− 7)

From two equations above, we obtain T (m) = O(1.234m). (This comes from
the following calculation: We first obtain S(m) = S(m − 4) + 2S(m − 6) from
the equations, and then the characteristic polynomial 1− 1/x4 − 2/x6 = 0 is de-
rived from the recurrent equation. This polynomial corresponds to the branching
number τ(4, 6, 6) ≈ 1.234, which means S(m) = O(1.234m).) �

Theorem 2. Given a CNF formula F with m clauses. The upper bound of the
running time of HIRSCH′(F) is Õ(1.234m).

4 Conclusion

We have shown the bound 1.234m for m clauses by improving on the case of
formulas consisting of only (3, 3)-clauses. We have so far obtained the branching
number τ(3, 4) except for such case. Thus, if we also obtained the same branching
number for that case, we could improve our bound to τ(3, 4)m ≈ 1.221m.

Acknowledgement

I thank Prof. Osamu Watanabe for all his support: giving valuable comments,
discussing elaborately, and improving this paper. I also thank Prof. Kazuhisa
Makino for discussing about what this paper concerns.

An Improved O(1.234m)-Time Deterministic Algorithm for SAT 653

References

1. Dantsin E., Hirsch E. A., and Wolpert A., “Algorithms for SAT based on search in
Hamming balls”, Proc. of the 21st Annual Symposium on Theoretical Aspects of
Computer Science (STACS04), 141-151, 2004.

2. Dantsin E. and Wolpert A., “Derandomization of Schuler’s algorithms for SAT”,
Proc. of the 7th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT04), 69-75, 2004.

3. Davis M., Logemann G., and Loveland D., “’A machine program for theorem-
proving”, Comm. ACM(5), 394-397, 1962.

4. Davis M., and Putnam H., “A computing procedure for quantification theory”, J.
of ACM(7), 201-215, 1960.

5. Hirsch E. A., “New Worst-Case Upper Bounds for SAT”, J. of Automated Reason-
ing, 24, 397-420, 2000. (It is also in Proc. of the 9th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA98), 521-530, 1998.)

6. Monien B, and Speckenmeyer E., “Solving satisfiability in less than 2n steps”, Dis-
crete Appl. Math.(10), 287-295, 1985.

7. Pudlák P., “Satisfiability - algorithm and logic”, Proc. of the 23rd International
Symposium on Mathematical Foundations of Computer Science (MFCS98), 129-
141, 1998.

8. Schuler R., “An algorithm for the satisfiability problem of formulas in conjunctive
normal form”, J. of Algorithms, 54 40-44, 2005.

Solving Minimum Weight Exact Satisfiability
in Time O(20.2441n)

Stefan Porschen

Institut für Informatik, Universität zu Köln, D-50969 Köln, Germany
porschen@informatik.uni-koeln.de

Abstract. We show that the NP-hard optimization problem minimum
weight exact satisfiability for a CNF formula over n propositional vari-
ables equipped with arbitrary real-valued weights can be solved in time
O(20.2441n). To the best of our knowledge, the algorithm presented here is
the first handling the weighted XSAT optimization version in non-trivial
worst case time.

Keywords: minimum weight exact satisfiability, branching tree, mini-
mum perfect matching, exact algorithm, NP-completeness.

1 Introduction and Notation

Recently, the exact satisfiability problem (XSAT, also called 1-in-SAT) attracted
much attention regarding the decision and the counting versions [3,2,4,7]. XSAT
gets as input a conjunctive normal form (CNF) formula C over Boolean variables
x ∈ {0, 1} and asks whether there exists a truth assignment setting exactly
one literal in each clause of C to 1. The first breakthrough-result by Monien,
Speckenmeyer, and Vornberger [6], regarding the decision variant XSAT, dates
back to 1981 and provides an algorithm of O(20.2441n) time deciding XSAT for a
CNF formula over n propositional variables. Until 2003 this bound has been the
best known, then, based on the techniques in [6], it has been slightly improved to
O(20.2325n) by Byskov et al. in [2]. Also Dahllöf et al. in 2004 [4], presented an
XSAT decision algorithm using a different methodology but having worst case
time O(20.2519n).

In this paper we address the optimization problem minimum weight XSAT
(MINW-XSAT). Given a CNF formula whose variables are equipped with arbi-
trary real-valued weights, MINW-SAT searches for an XSAT model of minimum
weight. We show that MINW-XSAT can be solved in worst case time O(20.2441n).
Our algorithm essentially uses the branching strategy provided in [6], and in ad-
dition it benefits from appropriate simplification steps preserving the minimum
weight XSAT status of each intermediate weighted formula.

Let us fix some terminology. A literal is a propositional variable x ∈ {0, 1}
or its negation x := ¬x (negated variable). The complement of a literal l is l.
A clause c is the disjunction of different literals and is represented as a literal
set. A CNF formula C is a conjunction of different clauses and is represented
as a clause set. Throughout we use the term formula meaning a clause set as

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 654–664, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving Minimum Weight Exact Satisfiability in Time O(20.2441n) 655

defined. For a given formula C, clause c, by V (C), V (c) we denote the set of
variables contained in C, c, respectively. Similarly, given a literal l, V (l) denotes
the underlying variable. V+(C) (resp. V−(C)) denotes the set of all variables
occuring unnegated (resp. negated) in C. We distinguish between the length
‖C‖ of a formula C and the number |C| of its clauses. Let CNF denote the set
of all formulas and let CNF+ denote the set of positive monotone formulas, i.e.,
each clause contains only variables, no negated variables. C ∈ CNF+ is called a
matching formula if each x ∈ V (C) occurs at most twice in C. For C ∈ CNF+,
a clause c ∈ C is called a 2-3-clause if c contains a variable x that occurs at
least three times in C and all other variables in c occur at least twice in C. A
formula C ∈ CNF+ containing a 2-3-clause is called a 2-3-formula. C ∈ CNF+
is called a 1-3-formula if each clause c ∈ C that contains a variable occuring
at least three times in C also contains a unique variable in C. Observe that an
arbitrary formula C ∈ CNF+ either is a matching formula, or a 2-3-formula, or
a 1-3-formula.

The exact satisfiability problem (XSAT) asks in its decision version, whether
there is a truth assignment t : V (C) → {0, 1} assigning exactly one literal in
each clause of C to 1, such a truth assignment is called XSAT model or x-
model. XSAT is known to be NP-complete [8]. In the search version one has
to decide whether C ∈ XSAT and in positive case one has to find a x-model t
for C. The empty set also is a formula: ∅ ∈ CNF which is exactly satisfiable.
However, a formula C containing the empty clause cannot be exactly satisfiable.
An optimization variant of XSAT naturally appears when weights are assigned
to the variables: Given C ∈ CNF and w : V (C) → R, problem MINW-XSAT
asks whether C ∈ XSAT and in the positive case one has to find a minimum
x-model for C, i.e., a model t of the least weight among all x-models of C. The
weight of a x-model t is defined by w(t) =

∑
x∈t−1(1) w(x) =

∑
x∈V (C) w(x)t(x).

Observe that MINW-XSAT is NP-hard.
Organisation of the paper: Section 2 describes the global structure of our

branching algorithm, followed by an explanation of the simplification steps in
Section 3. In Section 4 the formulas corresponding to the leaves of the branching
tree are shown to be polynomial-time solvable. In Section 5 we analyse the
branching strategy and show that our algorithm runs in O(20.2441n) worst case
time.

2 Structure of the Algorithm

The main method of the algorithm is branching, that means, at a given state, we
take a variable x of the current formula and obtain two branches by setting it to
0 resp. to 1. So, a binary search tree, the branching tree is generated in a depth
first search manner. Its root node corresponds to the input formula equipped
with the input variable weight function, and all other nodes correspond to those
weighted formulas that are calculated by branching at a variable of its parent
node formula and simplifying afterwards. The leaf nodes of the branching tree
correspond to weighted matching formulas. As we shall see in Section 4, we can

656 S. Porschen

compute a minimum weight XSAT solution in polynomial time for a matching
formula. Clearly, each leaf defines a unique path to the root in the branching tree.
Suppose that each simplification step performed at every weighted node formula
preserves its minimum weight exact satisfiability status in the sense that we
can obtain a minimum weight solution for the non-simplified formula if we have
a minimum weight XSAT solution for the simplified one. Hence traversing the
path bottom up to the root setting variables according to the current path and
performing the reverse simplification steps, we obtain at the root, with respect
to the current path, a global minimum weight XSAT solution. Doing so for each
leaf when expanding the tree, we obviously get a global minimum weight XSAT
solution for the input formula. Storing the branching and simplification infor-
mation of the current path in a stack we are able to obtain the correct inverse
transformation in constant time when traversing bottom up along that path to
the root node. Thus a global solution, if existing, is found if we have traversed
each root-leaf path twice, once top-down and once bottom-up. Next we state our
algorithm constructed as a procedure recursively calling itself until the global
solution is found, if it exists.

Algorithm MINW-XSAT(C,w, sol, currsol, S):
Input: C ∈ CNF, w : V (C) → R
Output: Minimum weight XSAT model sol for (C,w), or nil

begin
(1) if C contains the empty clause then return nil
(2) SIMPLIFY(C,w, currsol, S)
(3) if C is a matching formula then
(4) MINPERFMATCH(C,w, currsol, S)
(5) RETURNTOROOT(C,w, currsol, S)
(6) S ← empty stack
(7) if sol weight > currsol weight then sol ← currsol

end if
(8) if C is a 2-3-Formula then BRANCHING-MSV(C,w, currsol, S)
(9) if C is a 1-3-Formula then BRANCHING(C,w, currsol, S)
end

Any internal statement in each of the subprocedures of Algorithm MINW-XSAT
is followed by a recursive call of itself. The algorithm uses two parameters
currsol, sol for storing the current local solution, resp. the current global so-
lution. Initially, i.e., before the first call of MINW-XSAT is performed, both pa-
rameters are assumed to be set to nil. Moreover the weights of the corresponding
solutions, i.e., currsol weight and sol weight are initially assumed to be set to
∞. Further, a stack S is used for storing the history of the path from the root to
the current node in the branching tree: For a current node of the branching tree,
this history consists of the simplifications made in each predecessor node during
Procedure SIMPLIFY (cf. Section 3) and also by the variable assignments de-
termining that branching path. Branching at a node in form x ← 0 and x ← 1
yields two subproblem instances by evaluating the current formula accordingly.

Solving Minimum Weight Exact Satisfiability in Time O(20.2441n) 657

For sequentially treating the resulting subformulas in the recursive procedure,
the current stack S is passed to each of them as parameter. Branching operations
are executed in Procedures BRANCHING-MSV, line (8), and BRANCHING in
line (9) of the algorithm as long as the current formula is no matching formula
(cf. Section 5).

If the current formula is a matching formula, then a leaf of the tree is reached
(line (4)). During Procedure MINPERFMATCH a minimum weight exact solu-
tion is explicitly computed (cf. Section 4). Afterwards in Procedure RETURN-
TOROOT, the operations stored in the stack are performed on the found local
solution inversely and in reversed order yielding a minimum solution with respect
to the current branching tree path.

3 Simplifying Transformations

Now we present the simplifying transformations performed on a current formula
in Procedure SIMPLIFY of Algorithm MINW-XSAT. These transformations are
invertible and preserve the minimum weight XSAT status of weighted formulas in
the sense that from a minimum weight XSAT solution of the image formula one
can compute in polynomial time a minimum weight XSAT solution of the original
formula. This set of transformations ensures that a current formula particularly
satisfies the conditions needed for BRANCHING-MSV as given in [6]. Without
explicitly mentioning it is understood that all transformations are put on the
stack. Before beginning, we state a useful tool. Let X(C) denote the set of all
(total) x-models of C. Similarly, given w : V (C) → R, let Xmin(C,w) ⊆ X(C)
denote the set of all minimum weight x-models of C with respect to w.

Lemma 1. For C,C′ ∈ CNF and arbitrary real-valued weight functions w,w′

defined on V (C) resp. V (C′), assume that there exists a bijection

F : X(C) � t '→ t′ := F (t) ∈ X(C′)

such that (∗): w(t) = w′(t′) + α, where α ∈ R is a constant independent of
t and t′. Then Fmin := F |Xmin(C,w) is a bijection between Xmin(C,w) and
Xmin(C′, w′); and we have |Xmin(C,w)| = |Xmin(C′, w′)|.

Proof. Let t ∈ Xmin(C,w) and assume that t′ := Fmin(t) �∈ Xmin(C′, w′). Then
there is a model t′0 ∈ X(C′) with w′(t′0) < w′(t′). Let t0 := F−1(t′0) be the
corresponding x-model of C. Applying (∗) twice we obtain w(t0) = w′(t′0) +
α < w′(t′) + α = w(t), contradicting the assumption that t is minimum. Hence
Fmin(t) ∈ Xmin(C′, w′) holds for each t ∈ Xmin(C,w).

Finally, let t′ ∈ Xmin(C′, w′) and assume t := F−1(t′) �∈ Xmin(C,w)). Then
there is a model t0 ∈ X(C′) with w(t0) < w(t). Let t′0 := F (t0) be the cor-
responding x-model of C′. As above, by (∗), we derive w′(t′0) = w(t0) − α <
w(t) − α = w′(t′), contradicting the assumption that t′ is minimum. Hence
F−1(t′) ∈ Xmin(C,w) holds for each t′ ∈ Xmin(C′, w′). Thus, F−1 restricted to
Xmin(C′, w′) equals F−1

min from which the assertion follows. ��

658 S. Porschen

Some easy steps:

Step 1: Initially the input formula is duplicate-free. If an intermediate formula
contains a clause c repeatedly, all except for one occurences of c can obviously
be removed, independent of weights.
Step 2: Similarly, if a clause contains the same literal twice, all except for one
can be set to 0, since all have the same weight.
Step 3: If C contains a unit clause, then the literal must be set to true in each
XSAT model of the current formula, hence unit clauses can be removed from C.
Step 4: This step is to remove 2-clauses from a current formula. In the following,
we call a formula cp-free if none of its clauses contains a complemented pair of
variables.

Lemma 2. For C ∈ CNF cp-free and w : V (C) → R, let c ∈ C be a 2-clause.
Then there is a pair (C′, w′), w′ : V (C′) → R, such that C′ does not contain c
and each t′ ∈ Xmin(C′, w′) uniquely determines an element t ∈ Xmin(C,w).

Proof. For (C,w) with C ∈ CNF cp-free and w : V (C) → R, let c = {l1, l2} ∈ C
and V (c) = {x1, x2}, where xi = V (li). Case 1: V (c)∩V (C−{c}) = ∅. Then we
set C′ := C − {c}, hence V (C′) = V (C) − V (c), and define w′ as the restriction
w′ := w|V (C′). Because c can be treated independently, this case is clear. Case
2: V (c)∩V (C−{c}) �= ∅. Now, we define C′ as the formula that is obtained from
C by first removing c and second replacing each occurence of l2 (l̄2) by l̄1 (l1).
It is easy to see that (∗∗): C ∈ XSAT iff C′ ∈ XSAT and V (C′) = V (C) −{x2}.
For defining w′ we distinguish two cases. We either have (i) c = {x1, x̄2} (resp.
c = {x̄1, x2}), or (ii) c = {x1, x2} (resp. c = {x̄1, x̄2}).

In subcase (i), obviously holds: (a) each truth assignment t x-satisfying C
hence c necessarily fulfills t(x1) = t(x2). We define w′ as w′(x1) := w(x1)+w(x2)
and w′(x) = w(x) for each x ∈ V (C′)−{x1}. Define the map F : X(C) → X(C′)
as follows: for each t ∈ X(C), let F (t) := t′ = t|V (C′), and for each t′ ∈
X(C′), we set F−1(t′) := t uniquely defined by the extension to V (C) by setting
t(x2) := t(x1). Clearly, F is well defined because of (∗∗) and is a bijection,
because for given t the value F (t) is uniquely determined. Indeed suppose there
exists t1 ∈ X(C) such that F (t1) = F (t). Then t, t1 can be different at t(x2) only
because all other values are the same, especially t(x1) = t1(x1), and by (a) we
obtain t(x2) = t(x1) = t1(x1) = t1(x2). The converse direction is obvious.

Now we prove that relation (∗) in Lemma 1 holds true for F , from which the
proof for subcase (i) follows immediately. So, let t ∈ X(C), then by t(x1) = t(x2):

w(t) = [w(x1) + w(x2)]t(x1) +
∑

x∈V (C)−{x1,x2}
w(x)t(x)

= w′(x1)t′(x1) +
∑

x∈V (C′)−{x1}
w′(x)t′(x) = w′(t′)

Subcase (ii) proceeds completely analogously taking into account that each truth
assignment t x-satisfying c necessarily fulfills t(x1) = 1 − t(x2). ��

Solving Minimum Weight Exact Satisfiability in Time O(20.2441n) 659

The next steps are used to recursively obtain a positive monotone formula,
i.e., to get rid of negated literals:

Step 5: If a clause contains more than one complemented pairs, then it can never
be exactly satisfiable, hence a formula containing such a clause has 0 x-models.
However, clauses containing exactly one complemented pair can be removed from
the formula such that the minimum x-model sets are in bijection, as stated in
the following lemma which can be proven applying Lemma 1:

Lemma 3. For C ∈ CNF with weight function w : V (C) → R, let c ∈ C contain
exactly one complemented pair: x, x ∈ c. Let Cc be the formula obtained from C
by removing c and assigning all literals to 0 that occur in c′ := c − {x, x} and
finally removing all duplicate clauses. Let wc be the restriction of w to V (Cc) =
V (C) − V (c′). Then: |Xmin(C,w)| = |Xmin(Cc, wc)|.

Step 6: The transformation in the next lemma removes literals exclusively oc-
curing negated; its correctness also can easily be proven using Lemma 1.

Lemma 4. For a cp-free formula C ∈ CNF with weight function w : V (C) → R,
let x ∈ V (C) be a variable occuring negated, only, in C. Let Cx be the formula
obtained from C by replacing each occurence of x by x and let wx : V (C) → R be
defined as w except for wx(x) := −w(x). Then: |Xmin(C,w)| = |Xmin(Cx, wx)|.

Step 7: Next we state a transformation called simple resolution which in a
different form is used in [6]. Let C(l) := {c ∈ C : l ∈ c}, for a literal l.

Lemma 5. Let C ∈ CNF be a cp-free formula and w : V (C) → R be an arbi-
trary weight function. Let ci = {x} ∪ u, cj = {x} ∪ v ∈ C where x ∈ V (C) and
u, v are literal sets. Let Cij be the formula obtained from C as follows:

(1) Replace every clause c ∈ C(x) by the clause c− {x} ∪ v,
(2) replace every clause c ∈ C(x) by the clause c− {x} ∪ u,
(3) set all literals in u ∩ v to 0,
(4) remove all duplicate clauses from the current clause set.

Let wij := V (Cij) → R be the weight function defined as follows: for each
y ∈ V (Cij) − V (u⊕ v), set wij(y) := w(y), and
(1’) if V+(u⊕v)∩V−(u⊕v) = {z}, then set ∀y ∈ V (u⊕v)−{z} : wij(y) := w(y)
and

wij(z) :=
{
w(z) + w(x), if z ∈ u, z ∈ v
w(z) − w(x), else

(2’) if V+(u ⊕ v) ∩ V−(u ⊕ v) = ∅, then set ∀y ∈ V (v − u) : wij(y) := w(y)
and ∀y ∈ V+(u − v) : wij(y) := w(y) − w(x) and ∀y ∈ V−(u − v) : wij(y) :=
w(y) + w(x).
Then we have V (Cij) = V (C) − {x} − V (u ∩ v), |Cij | ≤ |C| − 1 and:
|Xmin(C,w)| = |Xmin(Cij , wij)|.

Proof. Since C is assumed to be cp-free and clauses are duplicate-free, neither
u nor v can contain x or x. It follows that, because of (1), (2), (3), ci and cj
are transformed into the same clause u⊕ v (denoting the symmetric difference),

660 S. Porschen

hence x disappears from the variable set and, because of (4), we also have |Cij | ≤
|C| − 1. Hence, we obtain V (Cij) = V (C) − {x} − V (u ∩ v), because no other
variable can be removed during step (4).

Consider the map F : X(C) � t '→ F (t) := t|V (Cij) ∈ X(Cij) where t :=
F−1(t′) is defined as the extension of t′ to V (C) by setting all literals in u∩ v to
0 and t(x) = 0, if t′ sets all literals in v to 0; and t(x) = 1 otherwise. Obviously,
both F and F−1 are one-to-one and F , in fact, is a bijection of x-model spaces
[7].

It remains to verify that F above satisfies relation (∗) of Lemma 1 w.r.t. the
weight functions w and wij . To that end, assume C ∈ XSAT and let t ∈ X(C),
t′ := F (t). Because ∀y ∈ V (Cij) − V (u ⊕ v) : wij(y) = w(y) and ∀y ∈ V (Cij) :
t(y) = t′(y), we obtain from w(t) =

∑
y∈V (C) w(y)t(y)

w(t) = w(x)t(x) +
∑

y∈V (u⊕v)

w(y)t′(y) +
∑

y∈V (Cij)−V (u⊕v)

wij(y)t′(y)︸ ︷︷ ︸
=:ŵij(t′)

+α1

where α1 :=
∑

y∈V−(u∩v) w(y) ∈ R is a constant.
Clearly, any x-model of C can assign exactly one literal in u⊕v to 1, indepen-

dent of the truth value of x. Hence, if u⊕v contains more than one complemented
pair then C and Cij cannot be exactly satisfiable. Thus, it remains to distinguish
the two cases |V+(u⊕ v)∩V−(u⊕ v)| = 1 or 0. In the first case, assume that z is
the only variable in the intersection, then wij is uniquely defined by (1’), since
C is assumed to be cp-free. If (a) z ∈ u and z ∈ v, then the truth values of z
and x must be related as t(x) = 1 − t(z) = 1 − t′(z) iff C ∈ XSAT. Due to (1’)
and ∀y ∈ V (u ⊕ v) − {z} : w(y)t(y) = wij(y)t′(y) we have

w(t) = α1 + w(x) + wij(z)t′(z) + ŵij(t′) +
∑

y∈V (u⊕v)−{z}
wij(y)t′(y)

which means w(t) = wij(t′) + α, hence (∗) with α := α1 + w(x) ∈ R. Subcase
(b), i.e., z ∈ v and z ∈ u is equivalent to t(x) = t(z) = t′(z) and by similar
calculations one obtains relation (∗) where α = α1. In the remaining case V+(u⊕
v) ∩ V−(u⊕ v) = ∅, defining wuv :=

∑
y∈V (u⊕v) w(y)t′(y), first observe that

wuv =
∑

y∈V (v−u)

wij(y)t′(y) +
∑

y∈V−(u−v)

w(y)t′(y) +
∑

y∈V+(u−v)

w(y)t′(y)

=
∑

y∈V (u⊕v)

wij(y)t′(y) + w(x)

 ∑
y∈V+(u−v)

t′(y) −
∑

y∈V−(u−v)

t′(y)

thus w(t) = w(x)t(x) + wij(t′) + w(x)

[∑
y∈V+(u−v) t

′(y) −
∑

y∈V−(u−v) t
′(y)

]
+

α1. Now, defining |V−(u − v)| =: p = const, first assume t(x) = 0, then exactly
one literal in u − v must be set to 1 by t all other literals in u ⊕ v are set
to 0. If the literal set to 1 belongs to a variable in V+(u − v) we have w(t) =

Solving Minimum Weight Exact Satisfiability in Time O(20.2441n) 661

wij(t′) + α1 + w(x)[1 − p] and if it belongs to a variable in V−(u − v) then
w(t) = wij(t′) + α1 + w(x)[−(p − 1)] holds. Finally, for t(x) = 1 we have that
all literals in u− v are set to 0, hence w(t) = w(x) +wij(t′) −w(x)p+α1. Thus
we obtain relation (∗) w(t) = wij(t′) + α with α = α1 +w(x)[1 − p] ∈ R in each
subcase, completing the proof. ��

Finally, we have two simplification steps regarding certain monotone clauses:

Step 8: Let C ∈ CNF+ contain two clauses c, c′ such that c ⊂ c′, then defining
C′ by setting all variables in c′ − c to 0 obviously yields an XSAT-equivalent
formula. Clearly each XSAT model of C uniquely determines an XSAT model
of C′ and vice versa. Restricting the corresponding bijection between X(C) and
X(C′) to the minimum XSAT model spaces obviouly satisfies (∗) of Lemma 1.
Step 9: Let C ∈ CNF+ contain c = u ∪ x, c′ = u ∪ v where x ∈ V (C) is
a variable not contained in the subclause v. Then defining C′ as the formula
obtained from C by setting x ← v, obviously yields an XSAT equivalent formula
C′ with V (C′) = V (C) − {x}. Each x-model of C determines a unique x-model
of C′ by restricting to all variables except for x. Vice versa, t′ ∈ X(C′) yields
a unique t ∈ X(C) since the extension to x is determined by the assignments
of t′ to the variables y ∈ v: if and only if exactly one of them is set to 1, we
must have t(x) = 1. Moreover, let w′ be defined as w on V (C′) − v and set
w′(y) := w(y) − w(x), for all y ∈ v. As in the proof of Lemma 5, we obtain by
Lemma 1 that the transformation (C,w) → (C′, w′) is bijective and preserves
the minimum weight XSAT status.

We are finished by easily verifying that all steps presented in this section can
be performed in polynomial time.

4 Treating Matching Formulas

This section describes how a minimum weight XSAT solution is computed in
polynomial time for a matching formula C ∈ CNF+ in Procedure MINPERF-
MATCH of Algorithm MINW-XSAT. Actually this is implemented by an appro-
priate reduction to the minimum weight perfect matching (MIN-PM) problem
for an edge weighted graph G = (V,E). MIN-PM asks for a perfect matching of
minimum weight. Recall that a perfect matching is a subset P ⊆ E of pairwise
non-adjacent edges in G such that every vertex of G is incident to (exactly) one
edge in P . We construct a certain graph corresponding to C, called the matching
graph GM , which is a modification of the intersection graph GC of C. Recall that
the intersection graph of a set system has a vertex for each set and two vertices
are joined by an edge if their sets have non-empty intersection.

GM is constructed depending on whether there are unique variables inC or not:

1.) If there exists no clause in C containing a unique variable then GM := GC .
Label each edge of GC by the variable with the smallest weight occuring in the
intersection of the corresponding clauses.
2.) If there exists a clause c in C that contains a unique variable, then construct
two copies of GC and join both copies by introducing an additional edge between

662 S. Porschen

each two vertices in either copy that contain at least one unique variable (both
vertices clearly correspond to one and the same clause). Label each additional
edge by the (unique) variable of the smallest weight in that clause.

It is not hard to see that a minimum weight perfect matching in G directly
corresponds to a minimum XSAT model of C, where the matching edges exactly
define the variables that have to be set to 1. Clearly, the matching graph can be
constructed in O(|C|2 · |V (C)|) time. For C ∈ CNF, we have

∑
c∈C |c| = ‖C‖ =∑

x∈V (C) ω(x), where ω(x) is the number of occurences of x in C regardless
whether negated or unnegated. Clearly, a matching formula satisfies w(x) ≤ 2,
for each x, implying |C| ≤ ‖C‖ ≤ 2|V (C)|. Given G = (V,E), w : E → R,
MIN-PM can be solved in O(|V |2 · |E|) time [1], thus we obtain:

Proposition 1. For a matching formula C, and w : V (C) → R, we can solve
minimum weight XSAT in O(n3) time, where n := |V (C)|. ��

5 The Branching Operations

The Procedure BRANCHING-MSV in Algorithm MINW-XSAT is, for a 2-3-
formula, based upon the techniques provided by Monien, Speckenmeyer, and
Vornberger (MSV) in [6]. There, it has been proven that the usual XSAT de-
cision problem for arbitrary C ∈ CNF with n variables can be solved in time
O(20.2441n), when the current formula is simplified in the same manner as en-
sured by Procedure SIMPLIFY. Recall that iteratively branching at a variable
means to search the whole space of feasible XSAT solutions independently of
their weights. Hence, we can rely on the result by Monien et al. in [6] if and
only if the current formula has the structure that is required in their branching
analysis. To that end, the formula must be a 2-3-formula C. In the recursive al-
gorithm proposed in [6] a leaf of the branching tree is reached when the current
formula is a 1-3-formula. The decision whether such a formula is in XSAT can
be made in polynomial time which then also yields the decision for the input
formula, as all transformations on the path from the root are XSAT-equivalent.
Unfortunately, in the weighted case 1-3-formulas cannot be treated within poly-
nomial time, here a leaf formula must be a matching formula. So, in addition
to Procedure BRANCHING-MSV treating only 2-3-formulas, we need a branch-
ing procedure that also treats 1-3-formulas, namely Procedure BRANCHING
in Algorithm MINW-XSAT. This procedure takes a variable x that occurs at
least three times in the current formula and performes a branching step at x.
We claim that the worst-case recurrence relations occuring during Procedure
BRANCHING, are already covered by those recurrence relations produced by
Procedure BRANCHING-MSV in [6]. This set of critical recurrences determined
by BRANCHING-MSV in [6] contains, among others, the following:

T (n) ≤ T (n− 4) + T (n− 5) + 1, T (n) ≤ T (n− 6) + T (n− 3) + 1

Here T (n) denotes the number of recursive calls the underlying algorithm per-
forms on a formula of n variables until a leaf of the branching tree is reached. The

Solving Minimum Weight Exact Satisfiability in Time O(20.2441n) 663

two summands on each right hand side correspond to the subproblems defined
by setting a variable to 0 resp. to 1.

So let C ∈ CNF+ be a 1-3-formula, then by Procedure SIMPLIFY we know
that each clause has length at least three, and by definition each clause containing
a variable x occurring ≥ 3 times also contains a unique variable. Clearly, the
worst case is given when such a variable occurs exactly three times restricting
the number of clauses on which x has an impact. First assume that all clauses
containing x have length exactly three:

c1 = x ∨ e1 ∨ a1, c2 = x ∨ e2 ∨ a2, c3 = x ∨ e3 ∨ a3

where ei are the pairwise distinct unique variables and ai (i = 1, 2, 3) are vari-
ables some or all of which may coincide. The subproblem defined by x ← 1
forces e1 ← e2 ← · · · ← a3 ← 0 thus eliminating at least 5 variables. And
the subproblem defined by x ← 0 forces ei ← ai, for i = 1, 2, 3, thus elim-
inating at least 4 variables, i.e., recursively this case leads to the recurrence
T (n) ≤ T (n− 4)+T (n− 5)+ 1 which is covered by the set above. Now suppose
there is at least one clause containing x of length four:

c1 = x ∨ e1 ∨ a1 ∨ b1, c2 = x ∨ e2 ∨ a2 ∨ b2, c3 = x ∨ e3 ∨ a3 ∨ b3

here the ei and ai are as above and the bi (i = 1, 2, 3) are additional variables
some or all of which may coincide resp. at most 2 of which may be the constant
0 (i.e. they are “empty”). Again the subproblem defined by x ← 1 eliminates at
least 6 variables, and the subproblem defined by x ← 0 eliminates at least 3 vari-
ables, which is ensured by Procedure SIMPLIFY (Steps 8, 9) that is performed in
the next recursive call. Hence we obtain the recurrence T (n−6)+T (n−3)+1 that
also is covered by the set above. Clearly, all other cases perform better, hence
we are justified to conclude from [6], that all the branching operations and thus
Algorithm MINW-XSAT have a worst case time bounded by O(20.2441n):

Theorem 1. Algorithm MINW-XSAT solves minimum weight XSAT, for C ∈
CNF, w : V (C) → R in time O(20.2441n). ��

References

1. D. Applegate and W. Cook, Solving large-scale matching problems, in: D. S. John-
son, C. C. McGeoch (Eds.), Algorithms for Network Flows and Matching Theory,
American Mathematical Society, pp. 557-576, 1993.

2. J. M. Byskov, B. Ammitzboll Madsen and B. Skjernaa, New Algorithms for Exact
Satisfiability, BRICS, Technical Report RS-03-30, University of Aarhus, 2003.

3. V. Dahllöf, P. Jonsson, An Algorithm for Counting Maximum Weighted Independent
Sets and its Applications, in: Proceedings of the 13th ACM-SIAM Symposium on
Discrete Algorithms, pp. 292-298, 2002.

4. V. Dahllöf, P. Jonsson, and R. Beigel, Algorithms for four variants of the exact
satisfiability problem, Theoretical Comp. Sci. 320 (2004) 373-394.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

664 S. Porschen

6. B. Monien, E. Speckenmeyer and O. Vornberger, Upper Bounds for Covering Prob-
lems, Methods of Operations Research 43 (1981) 419-431.

7. S. Porschen, On Some Weighted Satisfiability and Graph Problems, in: “P. Vojtas,
et al. (Eds.), Proceedings of the 31st Conference on Current Trends in Theory and
Practice of Informatics”, Lecture Notes in Computer Science, Vol. 3381, pp. 278-287,
Springer-Verlag, Berlin, 2005.

8. T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th
ACM Symposium on Theory of Computing, pp. 216-226, 1978.

Efficient Algorithms for Finding a Longest
Common Increasing Subsequence

Wun-Tat Chan1,�, Yong Zhang1,3, Stanley P.Y. Fung2,
Deshi Ye1, and Hong Zhu3

1 Department of Computer Science, University of Hong Kong, Hong Kong
{wtchan, yzhang, yedeshi}@cs.hku.hk

2 Department of Computer Science, City University of Hong Kong, Hong Kong
pyfung@cityu.edu.hk

3 Department of Computer Science and Engineering, Fudan University, China
hzhu@fudan.edu.cn

Abstract. We study the problem of finding a longest common increas-
ing subsequence (LCIS) of multiple sequences of numbers. The LCIS
problem is a fundamental issue in various application areas, includ-
ing the whole genome alignment and pattern recognition. In this pa-
per we give an efficient algorithm to find the LCIS of two sequences in
O(min(r log �, n� + r) log log n + n log n) time where n is the length of
each sequence and r is the total number of ordered pairs of positions at
which the two sequences match and � is the length of the LCIS. For m se-
quences where m ≥ 3, we find the LCIS in O(min(mr2, mr log � logm r)+
mn log n) time where r is the total number of m-tuples of positions at
which the m sequences match. The previous results find the LCIS of two
sequences in O(n2) and O(n� log n) time. Our algorithm is faster when
r is relatively small, e.g., for r < min(n2/ log log n, n�).

1 Introduction

Given m sequences of numbers, the longest common increasing subsequence
(LCIS) is the longest sequence that is an increasing sequence and also a subse-
quence of each of the m sequences. The LCIS problem is a fundamental issue in
different application areas including the whole genome alignment [3,7] and pat-
tern recognition [2,9]. In the system for aligning multiple genome sequences [3],
one basic step is to extract the longest possible set of MUMs (maximal unique
matches) that occur in the same order in the genomic sequences. One approach
to implement this step is to label each MUM on different sequences by the po-
sition it appears in the first sequence. They form multiple sequences of labels.
Then we find the MUMs corresponding to the LCIS of these sequences of labels.
In matching two images [2], one method is to consider for each image the pixel
intensity values and label each pixel by the rank of its intensity value among all
pixels. Then the two images form two rank matrices, which can also be consid-
ered as two permutations of {1, 2, . . . , n}, where n is the number of pixels in each
� This research was supported by Hong Kong RGC Grant HKU-5172/03E.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 665–674, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

666 W.-T. Chan et al.

image. The similarity of the two images can be measured by the similarity of
the two permutations, which is the length of the LCIS of the two permutations.

The study of the LCIS problem originated from two classical subsequence
problems, the longest common subsequence (LCS) and the longest increasing
subsequence (LIS). The LCS problem for two sequences of n elements can be
solved easily in O(n2) time, by applying a simple dynamic programming tech-
nique. However, the only o(n2) result known so far was that by Masek and
Paterson [10] which runs in O(n2/ logn) time. For some special cases, Hunt and
Szymanski [4] gave a faster algorithm that runs in O((r + n) logn) time, where
r is the total number of ordered pairs of positions at which the two sequences
match. For finding the LIS of a sequence of n numbers, Schensted [11] and
Knuth [6] gave an O(n log n) time algorithm. If the input sequence is a permu-
tation of {1, 2, . . . , n}, both the algorithms from Hunt and Szymanski [4], and
Bespamyatnikh and Segal [1] run in O(n log logn) time. The LCIS problem has
not been studied until recently that Yang, Huang and Chao gave an O(n2) time
algorithm [14] to find the LCIS of two sequences of n numbers. If the length of
the LCIS, , is small, Katriel and Kutz [5] gave a faster algorithm which runs in
O(n logn) time.

Our results: Consider m sequences where each sequence consists of n numbers.
Let r be the total number of m-tuples of positions at which the m sequences
match. In this paper we give a general approach in solving the LCIS prob-
lem for m sequences. For m = 2, we give two efficient implementations which
run in O(r log log logn + n logn) and O((n + r) log log n + n logn) time. For
r < min(n2/ log logn, n), our algorithm has a better time complexity than the
previous algorithms. For m ≥ 3, we give a straightforward implementation which
runs in O(mr2 +mn logn) time. In addition, we show that it is possible to im-
prove the running time in some cases, by applying a dynamic data structure
for the orthogonal range query problem [13], to O(mr log logm r + mn logn).
Table 1 gives a summary of the results. Similar to the proof of LCS problem of
arbitrary number of sequences is NP-complete [8], we can prove that the LCIS
problem of arbitrary number of sequences is also NP-complete and the proof will
be given in the full paper. Consider our algorithm for general m, it may run in
exponential time as r may be as large as nm. However, for the special case that
the number of matches between the m sequences is relatively small, e.g., when
the m sequences are permutations of {1, 2, . . . , n}, we have r = n and our algo-
rithms run in O(n log n log logn) time form = 2 and O(min{mn2,mn logm+1 n})
time for m > 2.

Remark: We can show that the algorithms proposed in this paper can be
adopted to solve a similar problem which is to find the longest common non-
decreasing subsequence, with the same time complexities. The details will be
given in the full paper.

The rest of the paper is organized as follows. Section 2 gives some basic
definitions. Sections 3 and 4 present the algorithms to find the LCIS for two
sequences and m sequences, respectively.

Efficient Algorithms for Finding a Longest Common Increasing Subsequence 667

Table 1. Previous and present results of the LCIS problem for m sequences of n
numbers, where � is the length of the LCIS and r is the total number of m-tuples of
positions at which the m sequences match

Previous results Results of this paper
m = 2 O(n2) O(r log � log log n + n log n)

O(n� log n) O((n� + r) log log n + n log n)
m ≥ 3 nil O(mr2 + mn log n)

O(mr log � logm r + mn log n)

2 Preliminary

In this section we give some basic notations and assumption which are necessary
for further discussion in the paper. Given a sequence A = a1a2 . . . an of numbers,
we say that A is an increasing sequence if a1 < a2 < · · · < an. A sequence S =
s1s2 . . . s� is a subsequence of A if for some integers 1 ≤ i1 < i2 < · · · < i� ≤ n,
sj = aij for 1 ≤ j ≤ . Given m sequences, A1, A2, . . . , Am, a sequence S is a
common increasing subsequence (CIS) of the m sequences if S is an increasing
sequence and S is a subsequence of Ai for all 1 ≤ i ≤ m. The longest common
increasing subsequence (LCIS) of A1, A2, . . . , Am is the longest sequence among
all CIS of A1, A2, . . . , Am.

Let σ be the number of distinct numbers among the m sequences and σ ≤ n.
We can see that σ is also an upper bound on the length of the LCIS. Without
loss of generality, we can assume that all m sequences are constructed from the
alphabet set {1, 2, . . . , σ} because we can always map those σ distinct numbers
(in ascending order) to {1, 2, . . . , σ}.

3 LCIS of Two Sequences of Numbers

Let A = a1a2 . . . an and B = b1b2 . . . bn be the two input sequences of n num-
bers. We need some definitions. For 1 ≤ i ≤ n, denote Ai the prefix of A
with the first i numbers, i.e., a1a2 . . . ai. Similarly, we have Bi = b1b2 . . . bi. We
say that (i, j) is a match of A and B if ai = bj , and ai (or bj) is called the
match value. We say that a match (i′, j′) dominates another match (i, j) or
that (i′, j′) is a dominating match of (i, j) if ai′ < ai and i′ < i and j′ < j.
It is a necessary condition for both ai′ and ai (or bj′ and bi) to appear in the
LCIS. For every match (i, j), define the rank of the match, denoted by R(i, j),
to be the length of the LCIS of Ai and Bj such that ai (and bj) is the last
element of the LCIS. If the length of the LCIS of Ai and Bj corresponding to
match (i, j) is k which is greater than 1, then there must be an LCIS of Ai′

and Bj′ corresponding to a match (i′, j′) with length k − 1 and i′ < i, j′ < j
and ai′ = bj′ < ai. Therefore, R(i, j) can be defined by the following recurrence
equation.

668 W.-T. Chan et al.

R(i, j) =

0 if (i, j) is not a match,
1 if (i, j) is a match and thereis no match (i′, j′) that

dominates (i, j),
1 + max{R(i′, j′) | (i′, j′) is a match that dominates (i, j)

otherwise.

(1)

It is easy to see that the length of the LCIS of A and B is = max{R(i, j)}.
First we give a straightforward algorithm to compute (see Algorithm LCIS()
below). Then, based on the same framework we give an efficient implementation
that runs in O(min(r log , n+ r) log logn+ n logn) time. In order to locate all
the matches, we can first sort A and B individually and identify the matches
in a sequential search on the sorted A and B. In this sequential search we can
actually list out the matches in ascending order of their values. This process takes
O(n log n+r) time. Then, starting from the match with the smallest values to the
match with the largest values, it takes O(r) time for each match to compute its
rank by checking all matches for the dominating matches. This straightforward
implementation of Algorithm LCIS() which to compute the length of the LCIS
takesO(r2+n logn) times. Note that r can be as large as n2, which implies a time
complexity of O(n4). In addition, to retrieve the LCIS we can record for each
match (i, j) its dominating match (i′, j′) with the largest rank. Therefore, in the
subsequent discussion for efficient implementation we will focus on computing
the ranks of the matches only.

Algorithm 1 LCIS(): Find the length of the LCIS of two sequences, A and B.
Assume that we have all matches between A and B in ascending order of their values
for each match (i, j), in ascending order of their values do

Find the match (i′, j′) that dominates (i, j) and with the largest rank
Set R(i, j) = R(i′, j′) + 1

end for
Output max{R(i, j) | (i, j) is a match}

3.1 Efficient Implementations

In this section we give two efficient implementations of Algorithm LCIS(), which
run in O(r log log logn + n logn) and O((n + r) log logn + n logn) time. By
comparing the values of r log and n before applying which implementation,
we actually have an O(min(r log , n+ r) log logn+ n logn) time algorithm.

Both implementations speed up the step for finding the largest rank domi-
nating match of a given match, which are based on a property described in the
following. Consider the execution of Algorithm LCIS(). At any time, let M be
the set of matches whose ranks have been computed so far. There are at most
 (disjoint) partitions of M , namely M1,M2, . . . ,M �, where Mk contains the
matches with rank k. Note that some of the partitions may be empty. Since the
ranks of the matches are computed in ascending order of their values, when the

Efficient Algorithms for Finding a Longest Common Increasing Subsequence 669

rank of a match is to be computed, the ranks of all dominating matches of this
match (if exist) should have been computed and those matches should appear
in M . The partitions of M possess a kind of monotone property that helps
locating the largest rank dominating match of a given match efficiently. The
property is that if no dominating match of a given match exists in a partition,
say Mk, then no partition corresponding to rank larger than k contains dom-
inating match of the given match, and this property is shown in the following
lemma.

Lemma 1. Given a match t, if there is no match in Mk dominating t, there is
no match in Mx dominating t for all x ≥ k.

Proof. If there is a match t′ in Mx dominating t, i.e., t′ is with rank x, then there
is match t′′ dominating t′ with rank x−1, i.e., t′′ in Mx−1, which also dominates
t. The argument can be extended to have a match in Mk that dominates t, which
is a contradiction. ��

In view of Lemma 1, the search for the largest rank dominating match of a
given match t can be carried out in a binary search on M1,M2, . . . ,M �. First,
we determine if there is a dominating match of t in M �/2 (assuming that is a
power of 2). If there is one in M �/2, continue the binary search in M �/2, . . . ,M �.
Otherwise, continue the binary search in M1, . . . ,M �/2−1. The search space can
be reduced by half each time and the search terminates when there is only one
partition left in the search space.

The framework of the efficient implementations is as follows. We initialize the
 partitions to empty sets. For each of the matches t in ascending order of their
values, we compute the rank of t by finding the largest rank dominating match
of t, using the binary search as described above. Suppose the largest rank among
the dominating matches is k. The rank of t is then set to k+ 1 and t is inserted
to Mk+1.

In order to achieve the desired running time, we need an efficient method to
determine if a dominating match of a given match exists in a partition, which
exploits more properties of the partitions. Suppose that the ranks of all matches
of values no more than v have been computed and those matches are then in
M . A match (i, j) in a partition is called a critical match if there is no match
(i′, j′) of the same partition with i′ ≤ i and j′ ≤ j. For each partition, we only
consider the critical matches, and those non-critical matches can be removed.
The following lemma shows that to find in M the dominating match of a given
match with value larger than v it is sufficient to consider just the critical matches.

Lemma 2. Suppose that M contains all matches of values no more than v.
Given a match t of value larger than v, for any partition Mk, if there is a match
in Mk dominating t, then there is also a critical match in Mk dominating t.

Proof. Suppose that t = (i, j) and there is a match (i′, j′) in Mk dominating t
but (i′, j′) is not a critical match. Then i′ < i and j′ < j and there must be a
critical match (i′′, j′′) in Mk with i′′ ≤ i′ and j′′ ≤ j′. It implies that (i′′, j′′)
dominates t. ��

670 W.-T. Chan et al.

For each partition, to determine if there is a match in the partition that
dominates a given match (i, j), it is sufficient to verify if the critical match
(i′, j′) of the partition with the maximum j′ that j′ < j (or equivalently the
maximum i′ that i′ < i) dominates (i, j) or not. This property is shown in the
following lemma.

Lemma 3. Suppose that M contains all matches of values no more than v.
Given a match (i, j) of value larger than v, for any partition Mk, if there is a
match in Mk dominating (i, j), then the critical match (i′, j′) in Mk with the
maximum j′ that j′ < j also dominates (i, j).

Proof. We prove by contradiction. Suppose that there is a match (i∗, j∗) in Mk

dominating (i, j) but the critical match (i′, j′) in Mk with the maximum j′ that
j′ < j does not dominate (i, j). Then we have i∗ < i ≤ i′ and j∗ ≤ j′ < j that
implies (i′, j′) is not critical, which is a contradiction. ��

In order to maintain only the critical matches in a partition, before we insert
a new match (i, j) of rank k into Mk, we should remove in Mk those matches
(i′, j′) that will become non-critical, i.e., i ≤ i′ and j ≤ j′. See Figure 1 for
an example. The following lemma shows which particular critical match of the
partition we should verify to see if the match will become non-critical or not.

Lemma 4. Given a match (i, j), if there is any critical match (i′, j′) in Mk

with i ≤ i′ and j ≤ j′, then the critical match (i∗, j∗) in Mk with the minimum
j∗ that j∗ ≥ j also satisfies the property that i ≤ i∗ and j ≤ j∗.

Proof. We prove by contradiction. Suppose that i ≤ i′ and j ≤ j′ and the critical
match (i∗, j∗) with the minimum j∗ that j∗ ≥ j has i∗ < i. We can see from
i∗ < i ≤ i′ and j ≤ j∗ ≤ j′ that (i′, j′) is not a critical match, which is a
contradiction. ��

For each of Mk for 1 ≤ k ≤ , we employ the data structure van Emde Boas
(vEB) tree [12] to store the critical matches in Mk. A vEB tree is a data structure
that stores a set of integers, and supports all the operations insert, delete, and
search in O(log logn) time where n is the largest integer to be inserted in the vEB
tree. In addition, the search operation can return for a given number its nearest
numbers, i.e., for a given number j, the largest number j′ < j and the smallest
number j′ ≥ j. In our implementation each critical match (i, j) is indexed by
the value j in a vEB tree. We define four operations specific to our problem, in
which all of them run in O(log logn) time.

– FindRight(k, (i, j)) returns the match (i′, j′) in the vEB tree corresponding
to Mk with the minimum j′ that j′ ≥ j;

– FindLeft(k, (i, j)) returns the match (i′, j′) in the vEB tree corresponding
to Mk with the maximum j′ that j′ < j;

– Insert(k, (i, j)) inserts the match (i, j) in the vEB tree corresponding to
Mk; and

– Delete(k, (i, j) deletes the match (i, j) from the vEB tree corresponding to
Mk.

Efficient Algorithms for Finding a Longest Common Increasing Subsequence 671

1

1

1

1

2

2

2

3

2

4

3

5

1

2

3

1 3 4 5 2 2 3

1

2

3

4

5

6

7

1 2 3 4 5 6 7

(2)

Fig. 1. With two sequences 2435123 and 1345223, the ranks of the critical matches,
before and after match (4, 4) is considered, are shown. Match (4, 4) finds two dominating
matches (2, 3) and (3, 2), which are with the largest rank 1. Then match (4, 4) has rank
2 and match (6, 5) becomes non-critical.

In the following two sections we use the above the operations to give two
implementations of the Algorithm LCIS(), which runs in O(r log log logn +
n logn) and O((n + r) log logn + n logn) time. Then we have the following
theorem.

Theorem 1. Our algorithm takes O(min(r log , n+ r) log log n+n logn) time
to find the LCIS of two sequences of numbers.

Implementation I. In the first implementation of LCIS() we begin with
empty vEB trees, namely T k for 1 ≤ k ≤ , to store the set of critical matches
in Mk for 1 ≤ k ≤ , respectively. Then all matches between A and B are
identified. The matches are arranged in ascending order of their values. For the
matches (i, j) with the same value, they are arranged in descending order of j
and then i. For each of the matches (i, j) in this order, we find the largest rank
dominating match by a binary search on the vEB trees as described before. To
determine if there is a dominating match in T k, we check if FindLeft(k, (i, j))
returns a match (i′, j′) with i′ < i and j′ < j. After the rank of a match (i, j) is
computed, we remove every match (i′, j′) in TR(i,j) that becomes non-critical,
i.e., i ≤ i′ and j ≤ j′. Then (i, j) is inserted to TR(i,j). Match (i, j) must be a
new critical match in MR(i,j), which can be proved by the following lemma.

Lemma 5. In Algorithm LCIS-1(), when (i, j) is inserted to TR(i,j), (i, j) must
be a critical match of MR(i,j).

Proof. Let R(i, j) = k. Suppose on the contrary that there is a match (i′, j′) in
T k with i′ ≤ i and j′ ≤ j. If the value of (i′, j′) is less than that of (i, j), then
the rank of (i, j) should be at least k + 1, which is a contradiction. If the value
of (i′, j′) equals the value of (i, j), because of the order we consider the matches
with the same value, either j′ > j or i′ > i, which is also a contradiction. Finally,
match value of (i′, j′) cannot be larger than that of (i, j) because we consider
the matches in ascending order of their values. ��

672 W.-T. Chan et al.

The following lemma proves the time complexity of LCIS-1().

Lemma 6. LCIS-1() runs in O(r log log logn+ n logn) time.

Proof. The running time of LCIS-1() consists of three parts. (1) It takes O(n log
n + r) time to sort the two sequences A and B and identify the matches be-
tween A and B in ascending order of their values; (2) It takes O(log log logn)
time to find the largest rank dominating match of a given match in the binary
search because the function FindLeft is called O(log) times. Hence it takes
O(r log log logn) time to find the ranks of all matches; (3) Each match can be
inserted and deleted at most once from a vEB tree. Each of these operations
takes O(log logn) time, and hence it takes O(r log logn) time for all matches.
Altogether, it takes O(r log log logn+ n logn) time. ��

Implementation II. In this section we give an implementation runs in O((n+
r) log logn+n logn) time. In Implementation II we do not use the binary search
to find the ranks of individual matches. Rather, we use a sequential search to
find the ranks of a group of matches. Later we show that at most n sequential
searches are needed.

Similar to Implementation I, we begin with empty vEB trees, T k for 1 ≤
k ≤ , to store the set of critical matches in Mk for 1 ≤ k ≤ , respectively. All
matches between A and B are identified and arranged in ascending order of their
values, so that we can find the ranks of the matches in this order. For the set of
matches with the same value, say H , we divide H into groups such that a group
consists of the matches (i, j) in H with the same value of j. Suppose a group
consists of the matches (i1, j), (i2, j), . . . , (ix, j) where i1 < i2 < · · · < ix. For any
two of these matches (ia, j) and (ib, j) with a < b, we have R(ia, j) ≤ R(ib, j)
because any dominating match of (ia, j) is also a dominating match of (ib, j).
Therefore, we can apply a sequential search on T 1 to T � to determine the ranks of
all the matches (i1, j), (i2, j), . . . , (ix, j). Similarly, a different sequential search
can be applied to each of all the other groups of H . After the ranks of the
matches with the same value are computed, those matches are inserted to the
corresponding vEB trees.

The following lemma proves the time complexity of LCIS-2().

Lemma 7. LCIS-2() runs in O((n + r) log logn+ n logn) time.

Proof. The running time of LCIS-2() consists of three parts. Two of them are
similar to that of Implementation I. (1) It takes O(n logn + r) time to sort
the two sequences and identify all matches in ascending order of their values;
(2) Each match can be inserted and deleted at most once to and from a vEB
tree, respectively. Hence it takes O(r log log n) time for these operations of all
matches.

(3) For the remaining part, we analyze the time taken for the sequential
searches for the ranks of all matches. Denote the set of matches with the same
value v by Hv. Recall that for each Hv, we divide it into groups such that a
group consists of the matches (i, j) in Hv with the same value of j. Let dv

Efficient Algorithms for Finding a Longest Common Increasing Subsequence 673

be the number of groups in Hv. We have
∑

1≤v≤� dv = n because matches
(i, j) of different groups should either be with different match values or with
different value of j. As we use a sequential search for each group, totally we
need n sequential searches. For each sequential search we call FindLeft at most
 + g times where g is the number of matches in the group. Summing up for
all sequential searches, it takes O((n + r) log logn) time. Altogether, LCIS-2()
takes O((n + r) log logn+ n logn) time. ��

4 LCIS of m Sequences of Numbers

In this section we give algorithms to find the LCIS of m sequences of numbers,
especially for m ≥ 3. We first generalize the Algorithm LCIS() for two sequences
to m sequences. Let the m sequences be A1, A2, . . . , Am where each of them has
n elements. Suppose Ak = ak

1a
k
2 . . . a

k
n. Again we can assume that the alphabet

is {1, 2, . . . , σ} where σ ≤ n. Let Ak
i denote the prefix of Ak with i elements, i.e.,

ak
1 . . . a

k
i . We generalize the notations match and dominating match and rank

as follows. A match is an m-tuple, (i1, . . . , im) where a1
i1

= a2
i2

= . . . = am
im

. A
match (δ1, . . . , δm) is called a dominating match of another match (θ1, . . . , θ2) if
a1

δ1
< a1

θ1
and δi < θi for all 1 ≤ i ≤ m. The rank of a match ∆ = (δ1, . . . , δm),

denoted by R(∆), is the length of the LCIS of A1
δ1
, A2

δ2
, . . . , Am

δm
such that a1

δ1

is the last element of the LCIS. R(∆) can be defined similar to Equation 1.
We generalize the Algorithm LCIS() to find the rank of each match. It takes

O(r + mn logn) time to sort the m sequences and identify all the matches. It
takes O(m) time to determine if a match dominates another match because a
match is an m-tuple which contains m integers. For each match, it takes O(mr)
time to compute the rank of the match. Hence it takes O(mr2+mn logn) time to
compute the ranks of all matches and also the length of the LCIS of m sequences.

It is possible to improve the running time with the binary search approach, by
using data structures for multidimensional orthogonal range queries as described
below. Given a set of N points in d-dimensional Euclidean space, each associated
with a numerical value, design a data structure for the points that supports
efficient insertion, deletion, and query of the form: return a point that falls
within a hyper-rectangular region [x1, y1] × [x2, y2] × . . . × [xd, yd]. There is a
data structure for the above problem that supports each update and query in
O(logdN) time, using space O(Nlogd−1N) [13].

In our problem, a match is considered as a m-dimensional point. The task
of finding a dominating match in a partition is in fact a multidimensional or-
thogonal range query. To determine if there is a dominating match of a match
(i1, . . . , im) in a partition, we could check if there is any match (or point) of
the partition that falls within the hyper-rectangular region [1, i1 − 1] × [1, i2 −
1] × . . .× [1, im − 1]. Then, adopting the binary search approach in Section 3.1,
we can find the LCIS in O(mr log logm r+mn logn) time. Note that this time
complexity is better than O(mr2 + mn logn) when r is relatively small, e.g.,
when r is a polynomial of m and n.

674 W.-T. Chan et al.

Acknowledgement. We thank Chung-Keung Poon for introducing to us the
orthogonal range query problem and the anonymous referees for their detailed
reports.

References

1. S. Bespamyatnikh and M. Segal. Enumerating longest increasing subsequences and
patience sorting. Inf. Process. Lett., 76(1-2):7–11, 2000.

2. D. N. Bhat. An evolutionary measure for image matching. In ICPR ’98: Proc. of
the 14th International Conference on Pattern Recognition-Volume 1, pages 850–
852. IEEE Computer Society, 1998.

3. A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.
Salzberg. Alignment of whole genomes. Nucleic Acids Res., 27:2369–2376, 1999.

4. J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Commun. ACM, 20(5):350–353, 1977.

5. I. Katriel and M. Kutz. A faster algorithm for computing a longest common
increasing subsequence. Research Report MPI-I-2005-1-007, Max-Planck-Institut
für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, March 2005.

6. D. E. Knuth. Sorting and Searching, The Art of Computer Programming, volume 3.
Addison-Wesley, Reading, MA, 1973.

7. S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway, C. Antonescu, and
S. Salzberg. Versatile and open software for comparing large genomes. Genome
Biology, 5(2), 2004.

8. D. Maier. The complexity of some problems on subsequences and supersequences.
J. ACM, 25(2):322–336, 1978.

9. A. Marcolino, V. Ramos, M. Ramalho, and J. R. Caldas Pinto. Line and word
matching in old documents. In Proc. of SIARP’2000 - 5th IberoAmerican Sympo-
sium on Pattern Recognition, pages 123–135, 2000.

10. W. J. Masek and M. Paterson. A faster algorithm computing string edit distances.
J. Comput. Syst. Sci., 20(1):18–31, 1980.

11. C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math.,
13:179–191, 1961.

12. P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In
Proc. of the 16th Symposium on Foundations of Computer Science (FOCS), pages
75–84, 1975.

13. D. E. Willard and G. S. Lueker. Adding range restriction capability to dynamic
data structures. J. ACM, 32(3):597–617, 1985.

14. I.-H. Yang, C.-P. Huang, and K.-M. Chao. A fast algorithm for computing a longest
common increasing subsequence. Inf. Process. Lett., 93(5):249–253, 2005.

Decision Making Based on Approximate
and Smoothed Pareto Curves�

Heiner Ackermann, Alantha Newman, Heiko Röglin, and Berthold Vöcking

Department of Computer Science – RWTH Aachen
{ackermann, alantha, roeglin, voecking}@cs.rwth-aachen.de

Abstract. We consider bicriteria optimization problems and investi-
gate the relationship between two standard approaches to solving them:
(i) computing the Pareto curve and (ii) the so-called decision maker’s
approach in which both criteria are combined into a single (usually non-
linear) objective function. Previous work by Papadimitriou and Yan-
nakakis showed how to efficiently approximate the Pareto curve for prob-
lems like Shortest Path, Spanning Tree, and Perfect Matching.
We wish to determine for which classes of combined objective functions
the approximate Pareto curve also yields an approximate solution to the
decision maker’s problem. We show that an FPTAS for the Pareto curve
also gives an FPTAS for the decision maker’s problem if the combined
objective function is growth bounded like a quasi-polynomial function.
If these functions, however, show exponential growth then the decision
maker’s problem is NP-hard to approximate within any factor. In order
to bypass these limitations of approximate decision making, we turn our
attention to Pareto curves in the probabilistic framework of smoothed
analysis. We show that in a smoothed model, we can efficiently generate
the (complete and exact) Pareto curve with a small failure probability
if there exists an algorithm for generating the Pareto curve whose worst
case running time is pseudopolynomial. This way, we can solve the de-
cision maker’s problem w.r.t. any non-decreasing objective function for
randomly perturbed instances of, e.g., Shortest Path, Spanning Tree,
and Perfect Matching.

1 Introduction

We study bicriteria optimization problems, in which there are two criteria, say
cost and weight, that we are interested in optimizing. In particular, we consider
bicriteria Spanning Tree, Shortest Path and Perfect Matching prob-
lems. For such problems with more than one objective, it is not immediately clear
how to define an optimal solution. However, there are two common approaches
to bicriteria optimization problems.

The first approach is to generate the set of Pareto optimal solutions, also
known as the Pareto set. A solution S∗ is Pareto optimal if there exists no other
� This work was supported in part by the EU within the 6th Framework Programme

under contract 001907 (DELIS) and by DFG grant Vo889/2-1.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 675–684, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

676 H. Ackermann et al.

solution S that dominates S∗, i.e. has cost and weight less or equal to the cost
and weight of S∗ and at least one inequality is strict. The set of cost/weight
combinations of the Pareto optimal solutions is called the Pareto curve. Often it
is sufficient to know only one solution for each possible cost/weight combination.
Thus we assume that the Pareto set is reduced and does not contain two solutions
with equal cost and equal weight. Under this assumption there is a one-to-one
mapping between the elements in the reduced Pareto set and the points on the
Pareto curve.

The second approach is to compute a solution that minimizes some non-
decreasing function f : R2

+ → R+. This approach is often used in the field of
decision making, in which a decision maker is not interested in the whole Pareto
set but in a single solution with certain properties. For example, given a graph
G = (V,E) with cost c(e) and weight w(e) on each edge, one could be interested
in finding an s-t-path P that minimizes the value (

∑
e∈P w(e))2 +(

∑
e∈P c(e))

2.
For a given function f : R2

+ → R+ and a bicriteria optimization problem Π we
will denote by f -Π the problem of minimizing f over all solutions of Π .

Note that these two approaches are actually related: for any non-decreasing
function f , there is a solution that minimizes f that is also Pareto optimal. A
function f : R2

+ → R+ is non-decreasing if for any x1, x2, y1, y2 ∈ R+ where
x1 ≤ x2 and y1 ≤ y2: f(x1, y1) ≤ f(x2, y2). Thus, if for a particular bicriteria
optimization problem, we can find the Pareto set efficiently and it has poly-
nomial size, then we can efficiently find a solution that minimizes any given
non-decreasing function. It is known, however, that there are instances of Span-
ning Tree, Shortest Path and Perfect Matching problems such that
even the reduced Pareto set is exponentially large [6]. Moreover, while efficient
(i.e. polynomial in the size of the Pareto set) algorithms are known for a few
standard bicriteria optimization problems such as the Shortest Path prob-
lem [7,17], it is not known how to generate the Pareto set efficiently for other
well-studied bicriteria optimization problems such as the Spanning Tree and
the Perfect Matching problem.

There has been a long history of approximating the Pareto set starting with
the pioneering work of Hansen [7] on the Shortest Path problem. We say a
solution S is ε-approximated by another solution S′ if c(S′)/c(S) ≤ 1 + ε and
w(S′)/w(S) ≤ 1 + ε where c(S) and w(S) denote the total cost and weight
of a solution S. We say that Pε is an ε-approximation of a Pareto set P if
for any solution S ∈ P there is a solution S′ ∈ Pε that ε-approximates it.
Papadimitriou and Yannakakis showed that for any Pareto set P , there is an
ε-approximation of P with polynomially many points [13] (w.r.t. the input size
and 1/ε). Furthermore they gave necessary and sufficient conditions under which
there is an FPTAS to generate Pε. Vassilvitskii and Yannakakis [16] showed how
to compute ε-approximate Pareto curves of almost minimal size.

1.1 Previous Work

There exists a vast body of literature that focuses on f -Π problems. For instance
it is well known that, if f is a concave function, an optimal solution of the f -Π

Decision Making Based on Approximate and Smoothed Pareto Curves 677

problem can be found on the border of the convex hull of the solutions [9]. For
some problems there are algorithms generating this set of solutions. In particular,
for the Spanning Tree Problem it is known that there are only polynomially
many solutions on the border of the convex hull [5], and efficient algorithms
for enumerating them exist [1]. Thus, there are polynomial-time algorithms for
solving f -Spanning Tree if f is concave. Katoh has described how one can
use f -Spanning Tree problems with concave objective functions to solve many
other problems in combinatorial optimization [10]. For instance, a well stud-
ied application is the Minimum Cost Reliability Spanning Tree Problem,
where one is interested in finding a spanning tree minimizing the ratio of cost
to reliability. This approach, however, is limited to optimizing the ratio of these
two criteria. It is also known how to solve the f -Shortest Path problem for
concave objective functions f in polynomial time [8]. Tsaggouris and Zaroliagis
[15] investigated the Non-additive Shortest Path Problem (NASP), which
is to find a path P minimizing fc(c(P)) + fw(w(P)), for some convex functions
fc and fw. This problem arises as core problem in different applications, e.g., in
the context of computing traffic equilibria. Tsaggouris and Zaroliagis developed
exact algorithms with exponential running time using a Lagrangian relaxation
and the so called Extended Hull Algorithm to solve NASP.

We consider bicriteria optimization problems in the smoothed analysis frame-
work of Spielman and Teng [14]. Spielman and Teng consider a semi-random
input model where an adversary specifies an input which is then randomly per-
turbed. Input instances occurring in practice usually possess a certain structure
but usually also have small random influences. Thus, one can hope that semi-
random input models are more realistic than worst case and average case input
models since the adversary can specify an arbitrary input with a certain struc-
ture that is subsequently only slightly perturbed. Since the seminal work of
Spielman and Teng explaining the efficiency of the Simplex method in practical
applications [14], many other problems have been considered in the framework of
smoothed analysis. Of particular relevance to the results in this paper are the re-
sults of Beier and Vöcking [3,4]. First, they showed that the expected number of
Pareto optimal solutions of any bicriteria optimization problem with two linear
objective functions is polynomial if the coefficients in the objective functions are
randomly perturbed [3]. Then they gave a complete characterization which lin-
ear binary optimization problems have polynomial smoothed complexity, namely
they showed that a linear binary optimization problem has polynomial smoothed
complexity if and only if there exists an algorithm whose running time is pseu-
dopolynomially bounded in the perturbed coefficients [4]. The only way to apply
their framework to multicriteria optimization is by moving all but one of the
criteria from the objective function to the constraints.

1.2 Our Results

We study the complexity of the bicriteria optimization problems f-Shortest
Path, f-Spanning Tree and f -Perfect Matching under different classes of
functions f . Our study begins with an analysis showing that these problems are

678 H. Ackermann et al.

NP-hard even under seemingly harmless objective functions of the form Min-
imize (

∑
e∈S c(e))

a + (
∑

e∈S w(e))b, where a, b are arbitrary natural numbers
with a ≥ 2 or b ≥ 2. Thus, we focus on the approximability of these problems. It
is not surprising that an FPTAS to approximate the Pareto curve of a problem
Π can be transformed into an FPTAS for f -Π for any polynomial function f .
Somewhat surprisingly, we show that this transformation works, in fact, for a
larger class of functions, namely for quasi-polynomial functions or, more gener-
ally, for non-decreasing functions whose first derivative is bounded from above
like the first derivative of a quasi-polynomial function. Additionally, we show
that the restriction to quasi-polynomial growth is crucial.

In order to bypass the limitations of approximate decision making seen above,
we turn our attention to Pareto curves in the probabilistic framework of smoothed
analysis. We show that in a smoothed model, we can efficiently generate the
(complete and exact) Pareto curve of Π with a small failure probability if there
exists an algorithm for generating the Pareto curve whose worst case running
time is pseudopolynomial (w.r.t. costs and weights). Previously, it was known
that the number of Pareto optimal solutions is polynomially bounded if the input
numbers are randomly perturbed [3]. This result, however, left open the question
of how to generate the set of Pareto-optimal solutions efficiently (except for the
Shortest Path problem). The key result in the smoothed analysis presented in
this paper is that typically the smallest gap (in cost and weight) between neigh-
boring solutions on the Pareto curve is bounded by n−O(1) from below. This
result enables us to generate the complete Pareto curve by taking into account
only a logarithmic number of bits of each input number. This way, an algorithm
with pseudopolynomial worst-case complexity for generating the Pareto curve
can be turned into an algorithm with polynomial smoothed complexity.

It can easily be seen that, for any bicriteria problem Π , a pseudopolynomial
algorithm for the exact and single objective version of Π (e.g. an algorithm for
answering the question “Does there exist a spanning tree with costs exactly C?”)
can be turned into an algorithm with pseudopolynomial worst-case complexity
for generating the Pareto curve. Therefore, in the smoothed model, there exists
a polynomial-time algorithm for enumerating the Pareto curve of Π with small
failure probability if there exists a pseudopolynomial algorithm for the exact
and single objective version of Π . Furthermore, given the exact Pareto curve
for a problem Π , one can solve f -Π exactly. Thus, in our smoothed model, we
can, for example, find spanning trees that minimize functions that are hard to
approximate within any factor in the worst case.

2 Approximating Bicriteria Optimization Problems

In this section, we consider bicriteria optimization problems in which the goal is
to minimize a single objective function that takes two criteria as inputs. We con-
sider functions of the form f(x, y) where x represents the total cost of a solution
and y represents the total weight of a solution. In Section 2.1, we present NP-
hardness and inapproximability results for the f -Spanning Tree, f -Shortest

Decision Making Based on Approximate and Smoothed Pareto Curves 679

Path, and f -Perfect Matching problems for general classes of functions. In
Section 2.2, we show that we can give an FPTAS for any f -Π problem for a
large class of quasi-polynomially bounded non-decreasing functions f if there is
an FPTAS for generating an ε-approximate Pareto curve for Π . Papadimitriou
and Yannakakis showed how to construct such an FPTAS for approximating
the Pareto curve of Π given an exact pseudopolynomial algorithm for the prob-
lem [13]. For the exact s-t-Path problem, dynamic programming yields a pseu-
dopolynomial algorithm [17]. For the exact Spanning Tree problem, Barahona
and Pulleyblank gave a pseudopolynomial algorithm [2]. For the exact Match-
ing problem, there is a fully polynomial RNC scheme [12,11]. Thus, for any
quasi-polynomially bounded non-decreasing objective function, these problems
have an FPTAS.

2.1 Some Hardness Results

In this section we present NP-hardness results for the bicriteria f -Spanning
Tree, f -Shortest Path and f -Perfect Matching problems in which the
goal is to find a feasible solution S that minimizes an objective function in the
form f(x, y) = xa + yb, where x = c(S), y = w(S), and a, b ∈ N are constants
with a ≥ 2 or b ≥ 2. Note that the NP-hardness of such functions when a = b
follows quite directly from a simple reduction from Partition. When a and b
differ, one can modify this reduction slightly by scaling the weights.

Lemma 1. Let f(x, y) = xa + yb with a, b ∈ N and a ≥ 2 or b ≥ 2. Then the
f -Spanning Tree, f -Shortest Path, and f -Perfect Matching problems
are NP -hard.

We will now have a closer look at exponential functions f(x, y) = 2xδ

+2yδ

for
some δ > 0. In the following, we assume that there is an oracle, which given two
solutions S1 and S2, decides in constant time whether f(c(S1), w(S1)) is larger
than f(c(S2), w(S2)) or vice versa. We show that even in this model of com-
putation there is no polynomial time approximation algorithm with polynomial
approximation ratio, unless P = NP . (The proofs of Lemma 1 and Lemma 2
can be found in a full version of this paper.)

Lemma 2. Let f(x, y) = 2xδ

+ 2yδ

with δ > 0. There is no approximation algo-
rithm for the f -Spanning Tree, f -Shortest Path, and f -Perfect Match-
ing problem with polynomial running time and approximation ratio less than
2Bd

for any constant d > 0 and B =
∑

e∈E c(e) + w(e), unless P = NP .

2.2 An FPTAS for a Large Class of Functions

In this section we present a sufficient condition for the objective function f under
which there is an FPTAS for the f -Spanning Tree, the f -Shortest Path and
the f -Perfect Matching problem. In fact, our result is not restricted to these
problems but applies to every bicriteria optimization problemΠ with an FPTAS
for approximating the Pareto curve.

We begin by introducing a restricted class of functions f .

680 H. Ackermann et al.

Definition 3. We call a non-decreasing function f : R2
+ → R+ quasi-

polynomially bounded if there exist constants c > 0 and d > 0 such that for
every x, y ∈ R+

∂f(x, y)
∂x

· 1
f(x, y)

≤ c · lnd x · lnd y

x

and
∂f(x, y)
∂y

· 1
f(x, y)

≤ c · lnd x · lnd y

y
.

Observe that every non-decreasing polynomial is quasi-polynomially bounded.
Furthermore the sum of so-called quasi-polynomial functions of the form
f(x, y) = xpolylog(x) + ypolylog(y) is also quasi-polynomially bounded, whereas
the sum of exponential functions f(x, y) = 2xδ

+ 2yδ

is not quasi-polynomially
bounded. We are now ready to state our main theorem for this section.

Theorem 4. There exists an FPTAS for any f -Π problem in which f is mono-
tone and quasi-polynomially bounded if there exists an FPTAS for approximating
the Pareto curve of Π.

Proof (Sketch). Our goal is to find a solution for the f -Π problem in question
with value no more than (1+ε) times optimal. The FPTAS for the f -Π problem
of relevance is quite simple. It uses the FPTAS for approximating the Pareto
curve to generate an ε′-approximate Pareto curve Pε′ and tests which solution in
Pε′ has the lowest f -value. Recall that the number of points in Pε′ is polynomial
in the size of the input and 1/ε′ [13]. The only question to be settled is how
small ε′ has to be chosen to obtain an ε-approximation for f -Π by this approach.
Moreover, we have to show that 1/ε′ is polynomially bounded in 1/ε and the
input size since then, an ε′-approximate Pareto curve contains only polynomially
many solutions and, thus, our approach runs in polynomial time.

Let S∗ denote an optimal solution to the f -Π problem. Since f is non-
decreasing we can w.l.o.g. assume S∗ to be Pareto optimal. We denote by
C∗ the cost and by W ∗ the weight of S∗. We know that an ε′-approximate
Pareto curve contains a solution S′ with cost C′ and weight W ′ such that
C′ ≤ (1 + ε′)C∗ and W ′ ≤ (1 + ε′)W ∗. We have to choose ε′ > 0 such that
f(C′,W ′) ≤ (1 + ε)f(C∗,W ∗) holds, in fact, we will choose ε′ such that

f((1 + ε′) · C∗, (1 + ε′) ·W ∗) ≤ (1 + ε) · f(C∗,W ∗). (1)

A technical calculation shows that choosing

ε′ =
ε2

c2d+4 · lnd+1 C · lnd+1W
,

where C denotes sum of all costs c(e) and W denotes the sum of all weights
w(e), satisfies (1). Observe that 1/ε′ is polynomially bounded in 1/ε and lnC∗

and lnW ∗, i.e. the input size. �

Decision Making Based on Approximate and Smoothed Pareto Curves 681

Observe that Theorem 4 is almost tight since for every δ > 0 we can construct
a function f for which the quotients of the partial derivatives and f(x, y) are
lower bounded by δ/x1−δ respectively by δ/y1−δ and for which the f -Π problem
does not posses an FPTAS, namely f(x, y) = 2xδ

+ 2yδ

.

3 Smoothed Analysis of Bicriteria Problems

In the previous section we have shown that f -Π problems are NP-hard even for
simple polynomial objective functions, and we have also shown that it is even
hard to approximate them for rapidly increasing objective functions, if Π is
either the bicriteria Spanning Tree, Shortest Path or Perfect Matching
problem. In this section we will analyze f -Π problems in a probabilistic input
model rather than from a worst-case viewpoint. In this model, we show that, for
every p > 0 for which 1/p is polynomial in the input size, the f -Π problem can
be solved in polynomial time for every non-decreasing objective function with
probability 1−p, if there exists a pseudopolynomial time algorithm for generating
the Pareto set of Π . It is known that for the bicriteria graph problems we deal
with the expected size of the Pareto set in the considered probabilistic input
model is polynomially bounded [3]. Thus, if we had an algorithm for generating
the set of Pareto optimal solutions whose running time is bounded polynomially
in the input size and the number of Pareto optimal solutions then we could,
for any non-decreasing objective function f , devise an algorithm for the f -Π
problem that is efficient on semi-random inputs.

For a few problems, e.g. the Shortest Path [17,7] problem, efficient (w.r.t.
the input size and the size of the Pareto set) algorithms for generating the Pareto
set are known. But it is still unknown whether such an algorithm exists for the
Spanning Tree or the Perfect Matching problem, whereas it is known that
there exist for, e.g., the Spanning Tree and the Perfect Matching problem
pseudopolynomial time algorithms (w.r.t. cost and weight) for generating the
reduced Pareto set. This follows since the exact versions of the single objective
versions of these problems, i.e. the question, “Is there a spanning tree/perfect
matching with cost exactly c?”, can be solved in pseudopolynomial time (w.r.t
to the costs) [2,12,11]. We will show how such pseudopolynomial time algorithms
can be turned into algorithms for efficiently generating the Pareto set of semi-
random inputs.

3.1 Probabilistic Input Model

Usually, the input model considered in smoothed analysis consists of two stages:
First an adversary chooses an input instance then this input is randomly per-
turbed in the second stage. For the bicriteria graph problems considered in this
paper, the input given by the adversary is a graph G = (V,E,w, c) with weights
w : E → R+ and costs c : E → R+ and in the second stage these weights and
costs are perturbed by adding independent random variables to them.

We can replace this two-step model by a one-step model where the adversary
is only allowed to specify a graph G = (V,E) and, for each edge e ∈ E, two

682 H. Ackermann et al.

probability distributions, namely one for c(e) and one for w(e). The costs and
weights are then independently drawn according to the given probability distri-
butions. Of course, the adversary is not allowed to specify arbitrary distributions
since this would include deterministic inputs as a special case. We place two re-
strictions upon the distributions concerning the expected value and the maximal
density. To be more precise, for each weight and each cost, the adversary is only
allowed to specify a distribution which can be described by a piecewise continu-
ous density function f : R+ → R+ with expected value at most 1 and maximal
density at most φ, i.e. supx∈R+

f(x) = φ, for a given φ ≥ 1.
Observe that restricting the expected value to be at most 1 is without loss of

generality, since we are only interested in the Pareto set which is not affected
by scaling weights and costs. The parameter φ can be seen as a parameter
specifying how close the analysis is to a worst case analysis. The larger φ the
more concentrated the probability distribution can be. Thus, the larger φ, the
more influence the adversary has. We will call inputs created by this probabilistic
input model φ-perturbed inputs.

Note that the costs and weights are irrational with probability 1 since they
are chosen according to continuous probability distributions. We ignore their
contribution to the input length and assume that the bits of these coefficients
can be accessed by asking an oracle in time O(1) per bit. Thus, in our case only
the representation of the graph G = (V,E) determines the input length. In the
following let m denote the number of edges, i.e. m = |E|.

We assume that there do not exist two different solutions S and S′ with
either w(S) = w(S′) or c(S) = c(S′). We can assume this without loss of gen-
erality since in our probabilistic input model two such solutions exist only with
probability 0.

3.2 Generating the Pareto Set

In this section we will show how a pseudopolynomial time algorithm A for gen-
erating the Pareto set can be turned into a polynomial time algorithm which
succeeds with probability at least 1 − p on semi-random inputs for any given
p > 0 where 1/p is polynomial in the input size. In order to apply A efficiently it
is necessary to round the costs and weights, such that they are only polynomi-
ally large after the rounding, i.e., such that the length of their representation if
only logarithmic. Let �c�b and �w�b denote the costs and weights rounded down
to the b-th bit after the decimal point. We denote by P the Pareto set of the
φ-perturbed input G = (V,E,w, c) and by Pb the Pareto set of the rounded
φ-perturbed input G = (V,E, �w�b, �c�b).

Theorem 5. For b = Θ
(
log

(
mφ
p

))
it holds that P ⊆ Pb with probability at

least 1 − p.

This means, we can round the coefficients after only a logarithmic number of
bits and use the pseudopolynomial time algorithm, which runs on the rounded
input in polynomial time, to obtain Pb. With probability at least 1 − p the set

Decision Making Based on Approximate and Smoothed Pareto Curves 683

Pb contains all Pareto optimal solutions from P but it can contain solutions
which are not Pareto optimal w.r.t. to w and c. By removing these superfluous
solutions we obtain with probability at least 1 − p the set P .

Corollary 6. There exists an algorithm for generating the Pareto set of Π
on φ-perturbed inputs with failure probability at most p and running time
poly(m,φ, 1/p) if there exists a pseudopolynomial time algorithm for generat-
ing the reduced Pareto set of Π.

In this extended abstract we will only try to give intuition why Theorem 5
is valid. Details of the proof can be found in a full version of this paper. From
the definition of a Pareto optimal solution, it follows that the optimal solution
S of a constrained problem, i.e. the weight-minimal solution among all solutions
fulfilling a cost constraint c(S) ≤ t, is always a Pareto optimal solution. This
is because if there were a solution S′ that dominates S, then S′ would also
be a better solution to the constrained problem. We will show that, for every
S ∈ P , with sufficiently large probability we can find a threshold t such that S is
the optimal solution to the constrained problem min�w�b(S) w.r.t. �c�b(S) ≤ t,
i.e. with sufficiently large probability every S ∈ P is Pareto optimal w.r.t. the
rounded coefficients.

In the proof we will, for an appropriate z, consider z many constrained prob-
lems each with weights �w�b and costs �c�b. The thresholds we consider are
ti = i · ε, for i ∈ [z] := {1, 2, . . . , z}, for an appropriately chosen ε. By ∆min
we will denote the minimal cost difference between two different Pareto optimal
solutions, i.e.

∆min = min
S1,S2∈P
S1 =S2

|c(S1) − c(S2)|.

If ∆min is larger than ε, then P consists only of solutions to constrained problems
of the form minw(T), w.r.t. c(t) ≤ ti, since, if ε < ∆min we do not miss a
Pareto optimal solution by our choice of thresholds. Based on results by Beier
and Vöcking [4] we will prove that, for each i ∈ [z], the solution S(i) to the
constrained problem minw(S) w.r.t. c(S) ≤ ti is the same as the solution S(i)

b to
the constrained problem min�w�b(S) w.r.t. �c�b(S) ≤ i · ε with sufficiently large
probability. Thus, if ε < ∆min and S(i) = S

(i)
b for all i ∈ [z], then P ⊆ Pb.

We do not know how to determine ∆min in polynomial time but we can show
a lower bound ε for ∆min that holds with a certain probability. Based on this
lower bound, we can appropriately choose ε. We must choose z sufficiently large
so that c(S) ≤ z · ε holds with sufficiently high probability for every solution S.
Thus, our analysis fails only if one of the following three failure events occurs:

F1: ∆min is smaller than the chosen ε.
F2: For one i ∈ [z] the solution S(i) to minw(S) w.r.t. c(S) ≤ ti does not equal

the solution S
(i)
b to min�w�b(S) w.r.t. �c�b(S) ≤ i · ε.

F3: There exists a solution S with c(S) > z · ε.

For appropriate values of z, ε and b we can show that these events are unlikely,
yielding Theorem 5.

684 H. Ackermann et al.

References

1. Pankaj K. Agarwal, David Eppstein, Leonidas J. Guibas, and Monika Rauch Hen-
zinger. Parametric and kinetic minimum spanning trees. In IEEE Symposium on
Foundations of Computer Science, pages 596–605, 1998.

2. F. Barahona and W.R. Pulleyblank. Exact arborescences, matchings and cycles.
Discrete Applied Mathematics, 16:91–99, 1987.

3. R. Beier and B. Vöcking. Random Knapsack in Expected Polynomial Time. In
Journal of Computer and System Sciences, volume 69(3), pages 306–329, 2004.

4. R. Beier and B. Vöcking. Typical Properties of Winners and Losers in Discrete Op-
timization. In Proc. of the 36th Annual ACM Symposium on Theory of Computing
(STOC-2004), pages 343–352, 2004.

5. Tamal K. Dey. Improved bounds on planar k-sets and k-levels. In IEEE Symposium
on Foundations of Computer Science, pages 165–161, 1997.

6. Matthias Ehrgott. Multicriteria Optimization. Lecture Notes in Economics and
Mathematical Systems Vol. 491. Springer-Verlag, 2000.

7. P. Hansen. Bicriterion path problems. In Multiple Criteria Decision Making: The-
ory and Applications, volume 177 of Lecture Notes in Economics and Mathematical
Systems, pages 109 – 127, 1980.

8. Mordechai I. Henig. The shortest path problem with two objective functions.
European Journal of Operational Research, 25(2):281–291, 1986.

9. Reiner Horst and Hoang Tuy. Global Optimization. Springer-Verlag, 1990.
10. Naoki Katoh. Bicriteria network optimization problems. IEICE Transactions Fun-

damentals of Electronics, Communications and Computer Sciences, E75-A:321–
329, 1992.

11. K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–114, 1987.

12. C.H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning
tree problems. Journal of the ACM, 29(2):285–309, 1982.

13. Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of
trade-offs and optimal access of web sources. In FOCS ’00: Proceedings of the
41st Annual Symposium on Foundations of Computer Science, pages 86–92. IEEE
Computer Society, 2000.

14. D. A. Spielman and S.-H. Teng. Smoothed Analysis of Algorithms: Why The Sim-
plex Algorithm Usually Takes Polynomial Time. In Journal of the ACM, volume
51(3), pages 385–463, 2004.

15. George Tsaggouris and Christos Zaroliagis. Non-additive shortest paths. In Algo-
rithms – ESA 2004, Lecture Notes of Computer Sciene Vol. 3221, pages 822–834,
2004.

16. Sergei Vassilvitskii and Mihalis Yannakakis. Efficiently computing succinct trade-
off curves. In ICALP, pages 1201–1213, 2004.

17. Arthur Warburton. Approximation of Pareto optima in multiple-objective,
shortest-path problems. Operations Research, 35(1):70–78, 1987.

Computing Optimal Solutions for the min 3-set
covering Problem�

Federico Della Croce1 and Vangelis Th. Paschos2

1 D.A.I., Politecnico di Torino, Italy
federico.dellacroce@polito.it

2 LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, France
paschos@lamsade.dauphine.fr

Abstract. We consider min set covering when the subsets are con-
strained to have maximum cardinality three. We propose an exact algo-
rithm whose worst case complexity is bounded above by O∗(1.4492n).

1 Introduction and Preliminaries

In min set covering, we are given a universe U of elements and a collection S
of (non-empty) subsets of U . The aim is to determine a minimum cardinality sub-
collection S′ ⊆ S which covers U , i.e., ∪S∈S′S = U (we assume that S covers U).
The frequency fi of ui ∈ U is the number of subsets Sj ∈ S in which ui is
contained. The cardinality dj of Sj ∈ S is the number of elements ui ∈ U
that Sj contains. We say that Sj hits Sk if both Sj and Sk contain an element ui

and that Sj double-hits Sk if both Sj and Sk contain at least two element ui, ul.
Finally, we denote by n the size (cardinality) of S and by m the size of U . In
what follows, we restrict ourselves to min set covering-instances such that:

1. no element ui ∈ U has frequency fi = 1;
2. no set Si ∈ S is subset of another set Sj ∈ S.
3. no pair of elements ui, uj exists such that every subset Si ∈ S containing ui

contains also uj .

Indeed, if item 1 is not verified, then the set containing ui belongs to any feasible
cover of U . On the other hand, if item 2 is not verified, then Si can be replaced
by Sj in any solution containing Si and the resulting cover will not be worse
than the one containing Si. Finally, if item 3 is not verified, then element uj can
be ignored as every sub-collection S′ covering ui will necessarily cover also uj .
So, for any instance of min set covering, a preprocessing of data, obviously
performed in polynomial time, leads to instances where all items 1, 2 and 3 are
verified.

Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers.
In what follows, using notations in [1], for an integer n, we express running-
time bounds of the form p(n).T (n) as O∗(T (n)), the asterisk meaning that we
� Research performed while the first author was in visit at the LAMSADE on a research

position funded by the CNRS.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 685–692, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

686 F.D. Croce and V. Th. Paschos

ignore polynomial factors. We denote by T (n) the worst case time required to
exactly solve the min set covering problem with n subsets. We recall (see, for
instance, [2]) that, if it is possible to bound above T (n) by a recurrence expression
of the type T (n) �

∑
T (n − ri) + O(p(n)), we have

∑
T (n − ri) + O(p(n)) =

O∗(α(r1, r2, . . .)n) where α(r1, r2, . . .) is the largest zero of the function f(x) =
1 −

∑
x−ri .

There exist to our knowledge few results on worst-case complexity of exact
algorithms for min set covering or for cardinality-constrained versions of it.
Let us note that an exhaustive algorithm computes any solution for min set
covering in O(2n). For min set covering the most recent non-trivial result
is the one of [3] (that has improved the result of [4]) deriving a bound (requiring
exponential space) of O∗(1.2301(m+n)). We consider here, the most notorious
cardinality-constrained version of min set covering, the min 3-set covering,
namely, min set covering where dj � 3 for all Sj ∈ S. It is well known that min
3-set covering is NP-hard, while min 2-set covering (where any set has
cardinality at most 2) is polynomially solvable by matching techniques ([5,6]).
Our purpose is to devise an exact (optimal) algorithm with provably improved
worst-case complexity for min 3-set covering. In what follows, we propose a
search tree-based algorithm with running time O∗(1.4492n) (notice, for instance,
that the bound of [3] for fi = 2, ui ∈ U , and dj = 3, for any Sj ∈ S corresponds
to O∗(1.2301(5n/2)) ≈ O∗(1.6782n)).

Consider, the following algorithm, denoted by SOLVE-3-SET-COVERING:

– repeat until possible:
1. for any unassigned subset Sj test if the preprocessing induced by items 1,

2 and 3 reduces the size of the instance;
2. select for branching the unassigned subset whose branching induces the

minimum worst-case complexity (in case of tie select the subset with
smallest index).

2 The Result

The following straightforward lemma holds, inducing some useful domination
conditions for the solutions of min set covering.

Lemma 1. There exists at least one optimal solution of min set covering
where

1. for any subset Sj with dj = 2 containing elements ui, up, if Sj double-hits Sk,
then Sj is excluded from S′ (in case also dk = 2, then it is immaterial to
exclude either Sj or Sk);

2. for any subset Sj with dj = 2 containing elements ui, up, if Sj is included
in S′, then all subsets Sk hitting Sj are excluded from S′;

3. for any subset Sj with dj = 3 containing elements ui, up, uq, where Sj double-
hits another subset Sk with dk = 3 on ui and up, if Sj is included in S′

then Sk must be excluded from S′ and viceversa;

Computing Optimal Solutions for the min 3-set covering Problem 687

4. for any subset Sj with dj = 3 containing elements ui, up, uq, if Sj is included
in S′, then either all subsets Sk hitting Sj on element ui are excluded from S′,
or all subsets Sk hitting Sj on elements up and uq are excluded from S′.

Proof. 1. Notice that the configuration implied by item 1 cannot occur thanks
to the first hypothesis (item 2 in Section 1) on the form of the min set
covering-instances dealt.

2. Assume, without loss of generality, that Sj hits Sk on ui and Sl on up.
Suppose by contradiction that the optimal solution S′ includes Sj and Sk.
Then, it cannot include also Sl or else it would not be optimal as a better
cover would be obtained by excluding Sj from S′. On the other hand, suppose
that S′ includes Sj , Sk but does not include Sl. Then, an equivalent optimal
solution can be derived by swapping Sj with Sl.

For items 3 and 4, the same kind of analysis as for item 2 holds.

Proposition 1. Algorithm SOLVE-3-SET-COVERING optimally solves min 3-set
covering within time O∗(1.4492n).

Proof. The algorithm either detects by means of item 1 a subset Sj to be im-
mediately included in (excluded from) S′ or an element ui to be ignored (cor-
respondingly reducing the degree of several subsets), or applies a branching on
subset Sj , where the following exhaustive relevant branching cases may occur.

1. dj = 2: then no double-hitting occurs to Sj or else, due to Lemma 1, Sj can
be excluded from s′ without branching. The following subcases occur.
(a) Sj contains elements ui, uk with fi = fk = 2 where Sj hits Sl on ui

and Sm on uk. Due to Lemma 1, if Sj is included in S′, then both Sl

and Sm must be excluded from S′; alternatively, Sj is excluded from S′

and, correspondingly, both Sl and Sm must be included in S′ to cover
elements ui, uk. This can be seen as a binary branching where, in both
cases, three subsets (Sj , Sl, Sm) are fixed. Then, T (n) � 2T (n − 3) +
O(p(n)), where the term T (n−3) measures the time for solving the same
problem with n − 3 subsets. Correspondingly, we have T (n) = O∗(αn),
where α is the largest real root of the equation α3 = 2, i.e., α ≈ 1.2599,
implying a time complexity of O∗(1.2599n).

(b) Sj contains elements ui, uk with fi = 2 and fk � 3, where Sj hits Sl on ui

and Sm, Sp on uk. Due to Lemma 1, if Sj is included in S′, then Sl, Sm, Sp

must be excluded from S′; alternatively, Sj is excluded from S′ and,
correspondingly, Sl must be included in S′ to cover element ui. This
can be seen as a binary branching where either 2 subsets (Sj , Sl), or 4
subsets (Sj , Sl, Sm, Sp) are fixed; hence, T (n) � T (n− 2) + T (n− 4) +
O(p(n)). This results in a time-complexity of O∗(1.2721n).

(c) Sj contains elements ui, uk with fi � 3 and fk � 3 where Sj hits Sl, Sm

on ui and Sp, Sq on uk. Due to Lemma 1, if Sj is included in S′,
then Sl, Sm, Sp, Sq must be excluded from S′; alternatively, Sj is ex-
cluded from S′. This can be seen as a binary branching where either 1
subset (Sj), or 5 subsets (Sj , Sl, Sm, Sp, Sq) are fixed; hence, T (n) �
T (n−1)+T (n−5)+O(p(n)). This results in a complexity of O∗(1.3248n).

688 F.D. Croce and V. Th. Paschos

2. dj = 3 (that is, there does not exist Sk ∈ S such that dk = 2) with Sj

double-hitting one or more subsets. Notice that if Sj double-hits Sk on ele-
ments ui, ul, then fi � 3 and fl � 3 due to the preprocessing step 1 of the
algorithm. The following exhaustive subcases may occur.
(a) Sj double-hits at least 3 subsets Sk, Sl, Sm. Due to Lemma 1, if Sj

is included in S′ then Sk, Sl, Sm must be excluded from S′; alterna-
tively, Sj is excluded from S′. This can be seen as a binary branching
where either 1 subset (Sj) is fixed, or 4 subsets (Sj , Sk, Sl, Sm) are fixed
and hence, T (n) � T (n − 1) + T (n − 4) + O(p(n)). This results in a
time-complexity of O∗(1.3803n).

(b) Sj double-hits 2 subsets Sk, Sl and hits at least one more subset Sm (we
assume that Sj hits Sm on element ui). Due to Lemma 1, if Sj is included
in S′, then Sk, Sl must be excluded from S′ and a further branching on
subset Sm with dm = 2 can be applied (as ui is already covered by Sj)
where, in the worst-case, subcase 1c holds; alternatively, Sj is excluded
from S′; this can be seen as a binary branching where either 1 subset (Sj)
is fixed, or 3 subsets (Sj , Sk, Sl) are fixed and a branching of type 1c on
subset Sm with n′ = n−3 variables holds. Then T (n) � T (n−1)+T (n′−
1) + T (n′ − 5) + O(p(n)) = T (n− 1) + T (n− 4) + T (n− 8) + O(p(n)).
This results in a time-complexity of O∗(1.4271n).

(c) Sj contains elements ui, uk, ul and double-hits one subset Sk on ele-
ments ui, uk. The following exhaustive subcases must be considered.
i. fi � 3, fk � 3, fl = 2 with ui contained at least by Sj, Sk, Sm, uk

contained at least by Sj , Sk, Sp and ul contained by Sj , Sq. A com-
posite branching can be devised:
– either Sj and Sq are included in S′ and, by Lemma 1, Sk, Sm, Sp

must be excluded from S′,
– or Sj is included in S′ and Sq is excluded from S′ and, corre-

spondingly, Sk must be excluded from S′,
– or Sj is excluded from S′ and, correspondingly, Sq must be in-

cluded in S′.
Then, T (n) � T (n−2)+T (n−3)+T (n−5)+O(p(n)). This results
in a time-complexity of O∗(1.4292n).

ii. fi = 3, fj = 3, fl � 3 with ui contained by Sj, Sk, Sm, uk contained
by Sj , Sk, Sp and ul contained at least by Sj , Sq, Sr. A composite
branching can be devised:
– either Sj and Sk are excluded from S′ and Sm, Sp must be in-

cluded in S′ (to cover ui and uk),
– or Sj is included in S′ and (due to Lemma 1) either Sk, Sq, Sr

are excluded from S′ or Sk, Sm, Sp are excluded from S′,
– or Sk is included in S′ and (due to Lemma 1) either Sj , Sm, Sp are

excluded from S′ or Sj, Sλ, Sµ are excluded from S′, where Sλ, Sµ

are the subsets hitting Sk on another element (recall fk = 3) uv.
This would induce T (n) � 5T (n′−4)+O(p(n)), but in all subcases a
consequent branching on an unassigned subset (any of those hitting
a subset just included in S′) having (therefore) cardinality 2 holds

Computing Optimal Solutions for the min 3-set covering Problem 689

where, in the worst case, subcase 1c holds. Then, T (n) � 5T (n−5)+
5T (n−9)+O(p(n)). This results in a time-complexity ofO∗(1.4389n).

iii. fi = 3, fj � 4, fl � 3, with ui contained by Sj , Sk, Sm, uk contained
at least by Sj , Sk, Sp, Sq and ul contained at least by Sj , Sr, Su. A
composite branching can be devised:
– either Sj and Sk are excluded from S′ and (to cover ui) Sm must

be included in S′,
– or Sj is included in S′ and (due to Lemma 1) either Sk, Sp, Sq

are excluded from S′ or Sk, Sm, Sr, Su are excluded from S′,
– or Sk is included in S′ and (due to Lemma 1) either Sj , Sp, Sq

are excluded from S′ or Sj , Sm, Sλ, Sµ are excluded from S′,
where Sλ, Sµ are the subsets hitting Sk on another element (re-
call fk = 3) uv.

This would induce T (n) � T (n − 3) + 2T (n − 4) + 2T (n − 5) +
O(p(n)), but in all subcases a consequent branching on an unassigned
subset (any of those hitting a subset just included in S′) having
(therefore) cardinality 2 holds where, in the worst case, subcase 1c
holds. Then, T (n) � T (n− 4) + 2T (n− 5) + 2T (n− 6) + T (n− 8) +
2T (n− 9)+ 2T (n− 10)+O(p(n)). This results in a time-complexity
of O∗(1.4331n).

iv. fi � 4, fj � 4, fl � 3, with ui contained at least by Sj , Sk, Sm

and Sp, uk contained at least by Sj , Sk, Sq and Sr and ul contained
at least by Sj , Su and Sv. A composite branching on subset Sj can
be devised (due to Lemma 1):
– Sj is included in S′, Sk, Sm, Sp are excluded from S′ and a further

branching on subset Sq can be applied with dq = 2 (as uk is
already covered by Sj),

– or Sj is included in S′, Sk, Sq, Sr, Sq, Sv are excluded from S′ and
a further branching on subset Sm can be applied with dm = 2
(as ui is already covered by Sj),

– or Sj is excluded from S′.
This can be seen as a composite branch where either 1 or 4 or 6
subsets have been included in or excluded from S′ that is T (n) �
T (n − 1) + T (n − 4) + T (n − 6) + O(p(n)), where however, in the
latter two branches a consequent branching on an unassigned subset
having cardinality 2 holds where, in the worst case, subcase 1c holds.
Then, T (n) � T (n− 1) + T (n− 5) + T (n− 7) + T (n− 9) + T (n−
11 +O(p(n)). This results in a time-complexity of O∗(1.4343n).

3. dj = 3 and no double-hitting occurs to Sj (nor to any other subset) that
contains elements ui, uk, ul. The following subcases occur.
(a) fi = fk = fl = 2 with ui contained by Sj , Sk, uk contained by Sj, Sl

and ul contained by Sj , Sm. A binary branching on Sj can be devised:
either Sj is excluded from S′ and then (to cover ui, uk, ul) Sk, Sl, Sm

must be included in S′, or Sj is included in S′. This would induce T (n) �
T (n−1)+T (n−4)+O(p(n)), but in all subcases, a consequent branching
on an unassigned subset (any of those hitting a subset just included in S′)

690 F.D. Croce and V. Th. Paschos

having (therefore) cardinality 2 holds where, in the worst case, subcase 1c
holds. Then, T (n) � T (n−2)+T (n−5)+T (n−6)+T (n−9)+O(p(n)).
This results in a time-complexity of O∗(1.3515n).

(b) fi = fk = 2, fl � 3 with ui contained by Sj , Sk, uk contained by Sj, Sl

and ul contained at least by Sj , Sm, Sp. A composite branching on Sj

can be devised:
– either Sj is excluded from S′ and then (to cover ui, uk) Sk, Sl must

be included in S′,
– or Sj is included in S′ and Sk, Sl are excluded from S′,
– or Sj is included in S′ and Sm, Sp are excluded from S′.

This would induce T (n) � 3T (n − 3) + O(p(n)), but in all subcases, a
consequent branching on an unassigned subset (any of those hitting a
subset just included in S′) having (therefore) cardinality 2 holds where,
in the worst case, subcase 1c holds. Then, T (n) � 3T (n− 4) + 3T (n−
8) +O(p(n)). This results in a time-complexity of O∗(1.3954n).

(c) fi = 2, fk � 3, fl � 3, where ui is contained by Sj and Sk, uk is contained
by Sj , Sl and Sm, and ul is contained at least by Sj , Sp and Sq. A
composite branching on Sj can be devised: either Sj is excluded from S′

and then (to cover ui) Sk must be included in S′, or Sj is included in S′

and Sk, Sl, Sm are excluded from S′, Sj is included in S′ and Sp, Sq

are excluded from S′. This would induce execution time expressed as
T (n) � T (n− 2) + T (n− 3) + T (n− 4) +O(p(n)); but, in all subcases,
a consequent branching on an unassigned subset (any of those hitting
a subset just included in S′) having (therefore) cardinality 2 is possible
where, at worst, sub-case 1c holds. In this case, T (n) � T (n−3)+T (n−
4) + T (n− 5) + T (n− 7) + T (n− 8) + T (n− 9) +O(p(n)). This results
in a time-complexity of O∗(1.4066n).

(d) fi = 3, fk � 3, fl � 3 with ui contained by Sj , Sk, Sl, uk contained
by Sj , Sm, Sp and ul contained at least by Sj , Sq, Sr. Also, both Sk and Sl

have degree 3 and all elements contained by Sk or Sl have frequency at
least 3 or else subcase 3c would hold either on subset Sk or on subset Sl.
A composite branching can be devised:
– either Sj is included in S′ and then either Sk, Sl are excluded from S′

, or Sm, Sp, Sq and Sr are excluded from S′,
– or Sj is excluded from S′, Sk is included in S′ and there are at least 5

other subsets hitting Sk and, hence, either two of these subsets are
excluded from S′ or three of these subsets are excluded from S′,

– or Sj , Sk are excluded from S′, Sl is included in S′ (to cover ui) and
there are at least 4 other subsets hitting Sk and, hence, either two of
these subsets are excluded from S′, or the other two of these subsets
are excluded from S′.

This would induce T (n) � T (n− 3) + T (n− 4) + 4T (n− 5) +O(p(n)),
but in all subcases, a consequent branching on an unassigned subset
(any of those hitting a subset just included in S′) having (therefore)
cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

Computing Optimal Solutions for the min 3-set covering Problem 691

T (n) � T (n− 4)+T (n− 5)+4T (n− 6)+T (n− 8)+T (n− 9)+ 4T (n−
10) +O(p(n)). This results in a time-complexity of O∗(1.4492n).

(e) fi � 4, fk � 4, fl � 4, ui is contained by Sj, Sk, Sl, Sm, uk is contained
by Sj , Sp, Sq, Sr and ul is contained at least by Sj , St, Su, Sv. A composite
branching on Sj can be devised:
– either Sj is excluded from S′,
– or Sj is included in S′, Sk, Sl, Sm are excluded from S′ and a further

branching on subset Sp can be applied with dp = 2 (as uk is already
covered by Sj),

– or Sj is included in S′, Sp, Sq, Sr, St, Su, Sw are excluded from S′

and a further branching on subset Sm can be applied with dm = 2
(as ui is already covered by Sj).

This can be seen as a composite branch where either 1 or 4 or 7 subsets
have been included in or excluded from S′ that is T (n) � T (n − 1) +
T (n−4)+T (n−7)+O(p(n)), where however, in the latter two branches
a consequent branching on an unassigned subset having cardinality 2
holds where, in the worst case, subcase 1c holds. Then, T (n) � T (n −
1) + T (n− 5) + T (n− 8) + T (n− 9) + T (n− 12) +O(p(n)). This results
in a time-complexity of O∗(1.4176n).

Putting things together the global worst case complexity is O∗(1.4492n).

3 Conclusion

We have presented an analysis for the worst-case complexity of a tree-search
based algorithm, which, based upon simple domination properties for the op-
timal solutions of min 3-set covering leads to an O∗(1.4492n) time bound.
We notice that a straightforward (improvable) analysis along the lines of the
above one, leads to an O∗(1.1679n) time bound for minimum vertex covering in
graphs of maximum degree 3. This bound, even though dominated by the ones
in [7,8], O∗(1.1252n) and O∗(1.152n), respectively, already dominates the one
in [9].

References

1. Wœginger, G.J.: Exact algorithms for NP-hard problems: a survey. In Juenger, M.,
Reinelt, G., Rinaldi, G., eds.: Combinatorial Optimization - Eureka! You shrink!
Volume 2570 of Lecture Notes in Computer Science. Springer-Verlag (2003) 185–
207

2. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In: Proc. Symposium on Discrete Algorithms, SODA. (2001) 329–337

3. Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: domination – a case
study. Reports in Informatics 294, Department of Informatics, University of Bergen
(2005) To appear in the Proceedings of ICALP’05.

4. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discr.
Algorithms (2005) To appear.

692 F.D. Croce and V. Th. Paschos

5. Berge, C.: Graphs and hypergraphs. North Holland, Amsterdam (1973)
6. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of

NP-completeness. W. H. Freeman, San Francisco (1979)
7. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In:

Proc. Symposium on Discrete Algorithms, SODA. (1999) 856–857
8. Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low-degree graphs.

Networks 35 (2000) 253–259
9. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-

ments. J. Algorithms 41 (2001) 280–301

Efficient Algorithms for the Weighted 2-Center
Problem in a Cactus Graph

Boaz Ben-Moshe, Binay Bhattacharya�, and Qiaosheng Shi

School of Computing Science, Simon Fraser University,
Burnaby B.C., Canada. V5A 1S6

{benmoshe, binay, qshi1}@cs.sfu.ca

Abstract. In this paper, we provide efficient algorithms for solving the
weighted center problems in a cactus graph. In particular, an O(n log n)
time algorithm is proposed that finds the weighted 1-center in a cactus
graph, where n is the number of vertices in the graph. For the weighted
2-center problem, an O(n log 3n) time algorithm is devised for its continu-
ous version and showed that its discrete version is solvable in O(n log 2n)
time. No such algorithm was previously known. The obnoxious center
problem in a cactus graph can now be solved in O(n log 3n). This im-
proves the previous result of O(cn) where c is the number of distinct
vertex weights used in the graph [8]. In the worst case c is O(n).

1 Introduction

The p-center problem is to determine a set C of p facilities in a graph G such
that the maximum weighted distance S(C,G) from a vertex of the graph to its
closest facility in C, called as the service cost of C, is minimized. This problem
has received a strong interest since its formulation by Hakimi in 1964 [2].

The problems in tree networks are well studied [3,5,6]. In the 1-center problem,
the service cost function S(C,G) is convex on every simple path of G. Based on
this observation, Kariv and Hakimi [3] designed an O(n logn) algorithm which
is improved to O(n) by Megiddo [5] with a “trimming” technique, where n
is the number of vertices in G. For the p-center problem in trees, most known
algorithms [6] are based on parametric search technique. However, this technique
is hard to generalize for other classes of graphs. Tamir [7] gave an O(mpnp log 2n)
algorithm for p-center problem in general graphs with m edges.

Although most of the reported works on the center problems are for trees
or for general graphs, more and more attention is being paid for the classes of
graphs that are between these two extremes, viz. cactus graphs [4,8], partial
k-trees. In this paper we consider cactus graphs. In [4], Lan et al. designed
a linear time algorithm to solve the unweighted 1-center problem in a cactus
graph. In [8], Zmazek et al. proposed an algorithm that finds the obnoxious
center of a cactus graph in O(cn) time. Here c is the number of distinct vertex
weights. However, no algorithm was known for solving the weighted p-center
� Research of the second author was partially supported by MITACS and NSERC.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 693–703, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

694 B. Ben-Moshe, B. Bhattacharya, and Q. Shi

problems (even when p = 1, 2) in cactus graphs. Our main results in this paper
are proposed algorithms, first of their kinds, for the weighted 1-center and 2-
center problem in cactus graphs and an improved bound on the obnoxious center
problem in cactus graphs. The results are summarized in Table 1.

Table 1. Complexity bounds for the algorithms presented in this paper

Problems Previous result Our result
weighted continuous/discrete 1-center O(n2 log 2n) [7] O(n log n)
weighted obnoxious center O(cn) [8] O(n log 3n)
weighted continuous 2-center O(n4 log 2n) [7] O(n log 3n)
weighted discrete 2-center O(n4 log 2n) [7] O(n log 2n)

The basic technique used in our algorithms is the divide-and-conquer tech-
nique. We explore the properties of the weighted 1-center and the split edges
(defined in Sect.4) of the weighted 2-center in a cactus graph. In our algorithm
for the weighted 2-center problem, one important ingredient is to get, in the
query mode, the service cost of any point in sublinear time. For this purpose,
we have proposed a two-level tree decomposition structure over a cactus graph.
This structure can easily be extended to general partial k-trees, k fixed.

The paper is organized as follows. Section 2 begins with definitions and prob-
lem formulation. The well-known tree structure of a cactus graph is also re-
viewed in this section. Section 3 provides an O(n logn)-time algorithm to solve
the weighted 1-center problem. Our algorithms for the weighted 2-center problem
are presented in Sect.4. Section 5 gives a brief summary and future outlook.

2 Definitions and Problem Formulation

Let G = (V,E,w, l) be a simple network with vertex set V , |V | = n, and edge
set E, |E| = m, where each vertex v ∈ V is associated with positive weight
w(v) and each edge e ∈ E is associated with positive length l(e). Let A(G)
denote the continuum set of points on the edges of G. For V ′ ⊆ V , let G(V ′)
denote the induced subgraph with vertex set V ′. For a subgraph G′ of G, let
V (G′), E(G′), A(G′) denote the vertex set, the edge set and the continuum set
of points on the edges of G′, respectively. Pu,v denotes the shortest path in G
from u to v, u, v ∈ V . du,v denotes the length of Pu,v. We similarly define Pa,v

and da,v between a point a and a vertex v, a ∈ A(G), v ∈ V .

Definition 1. A cactus is a connected graph in which two cycles have at most
one vertex in common.

In order to facilitate the overview of the algorithms devised for the center
problems in cactus graphs, we start with the well-known tree structure over a
cactus graph [1]. The vertex set V is partitioned into three different subsets.
A C-vertex is a vertex of degree 2 which is included in exactly one cycle. A

Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph 695

9

B1

B2

3

h7
h1

10

7

h4B4

1

h2

4
h4

h6
h3

2

h7
6

B6

B9
h6

B3 B7

B10B5

h3

5

h2

B8

h5

8

h5

h1

(a) Cactus graph G (b) Tree structure TG over G

Fig. 1. A cactus graph and its corresponding tree structure

G-vertex is a vertex not included in any cycle. The remaining vertices, if any,
will be referred to as H-vertices or hinges. Consider Fig.1(a) as a reference. We
use the dotted ellipses to emphasize the grafts.

It’s not difficult to see that a cactus consists of blocks, which are either a
cycle or a graft, and these blocks are glued with H-vertices. So, we can use a tree
TG = (VG, EG) to represent the important structure over G, where each element
in VG represents a block or a hinge vertex in G. See Fig.1(b). Let Bb denote the
block represented by a block node b ∈ VG. There is an edge between a block
node b and a hinge node h if h ∈ V (Bb).

Let S(X,G′) denote the maximum weighted distance from a set X : {α1, . . . ,
αp} to a sub-cactus G′, that is,

S(X,G′) = max
v∈V (G′)

{w(v) · dX,v}, where dX,v = min
j=1,...,p

dαj ,v.

The weighted 1-center problem: The weighted 1-center problem in a cactus
graph G is to locate a point α∗

G ∈ A(G) such that S(α∗
G, G) is minimized. Let γG

denote the weighted radius S(α∗
G, G) of G. When the weights of all the vertices

in G are negative, it is called the obnoxious center problem.

The weighted 2-center problem: The weighted 2-center problem in the cac-
tus graph G seeks to find a set C : {α1, α2} ⊂ A(G) that minimizes S(C,G).
When the two centers are restricted to be vertices of G, we call it discrete
weighted 2-center problem.

3 An Algorithm for the Weighted 1-Center Problem

We know that the service cost function S(α,G) is convex on every simple path
in G if G is a tree. Unfortunately, this convexity property does not hold in
cactus graphs (even in circles) [3]. However, we obtain a similar property of
the weighted 1-center of a cactus, which provides the basis of our divide-and-
conquer algorithm for the weighted 1-center problem: Let G1, . . . , Gk be the
connected components hanging from a hinge vertex h. If the maximum value in
{S(h,G1) . . . , S(h,Gk)} is attained at more than one component then h itself
is the 1-center. On the other hand, if the maximum is attained in a unique Gi,
then the center must lie in Gi.

696 B. Ben-Moshe, B. Bhattacharya, and Q. Shi

With this observation, given any hinge vertex h, it is easy to find (in linear
time) a sub-cactus rooted at h where the center lies or find its center. Our
algorithm consists of two steps, described in Sect.3.1 and Sect.3.2.

3.1 Locate the Block B∗ Containing an Optimal Center α∗
G

Let o be the centroid of TG, such that for every subtree T ′
G hanging from o has

no more than half the nodes of TG.

Gk

o

G1

v1

G1

Bo
v2

Gk

(a) o is a hinge vertex (b) o is a block node

v1
1 v1

2 v1
3 v1

t v2
1 v2

2 v2
t−1

(c) locate α∗ in O

Fig. 2. Locate the sub-cactus where the center lies and locate α∗ in a cycle block O

Case1: o is a hinge node. See Fig.2(a). If there are two subgraphsGi, Gj adjacent
to o, such that S(o,Gi) = S(o,Gj) ≥ S(o,Gl) for every other subgraph Gl

adjacent to o, then o itself is the optimal 1-center α∗
G. Suppose that the subgraph

Gi with largest value of S(o,Gi) is unique. Then, the center lies in Gi. Since
Gj , 1 ≤ j ≤ k are pairwise disjoint, it follows that we can evaluate all the
S(o,Gj), 1 ≤ j ≤ k in linear time.
Case 2: o is a block node. See Fig.2(b). If there are two subgraphs Gi, Gj

adjacent to Bo, such that S(vi, Gi) = S(vj , Gj) ≥ S(vl, Gl) for every other
subgraph Gl adjacent to Bo, then the center should be in the block Bo (So Bo

is B∗). Suppose that the subgraph Gi with largest value of S(vi, Gi) is unique.
Now, the center lies either in block Bo or in the sub-cactusGi. Compare S(vi, Gi)
with S(vi, G \Gi). If S(vi, Gi) < S(vi, G \Gi), then the center certainly lies in
block Bo (So Bo is B∗). Similarly, if S(vi, Gi) > S(vi, G \ Gi), then the center
lies in Gi. The remaining case is when S(vi, Gi) = S(vi, G\Gi). In this case, the
hinge vertex vi itself is the center α∗

G. All of these steps require O(n) time.
Now we have the following cases: Either α∗

G is found and the algorithm termi-
nates; B∗ is found then locate α∗

G with the algorithm in Sect.3.2; Or a sub-cactus
Gi containing α∗

G is obtained then the process is repeated on Gi.

Lemma 1. It takes O(n logn) time to get B∗.

3.2 Determining α∗
G in B∗

The second step is to locate α∗
G in B∗. If B∗ is a graft, S(x,G) is convex on

every simple path of B∗. Therefore the algorithm in [3] can be used to determine
α∗

G with the center restricted to lie in B∗. This can be done in O(n logn).
Suppose B∗ is a cycle block. Observe that locating α∗

G in the cycle block
B∗ is equivalent to locating 1-center in a cycle. We now concentrate on solving

Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph 697

the weighted 1-center problem in a cycle O containing t vertices. Let α∗ denote
the 1-center of O. We notice that there is one edge not used by α∗ to cover the
vertices of O, called cut-edge. It follows that the 1-center on the path constructed
by removing the cut-edge from O is also the 1-center in O. So our idea is that:
consider each edge as a cut-edge and compute the 1-center on the resulting path.

Our algorithm is described as follows. Consider Fig.2(c) as reference. The
vertices on the cycle are indexed as v1, v2, . . . , vt in the counterclockwise order
and the edge link vertices vi−1vi is indexed as ei−1, 1 < i ≤ t (et : vtv1). We
put the 2t − 1 vertices {v1

1 = v1, v
1
2 = v2, . . . , v

2
1 = v1, . . . , v

2
t−1 = vt−1} on a

real line. Let Pos(vi) denote the position of vi where Pos(v1
1) = 0, Pos(v1

i) =
Pos(v1

i−1) + l(ei) (1 < i ≤ t), Pos(v2
1) = Pos(v1

t) + l(et), and so on.
The path constructed by removing ei from O is called the i-th path, which

is the path from v1
i+1 to v2

i in Fig.2(c). Let V i be the vertex set of i-th path.
The service cost function f i(x) on i-th path is defined as f i(x) = maxv∈V i w(v)
|x− Pos(v)|, where x is a point (real number) on i-th path. Let xi denote the 1-
center of the i-th path. It is inefficient to separately compute functions f i(x), 1 ≤
i ≤ t.

v1 v2 v3

l3

l′3

fi(x)

xi

l2

l4

l′1

intercept

l′3

l′2

l1

l3

l′4

v4

xi

l4

l′4
slopex

(a) (b)

l′1
l′2

l2
l1

Fig. 3. f i(x) and its dual

Refer to Fig.3, f i(x) is the upper envelope of 2t linear functions. It can be
computed by the convex hull of points in the dual plane. Also, the optimal
solution xi is represented by the edge of the convex hull in the dual plane that
links one vertex whose primal line has negative slope with its adjacent one whose
primal line has positive slope. Observe that (i+ 1)-th path is constructed from
the i-path by simply removing v1

i+1 and inserting v2
i+1. The resulting updating

of the convex hull can be implemented in amortized constant time by carefully
storing the history of the updating during the insertion step. Thus all the optimal
solutions with different cut edges can be computed in O(n log n) time.

The discrete version of the weighted 1-center problem is very similar. Summing
up, we have the following theorem.

Theorem 1. The continous/discrete weighted 1-center problem in a cactus
graph can be solved in O(n log n) time and linear space.

698 B. Ben-Moshe, B. Bhattacharya, and Q. Shi

4 An Algorithm for the Weighted 2-Center Problem

The algorithm for the weighted 2-center problem in a cactus also consists of two
steps. The first step is to locate the block B∗ where an optimal split-edge set
lies, called as split-block. The second step computes an optimal split-edge set R∗.

Let C = {α1, α2} ⊂ A(G). Let Vi ⊆ V be the set of vertices closest to αi ∈
C, i = 1, 2. The edges whose endpoints belong to different subgraphs G(Vi), i =
1, 2 are called split edges. Thus, locating two centers in a graph is equivalent
to finding a set of split edges whose removal defines two connected components
such that the maximum cost of the 1-center of these components is equal to
the optimal 2-center cost of the entire graph. A property on the number of split
edges in a 2-center solution of a cactus graph is shown in Lemma 2.

Lemma 2. The split edges corresponding to one 2-center solution in a cactus
graph G lie in one block Bi. If Bi is graft, the number of split edge is one.
Otherwise (Bi is cycle), it is two.

Let R denote the set of split edges for the 2-center problem. Let G1
R, G

2
R

denote the two subgraphs corresponding to the split-edge set R. Let φ(R) =
max {γG1

R
, γG2

R
} denote the service cost function of G for the split-edge set R. A

split-edge set R∗ is called an optimal split-edge set of G if it satisfies φ(R∗) =
minR⊆Bi,i=1,...,t φ(R), where t is the number of blocks in G.

4.1 Locate the Block B∗ That Contains an Optimal Split-Edge Set

We focus on exploring the property of the split-edge set of the weighted 2-center
in a cactus graph.

Lemma 3. (Refer to Fig.2(a).) Given a hinge vertex o ∈ V , let G1, . . . , Gk

be the sub-cacti hanging from o. We can either identify the component Gi that
contains an optimal split-edge set or identify an optimal split-edge set and this
process takes O(n log n) time.

Lemma 4. (Refer to Fig.2(b).) Given a block Bo, let G1, . . . , Gk be the sub-
cacti hanging from Bo. We can either identify the component Gi that contains
an optimal split-edge set, determine the block B∗ or identify an optimal split-edge
set, and this process takes O(n log n) time.

The proofs of Lemma 3 and Lemma 4 are very similar to the arguments
used in Sect.3.1. Using these two lemmas, we can recursively search an optimal
split-edge set in a component which has at most half of the blocks as that in
the previous component. Thus after an O(n log n · log |VG|) process, either we
already have an optimal split-edge set or know the split block B∗.

4.2 Computing R∗ in B∗

When B∗ is a graft, R∗ contains exactly one edge. We can locate an optimal
split edge recursively using the centroid decomposition of B∗. Each recursive

Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph 699

step takes O(n logn) time (Lemma 3 also works for G-vertex). Therefore, in this
case it takes O(n log n · log |B∗|) time to obtain R∗.

For the other case, an optimal split-edge set contains two edges. Let ei =
(vi, vi+1), i = 1, . . . , t be the edges of B∗ in counterclockwise order. Let [ei, ej]
denote the set of all the edges in the counterclockwise order from ei to ej in B∗.
Similarly, let [vi, vj] denote the set of vertices in the counterclockwise order from
vi to vj in B∗.

If one edge in an optimal split edge is known, we can locate the other one
in O(n log 2n) time since it is equivalent to locating one optimal split edge on
a graft: here, the graft is a path. With respect to one split edge ei, the edge
e′i ∈ E(B∗) is called the match-edge of ei if φ({ei, e

′
i}) = minek∈E(B∗) φ({ei, ek}).

We cannot afford to separately find the match-edge of each edge in B∗. However,
the following simple observation is helpful: Assume that e′i is the match-edge of
ei, i = 1, . . . , t, and ej ∈ (ei, e

′
i). The match-edge e′j of ej should be in [e′i, ei].

Our algorithm to locate R∗ in B∗ proceeds as follows. Start from e1. After
the match-edge e′i of ei is found, the first edge ej ∈ [e′i, e1], which satisfies
φ({ei+1, ej}) < φ({ei+1, ej+1}), is the match-edge e′i+1 of ei+1 with the convexity
property. Thus, the running time is determined by the complexity of computation
of the service cost for a given split-edge set R, shown in next section.

4.3 Compute φ(R : {ei, ej}) in Amortized O(log 3n) Time

Let G′
k denote the subgraph hanging from B∗ rooted at vk. Assume that

S(vi1 , G
′
i1

) ≥ S(vi2 , G
′
i2

) ≥ S(vk, G
′
k), 1 ≤ k ≤ t and k �= i1, i2. Thus the sub-

graphs G′
i1 and G′

i2 are the first two deepest components attached to B∗.

Lemma 5. The two centers for the given split-edge set R ∈ E(B∗) lie either in
the split block B∗ or in G′

i1 , or G′
i2 .

Proof. Suppose that one of two centers, say α1, lies in one sub-cactus G′
k with

k �= i1, i2. We can use the vertex vk as the center instead, without increasing the
service cost. ��

Suppose that vi1 ∈ V (G1
R). We can compute φ(R) by computing (I) the local

optimal center α′
1 (resp. α′

2) in [vi+1, vj] (resp. [vj+1, vi]) of G1
R (resp. G2

R), (II)
the local optimal center α′′

1 (resp. α′′
2) in the G′

i1
(resp. G′

i2
) of G1

R (resp. G2
R if

vi2 ∈ V (G2
R), otherwise α′′

2 is undefined).
In order to compute all such local optimal centers α′

1, α
′
2 in B∗, we are able

to use a similar algorithm used to locate 1-center in a cycle. As we have seen
already, these local optimal centers can be computed in O(n logn) time.

Since computing α′′
2 is similar to compute α′′

1 , we concentrate on comput-
ing α′′

1 only. Let G′ = G1
R \ G′

i1 . G
′ is dynamic as R changes, see Fig.4. Ob-

serve that S(x,G1
R), x ∈ A(G′

i1
) can be computed in O(log 2n) since S(x,G1

R) =
max {S(x,G′), S(x,G′

i1
)} and S(x,G′

i1
) can be computed in O(log 2n) (see

Lemma 11). Let β1 denote the center of G′
i1 , and B denotes the block where

β1 lies.

700 B. Ben-Moshe, B. Bhattacharya, and Q. Shi

Lemma 6. (Refer to Fig.4(a)(b).) The local center α′′
1 lies in one of the blocks

that the shortest path Pvi1 ,β1 goes through.

Proof. Suppose that α′′
1 lies in some block B′ that Pvi1 ,β1 doesn’t go through.

Let h denote the closest vertex to α′′
1 in the blocks that Pvi1 ,β1 goes through. We

can see that the service cost S(h,G1
R) is less than the service cost S(α′′

1 , G
1
R). ��

G′

pu1

u2

v

G1
R

vi1

β1
G′

i1

h

B′

G′
G′

Dynamic with R

vi1

G′
i1

(a) (c)(b)

Current split
edge set R

Fig. 4. (a)(b): Example with a split edge set R; (c): 2-separator between p and G′

Forcing the convexity of S(x,G′
i1

) on every edge of the block path:
The service cost function S(x,G) in a cactus graph may not be convex even on
an edge. Fortunately, for a cactus graph we can make the service cost function
convex on each edge of the block path, which contains all the blocks that Pvi1 ,β1

goes through, by adding extra vertices. It is done as follows. If one block on
the path is a graft, then, clearly, the service cost function is convex on each
edge of this block. Otherwise, for every vertex v in this block, find the match-
point pv in the block such that dc

v,pv
= dcc

v,pv
where dcc

v,pv
is the counterclockwise

distance from v to pv. We assign weight zero to these added vertices. In this
way, the distance function of points on each edge in this block is monotone. As
a consequence of this, the service cost function on the edge is convex.

Ordering the edges in the block path: Let u1 = vi1 , u2, . . . , uk denote
the list of hinge vertices on the block path. Let Bu1 , . . . , Buk

= B denote the
sequence of the blocks that lie on the block path. The equal-point v′ of a vertex
v in a cycle Bui is a point on Bui such that dc

ui,v′ = dcc
ui,v. We can see that the

number of vertices created is at most n. This allows the ordering of the edges of
a block by their distances from ui, i = 1, . . . , k.

In the following we assume that G′
i1 contains the match-points and equal-

points of the vertices in the cycle blocks on the block path. The algorithm to
compute α′′

1 consists of two parts. First we determine the block containing α′′
1 ,

and then determine α′′
1 within this block. Observe that the weighted farthest

vertex v′j in G′
i1

to uj must lie below uj, otherwise, β1 can’t be 1-center of G′
i1

.

Lemma 7. For any j, 1 ≤ j ≤ k, if the farthest (weighted) vertex to uj in G1
R

comes from G′, then α′′
1 lies above uj; Otherwise, the farthest (weighted) vertex

to uj in G1
R lies below uj, then α′′

1 lies below uj.

Using Lemma 7, we can locate the block that contains α′′
1 in O(log n) steps.

In each step, we need to compute S(ui, G
1
R), i ∈ [1, k]. We can precompute all of

Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph 701

the S(ui, G
′
i1

) inO(n log 2n) time. Since S(ui, G
1
R) = max {S(ui, G

′), S(ui, G
′
i1

)},
S(ui, G

1
R) can be computed in O(log n) time. Hence, with n log 2n preprocessing

time, the block containing α′′
1 , denoted by Bu∗

i
, can be found in O(log 2n) time.

Lemma 8. If the local optimal center q of G′
i1

on an edge e has a larger service
cost to G′

i1
than a point p on another edge closer to vi1 , then α′′

1 can’t lie on e.

Proof. S(x,G1
R) = max {S(x,G′), S(x,G′

i1)}. Since the local minimum service
cost to G′

i1
in e is > S(p,G′

i1
) and p is closer to vi1 than any point in e, the

service cost S(p,G1
R) is always less than the service cost of any point in e. ��

The following lemma allows us to efficiently identify α′′
1 in Bu∗

i
.

Lemma 9. Given an edge e in Bu∗
i

whose minimum service cost to G′
i1

is less
than the minimum service cost to G′

i1
of all the points of the edges of Bu∗

i
above

it. If the service cost of G1
R for the local center on e is determined by some vertex

in G′, then all the edge segments of Bu∗
i

below e cannot contain α′′
1 . Otherwise,

all the edge segments of Bu∗
i

above e cannot contain α′′
1 .

The computation of local optimal center of each edge in Bu1 , . . . , Buk
can be

done in O(n log 3n) with the convexity of S(x,G′
i1

) on each edge. For the discrete
case, similar and somewhat simpler method can be applied, in which α′′

1 can be
computed in amortized O(log 2n) time for a given split-edge set. Therefore,

Theorem 2. The continuous weighted 2-center problem in a cactus graph can
be solved in O(n log 3n) time complexity. The discrete weighted 2-center problem
in a cactus graph can be solved in O(n log 2n) time complexity.

4.4 A Brief Description of the Two-Level Tree Decomposition

One of most important property of trees is the existence of a 1-separator between
two disjoint subtrees in each of them. Partial k-trees is more general class of
graphs for which similar property is available. Such property is represented by
a tree decomposition with bounded treewidth k, which can be found in linear
time for fixed k by H.L. Bodlaender.

Cactus graphs are partial 2-trees. Assume that the tree decomposition TD of
G is known. Given a subgraph G′ represented by a subtree TD′ of TD, there is
a 2-separator in G′ between G′ and a point outside G′. With this property, we
preprocess the local information of G′ to be able to get the service cost of any
point outside G′ to cover all the clients in G′ quickly.

Refer to Fig.4(c). Given any point p connecting to vertices inG′ by 2-separator
{u1, u2}, the service cost needed to cover v ∈ V (G′) is either w(v) ·(dv,u1 +du1,p)
or w(v) · (dv,u2 + du2,p). So we sort all the vertices in G′ based on their distance
difference to the 2-separator, and build a balanced binary-search tree over the
sorted sequence. Hence, all the vertices v in G′ whose shortest path to p pass
through u1 (or u2) can be found in O(log |G′|) time. More importantly, by this
data structure, the service cost of p to cover all the clients in G′ can be computed
in O(log |G′|) if the distances to the 2-separator from p are given.

702 B. Ben-Moshe, B. Bhattacharya, and Q. Shi

Next, we add another tree decomposition over TD such that the height of
the new tree ˇTD is logarithmic. There are several methods to achieve it, such
as centroid tree decomposition, top-tree decomposition. After the two-level tree
decomposition of G, for each node in TD, there are O(log n) subtrees of ˇTD
containing all the other nodes in TD. Thus, we get the following lemma:

Lemma 10. The complete data structure in a cactus graph can be computed in
O(n log 2n) time and O(n logn) space.

Since distance queries in partial k-trees can be answered in constant time after
almost linear-time preprocessing for fixed k (by S. Chaudhuri and C.D. Zaro-
liagis), the following lemma is easy to obtain.

Lemma 11. The service cost of a point in a cactus graph can be answered in
O(log 2n) by the two-level tree decomposition data structure.

5 Conclusion and Future Work

In this paper we have studied the center problems in a tree-like graph: cactus,
and proposed the first sub-quadratic time algorithms to solve the weighted 1,2-
center problems in a cactus graph. To obtain them, the properties that allow us
to use the divide-and-conquer technique have been discovered. Since the service
cost function on an edge is not convex in a cactus graph, a simple mechanism has
been suggested that forces convexity on an edge in a cactus graph. Using this
property and the two-level tree decomposition structure proposed in Sect.4.4,
the local minima on an edge can be computed in amortized O(log 3n) time. The
obnoxious center problem in a cactus graph can now be solved in O(n log 3n).
This improves the previous result of O(cn) where c is the number of distinct
vertex weights used in the graph [8]. In the worst case c is O(n).

Theorem 3. The obnoxious center problem in a cactus graph can be solved in
O(n log 3n) time.

Many issues are still left open. For instance, it would be interesting to find out
whether there exists an optimal linear-time algorithm for the weighted 1-center
problem in a cactus graph, whether the two-level tree decomposition combined
with the split method is helpful to solve the weighted p-center problem for p >
2, and whether the parametric search can be applied in the weighted p-center
problem in a cactus graph for any p. Another challenging work is to find efficient
algorithms to solve the weighted 2-center problem in partial k-trees.

References

1. R.E. Burkard, J. Krarup, “A linear algorithm for the pos/neg-weighted 1-median
problem on cactus”, Comput. 60 (1998) 498–509.

2. S.L. Hakimi, “Optimum location of switching centers and the absolute centers and
medians of a graph”, Oper. Res. 12 (1964) 450–459.

Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph 703

3. O. Kariv and S.L. Hakimi, “An algorithmic approach to network location problems,
Part I. The p-centers”, SIAM J. Appl. Math. 37 (1979) 513–538.

4. Y.-F. Lan, Y.-L. Wang, H. Suzuki, “A linear-time algorithm for solving the center
problem on weighted cactus graphs”, Inform. Process. Lett. 71 (1999) 205–212.

5. N. Megiddo, “Linear-time algorithms for linear programming in R3 and related
problems”, SIAM J. Comput. 12:4 (1983) 759–776.

6. N. Megiddo, A. Tamir, “New results on the complexity of p-center problems”, SIAM
J. Comput. 12:4 (1983) 751–758.

7. A. Tamir, “Improved complexity bounds for center location problems on networks
by using dynamic data structures”, SIAM J. Disc. Math. 1:3 (1988) 377–396.

8. B. Zmazek, J. Žerovnik, “The obnoxious center problem on weighted cactus graphs”,
Disc. Appl. Math. 136 (2004) 377–386.

Algorithms for Local Forest Similarity

Zeshan Peng

Computer Science Department, The University of Hong Kong, Hong Kong
zspeng@cs.hku.hk

Abstract. An ordered labeled tree is a rooted tree, where the left-to-
right order among siblings is significant and each node associates a label.
A forest is a sequence of ordered labeled trees. Suppose F is a forest.
A substructure is a connected subgraph of F . Define a subforest as a
sequence of substructures of F such that their roots are siblings. The
local forest similarity problem for forests F and G is to find two most
similar subforests of F and G. We answer an open problem in Paper [3]
and provide efficient algorithms on it. Comparing with previous results,
our algorithms achieve better performance.

1 Introduction

Trees are important data structures to represent hierarchical data such as RNA
secondary structures [9] and XML documents [11]. The problem of calculating the
similarity between trees is studied deeply [12]. It is a global measure which can-
not solve the local similarity problem directly since they do not explore the
exponential local cases. Recently the study of the Local Forest Similarity (LFS)
problem, which is motivated mainly by locating the functional and structural re-
gions in RNA secondary structures, attracts much attention [3,2,10]. In a nutshell,
the LFS problem is to find two most similar subforests of two input forests.

In this paper, we refer to trees as ordered labeled trees. A forest is a sequence
of trees. There are variant existing subforest definitions. A substructure is a
connected subgraph of a forest [10]. Suppose S1, · · · , Ss are substructures in forest
F . 〈S1, · · · , Ss〉 is a closed subforest if they are successive subtrees [3,2]. The
parent of a closed subforest 〈S1, · · · , Ss〉 is defined as the parent of the root of
S1, if it has. 〈S1, · · · , Ss〉 is a gapped subforest if it can be obtained from a closed
subforest by excluding some closed subforests and any two of the excluded closed
subforests do not share the same parent [3]. Jansson et al.[3] provided an open
problem: “Another interesting task is to further generalize our local gapped
subforest alignment problem by allowing exclusions of more than one closed
subforest sharing the same parent node.” We define 〈S1, · · · , Ss〉 to be a general
subforest if the roots of S1, · · · , Ss are siblings, which fulfills the task exactly.

There are two main distance measures for the similarity of forests. One is
the forest edit distance(fed) [12] and the other is the forest alignment distance
(fad) [5]. From the aspect of the similarity score, fed is always better than the
fad [4]. We adopt fed as the similarity measure in this paper.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 704–713, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithms for Local Forest Similarity 705

Suppose F is a forest. The degree of node u is the number of children of
u and the depth of node u is the number of ancestors of u. The degree of F ,
dg(F), is defined to be the maximal degree of nodes in F and the depth of F ,
dp(F), is defined to be the maximal depth of nodes in F . Let L(F) be the set
of all leaves in F and |F | be the number of nodes in F . We provide algorithms
on the LFS problem for two most similar substructures, closed subforests and
general subforests with fed. Note that the number of closed subforests in forest
F is Ω(|F |dg(F)) and that of substructures or general subforests may be an
exponential size. The result comparison of the LFS problem is listed in Table. 1
which shows that our algorithms achieve better performance.

Table 1. Time complexities of the LFS problem for variant subforests

substructures with fed(Sec. 3.1) O(|F |min{|L(F)|,dp(F)}|G|min{|L(G)|,dp(G)})
general subforests with fed(Sec. 3.1) O(|F |min{|L(F)|,dp(F)}|G|min{|L(G)|,dp(G)})
closed subforests with fed(Sec. 3.2) O(|F ||G||L(F)||L(G)|)
closed subforests with fad [3] O(|F ||G|(dg(F)+dg(G))2)
gapped subforests with fad [3] O(|F ||G|(dg(F)+dg(G))dg(F)dg(G))
maximum substructures O(|F |min{|L(F)|,dp(F)}

within d with fed [10] |G|min{|L(G)|,dp(G)}d2)

Motivation: A main motivation of the LFS problem is to automatically discover
functional/structural regions (motifs) in RNA secondary structures. Fig. 1 shows
an example of the RNA GI:2347024 structure, where (a) is a segment of the RNA
sequence, (b) is its secondary structure and (c) is the forest representation. The
Hammerhead motif of this RNA is represented by bold in (a), (b) and (c). If edit
operations are applied on RNA secondary structures such that all bonded pairs are
treated as units, then the similarity of RNA secondary structures can be obtained
by comparing their corresponding forests [9,6,7,2]. The algorithm in [10] is not
flexible because of the difficulty to estimate the value d, especially for unknown
RNA structures. Substructures, closed subforests and gapped subforests cannot
represent general motifs well such as Hammerhead motifs [8,1]. Most general
motifs can be represented by general subforests [3,2,1,8]. The LFS problem for
two most similar general subforests fulfills the task for the general case [3].

The organization of this paper is as follows. Section 2 gives the formal defini-
tions and notations used in our paper. Section 3 presents our algorithms on the
LFS problem and analyzes their time and space complexities.

2 Definitions and Notations

Consider nodes in a rooted tree T whose root is denoted as r(T). Denote the
parent of node v as p(v). Nodes u and v are siblings if p(u)=p(v). Denote all
siblings of node u as A(u). T is said to be an ordered labeled tree if the left-
to-right order among siblings is significant and each node associates a label.

706 Z. Peng

AUAUCG
5’(337)

UG
GC
AU

UA
AU

A G C A G U CG AUAA A
UG
CG
CG
CG
UA
GU

3’(287) 5’(337)

A U
U A

UA
G
U

C
G

AAG

A G CUCAG

U

A

A
U

G

GG G

C

G

C

U

AU C U

AA

A

A
A

G

C

C

G

G

U
G
U

CG
AU
GC

A A AA

U G U G

3’(287)
UGAUAAAGCAGAAAACUGAGCAGUCAUCCCUGUGUGUAGGGGU

(b)

(a)

(c)

Fig. 1. RNA primary structure, RNA secondary structure and its forest representation

In the later discussion, we refer to trees as ordered labeled trees. A forest is a
sequence of trees F=〈T1, · · · , Tt〉. {r(T1), · · · , r(Tt)} are said to be siblings. Apply
a post-order numbering on forest F . Denote f(i) (or i if no confusion) as the ith
post-order traveling node. Denote the subtree rooted at node i ∈ F as F [i]. Let
m(i) be the smallest numbered node in F [i]. The label of node i is denoted as
label(i). Node i is at the left (right resp.) of node j if i<j (i>j resp.). Denote
the left-most sibling of i1 as b(i1) and the right-most sibling of i1 as e(i1). If
node i∈F [j], then node j is an ancestor of i, denoted as j∈anc(i). Denote i:j as
the set of nodes whose numbers are from i to j inclusively. i:j is empty if j<i.

Two edit operations are defined [12] as follows. (1)Relabeling node i means
changing its label. (2)Deleting node i means making its children (if it has) as the
children of p(i) (if it exists) as well as removing node i and the edge between i
and p(i). An edit mapping between forests F and G, denoted as (M,F,G) (or M
for short), is a set of node pairs (i, j), where node i∈F and node j∈G, such that
for any two pairs (i1, j1), (i2, j2)∈M , the following three properties are satisfied:
(1)i1=i2 if and only if j1=j2; (2)i1∈anc(i2) if and only if j1∈anc(j2); (3)i1 is at
the left of i2 if and only if j1 is at the left of j2. For any (i, j)∈M , we say node
i is linked with node j. Any subset M ′⊆M is an edit mapping since it agrees
the above three properties. For any edit mapping (M,F,G), define its left-linked
set as MF ={i|(i, j)∈M} and its right-linked set as MG={j|(i, j)∈M}; define
its left-unlinked set as RF =F\MF and its right-unlinked set as RG=G\MG. An
edit mapping (M ,F ,G) uniquely determines a sequence of deleting and relabeling
operations on forests F and G such that their resulting forests are equal.

Given a fixed alphabet Σ and a space −�∈Σ, define a distance function as
γ:(Σ−×Σ−)\(−,−) →&, whereΣ−=Σ∪{−} and & is the real number set. With-
out loss of generality we assume that γ(a, a)<0 and γ(a, b)>0 if a �=b. For any ele-
ment (i, j)∈(M,F,G), the distance between node i and node j, γ(i, j), is defined
as γ(i, j) = γ(label(i), label(j)). Define the cost of an edit mapping (M,F,G)
as δ(M)=δ(M,F,G)=

∑
(i,j)∈M γ(i, j) +

∑
i∈RF

γ(i,−)+
∑

j∈RG
γ(−, j). Define

δ(∅) = 0 for an empty set ∅. An optimal edit mapping M between forests F
and G is an edit mapping with minimum cost, called forest edit distance (fed),
denoted as δ(F,G) = δ(M).

Algorithms for Local Forest Similarity 707

For any node subset S of F , the restricted subforest of F on S, F‖S , is defined
as the forest obtained from F by deleting all nodes not in S. A substructure is
defined as a connected subgraph of F . Suppose S1, · · · , Ss are substructures
in F . 〈S1, · · · , Ss〉 is said to be a general subforest if their roots are siblings.
The parent of the root of S1 (if it has) is said to be the parent of the general
subforest. 〈S1, · · · , Ss〉 is said to be a closed subforest if S1, · · · , Ss are successive
subtrees. 〈S1, · · · , Ss〉 is said to be a gapped subforest if S1, · · · , Ss are obtained
from a closed subforest by excluding some closed subforests and any two of
excluded closed subforests do not share the same parent [3]. Fig. 2 shows subforest
examples of forest F in Fig. 1(c), where F1=F‖S is a restricted subforest on set
{3,5,6,9,13,22,31}, F2 is a substructure, F3 is a closed subforest, F4 is a gapped
subforest and F5 is a general subforest. Note that F5 is not a gapped subforest.
The Local Forest Similarity (LFS) problem for forests F and G is to find a
subforest F ′ of F and a subforest G′ of G such that their fed is minimum among
all subforest pairs of F and G.

AUG C GU

A A

AU

UG

AAAA

F1 F2 F3 F4 F5

AU

UG
UA

CG

GC

AU

CG A G

AA A

CG

AU

GC

UCG

AU

GC

G A

A A

UA
AU

CA A G A G A G U C A

C

Fig. 2. Examples of variant subforests

3 Algorithms for the LFS Problem

Suppose F=〈T1, · · · , Tx1〉 and G=〈P1, · · · , Px2〉 are two input forests. We provide
efficient algorithms returning two most similar substructures (closed subforests
and general subforests) of forests F and G.

Create two dummy nodes labeled by 1 as the roots of F and G, denoted as
r(F) and r(G), such that T1, · · · , Tx1 and P1, · · · , Px2 are the left-to-right chil-
dren of r(F) and r(G) respectively. Let γ(1, 1)=0. Define the key nodes in forest
F as K(F)={r(F) ∪ r(T1) ∪ · · · ∪ r(Tx1) ∪ i | i ∈ F has a left sibling}. Suppose
K(F),K(G) and L(F), L(G) are calculated and stored as arrays in their post-
orders. m(i) for any node i in F and G is also calculated. All these as a prepro-
cessing step of the following algorithms can be done in linear time.

3.1 Substructures and General Subforests

In this section, we provide two algorithms. One returns two most similar sub-
structures (MSSs) of F and G. The other returns two most similar general sub-
forests (MSGSs) of F and G.

A substructure rooted at node i can be obtained from F [i] by removing
some subtrees in F [i]. We define another edit operation: cutting node i∈F means

708 Z. Peng

removing the whole subtree F [i] from forest F . We also say it is a cut-node. Two
cut-nodes are said to be consistent if there is no ancestor relationship between
them. Let C be a set of cut-nodes in F . C is said to be consistent if any pair of
its cut-nodes is consistent. Let S(F) be all possible consistent sets of cut-nodes
in F . Note that the size of S(F) may be exponential. Denote the remaining
subforest after cutting all nodes in some C∈S(F) as subf(F,C). We have Fact 1.

Fact 1. For C∈S(F [i]), subf(F [i], C) is a substructure rooted at node i if C �={i}.

To get two MSSs of forests F and G, we must find two MSSs of subtrees
F [i1] and G[j1] for all 1≤i1≤|F | and 1≤j1≤|G|. From Fact 1, it equals to get
C1∈S(F [i1]) and C2∈S(G[j1]) such that δ(subf(F [i1],C1),subf(G[j1],C2)) is min-
imal over all combinations S(F [i1])×S(G[j1]) for all 1≤i1≤|F | and 1≤j1≤|G|.
Denote Υ (F,G) as the minimum fed between subf(F,C1) and subf(G,C2) over
all C1∈S(F) and C2∈S(G). Then the objective is to find Υ (F [i1], G[j1]) for all
1≤i1≤|F | and 1≤j1≤|G|. Lemma1 tells how to calculate some special cases.

Lemma 1. Υ (∅, ∅) = 0; Υ (F, ∅) = 0; Υ (∅, G) = 0.

Proof. The first case is obvious since there is no cost for the empty mapping.
Since subf(F, {r(T1), · · · , r(Tx1)})=∅ and subf(G, {r(P1), · · · , r(Px2)}) = ∅. We
get that Υ (F, ∅)=0 and Υ (∅, G) = 0. ��

Consider how to calculate Υ (F [i1], G[j1]) for subtrees F [i1] and G[j1]. For
any nodes i∈F [i1] and j∈G[j1], F‖m(i1):i and G‖m(j1):j are two restricted sub-
forests. Then the key is to calculate Υ (F‖m(i1):i, G‖m(j1):j) since Υ (F [i1], G[j1]) =
Υ (F‖m(i1):i1 , G‖m(j1):j1). Consider node f(i). It may be deleted, or relabeled or
cut. Note that if f(i) is cut during the calculation, then the whole subtree F [i]
is removed and F‖m(i1):i becomes a new restricted subforest F‖m(i1):m(i)−1. f(i)
is cut if and only if Υ (F‖m(i1):i, G‖m(j1):j)=Υ (F‖m(i1):m(i)−1, G‖m(j1):j), which
means a cut operation has zero cost. Intuitively, this means subtree F [i] is dis-
similar with any subtree in G[j1] and the whole subtree F [i] should be removed
for the minimal cost. The deletion and relabeling cases are studied deeply in [12].
Node g(j) follows the same cases respectively. To summarize the above analysis,
Lemma2 shows how to calculate Υ (F‖m(i1):i, G‖m(j1):j).

Lemma 2. Υ (F‖m(i1):i, G‖m(j1):j) = min

Υ (F‖m(i1):m(i)−1, G‖m(j1):j);
Υ (F‖m(i1):i, G‖m(j1):m(j)−1);
Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1);
Υ (F‖m(i1):i−1, G‖m(j1):j) + γ(f(i),−);
Υ (F‖m(i1):i, G‖m(j1):j−1) + γ(−, g(j));
Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1) + Υ (F‖m(i):i−1, G‖m(j):j−1) + γ(f(i), g(j));

Proof. Suppose Co
1∈S(F‖m(i1):i) and Co

2∈S(G‖m(j1):j) are two optimal consis-
tent cut-node sets such that δ(subf(F‖m(i1):i, C

o
1),subf(G‖m(j1):j , C

o
2)) is mini-

mum. Suppose M is an optimal edit mapping between subf(F‖m(i1):i, C
o
1) and

subf(G‖m(j1):j , C
o
2). Consider the nodes f(i), g(j) and the sets Co

1 , C
o
2 .

Algorithms for Local Forest Similarity 709

– f(i) ∈ Co
1 : then f(i) is a cut-node and the whole subtree F [i] is removed. In

this case, we get Υ (F‖m(i1):i, G‖m(j1):j) = Υ (F‖m(i1):m(i)−1, G‖m(j1):j);
– g(j) ∈ Co

2 : then g(j) is a cut-node and the whole subtree G[j] is removed.
In this case, we get Υ (F‖m(i1):i, G‖m(j1):j) = Υ (F‖m(i1):i, G‖m(j1):m(j)−1);

– f(i) ∈ Co
1 and g(j) ∈ Co

2 : then both F [i] and G[j] are removed. In this case,
we get Υ (F‖m(i1):i, G‖m(j1):j) = Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1);

– f(i) /∈ Co
1 and g(j) /∈ Co

2 : then node f(i) is either deleted or linked with
some node in G‖m(j1):j . So is for node g(j). Consider f(i), g(j) and M .
• f(i) /∈ MF , which means f(i) is deleted from F‖m(i1):i. In this case, we
get Υ (F‖m(i1):i, G‖m(j1):j) = Υ (F‖m(i1):i−1, G‖m(j1):j) + γ(f(i),−);
• g(j) /∈ MG, which means g(j) is deleted from G‖m(j1):j . In this case, we
get Υ (F‖m(i1):i, G‖m(j1):j) = Υ (F‖m(i1):i, G‖m(j1):j−1) + γ(−, g(j));
• f(i)∈MF and g(j)∈MG: then (f(i), g(j))∈M . In this case, we get
Υ (F‖m(i1):i, G‖m(j1):j) = Υ (F‖m(i1):m(i)−1,G‖m(j1):m(j)−1)+

Υ (F‖m(i):i−1, G‖m(j):j−1) + γ(f(i), g(j)).

All cases are considered and finally we get Υ (F‖m(i1):i, G‖m(j1):j) as the mini-
mum of the above cases. ��

In Lemma 2, from the definitions of Υ and m, it is easy to get that
Υ (F‖m(i1):i, G‖m(j1):j)≤Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1)+Υ (F [i], G[j]) and
Υ (F [i],F [j])≤Υ (F‖m(i):i−1,G‖m(j):j−1)+γ(f(i),g(j)). If m(i)=m(i1) and m(j)=
m(j1), then Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1) =Υ (∅, ∅). So we have Theorem1.

Theorem 1. If m(i) = m(i1) and m(j) = m(j1), we have case 1:
Υ (F‖m(i1):i,G‖m(j1):j)=Υ (F [i],G[j])=

min

Υ (F‖m(i1):m(i)−1, G‖m(j1):j);
Υ (F‖m(i1):i, G‖m(j1):m(j)−1);
Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1);
Υ (F‖m(i1):i−1, G‖m(j1):j) + γ(f(i),−);
Υ (F‖m(i1):i, G‖m(j1):j−1) + γ(−, g(j));
Υ (F‖m(i1):i−1, G‖m(j1):j−1) + γ(f(i), g(j));

Otherwise, we have case 2: Υ (F‖m(i1):i, G‖m(j1):j) =

min

Υ (F‖m(i1):m(i)−1, G‖m(j1):j);
Υ (F‖m(i1):i, G‖m(j1):m(j)−1);
Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1);
Υ (F‖m(i1):i−1, G‖m(j1):j) + γ(f(i),−);
Υ (F‖m(i1):i, G‖m(j1):j−1) + γ(−, g(j));
Υ (F‖m(i1):m(i)−1, G‖m(j1):m(j)−1) + Υ (F [i], G[j]);

Applying Theorem1, Algorithm 1 calculates Υ (F [i1], G[j1]) for all i1∈K(F)
and j1∈K(G). Create matrices with size of |F [i1]|×|G[j1]| for all i1∈K(F) and
j1∈K(G). Store the values Υ (F [i], G[j]) for all m(i1)≤i ≤i1 and m(j1)≤j≤j1 in
Algorithm1. Lemma 3 follows.

Lemma 3. For any nodes i1∈K(F) and j1∈K(G), and any nodes m(i1)≤i≤i1
and m(j1)≤j≤j1, Υ (F‖m(i1):i,G‖m(j1):j) can be obtained in constant time.

710 Z. Peng

Main Loop
Input: two forests F and G;
1: for x1 := 1, · · · , |K(F)| do
2: for x2 := 1, · · · , |K(G)| do
3: i1 = K(F)[x1]; j1 = K(G)[x2]; Calculate Υ (F [i1], G[j1]);

Tree-Tree Procedure Υ (F [i1], G[j1]):
1: Υ (∅, ∅) = 0;
2: for i := m(i1), · · · , i1 do Υ (F‖m(i1):i, ∅) = 0;
3: for j := m(j1), · · · , j1 do Υ (∅,G‖m(j1):j) = 0;
4: for i := m(i1), · · · , i1 do
5: for j := m(j1), · · · , j1 do
6: calculate Υ (F‖m(i1):i, G‖m(j1):j) according to Theorem 1.

Algorithm 1: Substructure Similarity Algorithm

Proof. To prove this statement, it equals to prove that in both case 1 and base
2 of Theorem1, Υ (F‖m(i1):i, G‖m(j1):j) in Algorithm1 can be calculated in con-
stant time. In Algorithm1, indices i and j are increased successively (see Step
4 and 5 in Algorithm1). Υ (F‖m(i1):i, G‖m(j1):j) can be obtained in constant
time in case 1 since all values required for its calculation are known before its
calculation. Now we prove that it can be obtained in constant time in case 2 too.

The calculation of Υ (F‖m(i1):i,G‖m(j1):j) depends on values (1)Υ (F‖m(i1):i,
G‖m(j1):j−1), (2)Υ (F‖m(i1):m(i)−1,G‖m(j1):m(j)−1), (3)Υ (F‖m(i1):i−1,G‖m(j1):j),
(4)Υ (F‖m(i1):m(i)−1,G‖m(j1):j), (5)Υ (F‖m(i1):i−1,G‖m(j1):j−1), (6)Υ (F‖m(i1):i,
G‖m(j1):m(j)−1), (7)Υ (F [i],G[j]). Indices i and j are increased one by one and
i ≤ i1 and j ≤ j1 (see Step 4 and 5 in Algorithm1). Then the first six values are
known before. Now we prove that (7) is also known before.

Note that K(F) and K(G) are stored in their post-orders, and i1∈K(F)
and j1∈K(G). If i∈K(F) and j /∈K(G), then there is a node j′∈K(G) on the
path from j to j1 such that Υ (F [i], G[j])= Υ (F [i], G‖m(j′):j) which is calcu-
lated in previous loops. Note that if m(j′)=m(j1), then j′=j1. If i/∈K(F) and
j∈K(G), then there is a node i′∈K(F) on the path from i to i1 such that
Υ (F [i], G[j])=Υ (F‖m(i′):i, G[j]) which is calculated in previous loops. Note that
ifm(i′)=m(i1), then i′=i1. If i/∈K(F) and j /∈K(G), then there is a node i′∈K(F)
on the path from i to i1 and a node j′∈K(G) on the path from j to j1 such that
Υ (F [i], G[j])=Υ (F‖m(i′):i, G‖m(j′):j) which is calculated in previous loops. So for
all cases, Υ (F [i], G[j]) is known before the calculation of Υ (F‖m(i1):i, G‖m(j1):j).
The final minimizing can be done in constant time. So we get the proof. ��

Given forests F and G in Algorithm1, Lemma 3 shows that Υ (F‖m(i1):i,
G‖m(j1):j) is calculated for all i1∈K(F), j1∈K(G) and m(i1)≤i≤i1 and m(j1)≤j
≤j1. Theorem2 shows Algorithm1 calculates Υ (F [i], G[j]) for all i∈F and j∈G
efficiently, and thereby obtains two most similar substructures of F and G.

Theorem 2. We can find two MSSs of forests F and G in O(|F ||G|)-space and
O(|F ||G|min{|L(F)|,dp(F)}min{|L(G)|,dp(G)})-time.

Algorithms for Local Forest Similarity 711

Proof. To prove its correctness, it equals to prove that Υ (F [i], G[j]) is calcu-
lated in Algorithm1 for all i∈F and j∈G. For any i∈F and j∈G, consider the
relationships between i, j and K(F),K(G):

– i∈K(F) and j∈K(G): in this case, Υ (F [i], G[j]) is calculated correctly at
Step 3 in the main loop of Algorithm1.

– i∈K(F) and j /∈K(G): in this case, there exists j1∈anc(j) such that j1∈K(G)
and Υ (F [i], G[j])=Υ (F [i], G‖m(j1):j) which is calculated correctly at Step 3
in the main loop of Algorithm1.

– i/∈K(F) and j∈K(G): in this case, there exists i1∈anc(i) such that i1∈K(F)
and Υ (F [i], G[j])=Υ (F‖m(i1):i, G[j]) which is calculated correctly at Step 3
in the main loop of Algorithm1.

– i/∈K(F) and j /∈K(G): in this case, there exist i1∈anc(i) and j1∈anc(j) such
that i1∈K(F), j1∈K(G) and Υ (F [i], G[j])=Υ (F‖m(i1):i, G‖m(j1):j) which are
calculated at Step 3 in the main loop of Algorithm1.

Thus in all cases, Υ (F [i], G[j]) is calculated in Algorithm1 correctly for all i∈F
and j∈G. min{Υ (F [i], G[j]) | i ∈ F, j ∈ G} is the minimum fed among all
substructure pairs of F and G. We can backtrack these two most similar sub-
structures correctly in the same complexity.

In [12], it is proved that |K(F)|≤min{|L(F)|, dp(F)}. Combining Theorem1
and Lemma3, it is not difficult to get that the time complexity of Algorithm1
is O(|F ||G| min{|L(F)|, dp(F)}min{|L(G)|, dp(G)}) and its space complexity is
O(|F ||G|). So we get the proof. ��

Now we provide an efficient algorithm for two MSGSs of F and G. Suppose
the closed subforests F ′=〈S1, · · · , Ss〉 and G′=〈S′

1, · · · , S′
s′〉 are two non-empty

most similar general subforests of F and G, where S1, · · · , Ss are substructures
of F whose roots are i1, · · · , is respectively, and S′

1, · · · , S′
s′ are substructures of

G whose roots are j1, · · · , js′ respectively. Then i1, · · · , is are left-to-right siblings
in F and j1, · · · , js′ are left-to-right siblings in G. Consider F‖m(b(i1)):e(i1) and
G‖m(b(j1)):e(j1). It is clear that F ′ and G′ are also two most similar general
subforests of F‖m(b(i1)):e(i1) and G‖m(b(j1)):e(j1). This claim comes from cutting
all nodes A(i1)\{i1, · · · , is} in F‖m(b(i1)):e(i1) and all nodes A(j1)\{j1, · · · , js′}
in G‖m(b(j1)):e(j1). So δ(F ′, G′) = Υ (F‖m(b(i1)):e(i1), G‖m(b(j1)):e(j1)).

Since b(i1) and b(j1) have no left siblings, then b(i1)/∈K(F) and b(j1)/∈ K(G).
There exist pi∈anc(i1) and pj∈anc(j1) such that pi∈K(F) and m(b(i1))=m(pi),
and pj∈K(G) and m(b(j1))=m(pj). From Theorem2, Υ (F‖m(i1):i, G‖m(j1):j)
and Υ (F [pi], G[pj]) are calculated in Algorithm1 for all i1∈F ,m(i1)≤i≤i1 and
j1∈G,m(j1)≤j≤j1. So value Υ (F‖m(b(i1)):e(i1),G‖m(b(j1)):e(j1))=Υ (F‖m(pi):e(i1),
G‖m(pj):e(j1)) is calculated. We can find the minimum score of Υ (F‖m(i1):i1−1,
G‖m(j1):j1−1) over all i1∈F and j1∈G in Algorithm1. Two most similar general
subforests can be found by backtracking the calculation of F [i1] and G[j1]. It
is obvious that it takes O(|F ||G|min{|L(F)|,dp(F)}min{|L(G)|,dp(G)}) time.
During the calculation, we are only asked to store the score of Υ (F [i1], G[j1])
and Υ (F‖m(i1):i1−1, G‖m(j1):j1−1) for all i1∈F and j1∈G. So its space complexity
is O(|F ||G|). Finally we have Theorem3.

712 Z. Peng

Theorem 3. We can find two MSGSs of forests F and G in O(|F ||G|min
{|L(F)|, dp(F)}min{|L(G)|, dp(G)}) time and O(|F ||G|) space.

3.2 Most Similar Closed Subforests (MSCSs)

Denote i · ·j as the set of siblings which are at the right of i and at the left of j
inclusively. If i, j are not siblings or i is a right sibling of j, then i · ·j is empty.
Denote F [i · ·j] as all subtrees rooted at i · ·j. Then any closed subforest of F
can be represented as F [i · ·j] [3,2]. In this section we provide a simple algorithm
finding two most similar closed subforests (MSCSs) of F and G with fed measure.

To find two MSCSs of F and G, the search space in F is O(|F |dg(F)) and that
in G is O(|G|dg(G)). Suppose F [i1 · ·i2] and G[j1 · ·j2] are two MSCSs of F and
G. F [i1 · ·i2]=F‖m(i1):i2 and G[j1 · ·j2]=G‖m(j1):j2 . It is not difficult to get that
the algorithm provided in Paper [12] and Algorithm1 in Section 3.1 do not work
for such two MSCSs since the values of δ(F‖m(i1):i2 , G‖m(j1):j2) are not calculated
if i1∈K(F), i1<i2<p(i1) or j1∈K(G), j1<j2<p(j1). For any nodes i1 ∈ F and
j1 ∈ G, and any nodes i ∈ F [i1] and j ∈ G[j1], F‖m(i1):i and G‖m(j1):j are
two restricted subforests. Lemma 4 tells how to calculate δ(F‖m(i1):i, G‖m(j1):j)
efficiently. Paper [12] provides its detailed proof.

Lemma 4. If m(i1) = m(i) and m(j1) = m(j) then:
δ(F‖m(i1):i, G‖m(j1):j) = δ(F [i], G[j]) =

min

δ(F‖m(i1):i−1, G‖m(j1):j) + γ(f(i),−);
δ(F‖m(i1):i, G‖m(j1):j−1) + γ(−, g(j));
δ(F‖m(i1):i−1, G‖m(j1):j−1) + γ(f(i), g(j));

Otherwise: δ(F‖m(i1):i, G‖m(j1):j) =

min

δ(F‖m(i1):i−1, G‖m(j1):j) + γ(f(i),−);
δ(F‖m(i1):i, G‖m(j1):j−1) + γ(−, g(j));
δ(F‖m(i1):m(i)−1, G‖m(j1):m(j)−1) + δ(F [i], G[j]);

Applying Lemma4, we provide Algorithm2 finding two MSCSs of F and G.

Main Loop
Input: Two forests F and G.
1: for x1 := |L(F)|, · · · , 1 do
2: for x2 := |L(G)|, · · · , 1 do
3: l1 = L(F)[x1]; l2 = L(G)[x2]; RTreeED(l1, l2);

Tree-Tree Procedure RTreeED(l1, l2):
1: δ(∅, ∅) = 0
2: for i := l1, · · · , |F | do δ(F‖l1:i, ∅) = δ(F‖l1:i−1, ∅) + γ(f(i),−);
3: for j := l2, · · · , |G| do δ(∅, G‖l2:j) = δ(∅, G‖l2:j−1) + γ(−, g(j));
4: for i := l1, · · · , |F | do
5: for j := l2, · · · , |G| do
6: calculate δ(F‖l1:i, G‖l2:j) according to Lemma4.

Algorithm 2: Closed Subforest Similarity Algorithm

Algorithms for Local Forest Similarity 713

Theorem 4. Given two forests F and G, we can find two MSCSs with fed of F
and G in O(|F ||G||L(F)||L(G)|) time and O(|F ||G|) space.

Proof. Algorithm2 calculates the values of δ(F‖l1:i, G‖l2:j) for all leaves l1∈
L(F), i∈l1:|F | and l2∈L(G), j∈l2:|G| from Lemma 4. To prove the correctness,
we must prove that Algorithm2 explores the search space O(|F |dg(F)|G|dg(G)).

Suppose F [i1 · ·i2]=F‖m(i1):i2 and G[j1 · ·j2]=G‖m(j1):j2 are two non-empty
MSCSs of F and G. Since m(i1)∈L(F) and m(j1)∈L(G), m(i1)≤i2≤|F | and
m(j1)≤j2≤|G|, then δ(F [i1 ··i2], G[j1 ··j2])=δ(F‖m(i1):i2 , G‖m(j1):j2) is calculated
in Algorithm2. So we can find two most similar closed subforests by backtracking
the closed subforest pair with a minimum score of min{δ(F‖m(i1):i2 , G‖m(j1):j2) |
i1, i2 are siblings in F, j1, j2 are siblings in G}.

RTreeED(l1,l2) in Algorithm2 calculates the values of δ(F‖l1:i, G‖l2:j) for
all i∈l1:|F | and j∈l2:|G|. δ(F‖l1:i, G‖l2:j) can be calculated in constant time
since all values for its calculation are obtained if we store all subtree to sub-
tree scores using O(|F ||G|) space. It takes O(|F |dg(F)|G|dg(G)) searching time
since each node in F has at most Ω(dg(F)) siblings. So Algorithm2 runs in
O(|F ||G||L(F)||L(G)|) time and O(|F ||G|) space. ��

References

1. S. Griffiths-Jones. The microRNA Registry. Nucl. Acids Res., 32, D109-11, 2004.
2. Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz. Local

similarity in RNA secondary structures. In Proceedings of the IEEE computer society
conference on Bioinformatics, pp.159–168, 2003.

3. Jesper Jansson, Ngo Trung Hieu, and Wing-Kin Sung. Local gapped subforest
alignment and its application in finding RNA structural motifs. In Proceedings of
the international symposium on algorithms and computation, pp.569–580, 2004.

4. Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance
between RNA structures. Journal of Molecular Biology, 9(2):371–388, 2002.

5. Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees - an alternative
to tree edit. Theor. Comput. Sci., 143:137–148, 1995.

6. Guo-Hui Lin, Bin Ma, and Kaizhong Zhang. Edit distance between two RNA struc-
tures. In Proceedings of the international conference on computational biology,
pp.211–220, 2001.

7. Bin Ma, Lusheng Wang, and Kaizhong Zhang. Computing similarity between RNA

structures. Theor. Comput. Sci., 276:111–132, 2002.
8. Motifs Database. http://subviral.med.uottawa.ca/cgi-bin/motifs.cgi.
9. Bruce A. Shapiro and Kaizhong Zhang. Comparing multiple RNA secondary struc-

tures using tree comparisons. Comput. Appl. Biosci., 6(4):309–318, 1990.
10. Jason Tsong-Li Wang, Bruce A. Shapiro, Dennis Shasha, Kaizhong Zhang, and

Kathleen M. Currey. An algorithm for finding the largest approximately common
substructures of two trees. IEEE Trans. Pattern Anal. Mach. Intell., 20(8):889–
895, 1998.

11. Extensible markup language (XML) 1.0 (third edition), W3C recommendation.
http://www.w3.org/TR/REC-xml/, 2004.

12. Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989.

Fast Algorithms for Finding Disjoint
Subsequences with Extremal Densities

Anders Bergkvist1 and Peter Damaschke2,�

1 Department of Molecular Biology, Göteborg University, P.O. Box 462,
40530 Göteborg, Sweden

abk@molbio.gu.se
2 School of Computer Science and Engineering, Chalmers University,

41296 Göteborg, Sweden
ptr@cs.chalmers.se

Abstract. We derive fast algorithms for the problem of finding, on the
real line, a prescribed number of intervals of maximum total length that
contain at most some prescribed number of points from a given point
set. Basically this is a typical dynamic programming problem, however,
for input sizes much bigger than the two parameters we can improve the
obvious time bound by selecting a restricted set of candidate intervals
that are sufficient to build some optimal solution. As a byproduct, the
same idea improves an algorithm for a similar subsequence problem re-
cently brought up by Chen, Lu and Tang at IWBRA 2005. The problems
are motivated by the search for significant patterns in certain biological
data. While the algorithmic idea for the asymptotic worst-case bound
is rather evident, we also consider further heuristics to save even more
time in typical instances. One of them, described in this paper, leads to
an apparently open problem of computational geometry flavour (where
we are seeking a subquadratic algorithm) which might be interesting in
itself.

1 Problem Statement and Results

Finding large empty regions (big holes) in data sets is relevant for data mining
and statistical inference. The problem in its most general form is given by a space
X , a family F of subsets of X , a size function (satisfying some usual axioms)
that assigns a positive real number to every set in F , and a finite set D ⊂ X of n
data points. The goal is to find the largest set in F disjoint to D. In a commonly
considered case, X is a finite-dimensional real vector space, F is the family of
axis-parallel boxes, and the size of a box is its volume.

It is quite natural to generalize the problem in two directions: One may be
interested in several disjoint big holes in X , and one may tolerate a limited num-
ber of data points in these holes. Therefore we introduce two parameters s, p and
look for s disjoint sets with maximum total size which may contain up to p data
points. This parameterized problem is challenging already in two dimensions,
� Contact author.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 714–723, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities 715

i.e., for axis-parallel rectangles in the plane. It might be NP-complete, we leave
this as an open question. In the present paper we study the one-dimensional
case where F is the set of sub-intervals of a finite-length interval X , and the size
of an interval is its length. This one-dimensional case is already interesting for
some applications, see Section 2. While this problem is in principle easy to solve
by dynamic programming, the question of algorithms being as fast as possible
for given n, s, p turns out to be nontrivial.

Note that an optimal solution always consists of s open intervals (excluding
their endpoints) with data points as ends. (The two outermost intervals of a solu-
tion may reach an end of X .) This gives us a more convenient formal description.
In a sequence of real numbers x0, x1, x2, . . . , xn called items, we call any set of
consecutive items xi, . . . , xj (i ≤ j) an interval of length xi + . . .+xj . Applied to
our “big holes” problem, xi (for 0 < i < n) is obviously the distance of the ith
and (i + 1)st data point in their natural ordering in X , while x0 and xn is the
distance of the first and last data point to the left and right end, respectively,
of X . Now our problem can be stated as follows:

Disjoint Intervals of Maximum Length (DIMaxL)
Given a sequence x0, x1, x2, . . . , xn of real numbers, and integers s ≥ 1 and

p ≥ 0, find s pairwise disjoint intervals with a total of s+p items and maximum
total length.

A batch of remarks is in order here. If xi ≥ 0 for all i, an optimal solution
always uses exactly s + p items, otherwise we could add another item to some
interval. Hence, the problem would not change if we wrote “at most s+p items”
in the specification. In our version with exactly s+p items, the xi can be arbitary
real numbers, and an optimal solution may have to take some negative items.
Also, a problem instance does not change if any constant is added to all xi. On
the other hand, an optimal solution may have chains of, say, t incident intervals.
We may split such chains arbitrarily in t other intervals without changing s, p,
and the total length.

In some lucky cases, a trivial solution exists and can be verified in O(n) time:
If the s+ p largest items form (at most) s intervals, this is obviously an optimal
solution. In particular, DIMaxL with p = 0 is a trivial problem. However, in
general the s+ p largest items are more scattered, and then the optimum is no
longer obvious: Parts of an optimal solution may consist of medium-length items
that are clustered, and then we have to find the best among many candidates.

We also mention that DIMaxL can be rephrased as a special case of the
Weighted Independent Set problem in interval graphs, where every vertex be-
longs to at most p consecutive cliques, the solution has to consist of s vertices,
and the weights are the interval lengths in a given interval model. The problem
is well studied for general weights and interval graphs (and other intersection
graphs as well, see [2] for pointers to the vast literature), but to our best knowl-
edge, efficient algorithms for our specific restrictions are not known. Thus we
will not further use the relationship to interval graphs.

716 A. Bergkvist and P. Damaschke

Organisation of the paper and results: In Section 2 we give several moti-
vations, in Section 3 we develop our algorithms for DIMaxL. A straightforward
dynamic prgramming algorithm solves DIMaxL in O(spn) time. By some pre-
processing that selects possible intervals for an optimal solution, without missing
any candidate, we can run dynamic programming on the smaller candidate set
and achieve a time bound O(pn + s2p3). Since s, p , n in statistically relevant
cases, this alternative algorithm is then an improvement. We do not expect that
we can completely get rid of the p factor, too, however this question motivates a
heuristic and another (open) computational problem that looks challenging. We
shall discuss it in Section 4. This and other heuristics considered in the full paper
do not further improve our worst-case bound but are apparently advantageous
in many instances.

Recently we became aware of a similar numerical subsequence problem: Define
the density of an interval xi, . . . , xj to be the ratio (xi + . . . + xj)/(j − i + 1).
Let us call the problem introduced and attacked in [7]

Disjoint Intervals of Maximum Density (DIMaxD)
Given a sequence x1, x2, . . . , xn of real numbers, and integers k ≥ 1 and l ≥ 1,

find k disjoint intervals, each with at least l items, so as to maximize the sum of
their densities.

Chen, Lu and Tang [7] gave algorithms running in time O(kln), O(n), and
O(n + l2) for the general case, k = 2, and k = 3, respectively. They explicitly
asked if the general case can be solved in o(kln) time. In Section 3 of our paper
we give an affirmative answer. As a byproduct of the idea used above, we solve
DIMaxD in O(ln+ k2l2) time. Actually, this scheme is applicable to any similar
problem where one has to find a set of disjoint subsequences that optimizes
some objective function. The main property we need from the problem is that
the candidate intervals are of limited length.

2 Bioinformatics Motivations and Related Work

Finding big holes in data sets is well investigated in algorithm theory and in
practice [1, 3, 6, 10, 13, 15]. But apparently very little has been done for the more
general, parameterized version introduced in Section 1.

To motivate DIMaxL, suppose that certain objects are characterized by pairs
of real coordinates x, y, where y is hard to measure, and that we have a random
sample of data points (x, y). When we get a new measured value x0, we would
like to predict (more modestly: to restrict the range of) y0. Let us consider a set
D of data points with x around the measured x0, e.g., within some user-defined
radius. Under mild smoothness assumptions on the underlying distribution of
the (x, y), we can conclude that, with high probability, y0 is not in any of the
big holes in this set. The approach can be readily extended to more dimensions.
An “orthogonal” way to use holes for range predictions is to partition the data
set into slices parallel to the x-axis and to compute, in each slice, the big holes
in the projection to the x-axis. For a measured x0 we would discard such values

Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities 717

of y where x0 is in a big hole in the slice of y. This way we discard the true y0
with some limited error probability only.

In a more purified setting, suppose that we sample n data points (real num-
bers) from an unknown probability distribution on a finite-length real interval
X , and we want to “learn” a subset of X , as large as possible, where we do
not expect future data points, up to some fraction (error probability) which is
roughly p/n. If we simply took the p largest intervals between the data points,
we would get a very scattered subset that reflects more the random locations
of sampled data points than intrinsic big holes with low probability in the un-
derlying distribution. Therefore we introduce a defragmentation parameter s.
From another point of view, we might be interested in a prescribed number s of
non-overlapping holes, but we should tolerate, say, p data points in these holes,
since the number of data points in a low-probability interval follows a Poisson
distribution. If, just as an example, the expected value of data points in some
interval is 1, we get no or one data point with the same probability. Moreover, p
can also account for outliers due to measurement errors. We will not further go
into the discussion of statistical aspects, as the paper is focused on the algorith-
mic questions. We just make the point that p > 0 is motivated, and parameters
s and p have to be chosen small compared to n.

Specifically, we were led to the problem by an ongoing project where we are
trying to predict backbone torsion angles in proteins from measured nuclear
magnetic resonance (NMR) chemical shifts. (We refer to [5, 8, 18, 19] for more
background, but this is not needed to understand the problem studied here.) In a
nutshell, it is well-known that chemical shifts are exquisitely sensitive indicators
of local molecular structure. Certain torsion angles are particularly important
for protein structures and they are correlated to these NMR chemical shifts.
The distribution of chemical shifts versus torsion angles can be extracted from
public databases. Existing technology allows protein-wide measurement and as-
signment of chemical shifts to residues at reasonable costs. This suggests the
usage of measured chemical shifts for predicting torsion angle restraints at each
residue, which can then be input in any of the existing computer programs that
complete the structure prediction. Restraints should have small ranges of likely
torsion angle values. At the same time, a large fraction of computed restraints
should really contain the true angles. Both crtiteria are crucial to efficient and
correct structure reconstruction. The process of discarding unlikely torsion angle
intervals must run automatically, since very many restraints are to be computed.
Thus it is desirable to have fast and easy-to-implement algorithms. Even mod-
erate constant factors in the running time can be interesting.

The problem of [7] we called DIMaxD originates from several other pattern
recognition applications in molecular biology, such as locating GC-rich regions
and CpG islands in DNA, see [7] for more hints to the literature. Detection
of special or unusual subsequences in biological sequences (DNA, proteins) has
inspired various similar problems. To name a further example: Given a sequence
of scores, find non-overlapping contiguous subsequences with maximum total
scores [17]. However this problem is quite different from ours, in that the number

718 A. Bergkvist and P. Damaschke

of items is not limited. Thus it requires different techniques. Finally we mention
that sparse dynamic programming algorithms have been successfully applied to
string distance computations [11, 12, 14] which are, of course, also relevant in
molecular biology.

3 Selection as Preprocessing for Faster Dynamic
Programming

First of all, there is a simple dynamic programming algorithm for DIMaxL. Since
it is straightforward, we omit the proof.

Proposition 1. DIMaxL can be solved in O(spn) time.

However, this is not the most efficient way if parameters s, p are small com-
pared to n. Intuitively, we should be able to restrict the search to the largest
sums of at most p+1 consecutive xi. It is not possible to give a minimum length
of candidate items that may appear in an optimal solution, since it may be nec-
essary to insert a very short item that links two long intervals. (Examples are
easy to construct.) But we can restrict the candidate intervals instead:

For q = 1, . . . , p+ 1 let I(q) be the set of intervals with q items. We will show
that some optimal solution consists only of intervals among the r(q) largest from
each I(q), where r(q) is some bound that solely depends on q and parameters
s, p but not on the input size n. Moreover, r(q) is polynomial in s, p:

Lemma 1. There exists an optimal solution S where all vertices from I(q) in
S are among the r(q) = (s− 2)q + p+ (s+ p)/q + 1 largest intervals in I(q).

Proof. Consider an optimal solution (set of disjoint intervals) S. For any v ∈
S∩I(q) and u ∈ I(q)\S longer than v, vertex u is blocked, i.e., adjacent to some
of the s− 1 vertices in S \ {v}, since otherwise (S \ {v})∪{u} would be a better
solution. For j = 1, . . . , p+ 1 let sj denote the number of intervals in S ∩ I(j).
Clearly,

∑
j sj = s and

∑
j jsj = s + p. Every interval in (S \ {v}) ∩ I(j) can

block at most q+j−1 intervals in I(q). Hence the number of intervals blocked by
S \{v} in I(q) is at most (

∑
j sj(q+ j−1))− (2q−1), the last term is subtracted

because v ∈ I(q), but factor sq is used in the sum. Since at most sq − 1 intervals
in S∩I(q) stand before v, the rank of v in I(q), sorted in non-increasing order of
lengths, is at most sq −2q+1+

∑
j sj(q+j−1) = sq −2q+1+(q−1)s+(s+p) =

(s− 2)q + p+ sq + 1. Observation sq ≤ (s+ p)/q gives the result. ��
Due to Lemma 1, only the r(q) top intervals in each I(q) need to be considered

as candidates for an optimal solution. Bounding
∑

q r(q) yields, after a little
calculation:

Corollary 1. The number of candidate intervals is at most (1/2 + o(1))sp2.

Now we use these findings to develop a more efficient algorithm for s, p , n.
One idea would be to run the algorithm from Proposition 1 on the set of items
occuring in the candidate intervals. However, we found that the following, dif-
ferent dynamic programming scheme that works with whole candidate intervals
is faster.

Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities 719

Algorithm and analysis:
(1) Extract the r(q) candidate intervals from every set I(q). In more detail:

Compute all sums of q consecutive items in an obvious way in O(n) time, and
then find the r(q) largest sums. It is well-known that the r largest elements in
an (unsorted) set of n numbers can be extracted via a Selection algorithm in
O(n) time, independent of r. (For an overview of results on Selection cf. [9, 16].)
Altogether, this phase needs O(pn) time.

(2) Sort all O(sp2) candidate intervals by their rightmost items. This costs
O(sp2(log s+ log p)) time, or alternatively O(n+ sp2) time if bucketsort is used.

(3) Run dynamic programming on the sorted list of candidate intervals as
follows. For increasing i being the right end of some candidate interval, and for
each t = 1, . . . , s and q = 1, . . . , p, we compute the optimal solution with at most
t intervals, t+ q items, and rightmost item before or at i. Note that, for any two
solutions S and S′ with the same t, q but with different i and i′ (i < i′), solution
S is worse than S′, or we can discard the latter one. In other words, it suffices to
maintain a set of solutions in which, for any fixed t, q, the lengths are monotone
increasing in i.

In every step of dynamic programming we take the next candidate interval
next from the list and append it to solutions whose rightmost item is to the left
of next. By the monotonicity property, for every t, q it suffices to append next to
only one solution: that with i immediately preceding the left end of next. Then
add 1 to t, add the number of new items minus 1 to q, and discard new solutions
that violate the monotonicity, by comparison to the solution with the previous
end-item and same paramters t, q. It is straightforward to fill in the details. We
spend O(sp) time on every new candidate interval, hence O(s2p3) time is needed
for all.

Summing up the time bounds we obtain the following main result.

Theorem 1. DIMaxL can be solved in O(pn+ s2p3) time.

This is an improvement upon Proposition 1 provided that sp2 = o(n). Most
noticeably, we have saved a factor s in the O(n) term. The next obvious question
is whether we can get rid of factor p, too. Phase (1) of our algorithm processes
all I(q), q = 1, . . . , p + 1 in isolation, although it always works on the same
input sequence. This situation suggests to do the selection somehow for all q
simultaneously.

Another open question is whether the polynomial term in s, p can be reduced,
so that we still save time if the parameters are comparable to n1/3. Observe in
the proof of Lemma 1 that the worst case appears if there are big gaps between
the intervals of S. In more “compact” solutions S, nearby intervals in S block
the same candidates. This indicates that fewer candidates are sufficient to find
the best of these compact solutions, and the best “spread-out” solution might
be faster to construct as well, as the large gaps might simplify the dynamic
programming. However it is not clear whether these observations can give an
improvement. Our full paper proposes some heuristics which, in many instances,
throw out further candidates by simple rules, so that the optimization phase

720 A. Bergkvist and P. Damaschke

is faster. Finally, an approach that is completely different from left-to-right dy-
namic programming and, e.g., considers items in decreasing-length order, might
also succeed.

Some data structure issues:
Theorem 1 holds for any O(n) time Seletion algorithm used inside. Note that

a Selection algorithm with large hidden constant factor or with complicated
internal administration would destroy the effect of having saved factor s, or
make things even worse. However we can keep the auxiliary data structures
simple and the constant factor in the Selection procedure small:

Recall that r(q) ≈ sp2/2 is small compared to n in our case. To select the
r(q) largest elements in I(q), we may construct a heap (see any textbook on
data structures) with the largest sums on top. This is easily done in O(n) time.
Then, we first remove the root, which splits the heap in two disjoint heaps. After
j− 1 steps we have j heaps, and the next largest sum is the maximum at their j
roots. Using another small heap for the sums at the current roots, which supports
insert and delete-max operations, we manage Selection in O(n + r(q) log r(q))
time, with a small hidden factor.

Another idea is to sample k random elements and to determine a pivot element
with a rank slightly above r(q)k/n in the sample. Its expected rank in I(q) is then
slightly above r(q). Now, simply compare each member of I(q) to the pivot. If the
selected set is smaller than r(q), repeat the process similarly on the remaining
set. But in general it will be larger than r(q) by some percentage. Sample size k
must give a compromise between the time for sampling/pivot selection and the
deviation of the pivot rank from r(q). A good choice is k =

√
n.

Solving DIMaxD faster:
We apply the same principal idea to DIMaxD and improve the earlier O(kln)

time bound of [7] for arbitrary parameters. A simple lemma from [7] states:

Lemma 2. There exists an optimal solution where each interval has less than
2l items.

The following result beats theO(kln) bound. Note that kl < n, since otherwise
the problem would not make sense.

Theorem 2. DIMaxD can be solved in O(ln+ k2l2) time.

Proof. By Lemma 2 it is enough to consider candidate segments with fewer than
2l items, these are O(ln) segments. Due to the bound 2l, each candidate seg-
ment intersects only O(l) other candidate segments. We say that the candidate
segment with rth largest density has rank r, ties are broken arbitrarily. Now as-
sume that we have an optimal solution U containing a segment s of rank larger
than O(kl) (with an appropriate constant factor). The other k−1 segments in U
intersect only O(kl) other candidate segments. Hence there exists a segment s′

which is no worse than s and disjoint to the k−1 other segments in U . Substitute
s with s′ in U . Iterating this argument, it follows the existence of an optimal
solution where all segments have a rank O(kl).

Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities 721

Select the O(kl) candidate segments in O(ln) time. The candidate segments
have only O(kl) different endpoints rather than n. Hence, a dynamic program-
ming algorithm as in [7] but applied to this restricted set costs only O(k2l2)
time. ��

4 Acceleration Heuristics for DIMaxL

We come back to the question of possible improvement of the O(pn) term in
Theorem 1. Note that Corollary 1 bounds the number of candidate intervals,
but still we have all freedom regarding the way to compute this set. Instead of
doing Selection on all q separately, we may also exploit “locality” and determine
the longest intervals in subsequences of O(p) items, for all q simultaneously, and
then pick the best from all these subproblems.

More precisely, we cover the input sequence by overlapping intervals which
we call windows. The ith window is x(i−1)(p+1)+1, . . . , x(i+1)(p+1) (except the
last window which may have up to 3p items, depending on n). Obviously, every
interval of q ≤ p+ 1 items is entirely in one (or two) of these windows.

Proposition 2. Assume that we can compute the longest interval from I(q), for
all q = 1, . . . , p+ 1, within each window in T (p) time. Then we could also solve
DIMaxL in O(nT (p)/p+ s2p3) time.

Proof. Recall that Phase (1) of our DIMaxL algorithm has to find the r(q)
longest intervals in each I(q). Lemma 1 gives r(q) = O(sp). Once we have the
longest intervals in all O(n/p) windows, we can select, for each q, the r(q) longest
of them in O(n/p) time, thus we need O(n) time for all q. At this stage we know,
for each q, that all candidates are in the O(sp) windows that contain these r(q)
top intervals, all other windows can be disregarded since already the maximum
from I(q) therein is too bad. Thus we collect the O(sp2) intervals of I(q) from
the candidate windows and do the final selection in O(sp2) time. This takes
O(sp3) time for all q. The rest works as in Theorem 1. ��

Trivially we have p ≤ T (p) = O(p2). Note that any bound T (p) = o(p2) would
speed up the candidate selection. Here we cannot deliver such a subquadratic
worst-case bound nor prove an Ω(p2) lower bound, however we give a heuristic
that should be faster in almost all practical cases, as it needs O(p2) time only
if the input exhibits some regularities that are unlikely in real data. First we
give a nicer formulation of the essence of the problem. In the following, m is the
window size.

Maximum Consecutive Sums (MaxCS)
Given a sequence x1, . . . , xm, find for each q = 1, . . . ,m the longest interval

with q items.

Prefix and suffix sums uj :=
∑j

i=1 xi and vk :=
∑m

i=m−k+1 xi are computable
in O(m) time. Since j + k = m − q holds for any prefix, suffix and enclosed
interval, substituting m − q with q gives the following problem with the same
complexity:

722 A. Bergkvist and P. Damaschke

Lowest Midpoints (LMP)
Given two sequences u1, . . . , um and v1, . . . , vm, find for each q = 1, . . . ,m the

minimum of uj + vk with j + k = q.

Our naming LMP comes from a geometric interpretation: Given red and blue
points in the plane with coordinates (j, uj) and (k, vk) respectively, find for each
q the lowest midpoint, with abscissa q/2, of a red and a blue point.

This geometric view suggests a simple heuristic: Sweep a line with fixed slope
upwards and maintain the set M of all midpoints of all red-blue pairs of points
below this line. For every abscissa q/2 appearing in M , clearly, we only have
to check the red-blue pairs where at least one partner is below the line. For
every q/2 not appearing in M we finally compute the lowest midpoint naively,
by checking all O(m) red-blue pairs. This easily yields:

Proposition 3. If, for some line, we have b points below the line, and their red-
blue pairs have midpoints with a different abscissa values, then the given instance
of LMP is solvable in O(ab+ (m− a)m) time.

Our b and a increase during sweeping. If we are most lucky, the first b =
Θ(

√
m) points in sweeping direction generate nearly all abscissa values. In this

case we need only O(m3/2) computations. Of course, the set of abscissa values
of the first b points may have periodicities for all b, so that many pairwise
averages are equal. The worst case is arithmetic sequences. Then we are stuck
with a = O(b), and the time is still O(n2). We argue that such bad cases should
be rare in irregular real data. Moreover, we may try different slopes and hope that
one of them breaks such regularities, since the order of points is changed. Still, it
would be very nice to develop an algorithm with worst-case time T (m) = o(m2).
We hardly believe that LMP belongs to the class of 3SUM-complete problems
where the trivial O(m2) bound is hard to beat [4].

5 Conclusions

We gave a scheme for fast algorithms for problems appearing naturally in the
analysis of biological data and other linear data sets, where disjoint subsequences
are sought that optimize the sum of certain values (lengths, densities). We devel-
oped a fast algorithm for a problem called DIMaxL. Some additional heuristics
not mentioned in this extended abstract are useful but could not further reduce
the worst-case time bound. We have to leave this and other open problems (com-
plexity of two-dimensional analogues, the lowest-midpoints problem, impact of
our heuristics) for further theoretical and experimental research.

Acknowledgments. The first author has been supported by the Knut and Alice
Wallenberg Foundation, Carl Tryggers Foundation, and Assar Gabrielsson Foun-
dation. The second author received support from the Swedish Research Council
(Vetenskapsr̊adet), project “Algorithms for searching and inference in genetics”,
grant no. 621-2002-4574. He would also like to thank Ferdinando Cicalese for
constructive discussions during a stay at the University of Bielefeld.

Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities 723

References

1. A. Aggarwal, S. Suri: Fast algorithms for computing the largest empty rectangle,
Symp. on Comput. Geometry 1987, 278-290

2. G. Agnarsson, P. Damaschke, M.M. Halldórsson: Powers of geometric intersection
graphs and dispersion algorithms, Discrete Applied Mathematics 132 (2003), Spe-
cial Issue Stability in Graphs and Related Topics (eds. V. Lozin, D. de Werra), 3-16.
Preliminary version in: Proc. of SWAT 2002, LNCS 2368, 140-149

3. M.J. Attalah, G.N. Fredrickson: A note on finding a maximum empty rectangle,
Discrete Applied Math. 13 (1986), 87-91

4. I. Baran, E. Demaine, M. Patrascu: Subquadratic algorithms for 3SUM, 9th WADS
2005, LNCS 3608, 409-421

5. R.D. Beger, P.H. Bolton: Protein φ and ψ dihedral restraints determined from
multidimensional hypersurface correlations of backbone chemical shifts and their
use in the determination of protein tertiary structures, J. of Biomol. NMR 10
(1997), 129-142

6. B. Chazelle, L.R.S. Drysdale, D.T. Lee: Computing the largest empty rectangle,
SIAM J. Comp. 15 (1986), 550-555

7. Y.H. Chen, H.I. Lu, C.Y. Tang: Disjoint segments with maximum density, In-
ternational Workshop on Bioinformatics Research and Applications IWBRA 2005
(within ICCS 2005), LNCS 3515, 845-850

8. G. Cornilescu, F. Delaglio, A. Bax: Protein backbone angle restraints from search-
ing a database for chemical shift and sequence homology, manuscript 1998,
http://spin.niddk.nih.gov/bax/software/TALOS

9. D. Dor: Selection algorithms, PhD thesis, Tel-Aviv Univ. 1995
10. J. Edmonds, J. Gryz, D. Liang, R.J. Miller: Mining for empty rectangles in large

data sets, Theoretical Computer Science 296 (2003), 435-452
11. D. Eppstein, Z. Galil. R. Giancarlo, G.F. Italiano: Sparse dynamic programming

I: Linear cost functions, J. of the ACM 39 (1992), 519-545
12. Z. Galil, K. Park: Dynamic programming with convexity, concavity and sparsity,

Theor. Computer Science 92 (1992), 49-76
13. B. Liu, L.P. Ku, W. Hsu: Discovering interesting holes in data, 15th IJCAI’1997,

930-935
14. V. Mäkinen, G. Navarro, E. Ukkonen: Algorithms for transposition invariant string

matching, 20th STACS 2003, LNCS 2607, 191-202
15. M. Orlowski: A new algorithm for the largest empty rectangle problem, Algorith-

mica 5 (1990), 65-73
16. M.S. Paterson: Progress in selection, 5th SWAT’96, LNCS 1097, 368-379
17. W.L. Ruzzo, M. Tompa: A linear time algorithm for finding all maximal scoring

subsequences, 7th Int. Conf. Intelligent Systems for Molecular Biology 1999, AAAI,
234-241

18. Y. Wang, O. Jardetzky: Probability-based protein secondary structure identifica-
tion using combined NMR chemical-shift data, Protein Science 11 (2002), 852-861

19. X.P. Xu, D.A. Case: Probing multiple effects on 15N , 13Cα, 13Cβ and 13C′ chemical
shifts in peptides using density functional theory, Biopolymers 65 (2002), 408-423

A Polynomial Space and Polynomial Delay
Algorithm for Enumeration of Maximal

Motifs in a Sequence

Hiroki Arimura1,� and Takeaki Uno2

1 Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, Japan
arim@ist.hokudai.ac.jp

2 National Institute of Informatics, Tokyo 101–8430, Japan
uno@nii.jp

Abstract. In this paper, we consider the problem of enumerating all
maximal motifs in an input string for the class of repeated motifs with
wild cards. A maximal motif is such a representative motif that is not
properly contained in any larger motifs with the same location lists. Al-
though the enumeration problem for maximal motifs with wild cards has
been studied in (Parida et al., CPM’01), (Pisanti et al.,MFCS’03) and
(Pelfrene et al., CPM’03), its output-polynomial time computability is
still open. The main result of this paper is a polynomial space polyno-
mial delay algorithm for the maximal motif enumeration problem for the
repeated motifs with wild cards. This algorithm enumerates all maxi-
mal motifs in an input string of length n with O(n3) time per motif
with O(n2) space and O(n3) delay. The key of the algorithm is depth-
first search on a tree-shaped search route over all maximal motifs based
on a technique called prefix-preserving closure extension. We also show
an exponential lowerbound and a succinctness result on the number of
maximal motifs, which indicate the limit of a straightforward approach.

1 Introduction

Pattern discovery is to find all patterns within a class of combinatorial patterns
that appear in an input data satisfying a specified constraint, and it is a central
task in computational biology, temporal sequence analysis, sequence and text
mining [3]. We consider the pattern discovery problem for the class of patterns
with wild cards, which are strings consisting of constant symbols (called solid
letters) drawn from an alphabet and variables ’◦’ (called wild cards) that matches
any symbol [9,13]. For instance, B ◦ AB and B ◦ AB ◦ ◦B are examples of patterns.
Given a positive integer θ called quorum and an input string s, a frequent motif
(or motif , for short) in s is a pattern that appears at least θ times in s.

Frequent motif discovery has a drawback that a huge number of motifs are
often generated from an input string without conveying any useful information.
� This work is done during the first author’s visit in LIRIS, University Claude-Bernard

Lyon 1, France.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 724–737, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Polynomial Space and Polynomial Delay Algorithm 725

[BooBooB] 3
[BooooAB] 3
[ABoooooB] 3
[BoooooB]* 4
[BoABoooooB]* 3
[AooooooB] 3
[BoAooooooB] 3
[BooBoooooB] 3
[BooooooooB] 3

[AooA] 4
[BRA] 3
[BRAB] 3
[BRoB] 3
[BoAB]* 5
[BooB] 5
[ABoAB]* 4
[ABooB] 4
[AooAB] 4
[AoooB] 4

[BoA] 5
[BoABoA] 3
[BoAooA] 3
[BooBoA] 3
[BooooA] 3
[BoABoAB]*3
[BoABooB] 3
[BoAooAB] 3
[BoAoooB] 3
[BooBoAB] 3

[]* 21
[B]* 9
[AB]* 7
[BC]* 3
[ABRAB]* 3
[BoAB]* 5
[ABoAB]* 4
[BoABoAB]* 3
[BoooooB]* 4
[BoABoooooB]* 3

50 motifs (frequent motifs)10 maximal motifs

A B B C A B R A B R A B C A B A B R A B B C
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

10 2000

input string s quorum θ = 3

[]* 21
[B]* 9
[AB]* 7
[A] 7
[BC]* 3
[C] 3
[ABRAB]* 3
[R] 3
[RA] 3
[RAB] 3

[RoB] 3
[BR] 3
[ABR] 3
[ABRA] 3
[ABRoB] 3
[ABoA] 4
[AoR] 3
[AoRA] 3
[AoRAB] 3
[AoRoB] 3

Fig. 1. Examples of maximal motifs (left) and motifs (right) for an input string s and
a quorum θ, where * indicates a maximal motif and the number associated to each
motif indicates its frequency. These 10 maximal motifs are representatives containing
the whole information on the occurrences of all motifs in s.

To overcome this problem, we focus on discovery of maximal motifs [9,12,13].
The semantics of a pattern x is given by the location list L(x) consisting of the
positions in an input string s at which the pattern occurs. A motif is said to
be maximal if it is not properly contained by other motifs with the equivalent
location lists allowing position shift. For example, we show in Fig. 1 all maximal
motifs and all motifs on input sting s = ABBCABRABRABCABABRABBC for quorum
θ = 3. Then, the pattern x1 = R ◦ B is a motif having location list L(x1) =
{6, 9, 17} in s but not a maximal one since there is another motif x2 = ABRAB
which contains x1 and whose location list L(x2) = {4, 7, 15} is obtained from
the location list L(x1) by shifting leftward with two. In this example, we can
also observe that there are only 10 maximal motifs among 50 motifs. In general,
the number of maximal motifs can be exponentially smaller than the number of
motifs. while the former is exponential in the input size.

In this paper, we study the problem of enumerating all maximal motifs in an
input string of length n. In particular, from practical viewpoint, we are interested
in those algorithms that have small space and delay complexities independent
from the output size in addition to polynomial amortized time per motif. How-
ever, the output-polynomial time computability for maximal motif discovery
with polynomial space and delay is still open.

We first show an exponential lowerbound and a succinctness result on the num-
ber of maximal motifs, which show the limit of a straightforward approach. By ex-
amining the previous approaches [9,13,12], we present a simple output-polynomial
time algorithm for maximal motif enumeration by breadth-first search,
which possibly requires exponential space and delay. Then, we present an efficient
algorithm that enumerates all maximal motifs in an input string of length n with
O(n3) time per motif with O(n2) space and O(n3) delay. A key of the algorithm
is depth-first search on a tree-shaped search route for all maximal motifs build by
prefix-preserving closure extension, which enable us to enumerate all maximal mo-
tifs without storing discovered motifs for duplication and maximality tests. To the
best of our knowledge, this is the first result on a polynomial space polynomial de-
lay algorithm for maximal pattern discovery for sequences.

726 H. Arimura and T. Uno

The organization of this paper is as follows. In Section 2, we give definitions
and basic results. Section 3 gives lowerbounds on the number of maximal motifs.
Section 2.2 prepares tools for studying maximal motifs and Section 4 reviews
the previous results. In Section 5, we present our algorithm MaxMotif that
enumerates all maximal motifs with polynomial space and polynomial delay
from an input string. In Section 6, we conclude this paper.

2 Preliminaries

2.1 Maximal Motifs

We briefly introduce basic definitions and results on maximal pattern enumera-
tion according to [13,12]. For definitions not found here, see text books on string
algorithms, e.g., [6,8]. Given an alphabet ∆, a string of length n ≥ 0 is a consec-
utive sequence of letters s = a[0] · · ·a[n−1] ∈ ∆∗, where a[i] ∈ ∆, 0 ≤ i ≤ n−1.
For every 0 ≤ i ≤ j ≤ n−1, s[i..j] denotes the substring aiai+1 · · ·aj . ∆∗ denotes
the set of all possibly empty strings over ∆, and ε denotes the empty string. If
s = uvw for some u, v, w ∈ ∆∗, then we say that u is a prefix and w is a suffix
of s. For a set S ⊆ ∆∗ of strings, we denote by |S| the cardinality of S and by
||S|| =

∑
s∈S |s| the total length of S.

Let Σ be an alphabet of solid characters (or constant letters). Let ◦ �∈ Σ be
a distinguished letter not belonging to Σ, called the wild card (or don’t care).
A wild card ◦ matches any solid character c ∈ Σ and also matches ◦ itself. An
input string is a string s = s[1] · · · s[n] ∈ Σ∗ consisting of solid characters of
length n ≥ 0.

Definition 1 (pattern [9,13,12]). A pattern over Σ is a string x in Σ (Σ ∪
{◦})∗Σ that starts and ends with a solid character, or an empty string ε.

We denote the class of patterns by P = {ε} ∪ Σ ∪ (Σ ·(Σ ∪ {◦})∗ ·Σ). For
example, ABC and B ◦ C are patterns, but ◦BC and ◦ ◦ B◦ are not. Note that ε is a
pattern in our definition. We define a binary relation 2 over letters and patterns,
called the specificity relation.1 For letters a, b ∈ Σ∪{◦}, we define a 2 b if either
a = b or a = ◦ holds. For patterns x and y, We say that x occurs at position
p in y if there exists some index 0 ≤ p ≤ |y| − |x| such that for every index
0 ≤ i ≤ |x| − 1, x[i] 2 y[p+ i] holds. Then, we also say that p is an occurrence
of x in y, and that x matches the substring y[p..p+ |x| − 1].

Example 1. Pattern x = B ◦ D occurs in pattern y = AB ◦ DA at position 1, and x
occurs three times in string s = EABCDABEDBCDE at positions 2, 6 and 9.

We extend binary relation 2 from letters to patterns as follows. Let x and y
be patterns in P . If x occurs at some position p in y, then we define x 2 y and
say that either x is contained by y or y is more specific to x. For any pattern x,

1 The binary relation � is also called the generalization relation or the subsumption
relation in artificial intelligence and data mining.

A Polynomial Space and Polynomial Delay Algorithm 727

we define ε 2 x. If x 2 y but y �2 x, then we define x ≺ y and say that either
x is properly contained by y or y is properly more specific to x. We can see that
if x 2 y and y 2 x hold, then x and y are identical each other. Furthermore, 2
is a partial order over P . A maximal motif y is a successor of maximal motif x
(within M) if x ≺ y and there is no maximal motif z such that x ≺ z ≺ y.

Definition 3 (location list [9,13,12]). For an input string s ∈ Σ∗ of length
n ≥ 0, the location list of pattern x is the set L(x) ⊆ {0, . . . , n − 1} of all the
positions in s at which x occurs. The frequency of x on s is |L(x)|.

Example 2. The location list of pattern x = B ◦ D in the input string s =
EA BCDA BEDBCD E is L(x) = {2, 6, 9}.

A quorum (or minimum frequency threshold) is any positive number θ ≥ 1.
Let θ ≥ 1 be a quorum. We say that pattern x is a θ-motif (or motif , for short) in
s if |L(x)| ≥ θ holds [9,13,12]. Let L be any location list and d be any integer.
Then, we define the shift of L with displacement d by L + d = { + d | ∈ L }.
We write L − x to represent the set L + y with y = −x.

Definition 5 (Parida et al [9]). Let θ ≥ 1 be a quorum. A motif x is maximal
in s if for any motif y that properly contains x, there is no integer d such that
L(y) = L(x) + d.

In other words, θ-motif x is maximal in s iff there exists no θ-motif in s
properly containing x that is equivalent to x under shift-invariance. Let θ be a
quorum. We denote by F and M the sets of all (frequent) motifs and all maximal
motifs, respectively. Clearly, M ⊆ F ⊆ P for any s and θ.

Lemma 1 ([9,12,13]). Let θ ≥ 1 and x, y ∈ P be any motifs. If x 2 y then
L(x) ⊇ L(y)+ d for some integer d ≥ 0. The converse does not holds in general.

Example 3. Let s = EABCDABEDABCDE over Σ = {A, B, C, D, E} be an input string.
Consider motifs x = AB ◦ D with location list L(x) = {1, 5, 8}, y = B ◦ D with
L(y) = {2, 6, 9}, and z = D with L(z) = {4, 8, 11}. We can see that z ≺ y ≺ z
holds and x, y, z are equivalent each other. For instance, L(z) = L(x) + d with
the displacement d = 3. Then, x is maximal in s, but y and z are not.

Now, we state our problem as follows.

Definition 6. The maximal motif enumeration problem is, given an input string
s of length n and a quorum θ ≥ 1, to enumerate all maximal motifs in s without
repetition.

2.2 Merge and Closure

In this subsection, we define merge and closure operations which are originally
introduced in [1,3,12,13].

An infinite string is a function from integers to symbols in Σ ∪ {◦}. For a
finite string x ∈ (Σ ∪ {◦})∗, the infinite or expanded version of x is an infinite

728 H. Arimura and T. Uno

string �x� defined by �x�[i] = x[i] for 0 ≤ i ≤ |x| − 1 and �x�[i] = ◦ otherwise.
For an infinite string x, its finite string version (or trimmed version), denoted
by �x�, is the longest substring of x that starts and ends with a solid character
in Σ, i.e., �x� ∈ P , if it exists and varepsilon otherwise. By definition, ��x�� = x
for any x ∈ P . Let d be an integer called a displacement. For an infinite string
x, the infinite string (x+ d) is defined by (x+ d)[i] = x[i− d] for every i. For a
finite string x, (x+ d) = �x� + d. Then, (x+ d) is called the shift of x by d.

Example 4. Given a finite string s = EABCDABED, its infinite version is �s� =
· · · ◦ ◦↓ EABCDABED ◦ ◦ · · ·, where ↓ indicates the origin i = 0. Then, (�s� + 2) =
· · ·◦◦ EA↓BCDABED◦◦ · · ·, and its finite version is �(�s�+2)� = ↓ EABCDABED = s.

Merge of infinite and finite strings. Next, we define the merge operator
⊕. For letters a, b ∈ Σ, we define a ⊕ a = a and a ⊕ ◦ = ◦ ⊕ a = a ⊕ b = ◦
if a �= b. For infinite strings α, β, the merge of α and β, denoted by α ⊕ β,
is the infinite string such that (α ⊕ β)[i] = α[i] ⊕ β[i] for every integer i. For
finite strings x, y ∈ P , the merge of α and β, denoted by x ⊕ y, is the finite
string x ⊕ y = � �x� ⊕ �y� � ∈ P . Note that the operator ⊕ is associative and
commutative. For a location list L = {d1, . . . , d|L|}, The merge of L ([3,12]) is
the pattern

⊕
L ∈ P defined by⊕

L = �(�s� + d1) ⊕ · · · ⊕ (�s� + d|L|)�.

Lemma 2. Let L,L′ be any location lists.

1. If L ⊇ L′ then
⊕

L 2
⊕

L′.
2.

⊕
L =

⊕
(L + d) for any integer d.

Lemma 3. Let θ be a quorum and L be any location list such that |L| ≥ θ.
Then,

⊕
L is a maximal motif.

Definition 7 (closure operation [12,13]). Given a pattern x and an input
string s, the maximal motif Clo(x) =

⊕
L(x) is called the closure of x on s.

The above definition is a generalization of the closure operation [11,16] from
sets to motifs, and is introduced by [12,13].

Lemma 4. The closure Clo(x) of a pattern x is unique and computable in
O(mn) time from x and L(x), where n = |s| and m = |L(x)| ≤ n.

Lemma 5 (properties of closure). Let x, y be any patterns occurring in s
and X,Y be any location lists.

1. x 2 Clo(x).
2. Clo(x) = Clo(Clo(x)).
3. If x 2 y then Clo(x) 2 Clo(y).

Theorem 1 (characterization of maximal motifs [12]). Let θ a quorum
and x be a motif pattern in an input string s. Then, the following (i)–(iii) are
equivalent:

A Polynomial Space and Polynomial Delay Algorithm 729

(i) x is a maximal motif.
(ii) x =

⊕
L and |L| ≥ θ for some L ⊆ {0, . . . , |s| − 1}.

(iii) x = Clo(x).

A maximal motif x is the unique maximal element with respect to 2 in the
equivalence class { y | L(x) = L(y) + d for some integer d }.

Lemma 6 ([12]). Let θ ≥ 1 be a quorum and x, y ∈ M be maximal motifs.

1. Then, x 2 y iff L(x) ⊇ L(y) + d for some integer d.
2. Then, x = y iff L(x) = L(y) + d for some integer d.

Proof. (1) The only-if direction is obvious from Lemma 1. The if direction follows
from Theorem ?? and Property 1 of Lemma 5. ��

Example 5. Let s = ABBCABRABRABCABABRABBC be an input string. Let x =
B◦◦◦◦A be a pattern with location list L(x) = {2, 5, 8}. First, we compute the
alignment of infinite strings S = {(�s� − 2), (�s� − 5), (�s� − 8)} as follows:

◦◦◦◦◦◦AB↓BCABRABRABCABABRABBC = s− 2
◦◦◦ABBCA↓BRABRABCABABRABBC◦◦◦ = s− 5
ABBCABRA↓BRABCABABRABBC◦◦◦◦◦◦ = s− 8

where the underlines indicate the common letters. Then, we compute the merge⊕
S = (�s� − 2) ⊕ (�s� − 5) ⊕ (�s� − 8) of the infinite strings in S as follows:

◦◦◦◦◦◦◦◦↓B◦AB◦AB◦◦◦◦◦◦◦◦◦◦◦◦◦ =
⊕

S

Finally, we get the closure Clo(x) = B◦AB◦AB by taking its infinite version. ��

2.3 Enumeration Algorithms

We introduce terminology for enumeration algorithms according to [7,15]. An
enumeration algorithm for an enumeration problem Π is an algorithm A that
receives an instance I and outputs all solutions S in the answer set S(I) into
a write-only output stream O without duplicates. Let N = ||I||, M = |S(I)|
be the input and the output sizes on I, and TA be the total running time of A
for computing all solutions on I. Then, A is of output-polynomial (P-OUTPUT)
if TA is bounded by a polynomial q(N,M). A is of polynomial enumeration
time (P-ENUM) if the amortized time for each solution x ∈ S is bounded by
a polynomial p(N) in N , i.e., TA = O(M · p(N)). A is of polynomial delay (P-
DELAY) if the delay, which is the maximum computation time between two
consecutive outputs, is bounded by a polynomial p(N) in the input size N . A is
of polynomial space (P-SPACE) if the maximum size of its working space, except
the size of output stream O, is bounded by a polynomial p(N). By definition, P-
OUTPUT is weakest and P-DELAY is strongest among P-OUTPUT, P-ENUM,
and P-DELAY.

730 H. Arimura and T. Uno

3 Lower Bounds for the Number of Maximum Motifs

We show the following lower bound of the number of maximal motifs in a given
sequence, which justifies output-sensitive algorithms for the maximal motif enu-
meration problem. The upper bound of |M| is obviously 2O(n).

Theorem 2 (exponential lowerbound of maximal motifs). There is an
infinite series of input strings s0, s1, s2, . . . , such that for every i = 0, 1, 2, . . .,
the number |M| of maximal motifs in si is bounded below by 2Ω(n), that is,
exponential in n = |si|.

The following theorem says that the number of motifs can be exponentially
larger than the number of maximal motifs.

Theorem 3 (succinctness of maximal motifs). There is an infinite series
of input strings s0, s1, s2, . . . , such that for every i ≥ 0 with quorum θ = 1

2n,
the number F = |F| of motifs in si is exponential (more precisely 2Ω(n)) in the
input size n, while the number M = |M| of maximal motifs in si is linear in n,
where n = |si|.

See the full paper [2] for the proofs of the above theorems. From Theorem 3,
we know that a straightforward algorithm for M based on enumeration of motifs
does not work efficiently. This is also true for most real world datasets. Fig. 1
shows an example, where there are only 10 maximal motifs among 50 motifs in
a string of length 21.

4 Previous Approaches for Maximal Motif Enumeration

We give a brief review on possible approaches for output-sensitive computation
of M and summarize the previous results.

4.1 Previous Approaches

A most straightforward method of generating maximal motifs is to use frequent
pattern generation. We enumerate all motifs in s, classify them into equivalence
classes according to their location lists, and find the maximal motifs for each
equivalence class. This method requires O(|F|) time and O(||F||) memory. Since
O(|F|) can be exponentially larger than |M|, we cannot obtain any output-
sensitive algorithm in time and memory in this way.

Another possible method is to use the basis for maximal motifs [10,12,13].
Parida et al [9] introduced the use of the basis for maximal motif enumeration.
A basis for M is a subset B ⊆ M of motifs such that M can be generated by
finite applications of an operation, e.g., ⊕, over M. Presently, the basis BI of
irredundant motifs [9], the basis BT of tiling motifs [13], and the basis BP of
primitive motifs [12] have been proposed. A maximal motif x ∈ M is tiling if for
any maximal motifs y1, . . . , yk ∈ M and any integers d1, . . . , dk with x 2 yi,if

A Polynomial Space and Polynomial Delay Algorithm 731

Algorithm MaxBasis(θ: quorum, s: input string, B: basis)
1 M0 := B; i := 0
2 while (∆ �= ∅) do begin
3 ∆ := ∅;
4 foreach y ∈Mi and d ∈ {0, . . . , n − 1} do

5 if y ⊕ (s + d) �∈ (i
k=0Mk ∪∆) then ∆ = ∆ ∪ {y ⊕ (s + d)}; output x;

6 Mi+1 := ∆; i := i + 1;
7 end

Fig. 2. An polynomial time enumeration algorithm for generatingM from B based on
breadth-first search. This algorithm does not have polynomial space or polynomial delay.

L(x) =
⋃

i L(yi) then x = yi for some i. Pisanti et al. [14] describe a simple
algorithm for computing M from BT in O(|M|2 · n) total time and O(||M||)
space. However, the total time is not linear in |M|. Thus, it is of P-OUTPUT
but not of P-ENUM.

4.2 An Improved Algorithm for Generating M from a Basis BT

We can improve Pisanti et al.’s method for M adopting an idea used in [12] for
generation of BT from s. The next lemma is essential for our algorithm.

Lemma 9. Any maximal motif x ∈ M satisfies either (i) x ∈ BT , or (ii) there
exist some y ∈ M and some integer d such that x ≺ y and x = y ⊕ (s+ d).

Fig. 2 shows our algorithm MaxBasis that computes M from BT . We use
a trie to store Mi and ∆ for O(|x|) membership of pattern x. Thus, we can
implement MaxBasis to run in O(|M| · n2) total computation time.

Theorem 5 (generation of maxmal motifs from the basis). Given a quo-
rum θ ≥ 1, an input string s of length n, and the basis BT of tiling motifs, the
algorithm MaxBasis in Fig. 2 enumerates all maximal motifs of M from B in
O(n2) amortized time per motif with O(||M||) space.

Since its space complexity and delay are O(||M||) and O(|M| · n2), respec-
tively, MaxBasis is neither a polynomial space or polynomial delay even given
a basis BT as input. Note that it is still open whether the basis BT (or BP)
is output-polynomial time computable from s since the total running time of
the algorithms in [12] and [14] are only bounded by O(nθ

∑θ
i=1 |Bi

T |) or nO(θ),
where Bi

T is the basis for quorum i ≥ 1. Hence, it seems difficult to obtain
output-polynomial time algorithm for BT and thus M in this approach. 2

2 Parida et al. [10] presented an output-polynomial time algorithm for the class of
flexible motifs, and claimed that they also presented a similar algorithm for maximal
motifs with wild cards in [9]. Since these algorithms seem to depend on an unproved
conjecture in [9], however, we did not include them. At least, the algorithm in [10]
requires the space and the delay proportional to the output size |M|. Thus, it is not
polynomial space and polynomial delay.

732 H. Arimura and T. Uno

5 A Polynomial Space Polynomial Delay Algorithm
Using Depth-First Search

In this section, we present an efficient depth-first search algorithm MaxMotif
that, given a quorum θ ≥ 1 and an input string s of length n, enumerates all
maximal motifs x in s in O(|L(x)| · n2) delay and O(|L(x)| · |x|) space. In what
follows, we fix input string s of length n ≥ 1 and 1 ≤ θ ≤ n. Unlike MaxBasis
in the previous section, MaxMotif uses depth-first search over M to avoid the
use of extra storage for keeping all discovered motifs. In the following sections,
we explain the details of the algorithm.

5.1 Building Tree-Shaped Search Route for Maximal Motifs

We first build a tree-shaped search route T = (V ,P ,⊥) for traversing all maximal
patterns (Fig. 3). The node set V = M consists of all maximal motifs of M, P
is the set of reverse edges defined later, and ⊥ = Clo(ε) is the root called the
root motif . If s contains at least two solid letters then ⊥ = ε, otherwise ⊥ = a
for the only letter a in s.

Lemma 10. ⊥ = Clo(ε) is the unique shortest maximal motif in s.

Proof. Since L(⊥) = {0, . . . , n − 1} is the largest location list on s, it follows
from Lemma 6 that Clo(ε) 2 x for any maximal motif x. ��

Next, we define the set P of reverse edges from a child to its parent as
follows. Given a maximal motif x, the core index of x, denoted by core i(x), is
the smallest index 0 ≤ ≤ |x|−1 such that L(x) = L(y) for the prefix y = x[0..].
Then, we assign the unique parent to each non-root maximal motifs.

Definition 8 (parent of maximal motif). Let y be a maximal motif such
that y �= ⊥. If = core i(y) is the core index of y, then the parent of y, denoted
by P(y), is the pattern P(y) = Clo(�y[0..− 1]�). 3

Lemma 11. For every maximal motif y such that y �= ⊥, P(y) is always exists,
unique, and maximal. Furthermore, P(y) ≺ y holds.

Proof. Let p = �y[0.. − 1]�. If y �= ⊥, then − 1 = core i(y) − 1 ≥ −1 and p
is always defined. If is the core index of y, then L(p) ⊃ L(y) �= ∅, and thus
P(y) is defined and maximal. Furthermore, if x, y are maximal then Lemma 2
and Theorem 6 imply that x = Clo(p) ≺ Clo(y) = y. ��
Theorem 6. T = (V ,P ,⊥) is a spanning tree for all maximal motifs in M.

Proof. From Lemma 11, all maximal motifs y but ⊥ have the unique parent
P(y) such that P(y) ≺ y. Since the relation 2 is acyclic on M, i.e., there is no
infinite decreasing chain of maximal motifs of M, the result follows. ��

The remaining task is to show how to enumerate all children y of a given
parent motif x without using extra space. This is not an easy task since we have
only reverse edges. We discuss this issue in the next subsection.
3 In the definition, y[0..�−1] ∈ Σ(Σ∪{◦})∗ ∪{ε} may not be a proper pattern. Thus,

we use �y[0..�− 1]� instead of y[0..� − 1] to remove the trailing ◦’s.

A Polynomial Space and Polynomial Delay Algorithm 733

A B B C A B R A B R A B C A B A B R A B B C
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

10 2000
input string s

spanning tree T = (M, P) for maximal motifs pattern lattice L = (M, ≤) for maximal motifs

AB

ε

ABRAB

ABoAB

B

BC

BoAB

BoABoAB

BoABoooooB

BoooooB

<0,A>

<0,B>

<2,R>

<1,C>

<2,A>

<6,B>

<5,A>

<9,B>

<3,A>
3

4

3

5

4

3

3

21

7

9

quorum θ = 3

AB

ε

ABRAB

ABoAB

B

BC

BoAB
BoABoAB

BoABoooooB

BoooooB

3

4

3

5

4

3

3

21

7

9

Fig. 3. The spanning tree T = (M,P) (left) and the pattern lattice L = (M,�)
(right) for maximal motifs of M on quorum θ = 3 and input string s (top). Each
box represents maximal motif x in M and the number right to the box indicates its
frequency |L(x)|. Each arrow indicates ordering, P or �, of a tree/lattice. (Sec. 5.1). An
arrow in the tree T indicates the ppc-extension with seed 〈k, c〉. The newly introduced
letter c is written in bold face. (Sec. 5.2). There are 10 maximal motifs among 49 motifs
in s.

5.2 Prefix-Preserving Closure Extension

We introduce the prefix-preserving closure extension defined as follows. A sub-
stitution for motif x is a pair ξ = 〈k ← c〉 ∈ Z ×Σ of integer k and solid letter
c. If �x�[k] = ◦, ξ is compatible to x. The application of ξ to x, denoted by
xξ = x〈k ← c〉, is the motif �y�, where y is the infinite string such that for every
integer i, y[i] = c if i = k and y[i] = �x�[i] otherwise. For example, if x = BA ◦ B,
then x〈−1 ← C〉 = CBA ◦ B, x〈2 ← C〉 = BACB, and x〈6 ← C〉 = BA ◦ B ◦ ◦ C.

Definition 9 (ppc-extension). For any maximal motifs x, y such that y �= ⊥,
a motif y is a prefix-preserving closure expansion (or a ppc-extension) of x if
the following (i)–(iii) hold:

(i) y = Clo(x〈k ← c〉) for some substitution, called the seed, ξ = 〈k ← c〉 ∈
Z ×Σ compatible to x, that is, y is obtained by first substituting c at index
i and then taking its closure,

(ii) the index k satisfies k > core i(x), and
(iii) x[0..k − 1] = y[0..k − 1], that is, the prefix of length i−1 is preserved, where

x[0..k− 1] is the string �x�[0..k− 1] obtained from x by padding trailing ◦’s
if necessary.

Example 6. In Fig. 3, we show an example of the spanning tree for M generated
by the ppc-extension for an input string s = ABBCABRABRABCABABRABBC and

734 H. Arimura and T. Uno

quorum θ = 3. Then, we have maximal motif x = AB with location list L(x) =
{0, 4, 7, 10, 15, 18}. If we apply substitutions ξ1 = 〈2, R〉 and ξ2 = 〈3, A〉 to x,
respectively, then we obtain the ppc-extension y = ABRAB = Clo(ABR) = Clo(x ·
ξ1) with {4, 7, 15}, and z = AB ◦ AB = Clo(AB ◦ A) = Clo(x·ξ2) with {4, 7, 10, 15}.

Lemma 12. For any string xy ∈ Σ(Σ ∪ {◦})∗, L(xy) = L(x) ∩ (L(y) + |x|).

Lemma 13. Let x be any maximal motif and y = Clo(x〈k ← c〉) be a ppc-
extension of x. Then, k is the core index of y.

The following theorem is the main result of this section.

Theorem 7 (correctness of ppc-extension). For any maximal motifs x, y
such that y �= ⊥. Then, (1) x = P(y) if and only if (2) y = Clo(xξ) is a prefix-
preserving closure expansion of x for some substitution ξ = 〈k ← c〉 ∈ Z × Σ
compatible to x. Furthermore, there exists exactly one ξ satisfying condition (2)
for each y.

Proof. We give a sketch of the proof. Please see the full paper [2] for the details.
(1) to (2): Suppose x = P(y), and thus x = Clo(y[0..− 1]) for the core index
of y. First, we can show that x[0.. − 1] = y[0..− 1] holds. Otherwise, we can
construct a more specific motif y′ = x[0..− 1]y[..|y| − 1] such that y ≺ y′ but
L(y) = L(y′) using Lemma 12. Next, if we take ξ = 〈 ← y[]〉, then we can show
that y = Clo(xξ) and ξ satisfies the condition of ppc-extension. This proves this
direction. (2) to (1): This direction is easy. Suppose that y = Clo(x〈k ← c〉).
Then, it follows from Lemma 13 that P(y) = Clo(y[0..k − 1]). If y[0..k − 1] =
x[0..k− 1], then Clo(y[0..k− 1]) = Clo(x[0..k− 1]). Since x is maximal, we have
k − 1 ≥ core i(x), and thus Clo(x[0..k − 1]) = x. Hence, we have P(y) = x. By
condition (iii) of ppc-extension, we can show that choice of ξ is unique. ��

5.3 A Polynomial Space Polynomial Delay Algorithm

Based on Theorem 7, we present in Fig. 4 our algorithm MaxMotif that enu-
merates all maximal motif in a given input string by the depth-first search over
M applying the ppc-extension to each maximal motifs.

A straightforward implementation of the procedure Expand in Fig. 4 requires
O(|L(x)| · n) time for each of n · |Σ| possible children at line 4 to line 9 even
when none of them satisfies the quorum θ. This only yields an algorithm with
O(|Σ| · |L(x)| · n2) = O(|Σ|n3) time and delay. Then, we have the following
theorem.

Theorem 8. Given a quorum θ ≥ 1 and an input string s of length n, the algo-
rithm MaxMotif in Fig. 4 enumerates all maximal motifs x of M in O(mn2)
amortized time per motif with O(m) space and O(mn2) delay, where = |x|
and m = |L(x)|.

Proof. By Theorem 6 and Theorem 7, we see that the algorithm MaxMotif
visits all maximal motifs on the spanning tree T starting from the root ⊥. Since

A Polynomial Space and Polynomial Delay Algorithm 735

Algorithm MaxMotif(θ: quorum, s: input string)
0 ⊥ = Clo(ε); //the root motif ⊥.
1 call Expand(⊥,−1, θ, s); //core i(⊥) = −1.

Procedure Expand(x: motif, �: core index, θ: quorum, s: input string)
2 if |L(x)| < θ then return;
3 output x;
4 for k := � + 1 to |s| do //core i(x) = � is ensured.
5 foreach c ∈ Σ do begin
6 y = Clo(x〈k← c〉); //ppt-extension.
7 if �x�[0..k − 1] = �y�[0..k − 1] then
8 call Expand(y, k, s, θ);
9 end for

Fig. 4. A polynomial space polynomial delay enumeration algorithm for M

T is a tree and any maximal motif appears in T , the algorithm enumerate
M without duplicates. Let W (x) be the work that Expand spends for each
parent maximal motif x except the recursive call. Since the closure Clo(x) at
line 6 takes O(|L(x)| · n) time, W (x) = O(|Σ| · |L(x)| · n2) time and this gives
the delay per maximal motif. Note that we have to charge to the parent x
the work for all children since x may have no maximal children. To reduce
computation time further, we replace line 5 to line 9 by the following procedure
OccurrenceDeliver 4, which improves the work to W (x) = O(|L(x)| · n2),
and thus gives the delay D = W (x) · |x| time since the depth of T is Θ(|x|).

OccurrenceDeliver(x,L(x), k) ≡
1 Initialize all L(c) := ∅ for all c ∈ Σ′, and then Σ′ := ∅;
2 foreach d ∈ L(x) do
3 L(c) := L(c) ∪ {d} and Σ′ = Σ′ ∪ {c}, where c := s[d+ k];
5 foreach c ∈ Σ′ do
6 Compute y = Clo(x〈k ← c〉) using L(c)

By applying the technique by Uno [15] that transforms any tree-search enu-
meration algorithm with work time W (x) at each node into a W (x) delay algo-
rithm, we finally obtain an algorithm with delay O(|L(x)| · n2). ��

In summary, MaxMotif computes all maximal motifs in O(n3) time per
motif with O(n2) space and O(n3) delay in the input size n.

Corollary 2. The maximal motif enumeration problem is solvable in polynomial
space and polynomial delay in the input size n = |s|.

4 Occurrence deliver is introduced for closed itemsets enumeration in Uno et al. [16].

736 H. Arimura and T. Uno

6 Conclusion

In this paper, we presented a polynomial space polynomial delay algorithm for
enumerating all maximal motifs in an input string for the class of motifs with wild
cards. By the use of depth-first search based on the prefix-preserving expansion,
the algorithm enumerate all motifs without explicitly storing and checking the
motifs enumerated so far. This drastically improves the space and the delay
complexities compared with the previous algorithms with breadth-first search.
As future research, we plan to empirical evaluation of MaxMotif algorithm on
the real world datasets such as biological datasets.

In data mining, maximal motifs for sets are called closed itemsets [11]. There
are a number of closed pattern discovery algorithms for itemsets [5,11], while
only a few algorithms are known for sequences and trees [3,16,17]. Thus, it is
an interesting research direction to extend the result of this paper for motif
discovery in trees and graphs. Extension of the result for classes of unions of
motifs [4] and basis of tiling motifs [13] is another research direction.

References

1. A. Apostolico and L. Parida, Compression and the wheel of fortune, In Proc. the
2003 Data Compression Conference (DCC’03), IEEE, 2003.

2. H. Arimura, T. Uno, A polynomial space polynomial delay algorithm for
enumeration of maximal motifs in a sequence, Technical Report Series A,
TCS-TR-A-05-6, Division of Computer Science, Hokkaido Univeristy, July 2005.
http://www-alg.ist.hokudai.ac.jp/tra.html

3. H. Arimura, T. Uno, An output-polynomial time algorithm for mining frequent
closed attribute trees, In Proc. ILP’05, LNAI 3625, 1–19, August 2005.

4. H. Arimura, T. Shinohara, S. Otsuki, Finding minimal generalizations for unions
of pattern languages and its application to inductive inference from positive data,
In STACS’94, LNCS 775, Springer-Verlag, 649–660, 1994.

5. E. Boros V. Gurvich, L. Khachiyan, K. Makino, The complexity of generating
maximal frequent and minimal infrequent sets, In Proc. STACS ’02, LNCS, 133-
141, 2002.

6. M. Crochemore and W. Rytter, Jewels of Stringology, World Scientific, 2002.
7. L. A. Goldberg, Polynomial space polynomial delay algorithms for listing families

of graphs, In Proc. the 25th STOC, ACM, 218–225, 1993.
8. D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge, 1997.
9. L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao, Pattern discovery

on character sets and real-valued data: linear bound on irredundant motifs and
effcient polynomial time algorithm, In Proc. the 11th SIAM Symposium on Discrete
Algorithms (SODA’00), 297–308, 2000.

10. L. Parida, I. Rigoutsos, D. E. Platt, An Output-Sensitive Flexible Pattern Discov-
ery Algorithm. In Proc. CPM’01, LNCS 2089, 131–142, 2001.

11. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering Frequent Closed Itemsets
for Association Rules, In Proc. ICDT’99, 398–416, 1999.

12. J. Pelfrêne, S. Abdeddäim, and J. Alexandre, Extending Approximate Patterns,
In Proc. CPM’03, LNCS 2676, 328–347, 2003.

A Polynomial Space and Polynomial Delay Algorithm 737

13. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, A basis of tiling mo-
tifs for generating repeated patterns and its complexity for higher quorum, In
Proc. MFCS’03, LNCS 2747, 622–631, 2003.

14. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, A comparative study of
bases for motif inference, In String Algorithmics, KCL publications, 2004.

15. T. Uno, Two general methods to reduce delay and change of enumeration algo-
rithms, NII Technical Report, NII-2003-004E, April 2003.

16. T. Uno, T. Asai, Y. Uchida, H. Arimura, An efficient algorithm for enumerating
closed patterns in transaction databases, In Proc. DS’04, LNAI 3245, 16-30, 2004.

17. X. Yan, J. Han, CloseGraph: Mining Closed Frequent Graph Patterns In
Proc. SIGKDD’03, 2003.

5-th Phylogenetic Root Construction for Strictly
Chordal Graphs

William Kennedy� and Guohui Lin��

Algorithmic Research Group and Bioinformatics Research Group,
Department of Computing Science, University of Alberta,

Edmonton, Alberta T6G 2E8, Canada
{kennedy, ghlin}@cs.ualberta.ca

Abstract. Reconstruction of an evolutionary history for a set of organ-
isms is an important research subject in computational biology. One ap-
proach motivated by graph theory constructs a relationship graph based
on pairwise evolutionary closeness. The approach builds a tree represen-
tation equivalent to this graph such that leaves, corresponding to the
organisms, are within a specified distance of k in the tree if connected
in the relationship graph. This problem, the k-th phylogenetic root con-
struction, has known linear time algorithms for k ≤ 4. However, the com-
putational complexity is unknown when k ≥ 5. We present a polynomial
time algorithm for strictly chordal relationship graphs when k = 5.

Keywords: Computational biology, phylogeny reconstruction, phyloge-
netic root, Steiner root, chordal, strictly chordal.

1 Introduction

A phylogeny is the development and history through evolution of a set of organ-
isms or evolutionary units. A phylogenetic tree is a visual representation with the
leaves labeled by the evolutionary units and distances in the tree representing
evolutionary closeness; reconstruction of such trees is a fundamental question
in computational biology. One approach, based on graph theory, uses an input
graph representing the known relationships of the units; the vertices are labeled
by the units and connected if their relative closeness is greater than some pre-
specified threshold. The approach then constructs a tree, if it exists, where the
unit-labeled leaves are within a given path distance in the tree if and only if the
evolutionary units’ vertices are connected in the input graph. This problem is a
variation of the well-studied graph root and graph power problem.

The k-th power of a graph G = (V,E), denoted Gk, is another graph on the
same vertex set with an edge between x, y ∈ V if and only if a path in G of
length at most k exists between x, y. Given a graph, it is efficient to compute
a k-th power, but the reverse direction, finding a k-th root, is generally more

� Supported partially by NSERC.
�� Supported by NSERC and CFI.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 738–747, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

5-th Phylogenetic Root Construction for Strictly Chordal Graphs 739

complex. For example, finding a square root of graph is NP-complete [9]. A few
polynomial time algorithms exist for computing if a graph has a k-th root where
this root is a tree [3,8]. For a graph G, a k-th leaf root is a tree T where the
vertex set of G corresponds to the leaves of T and the k-th power T k induced
on the leaf set of T is isomorphic to G. The internal vertices in T are Steiner
points. For a Steiner point the number of Steiner points it is adjacent to in T
is its Steiner degree. All strictly chordal graphs are leaf powers, and finding the
k-th leaf root of a strictly chordal graph for k ≥ 4 has a linear time solution [4].

The k-root phylogenetic tree problem is a restriction of the k-th leaf root with,
in addition, all Steiner points necessarily having degree at least 3; this derived
from the notion of an internal point in the tree representing a genetic split from
a common ancestor. The problem of finding a k-root phylogenetic tree has a
linear time solution for k ≤ 4 [6]. [5,7] have produced algorithms for the k = 5
case that runs in linear time if the critical clique graph CC(G) is a tree.

The k-root Steiner problem is a relaxation of the k-th leaf root with vertices
of G now represented by both the leaves and some internal vertices of the tree.
[6] used this problem as an important intermediary step for constructing the 3rd
and 4th root phylogenetic tree; we employ an analogous approach in this paper.
The main contribution of this paper will be to produce an algorithm that decides
if a given strictly chordal graph has a 5-root phylogeny tree, and if such a tree
exists, constructs this tree.

2 Preliminaries

A forest is a simple acyclic graph; a tree is a connected forest. We will assume
that a tree is undirected. A graph is chordal [1] if it contains no induced cycle
of length four or more. Chordal graphs can be recognized in linear time [1]. All
graphs that have a leaf power representation are chordal graphs [6].

Let G = (V,E) be a graph. A clique is a set of pairwise adjacent vertices. A
clique is maximal if it is not properly contained in any other clique. A homo-
geneous clique is a clique S such that either |S| = 1 or for all v1, v2 ∈ S and
w ∈ V \ S, v1w ∈ E if and only if v2w ∈ E. A critical clique is a homogeneous
clique that is not a proper subset of any other homogeneous clique [6]. The crit-
ical clique cardinality of a maximal clique K, denoted cccard(K), is the number
of critical cliques it contains. We define a maximal clique to be large if it has
critical clique cardinality three or more. A critical clique is internal if contained
in at least two maximal cliques and external otherwise.

The set of critical cliques of a graph is a partition of the vertex set of the
graph. Two critical cliques C1 and C2 are adjacent if the vertices of C1 are
adjacent to the vertices of C2. A critical clique graph CC(G) with nodes of
CC(G) corresponding to the critical cliques ofG such that two nodes are adjacent
if and only if the critical cliques that they represent are adjacent [6]. To avoid
confusion we will refer the vertices in CC(G) as nodes.

For a vertex set V and a hyperedge set E ={Ei|i = 0, 1, 2, ..., n} such that
Ei ⊆ V , the pair H = (V, E) is a hypergraph [1]. A twig in a hypergraph H(V, E),

740 W. Kennedy and G. Lin

denoted Et, is a hyperedge such that there exists another hyperedge, Eb called
a branch, with the property that Et ∩ (∪E∈E−EtE) = Et ∩ Eb. A hypergraph is
a hypertree if there exists an ordering (E1, E2, . . . , Em) of the hyperedges such
that Ei is a twig in H(V, Ei) for 1 ≤ i ≤ m given that Ei = (E1, E2, . . . , Ei). This
definition of hypertree corresponds to [4,2] and differs from the definition in [1].
Given a set of hyperedges E ′ ⊆ E , We say the intersection I of E ′ is maximal [4]
if no other hyperedges exist which contain all the vertices of I. We say that an
intersection is strict [4] if for every pair of edges, E′, E′′ ∈ E , E′ ∩ E′′ = I and
E∗ ∩ I = ∅ for all E∗ ∈ E − E ′. A hypertree is strict [4] if all its intersections
are strict. Define a clique hypergraph of a graph G = (V,E) with vertex set V
and hyperedges set as the maximal cliques of G. A graph is strictly chordal if it
is chordal and its clique hypergraph is a strict hypertree. There exists a linear
time algorithm to recognize strictly chordal graphs [4].

A k-root Steiner tree T of a graph G is S-restricted for a set of critical cliques
S if T has no degree 2 Steiner points and critical cliques in S are internal in T .

Lemma 1. [7] For a graph G, let S be the critical cliques of size 1 in G. If
no (k-2)-root Steiner tree T is associated with G such that T is an S-restricted
Steiner tree, then no k-root phylogenetic tree is equivalent to G.

We now give a brief overview of the strategy we employ to produce a 5-root
phylogenetic tree from a graph G. Starting with G, check if G is strictly chordal,
and if yes, we build the critical clique graph CC(G). Using CC(G), we produce
the set of tree chordal graphs T by removing edges in large maximal cliques (see
Sect. 2.1). For each tree chordal graph Ti ∈ T , we apply Alg(Ti), a modification
of the algorithm for producing a 5-root phylogenetic tree for tree chordal graphs
given by Lin et al. [7]. If Alg(Ti) fails to produce a 3-root Steiner tree we will
find no phylogenetic tree by Lemma 2. If for all Ti ∈ T , Alg(Ti) produces a
Steiner tree Si we then continue to consider the edges removed from the large
maximal cliques. We combine each 3-root Steiner tree Si until either we come
to a contradiction or we have a valid S-restricted Steiner tree where S is the
critical cliques of size 1 in G. If we construct such a Steiner tree, by Lemma 1
we are always able to produce a corresponding 5-root phylogenetic tree.

Before we present the algorithms, we first discuss the tree chordal algorithm
presented by Lin et al. in [7] (Sect. 2.1) and discuss the structure of large maximal
cliques (Sect. 2.2). We will present the algorithm in three progressively less
restrictive parts in Sects. 3.1 – 3.2. Due to space constraints, we do not provide
proofs of all lemmas and theorems. The interested read may refer to the full paper
available at URL http://www.cs.ualberta.ca/research/techreports/2005.php.

2.1 Tree Chordal Graphs

A graph G is tree chordal [7] if CC(G) is a tree. [7] showed a polynomial time
algorithm to construct a 5-root phylogenetic tree from a tree chordal graph.
Starting with CC(G), this algorithm produces an S-restricted 3-root Steiner
tree where the set S contains external nodes of size 1 in CC(G); from this

5-th Phylogenetic Root Construction for Strictly Chordal Graphs 741

Steiner tree a 5-root phylogenetic tree is easily produced. The non-trivial cases
for this algorithm are internal nodes of size 1 and external nodes of size 2 and 3.

Our algorithm for 5-PRP on strictly chordal graphs uses the algorithm for
5-PRP on tree chordal graphs and the following observation. Observe that we
can produce a set of tree chordal graphs T from a strictly chordal graph in the
following way. Using the critical clique graph CC(G), remove the edges from
large maximal cliques to produce CC(T), which is a set of trees. To create T ,
re-substitute each critical clique in for the node that it represents in CC(T).

Let G be a strictly chordal graph with an S-restricted 3rd Steiner root tree
T , where S is the set of all size 1 critical cliques in G. Let T be a forest of tree
chordal graphs decomposed from G. Let c be a critical clique contained in a large
maximal clique in G and contained in a tree chordal graph Ti, decomposed into
at least two nodes in CC(Ti).

We now consider the construction of an S-restricted 3rd Steiner root tree T ′
i

for a Ti in T as an intermediary step in the process of the 5-PRP algorithm for
strictly chordal graphs, therefore, we will allow a critical clique such as c to be
adjacent to a degree 2 Steiner point or c to have a single size 1 leaf representative.
These inconsistencies are allowable as long as they do not exist in the final S-
restricted 3rd Steiner root tree T for G. If c has a single size 1 leaf representative
rc in T ′

i then rc must be internal in T ; as we will see in Sect. 3, this is always
able to be done. For the degree 2 Steiner point, we note that c must have a single
representative rc as it is adjacent to another critical clique in Ti. rc will need to
be adjacent to an additional Steiner point in T , as the degree must be at least
3 in T and if another representative is adjacent to this Steiner point then it will
be indistinguishable from rc.

Therefore, for the following S-restricted 3rd Steiner root tree constructions
we allow a slight relaxation with critical cliques such as c to be adjacent to a
degree 2 Steiner point or to have a single size 1 leaf representative.

Corollary 3.1 of [7] can easily be adapted to show that no size 1 leaf exists
in trivial tree chordal graphs. Lemma 3.2 of [7] shows that a critical clique
has diameter at most 2 in the Steiner tree. Finally, Lemma 3.9 of [7] shows
that leaf nodes of size 2 or 3 are represented by a single vertex adjacent to a
neighbors representative and Lemma 3.10 shows that leaf nodes of size at least
4 are represented by two representatives adjacent to a common Steiner point.

A critical clique c is constrained in K if c has two or more representatives in
the Steiner tree T , c has a single representative adjacent to a Steiner point with
Steiner degree 1, or c has a single representative adjacent to the representative
of another critical clique. As shown in Sect. 2.2, at most one critical clique
can be constrained in a large maximal clique of a strictly chordal graph with
an S-restricted 3rd Steiner root tree. Therefore, the algorithm aims to produce
constrained critical cliques only when necessary.

We first deal with the case when CC(G) contains less than 3 nodes - trivial
tree chordal graphs. A tree chordal graph T is trivial when CC(T) is a single
node. No connected graph will have a CC(G) with two nodes; as the two adjacent
critical cliques would be one large critical clique. Trivial tree chordal graphs T

742 W. Kennedy and G. Lin

can arise in two ways, when decomposed from a strictly chordal graph: T was
part of only large maximal cliques in G, or T was part of a large maximal
clique and decomposed into a tree chordal graph of exactly two critical cliques.
Therefore, we describe an algorithm to handle trivial tree chordal graphs.

If a tree chordal graph was part of only large maximal cliques in G, the
corresponding S-restricted 3rd Steiner root tree to the Ti will be a single repre-
sentative. For the second case, we present the following algorithm TrivAlg(Ti).

1. if both c1 and c2 are internal critical cliques in G then represent c1 and c2
by two single representatives connected by a path of two Steiner points; or,

2. if only one is an internal critical clique, assume c1, then:
a. if |c1| = 1 and 1 < |c2| < 4 then represent c1 and c2 by two single

adjacent representatives;
b. if |c1| > 1 and 1 < |c2| < 4 then represent c1 by r′c1

and r′′c1
, c2 by rc2 ,

and create path r′c1
− r′′c1

− rc2 ;
c. if |c2| > 3 then represent c1 by a single representative, represent c2 by

two representatives of sizes �|c2|/2� and �|c2|/2�, and make all adjacent
to a common Steiner point; or,

d. otherwise (|c2| = 1) no S-restricted 3rd Steiner root tree exists.

The trees produced by TrivAlg(Ti) satisfy the condition of being an S-
restricted 3rd Steiner root tree for Ti with respect to relaxation given above.
Notice that all configurations for this critical clique are constrained. The choice
for critical cliques represented by a path of representatives are not chosen in this
case as all adjacent critical cliques will need to have single representatives and,
as we will show, one possibility will force one maximal cliques contained critical
cliques to have single representatives. Therefore, we choose the less restrictive
case. This leaves two options for the S-restricted 3rd Steiner root tree: (1) the
option presented in the algorithm and (2) letting c1 and c2 be adjacent, with no
Steiner points. For (1) c1 and c2 must be contained in two additional maximal
cliques each in G, one adjacent to c1 or c2 (if |c1| = 1 or |c2| = 1) and the other
adjacent to the Steiner points adjacent to c1 and c2. For (2) that c1 and c2 must
also be contained in two additional maximal cliques each. The difference is all
maximal cliques adjacent to c1 and c2 will have to all adjacent critical cliques
in CC(G) as unconstrained for (2), whereas only one maximal clique needs all
contained critical cliques as unconstrained for (1) (See Lemma 7). Cases 2a and
2b satisfy Lemma 3.9 of [7], where case 2a must be contained in at least two ad-
ditional maximal cliques in G and case 2b is only contained in at least one. Case
2c is ideal with no restriction place on the maximal cliques adjacent to c1. For
Case 2d no S-restricted 3rd Steiner root tree exist for G, as c2’s representative
will always be external and have size 1.

We now describe and justify a modification of the tree chordal algorithm of
Lin et al. [7] to minimize constrained critical cliques. Given a tree chordal graph
Ti ∈ T decomposed from a graph G, set S corresponding to nodes in Ti of size 1
in CC(G), and a set R corresponding to nodes of CC(Ti) contained in maximal
cliques of size three or more in CC(G) produce an S-restricted 3rd Steiner root
tree as follows. Denote this modified algorithm ALG(G).

5-th Phylogenetic Root Construction for Strictly Chordal Graphs 743

– If Ti was part of only large maximal cliques, return a single representative.
– If Ti was part of a large maximal clique and decomposed into a tree chordal

graph of exactly two critical cliques, return tree as in TrivAlg(Ti).
– Produce tree chordal graph T �

i as follows:
• size two and three external nodes contained in R, change size to four;
• size one external nodes contained in R adjacent to degree-2 size-2 node

in CC(Ti), change size to four;
• remaining size one external nodes contained in R, change size to two;
• size one internal nodes contained in R which are not adjacent to an

external node not contained in R, change size to two.
– Call the tree chordal algorithm with the modified tree T �

i .
– return no if the tree chordal algorithm fails, or return the S-restricted 3rd

Steiner root tree.

Lemma 2. Given a strictly chordal graph G decomposed into a forest of tree
chordal graphs T and set S corresponding to nodes in G of size 1, if ALG(T)
fails to produce a valid S-restricted 3rd Steiner root tree for any Ti ∈ T then no
S-restricted 3rd Steiner root tree exists for G.

By Lemmas 1 and 2, if ALG(T) fails for any tree chordal graph, we can
return no, as no S-restricted 3rd Steiner root tree exits and therefore no 5th
phylogenetic root tree will exist. We now enumerate the possibilities of a critical
clique returned by ALG(T).

Lemma 3. Given a tree chordal graph G with at least two critical cliques,
ALG(G) leaves the representatives of any critical cliques in the 3rd Steiner root
tree T in exactly one of the follow states:

c1: Representatives adjacent to a Steiner point of Steiner degree one; nearest
representative of another critical clique is at distance of three with:
a: a single representative, or
b: two representatives,

c2: One representative adjacent to a degree two Steiner point, with:
a: nearest representative of another critical clique is at distance of three, or
b: nearest representative of another critical clique is at distance of two,

c3: One representative at distance of one to another leaf critical clique and a
Steiner point, other critical cliques are at a distance of three,

c4: One representative adjacent to one a representative of another critical clique.
c5: Two adjacent representatives; one adjacent to another leaf’s representative.

2.2 Structure of Large Maximal Cliques

The following lemma, Lemma 4, is an example of structure that is a potential
problem for construction of an S-restricted 3rd Steiner root tree; the following
section shows why this poses a problem and how it becomes unnecessary in the
construction of an S-restricted 3rd Steiner root tree.

744 W. Kennedy and G. Lin

Lemma 4. [4] Let G be a graph with a 3rd Steiner root T . Assume there exist
in G three maximal cliques K1,K2,K3 such that K1 ∩K2 = I1 �= ∅, K2 ∩K3 =
I3 �= ∅, and K1 ∩K3 = ∅. Let I2 = K2 − I1 − I3. If I1 = {u1, u

′
1}, I3 = {u3, u

′
3},

and |I2| > 0, then u1-u′1-u
′
3-u3 is a path in T and every representative for a

critical clique in I2 is adjacent to either u′1 or u′3.

The critical cliques contained in I1 and I3 are as c5 and the critical cliques
contained in I2 are as c4, implying all critical cliques in I1 and I2are constrained.
We show we can maintain all distance constraints while changing this maximal
clique K2 to have all critical cliques as unconstrained.

Lemma 5. [4] Let G be a graph with a 3rd Steiner root T , then each maximal
cliques with critical clique cardinality of 3 or more either has exactly two critical
cliques each with two representatives as in Lemma 4, or has at most one internal
critical clique with two are more representatives in T .

Lemma 6. Let K be a maximal clique represented by the situation of Lemma
4 in a 3rd Steiner root T , then there exists an equivalent representation with a
central Steiner point adjacent to the representatives of its critical cliques in K.

The following corollary follows easily from Lemmas 5 and 6.

Corollary 1. Let G be a graph with a 3rd Steiner root T . Then there exists a
representation in which all maximal cliques with critical clique cardinality of 3 or
more have at most one internal critical clique with two or more representatives.

3 5PRP on Strictly Chordal Graphs

This section deals with the combination of the Steiner trees returned by ALG(G)
and progresses from the most trivial case to the complete case: the solution of
the 5-root phylogeny problem on strictly chordal graphs.

3.1 Structural Restriction 1

A small leaf is an external critical clique of size 1 in a maximal clique of critical
clique cardinality at least three. We remind the reader that a constrained critical
clique in a maximal clique K is a critical clique with either two or more represen-
tatives in the Steiner tree T , a single representative adjacent to a Steiner point
with Steiner degree 1 in T , or a single representative adjacent to the representa-
tive of another critical clique in T . In the following section we will assume that
the input graph G contains no small leaves and large maximal cliques K contain
at most one critical clique which is constrained. These simplifying assumptions
imply that at most one critical clique in a large maximal clique will be as c1a,
c1b, c3, c4, or c5. Case c4 is a restrictive case as the following lemma shows.

Lemma 7. Let G be a graph with an S-restricted 3rd Steiner root tree T and a
maximal clique K. If K has an internal critical clique as in c4 then the critical
clique must be part of at least two maximal cliques with critical clique cardinality
three or more with other critical cliques unconstrained.

5-th Phylogenetic Root Construction for Strictly Chordal Graphs 745

The structure of a critical clique in case c1a, is a single representative adjacent
to a Steiner point with Steiner degree one; as such, if the corresponding critical
clique c has size 1 then we must increase the degree of both this representative
and the Steiner point. It follows that c must be part of at least three maximal
cliques; the following operation shows how to increase the degree of both the
Steiner point and the representative of c.

Definition 1 (Operation 1). Let c be a critical clique part of at least three
maximal cliques K1,K2, ...,Kn. If K1 is in c1a or c2b and K2 has all critical
cliques unconstrained then assign c a single representative and let the Steiner
point adjacent to c in K1 be adjacent to the Steiner point from K2 such that
all its critical cliques are at distance exactly three from c. For K3, ...,Kn, c now
corresponds to c2a and is unconstrained.

If a critical clique needs to have Operation 1 performed, check that there
exists a maximal clique containing it that has all critical cliques unconstrained.
If no maximal clique exists, we check if an adjacent critical clique is as c1a or c1b,
and apply Operation 1. In a similar fashion continue searching for a resolvable
path through maximal cliques. Note that such a search is a depth first search
through the tree, and in the worst case, and has a linear runtime. Notice that the
choice made to change a path by Operation 1 will never affect another path as
the search will assign a single representative for a critical clique, and this critical
clique will be now unconstrained. Therefore, we pick the first resolvable path.

Theorem 1. Let G be a connected strictly chordal graph G such that G contains
no small leaves and large maximal cliques contain at most one constrained critical
clique, there exists a O(|V |3) time algorithm to recognize whether G has 5th
phylogenetic root tree T , and if so, return such a T .

3.2 Structural Restriction 2

In following section, we assume that the input graph G contains no small leaves.
A strictly chordal graph may have a large maximal clique having more than one
constrained critical clique; if all except one cannot be modified to be uncon-
strained, then the algorithm returns no, by Corollary 1. If a critical clique in a
3-root Steiner tree is as c4, Lemma 7 forces the structure for all maximal cliques
it is contained in; c3 and c5 are similarly restrictive.

Lemma 8. Let G be a graph with an S-restricted 3rd Steiner root tree T with
S = ∅ and a maximal clique K. If K has a critical clique c as in c3 or c5 of
Lemma 3 then any other maximal cliques with critical clique cardinality three or
more containing C will have all critical cliques as unconstrained.

Thus, given a representative as in cases c3, c4, or c5, we can immediately
decide if the maximal clique can be recombined. As c2a and c2b both have a
single representative adjacent to a Steiner point of degree at least three, we now
deal with the cases c1a and c1b.

746 W. Kennedy and G. Lin

Lemma 9. Let G be a graph with an S-restricted 3rd Steiner root tree T and c
be a critical clique, where c is part of maximal cliques K1,K2, ...,Kn and K1 is
as in c1a or c1b, then at least one maximal clique must have all critical cliques
other than c unconstrained.

Theorem 2. Let G be a connected strictly chordal graph, G contains no small
leaves, there exists a O(|V |3) time algorithm to recognize whether G has a 5th
phylogenetic root tree T , and if so, return such a T .

3.3 No Restrictions

Lemma 10. Given a strictly chordal graph G and a corresponding S-restricted
3rd Steiner root tree T , if there exists a small leaf l in a maximal clique K, then:

1. l is internal in T ,
2. each critical clique c ∈ K \ l has all adjacent critical cliques not in K at a

distance of at least 2 in T ,
3. at least one critical clique c ∈ K \ l has all adjacent critical cliques not in K

at a distance of 3 in T , and
4. every critical clique in K has a single or 2 adjacent representatives.

By this lemma, a critical clique c in a maximal clique containing a small leaf
can be as c1a, c1b, c2a or c2b. c4 is impossible as the critical clique is adjacent to
another critical clique failing to satisfy condition 2. c3 is impossible as the small
leaf would have to be at distance exactly three from the single representative,
but then it would be a leaf in T , failing to satisfy condition 1. For c5, a small
leaf would be distance three from the degree two representative and a leaf in T .

We now introduce two operations to change a critical clique to satisfy condi-
tion 3. The algorithm applies these operations if no suitable critical clique exists
to satisfy condition 3 of Lemma 10. Notice that only one of these operations can
apply to a set of maximal cliques. In addition, the search as done for Operation
1 can be applied to these operations.

Definition 2 (Operation 2a). Given a critical clique, c, which is part of at
least three maximal cliques, K1,K2, ...,Kn. If at most one of K2, ...,Kn was part
of a decomposed tree chordal graph with c as in c1a, c2b c2a, or c2b and all
critical cliques in the remainder are unconstrained. Then give all critical cliques
c a single representative and let the Steiner point adjacent to c be adjacent to
the Steiner points from K2, ...,Kn such that each remaining critical clique is at
distance exactly three from c.

Definition 3 (Operation 2b). Given a critical clique, |c| ≥ 2, which is part
of exactly two large maximal cliques K1 and K2. If all critical cliques in K1 and
K2 other than c are unconstrained then create two Steiner points, p1 and p2; let
all critical cliques in K1 other than c be adjacent to p1, all critical cliques in K2
other than c be adjacent to p2, and give c two adjacent representatives where one
is adjacent to p1 and the other to p2.

5-th Phylogenetic Root Construction for Strictly Chordal Graphs 747

Lemma 11. Given a graph with an S-restricted 3rd Steiner root tree and a large
maximal clique K containing a small leaf l, then one critical clique C ∈ K \ l
can have Operation 2a applied, Operation 2b applied, or is as c2a.

Lemma 12. Given a strictly chordal graph G and a corresponding S-restricted
3rd Steiner root tree T , if there exists a small leaf l in a maximal clique K, then:

1. if cccard(K) = 3 and there exists exactly one critical clique c ∈ K \ l with
two adjacent representative, then all other critical cliques have all adjacent
critical cliques not in K at a distance of exactly 3 in T ,

2. if cccard(K) = 3 and no critical clique c ∈ K \ l has two adjacent represen-
tative, then all critical cliques having all adjacent critical cliques not in K
at a distance of exactly 3 in T , and

3. if cccard(K) ≥ 4 then there exists a critical clique c ∈ K \ l with Operation
2a applicable or c is as c2a.

Theorem 3. Let G be a strictly chordal graph. Then there exists a O(|V |3) time
algorithm to recognize whether G has a 5th phylogenetic root tree T , and if so,
return such a T .

4 Concluding Remarks

The general complexity for the k-th root phylogeny problem, for k ≥ 5, is still
unknown. Our future work will be towards development of an algorithm for all
graphs when k = 5. Of additional interest is the development of approximation
algorithms for the k-th phylogenetic root problem.

References

1. A. Brandstadt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM,
Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.

2. R. Haenni and N. Lehmann. Efficient hypertree construction. Technical Report
99-3, Institute of Informatics, University of Fribourg, 1999.

3. P. E. Kearney and D. G. Corneil. Tree powers. Journal of Algorithms, 29(1):111 –
131, 1998.

4. W. Kennedy, G. Lin, and G. Yan. Strictly chordal graphs are leaf powers. Journal
of Discrete Algorithms, 2005.

5. H. Kong and G. Yan. Algorithm for phylogenetic 5-root problem. unpublished,
2003.

6. G. Lin, T. Jiang, and P. E. Kearney. Phylogenetic k-root and steiner k-root. In
ISAAC, volume 1969, pages 539–551, 2000.

7. G. Lin, W. Kennedy, H. Kong, and G. Yan. The 5-root phylogeny construction for
tree chordal graphs. submitted to Discrete Applied Mathematics, 2005.

8. Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM Journal
on Discrete Mathematics, 8:99 – 118, 1995.

9. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Applied
Mathematics, 54:81 – 88, 1994.

Recursion Theoretic Operators for
Function Complexity Classes

Kenya Ueno

Department of Computer Science,
Graduate School of Information Science and Technology,

the University of Tokyo
kenya@is.s.u-tokyo.ac.jp

Abstract. We characterize the gap between time and space complexity
of functions by operators and completeness. First, we introduce a new no-
tion of operators for function complexity classes based on recursive func-
tion theory and construct an operator which generates FPSPACE from
FP . Then, we introduce new function classes composed of functions whose
output lengths are bounded by the input length plus some constant. We
characterize FP and FPSPACE by using these classes and operators.
Finally, we define a new notion of completeness for FPSPACE and show
a FPSPACE-complete function.

1 Introduction

Recursive function theory expresses the computable function class as the smallest
class containing some initial functions and closed under operators that gener-
ate new functions. Similarly, it is known that many function complexity classes
are characterized by recursion theoretic scheme [1,2]. In 1953, Grzegorczyk [3]
introduced the hierarchical classes En by composition and an operator called
bounded recursion. Later, Ritchie [4] showed that E2 is equal to the linear space
computable function class in 1963. In 1964, Cobham [5] characterized FP by
composition and bounded recursion on notation. In 1972, Thompson [6] charac-
terized FPSPACE by composition and bounded recursion.

Whereas these studies expanded various fields [7] and have many interesting
applications, there are no attempts to study the relation among function com-
plexity classes from a recursion theoretic viewpoint. Existent studies have only
concerned about how to characterize function complexity classes simpler way or
fewer initial functions. However, this direction is nonsense when we set our goal
separation of complexity classes. It is the relation among them that is the most
important thing for separation. From this perspective, we extend the notion of
operators to operators that act on general function complexity classes.

Operators for complexity classes are useful to clarify the relation among
them [8,9,10]. Toda’s theorem PH ⊂ PPP [11] makes use of some properties of
operators. There are many operators studied like ∃ and ∀, which are the operators
that generates NP and coNP from P respectively. Many other operators that
express the gaps between P and complexity classes like RP , BPP , PP and ⊕P

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 748–756, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Recursion Theoretic Operators for Function Complexity Classes 749

have been also studied. Then, what about the case of P and PSPACE? Is there
any appropriate one that simply expresses the gap between P and PSPACE?
In fact, it is hard to construct it because operators like ∃ and ∀ are defined ac-
cording to the number of accepting configurations. But, in the case of function
complexity classes, we can say that there exists an appropriate one.

Function complexity classes related withNP are studied widely [12]. However,
there are few studies about FPSPACE. In this paper, we clarify the structure
of FPSPACE. The importance of this study is that we show ”functions can
do what languages cannot do”. This is one of the few examples which clearly
indicate merits of studies on function complexity classes compared with language
complexity classes.

We construct an operator which exactly expresses the gap between FP
and FPSPACE. We introduce new operators Comp∗ and BRec and show
FPSPACE = Comp∗(BRec(FP)). This result can be generalized. For example,
this operator generates the linear space computable function class from the linear
time computable function class as FSPACE(n) = Comp∗(BRec(FTIME(n))).

Moreover, we introduce an operator RecN and new function complex-
ity classes AGTIME and AGSPACE. We show the structures of FP and
FPSPACE by showing FP = Comp∗(RecN(AGTIME)) and FPSPACE =
Comp∗(RecN(AGSPACE)). The case of FP is proven by simulating polynomi-
ally time bounded DTMs by using a function called ”step”, which receives a con-
figuration and returns the next configuration. To prove the case of FPSPACE,
we introduce a new function called ”next” and substitute it for the step func-
tion. It simulates partial works of DTMs by manipulating configurations within
limited space.

The next function contains a further implication. We introduce completeness
for FPSPACE, which is a new notion while there is a study about complete-
ness for polynomial space counting classes [13], and show that this function
is FPSPACE-complete under FP Turing reductions. It is also FSPACE(n)-
complete under FTIME(n) Turing reductions. Thus, we can say that the next
function exactly expresses the gap between time and space.

2 Function Complexity Classes

We assume that the readers are familiar with the notion of Turing machines,
resource bounded computations and the definitions of complexity classes like P
and PSPACE. A configuration is representation of the whole state of a Turing
machine at a certain time.

Functions discussed in this paper are total functions from a natural number
to a natural number. If we say that a Turing machine computes a function, it
means that natural numbers are represented by strings of the binary notation
and it converts a string into a string.

First, we define the following function complexity classes.

750 K. Ueno

Definition 1.

– FTIME(t(n)) = the class of functions computable in c · t(n) time for some
constant c by DTMs

– FSPACE(s(n)) = the class of functions computable in c · s(n) space for
some constant c by DTMs

Output lengths of functions in FSPACE(s(n)) are bounded by c · s(n) for some
constant c.

Then, FP and FPSPACE are defined as follows.

Definition 2.

– FP =
⋃
c≥1

FTIME(nc)

– FPSPACE =
⋃
c≥1

FSPACE(nc)

Output lengths of functions in FPSPACE are also bounded by polynomial to
the input length.

These function complexity classes are closely related with language complexity
classes.

Theorem 1. P = PSPACE ⇔ FP = FPSPACE

This theorem is proven by the prefix searching method, which appears in [14]
and [15]. This theorem implies that there is little difference whether we study
languages or functions for separating complexity classes. So, we may choose an
appropriate one according to the case.

Furthermore, we introduce new function classes, which are composed of func-
tions whose output lengths are bounded by the input length plus some constant.
We call them additive growth functions.

Definition 3.

– AGTIME = the class of functions computable in n + c time by DTMs for
some constant c where n is the input length

– AGSPACE = the class of functions computable in n+ c space by DTMs for
some constant c where n is the input length

The output lengths of functions contained in AGSPACE are bounded by n+ c
for some constant c.

3 Recursion Theoretic Operators

Now, we define the operators based on recursive function theory. Let C be an
arbitrary function complexity class and we define operators by applying them
to C. We write multiple argument function as f(x) = f(x1, · · · , xn) for ease.
Then, the operator Comp is defined as follows.

Recursion Theoretic Operators for Function Complexity Classes 751

Definition 4.

Comp(C) = C ∪ {f | f(x) = g(h1(x), · · · , hn(x)),
g, h1, · · · , hn ∈ C}

In addition, we define Comp∗(C) as the smallest class that contains C and is
closed under Comp.

Bounded recursion is recursion which restricts output values of functions by
a certain function. The operator BRec is defined as follows. (BRec∗ is defined
similarly as the case of Comp∗)

Definition 5.

BRec(C) = C ∪ {f | f(0,y) = g(y),
f(x,y) = h(x,y, f(x− 1,y)),
∀x,∀y, f(x,y) ≤ k(x,y),
g, h, k ∈ C}

Recursion on notation is recursion that decreases length instead of value when-
ever it carries out recursion. The operator RecN is defined as follows.

Definition 6.

RecN(C) = C ∪ {f | f(0,y) = g(y),

f(x,y) = h(x,y, f(�x
2
�,y)),

g, h ∈ C}

4 Closure Properties

Before proceeding the main result, we describe some basic properties related
with operators defined above. First, we see the closure properties related with
Comp.

Proposition 1. FTIME(n), FSPACE(n), FP and FPSPACE are closed
under Comp.

Next, we show the closure properties related with BRec.

Lemma 1. If s(n) ≥ n, BRec(FSPACE(s(n))) ⊂ FSPACE(s(2 · s(n))).

Proof. We consider a function f ∈ BRec(FSPACE(s(n))), which is obtained
by applying BRec to g, h, k ∈ FSPACE(s(n)). The program computing f is
described as follows.

input x,y
z = g(y);
for(i = 1 to x){
z = h(i,y, z);
}
output z

752 K. Ueno

Space required for i is |x| and the input length of z is bounded by s(|x−1|+|y|)
because it is bounded by k. Thus, the following inequality holds because s(n)
≥ n.

s′(|x| + |y|) = s(|x| + |y| + s(|x− 1| + |y|)) + |x| ≤ 2 · s(2 · s(|x| + |y|))

Here, s′(n) is the space complexity of this program. ��

By this lemma, the following proposition holds.

Proposition 2. FSPACE(n), FPSPACE are closed under BRec.

5 Time, Space and Bounded Recursion

In this section, we show that BRec characterizes the relation between time and
space. First, we prove the following lemma.

Lemma 2. If s(n) ≥ n, FSPACE(s(n)) ⊂ Comp∗(BRec(FTIME(s(n)))).

Proof. Let f be an arbitrary function computable in k · s(n) space for some
constant k. We define the following functions defined for the Turing machine
computing f .

1. init(x) is a function that returns the initial configuration on input x
2. step(c) is a function that returns the configuration when when it changes to

the next state from configuration c
3. out(c) is a function that returns the output of configuration c

These functions are all computable in linear time. Thus, they are also in
FTIME(s(n)) on assumption of s(n) ≥ n.

Then, there exists a function T ∈ FTIME(s(n)) that satisfies ∀x, |T (x)| ≥
k · s(|x|). There also exists a function S ∈ FTIME(s(n)) that satisfies
∀t, x, |S(t, x)| ≥ |T (x)| + k′ for any constant k′ that depends only on f . This
function is defined in order to represent all configurations in |S(t, x)| space.

Applying BRec to these functions, we construct the following function F ∈
BRec(FTIME(s(n))).

F (0, x) = init(x)
F (t, x) = step(F (t− 1, x))
∀t, ∀x, F (t, x) ≤ S(t, x)

Remark that k · s(x) space bounded computations are simulated by 2k·s(x)

time bounded computations. Thus, the computation of f is simulated as f(x) =
out(F (T (x), x)) because recursion is carried out 2|T (x)| times, which is larger
than 2k·s(x). ��

Thus, we can obtain an operator that express the gap between FP and
FPSPACE.

Recursion Theoretic Operators for Function Complexity Classes 753

Theorem 2. FPSPACE = Comp∗(BRec(FP)) = Comp∗(BRec∗(FP))

Proof. Comp∗(BRec∗(FP)) ⊂ FPSPACE because FPSPACE is closed under
Comp and BRec. Moreover, FPSPACE ⊂ Comp∗(BRec(FP)) by Lemma 2.

��

Corollary 1. FP is closed under BRec ⇔ P = PSPACE

As we can see from the proof, it does not seem to hold Comp∗(BRec(C)) =
FPSPACE where C is any function complexity class smaller than FP . To
include FPSPACE by Comp∗(BRec(C)), it is necessary for C to be stronger
than FP . So, we can say that it is an operator that exactly expresses the gap
between FP and FPSPACE.

By the same way, this operator expresses the gap between FTIME(n) and
FSPACE(n).

Theorem 3.

FSPACE(n) = Comp∗(BRec(FTIME(n))) = Comp∗(BRec∗(FTIME(n)))

6 Structure of Polynomially Bounded Functions

In this section, we show that a combination of the operator RecN and additive
growth functions expresses polynomially bounded functions.

Lemma 3. There is a function p ∈ Comp∗(RecN(AGTIME)) that satisfies
∀x, |p(x)| > c · |x|k for any constants c and k.

Proof. To prove the existence of such a function p, we consider the function
cat(x, y) ∈ AGTIME that returns concatenation of the inputs x, y. By the
definition, |cat(x, y)| = |x| + |y| holds. By applying RecN to this function, we
construct the following function σ1 ∈ RecN(AGTIME).

σ1(0) = 0, σ1(x) = cat(x, σ1(�
x

2
�))

This function satisfies the following equation.

|σ1(x)| = |x| + (|x| − 1) + (|x| − 2) + · · · + 1 =
|x| · (|x| + 1)

2

Moreover, if we define σ2(x) = cat(σ1(x), σ1(x)), then we obtain the function
σ2 that satisfies |σ2(x)| > |x| · (|x| + 1). Then, we construct the function σ3
that satisfies σ3(x) > |x|k for any constant k by applying Comp to σ2 enough
times as σ3(x) = σ2(· · · (σ2(x))). Consequently, we can obtain the function p ∈
Comp∗(RecN(AGTIME)) as p(x) = cat(σ3(x), cat(· · · cat(σ3(x), σ3(x)))). ��

Now, we show the theorem by using this lemma.

754 K. Ueno

Theorem 4. FP = Comp∗(RecN(AGTIME))

Proof. First, we show Comp∗(RecN(AGTIME)) ⊂ FP . Since FP is closed
under Comp, it is sufficient to show RecN(AGTIME) ⊂ FP . To show this,
we consider a function f ∈ (RecN(AGTIME)), which is obtained by applying
RecN to g, h ∈ AGTIME. The program computing f is described as follows.

input x,y
z = g(y);
for(i = 1 to |x|){
xi = from first bit to (|x| − i) th bit of x
z = h(xi,y, z);
}
output z

In this program, the length of z increases at most the sum of the length of
x,y plus some constant at each repetition because h ∈ AG. So, the length of z
is bounded by the polynomial to the sum of the length of x,y during execution
of the program. Consequently, this program can compute f in polynomial time.

Next, we prove FP ⊂ Comp∗(RecN(AGTIME)). To simulate the computa-
tion of f ∈ FP , we use the three functions init, step and out described in Lemma
2 defined for the Turing machine computing f . It is easy to see that these func-
tions are in AGTIME by using special representations of configurations.

By applying the operator RecN to init and step, we obtain the following
function F ∈ RecN(AGTIME).

F (0, x) = init(x)

F (t, x) = step(F (� t
2
�, x))

Whenever it carries out recursion once, the length of t decreases one. So,
the length of t corresponds to the time of the computation. We can construct
the time bounding function p ∈ Comp∗(RecN(AGTIME)) for f by Lemma 3.
Namely, f(x) is computable in |p(x)| time. Then, the computation of f can be
simulated as f(x) = out(F (p(x), x)). ��

This result can be extended to other function complexity classes related to
polynomial like FPSPACE. To achieve this extension, we define the following
function.

Definition 7. next(e, c) is the function that returns the configuration when the
computation begins from c and the Turing machine’s head comes the next posi-
tion for the first time from the position at the time of c, for the Turing machine
represented by e. (if there is not such a configuration, then return the final con-
figuration, in the other case undefined)

We describe the work of the next function below. It may simulate only one
step of a Turing machine’s transition. On the other hand, it may simulate expo-
nentially many steps of a Turing machine’s transition by a zigzag path. In the

Recursion Theoretic Operators for Function Complexity Classes 755

figure, the area of oblique lines means the computational space used till the time
which corresponds to the configuration after s(n)-th call of the next function.
So, s(n) space bounded computations can be simulated by calling the next func-
tion at most s(n) times. Thus, polynomial space computations are simulated by
calling the next function polynomial times.

�

�
(s(n)-2)-th call

�
(s(n)-1)-th call

��
s(n)-th call

The next function partially simulates the works of deterministic Turing ma-
chines. This is done within limited space.

Proposition 3. next ∈ AGSPACE

By using this function, we can obtain the following theorem. The proof is
similar to the case of Theorem 4, but we should substitute the next function for
the step function.

Theorem 5. FPSPACE = Comp∗(RecN(AGSPACE))

7 FPSPACE-Completeness

We denote FP f as the class of functions computable in polynomial time by oracle
DTMs which are given f as oracle. Then, we define FPSPACE-completeness
as follows.

Definition 8. IfFPSPACE ⊂ FP f ∧ f ∈ FPSPACE, then f isFPSPACE-
complete.

It is easy to see f ∈ FP ⇔ FP = FPSPACE for any FPSPACE-complete
function f . We can prove that all characteristic functions of PSPACE-complete
languages are FPSPACE-complete by the prefix searching method. Moreover,
we show the following theorem.

Theorem 6. next is FPSPACE-complete.

Proof. From the property of next, polynomial space bounded computations can
be simulated by calling the next oracle polynomial times. ��

Corollary 2. next ∈ FP ⇔ P = PSPACE.

One interesting point is that the next function is FPSPACE-complete and
at the same time it is in AGSPACE.

756 K. Ueno

8 Concluding Remarks

We proved FSPACE(s(n)) ⊂ Comp∗(BRec(FTIME(s(n))) and showed the
operator which expresses the gap between FP and FPSPACE. Although
whether PSPACE strictly includes P is still an open problem, it is known
that DSPACE(s(n)) strictly includes DTIME(s(n)) for all s [16]. By this re-
sult, FTIME(s(n)) �= FSPACE(s(n)) is obvious. Thus, FTIME(t(n)) is not
closed under Comp or BRec for all t.

We also showed a complete function for FPSPACE under FP Turing re-
ductions. This result can be generalized and the next function is FSPACE(n)-
complete under FTIME(n) Turing reductions. Thus, it is not in FTIME(n)
because FTIME(n) �= FSPACE(n),

References

1. Rose, H.E.: Subrecursion: Functions and Hierarchies. Claredon Press (1984)
2. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer

(2002)
3. Grzegorczyk, A.: Some classes of recursive functions. Rozprawy Mathematyczne

4 (1953)
4. Ritchie, R.W.: Classes of predictably computable functions. Transactions of the

American Mathematical Society 106 (1963) 139–173
5. Cobham, A.: The intrinsic computational difficulty of functions. In: Proceedings of

the 1964 Congress for Logic, Methodology, and the Philosophy of Science, North-
Holland (1964) 24–30

6. Thompson, D.B.: Subrecursiveness: Machine-independent notions of computability
in restricted time and storage. Mathematical Systems Theory 6 (1972) 3–15

7. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime
functions. Computational Complexity 2 (1992) 97–110

8. Ogiwara, M., Hemachandra, L.A.: A complexity theory for feasible closure prop-
erties. In: Structure in Complexity Theory Conference. (1991) 16–29

9. Vollmer, H., Wagner, K.: Classes of counting functions and complexity theoretic
operators. Technical report, Universitat Wurzburg (1991)

10. Zachos, S., Pagourtzis, A.: Combinatory complexity: Operators on complexity
classes. In: Proceedings of 4th Panhellenic Logic Symposium. (2003)

11. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing 20 (1991) 865–877

12. Selman, A.L.: Much ado about functions. In: Proceedings, Eleventh Annual IEEE
Conference on Computational Complexity. (1996) 198–212

13. Ladner, R.E.: Polynomial space counting problems. SIAM Journal on Computing
18 (1989) 1087–1097

14. Balcázar, J., Dı́az, J., Gabarró, J.: Structural Complexity I. 2nd edn. Springer
(1994)

15. Selman, A.L., Xu, M.R., Book, R.V.: Positive relativizations of complexity classes.
SIAM Journal on Computing 12 (1983) 565–579

16. Hopcroft, J.E., Paul, W., Valiant, L.G.: On time versus space. Journal of the ACM
24 (1977) 332–337

From Balls and Bins to Points and Vertices�

Ralf Klasing1, Zvi Lotker2, Alfredo Navarra3, and Stephane Perennes4

1 LaBRI - Université Bordeaux 1, 351 cours de la Liberation,
33405 Talence cedex, France
Ralf.Klasing@labri.fr

2 Centrum voor Wiskunde en Informatica Kruislaan 413,
NL-1098 SJ Amsterdam, Netherlands

lotker@cwi.nl
3 Computer Science Department, University of L’Aquila, Italy

navarra@di.univaq.it
4 MASCOTTE project, I3S-CNRS/INRIA/Univ. Nice–Sophia Antipolis, France

Stephane.Perennes@sophia.inria.fr

Abstract. Given a graph G = (V, E) with |V | = n, we consider the
following problem. Place n points on the vertices of G independently and
uniformly at random. Once the points are placed, relocate them using
a bijection from the points to the vertices that minimizes the maximum
distance between the random place of the points and their target vertices.

We look for an upper bound on this maximum relocation distance that
holds with high probability (over the initial placements of the points).

For general graphs, we prove the #P -hardness of the problem and
that the maximum relocation distance is O(

√
n) with high probability.

We also present a Fully Polynomial Randomized Approximation Scheme
when the input graph admits a polynomial-size family of witness cuts
while for trees we provide a 2-approximation algorithm.

1 Introduction

Given a set of n uniform random points inside a given square D ⊆ IRd and
n points of a square grid covering D, an interesting question is the “cost” of
ordering the random points P on the grid vertices. A natural cost function is
the measure of the distance that the random points have to move in order to
achieve the grid order. Among all the possible bijections f : P → Grid, we
are interested in minimizing the maximum distance between P and f(P), i.e.
minf max1≤i≤n ||pi − f(pi)||1 with pi ∈ P . In [1,2,3], the relation between two
basic, fundamental structures like Uniform Random points and d-dimensional
Grid points was studied. Those papers show that the expected minimax grid
matching distance is Θ(log(n)3/4) for d = 2 and Θ(log(n)1/d) for d > 2. In a
more general setting, we are interested in the Points and Vertices problem for
arbitrary graphs G = (V,E) with |V | = n which can be described as follows:
� The research was partially funded by the European project IST FET AEOLUS and

by the European COST Action 293, “Graphs and Algorithms in Communication
Networks” (GRAAL).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 757–766, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

758 R. Klasing et al.

1. Throw n points independently and randomly onto the n vertices of G.
2. Remap the points on G such that the load of each vertex is exactly 1, mini-

mizing the maximal distance that any point has to move (on G).

The Points and Vertices problem may be viewed as an extension of the clas-
sical Balls into Bins problem, where m balls are thrown (independently and
uniformly at random) into n bins, by adding graph-structural properties to the
bins. The bins become vertices and there is an edge between two vertices if they
are “close” enough (see e.g., [4,5,6,7] for a formal definition of the Balls into
Bins problem and some of its variations). Usually, in the Balls into Bins prob-
lem the aim is to find out the distribution of the most loaded bins. In the Points
and Vertices problem, instead, we are interested in the accumulation of several
vertices, not only one.

The interest in the Points and Vertices problem arises from the fact that it
captures in a natural way the “distance” between the randomness of throwing
points (independently and uniformly at random) onto the vertices of G, and the
order of the points being evenly balanced on G. In fact, our problem can be
considered as the opposite of the “Discrepancy” (see for instance [8]).

Besides the pure theoretical interest, the Points and Vertices problem has
applications in several fields. E.g., in the field of robot deployment as well as in
sensor networks, one of the main problems is how to organize a huge number
of randomly spread devices. The goal is usually to obtain a nearly equidistant
formation so as to maximize the coverage of interesting areas [9,10]. In the field
of computer graphics, the mapping of points onto cells (pixels) of a regular
grid is a well-studied topic [11]. Another application in which our study can
be applied concerns Geometric Pattern Matching problems [12]. In fact, we can
derive good bounds on the number of edges of the bipartite graph. For more
general topologies, instead, we can consider the token distribution [13,14] and
load balancing problems [6,15]. The general case is constituted by a set of k
tokens that must be assigned to n processors connected by a general graph. Our
problem appears when the tokens are arriving randomly uniformly and when
the cost is the maximum distance that some token has to travel.

Our Results. We formalize the Points and Vertices problem by defining a
random variable ρ(G,ω) for the remapping distance on G. We relate the behav-
ior of ρ(G,ω) to the graph expansion properties and study the complexity of
computing essential parameters of ρ(G,ω). This distance turns out to be some-
what difficult to capture since it is related to global phenomena on G. We study
ρ(G,ω) for general graphs and trees. (Note that results for classical topologies
like paths and grids can be found in [1,2,3].) More specifically, we obtain:

1. #P -hardness for the general case.
2. A Fully Polynomial Randomized Approximation Scheme (FPRAS) when the

graph admits a polynomial-size family of witness cuts.
3. ρ(G,ω) = O(

√
n) with high probability (w.h.p.) for any connected graph G.

4. A greedy algorithm A that remaps the points on any tree T with remapping
distance ρA(T, ω) ≤ 2ρ(T, ω).

From Balls and Bins to Points and Vertices 759

The paper is organized as follows. Section 2 provides a formal definition of
the Points and Vertices problem. Section 3 contains some general observations
from which we derive the related computational hardness results. In Section 4,
the greedy algorithm on arbitrary trees that computes the remapping distance
up to a factor of 2 is presented. Finally, Section 5 gives some conclusive remarks.

2 Formalizing the Points and Vertices Problem

We study how far is a random structure from a regular one assuming that two
structures are close if there exists a “short” bijection from one to the other.

Actually, we are interested in bounding the maximum distance performed by
the movement of the points randomly and uniformly distributed over the vertices
of a graph G = (V,E) to the vertices V by moving the points over the edges E
in such a way that the final setting is given by one point for each vertex.

Definition 1. Given a metric space with metric d and ρ ∈ IR+, a one-to-one
mapping f : A → B is called mapping with stretch ρ from a set A to a set B if
d(x, f(x)) ≤ ρ for all x ∈ A.

Definition 2. Given a metric space with metric d and two sets A and B, we
define δ(A,B) as the minimum ρ ∈ IR+ such that there exists a one-to-one
mapping with stretch ρ from A to B.

Let G = (V,E) be a graph with n = |V (G)| vertices. In what follows, Ω =
V (G)n is the probabilistic space associated to uniform independent choices of n
points over the nodes V (G). The events will either be considered as (indexed)
sets or as positive integral weight functions on the ground set V (G) with the
adequate measure.

On graphs, we use the usual distance metric (assuming edges with positive
length) and, unless differently specified, the edges have length 1.

Problem 1. Given a graphG with n = |V (G)| vertices and a random set P (G,ω),
ω ∈ Ω of n points lying on the vertices of G, the aim is to study the random
variable ρ(G,ω) = δ(P (ω), V (G)).1

Problem 1 can be generalized as follows:

Problem 2. Given a graph G, a set of locations L ⊆ V (G) and a random set
P (L, ω) of points chosen according to a distribution2 F , with ω ∈ Ω and |P | =
|L|, the aim is to study the random variable ρ(L, ω) = δ(P (L, ω), L).

In what follows, for any graph G and any ρ ∈ IR+, we will denote by µ(G, ρ)
the probability that there exists a stretch ρ one-to-one mapping from P (G,ω) to
V (G), and we define ρ(G,ω) = min{ρ ∈ IR+|µ(G, ρ) = 1 − o(1)}. For instance,
ρ(G,ω) =

√
n means that there exists a function f ∈ o(1) such that µ(G,

√
n) >

1 − f . Whenever it will not be ambiguous, we omit the parameters G and ω.
1 Abusing notation, with ρ we represent both a real positive number and a function.
2 In the rest of the paper, we will assume such a distribution to be the Uniform one

unless specified differently.

760 R. Klasing et al.

3 Hardness Results

We will often replace our process by a Poisson process with intensity 1, since
the points and vertices process is simply the Poisson process conditioned by the
fact that the total number of points is |V |.3 Note that the Poisson process will
always fail when the number of points is not |V |. It follows that, denoting by
µPoisson(G, ρ) the probability of finding a stretch ρ one-to-one mapping for the
Poisson model, we have µ(G, ρ) ∼ µPoisson(G, ρ)

√
2π|V |.

Perfect matching and Duality. The Points and Vertices problem can also
be stated in terms of perfect matchings. Given a set of random points P , we
build the following auxiliary bipartite graph. On one side of the graph we take
as vertices the random points and on the other side the original vertices. We
then connect any random point to the vertices at distance at most ρ. A stretch ρ
mapping from P to V (G) is exactly a perfect matching in the auxiliary graph. It
follows that for any fixed event ω, ρ(G,ω) can be computed in polynomial time,
moreover duality can be used to prove bounds on ρ(G,ω). In order to apply
the Koenig-Hall lemma (see [16]) to the associated bipartite graph, we need the
following notation. For any set X ⊆ V (G) and any event ω ∈ Ω, we denote by
η(X,ω) the number of random points that lie inside X . For any set X ⊆ V (G),
let Γ ρ(X) = {v ∈ V |d(X, v) ≤ ρ} and ∂ρ(X) = Γ ρ(X) \ X . The Koenig-Hall
lemma can then be expressed as follows:

Lemma 1. ρ(G,ω) = min{ρ ∈ IR+ | ∀X ⊆ V (G) : |η(X,ω) − |X || ≤ |∂ρ(X)|}.
For a given ω, we will say that X is a bad ρ-cut whenever |η(X,ω) − |X || >

|∂ρ(X)|. The lemma implies that the graph expansion properties are strongly
related to the distribution of ρ(G,ω). The random variable η(X,ω) will “usually”
be distributed almost like the sum of |X | independent Poisson variables with
intensity 14. So, η(X,ω) will be concentrated around its mean |X | in a normal

way, Pr(|η(X,ω) − |X || ≥ t
√

|X |) ∼ e−t2

√
2t
.

It follows that, given a fixed t > 0, whenever there exists a set X such that
|X | ≤ n

2 , |∂ρ(X)| ≤ t
√

|X |, the probability for X to be a bad ρ-cut will be
non-vanishing (around e−t2).

Isoperimetric properties may also lead to some upper bounds, but these will
usually not be tight, indeed by the first moment method it follows:

µ(G, ρ) = Pr(∀X ⊆ V,X is not a bad ρ-cut) ≤
∑

X⊆V (G)

Pr(X is not a bad ρ-cut).

Notice that such a bound is usually weak since when there exists a bad cut
it is likely to happen that the event induces a very high number of bad cuts.
Moreover, the bound is not easy to estimate since among the 2|V (G)| cuts some
are much more likely to be bad cuts than others (e.g., in the 2-dimensional grid
a disk is much more likely to be bad than a random set of vertices).
3 The intensity of a Poisson process represents the mean of the number of events

occurring per time unit.
4 This is not true when |X| is too small or too close to n.

From Balls and Bins to Points and Vertices 761

Computational Issues. Our problem consists in computing the number of
points in a polytope defined by an exponential number of constraints but that
admits a polynomial time separation oracle (namely the perfect matching algo-
rithm). Let the vector (x1, x2, . . . , xn) with

∑n
i=1 xi = n represent the event with

i points at vertex vi, then the polytope F of feasible events for ρ = 1 is the set
satisfying the linear constraints5: {(x1, ..., xn) : ∀X ⊆ V (G), |

∑
vi∈X xi−|X || ≤

|∂(X)|} and we wish to compute
∑

x∈F (x) where (x) is a discrete measure de-
rived from Ω (e.g., Pr(xi = k) ∼ 1

k!).
This suggests connections with #P counting problems or volume estimation

and with #P problems for which the decision problem is in P : matchings, Eu-
lerian cycles and in particular reliability estimation problems. With the next
theorem we prove that Problem 2 is #P -hard by reducing it to the problem of
counting the number of matchings in a graph.

Theorem 1. Problem 2 is #P -hard.

Proof. Let us assume that it is possible to compute µ(G, 1) for any graph G =
(V,E) in polynomial time. Let G′ = (V ′, E′) be the graph obtained from G by
replacing each edge e ∈ E by a path of length two (note that |V ′| = |V | + |E|
and |E′| = 2|E|). We set as locations L the nodes corresponding to the original
vertices of G, that is, |L| = |V |. Let F be a distribution of random points
obtained by choosing |V |

2 vertices of G′ and placing 2 points in each one. In
order to obtain the number of matchings in G, it is then sufficient to multiply
the probability to have a bijection between the thrown points and L with

(|V ′|
|V |
2

)
.�

Our sample space is extremely simple, and we can check if ρ(G,ω) ≤ ρ in
polynomial time. So, for any fixed graph G, it is “usually” easy to compute
a (1 + ε)-approximation of µ(G, ρ) (resp. 1 − µ(G, ρ)) using the Monte Carlo
method. It is efficient only as long as one can observe successful (resp. failing)
events. Indeed, as noticed by Karp and Luby [17] if an event has probability p,
a Monte Carlo estimation with O(log n

ε2p) samples is a (1 + ε)-approximation of p
with probability 1

n . Since our goal is not to approximate µ(G, ρ) when it is close
to zero (since then we would consider ρ′ > ρ), we are left with the problem of
computing an approximation of 1 − µ(G, ρ) when µ(G, ρ) is close to 1.

FPRAS to estimate 1 − µ(G, ρ) when there is a small set of witness
cuts. We say that a family F of cuts is a family of Witness Cuts, whenever the
probability that some cut C ∈ F is a bad ρ-cut, conditioned on the fact that
some bad ρ-cut exists is almost 1.

In the case we have a polynomial-size family of witness cuts, following [18], we
can evaluate the probability that an event violates a cut of the family, conditioned
on the fact that the event is bad. Then, we can estimate the probability of a
conjunction of “simple” events like in the case of DNF formulas [17]. We refer
to Vazirani [19] for a detailed comprehensive presentation.

5 The next inequality produces two linear constraints.

762 R. Klasing et al.

Let Cw, w ∈ W be a set of witness cuts, Aw be the event Cut Cw fails
(i.e. Aw is true when the cut fails), and pw be the probability that this happens.
By hypothesis, we have that (1 − µ(ρ)) ∼ Pr(A1 ∨A2 ∨ . . . ∨Aw).

Let c(ω) denote the number of cuts violated by an event ω. We have E[c(ω)] =
E[c(ω) | ω fails]Pr(ω fails), and E[c(ω)] is simply

∑
w∈W pw. It follows that

computing (1 − µ(ρ)) reduces to computing E[c(ω) | ω fails].
Consider the following sampling process:

(1) Choose ω with probability pw

v∈W pv
.

(2) Pick uniformly an event ω failing for Aw.
(3) Output ω with weight 1

c(ω) .

This process samples the space of true events, moreover each true event is
sampled with uniform probability. In order to get a sample space with measure
m we need in the worst case |W |m steps. If now we want to estimate, using
T Monte Carlo trials, the value of c(ω) under the failed condition, we simply
need to count

∑
1,2,...,T c(ω) 1

c(ω) = T and to divide by the sample measure∑
t=1,2,...,T

1
c(ω) .

So, using a sample with T elements we have

(1 − µ(ρ)) ∼
∑

w∈W

pw

∑
t=1,2,...,T

1
c(ω)

T

In order to show that our algorithm is polynomial, we simply need to check that
pw can be estimated and that the space Ω | Cw fails can be sampled.

In the case of i.i.d. points, this is straightforward, pw is obtained via a closed
formula and sampling Ω | Cw fails simply means conditioning on the event
η(Cw) whose distribution is also known.

Graphs with no polynomial set of witness cuts. Unfortunately, there
exist graphs on which in order to solve the points and vertices problem, we
have to consider an exponential number of cuts. In the example below, for any
polynomial family of cuts, most of the events will satisfy all the cut inequalities
while still violating some random6 cut inequality.

Let us consider the following graph G. We start from a clique with k vertices
and add “leaves” that are connected to all the clique nodes. The diameter of
G is 2, so µ(2) = 1. Let us study µ(1) with the Poisson paradigm. For any set
X of leaves, we have |Γ (X)| = |X | + k, and a cut fails if η(X,ω) > |X | + k or
η(X,ω) < |X | − k. So, only two cuts induce the failure, but they are random,
that is, the set of leaves with at least 1 point or the set of leaves with 0 points.

Since the probability for a vertex to receive p points is 1
p!e , we find about

�
e leaves with 0 points and about �

e extra points in the set of leaves with 1 or
more points. So the set of vertices with 1 or more points is a bad cut with high
probability as soon as k < �

e(1 − ε).

6 In the Kolmogorov acceptation.

From Balls and Bins to Points and Vertices 763

Taking for instance k = n1−ε and = n−k it follows that µ(1) is exponentially
small. If we consider now a fixed cutX , it follows that |∂(X)| ≥ k = n1−ε and the
probability that η(X,ω) deviates from |X | by more than t

√
n is exponentially

small. Consequently, in this graph, the probability that no matching exists is
exponentially larger than the probability for a cut to fail. This means that cuts
are not correlated and that the failure probability is induced by an exponential
number of cuts. Notice that to get an example with µ(1) ∼ 1, we can choose an
appropriate k ∼ �

e .

Consequences for general graphs. Let Pn be a path with n vertices. It is
well-known that ρ(Pn, ω) =

√
n (see for instance [3]). From this example, we

derive a general result for arbitrary graphs.
Intuitively, paths look like the graphs with the worst possible ρ. We can moti-

vate this intuition as follows. Since for any graph G, G3 contains a Hamiltonian
path [20], we conclude that for any graph Pr(ρ(G,ω) ≥ 3k

√
n) ≤ e−k2

and so
µ(G,

√
n logn) ∼ 1.

Theorem 2. For any graph G, ρ(G,ω) = O(
√
n).

The following example shows that for some graph G0, ρ(G0, ω) >>
√
D >> 1

(where D is the diameter of G0), i.e. Pr(ρ(G0, ω) ≥
√
D) is small. Consider two

complete graphs with n nodes connected with a path of length , with ≤
√
n/4.

If the number of points in one of the complete graphs deviates by more than
 (this happen with finite probability), ρ(G0, ω) is larger than , so we have
D =

√
n and ρ(G0, ω) = Θ(D) = Θ(

√
n) with large probability. Notice that

we can replace the complete graphs by binary trees to get a bounded-degree
example.

4 Trees

Previous results for paths and grids can be found in [1,2,3]. In this section, we
consider tree topologies and we show that µ(ρ) is quite well described by a few
cut inequalities. Hence, we describe a greedy algorithm that for a given tree T
and a set of points P (T, ω) evaluates up to a factor of 2 the value ρ(T, ω).

A greedy approximation algorithm. We use a labelling process, each node
v receives a family of labels. Label + (resp. −) means that one point (resp.
vertex) at distance from v in the subtree rooted at v need to be assigned an
image (resp. a pre-image) outside the subtree.

To each leaf we associate a label −1 if there are no points inside it, 0 if there
is 1 point, p − 1 times +1 if there are p points. Then for each subtree whose
vertices are already labelled except for the root, we compute the number of
positive labels minus the number of negative labels. Let us call s such a number.
If s > 0 we label the root with the smallest s − 1 positive numbers contained
in the previous labels increased by 1 and a +1 for each point contained in it. If
s < 0, let s′ be the number of points contained in the root. If s′ > |s| then we

764 R. Klasing et al.

(F)

[-3;-2;-2;-1]

[+2]

[-1]

[-3;-3;-2;-1]

[+1;+1;+1;+1]

[-1]

[-1] [-1] [+1] [+1]

0

0

0 0 0 0

[-2;-1]

[+1;+1]

0

0

[+2;+2;+1]

(A) (B) (C)

(D) (E)

Fig. 1. An example of the labelling process. The maximum absolute value obtained is
M = 3.

label the root with s′ + s− 1 times +1 (hence with 0 if s′ + s− 1 = 0); if s′ < |s|
then with the biggest |s| − s′ − 1 negative numbers contained in the previous
labels decreased by 1 and a −1; if s′ = |s| just with a −1. We can then continue
the process until the whole tree is labelled. Since we are considering a number
of points equal to the number of vertices, the last vertex will be labelled by just
a 0, see Figure 1.

Let m(v) be the biggest absolute value appearing as a label for a node v,
it is possible to prove by induction that any matching will have to use a path
with length at least m(v) going through v. This property is due to the fact that
the algorithm always pushes up the smallest possible set of “ordered” labels
(according to the positive cone order u > v when u − v is a positive vector). It
follows that if M is the biggest absolute value of a label, then ρ ≥ M .

Now, remark that we can easily find a matching with stretch 2M by associ-
ating positive labels with negative labels.

Analysis of the algorithm. In order to compute the probability of finding a
matching between random points and the tree vertices, we would normally apply
the Hall theorem to every vertex-subset of the tree. The greedy algorithm tells
us that we can actually reduce our attention to specific subsets obtained that
correspond to edge-cuts. There are 2(n− 1) such subsets, reducing the number
of witness cuts from an exponential to a linear number.

Definition 3. For a given tree T , T ′ < T if T ′ is one of the two subtrees
obtained by removing one edge of T .

Lemma 2. Given a tree T = (V,E), T ′ < T and stretch ρ, it is possible to
compute in polynomial time the probability that T ′ induces a bad cut for ρ.

Proof. Using standard binomial coefficient evaluation, we can compute

Pr[η(T ′, ω) > |Γ ρ(T ′)|] =
∑|V |

i=|Γ ρ(T ′)|+1

(|V |
i

) (|T ′|
|V |

)i (
1 − |T ′|

|V |

)|V |−i

; and do the
same for Pr[η(T ′, ω) < |Γ ρ(T ′)|] . �

From Balls and Bins to Points and Vertices 765

Theorem 3. Given a tree T = (V,E) and any stretch ρ, it is possible to ap-
proximate 1 − µ(T, ρ) within 2|V |.

Proof. From the previously described labelling scheme, 1 − µ(ρ) ≤ Pr(∃T ′ <
T such that η(T ′, ω) ≥ |Γ 2ρ(T ′)|) and

∑
T ′<T Pr(η(T

′, ω) ≥ |Γ 2ρ(T ′)|) ≤
2(|V | − 1)maxT ′<T Pr(η(T ′, ω) ≥ |Γ 2ρ(T ′)|).

Moreover, maxT ′<T Pr(η(T ′, ω) > |Γ 2ρ(T ′)|) ≤ 1−µ(2ρ) ≤ 1−µ(ρ). It follows
that 1−µ(ρ) ≤ 2(|V |−1)maxT ′<T Pr(η(T ′, ω) ≥ |Γ 2ρ(T ′)|) ≤ (1−µ(ρ))2(|V |−
1). Since by Lemma 2 such probabilities can be computed in polynomial time,
the claim holds. �

The previous proof can be interpreted as follows. If there exists a bad cut
then there exists a bad cut that is defined by a subtree obtained by removing
one edge. This means that we can use n witness cuts and get a good estimation of
the probability of failing using simple cut considerations. Since on the line there
is only one witness cut (the half line) we wonder if the same happens for trees.
Consider a subdivided star with k branches of length k, we see that for ρ =

√
k no

cut is likely to be bad. Now, consider an event, with high probability any branch
will contain k + Θ(

√
k log k) points, and then each branch is an independent

Poisson process conditioned on its number of points. Let Ci, i = 1, 2, . . . , k be
the set containing the k/2 points of branch i that are at distance at least k/2 from
the central node. Since we have k branches, one of them will deviate by about√
m log k where m is its mean. So for some Ci, |η(Ci, ω) − |Ci|| = Θ(

√
k log k)

and we need ρ = Θ(
√
k log k) to get µ(ρ) ∼ 1

2 , and µ(t
√
k) ≤ e−t2k. On this

graph we find about k =
√
n “independent” cuts and ρ is chosen such that the

probability of each of these cuts to be bad is less than 1√
n
.

5 Conclusion

We have introduced the Points and Vertices problem for a graph G, which cap-
tures in a natural way the “distance” between the randomness of throwing points
(independently and uniformly at random) onto the vertices of G, and the order
of the points being evenly balanced on G. We have derived several results on the
problem with exact balancing of the points. Besides the pure theoretical interest,
the Points and Vertices problem comes out to be of relevant interest in several
fields motivating further investigation.

References

1. Leighton, F.T., Shor, P.W.: Tight bounds for minimax grid matching with applica-
tions to the average case analysis of algorithms. Combinatorica 9 (1989) 161–187

2. Shor, P.W.: The average-case analysis of some on-line algorithms for bin packing.
Combinatorica 6 (1986) 179–200

3. Shor, P.W., Yukich, J.E.: Minimax grid matching and empirical measures. The
Annals of Probability 19 (1991) 1338–1348

766 R. Klasing et al.

4. Cole, R., Frieze, A.M., Maggs, B.M., Mitzenmacher, M., Richa, A.W., Sitaraman,
R.K., Upfal, E.: On balls and bins with deletions. In: Proc. of the 2nd Int. Workshop
on Randomization and Approximation Techniques in Computer Science (RAN-
DOM). (1998) 145–158

5. Drinea, E., Frieze, A., Mitzenmacher, M.: Balls and bins models with feedback. In:
Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
(2002) 308–315

6. Iwama, K., Kawachi, A.: Approximated two choices in randomized load balancing.
In: Proc. of the 15th Annual Int. Symposium on Algorithms and Computation
(ISAAC). Volume 3341 of LNCS. (2004) 545–557

7. Raab, M., Steger, A.: “Balls into bins” - a simple and tight analysis. In: Proc.
of the 2nd Int. Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM). (1998) 159–170

8. Chazelle, B.: The Discrepancy Method Randomness and Complexity. Cambridge
University Press (2002)

9. Dudenhoeffer, D.D., Jones, M.P.: A formation behavior for large-scale micro-robot
force deployment. In: Proc. of the 32nd Conference on Winter Simulation. (2000)
972–982

10. Gobriel, S., Melhem, R., Mosse, D.: A unified interference/collision analysis for
power-aware adhoc networks. In: Proc. of the 23rd Conference of the IEEE Com-
munications Society. (2004)

11. Banez, J.M.D., Hurtado, F., Lopez, M.A., Sellares, J.A.: Optimal point set projec-
tions onto regular grids. In: Proc. of the 14th Annual Int. Symposium on Algorithms
and Computation (ISAAC). Volume 2906 of LNCS. (2003) 270–279

12. Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise:
combinatorial bounds and algorithms. In: Proc. of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms. (1999) 457–465

13. Meyer, F., Oesterdiekhoff, B., Wanka, R.: Strongly adaptive token distribution.
Algorithmica 15 (1993) 413–427

14. Peleg, D., Upfal, E.: The token distribution problem. SIAM J. Comput. 18 (1989)
229–243

15. Mitzenmacher, M., Prabhakar, B., Shah., D.: Load balancing with memory. In:
Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS). (2002) 799–808

16. Diestel, R.: Graph Theory. Springer-Verlag, New York (2nd edition, 2000)
17. Karp, R.M., Luby, M.G.: Monte carlo algorithms for planar multiterminal network

reliability problems. Journal of Complexity 1 (1985) 45–64
18. Karger, D.R.: A randomized fully polynomial time approximation scheme for the

all-terminal network reliability problem. SIAM Journal on Computing 29 (2000)
492–514

19. Vazirani, V.: Approximation Algorithms. Springer (2001)
20. Karaganis, J.J.: On the cube of a graph. Canad. Math. Bull. 11 (1969) 295–296

Simulating Undirected st-Connectivity
Algorithms on Uniform JAGs and NNJAGs�

Pinyan Lu1, Jialin Zhang2, Chung Keung Poon3, and Jin-Yi Cai4

1 State Key Laboratory of Intelligent Technology and Systems, Department of
Computer Science and Technology, Tsinghua University, Beijing, China

lpy@mails.tsinghua.edu.cn
2 Department of Physics, Tsinghua University, Beijing, China

zhanggl02@mails.tsinghua.edu.cn
3 Department of Computer Science, City University of Hong Kong,

Hong Kong, China
ckpoon@cs.cityu.edu.hk

4 Computer Sciences Department, University of Wisconsin, Madison, WI 53706,
USA; and Tsinghua University, Beijing, China

jyc@cs.wisc.edu

Abstract. In a breakthrough result, Reingold [17] showed that the Undi-
rected st-Connectivity problem can be solved in O(log n) space. The next
major challenge in this direction is whether one can extend it to directed
graphs, and thereby lowering the deterministic space complexity ofRL or
NL. In this paper, we show that Reingold’s algorithm, the O(log4/3 n)-
space algorithm by Armoni et al. [3] and the O(log3/2 n)-space algorithm
by Nisan et al. [14] can all be carried out on the RAM-NNJAG model
[15] (a uniform version of the NNJAG model [16]). As there is a tight
Ω(log2 n) space lower bound for the Directed st-Connectivity problem on
the RAM-NNJAG model implied by [8], our result gives an obstruction
to generalizing Reingold’s algorithm to the directed case.

1 Introduction

The st-Connectivity problem is one of the most widely studied problems in
computer science. It is a fundamental problem with many applications and yet
is simple to state: Given a directed graph G together with two vertices s and
t, the (directed) st-connectivity problem stcon is to determine if there is a
directed path from s to t. In the special case when the graph G is undirected,
we denote the problem by ustcon.

stcon is important in complexity theory as it is complete for the complexity
class Non-deterministic Logspace NL under Deterministic Logspace reductions.
Thus determining its (deterministic) space complexity is to answer the question

� The work described in this paper was fully supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China [CityU
1071/02E], an NSF Grant, USA (CCR-0208013) and the Natural Science Foundation
of China (60223004, 60321002).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 767–776, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

768 P. Lu et al.

whether nondeterminism helps in space bounded computation—a space analog
of the “NP = P?” question. The special case ustcon is also important for the
dual reasons of being the core problem in many applications as well as being
complete for the complexity class Symmetric Logspace SL [11].

To solve stcon, a natural approach is to perform a Depth-First Search or
Breadth-First Search from node s trying to discover node t. This requires Ω(n)
bits of storage in the worst case. Currently, the best known space upper bound
is O(log2 n) using Savitch’s algorithm [19]. Proving any non-trivial (ω(logn))
space lower bound on a general Turing machine is beyond the reach of current
techniques, let alone proving that Savitch’s algorithm is optimal. Thus Cook and
Rackoff [6] proposed a model called “Jumping Automata for Graphs” (JAG), in
order to abstract away certain inessential features of existing st-connectivity al-
gorithms, and to focus on its essential feature of moving from vertices to vertices.
Briefly, the JAG model can only examine the input graph by a set of pebbles
that traverse the graph from s. Moreover, it can only tell which pebbles are
on the same nodes but cannot see the node names. Other than that, a JAG is
unrestricted. Although Savitch’s algorithm needs to cycle through all nodes in
the graph, which is generally impossible for a JAG, Cook and Rackoff adapted
the algorithm to run on a JAG in O(log2 n) space. Moreover, they proved a
space lower bound of Ω(log2 n/ log logn) for directed stcon on this model. The
lower bound was then extended to a randomized JAG (i.e., a JAG that can flip
random coins to determine its moves) by Berman and Simon [5].

Later, Immerman [10] and Szelepcsényi [20] discovered a surprising non-
deterministic logspace algorithm for st-nonconnectivity which seems to require
node names in an essential way and is not known to be implementable on a
nondeterministic JAG (i.e., a JAG that can make nondeterministic moves).
Then Poon [16] proposed the NNJAG model which is more natural as it can
see the names of the pebbled nodes. Further, he showed how to implement the
Immerman-Szelepcsényi algorithm on a non-deterministic NNJAG while extend-
ing the lower bounds of Cook and Rackoff, and Berman and Simon to the deter-
ministic and randomized NNJAG model. The lower bound is further improved
to Ω(log2 n) for a randomized NNJAG by Edmonds et al. [8]. Other major newer
algorithms for stcon, including the time-space tradeoff [4] by Barnes et. al., and
the randomized stcon algorithm [9] by Gopalan et. al., can all be implemented
on a deterministic or randomized NNJAG as appropriate. Thus the NNJAG
model seems to be general enough to capture all existing stcon algorithms.

For ustcon, Aleliunas et al. [1] showed that a random walk from any node
s will hit all other nodes in its connected component in expected O(nm) steps,
m being the number of edges in the graph. This puts ustcon in Randomized
Logspace RL and also implies the existence of a polynomial length Universal
Traversal Sequence (UTS), i.e., a sequence of edge labels following which one
can reach every node in a connected component from any starting node in that
component. A deterministic JAG can trivially simulate such UTS using one peb-
ble and O(mn) states as it is a non-uniform computation device. A randomized
JAG can also easily simulate a random walk in the same O(log n) space.

Simulating Undirected st-Connectivity Algorithms 769

Restricting our attention to uniform deterministic computation, we witnessed
a decrease in the space complexity of ustcon from O(log2 n) of Savitch [19] and
Nisan [13] to O(log3/2 n) by the NSW algorithm [14] and to O(log4/3 n) by
the ATWZ algorithm [3]. Finally, Reingold [17] settled the deterministic space
complexity of ustcon by discovering a (deterministic) O(log n) space algorithm.
It follows that SL = L. Given the success of NNJAG in simulating algorithms
for stcon, it is natural to ask if it can simulate those algorithms for ustcon as
well. To our knowledge, no one has carefully investigated this question.

In this paper, we show that all the three algorithms: the NSW algorithm,
the ATWZ algorithm and Reingold’s algorithm can be implemented on a RAM-
NNJAG which is the uniform counterpart of an NNJAG. Note that it is impor-
tant to consider the simulation on a uniform model since a non-uniform one can
follow a UTS to visit all nodes in the connected component of s and so ustcon
in logspace becomes trivial.

As mentioned, a central focus in this area is the deterministic space com-
plexity of stcon. One possible direction is to extend Reingold’s algorithm to
the directed case. In fact, Dinur et. al. [7] has extended Reingold’s algorithm to
directed graphs which are bi-regular. However, the feasibility of these three algo-
rithms on a RAM-NNJAG model implies an obstruction to generalizing them to
the directed case: Since Edmonds et. al. [8] proved a tight space lower bound of
Ω(log2 n) for solving stcon on the NNJAG model (and hence the RAM-NNJAG
model), our result implies that Reingold’s algorithm does not immediately ap-
ply to directed graphs and, if we are to make progress on improving the space
complexity for stcon, some new algorithmic techniques need to be developed.

In the next section, we will introduce the JAG and related models. Section 3
is an overview of the simulations followed by the details in Section 4 and 5.

2 The JAG and Related Models

A JAG as introduced in [6] is a non-uniform model. It consists of a sequence
of automata {J1, J2, . . .} where the n-th automaton J = Jn consists of a set of
p distinguishable pebbles numbered 1 to p, a set of q states and a transition
function δ. In general, p and q will be functions of n and the transition function
δ also depends on n.

The input to J is a triple (G, s, t) where G is an n-node graph containing
nodes s and t. For every node in G, its out-edges are labelled by consecutive
integers starting from 0. The nodes in G are also labelled from 0 up to n − 1.
We define the instantaneous description (id) of J as the pair (Q,Π) where Q is
the current state and Π is a mapping of pebbles to nodes specifying the current
location of each pebble in the graph. When J is in id (Q,Π), the transition
function δ determines the next move for J based on: (1) the state Q, and (2)
which pebbles are on the same node and which are not, according to Π (i.e.,
for each pair of pebbles P and P ′, whether Π(P) = Π(P ′)). A move is either a
walk or a jump. A walk (P, i,Q′) consists of moving the pebble P along the edge
labelled i that comes out of the node Π(P) and then assuming state Q′. (If there

770 P. Lu et al.

is no such edge, the pebble just remains on the same node.) A jump (P, P ′, Q′)
consists of moving pebble P to the node Π(P ′) and then assuming state Q′. The
automaton J is initialized to have state Q0 and with pebbles P1, . . . , Pp−1 on
node s and pebble Pp on node t (which makes node t distinguishable from the
rest). It is said to accept an input (G, s, t) if it enters an accepting state on this
input. It solves stcon for n-node graphs if for every input (G, s, t) where G is
an n-node directed graph, it accepts the input iff there is a directed path from
s to t in G. The definition for ustcon is similar.

It is easy to see that an id of a JAG can be specified using p logn + log q
bits by any ordinary computation model such as a Turing machine or a Random
Access Machine. Thus we heuristically define this quantity as the space used by
a JAG. The time used is the number of moves it made.

An NNJAG [16] is similar to a JAG except that the transition function de-
pends on Q and Π . In other words, in NNJAG the transition function δ can use
the actual names Π(Pi). Due to its ability to see and work with node names,
we need not put a pebble on t to make it distinguishable from the others. So we
can put all pebbles on s initially and the definition would guarantee that every
node that has ever been pebbled are reachable from s.

The RAM-JAG [15] consists of a finite state control together with p pebbles and
a number ofO(log n)-bit registerswhich in total requireO(log q) bits of storage. Its
storage is defined as (p logn+log q) bits. It can perform the usual RAM operations
on the registers and also three special instructions:walk, jump and compare. The in-
structionswalk(P,j) and jump(P,P’) are the same as that in a JAG. The instruction
compare(P,P’,R) checkswhether pebblesP andP ′ are on the same node and stores
the result (T or F) in a registerR. ARAM-NNJAG is similar to aRAM-JAG except
that the instruction compare(P, P ′, R) is replaced by copy(P,R) which copies the
name of the node pebbled by P to the register R.

It is straightforward to show that a RAM-JAG (resp. RAM-NNJAG) can
be simulated by an ordinary JAG (resp. NNJAG) with O(p) pebbles and qO(1)

states. Thus, any lower bound on the JAG (resp. NNJAG) carries over to the
RAM-JAG (resp. RAM-NNJAG) model.

3 Overview of the Simulations

At the highest level, all three algorithms are to (conceptually) construct a se-
quence of graphs G1, G2, . . . , G� from the input graph G = G0 such that con-
nectivity between s and t in G is the same as that between two nodes s′ and t′

in G�.
For the NSW algorithm, Gk is obtained by choosing at most |Gk−1|/f repre-

sentative nodes in Gk−1 and putting in edges so that two nodes u and v in Gk−1
are connected if and only if their representatives in Gk are connected. Setting
f = 2

√
log n and =

√
logn, G� contains at most a constant number of nodes

and hence st-connectivity can be trivially determined, say, by a DFS or BFS
from the representative of s in G�. The ATWZ algorithm is similar except that
it chooses f = 2log2/3 n and = log1/3 n.

Simulating Undirected st-Connectivity Algorithms 771

For Reingold’s algorithm, Gk is obtained from Gk−1 by performing a zigzag
product with an expander graph H , followed by a graph powering operation.
The number of nodes actually increases by a constant factor but the degree
remains constant while the graph becomes more expanding. After = O(log n)
levels, the diameter is guaranteed to be O(log n). Thus st-connectivity is solved
by exhausting all the (polynomially many) paths of length L = O(log n) on G�

from one of the nodes corresponding to s in G�.
Due to the space limitation, one cannot store all the graphs. Instead, these

algorithms just find out if an arbitrary pair of nodes u, v are connected by an edge
in Gk (or which node is connected to a node u via its x-th edge) when necessary;
and they achieve this by recursively asking for the appropriate edges and nodes
in Gk−1. To carry out this on-demand scheme on a RAM-JAG/NNJAG, we show
how an edge traversal in Gk can be effected by traversing appropriate edges in
Gk−1. Specifically, we take the following approach:

1. Design a way to store a node of Gk in a RAM-JAG/NNJAG.
2. Design a procedure that, given a node u inGk stored in a RAM-JAG/NNJAG

and an edge label x, simulates the traversal of the x-th edge emanating from
u in Gk such that the node thus reached is stored.

A natural idea to store a node u is to have a pebble on u. This is sufficient for
the NSW and ATWZ algorithm since nodes in Gk are also nodes in the original
graph G. In contrast, Reingold’s algorithm blows up the number of nodes by a
constant factor for each level. So we need a more generalized concept of storing
a node and traversing an edge in Gk (to be given in next section).

4 Simulating Reingold’s Algorithm

4.1 Reingold’s Algorithm

In Reingold’s algorithm, a preliminary step transforms the input graph G into a
D-regular non-bipartite graph for some well chosen constant D. This is done in
Logspace by replacing each node with a cycle and adding self-loops if necessary.
Furthermore, it assumes that the graph G is specified by a rotation map RotG :
[n] × [D] → [n] × [D] such that RotG(u, a) = (v, b) if the a-th edge incident to u
is e = {u, v} which leads to v and this edge is the b-th edge incident to v.

Given an n-node, D-regular graph G and a D-node, d-regular graph H , the
zig-zag product G z©H ([18]) is a graph with vertex set [n]× [D] such that every
vertex has d2 edges labelled by (x, y) ∈ [d] × [d]. Its rotation map RotG z©H is
defined as:

RotG z©H((u, a), (x, y)) = ((v, b), (y′, x′)),

where RotH(a, x) = (a′, x′), RotG(u, a′) = (v, b′), and RotH(b′, y) = (b, y′),
see Figure 1 for an illustration. Note that in reverse, RotG z©H((v, b), (y′, x′)) =
((u, a), (x, y)).

772 P. Lu et al.

(u, a) u, a’)(

(v, b’) (v, b)

G
u

v

a’

H

a’

H

H

u

v

x x’x x’

y y’

y y’

a

b’ b
b’

Fig. 1. Zigzag graph product: (Left) An edge in G, (Middle) Two edges in H , (Right)
A path of 3 edges in the cross product of G and H . It corresponds to the edge labelled
by (x, y) from node (u, a) in G z©H .

In [18] a remarkable property concerning the spectral gap (i.e., the difference
between 1 and its second largest eigenvalue of the normalized adjacency matrix)
is proved which has the following direct consequence [17]:

1 − λ(G z©H) ≥ 1
2
(1 − λ(H)2)(1 − λ(G))

where λ(G) denotes the second largest eigenvalue of the normalized adjacency
matrix of graph G. Essentially this shows that if H is chosen to be a good
expander (i.e., a graph with a small second largest eigenvalue), then G z©H will
have a spectral gap not much smaller than that of G. Meanwhile a powering of
G z©H will increase the spectral gap of G z©H . Reingold chose D = d16 and an
appropriate H with D vertices. Then (G z©H)8 is D-regular again, and has an
increased spectral gap than G.

The main part of Reingold’s algorithm is to repeatedly apply in turn the zig-
zag product and graph powering to the input graph: For k > 0, define Gk =
(Gk−1 z©H)8 where z© is the zig-zag operator and H is a fixed D-node, d-regular
expander graph. Thus, Gk will be a d16-regular graph of size D|Gk−1|. As D =
d16, Gk is D-regular again. For example, one can use the construction by Alon
and Roichman [2] which gives a d16-node, d-regular expander graph H for some
constant d, with λ(H) ≤ 1/2.

The effect of one step of the above transformation from Gk−1 to Gk is to turn
the (connected components of the) previous graph Gk−1 into a more expanding
one in Gk, measured in terms of the spectral gap. At the same time, the number
of nodes of the transformed graph increases by a factor of D while its degree
remains to be D = d16. Each node u in G = G0 corresponds to Dk nodes in Gk,
for k > 0. They are connected among themselves (in Gk) and we denote them by
(u, a0, . . . , ak−1) where (a0, . . . , ak−1) ∈ [D]k. The transformation ensures that
two nodes u and v in G are connected iff (u, a0, . . . , ak−1) and (v, b0, . . . , bk−1)
are connected in Gk, for each (a0, . . . , ak−1) and (b0, . . . , bk−1) in [D]k.

Reingold showed that after = O(log n) steps, (any connected component
of) G� has a spectral gap greater or equal to 1/2. That means any pair of
nodes in the same connected component in G� are joined by a path of length
L = O(log n). Thus, on G�, we simply enumerate all possible paths of length L
from, say, (s, 1, 1, . . . , 1) and see if we can reach (t, 1, 1, . . . , 1).

Simulating Undirected st-Connectivity Algorithms 773

4.2 Simulation on a RAM-JAG

In this section, we will actually describe our simulation on a RAM-JAG as we
do not need the power of an NNJAG to see the node names.

Since a node in Gk is of the form uk = (u, a0, a1, . . . , ak−1) where u is a node
in G and (a0, a1, . . . , ak−1) ∈ [D]k, we store a node uk by having a pebble P on
the node u in G and storing the values a0, . . . , ak−1 in k registers, A0, . . . , Ak−1,
each of size logD bits. Note that the RAM-JAG initially has pebbles on node
s in G. Therefore it is easy to store node (s, 1, . . . , 1) in G� by initializing
registers appropriately.

Next, consider the traversal of an edge labelled ak from a node uk in Gk. Let
RotGk

(uk, ak) = (vk, bk). We will prove by induction on k ≥ 0 that if uk and ak

are stored by the RAM-JAG, it can traverse the ak-th edge of uk so that vk and
bk are stored.

For k = 0, assume that the RAM-JAG stores uk in pebble P (i.e., pebble P
is on node uk) and ak is stored in a register A. Then the RAM-JAG can easily
move pebble P from uk to vk by walking along the edge labelled ak in Gk, i.e.,
the original input graph G. To compute the reverse label bk, we try all possible
edges from vk and see which one brings us back to node uk. That is, we first
mark the node uk with an extra pebble P ′. Then we move P from node vk along
its first edge and see if it meets P ′. If not, we jump P to P ′ (so P is at uk again)
and walk along the ak-th edge so that P arrives at vk again. Then we try the
second edge of vk and so on. In this way, the RAM-JAG can compute and store
bk in a register and have node vk pebbled.

For k > 0, recall that Gk = (Gk−1 z©H)8. Therefore, an edge in Gk corre-
sponds to a path of length eight in Gk−1 z©H . Thus, we write ak as a sequence of
8 edge labels, (xk,1, yk,1), (xk,2, yk,2), . . . , (xk,8, yk,8) in Gk−1 z©H . This in turn
can be viewed as a path of 8 edges in Gk−1 beginning from node uk−1 but with
edge labels “permuted” by the expander H . Suppose uk = (uk−1, ak−1) and
RotH(ak−1, xk,1) = (a′k−1, x

′
k−1). Then the first edge label in Gk−1 to follow is

a′k−1. Note that the RAM-JAG can figure out (a′k−1, x
′
k−1) without traversing

Gk−1 since H is fixed. Let RotGk−1(uk−1, a
′
k−1) = (vk−1, b

′
k−1). Since uk stored

in the RAM-JAG implies uk−1 is also stored, we can assume (by induction hy-
pothesis) that the RAM-JAG can traverse the a′k−1-th edge of uk−1 in Gk−1
so that vk−1 and b′k−1 is stored. Suppose RotH(b′k−1, yk,1) = (bk−1, y

′
k,1). Then

again, the RAM-JAG can compute bk−1 and y′k,1 from b′k−1 and yk,1 using the
fixed structure of H only. In terms of Gk−1 z©H , the first edge leads to the node
(vk−1, bk−1). Note that since the reverse edge bk−1 is known, one can traverse the
next edge (xk,2, yk,2) in Gk−1 z©H . Thus, the RAM-JAG can repeat the traversal
for the remaining seven edges, (xk,2, yk,2), . . . , (xk,8, yk,8) in order to complete
the traversal of one edge in Gk. Finally, observe that the 8 reverse edge labels on
the path of length 8 inGk−1 z©H arranged in the order (y′k,8, x

′
k,8), . . . , (y

′
k,1, x

′
k,1)

is nothing but the reverse edge label, bk, for the single edge just traversed in Gk.
Thus, the RAM-JAG is also able to store bk.

Thus our induction statement is proved and it follows that the traversals of
the DL paths in G� can be carried out on a RAM-JAG.

774 P. Lu et al.

Now consider the storage per level. Storing the 8 reverse edge labels takes
O(logD) space. To store a node uk = (u, a0, . . . , ak−1) in Gk, note that the
storage for uk−1 = (u, a0, . . . , ak−2) can be charged to level k − 1 or below. So
we just charge O(logD) bits for storing ak−1 in level k. Hence, the total storage
for all the levels is O(log n).

5 Simulating the NSW and ATWZ Algorithms

5.1 The NSW and ATWZ Algorithms

The core of the algorithms is the shrink procedure which takes a graph Gk−1 as
input and returnGk. It computes the set of representatives ofGk−1, i.e., the node
set ofGk, as follows. First, it computes a set Lk of landmark nodes which includes
s and t together with some nodes drawn from a pairwise independent space. This
can be implemented as Lk = {s, t}∪{u ∈ Gk−1|1 ≤ uak +bk ≤ q/(6f)} for some
pair (ak, bk) drawn from a field Fq of size polynomial in n.

Then for any u in Gk−1, we find a neighbourhood, N(u), of u. In NSW, we
follow a short universal traversal sequence (UTS) of length 2O(log2 f) from u and
define N(u) as the set of all nodes encountered in the UTS as well as their
immediate neighbours. In ATWZ, we run a number of pseudo-random walks of
length 2O(log2 f) from u to approximate the average number of such walks hitting
each node v or its immediate neighbors. Any node v with approximate average
at least 1/n is put into N(u).

With N(v), we define the representative, repLk
(u), of u as follows. If N(u)

contains the whole component of u, then u is not represented in Gk (component
too small). Otherwise, u is either represented by the minimum v in N(u)∩Lk or
by itself in case N(u)∩Lk is empty. (We will always treat s and t as the minimum
nodes in Lk. This ensures that they are always represented by themselves unless
their components are too small.) It was shown in [14] that |Gk−1|/|Gk| ≥ f for
a constant fraction of (ak, bk)’s, i.e., the size reduction is guaranteed if we go
over the polynomially many (ak, bk)’s. Finally, for all (u, v) ∈ Gk−1, we have
(repLk

(u), repLk
(v)) ∈ Gk.

5.2 Simulation on a RAM-NNJAG

Since a RAM-NNJAG cannot cycle through all the nodes in Gk, it cannot imme-
diately see if the choice of (ak, bk) achieves the required size reduction factor f .
However, a RAM-NNJAG can try all possible sequences of (a1, b1), (a2, b2), ...(a�,
b�). At the end, at least one choice of the sequence will be good enough.

Now fix a sequence of (a1, b1), . . . , (a�, b�). We will store a node u by having a
pebble on it. We will (conceptually) assign labels to edges in Gk such that the x-
th edge of node u will lead to its x-th smallest neighbour inGk. Suppose node u in
Gk is stored and we are to traverse its x-th edge. In other words, we need to find
the x-th smallest neighbours of u in Gk, To this end, we compute all those nodes
u′ in Gk−1 represented by u in Gk (to be described in next paragraph). Then
we compute all nodes v′ which is an immediate neigbour of some u′, followed

Simulating Undirected st-Connectivity Algorithms 775

by their representatives, repLk
(v′), using a forward UTS. Finally, we choose the

x-th smallest representative.
The most difficult step is to compute those u′ in Gk−1 represented by u in

Gk For NSW, we make use of a reversible UTS. The idea is to convert the graph
Gk−1 into one with edges symmetrically labelled, i.e if the ith neighbor of vertex
v is the vertex u, then the ith neighbor of vertex u is also the vertex v. Suppose
this is done and suppose u is the i-th node along a short UTS from u′ and let the
sequence of edge labels in the UTS be σ1σ2 · · ·σi. Then the i-th reverse UTS,
σi · · ·σ2σ1, starting from u will bring us to u′. Thus to find all u′ represented by
u, we try, for each possible i, to walk from u using the i-th reverse UTS to reach
a candidate node u′. Then we walk from u′ using the (forward) UTS to verify
if u is the minimum node in Lk. For ATWZ, the idea is similar except that we
try for each pseudorandom walk and for each i, the i-th reverse pseudorandom
walk from u to arrive at a candidate u′. Note that checking for v ∈ Lk is easily
done by checking if 1 ≤ akv+ bk ≤ q/(6f). Note also that when u = s and in the
process of discovering those u′ represented by u, we hit t, then we can stop and
answer: “s, t connected”. Thus if N(s) contains the whole component of s and
we have not discovered t, we can stop and answer: “s, t not connected”. More
detail will be given in our technical report [12].

To convert the graph into a symmetrically labelled one, we expand a degree-d
node v into a cycle of d nodes v0, . . . , vd−1 if d is even; or d+ 1 nodes v0, . . . , vd

if d is odd. The edges on the cycles are labelled such that the edge (vi, vi+1)
(where for the vertex indices, we take modulo d if d is even; or modulo d+ 1 if
d is odd) is labelled with 0 (or 1) if i is even (or odd respectively). For arbitrary
edge (u, v) in the original graph, if u is the k-th neighbor of v and v is the l-th
neighbor of u, then connect vk and ul using an edge labelled 2 at both ends.
Finally for each node v of odd degree, add a self-loop to vd with edge label 2.

As for the storage, storing the sequence (a1, b1), . . . , (a�, b�) requires O(×
logn) space. For the NSW algorithm, each of the levels requires O(1) peb-
bles and O(log2 f) bits to generate and follow the short UTS. Thus O(log3/2 n)
space is needed. For the ATWZ algorithm, each level requires O(log n) space
and overall it also needs O(log2 f + logn) = O(log4/3 n) space to generate the
pseudorandom walks. Hence in total O(log4/3 n) space is needed.

Acknowledgments

We would like to thank Xiaotie Deng, Andrew Yao, Frances Yao and Ming Li
for several discussions. We especially thank Steve Cook for helpful comments on
a previous draft of the paper.

References

1. R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks,
universal traversal sequences, and the complexity of maze problems. In 20th Annual
Symposium on Foundations of Computer Science, pages 218–223, San Juan, Puerto
Rico, October 1979. IEEE.

776 P. Lu et al.

2. N. Alon and Y. Roichman. Random Cayley graphs and and expanders. Random
Structures and Algorithms, 5(2):271–284, 1994.

3. R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. An O(log(n)4/3) space algo-
rithm for (s, t) connectivity in undirected graphs. Journal of the ACM, 47(2):294–
311, 2000.

4. G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, polyno-
mial time algorithm for directed s-t connectivity. SIAM Journal on Computing,
27(5):1273–1282, 1998.

5. P. Berman and J. Simon. Lower bounds on graph threading by probabilistic ma-
chines. In 24th Annual Symposium on Foundations of Computer Science, pages
304–311, Tucson, AZ, November 1983. IEEE.

6. S. A. Cook and C. W. Rackoff. Space lower bounds for maze threadability on
restricted machines. SIAM Journal on Computing, 9(3):636–652, August 1980.

7. I. Dinur, O. Reingold, L. Trevisan, and S. Vadhan. Finding paths in nonreversible
markov chains. Technical Report TR05-022, Electronic Colloquium on Computa-
tional Complexity, 2005.

8. J. Edmonds, C. K. Poon, and D. Achlioptas. Tight lower bounds for st-connectivity
on the NNJAG model. SIAM Journal on Computing, 28(6):2257–2284, 1999.

9. P. Gopalan, R. Lipton, and A. Mehta. Randomized time-space tradeoffs for directed
graph connectivity. In FSTTCS’03, pages 208–216, 2003. LNCS 2914.

10. N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17(5):935–938, October 1988.

11. H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation.
Theoretical Computer Science, 19(2):161–187, August 1982.

12. P. Lu, J. Zhang, C.K. Poon, and J. Cai. Simulating undirected st-oonnectivity
algorithms on uniform JAGs and NNJAGs. Technical report, 2005.

13. N. Nisan. RL ⊆ SC . In Proceedings of the Twenty Fourth Annual ACM Symposium
on Theory of Computing, pages 619–623, Victoria, B.C., Canada, May 1992.

14. N. Nisan, E. Szemerédi, and A. Wigderson. Undirected connectivity in O(log1.5 n)
space. In 33rd Annual Symposium on Foundations of Computer Science, Pitts-
burgh, PA, October 1992. IEEE.

15. C. K. Poon. On the Complexity of the ST-Connectivity Problem. PhD thesis,
University of Toronto, 1996.

16. C. K. Poon. A space lower bound for st-connectivity on node-named JAGs. The-
oretical Computer Science, 237(1-2):327–345, 2000.

17. O. Reingold. Undirected st-connectivity in log-space. In Proceedings of the Thirty
Seventh Annual ACM Symposium on Theory of Computing, pages 376–385, 2005.

18. O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics, 155(1), 2001.

19. W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

20. R. Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin
of the European Association for Theoretical Computer Science, 33:96–100, October
1987.

Upper Bounds on the Computational Power
of an Optical Model of Computation

Damien Woods

Boole Centre for Research in Informatics and School of Mathematics,
University College Cork, Ireland

d.woods@bcri.ucc.ie

Abstract. We present upper bounds on the computational power of an
optical model of computation called the C2-CSM. We show that C2-CSM
time is no more powerful than sequential space, thus giving one of the
two inclusions that are necessary to show that the model verifies the
parallel computation thesis. Furthermore we show that C2-CSMs that
simultaneously use polynomial space and polylogarithmic time decide
no more than the class NC.

1 Introduction

The computational model we study is relatively new and is called the continu-
ous space machine (CSM) [11, 12, 13, 20, 21, 22, 23]. The original definition of the
model was by Naughton [11, 12]. The CSM is inspired by classical Fourier optics
and uses complex-valued images, arranged in a grid structure, for data storage.
The program also resides in images. The CSM has the ability to perform Fourier
transformation, complex conjugation, multiplication, addition, thresholding and
resizing of images. It has simple control flow operations and is deterministic. We
analyse the model in terms of seven complexity measures inspired by real-world
resources.

A rather general variant of the model was previously shown [23] to decide the
membership problem for all recursively enumerable languages, and as such is
unreasonable in terms of implementation. Also, the growth in resource usage was
shown for each CSM operation, which in some cases was unreasonably large [21].
This work motivated the definition of the C2-CSM, a more realistic and restricted
CSM.

Recently [22] we have given lower bounds on the computational power of the
C2-CSM by showing that it is at least as powerful as models that verify the par-
allel computation thesis. This thesis [4, 6] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [18, 14, 8, 7] for details. Furthermore we have shown that C2-CSMs that
simultaneously use polynomial space and polylogarithmic time accept at least
the class NC [22].

Here we present the other of the two inclusions that are necessary in order
to verify the parallel computation thesis; we show that C2-CSMs computing in

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 777–788, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

778 D. Woods

time T (n) accept at most the languages accepted by deterministic Turing ma-
chines in O(T 2(n)) space: C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n))). Also we
show that C2-CSMs that simultaneously use polynomial space and polylogarith-
mic time accept at most the class NC: C2-CSM-SPACE,TIME(nO(1), logO(1) n)
⊆ NC. These inclusions are established via C2-CSM simulation by a polynomial
sized, log depth, logspace uniform circuit.

2 The CSM

We begin by informally describing the model, this brief overview is not intended
to be complete more details are to be found in [23, 20].

A complex-valued image (or simply, image) is a function f : [0, 1)×[0, 1) → C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N+ = {1, 2, 3, . . .}, N = N+ ∪{0}, and for a given CSM M let
N be a countable set of images that encode M ’s addresses. Additionally, for a
given M there is an address encoding function E : N → N such that E is Turing
machine decidable, under some reasonable representation of images as words. An
address is an element of N × N.

Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P,O), where
E : N → N is the address encoding function
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, and b,
I = ((ι1ξ

, ι1η), . . . , (ιkξ
, ιkη)) are the addresses of the k input images,

P = {(ζ1, p1ξ
, p1η), . . . , (ζr, prξ

, prη)} are the r programming symbols and
their addresses where ζj ∈({h, v, ∗, ·,+, ρ, st, ld, br, hlt} ∪ N) ⊂ I,

O = ((o1ξ
, o1η), . . . , (olξ , olη)) are the addresses of the l output images.

Each address is an element from {0, 1, . . . , Ξ−1}×{0, 1, . . . ,Y−1} where Ξ,Y ∈
N+. Addresses a and b are distinct.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0. We interpret this definition to
mean that M is (initially) defined on a grid of images bounded by the constants
Ξ and Y, in the horizontal and vertical directions respectively.

In our grid notation the first and second elements of an address tuple refer to
the horizontal and vertical axes of the grid respectively, and image (0, 0) is at the
lower left-hand corner of the grid. The images have the same orientation as the
grid. Figure 1 gives the CSM operations in this grid notation. Configurations are
defined in a straightforward way as a tuple 〈c, e〉 where c is an address called the
control and e represents the grid contents. For a more thourough introduction
see [20, 23].

Next we define some CSM complexity measures. All resource bounding func-
tions map from N into N and are assumed to have the usual properties [1].

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Upper Bounds on the Computational Power of an Optical Model 779

h : replace image in a with its horizontal 1D Fourier transform (FT).
v : replace image in a with its vertical 1D FT.
∗ : replace image in a with its complex conjugate.
· : multiply (point by point) the two images in a and b. Store result in a.
+ : perform a complex (point by point) addition of a and b. Store result

in a.
ρ zl zu : zl, zu ∈ I; filter the image in a by amplitude using zl and zu as lower

and upper amplitude threshold images, respectively.
st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the rectangle of images

whose bottom left-hand corner address is (ξ1, η1) and whose top right-
hand corner address is (ξ2, η2).

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of images whose bottom
left-hand corner address is (ξ1, η1) and top right-hand corner address
is (ξ2, η2).

br ξ η : ξ, η ∈ N; unconditionally branch to the image at address (ξ, η).
hlt : halt.

Fig. 1. The set of CSM operations, given in our grid notation

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N × N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

In earlier treatments [21, 23] we defined the complexity measures amplRes,
phaseRes and freq. amplRes and phaseRes are measures of the cardinality
of discrete amplitude and phase values of the complex numbers in the range of
CSM images. In the present work amplRes and phaseRes both have constant
value of 2 which means that all images are of the form f : [0, 1) × [0, 1) →
{0,± 1

2 ,±1,± 3
2 , . . .}. Furthermore we are studying a restricted CSM to which

freq does not apply.
Often we wish to make analogies between space on some well-known model

and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

780 D. Woods

We have defined the complexity of a computation (sequence of configurations)
for each measure. We extend this definition to the complexity of a (possibly
non-final) configuration in the obvious way. Also, we sometimes talk about the
complexity of an image, this is simply the complexity of the configuration that
the image is in.

In [21, 20] we defined the C2-CSM, a restricted and more realistic class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:
– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of spatialRes, grid and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete FT (DFT) in the horizontal and
vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.

3 Circuits and Representation

In this work we are using logspace uniform circuits over the complete basis ∧, ∨
and ¬ with the usual complexity measures of size and depth [1, 15]. For conve-
nience we frequently write “uniform” instead of “logspace uniform”. Given a cir-
cuit cn, its encoding cn is a string of 4-tuples, where each tuple encodes a single
gate and is of the form (g, b, gl, gr)∈({0, 1}+, {∧,∨,¬}, {0, 1}+ ∪ ∅, {0, 1}+ ∪ ∅).
The tuple specifies the gate label g, the operation b that the gate computes, and
the inputs gl and gr. For ¬ gates exactly one of gl or gr is the null symbol ∅.

Let U-SIZE,DEPTH(size(n), depth(n)) be the class of languages recognised
by logspace uniform bounded fan-in circuits of size size(n) and depth depth(n),
respectively. The equality NSPACE(SO(1)(n)) = U-SIZE,DEPTH(2nO(1)

,
SO(1)(n)) is well-known [3, 8]. Circuit depth is a measure of parallel time, hence
logspace uniform circuits verify the parallel computation thesis. Specifically we
are interested in the inclusion [1, 8]

U-SIZE,DEPTH(2S(n), S(n)) ⊆ DSPACE(O(S(n))). (1)

Suppose we are simulating a C2-CSM M that has time, grid, spatialRes,
dyRange and space of T (n), G(n), Rs(n), Rd(n) and S(n) respectively. From
Definition 7, S(n) = G(n)Rs(n)Rd(n)4 � cG2T (n)cRs2T (n)cRd2T (n) for constants
cG, cRs , cRd . To simplify things (by removing the constants) we redefine the the
time of M by increasing it by a constant, T ′(n) =

⌈
log(c2T (n))

⌉
where c =

max(cG, cRs , cRd). In the sequel we write T ′(n) as T (n). space is now bounded
above by 2T (n)2T (n)2T (n), specifically each of grid, spatialRes and dyRange
is now bounded above by 2T (n). Next let G(n) = Gx(n)Gy(n) and Rs(n) =
Rsx(n)Rsy(n), where Gx(n) and Gy(n) are the number of grid images in the

Upper Bounds on the Computational Power of an Optical Model 781

horizontal and vertical directions respectively, and where Rsx
(n) and Rsy

(n) are
the number of image pixels in the horizontal and vertical directions respectively.
Define Gx(n) = Gy(n) = Rsx(n) = Rsy(n) = 2T (n). ThusG(n) = Rs(n) = 22T (n)

and Rd(n) = 2T (n) and we get our final upper bound on M ’s space: S(n) �
22T (n)22T (n)2T (n) = 25T (n). These adjustments do not affect M ’s computation,
we have simply defined M to be more time and space inefficient.
M ’s grid of images are represented by a single binary word G. The word G is

composed ofG(n) image subwords of equal length such that for each image i inM
there is an image subword Gi, and vice versa. Specifically G = G0G1 · · · GG(n)−1.
We order M ’s images first horizontally and then vertically; beginning with the
lower leftmost grid image, proceeding left to right and then bottom to top.

Next we show how each pixel in image i is represented in the image subword
Gi. This representation scheme is analogous to the previous representation of
images as subwords. The image subword Gi is composed of Rs(n) pixel subwords
of equal length, Gi = Gi[0]Gi[1] · · · Gi[Rs(n)−1]. For each pixel j in image i there
is a pixel subword Gi[j] and vice versa. Analogous to the image ordering, we
order the pixels in each image first by the horizontal and then by the vertical
direction, beginning with the lower leftmost pixel.

Given dyRange of Rd(n) it follows directly that the value (or range) of each
pixel in a C2-CSM configuration is from the set {0,± 1

2 ,±1,± 3
2 , . . . ,±Rd(n)}.

To represent this set as a set of binary words we use the 2’s complement binary
representation of integers, with a slight modification: the binary sequence is
shifted by one place to take care of the halves.

At this point we have defined the entire structure of the word G representing
M ’s grid. The length of G is |G| = Rs(n)G(n)�log(4Rd(n) + 1)�. Hence if M ’s
space complexity is O(S(n)) then |G| is also O(S(n)). We substitute to define
|G| in terms of time, |G| = 22T (n)22T (n)�log(4 ·2T (n)+1)�. Specifically the length
of each pixel subword is |Gi[j]| = �log(4 ·2T (n) +1)� and the length of each image
subword is |Gi| = 22T (n)�log(4·2T (n)+1)�. These expressions are useful for giving
bounds on circuit complexity in terms of time T (n).

A C2-CSM configuration 〈c, e〉 is represented as a binary word ctrlG, which
we write as (ctrl,G), where ctrl is of length 2T (n) and G is as given above. (We
interpret the ‘instruction pointer’ ctrl as a number that indexes the location of
the next C2-CSM operation).

4 Circuit Simulation of C2-CSM

To simulate the T (n) computation steps of the C2-CSM M we will design a
logspace uniform circuit cM that is of size SO(1)(n) and depth O(T 2(n)). We as-
sume that M is a language deciding C2-CSM [23, 20], and that the input word w
is of length n. M is simulated by the circuit cM in the following way. At the
first step of the simulation the circuit cM is presented with the input word
(ctrlsta,Gsta) that represents M ’s initial configuration (including M ’s input).
The circuit cM has T (n) identical layers numbered 0 (the input layer) to T (n)−1

782 D. Woods

(the output layer). A layer contains a circuit cop for each C2-CSM operation op,
where the circuit encoding function 1n → cop is computable by a transducer
Turing machine in workspace log size(cop).

4.1 Circuits Computing +, ·, ∗, ρ, h and v

We begin by simulating the + operation. Addition of two nonnegative integers
written in binary is computable by an unbounded fan-in circuit of size O(m2)
and constant depth and so is an AC0 problem (e.g. use the well-known carry
look-ahead algorithm, for example see [8]). Hence this problem is also in NC1.
Krapchenko [9], and Ladner and Fischer [10] give tighter NC1 adders that have
depth O(logm) and lower the size bound to O(m).

Theorem 1 (circuit simulation of +). The C2-CSM operation + is simu-
lated by a logspace uniform circuit ca:=a+b of size O(22T (n)T (n)) and depth
O(log T (n)).

Proof. Circuit: To add two pixel words we use Ladner and Fischer’s NC1 addition
algorithm [10]. Extending this algorithm to work for the 2’s complement binary
representation is straightforward. Recall that the addition operation adds images
a and b in a parallel point by point fashion and places the result in a. The circuit
ca:=a+b has one adder subcircuit for each pixel j in a. Under the representation
scheme described above, pixel word Ga[j] is added to pixel word Gb[j], resulting
in a new word Ga′ [j]. There are Rs = 22T (n) pixels in each of a and b thus the
circuit ca:=a+b consists of 22T (n) parallel adders. Each adder has depth O(log p)
and size O(p) where p =

⌈
log(4 · 2T (n) + 1)

⌉
is pixel word length. Since each

adder has size O(T (n)), the circuit has size O(22T (n)T (n)). The circuit has depth
O(log p) = O(log T (n)).

Uniformity: We show that 1n → ca:=a+b is computable by a transducer that
uses at most log workspace. At any computation step the transducer will have
at most the encoding of the current gate and a constant number of counters
on its worktapes. The circuit has O(22T (n)T (n)) gates, thus each gate label has
length O(T (n)) and is computable in space log |ca:=a+b| = O(T (n)). There are
counters for the index of the current gate and for the current adder circuit.
Each adder circuit is logspace uniform and hence a constant number of [length
O(T (n))] counters, is sufficient to construct each one. All gates and counters are
computable in space log |ca:=a+b|. ��

As with addition there are NC1 circuits for multiplication of binary num-
bers [8], for example Schönage and Strassen’s circuit [16], which uses the DFT,
has size O(m logm log logm) and depth O(logm). Unlike addition, Furst, Saxe
and Sipser [5] showed that multiplication is not in AC0, by showing that parity
is not in AC0 [2]. The proof of the following theorem is identical to the previous
one except that we use a polynomial sized NC1 multiplication circuit as opposed
to the linear sized NC1 adder used above.

Theorem 2 (circuit simulation of ·). The C2-CSM operation · is simulated by
a logspace uniform circuit ca:=a·b of size O(22T (n)T 2(n)) and depth O(log T (n)).

Upper Bounds on the Computational Power of an Optical Model 783

Each pixel in a C2-CSM is rational valued, hence the complex conjugation oper-
ation ∗ is the identity and is simulated by the identity circuit (¬¬ a).

Theorem 3 (circuit simulation of ∗). The C2-CSM operation ∗ is simulated
by a logspace uniform circuit ca:=a∗ of size O(22T (n)) and constant depth.

Theorem 4 (circuit simulation of ρ). The C2-CSM operation ρ is simu-
lated by a logspace uniform circuit ca:=ρ(a,zl,zu) of size O(22T (n)T 2(n)) and depth
O(log T (n)).

Proof. Circuit: First we build a circuit cu>v that tests if the number represented
by one pixel word is greater than another. It is straightforward to give constant
size and depth circuits that tell if two bits b1, b′ ∈ {0, 1} are equal and if one
is greater than the other: The circuits cb≡b′ and cb>b′ respectively compute the
≡ and > expressions b ≡ b′ = (b ∧ b′) ∨ (¬b ∧ ¬b′) and b > b′ = b ∧ ¬b′. On
pixel words u and v, we define the Boolean expression u > v =

∨|u−1|
m=0 ((um >

vm) ∧ (
∧m−1

k=0 (uk ≡ vk))). We build cu>v as follows. For each m the circuit
computing

∧m−1
k=0 (uk ≡ vk) is realised as a O(m) size, O(logm) depth tree. There

are |u| such trees, the root of each has a ∧ test with the constant depth circuit
for um > vm. We take the OR of these ANDs using a log |u| depth OR tree. The
circuit cu>v has size O(|u|2) and depth O(log |u|).

Using a similar construction we build the circuit cu<v, this has the same
complexity as cu>v. Moreover these circuits can be extended to work on the 2’s
complement representation with only a multiplicative constant increase in size
and additive constant increase in depth. We combine these circuits to create
the pixel thresholding circuit cv:=ρ(v,l,u) that evaluates to l if cv<l ≡ 1, to u if
cv>u ≡ 1, and to v otherwise.

Recall that the operation ρ(a, zl, zu) thresholds image a in a parallel point by
point fashion and places the result in a. The circuit ca:=ρ(a,zl,zu) has one pixel-
thresholding subcircuit for each pixel j in a. Pixel word Ga[j] is thresholded below
by pixel word Gzl [j] and above by pixel word Gzu [j] resulting in a new word Ga′ [j].
The circuit ca:=ρ(a,zl,zu) consists of 22T (n) parallel pixel thresholding subcircuits.
Each pixel thresholding subcircuit has O(log p) depth and size O(p2) where p =⌈
log(4 · 2T (n) + 1)

⌉
is pixel word length. Since there are 22T (n) pixel thresholding

subcircuits (each has size O(T 2(n))) the circuit has size O(22T (n)T 2(n)). The
entire circuit has depth O(log p) = O

(
log

⌈
log(4 · 2T (n) + 1)

⌉)
= O(log T (n)).

Uniformity: By stepping through the construction and applying the argu-
ments given in Theorem 1 it is seen that the length of each gate label is O(T (n))
and a constant number of variables is sufficient to construct the encoding. ��

Next we give simulations of the DFT operations via logspace uniform fast Fourier
transform (FFT) circuits. On input length m the FFT circuit has size bounded
above by 2m logm and depth bounded above by 2 logm [15].

Theorem 5 (circuit simulation of h and v). The C2-CSM horizontal (re-
spectively, vertical) DFT operation h (respectively, v) is simulated by a logspace
uniform circuit ca:=h(a) of size O(22T (n)T (n)) and depth O(T (n)).

784 D. Woods

Proof. For each row of pixel words in image word a, the circuit ca:=h(a) has
a single FFT subcircuit. The output is an image word a′ such that each row
in a′ is the DFT of the same row in a. It is straightforward to verify the size,
depth and uniformity. The circuit ca:=v(a) that simulates the C2-CSM vertical
DFT operation v is constructed similarly to ca:=h(a), except we replace the word
“row” with “column”. ��

4.2 Circuits Computing ld and st

The simulations of ld and st are much more involved than the previous construc-
tions. We briefly sketch the simulations, details are to be found in [20].

Theorem 6 (circuit simulation of ld by ca:=[(ξ′
1,η′

1),(ξ′
2,η′

2)]). The C2-CSM
operation ld (ξ′1, η′1, ξ′2, η′1) is simulated by the uniform circuit ca:=[(ξ′

1,η′
1),(ξ

′
2,η′

2)]

of size O(26T (n)T (n)) and depth O(T (n)). This circuit takes as input the image
words ξ′1, η

′
1, ξ

′
2 and η′2, and outputs an image word a.

Proof (sketch). The address image words ξ′1, η
′
1, ξ

′
2, η

′
2 are decoded into four

binary number words by four circuits that respectively compute E−1
2T (n)(ξ′1) =

ξ1, E−1
2T (n)(η′1) = η1, E−1

2T (n)(ξ′2) = ξ2, E−1
2T (n)(η′2) = η2, where E−1

2T(n) is a function
that encodes the inverse of the logspace computable address encoding function
E from Definition 1.

In the next step we wish to select the ‘rectangle’ of image words that are to
be loaded to image word a. Suppose that the rectangle contains more than one
image, then näıvely copying the entire rectangle to the image word a would cause
problems. (The rectangle to be loaded may contain up to 24T (n) = Rs(n)G(n)
pixel words whereas the image word a should contain exactly 22T (n) pixel words).
However, observe that spatialRes is bounded above by 22T (n), thus the rec-
tangle to be loaded contains at most 22T (n) regions of distinct value (oth-
erwise image a would contain > 22T (n) pixels after execution of ld). Hence
we have to select only 22T (n) representative pixel words out of the total of
22T (n)(ξ2 − ξ1 + 1)(η2 − η1 + 1) � 24T (n) pixels. We choose the pixel with the
lowest index in each (possibly) distinct area. For each pixel word i in image word
a, the pixel j to be loaded is defined as j = col(i) + row(i)Rsx

Gx where col(i) =
(i mod Rsx

)(ξ2 − ξ1 + 1) +Rsx
ξ1 and row(i) =

⌊
i

Rsx

⌋
(η2 − η1 + 1) +Rsy

η1 and

as usual Rsy
= Rsy

= Gx = 2T (n).
For each i, a circuit computes the binary number j, the index of the pixel

we want to ‘load’, j is then passed to another circuit which selects pixel word
j from the grid word G. The output of the ith circuit represents the ith pixel in
image a after a ld operation. ��

So far each simulated operation affects only image a. The simulation of st
differs in that a rectangle of images defined by the coordinates (ξ1, η1) and (ξ2, η2)
is affected.

Theorem 7 (circuit simulation of st by c[(ξ′
1,η′

1),(ξ′
2,η′

2)]:=a). The C2-CSM
operation st (ξ′1, η

′
1, ξ

′
2, η

′
1) is simulated by a logspace uniform circuit

Upper Bounds on the Computational Power of an Optical Model 785

c[(ξ′
1,η′

1),(ξ
′
2,η′

2)]:=a of size O(212T (n)T 6(n)) and depth O(T (n)). This circuit takes
as input the image words ξ′1, η

′
1, ξ

′
2 and η′2. It outputs a word of length |G| that

contains the rectangle (defined by (ξ′1, η′1), (ξ′2, η′2)) of image words to be stored
and zeros at all other positions.

Proof (sketch). Let i be the index of a pixel word in image word a. For each
i, the index j of each pixel word that will be stored to, satisfies j = (col(i) +
u) + (row(i) + v)Rsx

Gx for 0 � u � ξ2 − ξ1 and 0 � v � η2 − η1, where
Rsx = Gx = 2T (n) and col(i) and row(i) were given in the proof of Theorem 6.

The address image words ξ′1, η
′
1, ξ

′
2, η

′
2 are decoded into the binary numbers

ξ1, η1, ξ2, η2 (as in Theorem 6). Then for each i ∈ {0, . . . , 22T (n)} there is a
circuit cstPixel(i). The circuit cstPixel(i) consists of 24T (n) subcircuits, each tests
j = j′ for a unique pixel word j′ in G. Essentially cstPixel(i) generates a ‘mask’
word m, |m| = 24T (n). For the given i, mask m has the property that mj′ = 1
if and only if j′ is the index of a pixel word that is to be overwritten with pixel
word i from image word a.

Next, the circuit c[(ξ′
1,η′

1),(ξ
′
2,η′

2)]:=a uses i subcircuits as follows. For each pixel
word i in image word a: Subcircuit i ANDs the kth symbol in pixel word i with
each of the 24T (n) outputs of cstPixel(i). At this point we have i grid words; the
ith grid word is 0 everywhere except for the ‘rectangular’ part of the grid that
pixel i is stored to. These i grid words are ORed using an OR tree, giving the
final output grid word as defined in the theorem statement. This final output
word is a mask that contains the ‘stored rectangle’ and all other pixel words
contain only zeros. ��

4.3 Control Flow and Main Results

C2-CSM control flow is straightforward to simulate. Recall from Section 3 that
the binary word ctrl represents the C2-CSM control (or instruction pointer).
Simulating br involves finding a new value for ctrl from the br parameters.

Theorem 8 (circuit simulation of br by c br (ξ′,η′)). The C2-CSM branch
operation br (ξ′, η′) is simulated by a logspace uniform circuit c br (ξ′,η′) of size
O(22T (n)T (n)) and depth O(T (n)).

Proof. The circuit c br (ξ′,η′) decodes its address image word parameters into the
binary numbers ξ and η (as in Theorem 6) which are then translated into an
image word index i by evaluating ξ+ ηGx = i. Index i points to the image word
that encodes the next operation to be executed. ��

Let C(i) be an arbitrary C2-CSM configuration and let 4M be a relation on
configurations that defines the operational semantics of C2-CSM M [23, 20]. The
configuration C(i) is encoded as (ctrl(i),G(i)) as described in Section 3.

Theorem 9 (circuit simulation of C(i) 4M C(i+1) by cstep). Let M be a
C2-CSM. The uniform circuit cstep simulates C(i) 4M C(i+1) and is of size
O(212T (n)T 6(n)) and depth O(T (n)).

786 D. Woods

Proof (sketch). The circuit cstep computes (ctrl(i),G(i)) → (ctrl(i+1),G(i+1)). A
control flow simulating circuit updates ctrl(i) using either c br (ξ′,η′) or a circuit
that simulates sequential control flow by incrementing ctrl(i) by one of {0, 1, 3, 5}
depending on the current operation. Another circuit updates G(i) by making
use of the circuits that were given earlier and special mask words to simulate
whatever C2-CSM operation is pointed to by ctrl(i). ��

Next we give the resource use for our circuit simulation of a C2-CSM.

Theorem 10 (circuit simulation of M by cM). Let M be a C2-CSM that
computes for time T (n). The logspace uniform circuit cM simulates M and is
of size O(212T (n)T 7(n)) and depth O(T 2(n)).

Proof. Circuit cM is the composition of T (n) instances of cstep from Theorem 9.
The circuit is given the initial configuration (ctrlsta,Gsta) of M as input. After
O(T 2(n)) parallel timesteps cM outputs a word representing the final configura-
tion of M . ��

The size bound in the previous theorem seems quite high, however one should
keep in mind that M has space of S(n) = O(23T (n)). (This was the original
space bound on M before we redefined space to suit our simulations).

If M is a language deciding C2-CSM [20, 23] we augment cM so that it ORs the
bits of the relevant output image word, thus computing a {0, 1}-valued function.
The resulting circuit has only a constant factor overhead in the size and depth
of cM . From this we state:

Corollary 1.
C2-CSM-TIME(T (n)) ⊆ U-SIZE,DEPTH(O(212T (n)T 7(n)), O(T 2(n)))

Let T (n), S(n) = Ω(logn). From the inclusion given by Equation (1) we state:

Corollary 2. C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

Combining the above result with the converse inclusion (given in [20, 22]) gives
a relationship between nondeterministic (sequential) space, C2-CSM time and
deterministic space.

Corollary 3. NSPACE(S(n)) ⊆ C2-CSM-TIME(O(S(n) + log n)4)
⊆ DSPACE(O(S(n) + logn)8)

To summarise, the C2-CSM satisfies the parallel computation thesis:

Corollary 4. NSPACE(SO(1)(n)) = C2-CSM-TIME(SO(1)(n))

This establishes a link between space bounded sequential computation and time
bounded C2-CSM computation, e.g. C2-CSM-TIME(nO(1)) = PSPACE.

The thesis relates parallel time to sequential space, however in our simulations
we explicitly gave all resource bounds. As a final result we show that the class of
C2-CSMs that simultaneously use polynomial space and polylogarithmic time
decide at most the languages in NC. Let C2-CSM-SPACE,TIME(S(n), T (n)) be
the class of languages decided by C2-CSMs that use space S(n) and time T (n).

Upper Bounds on the Computational Power of an Optical Model 787

For uniform circuits it is known [8] that U-SIZE,DEPTH(nO(1), logO(1) n) = NC.
From the resource overheads in our simulations:

C2-CSM-SPACE,TIME(2O(T (n)), T (n)) ⊆ U-SIZE,DEPTH(2O(T (n)), TO(1)(n)).

For the case of T (n) = logO(1) n we have our final result.

Corollary 5. C2-CSM-SPACE,TIME(nO(1), logO(1) n) ⊆ NC

In [20, 22] it was shown that the converse inclusion also holds. Thus C2-CSMs that
simultaneously use both polynomial space and polylogarithmic time exactly
characterise NC.

5 Discussion

We have given upper bounds on C2-CSM power in terms of uniform circuits.
Combining this with previously shown lower bounds [22]; the C2-CSM verifies
the parallel computation thesis and C2-CSMs with polynomial space and poly-
logarithmic time decide exactly the languages in NC.

Our simulations could probably be improved to get a tighter relationship be-
tween C2-CSM time and sequential space. For example, the size bounds on the
circuit simulation of ld and st could be improved with the aim of reducing the
degree of the polynomials in Corollary 3, maybe even to a quadratic. Any im-
provement beyond that would be difficult, since it would imply an improvement
to the quadratic bound in Savitch’s theorem. Such improvements would enable
us define a tighter bound on simultaneous resource usage between the C2-CSM
and (say) uniform circuits, in the hope of exactly characterising NCk by varying
a parameter k to the model.

By how much can we generalise the C2-CSM definition and still preserve the
upper bounds presented here? For example, in analogy with Simon’s result for
vector machines [17], we believe it should be possible to remove the O(23t) space
restriction from the C2-CSM definition.

Our results are the first to establish a general relationship (upper and lower
bounds) between optically inspired computation and standard complexity
classes. On a related note, our results show that the kind of optics modelled
by the C2-CSM is simulated in reasonable time on any of the parallel architec-
tures that verify the parallel computation thesis.

References

1. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural complexity, vols I and II. EATCS
Monographs on Theoretical Computer Science. Springer, Berlin, 1988.

2. R. B. Boppana and M. Sipser. The complexity of finite functions. Volume A of van
Leeuwen [19], 1990.

3. A. Borodin. On relating time and space to size and depth. SIAM Journal on
Computing, 6(4):733–744, Dec. 1977.

788 D. Woods

4. A. K. Chandra and L. J. Stockmeyer. Alternation. In FOCS 1976, pages 98–108,
Houston, Texas, Oct. IEEE.

5. M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

6. L. M. Goldschlager. Synchronous parallel computation. PhD thesis, University of
Toronto, Computer Science Department, Dec. 1977.

7. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford university Press, Oxford, 1995.

8. R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory ma-
chines. Volume A of van Leeuwen [19], 1990.

9. V. Krapchenko. Asymptotic estimation of addition time of a parallel adder. Syst.
Theory Res., 19:105–222, 1970.

10. R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831–838, 1980.

11. T. J. Naughton. Continuous-space model of computation is Turing universal. In
Critical Technologies for the Future of Computing, Proc. SPIE vol. 4109, pages
121–128, Aug. 2000.

12. T. J. Naughton. A model of computation for Fourier optical processors. In Optics
in Computing 2000, Proc. SPIE vol. 4089, pages 24–34, Quebec, June 2000.

13. T. J. Naughton and D. Woods. On the computational power of a continuous-space
optical model of computation. In Machines, Computations and Universality: 3rd

Int. Conference, volume 2055 of LNCS, pages 288–299, Chişinău, 2001. Springer.
14. I. Parberry. Parallel complexity theory. Wiley, 1987.
15. J. E. Savage. Models of computation: Exploring the power of computing. Addison

Wesley, 1998.
16. A. Schönhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing,

7(3-4):281–292, 1971.
17. J. Simon. On feasible numbers. In Proc. 9th Annual ACM Symposium on Theory

of Computing, pages 195–207. ACM, 1977.
18. P. van Emde Boas. Machine models and simulations. Volume A of van Leeuwen

[19], 1990.
19. J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume A.

Elsevier, Amsterdam, 1990.
20. D. Woods. Computational complexity of an optical model of computation. PhD

thesis, National University of Ireland, Maynooth, 2005.
21. D. Woods and J. P. Gibson. Complexity of continuous space machine operations.

In New Computational Paradigms, First Conference on Computability in Europe,
volume 3526 of LNCS, pages 540–551, Amsterdam, June 2005. Springer.

22. D. Woods and J. P. Gibson. Lower bounds on the computational power of an optical
model of computation. In Fourth International Conference on Unconventional
Computation, volume 3699 of LNCS, pages 237–250, Sevilla, Oct. 2005. Springer.

23. D. Woods and T. J. Naughton. An optical model of computation. Theoretical
Computer Science, 334(1–3):227–258, Apr. 2005.

Complexity of the Min-Max (Regret) Versions
of Cut Problems�

Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France
{aissi, bazgan, vdp}@lamsade.dauphine.fr

Abstract. This paper investigates the complexity of the min-max and
min-max regret versions of the s− t min cut and min cut problems. Even
if the underlying problems are closely related and both polynomial, we
show that the complexity of their min-max and min-max regret ver-
sions, for a constant number of scenarios, are quite contrasted since they
are respectively strongly NP -hard and polynomial. Thus, we exhibit the
first polynomial problem, s− t min cut, whose min-max (regret) versions
are strongly NP -hard. Also, min cut is one of the few polynomial prob-
lems whose min-max (regret) versions remain polynomial. However, these
versions become strongly NP -hard for a non constant number of scenar-
ios. In the interval data case, min-max versions are trivially polynomial.
Moreover, for min-max regret versions, we obtain the same contrasted
result as for a constant number of scenarios: min-max regret s− t cut is
strongly NP -hard whereas min-max regret cut is polynomial.

Keywords: min-max, min-max regret, complexity, min cut, s − t min
cut.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty/imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to model parameters. Each scenario s can be represented as a vector in IRm

where m is the number of relevant numerical parameters. Kouvelis and Yu [7]
proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. In min-
max optimization, the aim is to find a solution having the best worst case value
across all scenarios. In min-max regret problem, it is required to find a feasible
solution minimizing the maximum deviation, over all possible scenarios, of the
value of the solution from the optimal value of the corresponding scenario. Two

� This work has been partially funded by grant CNRS/CGRI-FNRS number 18227.
The second author was partially supported by the ACI Sécurité Informatique grant-
TADORNE project 2004.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 789–798, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

790 H. Aissi, C. Bazgan, and D. Vanderpooten

natural ways of describing the set of all possible scenarios S have been considered
in the literature. In the discrete scenario case, S is described explicitly by the list
of all vectors s ∈ S. In this case, we distinguish situations where the number of
scenarios is constant from those where the number of scenarios is non constant.
In the interval data case, each numerical parameter can take any value between
a lower and upper bound, independently of the values of the other parameters.
Thus, in this case, S is the cartesian product of the intervals of uncertainty for
the parameters.

Complexity of the min-max (regret) versions has been studied extensively
during the last decade. In the discrete scenario case, this complexity was inves-
tigated for several combinatorial optimization problems in [7]. In general, these
versions are shown to be harder than the classical versions. For a constant num-
ber of scenarios, pseudo-polynomial algorithms, based on dynamic programming,
are given in [7] for the min-max (regret) versions of shortest path, knapsack and
minimum spanning tree for grid graphs. The latter result is extended to general
graphs in [1]. However, up to now, no polynomial problem was known to have
min-max (regret) versions which are strongly NP -hard. When the number of
scenarios is not constant, these versions usually become strongly NP -hard, even
if the underlying problem is polynomial. In the interval data case, extensive re-
search has been devoted for studying the complexity of min-max regret versions
of various optimization problems including shortest path [5], minimum spanning
tree [4,5] and assignment [2].

We investigate in this paper the complexity of min-max (regret) versions
of two closely related polynomial problems, min cut and s − t min cut. Quite
interestingly, for a constant number of scenarios, the complexity status of these
problems is widely contrasted. More precisely, min-max (regret) versions of min
cut are polynomial whereas min-max (regret) versions of s−tmin cut are strongly
NP -hard even for two scenarios. We also prove that for a non constant number
of scenarios, min-max (regret) min cut become strongly NP -hard.

In the interval data case, min-max versions are trivially polynomial. More-
over, for min-max regret versions, we obtain the same contrasted result as for
a constant number of scenarios: min-max regret s − t cut is strongly NP -hard
whereas min-max regret cut is polynomial.

After presenting preliminary concepts (Section 2), we investigate the com-
plexity of min-max (regret) versions of min cut and s− t min cut in the discrete
scenario case (Section 3), and in the interval data case (Section 4).

2 Preliminaries

Let us consider an instance of a 0-1 minimization problem Q with a linear ob-
jective function defined as:{

min
∑m

i=1 cixi ci ∈ N
x ∈ X ⊂ {0, 1}m

Complexity of the Min-Max (Regret) Versions of Cut Problems 791

This class encompasses a large variety of classical combinatorial problems, some
of which are polynomial-time solvable (shortest path problem, minimum span-
ning tree, . . .) and others are NP -difficult (knapsack, set covering, . . .).

In the discrete scenario case, the min-max (regret) version associated to Q
has as input a finite set of scenarios S where each scenario s ∈ S is represented
by a vector (cs1, . . . , c

s
m). In the interval data case, each coefficient ci can take

any value in the interval [ci, ci]. In this case, the scenario set S is the cartesian
product of the intervals [ci, ci], i = 1, . . . ,m.

We denote by val(x, s) =
∑m

i=1 c
s
ixi the value of solution x ∈ X under scenario

s ∈ S, by x∗s an optimal solution under scenario s, and by val∗s = val(x∗s, s) the
optimal value under the scenario s.

The min-max optimization problem corresponding to Q, denoted by Min-
Max Q, consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as:

min
x∈X

max
s∈S

val(x, s)

This version is denoted by Discrete Min-Max Q in the discrete scenario case,
and by Interval Min-Max Q in the interval data case.

Given a solution x ∈ X , its regret, R(x, s), under scenario s ∈ S is defined as
R(x, s) = val(x, s) − val∗s . The maximum regret Rmax(x) of solution x is then
defined as Rmax(x) = maxs∈S R(x, s).

The min-max regret optimization problem corresponding to Q, denoted by
Min-Max Regret Q, consists of finding a solution x minimizing the maximum
regret Rmax(x) which can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

{val(x, s) − val∗s}

This version is denoted by Discrete Min-Max Regret Q in the discrete
scenario case, and by Interval Min-Max Regret Q in the interval data case.

In the interval data case, for a solution x ∈ X , we denote by c−(x) the worst
scenario associated to x, where c−i (x) = ci if xi = 1 and c−i (x) = ci if xi = 0,
i = 1, . . . ,m. Then we can establish easily that Rmax(x) = R(x, c−(x)), as shown
e.g. in [9] in the specific context of the minimum spanning tree problem.

In this paper, we focus on the min-max (regret) versions of the two following
cut problems:

Min Cut
Input: A connected graph G = (V,E) with weight wij associated with each
edge (i, j) ∈ E.
Output: A cut in G, that is a partition of V into two sets, of minimum value.

s− t Min Cut
Input: A connected graph G = (V,E) with weight wij associated with each
edge (i, j) ∈ E, and two specified vertices s, t ∈ V .
Output: An s − t cut in G, that is a partition of V into two sets V1 and V2,
with s ∈ V1 and t ∈ V2, of minimum value.

792 H. Aissi, C. Bazgan, and D. Vanderpooten

In order to prove our complexity results we use the two following problems
proved strongly NP -hard in [6].

Min Bisection
Input: A graph G = (V,E) with an even number of vertices.
Output: A bisection in G, that is a partition of V into two equal cardinality
sets, of minimum value.

s− t Min Bisection
Input: A graph G = (V,E) with an even number of vertices, and two specified
vertices s, t ∈ V .
Output: An s − t bisection in G, that is a partition of V = V1 ∪ V2 such that
s ∈ V1, t ∈ V2, and |V1| = |V2|, of minimum value.

3 Discrete Scenario Case

We show in this section the first polynomial-time solvable problem, s − t Min
Cut, which becomes strongly NP -hard when considering its min-max or min-
max regret version.

Min-max cut was proved polynomially solvable for a constant number of sce-
narios [3]. We show that min-max regret cut also remains polynomial for a
constant number of scenarios. When the number of scenarios is not constant,
min-max (regret) versions become strongly NP -hard.

3.1 s − t Min Cut

In order to prove these results, we construct polynomial reductions from the
decision version of Min Bisection.

Theorem 1. Discrete Min-Max (Regret) s− t Cut are strongly NP-hard
even for two scenarios.

Proof. Consider an instance G = (V,E) of Min Bisection with |V | = 2n, and a
positive integer v. We construct an instance G̃ = (Ṽ , Ẽ) of Discrete Min-Max
s − t Cut with the scenario set S = {s1, s2}. The node set is Ṽ = V ∪ {s, t}
where s and t correspond to a source and a sink respectively. The edge set
Ẽ = E ∪ {(s, i) : i ∈ V } ∪ {(i, t) : i ∈ V }. Edge weights in scenarios s1 and s2
are assigned for each edge (i, j) ∈ Ẽ as follows:

w1
ij =

1 if (i, j) ∈ E
n2 + 1 if i = s or j = s
0 if i = t or j = t

and w2
ij =

1 if (i, j) ∈ E
0 if i = s or j = s
n2 + 1 if i = t or j = t

We claim that there exists a bisection C in G of value at most v if and only if
there exists an s− t cut C̃ in G̃ with max{val(C̃, s1), val(C̃, s2)} ≤ v+(n2 +1)n.
⇒ Consider a bisection C = (V1, V2) of value x ≤ v. We construct an s − t cut
C̃ = (Ṽ1, Ṽ2) where Ṽ1 = V1 ∪ {s}, and Ṽ2 = V2 ∪ {t}. Consequently, we have
val(C̃, s1) = val(C̃, s2) = x+ (n2 + 1)n ≤ v + (n2 + 1)n.

Complexity of the Min-Max (Regret) Versions of Cut Problems 793

⇐ Consider now an s−t cut C̃ = (Ṽ1, Ṽ2) verifying max{val(C̃, s1), val(C̃, s2)} ≤
v + (n2 + 1)n. Let V1 = Ṽ1 \ {s} and V2 = Ṽ2 \ {t}. We have by construction
val(C̃, s1) = y+|V2|(n2+1) and val(C̃, s2) = y+|V1|(n2+1), where y is the num-
ber of edges from E that have one endpoint in V1 and one endpoint in V2. Suppose
that |V1| = n + z and |V2| = n − z, z ≥ 0. Then val(C̃, s1) = y + (n2 + 1)n −
z(n2+1), val(C̃, s2) = y+(n2+1)n+z(n2+1) and max{val(C̃, s1), val(C̃, s2)} =
y+ (n2 + 1)n+ z(n2 + 1) ≤ v+ (n2 + 1)n. Since v ≤ n2 we have z = 0 and thus
|V1| = |V2| = n and y ≤ v.

In order to prove the result for the min-max regret version, we use exactly
the same graph G̃ = (Ṽ , Ẽ). Let C∗

i denote the optimal solution in scenario si,
i = 1, 2. We have C∗

1 = (Ṽ \ {t}, {t}) and C∗
2 = ({s}, Ṽ \ {s}) with val(C∗

1 , s1) =
val(C∗

2 , s2) = 0. Therefore, there exists a bisection in G of value at most v if and
only if there exists an s− t cut C̃ in G̃ with Rmax(C̃) ≤ v + (n2 + 1)n. �

3.2 Min Cut

ArmonandZwick [3] constructed a polynomial-time algorithm forDiscreteMin-
Max Cut, in the case of a constant number of scenarios, based essentially on the
result of Nagamochi, Nishimura and Ibaraki [8] for computing all α-approximate
cuts in time O(m2n+mn2α). A cutC in a graphG is called an α-approximate cut
if val(C) ≤ αopt, where opt is the value of a minimum cut in G.

Theorem 2 ([3]). Discrete Min-Max Cut is solvable in polynomial time for
a constant number of scenarios.

In a graph on n vertices and m edges and with k scenarios, Armon and Zwick’s
algorithm [3] constructs an optimal solution in O(mn2k).

We show in the following that this algorithm can be modified in order to
obtain a polynomial-time algorithm for Discrete Min-Max Regret Cut.

Theorem 3. Discrete Min-Max Regret Cut is solvable in polynomial time
for a constant number of scenarios.

Proof. Consider an instance I of the problem given by graph G = (V,E) on n
vertices and m edges and a set of k scenarios S such that each edge (i, j) ∈ E
has a weight ws

ij in scenario s. We construct, as before, an instance I ′ of Min
Cut on the same graph, where w′

ij =
∑

s∈S w
s
ij . The algorithm consists firstly

of computing all k-approximate cuts and secondly of choosing among these cuts
one with a minimum maximum regret.

We prove now the correctness of the algorithm. Let C∗ be an optimal min-max
regret cut in G. We show that for any cut C of G, we have val′(C∗) ≤ kval′(C),
where val′(C) is the value of cut C in I ′. In fact,

val′(C∗) =
∑
s∈S

val(C∗, s) =
∑
s∈S

(val(C∗, s) − val∗s) +
∑
s∈S

val∗s ≤

kmax
s∈S

{val(C∗, s) − val∗s} +
∑
s∈S

val∗s ≤ kmax
s∈S

{val(C, s) − val∗s)} +
∑
s∈S

val∗s ≤

794 H. Aissi, C. Bazgan, and D. Vanderpooten

k
∑
s∈S

(val(C, s) − val∗s) +
∑
s∈S

val∗s = k
∑
s∈S

val(C, s) − (k − 1)
∑
s∈S

val∗s ≤ kval′(C)

In particular, if C is a minimum cut in I ′, we obtain val′(C∗) ≤ kopt(I ′).
Thus all optimal solutions to Discrete Min-Max Regret Cut are among
the k-approximate cuts in I ′.

The running time of the algorithm is O(mn2k). �

The algorithms described above to solve Discrete Min-Max (Regret)
Cut are exponential in k. We prove in the following that when k is not constant,
both problems become strongly NP -hard.

Theorem 4. Discrete Min-Max (Regret) Cut are strongly NP-hard for a
non constant number of scenarios.

Proof. We use a reduction from Min Bisection. Consider an instance G =
(V,E) of Min Bisection with V = {1, . . . , 2n}, and a positive integer v. We
construct an instance G̃ = (Ṽ , Ẽ) of Discrete Min-Max Cut with a scenario
set S of size 2n. The node set is Ṽ = V ∪{1′, . . . , 2n′}∪{1′′, . . . , 2n′′}. The edge
set Ẽ = E ∪ {(i′, j′) : i, j = 1, . . . , 2n} ∪ {(i, i′), (i′, i′′) : i = 1, . . . , 2n}. Scenario
set S corresponds to nodes of G. The weights of the edges in any scenario si ∈ S
are defined as follows: wi

hj = 1 for all (h, j) ∈ E; wi
i′j′ = n2, for j = 1, . . . , 2n;

wi
h′j′ = 0 for h �= i and j �= i; wi

ii′ = wi
i′i′′ = n3 + n2 + 1; wi

jj′ = wi
j′j′′ = 0, for

j �= i.
We claim that there exists a bisection C in G of value at most v if and only

if there is a cut C̃ in G̃ with maxs∈S val(C̃, s) ≤ n3 + v.
⇒ Consider a bisection C = (V1, V2) in G of value x ≤ v. We construct a cut
C̃ = (Ṽ1, Ṽ2) in G̃ where Ṽ1 = V1 ∪{i′, i′′ : i ∈ V1} and Ṽ2 = V2 ∪{i′, i′′ : i ∈ V2}.
For any scenario s ∈ S, we have val(C̃, s) ≤ n3 + v and thus maxs∈S val(C̃, s) ≤
n3 + v.
⇐ Consider now a cut C̃ = (Ṽ1, Ṽ2) in G̃ such that maxs∈S val(C̃, s) ≤ n3 + v.
Cut C̃ does not contain any edge (i, i′) or (i′, i′′) for some i = 1, . . . , 2n, since
otherwise, we have maxs∈S val(C̃, s) ≥ n3 + n2 + 1 > n3 + v. Denote by Vi, for
i = 1, 2, the restriction of Ṽi to the vertices of V . Suppose now that |V1| < |V2|,
then for any scenario si such that i ∈ V1 we have val(C̃, si) ≥ (n+ 1)n2 + 1 >
n3 + v . Thus, we have necessarily |V1| = |V2| and the value of the bisection
(V1, V2) is at most v.

In order to prove the result for the min-max regret version, we use exactly
the same graph G̃ = (Ṽ , Ẽ). Notice that, for any scenario si ∈ S, cut C∗

i =
({j′′}, Ṽ \ {j′′}) for some j �= i is a minimum cut in scenario si, with value 0.
Therefore, there exists a bisection in G of value at most v if and only if there
exists a cut C̃ in G̃ with Rmax(C̃) ≤ n3 + v. �

Observe that in the previous proof we used the same graph G̃ both for the
min-max and min-max regret versions. Actually, a slightly simpler proof can be
obtained, for the min-max part, considering only the subgraph of G̃ induced
by Ṽ \ {1′′, . . . , 2n′′}. Vertex subset {1′′, . . . , 2n′′} is necessary, for the min-max
regret part, to ensure the existence of minimum cuts of value 0 for each scenario.

Complexity of the Min-Max (Regret) Versions of Cut Problems 795

4 Interval Data Case

We first state the polynomiality of the min-max cut problems (Section 4.1),
then we establish the strong NP -hardness of Interval Min-Max Regret s− t
Cut (Section 4.2) and the polynomiality of Interval Min-Max Regret Cut
(Section 4.2).

4.1 Min-Max Versions

In the interval data case, the min-max version of a minimization problem corre-
sponds to solving this problem in the worst-case scenario defined by the upper
bounds of all intervals. Therefore, a minimization problem and its min-max ver-
sion have the same complexity. Interval Min-Max s− t Cut and Interval
Min-Max Cut are thus polynomial-time solvable.

4.2 Min-Max Regret Versions

When the number u ≤ m of uncertain/imprecise parameters, corresponding to
non-degenerate intervals, is small enough, then the problem becomes polynomial.
More precisely, as shown by Averbakh and Lebedev [5] for general networks
problems solvable in polynomial time, if u is fixed or bounded by the logarithm
of a polynomial function of m, then the min-max regret version is also solvable
in polynomial time (based on the fact that an optimal solution for the min-max
regret version corresponds to one of the optimal solutions for the 2u extreme
scenarios, where extreme scenarios have values on each edge corresponding to
either the lower or upper bound of its interval). This clearly applies to the s− t
min cut and min cut problems.

s − t min cut
We show now that Interval Min-Max Regret s−t Cut is strongly NP -hard.
For this purpose, we construct a reduction from the decision version of s− t Min
Bisection.

Theorem 5. Interval Min-Max Regret s− t Cut is strongly NP-hard.

Proof. Consider G = (V,E) an instance of s− t Min Bisection with |V | = 2n,
where V = {s = 1, . . . , t = 2n}. We construct from G an instance G̃ = (Ṽ , Ẽ) of
Interval Min-Max Regret s− t Cut as illustrated in Figure 1. The vertex
set is Ṽ = V ∪ {1′, . . . , 2n′} ∪{1′′, . . . , 2n′′} ∪{1′′′, . . . , 2n′′′} ∪{s̃, 2n + 1}, and
t̃ = t.

The edge set is Ẽ = E ∪ {(i′, i′′), (i′′, i′′′) : i = 1, . . . , 2n} ∪ {(i, i′′) : i =
2, . . . , 2n − 1} ∪ {(2n + 1, i′) : i = 1, . . . , 2n} ∪{(i′′′, t) : i = 1, . . . , 2n} ∪
{(s̃, 2n+ 1), (s̃, s)}.

Let p and q verifying, respectively, p > n2 and q > 4n(p + 1)2. The weights
are defined as follows :

796 H. Aissi, C. Bazgan, and D. Vanderpooten

– wij = wij = 1, for all (i, j) ∈ E;

– wi′i′′ =
{
q for i = 1
0 otherwise and wi′i′′ =

{
q for i = 1
p2 + p otherwise

– wi′′i′′′ = wi′′i′′′ =

p2 + np for i = 1
p2 for i = 2, . . . , 2n− 1
q for i = 2n

– wii′′ = wii′′ = q, for i = 2, . . . , 2n− 1;

– w(2n+1)i′ =
{

0 for i = 1
2p otherwise and w(2n+1)i′ = q, for i = 1, . . . , 2n;

– wi′′′t = wi′′′t = q, for i = 1, . . . , 2n;
– ws(2n+1) = 2np and ws(2n+1) = q;
– wss = 0 and wss = q.

Clearly this transformation can be obtained in polynomial time.
We first establish the following property.

For any s̃ − t̃ cut C̃ = (Ṽ1, Ṽ2) in G̃ not including any edge (i, j) ∈ Ẽ with
wij = q, a minimum s̃− t̃ cut C∗

w−(C)
in, w−(C̃), the worst scenario associated

to C̃, has value val(C∗
w−(C)

, w−(C̃)) = 2pmin{n, |V2|}, where V2 = Ṽ2 ∩ V .

Indeed, consider such a cut C̃ = (Ṽ1, Ṽ2) with s̃ ∈ Ṽ1, t̃ ∈ Ṽ2 and denote
V1 = Ṽ1 ∩V . Clearly, vertices 2n+ 1, 1′′ and i′, i = 1, . . . , 2n belong to Ṽ1. Also,
vertices 2n′′ and i′′′, i = 1, . . . , 2n belong to Ṽ2. Moreover, i and i′′ belong to
the same part, Ṽ1 or Ṽ2. It follows that

val(C̃, w−(C̃)) = x+ (n+ |V2|)p+ 2np2 (1)

where x denotes the number of edges that have one endpoint in V1 and one
endpoint in V2.

By construction, C∗
w−(C)

necessarily cuts edge (s̃, s). Furthermore, there exist
two cases:

1. If |V2| ≤ n then C∗
w−(C)

= (Ṽ ∗
1 , Ṽ

∗ \ Ṽ ∗
1), where Ṽ ∗

1 = {s̃, 2n+ 1}∪ {i′ : i′′ ∈
Ṽ1, i �= 1} and thus val(C∗

w−(C)
, w−(C̃)) = 2|V2|p.

2. If |V2| > n then C∗
w−(C)

= ({s̃}, Ṽ \{s̃}) and thus val(C∗
w−(C)

, w−(C̃)) = 2np.

We claim that there exists an s − t bisection C = (V1, V2) of value no more
than v if and only if there exists an s̃− t̃ cut C̃ = (Ṽ1, Ṽ2) in G̃ with Rmax(C̃) ≤
v + 2np2.
⇒ Consider an s − t bisection C = (V1, V2) in G of value x ≤ v. We construct
an s̃− t̃ cut C̃ in G̃ deduced from C as follows: Ṽ1={s̃, 2n+ 1} ∪ {1′, . . . , 2n′} ∪
V1 ∪ {i′′ : i ∈ V1} and Ṽ2={1′′′, . . . , 2n′′′} ∪ V2 ∪ {i′′ : i ∈ V2}. It is easy to verify
that val(C̃, w−(C̃)) = x + 2n(p + p2) and using the previous result, we have
Rmax(C̃) = x+ 2np2 ≤ v + 2np2.
⇐ Consider an s̃−t̃ cut C̃ in G̃ with Rmax(C̃) ≤ v+2np2. Cut C̃ does not cut any
edge (i, j) ∈ Ẽ such that wij = q, since otherwise, val(C̃, w−(C̃)) ≥ q, and, since

Complexity of the Min-Max (Regret) Versions of Cut Problems 797

[0, q] 1
1 1

1

q

1

q p2 + np

[0, p2 + p] p2

[0, p2 + p] p2

[0, p2 + p] q

[0
, q

]

[2p
, q

]

[2p, q]

[2p, q]

[2
n
p
,
q
]

q q

q

q

q

s s = 1

2

3

t = t = 4

5

1′ 1′′ 1′′′

2′ 2′′ 2′′′

3′ 3′′ 3′′′

4′ 4′′ 4′′′

Fig. 1. Interval Min-Max Regret s − t Cut instance resulting from s − t Min
Bisection instance

a minimum s̃− t̃ cut C∗
w−(C)

in w−(C̃), does not cut any edge (i, j) ∈ Ẽ such that

wij = q, we have, using (1), val(C∗
w−(C)

, w−(C̃)) ≤ n2+3np+2np2 < 4np+2np2

and consequently, we have Rmax(C̃) > 2np2 + v.
Thus val(C̃, w−(C̃)) = y + 2np2 + np+ p|V2| where y is the value of the cut

induced by C̃ in E. It follows that

Rmax(C̃) =
{
y + (n− |V2|)p+ 2np2 if |V2| ≤ n
y + (|V2| − n)p+ 2np2 if |V2| > n

Consequently, since Rmax(C̃) ≤ v + 2np2, and p > n2 ≥ v, we have |V1| = n =
|V2| and y ≤ v. �

Min cut
We prove in this section that the min-max regret version of min-cut problem is
polynomial in the interval data case.

Theorem 6. Interval Min-Max Regret Cut is solvable in polynomial time
in the interval data case.

Proof. Consider an instance I of Interval Min-Max Regret Cut given by
graph G = (V,E) on n vertices and m edges. The weight wij of each edge
(i, j) ∈ E can take any value in the interval [wij , wij]. We construct an instance

798 H. Aissi, C. Bazgan, and D. Vanderpooten

I ′ of Min Cut on the same graph, where w′
ij = wij . The algorithm consists

firstly of computing all the 2-approximate minimum cuts in I ′ and secondly of
choosing among these cuts one with a minimum maximum regret.

We prove now the correctness of the algorithm. Let C∗ be an optimal cut in I
and val′(C) denote the value of any cut C in I ′. Then the following inequalities
hold:

val′(C∗) = Rmax(C∗) + val∗w−(C∗)

≤ Rmax(C) + val(C,w−(C∗)) ≤ 2val′(C)

In particular, if C is a minimum cut in I ′, we obtain val′(C∗) ≤ 2opt(I ′). Thus
all optimal solutions to Interval Min-Max Regret Cut are among the 2-
approximate cuts in I ′.

The running time of the algorithm is O(mn5 + n6 logm). �

References

1. H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation complexity of min-max
(regret) versions of shortest path, spanning tree, and knapsack. In Proceedings of
the 13th Annual European Symposium on Algorithms (ESA 2005), Mallorca, Spain,
2005. to appear.

2. H. Aissi, C. Bazgan, and D. Vanderpooten. Complexity of the min-max and min-
max regret assignment problem. Operations Research Letters, 33:634–640, 2005.

3. A. Armon and U. Zwick. Multicriteria global minimum cuts. In Proceedings of the
15th International Symposium on Algorithms and Complexity (ISAAC 2004), Hong
Kong, China, LNCS 3341, pages 65–76. Springer-Verlag, 2004.

4. I. D. Aron and P. Van Hentenryck. On the complexity of the robust spanning tree
with interval data. Operations Research Letters, 32:36–40, 2004.

5. I. Averbakh and V. Lebedev. Interval data min-max regret network optimization
problems. Discrete Applied Mathematics, 138:289–301, 2004.

6. M. Garey and D. Johnson. Computers and intractability: a guide to the theory of
NP-completeness. Freeman, San Francisco, 1979.

7. P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Boston, 1997.

8. H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an
undirected network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997.

9. H. Yaman, O. E. Karaşan, and M. C. Pinar. The robust spanning tree problem with
interval data. Operations Research Letters, 29:31–40, 2001.

Improved Algorithms for the k Maximum-Sums
Problems

Chih-Huai Cheng1, Kuan-Yu Chen1, Wen-Chin Tien1, and Kun-Mao Chao1,2,�

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Networking and Multimedia,

National Taiwan University, Taipei, Taiwan 106
kmchao@csie.ntu.edu.tw

Abstract. Given a sequence of n real numbers and an integer k, 1 ≤
k ≤ 1

2
n(n − 1), the k maximum-sum segments problem is to locate the

k segments whose sums are the k largest among all possible segment
sums. Recently, Bengtsson and Chen gave an O(min{k+n log2 n, n

√
k})-

time algorithm for this problem. In this paper, we propose an O(n +
k log(min{n, k}))-time algorithm for the same problem which is superior
to Bengtsson and Chen’s when k is o(n log n). We also give the first
optimal algorithm for delivering the k maximum-sum segments in non-
decreasing order if k ≤ n. Then we develop an O(n2d−1+k log min{n, k})-
time algorithm for the d-dimensional version of the problem, where d > 1
and each dimension, without loss of generality, is of the same size n.
This improves the best previously known O(n2d−1C)-time algorithm,
also by Bengtsson and Chen, where C = min{k + n log2 n, n

√
k}. It

should be pointed out that, given a two-dimensional array of size m×n,
our algorithm for finding the k maximum-sum subarrays is the first one
achieving cubic time provided that k is O(m2n

log n
).

1 Introduction

The maximum-sum subarray problem was first surveyed by Bentley in his “Pro-
gramming Pearls” column of CACM [3]. The one-dimensional case is also called
the maximum subsequence problem and is well known linear-time solvable using
Kadane’s algorithm [3]. In the two-dimensional case, the task is to find a subar-
ray such that the sum of its elements is maximized. The maximum subsequence
(subarray) problem is widely used in pattern recognition [8], image processing
[7], biological sequence analysis [6,9,10,11], data mining [7], and many other
applications.

Computing the k largest sums over all possible segments is a natural extension
of the maximum-sum segment problem. This extension has been considered from
two perspectives, one of which allows the segments to overlap, while the other dis-
allows. Linear-time algorithms for finding all the non-overlapping maximal seg-
ments were given in [4,12]. In this paper, we focus on finding the k maximum-sum

� Corresponding author.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 799–808, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

800 C.-H. Cheng et al.

segments whose overlapping is allowed. We will use the terms “k maximum seg-
ments” and “k maximum-sum segments” interchangeably. A näıve approach is to
choose the k largest from the sums of all possible contiguous subsequenceswhich re-
quiresO(n2) time. Bae and Takaoka [1] presented anO(kn)-time algorithm for the
k maximum segment problem. Recently, an improvement to O(min{k + n log2 n,
n
√
k}) was given by Bengtsson and Chen [2]. In this paper, we propose an O(n+

k log(min{n, k}))-time algorithm which is superior to Bengtsson and Chen’s when
k is o(n logn). It is not difficult to see that a lower bound of the k maximum seg-
ment problem isΩ(n+k). There is still a gap between the trivial lower bound and
our method. However, if the kmaximum segments are requested in non-decreasing
order, we give an Ω(n + k log k)-time lower bound for the k ≤ n case. A simple
variant of our algorithm can deliver the k maximum segments in non-decreasing
order in O(n+ k log k) time, which is optimal if k ≤ n.

To avoid misunderstanding, we will use the term “subarray” instead of “seg-
ment” in the multiple-dimensional cases. In the two-dimensional case, we are
given an m× n array of real numbers. The fastest algorithm for the maximum
subarray problem stayed at O(m2n) time for a long period of time. In 1998,
the first subcubic-time algorithm was proposed by Tamaki and Tokuyama [14].
The time complexity of the latest algorithm for the maximum subarray problem
presented by Takaoka [13] is O(m2n(log logm/ logm)1/2). Clearly, it is still close
to O(m2n). Our goal for the two-dimensional case is to find the k maximum-sum
subarrays in the array. Bae and Takaoka [1] gave an O(m2nk)-time algorithm
for this problem. Bengtsson and Chen [2] presented an improved algorithm in
O(min{m2C,m2n2}) time, where C = min{k + n log2 n, n

√
k}. We propose an

O(m2n + k log(min{n, k}))-time algorithm, which is superior to the previous
results for every value of k. Notice that our algorithm is the first cubic-time
algorithm for the k maximum subarray problem when k is O(m2n

log n). For the d-
dimensional case, the best previously known algorithm, by Bengtsson and Chen
[2], runs in O(n2d−1C) time, where C = min{k+n log2 n, n

√
k}. We propose an

improved O(n2d−1 + k log min{n, k})-time algorithm.
The rest of the paper is organized as follows. Section 2 gives a formal definition

of the k maximum segment (subarray) problem. In Section 3, we give the algo-
rithm for the k maximum segment problem based on an iterative partial-table
building approach and discuss the issue of reporting the k maximum segments
in non-decreasing order. We extend the results to the multiple-dimensional cases
in Section 4. Finally, we close the paper by mentioning a few open problems.

2 Problem Definitions and Notations

Given a sequence of n real numbers A[1 . . . n], a segment is simply a contiguous
subsequence of that sequence. Let P denote the prefix-sum array of A where
P [i] = a1 + a2 + . . . + ai for i = 1, . . . , n. Let A[i . . . j] denote the segment
<ai, ai+1, . . . , aj>. Let S(i, j) be the sum of A[i . . . j], i.e. S(i, j) = ai + ai+1 +
. . .+ aj . It is easy to see that S(i, j) = P [j] − P [i− 1]. Let [i, j] denote the set
{i, i+ 1, . . . , j} for i ≤ j.

Improved Algorithms for the k Maximum-Sums Problems 801

Problem 1: k Maximum-Sum Segments
Input: a sequence of n real numbers A = <a1, a2, . . . , an> and an integer

k, 1 ≤ k ≤ 1
2n(n− 1)

Output: k maximum-sum segments such that the sums of these segments
are the k largest among all possible segment sums

We also consider the k maximum-sum problem in higher dimensions. In par-
ticular, the two-dimensional problem is sometimes referred to as the k maximum-
sum subarray problem.

Problem 2: k d-Dimensional Maximum-Sum Subarrays
Input: a d-dimensional array of real numbers and a positive integer k
Output: k d-dimensional subarrays such that the sums of these subarrays

are the k largest among all possible subarray sums

3 The k Maximum-Sum Segment Problem

Finding the k largest elements of a sequence is essential in the construction of
our algorithm for the k maximum-sum segment problem. Thus, we first describe
how to find the k largest elements in Lemma 1.

Lemma 1. Given a sequence of numbers, the k maximum (or minimum) ele-
ments can be found in linear time.

Proof. According to [5], the kth maximum element of a sequence can be found
in linear time. Suppose ai denotes the kth maximum element. To obtain the k
maximum elements, we simply compare ai with all the elements of the sequence.
We first output those elements whose values are greater than ai. Then, we append
additional elements equal to ai to the output so that k elements are yielded. ��

A näıve quadratic-time solution to the k maximum segment problem is to
build a table of size n × n, storing all the possible segments. By Lemma 1, the
k maximum segments can be retrieved from the table in O(n2) time. To speed
up, we introduce a partial-table building method for the k maximum segment
problem.

3.1 An Iterative Partial-Table Building Approach

Instead of building the entire table at once, we adopt an iterative strategy, in
the sense that in each iteration we build only a partial table. Before introducing
our main algorithm, let us define some notations first.

Definition 1. Let Ri,j denote the segment ending at index i such that Ri,j is
the jth largest among those segments that end at i. That is, Ri,j = A[p . . . i]
where S(p, i) is the jth largest among S(q, i) for all q ∈ [1, i].

Definition 2. Let Ti,j denote the set of segments Ri,1, Ri,2, . . . , Ri,j. In other
words, Ti,j contains all the j largest segments ending at index i.

802 C.-H. Cheng et al.

The näıve approach, described at the beginning of this section, compares all
the segments in T1,n, T2,n, . . . , Tn,n, each of which contains at most n segments.
However, we know that if Ri,j is not one of the k maximum segments of A, then
neither are Ri,j+1, Ri,j+2, . . . , Ri,n since each of them has a smaller sum than
Ri,j by definition. Furthermore, given an integer , there are only two possible
cases for every index as follows.

1. For some index i, if not all the segments in Ti,� belong to the k largest seg-
ments retrieved from T1,�, T2,�, . . . , Tn,�, then we need not consider segments
Ri,�+1, Ri,�+2, . . . , Ri,n anymore.

2. Conversely, for some index i′, if all the segments in Ti′,� belong to the k
largest segments retrieved from T1,�, T2,�, . . . , Tn,�, then we need to consider
Ri′,�+1, Ri′,�+2, . . . , Ri′,n since they are still candidates for the k maximum
segments of A.

In conclusion, by comparing segments in T1,�, T2,�, . . . , Tn,�, we can bypass the
indices in case 1, and only have to consider the indices in case 2 since they may
contribute more segments. We call those indices in case 2 the “qualified right
ends”.

Algorithm 1 KMaxSums
1: Q← {1, 2, . . . n}, m← n, K ← φ;
2: repeat
3: find � such that m× (�− 1) < 2k ≤ m× �;
4: if � > n then
5: �← n;
6: end if
7: for all i ∈ Q do
8: compute Ti,�;
9: end for

10: K ← the k largest segments from K ∪ i∈Q Ti,�;
11: Q← {i | Ti,� ⊆ K ∀ i ∈ Q};
12: m← |Q|;
13: until m = 0 or � = n
14: output the segments in K;

The pseudo code for the problem of k maximum-sum segments is given in
Algorithm 1. Let Q denote the list of m distinct qualified right ends, which are
initially the n positions of A and Q[1], Q[2], . . . , Q[m] refer to the m right ends
in Q, respectively. Let m be the number of qualified right ends, assigned n in the
beginning. We let K, initially empty, denote a list of candidate segments for the
k maximum segments. The algorithm repeats the following procedure. In each it-
eration, we choose = 2

⌈
k
m

⌉
and then compute TQ[1],�, TQ[2],�, . . . , TQ[m],� which

contain around 2k segments. We next retrieve the k largest segments from the

Improved Algorithms for the k Maximum-Sums Problems 803

set of segments, obtained by incorporating segments in TQ[1],�, TQ[2],�, . . . , TQ[m],�
with the segments in K. It should be noted here that the k largest segments
retrieved in this manner are not certainly the k maximum-sum segments of A
because we only consider the largest segments ending at Q[1], Q[2], . . . , Q[m].
Since only k largest segments are retrieved, there would be at most half qualified
right ends left over for the next iteration. (Imagining k balls are thrown into an
m× table, m× ∼= 2k, we know that there would be at most half rows full of
balls.) Meanwhile, the value of will at least double in the next iteration. We set
Q the qualified right ends, set m the size of Q, and then restart the procedure.
The procedure will terminate either when the number of qualified right ends
decreases to zero or increases to n.

Lemma 2. Algorithm KMaxSums terminates in at most log n+ 1 iterations.

Proof. Suppose algorithm KMaxSums terminates in the ith iteration, and the
values of in each iteration are denoted by 1, 2, . . . , i, respectively. Our goal
is to prove that i ≤ logn + 1. For any two consecutive iterations j and j + 1,
suppose mj and mj+1 are the corresponding values of m in the jth iteration and
the j+1th iteration. We havemj×(j−1) < 2k ≤ mj×j andmj+1×(j+1−1) <
2k ≤ mj+1 × j+1. By definition, mj+1 is the number of qualified right ends with
all their j largest segments being retrieved, so it is clear that mj+1 ≤ �k/j�.
This yields 2k ≤ mj+1 × j+1 ≤ �k/j� × j+1 ≤ k

�j
× j+1. We conclude that

j+1 > 2j.
Next we show by induction that i ≥ 2i−1. The basis holds since 1 ≥ 20 = 1.

For any j we know j+1 ≥ 2j , so by inductive hypothesis, j ≥ 2j−1, we can
deduce that j+1 ≥ 2j. Thus, i ≥ 2i−1 by induction. Moreover, since i is at
most n, it follows that n ≥ i ≥ 2i−1, which leads to i ≤ logn+ 1. ��

Lemma 3. Given p distinct increasing indices i1, i2, . . . , ip , 1 ≤ p ≤ n, and a
positive integer q, 1 ≤ q ≤ n, we can compute Ti1,q, Ti2,q, . . . , Tip,q in O(n + pq)
time.

Proof. The input sequence A is partitioned into p+ 1 contiguous subsequences,
A[1 . . . i1], A[i1 + 1 . . . i2], . . . , A[ip−1 + 1 . . . ip], A[ip + 1 . . . n]. Let j denote the
length of the jth contiguous subsequence, i.e. j is the length of A[ij−1 . . . ij].
Notice that 1 + 2 + . . .+ p is less than or equal to n.

To compute Tij ,q, it suffices to find the q minimum values in the prefix-sum
array P [1 . . . ij] for all j ∈ [1, p]. So, in the first step we find the q minimum
values among P [1 . . . i1], which can be done in O(1) time by Lemma 1. Let Q
record these q minimum values. In the second step, the q minimum values among
P [1 . . . i2] is found by retrieving the q minimum values fromQ and P [i1+1 . . . i2].
This requiresO(2+q) time by Lemma 1. Proceeding in this manner, we compute
the Tij ,q for each index ij in O(j + q) time. Therefore, the total running time is
1+(2+q)+(3+q)+. . .+(j +q)+. . .+(p+q) = (1+2+. . .+p)+(p−1)q =
O(n+ pq). ��

804 C.-H. Cheng et al.

Lemma 4. Algorithm KMaxSums runs in O((n + k) logn) time.

Proof. Since m× (−1) < 2k ≤ m× ⇒ 2k ≤ m× < 2k+m ≤ 2k+n, we can
derive that m× = O(n+k). By Lemma 3, the time required for computing the l
largest segments ending atm qualified ends is O(n+m×) = O(n+k). Retrieving
k largest segments from O(k) segments takes only O(k) time by Lemma 1. So, it
takes O(n+k) time in each iteration. Since there are at most logn+1 iterations
by Lemma 2, we conclude that the total time is O((n + k) logn). ��

If k ≥ n, we can write the time complexity of KMaxSums as O(k logn). If
k < n, we can write the time complexity as O(n logn). In what follows, we show
that in the k < n case, we can further reduce the running time to O(n+k log k),
which leads to Theorem 1.

Theorem 1. The problem of finding the k maximum-sum segments can be solved
in O(n+ k log(min{n, k})) time.

As we will see, the O(n) term in O(n + k log k) comes from the time needed
to compress the input sequence, and the O(k log k) term comes from the time of
executing k iterations, each of which costs O(log k) time.

3.2 Improving on the Time Complexity in the k < n Case

The strategy is to compress the input sequence A into a sequence of size at most
2k by preprocessing A in O(n) time. We can find k distinct positions containing
all the right ends of the k maximum segments. Similarly, we find k distinct
positions containing all the left ends. To find the k maximum segments, we only
have to consider these 2k positions. Specifically, let r1, r2, . . . , rk denote the right
ends of the k largest segments retrieved from R1,1, R2,1, . . . , Rn,1.

Lemma 5. The k maximum-sum segments of A must end at the indices in
r1, r2, . . . rk.

Proof. Assume that there exists one of the k maximum-sum segments, say Si,
whose right end, i, is not in r1, r2 . . . rk. By definition of Ri,1, we know Si

cannot have a larger sum than Ri,1. Moreover, Ri,1 has a smaller sum than
Rr1,1, Rr2,1 . . . , Rrk,1 since Ri,1 is not the k largest by assumption. So, we have
deduced that there are at least k segments having a larger sum than Si. This
contradicts to the assumption. ��

Similarly, we find the largest segments starting at each index of A. To do
so, we scan the suffix sum array in the reverse order and keep the minimum
value on the fly. Let us use a similar notation to refer to these segments, say
L1,1, L2,1, . . . , Ln,1. Let l1, l2, . . . , lk denote the left ends of the k largest segments
retrieved from L1,1, L2,1, . . . , Ln,1. It can be shown in the same way that the k
maximum segments of A must start at l1, l2, . . . , lk.

We construct a compressed sequence recording the prefix sums of l1, l2, . . . , lk
and r1, r2 . . . rk. Algorithm KMaxSums takes this compressed sequence as input
and runs in O(k log k) time. Since we use O(n) time to compress A, the total
time is O(n + k log k).

Improved Algorithms for the k Maximum-Sums Problems 805

3.3 Finding k Maximum-Sum Segments in Order

The problem of k maximum segments has a trivial lower bound Ω(n+k). Notice
that the k maximum segments are not sorted. Lemma 6 states that if we want to
output k maximum segments in non-decreasing order, the lower bound becomes
O(n+ k log k) when k is no more than n.

Lemma 6. When k ≤ n, it requires Ω(n+k log k) time to output the k maximum
segments in non-decreasing order.

Proof. If there exists an o(n+k log k)-time algorithm for computing the k maxi-
mum segments in non-decreasing order, we show that sorting k random numbers
can be done in o(k log k) time. Assume to the contrary that there exists an al-
gorithm Λ computing the k sorted maximum segments in o(n + k log k) time.
Given k random numbers, we obtain a new sequence of length 2k − 1 as fol-
lows. For each two consecutive random numbers, we augment a negative number
whose absolute value is larger than them. That way the k maximum segments
in this new sequence are all atomic elements. The output of Λ on this new se-
quence is equivalent to the k sorted random numbers. The running time of Λ
is o((2k − 1) + (2k − 1) log(2k − 1)) = o(k log k). However, the lower bound of
sorting k random numbers is well-known to be O(k log k) which contradicts to
our assumption. ��

Corollary 1. A simple variant of algorithm KMaxSums yields an optimal so-
lution to the problem of finding the k sorted maximum segments when k ≤ n.

Proof. We first run algorithm KMaxSums to find the k maximum segments
in O(n + k log k) time. We next sort the k maximum segments by sum, which
requires O(k log k) time. ��

It is not difficult to see that when k > n, algorithm KMaxSums also leads
to an O(k log k)-time solution to the problem of finding the k sorted maximum
segments. However, we do not know if O(k log k) is the actual lower bound of
this sorted problem when k > n.

4 Multiple-Dimensional Cases

It is helpful to introduce the two-dimensional case before extending the results
to the multiple-dimensional cases. Recall the definition of the k maximum-sum
subarray problem in d dimensions. Its goal is to find k d-dimensional subarrays
such that the sums of those subarrays are the k largest among all possible d-
dimensional subarray sums.

4.1 Two-Dimensional Case

The input sequence is replaced by a two-dimensional arrayX = [xij]1≤i≤m,1≤j≤n.
We define X [p . . . q, r . . . s] as the subarray expanded by the four corners (p, r),

806 C.-H. Cheng et al.

(p, s), (q, r) and (q, s).The idea is to transform the input array X [1 . . .m, 1 . . . n]
into a pile of one-dimensional sequences. The original problem is then reduced
to finding the k largest segments from these one-dimensional sequences. Using
similar techniques presented in the previous sections, we can solve the k two-
dimensional maximum subarrays problem. Let us show the transformation in
details. Given two indices i and j where 1 ≤ i ≤ j ≤ m, we convert the subarray
X [i . . . j, 1 . . . n] into a new sequence Xi,j [1 . . . n] such that Xi,j [q] =

∑j
p=i xpq

for q = 1, . . . , n. Clearly, each segment Xi,j [p . . . q] corresponds to the subarray
X [i . . . j, p . . . q] respectively. The maximum-sum subarray problem is equivalent
to finding k maximum segments from the O(m2) converted sequences, Xi,j for
1 ≤ i ≤ j ≤ m.

Given an integer , observe that each converted sequence’s maximum seg-
ments are the local maxima with respect to the k maximum subarray problem.
Obviously, the k maximum subarrays of X are the k global maxima. A näıve
approach is to find every converted sequence’s k maximum segments, and the k
maximum subarrays are the k largest among the O(m2k) local maxima. Instead
of finding O(m2k) local maxima at once, we adopt the same trick to speed up
the computation. That is, in each iteration we compute only 2k local maxima
and eliminate half of them.

The pseudo code for the k maximum-sum subarray problem is given in Algo-
rithm 2. Let ns denote the number of “qualified sequences”, which will be defined
later, and ns is initialized as O(m2). In each iteration, we use algorithm KMax-
Sums to find maximum segments, = 2� k

ns
�, from ns converted sequences and

then retrieve the k largest which are the candidates of the k maximum subarrays.
Clearly, if the th largest local maximum is not one of the candidates, neither
is the (+ 1)th largest local maximum. We call the sequences whose th largest
local maximum belongs to the k candidates the “qualified sequences”, and the
rest the unqualified sequences. Only the qualified sequences need to be consid-
ered in the next iteration. The algorithm terminates when all the sequences are
unqualified.

Now we turn to the time complexity analysis. In line 1, we compute the
prefix sums for each column of X in O(mn) time. It takes O(m2n) time to
transform input array into sequences in lines 2, 3 and 4. Recall that at most half
of the qualified sequences are left over after each round. We know that finding
the maximum segments takes O(n + log(min{n, })) time by Theorem 1.
Below, we discuss it in two possible cases. When k ≤ n, the number of qualified
sequences is reduced to k in the second iteration. So, the entire while-loop takes
O(m2 × (n + 1 log 1) + k) + O(k × (n + 2 log 2) + k) + O(k

2 × (n + 4 log 4) +
k) + . . . + O(1 × (n + k log k) + k) = O(m2n + k log k) time. When k > n,
O(m2×(n+ log)+k)+O(m2

2 ×(n+2 log 2)+k)+O(m2

4 ×(n+4 log 4)+k)+
. . .+O(m2

min{m2,k}×(n+(min{m2, k}) log(min{m2, k})+k) = O(m2n+k logn)
where = 2� k

m2 �. Therefore, we have the following theorem.

Theorem 2. Algorithm KMaxSums2D finds the k maximum-sum subarrays in
O(m2n+ k log(min{n, k})) time.

Improved Algorithms for the k Maximum-Sums Problems 807

Algorithm 2 KMaxSums2D
1: Q← {(i, j) | 1 ≤ i ≤ j ≤ m}, ns ← m(m− 1)/2, K ← φ;
2: Compute a new array, Y = [yij] of order m× n, where yij = j

h=0 xih

3: for each i and j, 1 ≤ i ≤ j ≤ m do
4: Compute sequence Xi,j [1 . . . n] such that Xi,j [h] = yjh − yih for h = 1, 2, . . . , n
5: end for
6: repeat
7: find � such that ns × (�− 1) < 2k ≤ ns × �;
8: if � > n(n− 1)/2 then
9: �← n(n− 1)/2;

10: end if
11: for all (i, j) ∈ Q do
12: Li,j ← � maximum segments of Xi,j computed by KMaxSums;
13: end for
14: K ← the k largest segments from K ∪ (i,j)∈Q Li,j ;
15: Q← {(i, j) | Li,j ⊆ K ∀ (i, j) ∈ Q};
16: ns ← |Q|;
17: until ns = 0 or � = n(n− 1)/2
18: output the segments in K;

4.2 Higher-Dimensional Cases

Without loss of generality, we assume each dimension is of equal size n. Given a
d-dimensional array of real numbers, we wish to find k d-dimensional subarrays
with maximum sums. Similar techniques in the two-dimensional case are used
here. We reduce the higher-dimensional k maximum subarray problem to several
k maximum segment problems. We have to transform the d-dimensional input
array into sequences first. We store (d−1)-dimensional values to each element of
a converted sequence. Because there are O(n2) combinations in every dimension,
we transform the d-dimensional input array into O(n2d−2) converted sequences.
A similar analysis to the two-dimensional case yields the following theorem.

Theorem 3. The k d-dimensional maximum-sum subarrays can be found in
O(n2d−1 + k log min{n, k}) time.

5 Conclusions

We close this paper by mentioning a few open problems. First, is there an al-
gorithm running in o(k log k) time for finding the k maximum segments in non-
decreasing order when k > n? Second, it would be interesting to find a tight
lower bound for the multiple-dimensional k maximum subarray problem.

Acknowledgements

Chih-Huai Cheng, Kuan-Yu Chen, Wen-Chin Tien and Kun-Mao Chao were
supported in part by NSC grants 92-2213-E-002-059 and 93-2213-E-002-029 from
the National Science Council, Taiwan.

808 C.-H. Cheng et al.

References

1. S.E. Bae and T. Takaoka, Algorithms for the Problem of k Maximum Sums and
a VLSI Algorithm for the k Maximum Subarrays Problem, Proceedings of the 7th
International Symposium on Parallel Architectures, Algorithms and Networks, 247–
253, 2004.

2. F. Bengtsson and J. Chen, Efficient Algorithms for k Maximum Sums, Proceedings
of the 15th International Symposium on Algorithms And Computation, LNCS 3341,
137–148, 2004.

3. J. Bentley, Programming Pearls: Algorithm Design Techniques, Communications
of the ACM, 865–871, 1984.

4. K.-Y. Chen and K.-M Chao, On the Range Maximum-Sum Segment Query Prob-
lem, Proceedings of the 15th International Symposium on Algorithms And Compu-
tation, LNCS 3341, 294–305, 2004.

5. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms,
The MIT Press: 2nd Edition, 185–196, 1999.

6. T.-H. Fan, S. Lee, H.-I Lu, T.-S. Tsou, T.-C. Wang, and A. Yao, An Optimal Algo-
rithm for Maximum-Sum Segment and Its Application in Bioinformatics. Proceed-
ings of the Eighth International Conference on Implementation and Application of
Automata, LNCS 2759, 251–257, 2003.

7. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, Data Mining Using Two-
Dimensional Optimized Association Rules: Scheme, Algorithms, and Visualization,
Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data, 13–23,1996.

8. U. Grenander, Pattern Analysis, Springer-Verlag, New York, 1978.
9. X. Huang, An Algorithm for Identifying Regions of a DNA Sequence that Satisfy

a Content Requirement. Computer Applications in the Biosciences, 10: 219–225,
1994.

10. Y.-L. Lin, X. Huang, T. Jiang, and K.-M. Chao, MAVG: Locating Non-Overlapping
Maximum Average Segments in a Given Sequence, Bioinformatics, 19: 151–152,
2003.

11. Y.-L. Lin, T. Jiang, and K.-M. Chao, Efficient Algorithms for Locating the Length-
constrained Heaviest Segments with Applications to Biomolecular Sequence Anal-
ysis. Journal of Computer and System Sciences, 65: 570–586, 2002.

12. W.L. Ruzzo and M. Tompa, A Linear Time Algorithm for Finding All Maximal
Scoring Subsequences, Proceedings of the 7th International Conference on Intelli-
gent Systems for Molecular Biology, 234–241, 1999.

13. T. Takaoka, Efficient Algorithms for the Maximum Subarray Problem by Distance
Matrix Multiplication, Electronic Notes in Theoretical Computer Science, 61: 1–10,
2002.

14. T. Tamaki and T. Tokuyama, Algorithms for the Maximum Subarray Problem
Based on Matrix Multiplication, Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, 446–452, 1998.

Network Load Games�

Ioannis Caragiannis1, Clemente Galdi1,2, and Christos Kaklamanis1

1 Research Academic Computer Technology Institute,
Department of Computer Engineering and Informatics,

University of Patras, 26500, Rio Greece
2 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,

Universitá di Salerno, 84081, Baronissi (SA), Italy

Abstract. We study network load games, a class of routing games in
networks which generalize selfish routing games on networks consisting
of parallel links. In these games, each user aims to route some traffic from
a source to a destination so that the maximum load she experiences in the
links of the network she occupies is minimum given the routing decisions
of other users. We present results related to the existence, complexity,
and price of anarchy of Pure Nash Equilibria for several network load
games. As corollaries, we present interesting new statements related to
the complexity of computing equilibria for selfish routing games in net-
works of restricted parallel links.

1 Introduction

We study algorithmic questions related to a particular class of games in networks.
A game with n ≥ 2 players or users is a finite set of actions or strategies Si for
each user and a payoff function ui (or, alternatively, a cost function ci) defined
over the users and the set S1 × S2 × ...×Sn. The elements of S1 × S2 × ...× Sn

are called states. A Pure Nash Equilibrium is a state s = 〈P1, ..., Pn〉 such that
ui(P1, ..., Pi, ..., Pn) ≥ ui(P1, ...P

′
i , ..., Pn) for any P ′

i ∈ Si. In general, a game
does not have a Pure Nash Equilibrium.

In a load game the input is a set of n users, a set E of m resources, and
the action sets are Si ⊆ 2E . There are also given a load function L mapping
E × {1, ..., n} to positive real numbers denoting how much a user increases the
load of a resource it uses and a cost function mapping E × R to positive
real numbers (e(x) is non-decreasing in x). The payoffs/costs are computed as
follows. Let s = (P1, ..., Pn) be a state. Then

ci(s) = −ui(s) = max
e∈Pi

e
 ∑

j:e∈Pj

Le(j)

 .

Intuitively, each user chooses a set of resources and the cost incurred by user i
is the maximum load of the resources used by i.
� This work was partially supported by the European Union under IST FET Integrated

Project 015964 AEOLUS.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 809–818, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

810 I. Caragiannis, C. Galdi, and C. Kaklamanis

In network load games, the resources correspond to links of a directed network
and the action sets correspond to paths in the network. Links are related in the
sense that they have (possibly different) bandwidths and the users have (possibly
different) traffic weights. Then the load function for edge e and user i is defined
as Le(i) = wi/be where wi is the weight of user i and be is the bandwidth of
edge e. Hence, there is given a directed network G = (V,E), a source-destination
pair si, ti for each user i. The subsets of E available as actions to the user i is
the set of all simple directed paths from si to ti. In a state s = (P1, ..., Pn), the
payoff/cost for user i is defined as

ci(s) = −ui(s) = max
e∈Pi

 1
be

∑
j:e∈Pj

wj

 .

The social cost of a state s = (P1, ..., Pn) is defined as the maximum load over
all edges of the network, i.e., SC(s) = maxe∈E

{
1
be

∑
j:e∈Pj

wj

}
.

The price of anarchy (or coordination ratio [11]) for a network load game is
defined as the ratio of the worst social cost over all Pure Nash Equilibria over
the optimal social cost. Intuitively, it gives a measure for the degradation of
performance due to the selfish behavior of the users.

In their full generality, network load games are defined on multicommodity
networks (i.e., the source-destination pairs may be different) while we are also
interested in single-commodity networks or multicommodity networks with ei-
ther one source or one destination node. Given a single-commodity network, we
call stretch the ratio of the length of the longest simple path over the length of
the shortest path from s to t. An important class of networks is that of layered
networks; in these networks, all s-t paths have the same length (i.e., the stretch
is 1). The simplest single-commodity network is a network of m parallel links
connecting the source to the destination. In the generalization of restricted par-
allel links studied in [7] each user has a permissible set of links corresponding to
her set of strategies. This game can be thought of as a network load game on a
multicommodity network with one source and many destinations as it has been
observed in [10]. Another combinatorial problem to which this game is related
is the task scheduling on unrelated machines.

In the following we survey the results of the literature which are related to load
games; these include results on the well-studied congestion games. We consider
only on the existence, complexity, and price of anarchy of Pure Nash Equilibria.
The extensive literature on mixed equilibria (their existence is guaranteed by
the famous theorem of Nash [13]) is not discussed here.

The network load game on m parallel links (also known as selfish routing
on parallel links and also studied in the context of task scheduling on related
parallel machines) is the mostly studied game in the literature starting with the
work of Papadimitriou and Koutsoupias in [11]. For this game, polynomial-time
algorithms for computing Pure Nash Equilibria are known in the most general
case of links with different bandwidths and users with different traffics while the
problems of computing Pure Nash Equilibria of best of worst social cost are NP-

Network Load Games 811

hard [5]. The nashification technique presented in [4] shows that, starting from
any assignment of users to links, a Pure Nash Equilibrium of not larger social cost
can be computed in polynomial time. Using a polynomial-time approximation
scheme (PTAS) for task scheduling on related parallel machines [8], a PTAS
for computing a Pure Nash Equilibrium of best social cost (i.e., a Pure Nash
Equilibrium of cost at most 1 + ε times the best social cost, for any constant
ε > 0) is obtained. Concerning the price of anarchy of Pure Nash Equilibria in
such games, there is a tight bound of 2 − 1/m [11].

In the restricted links model, there is a polynomial-time 2-approximation
algorithm for computing a Pure Nash Equilibrium of best social cost in the case
of identical links (and users with different traffic) due to [7]. In the same paper,
tight bounds on the price of anarchy of Pure Nash Equilibria for these games
are presented. The problem of computing an assignment of best social cost is
a special case of the single-source unsplittable flow problem for which constant
approximations are presented in [9,10]. Unfortunately, the solutions computed
by these algorithms are not Pure Nash Equilibria in general.

Network load games generalize the games on (restricted) parallel links. An-
other generalization is the classes of congestion games and network congestion
games which have received significant attention in the literature. The selfish rout-
ing games on (restricted) parallel links are special cases of congestion games as
well. The definition of congestion games is similar to that of load games; the main
difference being that the payoff of each user is defined as the sum of the loads
on the links (or resources) used by the user (as opposed to the maximum which
is assumed in load games). As we will see, this subtle difference implies that
load games are essentially different than congestion games with respect to the
existence, complexity, and price of anarchy of Pure Nash Equilibria. Formally, in
congestion games there is a set E of resources, a set of n users with action sets
Si ⊆ 2E , and a delay function mapping E×{1, ..., n} to the integers (de(j) is non-
decreasing on j). Given a state s = (P1, ..., Pn), let fs(e) = |{i : e ∈ Pi}|. Then,
the payoff/cost of user i is defined as ci(s) = −ui(s) =

∑
e∈Pi

de(fs(e)). In net-
work congestion games, the set E corresponds to the links of a directed network
G = (V,E), each user has a source-destination pair si, ti ∈ V and her strate-
gies are all simple directed paths from si to ti in G. Linear network congestion
games have linear delay functions which is equivalent to assuming that links have
bandwidths be and the payoffs are computed as ci(s) = −ui(s) =

∑
e∈Pi

fs(e)
be

. In
weighted linear network congestion games each user i may have a positive weight
wi and her payoff/cost is defined as ci(s) = −ui(s) =

∑
e∈Pi

i:e∈Pi
wi

be
.

Rosenthal [14] has shown that any congestion game has a Pure Nash Equilib-
rium. His proof is based on the definition of a potential function associated to
the states of the game whose local minima correspond to Pure Nash Equilibria.
Since that paper, the use of potential function arguments is the main tool for
proving the existence of Pure Nash Equilibria. An interesting characterization
of games with respect to the potential functions they admit is presented in [12].
Interestingly, generalizations of congestion games on single-commodity networks
may not admit Pure Nash Equilibria as it is shown in [6]. Pure Nash Equilib-

812 I. Caragiannis, C. Galdi, and C. Kaklamanis

ria of best social cost can be computed efficiently in weighted linear network
congestion games on single-commodity layered networks [6].

Fabrikant et al. in [3] study the complexity of computing any Pure Nash Equi-
librium in congestion games. They show that, in general, the problem of comput-
ing a Pure Nash Equilibrium is PLS-complete (i.e., as hard as computing any
object whose existence is guaranteed by a polynomially-computable potential
function). For symmetric network congestion games (i.e., congestion games with
users having the same set of strategies), a Pure Nash Equilibrium can be com-
puted by a polynomial-time algorithm which minimizes Rosenthal’s potential
function through a reduction to min-cost flow [3].

In this paper, we present new results for the existence, complexity, and price
of anarchy of Pure Nash Equilibria in network load games. In particular:

– In Section 2, we show that any load game has a Pure Nash Equilibrium. This
is very interesting since the class of load games is especially broad. Also,
this result stands in contrast with a result in [6] for generalized versions of
network congestion games which do not always have Pure Nash Equilibria.
We also study the relation of network load games to congestion games with
respect to the potential functions they admit.

– We study the complexity of the problem of computing the best Pure Nash
Equilibrium in network load games. The NP-completeness of the problem in
single-commodity networks follows by the NP-completeness of the problem
in the network of m parallel links. We use the Nashification technique of [4]
in the case of single-commodity networks with identical links and users with
different traffics, and we obtain a polynomial time approximation scheme
for computing the best social cost. In the case of users with identical traffic,
we show that Pure Nash Equilibria of best social cost can be computed in
polynomial time in networks with either a single source or a single destina-
tion using a reduction to min-cost flow (the proof can be thought of as the
minimization of a potential function). These networks include networks of
restricted parallel links [7] as a special case. Concerning Pure Nash Equi-
libria of worst social cost, we show that the problem of computing them
is inapproximable in single-commodity networks with stretch strictly larger
than 1 and NP-hard in single-commodity layered networks and networks of
restricted parallel links. Here, we exploit the intuitive relations of Pure Nash
Equilibria in network load games to maximal matchings and longest paths
in graphs. All these results are presented in Section 3.

– We also present tight bounds of Θ(
√
αm) on the price of anarchy in single-

commodity networks with m identical links and stretch α ≥ 1. Due to our
related inapproximability results, our upper bound also yield almost optimal
approximations to the worst social cost of Pure Nash Equilibria in single-
commodity networks with stretch strictly larger than 1. We also show a
higher lower bound on the price of anarchy for single-commodity networks
with arbitrary links. These results are presented in Section 4.

We conclude with open problems in Section 5. Due to lack of space, all the
proofs but one have been omitted.

Network Load Games 813

2 Existence of Pure Nash Equilibria

Although the definition of load games is quite general, we show that any such
game has a Pure Nash Equilibrium. This comes in contrast with generalized
versions of congestion games which may not have a Pure Nash Equilibrium [6].
The proof uses an appropriately defined potential function over the states of the
game.

Theorem 1. Any load game has a Pure Nash Equilibrium.

In the following, we focus on network load games. We first attempt a char-
acterization of these games with respect to the potential functions they admit.
A potential function Φ defined over the states s1 and s2 of a game is called
an exact potential if for any two states differing in the strategy of user i, it is
Φ(s1) − Φ(s2) = ci(s1) − ci(s2) = ui(s2) − ui(s1). By extending this definition,
a potential function Φ defined over the states s1 and s2 of a game is called a
ξ-potential for a positive vector ξ defined over the users if for any two states
differing in the strategy of user i, it is Φ(s1) −Φ(s2) = ξi(ui(s1) − ui(s2)). Mon-
terer and Shapley have proved in [12] that every finite potential game (i.e., a
game admitting an exact potential function) is isomorphic to a congestion game.
Weighted network congestion games in single-commodity layered networks are
known to admit a ξ-potential [6]. Clearly, network load games with identical users
on networks of parallel links are congestion games. Furthermore, it can be easily
seen that load games with two identical users on networks with identical links
admit an exact potential while load games with two users with different weights
on networks with identical links admit a ξ-potential. The following lemma states
that these are the only similarities load games share with congestion games with
respect to the potential functions they admit.

Lemma 1. There exists a load game with 3 identical users on a layered network
with identical links and a load game with 2 users on a layered network with
different links that do not admit a ξ-potential.

3 Complexity of Computing Pure Nash Equilibria

Computing Pure Nash Equilibria of best social cost. We first consider
single-commodity networks with identical links and show how to extend the
nashification technique for selfish routing on parallel links [4] in this case. In this
way, we obtain a polynomial time approximation scheme (PTAS) for computing
a Pure Nash Equilibrium with best social cost.

Theorem 2. There is a PTAS for computing a Pure Nash Equilibrium of best
social cost in single-commodity networks with identical links.

The NP-hardness of the problem of computing a Pure Nash Equilibrium of
best social cost in single-commodity networks with arbitrary users follows by
the NP-hardness of the problem on the network of m parallel links. The proof

814 I. Caragiannis, C. Galdi, and C. Kaklamanis

assumes identical links. We can prove the following theorem which essentially
shows that what makes the parallel links model hard is the existence of arbitrary
users. The result is more general and also applies to selfish routing games on
restricted parallel links [7].

Theorem 3. A Pure Nash Equilibrium with the best social cost in networks with
either one source or one destination and with identical users can be computed in
polynomial time.

Proof. Consider a network load game with n users with identical traffic on a
network G = (V,E) with a single source s and k destination nodes t1, ..., tk and
m links (the proof for networks with one destination is very similar). Denote by
ni the number of users wishing to route their traffic from s to ti.

Consider all pairs (i, e) of the cartesian product {1, 2, ..., n} × E and sort
them in non-decreasing order with respect to the value of the quantity i/be. Let
L ≤ nm be the number of different values of i/be, and let r(i, e) be such that
i/be is the r(i, e)-th smallest among the L different values.

The proof uses a reduction to min-cost flow. We construct a network N having
the same set of nodes as G by replacing each link of the original network by n
parallel directed edges. Each edge has a unit capacity. The cost of the i-th edge
corresponding to the link e is equal to (m+1)r(i,e)−1. The min-cost flow problem
is defined by fs = n, fti = −ni, for each destination node ti, and fu = 0 for
any other node. Intuitively, this flow problem asks for pushing a total amount
n units of flows from node s so that amounts of ni units of flow reach the sink
nodes ti satisfying the capacity constraints so that the total cost of the edges
carrying flow is minimized. We use a min-cost flow algorithm to to compute
an optimal solution f for this problem. Note that, although the cost function
on the edges is exponential, min-cost flow algorithms work in polynomial time
and perform a polynomial number of operations (i.e., comparisons, additions,
multiplications, etc.) which do not depend on the cost function. In our case,
the costs are representable with a polynomial number of bits and each of the
operations mentioned above can be implemented with a polynomial number
of bit operations. Overall, both the space required and the running time are
polynomial (see [1] for an extensive overview of min-cost flow algorithms).

Using the optimal solution to the above min-cost flow we construct an assign-
ment for the original network load game as follows. We decompose the flow in
N into n disjoint paths. Each of these paths corresponds to the strategy of the
user in the obvious way. If a path uses some of the parallel edges corresponding
to link e, the corresponding user ’s path in G uses e.

Observe that if i flow paths use some of the parallel edges between two nodes
u and v in the flow solution f , then these paths should traverse the first i edges,
otherwise the solution would not be optimal.

We first show that the assignment produced in this way is a Pure Nash Equi-
librium. Assume that this is not the case and that the maximum load in the
path assigned to some user j by the flow algorithm is while user j has an
incentive to change her strategy pj and use another path p′j of maximum load
′ < . Denote by ie the number of users using link e in the assignment produced

Network Load Games 815

by the flow algorithm. Then corresponds to the load of some link e′ which is
used by i′ users and it is i′/be′ = while ′ corresponds to some link e′′ which is
used by ie′′ users and it is i′′+1

be′′
= ′. This also implies that r(ie′′ , e′′) < r(ie′ , e′).

Without loss of generality, we may assume that for each link e ∈ pj, the flow
path corresponding to path pj traverses the ie-th parallel edge corresponding
to the link e of G. If this is not the case and some other flow path uses the
ie-th parallel edge, we can trivially exchange the edges used by the two flows
without affecting the cost of f . Now, consider the flow f ′ which is obtained by
f by changing the route of the flow path corresponding to user j and route it
through the ie-th parallel edge corresponding to link e for each e ∈ p′j ∩ pj and
through the ie + 1-th parallel edge corresponding to link e for each e ∈ p′j\pj

(while no flow is routed through the ie-th parallel edge corresponding to the link
e for each e ∈ pj\p′j). The cost of the new flow f ′ is

COST (f ′) = COST (f) −
∑

e∈pj\p′
j

(m+ 1)r(ie,e)−1 +
∑

e∈p′
j\pj

(m+ 1)r(ie+1,e)−1

≤ COST (f) − (m+ 1)r(ie′ ,e
′)−1 + (m− 1)(m+ 1)r(ie′′ ,e

′′)−1

< COST (f)

which contradicts the fact that f is a flow of minimum cost.
We now show that the Pure Nash Equilibrium defined by the optimal solution

f of the flow problem has optimal social cost. Again, denote by the social cost
of this assignment which corresponds to some link e′ used by i′ users so that
i′/be′ = . Assume that there was another assignment with maximum load ′ <
corresponding to a pair (i′′, e′′) meaning that link e′′ is assigned to i′′ users and
has load i′′/be′′ = ′. Clearly, r(i′′, e′′) ≤ r(i′, e′) − 1. Using i′e to denote the
number of users using link e in the second assignment, we obtain that the cost
of the flow solution f ′ defined by this assignment is at most

COST (f ′) ≤
∑
e∈E

i′e∑
j=1

(m+ 1)r(j,e)−1 ≤
∑
e∈E

r(i′′,e′′)−1∑
j=0

(m+ 1)j

= (m+ 1)r(i′′,e′′) − 1 < (m+ 1)r(i′,e′)−1 ≤ COST (f)

which again contradicts the fact that f is a flow of minimum cost. ��

For networks of parallel links with identical users, we make the following
observation.

Lemma 2. The social cost of all Pure Nash Equilibria in a network of parallel
links with identical users is the same.

Computing Pure Nash Equilibria of worst social cost. Lemma 2 triv-
ially yields that computing the worst PNE is in P . Clearly, in single-commodity
networks, Pure Nash Equilibria may have different social costs.

816 I. Caragiannis, C. Galdi, and C. Kaklamanis

In the following, we show that computing the worst social cost in single-
commodity networks is inherently more difficult than in the case of parallel links.
The proof uses an approximation-preserving reduction from Longest Directed
Path in Hamiltonian Graphs [2].

Theorem 4. For any constants δ, ε > 0, there is no polynomial-time algo-
rithm which approximates the worst social cost within O((am)1/2−ε) in single-
commodity networks with m identical links and stretch α > 1+ δ, unless P=NP.
Also, there is no polynomial-time algorithm which approximates the worst social
cost within o(

√
am/ log2m), unless the Exponential Time Hypothesis fails.

In the case of networks with arbitrary links we can show a stronger result by
slightly modifying the construction in the proof of Theorem 4.

Corollary 1. For any constants δ, ε > 0, there is no polynomial-time algorithm
which approximates the worst social cost within O(m1−ε) in single-commodity
networks with m arbitrary links and stretch α > 1+ δ, unless P=NP. Also, there
is no polynomial-time algorithm which approximates the worst social cost within
o(m/ log2m), unless the Exponential Time Hypothesis fails.

The proofs of the above two statements make use of the fact that the stretch
is strictly larger than 1. In the case of single-commodity layered networks, we
can still show a negative result. The proof is based on a reduction from Minimum
Maximal Bipartite Matching [16].

Theorem 5. Computing a Pure Nash Equilibrium of worst social cost in single-
commodity layered networks with identical links and users with identical traffic
is NP-hard.

The case of restricted parallel links. Next, we consider the case of restricted
parallel links studied in [7], a special case of network load games on multicom-
modity networks. We consider the case of users with identical traffic. Recall that
Theorem 3 yields a polynomial-time algorithm for computing a Pure Nash Equi-
librium of the best social cost. The following theorem states that computing Pure
Nash Equilibria of worst social cost becomes difficult in restricted parallel links
with identical users (as opposed to parallel links). The proof uses a reduction
from Minimum Maximal Bipartite Matching [16].

Theorem 6. Computing the worst Pure Nash Equilibrium for users of identical
traffic in restricted parallel identical links is NP-hard.

4 Bounds on the Price of Anarchy

The results presented in the following establish a tight bound of Θ(
√
αm) on

the price of anarchy of Pure Nash Equilibria on network load games on single-
commodity networks with identical links. The upper bound is stated in Theorem
7 while the lower bound is stated in Theorem 8. In particular, Theorem 7 also

Network Load Games 817

implies that any Pure Nash Equilibrium (including the one of the best social
cost) gives an almost optimal approximation to the worst social cost. Assuming
that the Exponential Time Hypothesis (that Satisfiability has no subexponential-
time algorithms) holds, the corresponding approximation ratio is optimal within
polylogarithmic factors. Our constructions in the proof of Theorem 8 are gener-
alizations of the construction yielding the Braess Paradox in other selfish routing
games (see e.g., [15]).

Theorem 7. The price of anarchy of network load games in single-commodity
networks with m identical links and stretch α is at most O(

√
αm).

Theorem 8. For any integer m ≥ 9 and α such that 1 ≤ α ≤ m−1, there exists
a network load game on a single-commodity network with at most m identical
links and stretch at most α such that the price of anarchy is Ω(

√
αm).

By slightly modifying the construction in the proof of Theorem 8, we obtain
an even worse lower bound on the price of anarchy in network load games on
single-commodity networks with arbitrary links (and identical users).

Theorem 9. For any integer m ≥ 7, there exists a network load game with
identical users on a single-commodity layered network of at most m arbitrary
links with price of anarchy Ω(m).

5 Open Problems

Our work reveals some interesting open questions:

– We have not provided any polynomial-time algorithm for computing any
Pure Nash Equilibrium in single-commodity networks with arbitrary links
and users with arbitrary traffic. The nashfication technique of [4] for arbi-
trary users and arbitrary parallel links does not seem to apply in this case.
Furthermore, the following question is very challenging. Is there a constant
approximation algorithm or even a PTAS for computating of a Pure Nash
Equilibrium of best social?

– What is approximability of computing a Pure Nash Equilibrium of worst
social cost in single-commodity layered networks? Although we have proved
that the problem is NP-hard, the only known upper bound on its approx-
imability is the O(

√
m) implied by Theorem 7 for single-commodity layered

networks with identical links.
– Is there a polynomial-time algorithm for computing the best social cost in

networks with either a single source or a single destination with arbitrary
links when the number of different traffic weights of the users is constant?
Note that all possible values of the potential function are representable with
a polynomial number of bits in this case as well but the reduction of Theorem
3 does not seem to extend in this case. Also, even in the simplest case of
restricted parallel arbitrary links and users of arbitrary traffic, computing
any Pure Nash Equilibrium in polynomial time is still open.

818 I. Caragiannis, C. Galdi, and C. Kaklamanis

– Is there a load game or even a network load game which is PLS-complete? A
characterization of these games like the one presented in [3] for congestion
games would be very interesting.

References

1. R.K. Ahuja, T.L. Magnati, and J.B. Orlin. Network flows, Theory, Algorithms,
and Applications. Prentice Hall, 1993.

2. A. Björklund, T. Husfeldt, and S. Khanna. Approximating longest directed paths
and cycles. In Proceedings of the 31st International Colloquium on Automata, Lan-
guages, and Programming (ICALP ’04), LNCS 3142, Springer, pp. 222-233, 2004.

3. A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equi-
libria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC ’04), pp. 604-612, 2004.

4. R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification
and the coordination ratio for a selfish routing game. In Proceedings of the 30th
International Colloquium on Automata, Language, and Programming (ICALP ’03),
LNCS 2719, Springer, pp. 514-526, 2003.

5. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The structure and complexity of nash equilibria for a selfish routing game. In
Proceedings of the 29th International Colloquium on Automata, Language, and
Programming (ICALP ’02), LNCS 2380, Springer, pp. 123-134, 2002.

6. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. In Proceed-
ings of the 31st International Colloquium on Automata, Language, and Program-
ming (ICALP ’04), LNCS 3142, Springer, pp. 593-605, 2004.

7. M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash equilib-
ria for restricted parallel links. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC ’04), pp. 613-622, 2004.

8. D.S. Hochbaum and D. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM Journal
on Computing, 17(3), pp. 539-551, 1988.

9. J. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS ’97), pp. 68-77, 1996.

10. S. Kolliopoulos and C. Stein. Approximation algorithms for single-source unsplit-
table flow. SIAM Journal on Computing, 31, pp. 919-946, 2002.

11. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th International Symposium on Theoretical Aspects of Computer Science
(STACS ’99), LNCS 1563, Springer, pp. 404-413, 1999.

12. D. Monterer and L. S. Shapley. Potential games. Games and Economic Behavior,
Vol. 14, pp. 124-143, 1996.

13. J. F. Nash. Non-cooperative games. Annals of Mathematics, 54(2), pp. 286-295,
1951.

14. R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory, Vol. 2, pp. 65-67, 1973.

15. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM,
49(2), pp. 236-259, 2002.

16. M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, Vol. 38(3), pp. 364-372, 1980.

Minimum Entropy Coloring

Jean Cardinal1, Samuel Fiorini2, and Gwenaël Joret3

1 Computer Science Dept., CP 212
2 Mathematics Dept., CP 216

3 Computer Science Dept., CP 212, Aspirant du F.N.R.S. ,
Université Libre de Bruxelles,

Boulevard du Triomphe,
B-1050, Brussels, Belgium

{jcardin, sfiorini, gjoret}@ulb.ac.be

Abstract. We study an information-theoretic variant of the graph col-
oring problem in which the objective function to minimize is the entropy
of the coloring. The minimum entropy of a coloring is called the chro-
matic entropy and was shown by Alon and Orlitsky to play a fundamental
role in the problem of coding with side information. In this paper, we
consider the minimum entropy coloring problem from a computational
point of view. We first prove that this problem is NP-hard on interval
graphs. We then show that it is NP-hard to find a coloring whose entropy
is within (1

7
− ε) log n of the chromatic entropy for any ε > 0, where n

is the number of vertices of the graph. A simple polynomial case is also
identified. It is known that the traditional graph entropy is a lower bound
for the chromatic entropy. We prove that this bound can be arbitrarily
bad, even for chordal graphs. Finally, we consider the minimum number
of colors required to achieve minimum entropy and prove a Brooks-type
theorem.

1 Introduction

The standard minimum graph coloring problem asks to color the vertices of a
given graph with a minimum number of colors so that no two adjacent vertices
have the same color. The minimum number of colors in a coloring of G is the
chromatic number of G, denoted by χ(G). Numerous variants of this problem
have been studied, with different objective functions and constraints [15]. An ex-
ample of such alternative graph coloring problem is the optimum cost chromatic
partition problem [14], in which the cost of a color grows linearly with the size
of the color class. In the problem we consider, the cost is a concave function of
the size of the color class.

The problem is actually defined on specific vertex-weighted graphs called prob-
abilistic graphs. A probabilistic graph is a graph equipped with a probability dis-
tribution on its vertices. Let (G,P) be a probabilistic graph, and let X be any
random variable over the vertex set V (G) of G with distribution P . We define
the entropy H(φ) of a coloring φ as the entropy of the random variable φ(X).
In other words, the entropy of φ is the sum over all colors i of −ci log ci, where

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 819–828, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

820 J. Cardinal, S. Fiorini, and G. Joret

ci =
∑

x:φ(x)=i P (x) is the probability that X has color i. The chromatic entropy
Hχ(G,P) of the probabilistic graph (G,P) is the minimum entropy of any of its
colorings. We consider the problem of finding a minimum entropy coloring of a
probabilistic graph.

The notion of chromatic entropy was first proposed in an information-
theoretic context by Alon and Orlistky [3]. They considered the problem of
(zero-error) coding with side information, in which a random variable X must
be transmitted to a receiver having already some partial information about X .
Witsenhausen [20] showed how this transmission scenario could be encoded in a
characteristic graph G, the set of vertices of which is the set of possible values
of X . Alon and Orlitsky [3] proved that the minimum achievable rate for cod-
ing with side information is between Hχ(G,P) and Hχ(G,P) + 1 where P the
probability distribution of X .

Given a minimum entropy coloring of (G,P), a Huffman code computed from
the color probabilities will provide a suitable code with average length at most
Hχ(G,P) + 1. So minimum entropy colorings directly yield good codes for the
problem of coding with side information. Heuristic algorithms for practical cod-
ing with side information based on minimum entropy coloring have been pro-
posed by Effros et al. [21].

Minimum entropy coloring also applies to the compression of digital image
partitions created by segmentation algorithms [1,2].

While the problem has received attention in the information theory and data
compression community, it has not yet been studied thoroughly from a compu-
tational and combinatorial point of view. Our contribution aims at filling this
gap. Preliminary results have already been presented in [6]. Note that another
combinatorial optimization problem with an entropy-like objective function has
been recently studied by Halperin and Karp [13].

We first give in section 2 some useful lemmas concerning the structure of min-
imum entropy colorings, and introduce the definition of maximal color-feasible
sequences.

In section 3, we consider the computational complexity of the minimum en-
tropy coloring problem. We show that the problem is NP-hard even if the input
graph G is an interval graph, a class of graphs on which many classical NP-hard
problems become polynomial. We also study the approximability of the problem.
Since the chromatic entropy takes value in the interval [0, logn], where n is the
number of vertices of the graph, it is natural to consider additive approximations,
i.e. approximations within an additive term. This translates to a multiplicative
factor if we consider 2H(φ) instead of H(φ) as objective function. We show that,
unless P=NP, there is no polynomial algorithm finding a coloring of entropy at
most Hχ(G,P) + (1/7 − ε) logn for any ε > 0. This result holds even if P is the
uniform distribution. We end the section by giving a simple polynomial case,
namely when the input graph G satisfies α(G) ≤ 2.

Alon and Orlitsky showed that the chromatic entropy was bounded from
below by a well-known quantity called graph entropy [18], also known as Körner
entropy. They left open the question of how tight a lower bound the Körner

Minimum Entropy Coloring 821

entropy is. In section 4, we first note that the ratio between those two quantities
is unbounded and then prove that the difference between them can be made
arbitrarily large, even if the graph is chordal and the probability distribution is
uniform.

Finally, we prove in section 5 that, if P is uniform, a Brooks-type theorem
holds for the minimum number χH(G,P) of colors required to achieve minimum
entropy: χH(G,P) is at most the maximum degree of G, providedG is connected,
and different from an odd cycle or a complete graph.

2 Preliminaries

Consider a probabilistic graph (G,P), where G is a graph and P a probabil-
ity distribution defined on V (G). For simplicity, we denote by P (S) the sum∑

x∈S P (x), where S ⊆ V (G). We see colors of a coloring φ of G as positive
integers. We also use φ−1(i) for the set of vertices colored with color i. As
above, let ci be the probability mass of the i-th color class. Hence we have
ci = P (φ−1(i)) = Pr[φ(X) = i], where X ∼ P (x) is a random vertex with
distribution P . The color sequence of φ with respect to P is the infinite vector
c = (ci).

A sequence c is said to be color-feasible for a given probabilistic graph (G,P)
if there exists a coloring φ of G having c as color sequence. Most of the time,
we will restrict to nonincreasing color sequences, that is, color sequences c such
that ci ≥ ci+1 for all i. This can be easily achieved for a given color sequence
by renaming the colors. Note that color sequences define discrete probability
distributions on N+. The entropy of a coloring is the entropy of the discrete
random variable having its color sequence as distribution. In other words, we
have H(φ) = H(c) whenever c is the color sequence of φ, where (with a slight
abuse of terminology) H(c) is the entropy of color sequence c.

The following lemma is of fundamental importance for the remaining proofs
and was noted by Alon and Orlitsky [3]. The proof is straightforward and only
relies on the concavity of the function p '→ −p log p.

Lemma 1 (Alon and Orlitsky [3]). Let c be a nonincreasing color sequence,
let i, j be two indices such that i < j and let α a real number such that
0 < α ≤ cj. Then we have H(c) > H(c1, . . . , ci−1, ci + α, ci+1, . . . , cj−1, cj −
α, cj+1, cj+2, . . .).

We now examine the consequences of this lemma. We say that a color se-
quence c dominates another color sequence d if

∑j
i=1 ci ≥

∑j
i=1 di holds for all

j. We denote this by c 6 d. The partial order 6 is known as the dominance
ordering. It is often restricted to nonincreasing color sequences in order to avoid
unwanted incomparabilities. A nonincreasing color sequence is said to be max-
imal color-feasible when it is not dominated by any other nonincreasing color
sequence of the considered probabilistic graph. The next lemma indicates that
color sequences of minimum entropy colorings are always maximal color-feasible.
(Proof omitted due to lack of space.)

822 J. Cardinal, S. Fiorini, and G. Joret

Lemma 2. Let c and d be two distinct nonincreasing rational color sequences
such that c 6 d. Then we have H(c) < H(d).

A similar property was observed for other coloring problems, in particular by
de Werra et al. for minimum cost edge colorings [7,8]. A further consequence of
Lemma 1 is that any minimum entropy coloring can be constructed by iteratively
removing maximal stable sets, i.e., subsets of pairwise nonadjacent vertices that
are inclusionwise maximal. (Proof omitted due to lack of space.)

Lemma 3. Assume that P (x) > 0 holds for all vertices of a probabilistic graph
(G,P). Let φ be a minimum entropy coloring of G with respect to P . If the color
sequence of φ is nonincreasing, then the i-th color class of φ is a maximal stable
set in the subgraph of G induced by the vertices with colors j ≥ i.

3 Complexity and Approximability

We study in this section the complexity of the minimum entropy coloring prob-
lem and its approximability. We first note that the minimum entropy coloring
problem has already been shown to be NP-hard on planar graphs with the uni-
form distribution [6].

An interval graph is the intersection graph of a set of intervals on the real
line: vertices correspond to intervals and two distinct vertices are adjacent if the
corresponding intervals overlap. Our first result shows that finding a minimum
entropy coloring of a probabilistic interval graph is NP-hard. Since the numer-
ators and denominators of the probabilities that are used in our reduction are
polynomial in the size of the input, the proof also shows that NP-hardness holds
in the strong sense.

Theorem 1. Finding a minimum entropy coloring of a probabilistic interval
graph is strongly NP-hard.

Proof. Our reduction is from the problem of deciding if a circular arc graph G is
k-colorable, which is NP-complete [10]. A circular arc graph is the intersection
graph of arcs on a circle: vertices correspond to arcs and two distinct vertices are
adjacent whenever the corresponding arcs intersect each other. Given a circular
arc graph G, one can construct a circular representation for G in polynomial
time [19]. Without loss of generality, we assume that all arcs in the representation
are open (i.e., with the endpoints removed). The basic idea of the proof is to
start with a circular-arc graph and cut it open somewhere to obtain an interval
graph. The same idea is used in [17], where it is proved that finding a minimum
sum coloring of an interval graph is NP-hard.

Let y be an arbitrary point on the circle that is not the endpoint of any of
the arcs in the considered representation of G. Let k′ be the number of arcs in
which y is included. If k′ > k, then G is not k-colorable. If k′ < k, we add to the
representation k − k′ sufficiently small arcs that intersect only arcs including y.
This clearly does not increase the chromatic number of G above k. Thus, it can
be assumed that y is contained in exactly k arcs.

Minimum Entropy Coloring 823

Denote a1, . . . , ak the arcs that contain y. By splitting each arc ai into two
parts li and ri at point y we obtain an interval representation of some interval
graph G′. As is easily checked, G is k-colorable if and only if there is a k-coloring
of G′ in which lj and rj receive the same color for 1 ≤ j ≤ k.

Using an algorithm designed for chordal graphs [11], we list in linear time
all maximal cliques of G′ (as interval graphs are chordal). For each such clique
K, we do the following. If |K| > k then we reject the input as this implies
that G is not k-colorable. Now |K| ≤ k. By the Helly property for intervals,
there exists a point z of the real line contained in the intervals of K and in no
other. We extend the clique K by adding k − |K| sufficiently small intervals in
the interval representation around z. This is done in such a way that the new
intervals intersect only intervals corresponding to vertices of K. As before, this
operation does not increase the chromatic number of G′ above k. Let H denote
the resulting interval graph. By construction, all maximal cliques of H are also
maximum.

Let K denote the set of maximum cliques of H and let C = |K|. Consider
the auxiliary bipartite graph B having V (H) and K as color classes in which
x ∈ V (H) is adjacent to K ∈ K whenever x ∈ K. We define a probability
distribution P on the vertices of H as follows:

P (x) = λdegB(x) +
{
λj if x = lj or rj ,
0 otherwise,

where λ > 0 is chosen such that the sum of P (x) over all vertices x of H equals
1, and degB(x) denotes the degree of x in the auxiliary graph B.

We claim that G is k-colorable if and only if the sequence c∗ = λ(2k+C, 2(k−
1) + C, . . . , 2 + C, 0, . . .) is color-feasible for (H,P). First assume that G is k-
colorable. Then there exists a k-coloring φ of (H,P) assigning the same color to
lj and rj for all j. Let c denote the color sequence of φ. We assume that c is
nonincreasing. For every color i used in φ, we have

ci =
∑

x∈φ−1(i)

P (x) (1)

= 2λ(k − i+ 1) + λ
∑

x∈φ−1(i)

degB(x) (2)

= λ(2(k − i+ 1) + C). (3)

The second equality holds because c is nonincreasing. Because φ is proper, no two
vertices ofH with color i are contained in the same maximum clique. Moreover, if
some maximum clique is disjoint from the i-th color class then φ cannot possibly
be a k-coloring, a contradiction. It follows that every maximum clique of H
contains exactly one vertex of H with color i. The third equality follows.

Now assume that c∗ = λ(2k+C, 2(k−1)+C, . . . , 2+C, 0, . . .) is color-feasible
and let ψ denote a coloring of (H,P) that has c∗ as color sequence. Let S be
a stable set of H . No two vertices of S are contained in the same clique. For
the auxiliary graph B, this means that no K ∈ K is adjacent to two distinct

824 J. Cardinal, S. Fiorini, and G. Joret

elements of S. It follows that the sum
∑

x∈S degB(x) is at most C. Hence the
total probability mass of S in (H,P) is at most λ(2k + C), with equality if and
only if S contains both lk and rk. In particular, the first color class of ψ contains
both lk and rk. By iterating this argument, we conclude that the i-th color class
of ψ contains both lk−i+1 and rk−i+1 for all i, which means that G is k-colorable.

Let c∗ be defined as above. The arguments used in the last paragraph show
that c∗ is color-feasible for (H,P) if and only if it is the unique maximal color-
feasible sequence of (H,P). From Lemma 2, we then infer that c∗ is color-feasible
for (H,P) if and only if every minimum entropy coloring of (H,P) has c∗ as color
sequence. We conclude that finding a minimum entropy coloring of a probabilistic
interval graph is (strongly) NP-hard. ��

We now consider the approximability of the minimum entropy coloring
problem.

Theorem 2. Let c be a real such that 0 < c ≤ 1 and assume that there exists
a polynomial time algorithm that finds a coloring φ of a graph G such that the
entropy of φ with respect to the uniform distribution U on the vertices of G is
at most Hχ(G,U) + (c − ε) logn for some positive real ε. Then there exists a
polynomial time algorithm coloring G with at most nc−ε/2χ(G) colors.

Proof. Suppose that A is an algorithm filling the assumptions of the claim.
Without loss of generality, we can assume ε < c. Let n = |G| be the order of G
and χ = χ(G) be the chromatic number of G. We claim that some color class
in the coloring φ found by the algorithm contains at least n1−c+ε/χ vertices. In
order to show this, list the color classes of φ in nonincreasing cardinalities as S1,
S2, . . . , Sk. Letting H(φ) denote the entropy of φ with respect to the uniform
distribution U , we have

− log
|S1|
n

≤ H(φ) ≤ Hχ(G,U) + (c− ε) logn ≤ logχ+ (c− ε) logn.

The first inequality follows from the relation
∑

i −P (i) logP (i) ≥ − logPmax for
a probability distribution P whose maximum is Pmax. The middle one holds by
hypothesis and the last one comes from the fact that the entropy of a minimum
cardinality coloring is at most logχ. Hence the size of S1 is at least n1−c+ε/χ,
so our claim holds.

Let A′ denote the polynomial time algorithm that uses A as a subroutine to
find in any graph G with n vertices and chromatic number χ a stable set of size
at least n1−c+ε/χ. Now we iteratively use A′ to color any graph by coloring with
the same color all the vertices in the stable set output by A′ and removing these
vertices from the graph. Let G0 = G, G1 = G0 − A′(G0), G2 = G1 − A′(G1),
. . . , G� = G�−1 − A′(G�−1) be the sequence of graphs considered, and let t =
(χnc−ε)/(χnc−ε − 1). For each i between 1 and , we have

|Gi| ≤ |Gi−1| −
|Gi−1|1−c+ε

χ(Gi−1)
≤ |Gi−1| −

|Gi−1|
χnc−ε

=
|Gi−1|
t

.

Minimum Entropy Coloring 825

It follows that |Gi| ≤ n/ti for all i. Because G� is nonempty, we have n/t� ≥ 1
and hence ≤ logt n = lnn/ ln t. The number of colors in the resulting coloring
of G equals + 1. By what precedes, we have

+ 1 ≤ lnn
ln t

+ 1 ≤ lnn

(t− 1) − (t−1)2
2

+ 1 = (nc−ε χ− 1)
lnn

1 − 1
2(χ nc−ε−1)

+ 1.

In the second inequality we used that ln(x+ 1) ≥ x− x2

2 for x ≥ 0. Because the
case χ = 1 is trivial, we can assume that χ ≥ 2. It follows that

+ 1 ≤ 2(nc−ε χ− 1) lnn+ 1 = 2nc−ε lnn · χ− 2 lnn+ 1.

If n is large enough, that is, greater or equal to some constant depending on ε,
we find +1 ≤ nc−ε/2χ. Consequently, we can in polynomial time find a coloring
of a graph G with at most nc−ε/2χ colors. (Indeed, if n is small we use a brute
force algorithm to color the graph exactly and we can easily detect if χ = 1 in
polynomial time.) ��

It is known that the existence of a polynomial time algorithm coloring any
graph G with at most n1−εχ(G) colors for some positive real ε implies ZPP =
NP [9]. Moreover, if the number of colors used by such an algorithm is bounded
by n1/7−εχ(G) then it implies P = NP [4]. Combining these results with Theo-
rem 2 leads to the following corollaries.

Corollary 1. Let ε be any positive real. There is no polynomial time algorithm
that finds a coloring φ of a graph G such that the entropy of φ with respect to the
uniform distribution U on the vertices of G is at most Hχ(G,U) + (1 − ε) logn,
unless ZPP = NP.

Corollary 2. Let ε be any positive real. There is no polynomial time algorithm
that finds a coloring φ of a graph G such that the entropy of φ with respect to the
uniform distribution U on the vertices of G is at most Hχ(G,U)+(1/7−ε) logn,
unless P = NP.

We end this section by identifying an easy polynomial case for the minimum
entropy coloring problem. (Proof omitted due to lack of space.)

Theorem 3. There exists a polynomial algorithm for the minimum entropy col-
oring problem restricted to graphs G satisfying α(G) ≤ 2.

4 Bounds and Körner Entropy

We first give a definition of a previously known quantity that is often referred
to as graph entropy. Following [3] and to avoid ambiguities, we call it Körner
entropy.

The Körner entropy Hκ(G,P) of a probabilistic graph (G,P) is defined by
Hκ(G,P) = mina∈STAB(G),a>0 −

∑
x∈V (G) P (x) log ax, where STAB(G) is the

826 J. Cardinal, S. Fiorini, and G. Joret

stable set polytope of G, defined in RV (G) as the convex hull of the charac-
teristic vectors of the stable sets of G. The Körner entropy has a number of
applications, the most prominent of which being the problem of sorting with
partial information studied by Kahn and Kim in their celebrated paper [16].

We also let α(G,P) be the maximum weight P (S) of a stable set S of (G,P).

Lemma 4. For any probabilistic graph (G,P), we have

− logα(G,P) ≤ Hκ(G,P) ≤ Hχ(G,P) ≤ logχ(G).

Proof. The last inequality comes from the fact that in the worst case, the distri-
bution of the colors in a minimum entropy coloring is uniform, hence its entropy
is at most logχ(G). The second inequality is proved in [3]. This can be done
by remarking that the optimization problem defining the Körner entropy is a
relaxation of the minimum entropy coloring problem.

The first inequality is derived as follows. Let a ∈ STAB(G). A stable set has
weight at most α(G,P), so we have

∑
x∈V (G) P (x)ax ≤ α(G,P). Combining this

with the concavity of x '→ log(x) yields

−
∑

x∈V (G)

P (x) log ax ≥ − log
∑

x∈V (G)

P (x)ax ≥ − logα(G,P).

��

Although Lemma 4 holds for any probabilistic graph, the bounds on the
chromatic entropy can be computed in polynomial time only for certain classes
of probabilistic graphs. In particular, when G is a perfect graph, the two lower
bounds can be computed (to any fixed accuracy) in polynomial time [12]. The
chromatic number can also be computed in polynomial time on these graphs.

The question of the quality of the Körner entropy as lower bound for the
chromatic entropy was raised by Alon and Orlistky [3]. We clarify this point in
the following lemmas. (Proof omitted due to lack of space.)

Lemma 5. Let (G,P) be a probabilistic graph. Then the ratio
Hχ(G,P)/Hκ(G,P) can be arbitrarily large.

We known that it makes sense to look for an approximation of Hχ(G,P)
within an additive term. We thus consider this case in the next lemma.

Lemma 6. Let (G,P) be a probabilistic graph. Then the quantity Hχ(G,P) −
Hκ(G,P) can be arbitrarily large, even if G is chordal and P is the uniform
distribution.

In order to prove this result, we define a graph Gk(n) (n ≥ 2, k ≥ 1) induc-
tively on k. The graph G1(n) is the single vertex graph K1, and for k ≥ 2 the
graph Gk(n) is obtained as follows:

– start with the complete graph Knk−1 on nk−1 vertices,
– partition its vertex set V (Knk−1) in n sets V1, V2, . . . , Vn of equal sizes,

Minimum Entropy Coloring 827

– for each set Vi (1 ≤ i ≤ k) add a disjoint copy Gi of Gk−1(n) and make
it completely adjacent to vertices of Vi (in other words, all possible edges
between vertices of Gi and vertices in Vi are added).

It can easily be checked that Gk(n) is chordal. We study in the next two
lemmas the behavior of Hκ(Gk(n), U) and Hχ(Gk(n), U) when k is fixed and n
goes to infinity. (Proofs are omitted due to lack of space.)

Lemma 7. Hκ(Gk(n), U) ≤ (k−1)
2 logn+ o(1).

Lemma 8. Hχ(Gk(n), U) ≥ log k + (k−1)
2 logn− o(1).

Lemma 6 follows from Lemma 7 and Lemma 8.

5 Number of Colors

We consider in this section the number of colors used in a minimum entropy
coloring. We denote by χH(G,P) the minimum number of colors in a minimum
entropy coloring of the probabilistic graph (G,P). We assume here that we have
P (x) > 0 for all vertices x.

Brooks [5] showed a classical result stating that if G is a connected graph
different from a complete graph or an odd cycle, then χ(G) ≤ ∆(G), where
∆(G) is the maximum degree of a vertex in G. In the next theorem we prove
that this statement is also true for χH(G,P) when P is the uniform distribution.
(The proof is omitted due to lack of space.)

Theorem 4. If G is a connected graph different from a complete graph or an
odd cycle, then χH(G,U) ≤ ∆(G), where U is the uniform distribution over
V (G).

Acknowledgements

We thank Stefan Langerman and Gilles Van Assche for their valuable comments
on an earlier version of this paper.

References

1. M. Accame, F.G.B. De Natale, and F. Granelli. Efficient labeling procedures for
image partition encoding. Signal Processing, 80(6):1127–1131, June 2000.

2. S. Agarwal and S. Belongie. On the non-optimality of four color coding of image
partitions. In Proc. IEEE Int. Conf. Image Processing, 2002.

3. N. Alon and A. Orlitsky. Source coding and graph entropies. IEEE Trans. Inform.
Theory, 42(5):1329–1339, September 1996.

4. M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-
approximability—towards tight results. In 36th Annual Symposium on Founda-
tions of Computer Science (Milwaukee, WI, 1995), pages 422–431. IEEE Comput.
Soc. Press, Los Alamitos, CA, 1995.

828 J. Cardinal, S. Fiorini, and G. Joret

5. R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge Philos. Soc.,
37:194–197, 1941.

6. J. Cardinal, S. Fiorini, and G. Van Assche. On minimum entropy graph colorings.
In Proc. IEEE Int. Symposium on Information Theory, page 43, 2004.

7. D. de Werra, F. Glover, and E. A. Silver. A chromatic scheduling model with costs.
IIE Trans., 27:181–189, 1995.

8. D. de Werra, A. Hertz, D. Kobler, and N. V. R. Mahadev. Feasible edge colorings
of trees with cardinality constraints. Discrete Math., 222(1-3):61–72, 2000.

9. U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput.
Syst. Sci., 57(2):187–199, 1998.

10. M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1(2):216–
227, 1980.

11. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
2004.

12. M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition, 1993.

13. E. Halperin and R. M. Karp. The minimum-entropy set cover problem. In Au-
tomata, languages and programming, volume 3142 of Lecture Notes in Comput.
Sci., pages 733–744. Springer, Berlin, 2004.

14. K. Jansen. Approximation results for the optimum cost chromatic partition prob-
lem. Journal of Algorithms, 34:54–89, 2000.

15. T.R. Jensen and B. Toft. Graph Coloring Problems. Wiley Interscience, 1995.
16. J. Kahn and J.H. Kim. Entropy and sorting. J. Comput. Syst. Sci., 51(3):390–399,

1995.
17. D. Marx. A short proof of the NP-completeness of minimum sum interval coloring.

Oper. Res. Lett., 33(4):382–384, 2005.
18. G. Simonyi. Perfect graphs and graph entropy. An updated survey. In Perfect

graphs, Wiley-Intersci. Ser. Discrete Math. Optim., pages 293–328. Wiley, Chich-
ester, 2001.

19. A. Tucker. An efficient test for circular-arc graphs. SIAM J. Comput., 9(1):1–24,
1980.

20. H. S. Witsenhausen. The zero-error side information problem and chromatic num-
bers. IEEE Trans. Inform. Theory, 22(5):592–593, 1976.

21. Q. Zhao and M. Effros. Low complexity code design for lossless and near-lossless
side information source codes. In Proc. IEEE Data Compression Conf., 2003.

Algorithms for Max Hamming Exact Satisfiability

Vilhelm Dahllöf�

Dept. of Computer and Information Science,
Linköping University,

SE-581 83 Linköping, Sweden
vilda@ida.liu.se

Abstract. We here study max hamming xsat, i.e., the problem of
finding two xsat models at maximum Hamming distance. By using a
recent xsat solver as an auxiliary function, an O(2n) time algorithm
can be constructed, where n is the number of variables. This upper time
bound can be further improved to O(1.8348n) by introducing a new
kind of branching, more directly suited for finding models at maximum
Hamming distance. The techniques presented here are likely to be of
practical use as well as of theoretical value, proving that there are non-
trivial algorithms for maximum Hamming distance problems.

1 Introduction

Most previous algorithms for optimization problems have contented themselves
with producing one best or good-enough solution. However, often there is an
actual need for several solutions that are at a maximum (or at least great) Ham-
ming distance. For instance, when scheduling a group of people one typically
wants to present substantially different alternatives to choose between. Some-
what surprisingly, the max hamming csp problem has only recently become
an area of academic research. The first paper (to the best of our knowledge) by
Rossi et al. [3] came in 2002. In their paper they present some results on the
hardness of approximating the problem for CSPs on Boolean domains. Angels-
mark and Thapper [1] have presented exact and randomized algorithms for the
general finite domain problem as well as dedicated algorithms for max hamming
sat. Hebrard et al. [7] consider a broader range of problems, including finding
solutions that are similar. They also test some heuristic methods. The so far best
exact algorithm for max hamming sat by Angelsmark and Thapper [1] runs in
O(4n) time (where n is the number of variables) and polynomial space.

In this paper we will consider max hamming xsat. The xsat problem asks
for an assignment to the variables such that exactly one literal be true in each
clause. xsat is NP-complete as shown by Schaefer [12]. The problem is well
studied, and many exact algorithms have been presented, e.g. [6,8,11,5,2]. The
so far best algorithm by Byskov et al. [2] have a running time in O(1.1749n)

� The research is supported by CUGS – National Graduate School in Computer Sci-
ence, Sweden.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 829–838, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

830 V. Dahllöf

and uses polynomial space. xsat can be used to model for instance the graph
colourability problem (since every vertex must have exactly one colour, for an ex-
ample see [10]). Furthermore, there is a close connection between xsat and more
general cardinality constraints (see [4]). max hamming xsat is not efficiently
approximable (see [3]) and so exact algorithms are of real-world interest.

We will present two polynomial space algorithms P and Q. Previous algo-
rithms for maximum Hamming problems have relied on an external solver for
the base problem. P is also such an algorithm, however, there is a novelty: by us-
ing a polynomial time test, many unnecessary calls to the solver can be avoided.
Thereby the running time is improved substantially. Q represents something to-
tally new in this area, because it works directly on the inherent structure of the
max hamming xsat problem. More precisely, a new kind of DPLL branching
is introduced. Apart from the immediate interest of the max hamming xsat
problem itself, we hope that the ideas presented here will also be applicable for
other problems such as max hamming scheduling, max hamming clique
and the like.

For the sake of conciseness, we phrase the algorithms in such a way that they
answer the question “what is the maximum Hamming distance between any two
models?”. However, it is trivial to see how they can be modified to actually
produce two such models.

In what follows we first give some preliminaries and then in Section 3 we
present P and Q. In Section 4 some conclusions and possible future research di-
rections are given. At http://arxiv.org/abs/cs.DS/0509038 an extended version
of this paper can be found.

2 Preliminaries

A propositional variable (or variable for short) has either the value true or false.
A literal is a variable p or its negation p̄. We say that the literals p and p̄ are
derived from the variable p. When flipping p (p̄) one gets p̄ (p). The literal p
is true iff it is derived from the variable p which has the value true and p̄ is
true iff it is derived from the variable p which has the value false. A clause is a
number of literals connected by logical or (∨). The length of a clause x, denoted
|x|, is the number of literals in it. We will sometimes need a sub-clause notation
in this way: (a ∨ b ∨ C), such that C = c0 ∨ . . . ∨ cn is a disjunction of one or
more literals. In the following, literals will be indicated by lower-case letters and
sub-clauses by upper-case letters. A formula is a set of clauses. For a formula F ,
V ar(F) denotes the set of variables appearing in a clause of F . The degree of c,
denoted δ(c), is the number of appearances of the variable c, that is, the number
of clauses that contain either c or c̄. If δ(c) = 1 we call c a singleton. From a
formula one gets the formula graph by letting the variables form the vertices and
every pair of variables occuring together in a clause is joined by an edge. Hence,
graph concepts such as “connected components” can be used for formulae.

An x-model is an assignment to the variables of a formula F such that there
is exactly one true literal in every clause. The problem of determining whether

Algorithms for Max Hamming Exact Satisfiability 831

F allows an x-model is called xsat. A literal that exactly satisfies a clause is
called a satisfactor.

We now reach two central definitions: The Hamming distance between two
assignments is the number of assignments to the individual variables that dis-
agree. max hamming xsat is the problem of determining for a formula F the
maximum Hamming distance between any two x-models of F .

Substitution of a by δ in the formula F is denoted F (a/δ); the notation
F (a/δ; b/γ) indicates repeated substitution: F (a/δ)(b/γ) (first a is replaced and
then b). F (B/false) means that every literal of B is replaced by false.

We will deal with variants of the xsat problem, and in order not to clutter
the algorithms with trivialities, we shall assume that the substitution performs
a little more than just a syntactical replacement, namely propagation in the
following sense: Given a formula F , assume that there are three clauses x =
(a∨ b∨ c), y = (b∨ f ∨ g∨h) and z = (c̄∨d∨ e) in a formula. When substituting
true for a (F (a/true)), b and c must both be replaced by false (because in the
context of xsat exactly one literal must be true in each clause). This means
that y will become (false ∨ f ∨ g ∨ h) which can be simplified to (f ∨ g ∨ h)
and that z will become (true ∨ d ∨ e) which implies that d and e are false, and
so on. Other trivial simplifications are also made. For instance, the occurrence
of both a and ā in a clause is replaced by true. This process goes on until no
more simplifications can be done. If the substitution discovers that the formula
is x-unsatisfiable (for instance if there is a clause (true∨a∨ ā)) the unsatisfiable
formula {()} is returned.

When analyzing the running time of the algorithms, we will encounter re-
currences of the form T (n) ≤

∑k
i=1 T (n − ri) + poly(n). They satisfy T (n) ∈

O(τ(r1, . . . , rk)n) where τ(r1, . . . , rk) is the largest, real-valued root of the func-
tion

f(x) = 1 −
k∑

i=1

x−ri (1)

see [9]. Since this bound does not depend on the polynomial factor poly(n),
we ignore all polynomial-time calculations. Let R =

∑k
i=1 ri and then note

that due to the nature of the function f(x) = 1 −
∑k

i=1 x
−ri , the smallest

possible real-valued root (and hence the best running time) will appear when
each ri is as close to R/k as possible, i.e., when the decrease of size of the
instance is balanced through the branches. Say for instance that R = 4, k = 2.
Then τ(1, 3) = τ(3, 1) ≈ 1.4656 and τ(2, 2) ≈ 1.4142. We will refer to this as
the balanced branching effect. We will use the shorthand notation τ(rk . . .) for
τ(r, r . . . r︸ ︷︷ ︸

k

, . . .), e.g., τ(52, 33) for τ(5, 5, 3, 3, 3).

3 Exact Algorithms for max hamming xsat

In what follows we present the two poly-space algorithms P and Q for max ham-
ming xsat and prove that they run in O(2n) and O(1.8348n) time respectively.

832 V. Dahllöf

Though the running time of P is slightly inferior to the running time of Q, there
are good reasons to present both algorithms: P resembles previous algorithms
and gives a hint on how they can be improved, and it is easy to implement given
an external xsat solver. Furthermore, if one is content with getting two models
that have at least the Hamming distance d, for some constant d, then P will
have a provably better upper time bound than Q.

As a convention, when we present a clause (a∨ . . .), it is intended to cover all
dual cases as well, i.e., (ā ∨ . . .).

3.1 Using an External xsat Solver

One solution to the max hamming xsat problem is this algorithm which bears
resemblance to the O(4n) time max hamming sat algorithm by Angelsmark
and Thapper [1]. If the formula is x-unsatisfiable ⊥ is returned. The answer 0 of
course indicates that there is only one model.
1 algorithm P (F)
2 ans := ⊥
3 for k := 0 to n do
4 for every subset X ⊆ V ar(F) of size k do
5 Let C be the set of clauses containing any literal derived from X
6 Let C′ be a copy of C where every literal derived from X is flipped
7 if all clauses of C contain either 0 or 2 literals from X then
8 if F ∪ C′ is x-satifiable then ans := k
9 return ans

Before stating the correctness of P we need an auxiliary lemma. The proof is
trivial.

Lemma 1. Assume that M and M ′ are x-models for F and that X is the subset
of variables assigned different values. Then each clause of F contains either zero
or two literals derived from X.

Theorem 1. P (F) decides max hamming xsat for F

Proof. For completeness: Assume there are two models M and M ′ at maximum
hamming distance k and that the differing variables are collected in X . The
clauses containing zero literals from X remain the same under both models, the
interesting case is a clause (a ∨ b ∨ C) where a and b are from X (by Lemma 1
this is the only possible case). Assume w.l.o.g. that a is true and b is false under
M and the opposite holds for M ′. Then the clause (ā∨ b̄∨C) is x-satisfied under
both models.

For soundness: Assume we have a model M for F ∪C′. Then it is possible to
form another model M ′ by assigning all variables of X the opposite values.

We can now start examining the running time of P . Let an allowed subset
S of variables in a formula F be a subset such that each clause of F contains
either 0 or two members of S. The following lemma establishes an upper bound
for the number of allowed subsets. The proof is trivial.

Algorithms for Max Hamming Exact Satisfiability 833

Lemma 2. For any formula F the number N of allowed subsets is in O(7n/4) ⊆
O(1.6266n).

Theorem 2. P (F) runs in polynomial space and time O(2n).

Proof. Clearly P uses polynomial space. Furthermore, the running time is O(2n+
N · Cn), where N is the constant of Lemma 2 and C is a constant such that
xsat is solvable in polynomial space and time O(Cn). The currently best value
for C is 1.1749 (by Byskov et al., [2]) and so the upper time bound is O(2n +
1.6266n1.1749n) ⊆ O(2n + 1.9111n) = O(2n).

3.2 Using Branching

We will now move on to another poly-space algorithm Q with a provably better
running time than P . It is a DPLL-style algorithm relying on the fact that under
two models M and M ′, any variable a has either the same or opposite value. If
a is true under both models, then all variables occuring in a clause w = (a∨ . . .)
can be removed (because only one literal is true). If a is false under both models
it can be removed. If a has different values then by Lemma 1 there is exactly
one more variable a′ in w that has different values and we need to examine all
possible cases of a′. During the branching some simplifications of the formula
are made, for instance, superfluous singletons are removed. We need to store
information about removals of variables due to simplifications and therefore the
following is needed: To every variable a we associate two (possibly empty) sets of
variables: sing(a) and dual(a). We also need a marker sat(a). As a consequence
of the simplifications, in the leaves of the recursion tree a kind of generalized
models are found, that summarize several models. For now, we hide the details
in the helper algorithm GenH which we will come back to after the presentation
of the main algorithm. The reason for doing so, is that we first need to see how
the simplifications work.

Another technicality: like P , Q may return ⊥ if F is unsatisfiable. Therefore
we define ⊥ < 0 and ⊥ + 1 = ⊥; furthermore, max⊥(⊥, Z) returns Z, even if
Z = ⊥. Before Q′(F) is used, all sets dual(a) and sing(a) are assumed to be
empty, and every marker sat(a) assumed to be unassigned. During the execution
of Q′, if there is a clause (a . . .) where a is a singleton assigned a satisfactor, then
sat(a) := true, in the dual case where the clause looks like (ā . . .), sat(a) :=
false. This allows us to find out the role of a in a model.

For clarity of presentation we will first present a simplified algorithmQ′. Later
an optimization to improve the running time will be added.
1 algorithm Q′(F)
2 As long as there is a clause (a1 ∨ a2 . . .) where a1 and a2 are singletons,

remove a2 and let sing(a1) := sing(a1) ∪ {a2} ∪ sing(a2).
3 As long as there is a clause (a∨ b), assume w.l.o.g. that b is a non-singleton

(otherwise pick a) and let F := F (a/b̄) and let dual(b) := dual(b)∪dual(a)∪
{a}. If a singleton was created, goto the previous line.

4 if F = {()} then return ⊥
5 elsif F = {} then return GenH(F)

834 V. Dahllöf

6 elsif F is not connected then assume the components are F1 . . . Fk and
return

∑k
i=1Q

′(Fi)
7 else
8 Pick a longest clause w = (a1 ∨ a2 . . . ak) and assume w.l.o.g. that a1 is a

non-singleton. Now do the following:
9 anstrue := Q′(F (a1/true))

10 ansfalse = Q′(F (a1/false))
11 if anstrue = ⊥ or ansfalse = ⊥ then return max⊥(anstrue, ansfalse)
12 else
13 for i = 2 to k do
14 Let ansi := Q′(F (a1/āi))
15 return max⊥(anstrue, ansfalse, (ans2 + 1) . . . , (ansk + 1))

We are now ready to take a closer look at how the result of the simplifications
are handled by GenH . Note that during the execution of Q′, every removed
variable is kept in exactly one set sing(a) or dual(a), for (possibly) different
variables a. This motivates the following definition:

A generalized assignment is a partial assignment, such that every unassigned
variable is contained in exactly one set sing(a) or dual(a) (i.e., for all the sets
sing(a1), dual(a1), sing(a2) . . ., every intersection is empty). We say that a vari-
able a′ is transitively linked to the variable a if either 1) a′ ∈ sing(a) ∪ dual(a)
or 2) a is transitively linked to a member of sing(a) ∪ dual(a).

We will also need the two following auxiliary algorithms. Intuitively, Fix(a1)
corresponds to the maximum number of variables transitively linked to a1 that
can have different values under a model M where a1 is a satisfactor and a model
M ′ where a1 is not a satisfactor. The recursive algorithm di(a1) calculates the
maximum number of variables, transitively linked to a1 that can be assigned
different values while a1 is a non-satisfactor. In the recursive calls, it might be
that the argument is a satisfactor. The variable k is assumed to be initialized to
0.

1 algorithm Fix(a1)
2 fix := 0
3 if sing(a) �= ∅ then
4 Let {a1, a2 . . . am} := {a1} ∪ sing(a1)
5 sing(a1) := ∅
6 fix := max(Fix(a1), F ix(a2) . . . F ix(am))
7 elsif dual(a) �= ∅ then
8 Let {a1, a2 . . . am} := {a1} ∪ dual(a1)
9 dual(a1) := ∅

10 fix :=
∑

(Fix(a1), F ix(a2) . . . F ix(am))
11 else
12 fix := 1
13 return fix

Algorithms for Max Hamming Exact Satisfiability 835

1 algorithm di(a1)
2 if sing(a1) �= ∅ and a1 is a satisfactor then
3 k := k + Fix(a1)
4 else
5 for each member bi ∈ dual(a1) ∪ sing(a1) do
6 assign bi a value according to a1; k := k + di(bi)
7 return k

We are now ready to present GenH(F). Although F is an empty formula, it
is assumed that from it, every variable assigned a value during the execution of
Q′ can be reached.

1 algorithm GenH(F)
2 k := 0
3 for every variable a1 assigned a value do
4 if sing(a1) = ∅ and dual(a1) = ∅ then do nothing
5 elsif sing(a1) = {a2 . . . am} and a1 is a satisfactor then
6 Pick two members a′ and a′′ from {a2 . . . am}, there are

(
m
2

)
choices.

Try all and for each choice calculate k1 := Fix(a′) + Fix(a′′) +
∑
di(ai)

such that ai ∈ {a1 . . . am} \ {a′ ∪ a′′}. The maximum k1 found is added to
k.

7 else
8 k := k + di(a1)
9 return k

We are now ready to state the correctness of Q′:

Theorem 3. Q′(F) decides max hamming xsat for F

Proof. We inspect the lines of Q′:
Lines 2–5: Let us start by looking at Lines 2 and 3 to see that they do not alter
the x-satisfiability of F and that they indeed produce a generalized assignment.
As for Line 2, it is clear that removing all singletons but one does not alter the
x-satisfiability. It is also clear that every removed singleton will be in one and
only one set sing. Concerning Line 3, the clause (a∨b) implies that a and b have
opposite values, hence F := F (a/b̄) does not alter the x-satisfiability. By the
previous line, one of a and b is a non-singleton and so every variable removed by
this line is found in exactly one set dual. The formula {()} is unsatisfiable and
thus ⊥ is returned. When it comes to GenH , we need to justify the calculation
of the maximum Hamming distance for a generalized assignment. Consider two
models M and M ′ at maximum Hamming distance, contained in the generalized
assignment at hand. Clearly, all variables that are assigned a fixed value and
have empty sets sing and dual will have the same value under both models.
Furthermore, whenever there is a situation with a satisfactor a1 having a non-
empty set sing(a1), one of a1 . . . am will be a satisfactor under M and one under
M ′. When ai is a satisfactor under M , Fix(a1) is the largest number of variables

836 V. Dahllöf

transitively linked to it that can get assigned one value under M and another
value under M ′. Also, even though a variable is not a satisfactor itself, it may
well be that one variable transitively linked to it is. As in a general assignment
every variable is either assigned a fixed value or transitively linked to such a
variable, the distance between M and M ′ can be found as the sum of the values
calculated for the assigned variables.
Line 6: If F is not connected every model for one component can be combined
with any model for another component in order to form a model for F .
Lines 7–15: Assume there are two models M and M ′ at maximum Hamming
distance k. If a1 is true under both models then the formula where all other
literals of w are set to false is x-satisfiable and the recursive call will return k
(assuming that the algorithm is correct for smaller input). Similarly for Line 10.
If both Lines 9 and 10 returned an integer, we know that there are models under
which a1 is false and models under which a1 is true. Thus M and M ′ may assign
different values to a1. Assume this is the case. By Lemma 1 we know that M
and M ′ differ in exactly one more variable in w. Assume w.l.o.g. that a2 is that
literal. Then we know that a1 and a2 have different values and that the other
literals of w are false.

As for the running time of Q′, the handling of clauses of length 4 will cause
an unnecessarily bad upper time bound. The problem is that in Line 10 only
one variable is removed. However, a clause of length 3 is created which can be
exploited. Hence we replace Line 10 in Q′ by the following, thereby obtaining
the algorithm Q. The correctness is easily seen, because it is the same kind of
branching we have already justified.

1 if |W | �= 4 then ansfalse = Q(F (a1/false))
2 else
3 let W = (a1 ∨ a2 ∨ a3 ∨ a4) and assume that a2 is a non-singleton
4 ans1f := Q(F (a1/false; a2/true); ans2f := Q(F (a1/false; a2/false)
5 if ans1f = ⊥ or ans2f = ⊥ then ansfalse := max⊥(ans1f , ans

2
f)

6 else
7 ans3f := Q(F (a1/false; a2/ā3); ans4f := Q(F (a1/false; a2/ā4)
8 ansfalse := max⊥(ans1f , ans

2
f , (ans

3
f + 1), (ans4f + 1))

Theorem 4. Q(F) runs in polynomial space and time O(1.8348n)

Proof. Let T (n) be the running time for Q(F). The analysis will proceed by
examining what the running time would be if Q always encountered the same
case. It is clear that the worst case will decide an overall upper time bound for
Q. We inspect the lines of Q:
Line 1–5: All these lines are polynomial time computable.
Line 6: This line does not increase the running time as clearly,

∑k
i=1 T (ni) ≤

T (n) when n =
∑k

i=1 ni.

Algorithms for Max Hamming Exact Satisfiability 837

Lines 7–: It is clear that the worst clause length will decide an overall upper
time bound for Q. Note that if there are variables left in F , then there will be
at least two clauses left and one of the cases below must be applicable.

1. |w| ≥ 5. Already a rough analysis suffices here: In the call Q(F (a1/true))
a1 as well as all the other variables in w get a fixed value and hence |w|
variables are removed. The next call only removes one variable, namely a1.
In every of the other |w| − 1 calls |w| − 1 variables are removed. Hence, the
running time will be in O(τ(|w|, 1, (|w| − 1)|w|−1)n) and the worst case is
O(τ(5, 1, 44)n) ⊆ O(1.7921n).

2. |w| = 4 For a better readability, assume w = (a∨b∨c∨d). As a and b are not
singletons there are clauses a ∈ y and b ∈ z. There are several possibilities
for y and z, but due to the balanced branching effect, we may disregard cases
where a ∈ w but ā ∈ y etc.

(a) y = (a∨e∨f∨g), z = (b∨h∨i∨j). The call Q(F (a/true)) removes 7 vari-
ables – all variables of w and y. The call Q(F (a/false; b/true)) removes
7 variables – all variables of w and z. The call Q(F (a/false; b/false))
removes 3 variables, because the clause w = (c ∨ d) will in the next
recursive step be simplified. The call Q(F (a/false; b/c̄)) removes 3 vari-
ables, because the clause w = (c∨ c̄∨ d) implies d = false, which will be
effectuated by the substitution operation. The call Q(F (a/false; b/d̄))
removes 3 variables for the same reasons. The call Q(F (a/b̄)) removes 3
variables – c and d must be false. Similarly for the remaining two calls.
Hence, the running time is in O(τ(72, 36)n) ⊆ O(1.8348n).
If |z| = 3, then regardless of y we get cases better than the above case:

(b) z = (b ∨ e ∨ f). Counting removed variables as previously we get that
this case runs in time O(τ(6, 44, 33)n) ⊆ O(1.7605n).

(c) z = (a∨ b∨ e) or z = (b∨ c∨ e) or z = (b∨ d∨ e). All these cases run in
time O(τ(52, 46)n) ⊆ O(1.6393n).
If |y| = 3, then regardless of y we get cases better than the so far worst:

(d) y = (a ∨ e ∨ f). This case runs in time O(τ(6, 5, 43, 33)n) ⊆ O(1.7888n).
(e) y = (a ∨ b ∨ e). Already examined.
(f) y = (a∨c∨e) or y = (a∨d∨e). These cases run in time O(τ(52, 45, 3)n) ⊆

O(1.6749n).
If y shares more than one variable with w, then regardless of z we get
cases better than the so far worst:

(g) y = (a ∨ b ∨ c ∨ e) or y = (a ∨ c ∨ d ∨ e) or y = (a ∨ b ∨ e ∨ f). These
cases run in time O(τ(52, 46)) ⊆ O(1.6393n), O(τ(54, 44)) ⊆ O(1.5971n)
and O(τ(62, 5, 4, 34)) ⊆ O(1.7416n), respectively.

(h) y = (a ∨ c ∨ e ∨ f) or y = (a ∨ d ∨ e ∨ f). These cases run in time
O(τ(6, 52, 4, 34))n) ⊆ O(1.7549n).
If z shares more than one variable with w, then regardless of y we get
cases better than the so far worst:

(i) z = (a ∨ b . . .). Already examined.
(j) z = (b ∨ c ∨ d ∨ e). This case runs in O(τ(52, 46)) ⊆ O(1.6393n).

838 V. Dahllöf

(k) z = (b ∨ c ∨ e ∨ f) or z = (b ∨ d ∨ e ∨ f). These cases run in time
O(τ(62, 5, 4, 34))n) ⊆ O(1.7416n).

3. |w| = 3. We know that there is another clause y such that |y| = 3 and a ∈ y
and y �= w. Hence we have a running time in O(τ(4, 3, 22)) ⊆ O(1.7107n).

4 Conclusions

We have presented two non-trivial, exact, poly-space algorithms for max ham-
ming xsat and provided interesting upper bounds on their running time. Both
algorithms point out new interesting research directions. Using P as a template
when constructing an algorithm for a max Hamming problem, the goal is to
analyze the instance at hand to see which calls to the external solver that are
superfluous. Q indicates that it is possible to take direct advantage of the inher-
ent structure of the problem itself.

References
1. O. Angelsmark and J. Thapper. Algorithms for the maximum hamming distance

problem. In Boi Faltings, Adrian Petcu, François Fages, Francesca Rossi (Eds.):
Recent Advances in Constraints, Joint ERCIM/CoLogNet International Workshop
on Constraint Solving and Constraint Logic Programming, LNCS 3419, pages 128–
141, 2004.

2. J. M. Byskov, B. A. Madsen, and B. Skjernaa. New algorithms for exact satisfia-
bility. Theoretical Computer Science, 332(1–3):515–541, 2005.

3. P. Crescenzi and G. Rossi. On the hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85–100, 2002.

4. V. Dahllöf. Applications of general exact satisfiability in propositional logic mod-
elling. In Proceedings 11th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR-2004), pages 95–109, 2004.

5. V. Dahllöf, P. Jonsson, and R. Beigel. Algorithms for four variants of the exact
satisfiability problem. Theoretical Computer Science, 320(2–3):373–394, 2004.

6. L. Drori and D. Peleg. Faster solutions for some NP-hard problems. Theoretical
Computer Science, 287:473–499, 2002.

7. E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar
solutions in constraint programming. In Proceedings 20th International Conference
on AI (AAAI-2005), pages 372–377, 2005.

8. E. Hirsch and A. Kulikov. A 2n/6.15-time algorithm for X3SAT.
9. O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical

Computer Science, 223:1–72, 1999.
10. L. Liu and M. Truszczyński. Local-search techniques for propositional logic ex-

tended with cardinality constraints. In Proceedings 9th International Conference
on Principles and Practice of Constraint Programming (CP-2003), pages 495–509,
2003.

11. S. Porschen, B. Randerath, and E. Speckenmeyer. X3SAT is decidable in time
O(2n/5). In Proceedings 5th International Symposium on Theory and Applications
of SAT, pages 231–235, 2002.

12. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th
Annual ACM Symposium on the Theory of Computing (STOC-1978), pages 216–
226, 1978.

Counting Stable Strategies
in Random Evolutionary Games�

Spyros Kontogiannis1,2 and Paul Spirakis2

1 Computer Science Department, University of Ioannina,
45110 Ioannina, Greece
kontog@cs.uoi.gr

2 Research Academic Computer Technology Institute, N. Kazantzakis Str.,
University Campus, 26500 Rio-Patra, Greece

{kontog, spirakis}@cti.gr

Abstract. In this paper we study the notion of the Evolutionary Stable
Strategies (ESS) in evolutionary games and we demonstrate their qual-
itative difference from the Nash Equilibria, by showing that a random
evolutionary game has on average exponentially less number of ESS than
the number of Nash Equilibria in the underlying symmetric 2-person
game with random payoffs.

1 Introduction

Game theory is the study of interactive decision making, in the sense that those
involved in the decisions are affected not only by their own choices, but also by
the decisions of others. This study is guided by two principles: (1) The choices of
players are affected by well-defined (fixed) preferences over outcomes of decisions.
(2) Players act strategically, ie, they take into account the interaction between
their choices and the ways other players act. The dominant aspect of game theory
is the belief that players are rational and this rationality is common knowledge.
This common knowledge of rationality gives hope to equilibrium play: Players
use their equilibrium strategies because of what would happen if they had not.

The point of departure for evolutionary game theory is the view that
the players are not always rational. In evolutionary games, “good” strategies
emerge from a trial-and-error learning process, in which players discover that
some strategies perform better than others, or decide to play in a different way
in hope of getting a better payoff. The players may do very little reasoning during
this process. Instead, they simply take actions by rules of thumb, social norms,
analogies for similar situations, or by other (possibly more complex) methods for
converting stimuli into actions. Thus, in evolutionary games we may say that
the players are “programmed” to adopt some strategies. Typically, the evolution
process deals with an infinite population of players. As time proceeds, many small
games are conducted (eg, among pairs of players that “happen” to meet). One
� This work was partially supported by the 6th Framework Programme under contract

001907 (DELIS).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 839–848, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

840 S. Kontogiannis and P. Spirakis

then expects that strategies with higher payoffs will spread within the population
(by learning, copying successful strategies, or even by infection).

Indeed, evolutionary games in large populations of players create a dynamic
process, where the frequencies of the strategies played (by population members)
change in time because of the learning or selection forces guiding the players’
strategic choices. Clearly, the rate of changes depends on the current strategy mix
in the population. Such dynamics can be described by stochastic or deterministic
models. The subject of evolutionary game theory is exactly the study of these
dynamics. An excellent presentation of the evolutionary game dynamics can be
found in [7]. For a more thorough study the reader is referred to [3].

Not surprisingly, evolutionary game processes that converge to stable states
have usually the property that those states are also self-confirming equilibria
(eg, Nash equilibria). This is one of the most robust results in evolutionary game
theory, the “folk theorem”, that stability implies Nash equilibrium. In fact, one
of the main approaches in the study of evolutionary games is the concept of
Evolutionary Stable Strategies (ESS), which are nothing more than Nash
Equilibria together with an additional stability property. This additional prop-
erty is interpreted as ensuring that if an ESS is established in a population, and
if a small proportion of the population adopts some mutant behavior, then the
process of selection (or learning) will eliminate the latter. Once an ESS is estab-
lished in a population, it should therefore be able to withstand the pressures of
mutation and selection.

Related Work and Our Contribution. Evolutionary game theory is quite
interesting on its own, and Evolutionary Stable Strategies (ESS) are the most
popular notion of stability in these games. Consequently, knowing the number
of ESS that an evolutionary game may end up in, is a very important issue
since it demonstrates the inherent complexity of the game. On the other hand,
evolutionary game theory may be seen as a methodology for either computing
(approximate) solutions, or estimating the convergence times to such solutions,
for hard combinatorial problems.

For example, [5] exploited the popular notion of replicator dynamics of evolu-
tionary games, to prove that for an evolutionary game whose underlying strate-
gic game is a single–commodity selfish routing game, the convergence time to
an ε−approximate Nash Equilibrium is polynomial in 1/ε and logarithmic in
the maximum-to-optimal latency ratio. A weakened version of this result was
also shown for the more general case of evolutionary games for which the un-
derlying strategic game is a multi–commodity network congestion game. Some
years earlier ([1]) the notion of replicator dynamics had been used as a heuristic
for the NP–hard Max Weight Clique problem. Recently ([4]) the problem
of deciding the existence of an ESS in an arbitrary evolutionary game has been
proved to be both NP–hard and coNP–hard. On the other hand, the existence
of a regular ESS is an NP–complete problem.

Concerning the number of ESS in an evolutionarygame, to our knowledge, there
is not much in the literature. The only interesting work that we could find is [2],
which gives some (worst-case) exponential upper and lower bounds on the maxi-

Counting Stable Strategies in Random Evolutionary Games 841

mum number of ESS in evolutionary games whose underlying payoffmatrix is sym-
metric. On the other hand, some very interesting results have appeared concerning
the expected number of Nash equilibria in strategic games. In particular, [9] pro-
vides a (computationally feasible) formula for the mean number of Nash Equilibria
in a random game where all the players have the same strategy set and the entries
of their payoff matrices are independent (uniform) random variables. This formula
is used in [10] in order to prove that the expected number of Nash equilibria in a
random 2-person (strategic) game tends to exp(0.281644N +O(logN)) asN (the
number of pure strategies of a player) tends to infinity. Although it is trivial to
show that each ESS indicates a (symmetric) Nash Equilibrium for the underlying
strategic game, itwas not known (until the presentwork)whether there is a qualita-
tive difference between the set of ESS in an evolutionary game and the set of Nash
Equilibria of the underlying strategic game. Indeed, [2] gives some evidence that
the notion of ESS may be of the same hardness as that of Nash Equilibria by giving
exponential (worst-case) bounds on their number. On the other hand, in this work
we show that the number of ESS in a random evolutionary game is exponentially
smaller than the number of Nash Equilibria in the underlying random symmetric
2-person game. We prove this by exploiting a quite interesting (necessary and suffi-
cient) condition for a strategy being an ESS of an evolutionarygame, given that the
underlying symmetric strategies profile is a Nash equilibrium ([6]). Our approach is
based on constructing sufficiently many (independent of each other) certificates for
an arbitrary strategy (such that the underlying profile is a symmetric Nash Equi-
librium) being an ESS, for which the joint probability of being true is very small.

The paper is organized as follows: In section 2 we give the main definitions and
notation of non-cooperative game theory, we introduce the symmetric 2-player
games, the evolutionary games and the evolutionary stable strategies. In section
3 we present our result on the number of ESS in a random 2-player game.

2 Preliminaries

Non-cooperative Games and Equilibria. We restrict our view in this paper
to the class of finite games in strategic form. More precisely, let I = [n]1 be a
set of players, where n is a positive integer. For each player i ∈ I, let Si

be her (finite) set of allowable actions, called the action set of player i. The
deterministic choice of a specific action si ∈ Si by a player i ∈ I, is called a pure
strategy for this player. Thus the action set of a player can also be seen as her
pure strategy set. A vector s = (s1, . . . , sn) ∈ ×i∈ISi, where si ∈ Si is the
pure strategy adopted by player i ∈ I, is called a pure strategies profile or a
configuration of the players. The space of all the pure strategies profiles in the
game is thus the Cartesian product S = ×i∈ISi of the players’ pure strategies
sets (usually called the configuration space).

For any configuration s ∈ S and any player i ∈ I, let πi(s) be a real number
indicating the payoff to player i upon the adoption of this configuration by all
the players of the game. The finite collection of the real numbers {πi(s) : s ∈ S}
1 For any integer k ∈ IN, [k] ≡ {1, 2, . . . , k}.

842 S. Kontogiannis and P. Spirakis

defines player i’s pure strategies payoff function. Let π(s) = (πi(s))i∈I be the
vector function of all the players’ payoffs. Thus, a game in strategic form is
simply described by a triplet Γ = (I, S, π) where I is the set of players, S
is the configuration space of the players, and π is the vector function of all
the players’ payoffs. Let Pk ≡ {z ∈ [0, 1]k :

∑
i∈[k] zi = 1} denote the (k − 1)-

dimensional simplex. For any player i ∈ I, any point xi = (xi,1, xi,2, . . . , xi,mi) ∈
Pmi (where mi = |Si|) is called a mixed strategy for her. A player that adopts
the mixed strategy xi is assumed to determine her own choice of an action
randomly (ie, using xi) and independently of all the other players. Pmi is the
mixed strategies set of player i. A mixed strategies profile is a vector x =
(x1, . . . ,xn) whose components are themselves mixed strategies of the players,
ie, ∀i ∈ I, xi ∈ Pmi . We call the Cartesian product ∆ = ×i∈IPmi ⊆ IRm the
mixed strategies space of the game (m = m1 + · · · +mn).

When the players adopt a mixed strategies profile x ∈ ∆, we can compute
what is the average payoff, ui, that player i gets (for x) in the usual way:
ui(x) ≡

∑
s∈S P (x, s) · πi(s), where, P (x, s) ≡

∏
i∈I xi(si) is the occurrence

probability of configuration s ∈ S wrt the mixed profile x ∈ ∆. This (extended)
function ui : ∆ '→ IR is called the (mixed) payoff function for player i.

Let us indicate by (xi,y−i) a mixed strategies profile where player i adopts
the mixed strategy xi ∈ Pmi , and all other players adopt the mixed strategies
that are determined by the profile y ∈ ∆. This notation is particularly conve-
nient when a single player i considers a unilateral “deviation” xi ∈ Pmi from
a given profile y ∈ ∆. A best response of player i to a mixed strategies pro-
file y ∈ ∆ is any element of the set Bi(y) ≡ arg maxxi∈Pmi

{ui(xi,y−i)}. A
Nash Equilibrium (NE in short) is any profile y ∈ ∆ having the property that
∀i ∈ I, yi ∈ Bi(y). The nice thing about NE is that each finite strategic game
Γ = (I, S, π) has at least one NE [11].

The subclass of symmetric 2-player games provides the basic setting for much
of the evolutionary game theory. Indeed, many of the important insights can be
gained already in this (special) case.

Definition 1. A finite strategic game Γ = (I, S, π) is a 2-player game when
I = {1, 2}. It is called a symmetric 2-player game if in addition, S1 = S2 and
∀(s1, s2) ∈ S, π1(s1, s2) = π2(s2, s1).

Note that in the case of a symmetric 2-player strategic game, the payoff
functions of Γ can be represented by two |S1| × |S2| real matrices Π1, Π2 such
that Π1[si, sj] = π1(si, sj), ∀(s1, s2) ∈ S and Π1 = ΠT

2 = Π . For any mixed
strategies profile x = (x1,x2) ∈ ∆, the expected payoff of player 1 for this profile
is u1(x) = x1

TΠx2 while the payoff of player 2 is u2(x) = x1
TΠ2x2 = x2

TΠx1.
Thus we can fully describe a symmetric 2-player game by (S,Π), where S is the
common action set and Π is the payoff matrix of the row player.

Two useful notions, especially in the case of 2-player games, are the support
and the extended support. In a 2-player strategic game Γ = ({1, 2}, S, π), the
support of a mixed strategy x1 ∈ Pm1 (x2 ∈ Pm2) is the set of allowable actions
of player 1 (player 2) that have non-zero probability in x1 (x2). Formally, ∀i ∈
{1, 2}, supp(xi) ≡ {j ∈ Si : xi(j) > 0}. The extended support of a mixed

Counting Stable Strategies in Random Evolutionary Games 843

strategy x2 ∈ Pm2 of player 2 is the set of pure best responses of player 1
to x2. That is, extsupp(x2) ≡

{
j ∈ S1 : u1(j,x2) = maxx1∈Pm1

{u1(x1,x2)}
}
.

Similarly, the extended support of a mixed strategy x1 ∈ Pm1 of player 1,
is the set of pure best responses of player 2 to x1. That is, extsupp(x1) ≡{
j ∈ S2 : u2(x1, j) = maxx2∈Pm2

{u2(x1,x2)}
}
. The following lemma is a direct

consequence of the definition of NE (a proof is provided in the full version of the
paper):

Lemma 1. If (x1,x2) ∈ ∆ is a NE of a 2-player strategic game, then
supp(x1) ⊆ extsupp(x2) and supp(x2) ⊆ extsupp(x1).

Due to their connection to the notion of ESS, a class of NE of particular in-
terest is that of symmetric Nash equilibria. A strategy pair (x1,x2) ∈ Pmi ×Pmi

for a symmetric 2-player game Γ = (S,Π) is a symmetric Nash Equilibrium
(SNE in short), if and only if (a) (x1,x2) is a NE for Γ , and (b) x1 = x2. Not
all NE of a symmetric 2-player game need be symmetric. However it is known
that each finite symmetric 2-player game has at least one SNE [11].

When we wish to argue about the vast majority of symmetric 2-player games,
one way is to assume that the real numbers in the set {Π [i, j] : (i, j) ∈ S} are
independently drawn from a probability distribution F . For example, F can be
the uniform distribution in an interval [a, b] for some a, b ∈ IR : a < b. Then,
a typical symmetric 2-player game Γ is just an instance of the implied random
experiment that is described in the following definition.

Definition 2. A symmetric 2-player game Γ = (S,Π) is an instance of a (sym-
metric 2-player) random game wrt the probability distribution F , if and only if
∀i, j ∈ S, the real number Π [i, j] is an independently and identically distributed
random variable drawn from F .

Evolutionary Stable Strategies. From now on we shall only consider sym-
metric 2-player strategic games. So, fix such a game Γ = (S,Π), for which the
mixed strategies space is ∆ = Pn × Pn. Suppose that all the individuals of an
infinite population are programmed to play the same (either pure or mixed) in-
cumbent strategy x ∈ Pn, whenever they are involved in Γ . Suppose also that
a small group of invaders appears in the population. Let ε ∈ (0, 1) be the share
of invaders in the post–entry population. Assume that all the invaders are pro-
grammed to play the (pure or mixed) strategy y ∈ Pn whenever they are involved
in Γ . Pairs of individuals in this dimorphic post–entry population are now re-
peatedly drawn at random to play always the same symmetric 2-player game Γ
against each other. If an individual is chosen to participate, the probability that
her (random) opponent will play strategy x is 1−ε, while that of playing strategy
y is ε. This is equivalent to saying that the opponent is an individual who plays
the mixed strategy z = (1 − ε)x + εy. The post–entry payoff to the incumbent
strategy x is then u(x, z) and that of the invading strategy y is just u(y, z)
(u = u1 = u2). Intuitively, evolutionary forces will select against the invader if
u(x, z) > u(y, z). The most popular notion of stability in evolutionary games is
the Evolutionary Stable Strategy (ESS). A strategy x is evolutionary stable

844 S. Kontogiannis and P. Spirakis

(ESS in short) if for any strategy y �= x there exists a barrier ε̄ = ε̄(y) ∈ (0, 1)
such that ∀0 < ε � ε̄, u(x, z) > u(y, z) where z = (1 − ε)x + εy. An ESS x
is called regular if it holds that its support matches its extended support, ie,
supp(x) = extsupp(x). One can easily prove the following characterization of
ESS, which sometimes appears as an alternative definition (cf. [7]):

Proposition 1. Let x ∈ Pn be a (mixed in general) strategy profile that is
adopted by the whole population. The following sentences are equivalent:

(i) x is an evolutionary stable strategy.
(ii) x satisfies the following properties, ∀y ∈ ∆ \ {x}:

[P1] u(y,x) � u(x,x), and [P2] If u(y,x) = u(x,x) then u(y,y) < u(x,y).

Observe that the last proposition implies that (x,x) has to be a SNE of the
underlying symmetric 2-player strategic game Γ (due to [P1]) and x has to be
strictly better than any invading strategy y ∈ ∆ \ {x}, against y itself, in case
that y is a best-response strategy against x in Γ (due to [P2]).

A mixed strategy x ∈ ∆ is completely mixed if and only if supp(x) = S. It
is well (Haigh 1975, [6]) that if a completely mixed strategy x ∈ Pn is an ESS,
then it is the unique ESS of the evolutionary game.

3 Mean Number of ESS in Random Evolutionary Games

Fig. 1. The partition of C

In this section we study the expected
number of ESS in a generic evolutionary
game with an action set S = [n] and a
payoff matrix which is an n× n matrix U
whose entries are iid r.v.s drawn from a
probability distribution F . For any non-
negative vector x ∈ Pk for some k ∈ IN,
let Yx ≡ Pk \ {x}. The following state-
ment, proved by Haigh, is a necessary and
sufficient condition for a mixed strategy
s ∈ Pn being an ESS, given that (s, s) is a SNE of Γ = (S,U).

Lemma 2 (Haigh 1975, [6]). Let (s, s) ∈ Pn×Pn be a SNE for the symmetric
game Γ = (S,U) and let M = extsupp(s). Let also x be the projection of s on
M , and C the submatrix of U consisting of the rows and columns indicated by
M . Then s is an ESS if and only if ∀y ∈ Yx, (y − x)TC(y − x) < 0 .

The following lemma also holds (a simple consequence of the definition of ESS):

Lemma 3. Let s ∈ Pn be an ESS of an evolutionary game whose underlying
(symmetric) 2-player game is Γ = (S,U). Then (s, s) is a SNE for Γ .

Combining lemmas 2 and 3 we observe that suffices to examine only SNE of
Γ = (S,U) in order to find out if this game possesses an ESS. In the sequel we
focus our attention to random evolutionary games for which the payoff matrix
has entries that are independent r.v.s which are symmetric about their mean:

Counting Stable Strategies in Random Evolutionary Games 845

Definition 3. A random variable X is called symmetric about the mean if
and only if ∀a � 0,P {µ � X � µ+ a} = P {µ− a � X � µ}, where µ = E {X}.
The following lemma will be useful in our investigation (a proof is in the full
version of the paper):

Lemma 4. Let X,Y be two independent, continuous, symmetric about the mean
r.v.s, such that µ = E {X} = E {Y }. Then P {X � Y } = 1

2 .

We now show our main theorem:

Theorem 1. Let Γ = (S,U) be an instance of a random symmetric 2-player
game whose payoff entries are iid r.v.s drawn uniformly from [0, A], for some
constant A > 0. Then E {#ESS} = o(E {#SNE}).

Proof. Consider an arbitrary SNE (s, s) ∈ Pn × Pn, and assume wlog that
extsupp(s) = [m] for some 1 � m � n (by reordering the action set S). As-
sume also that s1 � s2 � · · · � sr > 0 = sr+1 = · · · = sm for some 1 � r � m
(ie, its support is supp(s) = [r]). Let x = s|[m] ≡ (s1, . . . , sm) ∈ Pm be the
projection of s to its extended support. Let also C = U |[m],[m] be the submatrix
of U consisting of its first m rows and columns. By lemmas 2 and 3 we know
that a necessary condition for s being an ESS is that C is negative definite, ie,
∀y ∈ Yx, (y − x)TC(y − x) < 0. We shall prove that this is highly unlikely
to hold for any mixed strategy s with support of size r " 1. Set ε = sr > 0.
Consider the following collection of vectors from Yx: ∀1 � k � r∗ ≡ min{r, m

2 },
yk =

(
x1, . . . , xk−1, xk − ε, xk+1 + ε

m−k , . . . , xm + ε
m−k

)
and zk = yk − x =(

0, . . . , 0,−ε, ε
m−k , . . . ,

ε
m−k

)
. Then we have: ∀1 � k � r∗,

(zk)TCz = ε2 · Ck,k − ε2

m− k

m∑
j=k+1

[Ck,j + Cj,k] +
ε2

(m− k)2
∑

k+1�i,j�m

Ci,j (1)

By lemma 2 we know that a necessary condition for the mixed strategy s (for
which we already assumed that it is such that (s, s) is a SNE for Γ) to be an

ESS is the following: ∀k ∈ [r∗], (yk − x)TC(yk − x) = (zk)TCz < 0
/∗ ε>0 ∗/
=⇒

⇒ ∀k ∈ [r∗], 1
m−k

∑m
j=k+1[Ck,j + Cj,k] > Ck,k + 1

(m−k)2
∑

k+1�i,j�m Ci,j (2)

Consider now the collection of events E =
{
Ek ≡ I{Sk>Ck,k+Zk}

}
1�k�r∗ where

Sk ≡ 1
m−k

∑m
j=k+1[Ck,j + Cj,k] and Zk ≡ 1

(m−k)2
∑

k+1�i,j�m Ci,j . We know
that s is an ESS only if

⋂
1�k�r∗ Ek holds true. Applying repeatedly the Bayes

rule we get:

P {∩1�k�r∗Ek} = P {Er∗} P {Er∗−1 | Er∗} · · ·P
{
E1 | ∩r∗

j=2 Ej

}
(3)

where r∗ = min{r, m
2 }. In order to prove that this probability is very small, we

proceed as follows: We calculate first that for any 1 � k � r∗, the probability of
Ek being true (independently of all other events).

846 S. Kontogiannis and P. Spirakis

Lemma 5. ∀1 � k � r∗, P {Ek} = 1
2 .

Proof. Fix arbitrary 1 � k � r∗. Observe that: (a) Zk does not include in this
sum any of Ck,j , Cj,k, Ck,k. Thus, Zk is independent of Sk and Ck,k. (b) Sk is
not affected at all by the value of Ck,k. Therefore, Sk is also independent of Ck,k.
Let Rk ≡ Ck,k + Zk. By our previous remarks, we get the following claim:

Claim. Rk is a r.v. independent of Sk.

By linearity of expectation and assuming that any r.v. that is distributed
according to F has an expectation µ, we have that E {Rk} = E {Ck,k} +

1
(m−k)2

∑
k+1�i,j�m E {Ci,j} = µ + 1

(m−k)2 · (m − k)2 · µ = 2µ. Similarly,
E {Sk} = 1

m−k

∑
k+1�j�m[E {Ck,j} + E {Ck,j}] = 1

m−k · (m − k) · 2µ = 2µ.
That is, we deduce that

Claim. E {Rk} = E {Sk}.

Notice also that the following claim holds, whose proof is straightforward:

Claim. Let X1, . . . , Xt be iid uniform r.v.s drawn from [0, A]. Then X =∑t
j=1Xi is a symmetric r.v. about its expectation E {X} = tA

2 , in the inter-
val [0, tA].

Since {Ck,j , Cj,k}k+1�j�m is a collection of 2(m− k) iid uniform r.v.s on [0, A],
(m−k)·Sk is symmetric r.v. about its expectation 2(m−k)µ in [0, 2(m−k)A], or
equivalently, Sk is a symmetric r.v. about its expectation 2µ in [0, 2A]. Similarly,
{Ci,j}k+1�i,j�m is a collection of (m− k)2 iid uniform r.v.s on [0, A] and thus,
(m−k)2Zk is a symmetric r.v. on [0, (m−k)2A], or equivalently, Zk is a symmetric
r.v. (around E {Zk} = µ) on [0, A]. So, Rk = Zk + Ck,k is also a symmetric r.v.
(about its expectation 2µ) on [0, 2A]. Thus, we conclude that:

Claim. Rk and Sk have the same expectation 2µ, they are independent of each
other, and they are both symmetric r.v.s in the interval [0, 2A].

The following exploits the symmetry of the r.v.s that we compare in each cer-
tificate (of s being an ESS) Ek:

Claim. P {Ek} = P {Sk > Rk} = 1
2 .

Proof. Ek compares the values of the (independent) r.v.s Sk and Rk. But these
two r.v.s have the same expectation and they are symmetric about their (com-
mon) mean. By applying lemma 4 we get that P {Ek} = 1

2 .

This completes the proof of lemma 5.

Recall that we are interested in P {Ek| ∩k+1�j�r∗ Ej} , ∀1 � k � r∗−1 (see equa-
tion (3)). Our goal is to determine an upper bound on the occurrence probability
of each event Ek, despite its dependence on its nested events {Ej}k+1�j�r∗ . Ob-
serve that we reveal the outcome of the conditional events involved in eq. (3)
sequentially starting from Er∗ , then Er∗−1|Er∗ , etc, up to E1| ∩2�j�r∗ Ej .

Counting Stable Strategies in Random Evolutionary Games 847

Lemma 6. The probability of a SNE s being an ESS is P
{⋂

1�k�r∗ Ek

}
�(

1+δ′

2

)r∗

+ 2 exp
(
− δ2·(m−r∗)2A

4+(4/3)δ

)
, where δ′ = δ + r∗−1

m−1 − δ · r∗−1
m−1 and δ > 0.

Proof. ∀k ∈ [r∗ − 1], Ẑk denotes the sum of r.v.s from C involved in Zk, (ie,
Ẑk = (m− k)2Zk); Ŝk is the sum of the r.v.s in Sk, (ie, Ŝk = (m− k)Sk). Then,

∀1 � k � r∗ − 1, Ẑk = Ck+1,k+1 + Ẑk+1 + Ŝk+1 (4)

Observe now that we can get a new set of inequalities, exploiting the fact that
we check for the truth of an event Ek conditioned on the truth of all its nested
events: For Er∗ , Ŝr∗ > (m− r∗)Cr∗,r∗ + Ẑr∗

m−r∗ , for Er∗−1|Er∗ , Ŝr∗−1 > (m− r∗ +

1)Cr∗−1,r∗+1+
Ẑr∗−1

m−r∗+1

/∗ (4), Er∗ ∗/
=⇒ Ŝr∗−1 > (m−r∗+1)Cr∗−1,r∗−1+Cr∗+ Ẑr∗

m−r∗ ,

. . ., for E1| ∩2�j�r∗ Ej , Ŝ1 > (m − 1)C1,1 + Ẑ1
m−1

/∗ (4), E2,...,Er∗ ∗/
=⇒ Ŝ1 > (m −

1)C1,1 +
∑r∗

j=2 Cj + Ẑr∗
m−r∗ . From this we define a new necessary condition:

∀1 � k � r∗, Sk > Ck,k +
m− r∗

m− k
Zr∗ (5)

So, we consider a new collection of events {E ′
k}1�k�r∗ (described by (5)), each

of which involves a r.v. (Sk) that is twice the average of 2(m − k) iid uniform
r.v.s, a unique uniform r.v. (Ck,k) of expectation A/2 that is not considered at
all by the other events, and a last term that is handled as a constant that is
asymptotically equal to the expected value A/2 of a uniform r.v. in [0, A] (since
m− r∗ = O(m) and Zr∗ , the average value of O

(
m2

)
iid r.v.s, tends rapidly to

their common expectation A/2, provided A , m). Observe that these events are
independent, since each of them compares the values of two (unique) indepen-
dent and symmetric r.v.s, of (asymptotically) the same expectation. Using an
argument similar to that of lemma 5, it is not hard to prove that the probability
of s being an ESS is upper bounded by the value claimed in the statement of the
lemma. The complete presentation of this proof is provided in the full version of
the paper.

As a direct consequence of lemma 6, we get the following corollary:

Corollary 1. The probability of a SNE (s, s) indicating an ESS s is upper

bounded by 2 ·
(√

3+δ
2

)m

= O(
√
m) ·

(√
3

2

)m

, if we set r∗ = m
2 and δ = O

(
1√
m

)
.

It is worth mentioning that for the random 2-player games considered in
[10] (where each entry of the payoff matrices is uniformly distributed in the
unit sphere) almost all the NE have supports whose sizes are approximately
0.315915n. The scaling of the unit interval [0, 1] to [0, A] for any A > 0 does not
affect this result, since a NE is determined by linear constraints wrt the support
(each support is defined as a system of linear inequalities for a 2-player game,
cf. [8]) and we can scale by A each inequality, so long as A > 0.

848 S. Kontogiannis and P. Spirakis

Let now q = #NE be the number of NE in our game, that is of course
a random variable. For each NE x of the game, let I(x) = I{x is ESS} be
the corresponding indicator variable of x being also an ESS. Since an ESS
implies our event E ≡ ∩1�k�r∗Ek, we have that E {I(x)} = P {I(x) = 1} =

P {x is an ESS} � P {E} ⇒ E {I(x)} = O(
√
m) ·

(√
3

2

)m

⇒ E {#ESS} =

E {
∑

x=NE I(x)} = O(
√
m) ·

(√
3

2

)m

· E {#NE} (by Wald’s inequality for a
random sum of random variables). So, we have established that, since almost
all NE have support 0.315915n � r � m, E {#ESS} = E {#NE} · O(

√
n) ·(√

3
2

)0.315915n

, which proves our main theorem.

Remark 1. If we also adopt the numerical analysis of [10] on the expected
number of NE in such a game, according to which the expected num-
ber of NE is exp (0.281644n+ O(logn)), then we will come to the conclu-

sion that E {#ESS} = exp (0.281644n+ O(logn)) · O(
√
n) ·

(√
3

2

)0.315915n

=
exp (0.137803n+ O(log n)). This is still exponential, but also exponentially
smaller than the expected number of NE.

Acknowledgments. The authors wish to thank an anonymous referee for some
nice remarks on their structural argument, in an earlier version of the paper.

References

1. Bomze I.M., Pelillo M., Stix V. Approximating the maximum weight clique using
replicator dynamics. IEEE Transactions on Neural Networks, 11(6):1228–1241,
November 2000.

2. Broom M. Bounds on the number of esss of a matrix game. Mathematical Bio-
sciences, 167(2):163–175, October 2000.

3. Cressman R. Evolutionary dynamics and extensive form games. MIT Press, 2003.
4. Etessami K., Lochbihler A. The computational complexity of evolutionary stable

strategies. Technical Report 55, Electronic Colloquium on Computational Com-
plexity (ECCC), 2004. ISSN 1433-8092.

5. Fischer S., Vöcking B. On the evolution of selfish routing. In Proc. of the 12th
European Symposium on Algorithms (ESA ’04), pages 323–334. Springer, 2004.

6. Haigh J. Game theory and evolution. Advances in Applied Probability, 7:8–11,
1975.

7. Hofbauer J., Sigmund K. Evolutionary game dynamics. Bulletin of the American
Mathematical Society, 40(4):479–519, 2003.

8. Koutsoupias E., Papadimitriou C. Worst-case equilibria. In Proc. of the 16th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS ’99), pages
404–413. Springer-Verlag, 1999.

9. McLennan A. The expected numer of nash equilibria of a normal form game.
Econometrica, 73(1):141–174, January 2005.

10. McLennan A., Berg J. The asymptotic expected number of nash equilibria of two
player normal form games. To appear in the Games and Economic Behavior, 2005.

11. Nash J. F. Noncooperative games. Annals of Mathematics, 54:289–295, 1951.

Exact and Approximation Algorithms for
Computing the Dilation Spectrum of

Paths, Trees, and Cycles

Rolf Klein1,�, Christian Knauer2, Giri Narasimhan3, and Michiel Smid4,��

1 Institute of Computer Science I, Universität Bonn, Römerstraße 164,
D-53117 Bonn, Germany
rolf.klein@uni-bonn.de

2 Freie Universität Berlin, Institute of Computer Science, Berlin, Germany
christian.knauer@inf.fu-berlin.de

3 School of Computer Science, Florida, International University, ECS389,
University Park, Miami, FL 33199, USA

giri@cs.fiu.edu
4 School of Computer Science, Carleton University, 1125 Colonel By Drive,

Ottawa, Ontario K1S 5B6, Canada
michiel@scs.carleton.ca

Abstract. Let G be a graph embedded in Euclidean space. For any two
vertices of G their dilation denotes the length of a shortest connecting
path in G, divided by their Euclidean distance. In this paper we study
the spectrum of the dilation, over all pairs of vertices of G. For paths,
trees, and cycles in 2D we present O(n3/2+ε) randomized algorithms that
compute, for a given value κ ≥ 1, the exact number of vertex pairs of
dilation > κ. Then we present deterministic algorithms that approximate
the number of vertex pairs of dilation > κ up to an 1 + η factor. They
run in time O(n log2 n) for chains and cycles, and in time O(n log3 n) for
trees, in any constant dimension.

1 Introduction

Let S be a set of n points in Rd, where d ≥ 1 is a small constant, and let G be
an undirected connected graph having the points of S as its vertices. The length
of any edge (p, q) of G is defined as the Euclidean distance |pq| between the two
vertices p and q. Such graphs are called Euclidean graphs. Let dG(x, y) denote
the length of a shortest path in G that connects x and y. Then the dilation
between x and y in G is defined as

δG(x, y) =
dG(x, y)

|xy| .

Euclidean graphs are frequently used for modeling traffic or transportation
networks. In order to measure their performance, the dilation of G [13] has been
� supported by DFG Kl 655/14.

�� supported by NSERC.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 849–858, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

850 R. Klein et al.

used, which is defined as the maximum dilation over all pairs of vertices in G,
i.e.,

σ(G) = max
p=q∈V

δG(p, q). (1)

This value is also called the stretch factor, the spanning ratio, or the distor-
tion [10] of G. A lot of work has been done on the construction of good span-
ners, i. e., of sparse graphs of low dilation that connect a given vertex set and
enjoy other desirable properties; see the handbook chapter [5] or the forthcoming
monograph [12]. How to compute the dilation of a given Euclidean graph has
first been addressed in [11]. They gave an O(n logn) algorithm for approximat-
ing, up to an 1 − ε factor, the dilation of paths, trees, and cycles in Euclidean
space of constant dimension. In [1] exact randomized algorithms were given that
run in time O(n logn) for paths in the plane, and in time O(n log2 n) for com-
puting the dilation of a plane tree or cycle. In 3D, time O(n4/3+ε) is sufficient for
either type of graph; see also [2, 9]. For general graphs, nothing better seems to
be known than running Dijkstra’s algorithm for each vertex of G, which leads to
an O(mn+ n2 logn) algorithm [4]; here n denotes the number of vertices, while
m is the number of edges of G. In the recent paper [6], the interesting question
has been addressed how to decrease the dilation of a graph as much as possible
by inserting another edge.

In this paper we are studying the vertex-to-vertex dilation of graphs from a dif-
ferent perspective. Computing the dilation, as defined in (1), simply points to the
pair of vertices for which the dilation is maximized. In real networks, one may wish
to tolerate some number of pairs of vertices with high dilations, if the network pro-
vides good connections to the majority of vertex pairs. Therefore, we are interested
in computing (exactly or approximately) the dilation spectrum of a graphG. That
is, for a given threshold κ > 1 we are interested in the number

πG(κ) := |{ (p, q) ∈ S2; δG(p, q) > κ }| (2)

of all vertex pairs whose dilation exceeds κ. This distribution of the dilation could
also be helpful in understanding structural properties of a given geometric graph.

Clearly, the cost O(mn+ n2 logn) of running Dijkstra’s algorithm from each
vertex of G is an upper bound on the time complexity of computing the dilation
spectrum of G. For some classes of graphs, better running times can be obtained.
For example, it has been shown in [7] that the distances in G between all pairs
of vertices of a plane geometric graph can be computed in O(n2) total time. The
same upper bound holds for the dilation spectrum.

This paper is organized as follows. In Section 2 we provide randomized algo-
rithms for polygonal paths, trees, and cycles in the plane, that allow πG(κ) to be
computed in time O(n3/2+ε). To this end, we first use a geometric transformation
scheme introduced in [1], in order to reduce the problem of computing πG(κ) to
a counting problem, and then apply suitable range counting techniques. Then,
in Section 3, faster algorithms will be presented for approximating the dilation
spectrum. More precisely, for given reals κ ≥ 1 and ε > 0 we shall compute a
number M satisfying

πG(κ (1 + ε)2) ≤ M ≤ πG(κ) (3)

Exact and Approximation Algorithms for Computing the Dilation Spectrum 851

that approximates the number of vertex pairs of dilation > κ. The run time
of these deterministic algorithms is in O(n log2 n) for paths and cycles, and in
O(n log3 n) for trees. Our approach is based on the well-separated pair decom-
position [3]; hence, it works in any constant dimension. Finally, in Section 4 we
mention some open problems.

2 Computing the Exact Dilation Spectrum

In this section we derive exact algorithms for computing the dilation distribution
πG(κ) of certain types of plane graphs, given a threshold κ > 1.

2.1 Paths

We start with a randomized algorithm for computing πP (κ) for a simple polyg-
onal path P in the plane. First, we describe a reduction that rephrases the
problem of computing πP (κ) as a counting problem in three-dimensional space.
Then we apply range counting algorithms to solve that problem.

Reduction to range counting. We shall consider a slightly more generally
version of our problem. Namely, let A,B be two disjoint vertex sets of G; then
we are going to compute

πG(κ,A,B) = |{ (x, y) ∈ A×B | δG(x, y) > κ }|,

the number of vertex pairs in A×B whose dilation exceeds κ.
Assume that some orientation<P of P is given, and let p0 be the first vertex of

P . For a vertex p ∈ A, we define the weight of p to be ω(p) = dP (p0, p)/κ. Let Č
denote the cone z =

√
x2 + y2 in R3. We map each vertex p = (px, py) ∈ A to the

cone Cp = Č+(px, py, ω(p)). If we regard Cp as the graph of a bivariate function
then for any point x ∈ R2, Cp(x) = |xp| + ω(p). Set C(A) = {Cp | p ∈ A}.
We map a vertex q = (qx, qy) ∈ B to the point q̂ = (qx, qy, ω(q)) ∈ R3. Let
B̂ = {q̂ | q ∈ B}.

Lemma 1. For any vertex pair (p, q) ∈ A × B such that p <P q, we have that
δ(q, p) ≤ κ if and only if q̂ lies below Cp, i.e., ω(q) ≤ Cp(q).

Proof.

δ(p, q) ≤ κ ⇐⇒ dP (p, q)
|qp| ≤ κ ⇐⇒ dP (p0, q) − dP (p0, p)

|qp| ≤ κ

⇐⇒ dP (p0, q)
κ

≤ |qp| + dP (p0, p)
κ

⇐⇒ ω(q) ≤ |qp| + ω(p) ⇐⇒ ω(q) ≤ Cp(q).

If there is a vertex pair (p, q) ∈ A×B with δ(p, q) > κ we cannot be sure that
p that lies before q on P . Hence, we must also consider the symmetric situation
with the orientation of P reversed.

852 R. Klein et al.

Counting points above cones. In the previous section we have seen that the
problem of computing π(κ,A,B) amounts to count the number of point-cone
pairs (p, C) ∈ B̂ × C(A) such that p lies above C.

Suppose we are given a set P of n points and a set C of m cones in R3 whose
axes are vertical and whose apices are their bottommost points. We describe
a randomized algorithm to compute µ(P, C), the number of point-cone pairs
(p, C) ∈ P × C such that p lies above C.

We fix a sufficiently large constant r, choose a random sample R of O(r) cones
in C, and compute the vertical decomposition A‖ of the arrangement A of the
cones in R. As is known (c.f. [14], Theorem 8.21), A‖ has O(r3 log4 r) cells. For
each cell ∆ ∈ A‖, let P∆ = {p ∈ P | p ∈ ∆}, let C ∆ ⊆ C be the set of cones
crossing ∆, and let C∆ ⊆ C be the set of cones which lie completely below ∆.
Clearly µ(P, C) =

∑
∆∈A‖

|P∆||C∆| + µ(P∆, C ∆).
Set n∆ = |P∆| and m∆ = |C ∆|. Obviously,

∑
∆ n∆ = n and by the theory of

random sampling [8],m∆ ≤ m/r with high probability, for all∆. If this condition
is not satisfied for the sample R, we pick a new random sample. The expected
number of trials until we get a ’good’ sample is constant. If m∆ or n∆ is less than
a prespecified constant, then we use a naive procedure to determine µ(P∆, C∆).
Otherwise, we recursively compute µ(P∆, C∆). For m,n > 0, let T (n,m) denote
the expected running time of the algorithm on a set of n points and a set of m
cones. We get the following probabilistic recurrence:

T (n,m) =
∑

∆∈A‖

T
(
n∆,

m

r

)
+O(m + n),

where
∑

∆ n∆ ≤ n. The solution to the above recurrence is, for any ε > 0,

T (n,m) = O(m3+ε + n logm).

To improve the running time of the algorithm we can perform the following
dualization step: Let Ĉ denote the cone z = −

√
x2 + y2 in R3. If we map each

point p = (px, py, pz) ∈ P to the cone δ(p) = Cp = Ĉ+(px, py, pz) and each cone
C = Č + (px, py, pz) to the point δ(Cp) = pC = (px, py, pz) we have that p lies
above C if and only if pC lies below Cp, in other words µ(P, C) = µ̄(δ(C), δ(P)).

We can use this to tune our algorithm as follows. The recursion proceeds
as earlier except that when m∆ > n3

∆, we switch the roles of P∆ and C∆ us-
ing the duality transformation δ, and compute µ(P∆, C∆) = µ̄(δ(C∆), δ(P∆)) in
T (m∆, n∆) = O(n3+ε

∆ + m∆ logn∆) = O(m1+ε
∆) time with the algorithm just

described. With these modifications, the recurrence becomes

T (n,m) =

∑

∆∈A‖

T
(
n∆,

m

r

)
+O(m + n) if m ≤ n3

O(m1+ε) if m > n3,

where
∑

∆ n∆ ≤ n. It can be shown that, for any ε > 0,

T (n,m) = O((mn)3/4+ε +m1+ε + n1+ε).

Exact and Approximation Algorithms for Computing the Dilation Spectrum 853

Thus, we obtain the following result.

Theorem 1. Let P be a polygonal path on n vertices in R2, and let κ ≥ 1. Then
we can compute πP (κ), i.e., the number of vertex-pairs of P that attain at least
dilation κ, in O(n3/2+ε) randomized expected time for any ε > 0.

Note that we can use the same approach to report all pairs of vertices for
which the dilation is larger than κ, in additional time that is proportional to the
size of the output.

The same result can be obtained for trees, using a decomposition technique
that will be presented in Section 3.4 for computing the approximate dilation
spectrum.

2.2 Cycles

Let us now consider the case in which P is a simple closed polygonal curve. This
case is more difficult because there are two paths between any two points x, y of
P . Let P [x, y] denote the portion of P from x to y in clockwise direction, and let
dP (x, y) denote its length. Moreover, for a vertex p of P , let ν(p) denote the last
vertex on P in clockwise direction such that dP (p, ν(p)) does not exceed half the
perimeter of P .

Suppose we are given four vertices t1, t2, b1 = v(t1), b2 = v(t2) of P in clock-
wise order, and we want to compute

π(t1, t2, b1, b2) := πP (κ, P [t1, t2], P [b1, b2]).

First observe that dP (b1, b2) ≤ |P |/2 holds. Let m,n be the number of
edges in P [b1, b2] and P [t1, t2], respectively. If min{m,n} = 1, then we com-
pute π(t1, t2, b1, b2) in O(m + n) time, by brute force. Otherwise, suppose that
n ≥ m holds. Let t be the median vertex of P [t1, t2], and let b = ν(t). Clearly,
b ∈ P [b1, b2] and

π(t1, t2, b1, b2) = π(t1, t, b, b2) + π(t, t2, b1, b) + π(t1, t, b1, b) + π(t, t2, b, b2).

The quantities π(t1, t, b1, b) and π(t, t2, b, b2) are computed recursively. Since
P [t, t2] and P [b1, b] lie in P [t, ν(t)], we can compute π(t, t2, b1, b) according to
Theorem 1 in O((n+m)3/2+ε) randomized expected time for any ε > 0. Almost
the same argument applies to π(t1, t, b, b2).

Let m1 be the number of edges in P [b1, b]. Then P [b, b2] contains at most
m−m1+1 edges. Let T (n,m) denote the maximum expected time of computing
π(t1, t2, b1, b2). Then we obtain the following recurrence for any ε > 0:

T (n,m) ≤ T (n/2,m1) + T (n/2,m−m1 + 1) +O((n+m)3/2+ε), if n ≥ m,

with a symmetric inequality for m ≥ n, and T (n, 1) = O(n), T (1,m) = O(m).
The solution to the above recurrence is

T (n,m) = O((n+m)3/2+ε).

854 R. Klein et al.

To compute πP (κ), we choose a vertex v ∈ P and let P1 = P [v, ν(v)] and
P2 = P [ν(v), ν(ν(v))]. In

πP (κ) = πP1(κ) + πP2(κ) + π(v, ν(v), ν(v), ν(ν(v)))

the values πP1 , πP2 can be computed in O(n3/2+ε) expected time using The-
orem 1, and π(v, ν(v), ν(v), v) can be computed within the same time by the
recursion just described. We obtain

Theorem 2. Let P be a closed polygonal path on n vertices in R2, and let κ ≥ 1.
Then we can compute πP (κ) in O(n3/2+ε) randomized expected time.

3 Computing the Approximate Dilation Spectrum

Now we set out to give faster algorithms for computing an approximation of the
dilation spectrum. Our reduction uses the well-separated pair decomposition,
thus adding to the list of applications of this powerful method.

3.1 Well-Separated Pairs

We briefly review this decomposition and some of its relevant properties. Let d
be a fixed dimension, and let s denote a fixed constant, called the separation
constant. Two point sets A,B in Rd are well separated with respect to s if they
can be circumscribed by two disjoint d-dimensional balls of some radius r that
are at least s ·r apart. Then the distance between any two points of the same set
is at most 1 + 4/s times the distance between any two points of different sets,
while point pairs of different sets differ in distance by at most a factor 2/s; these
basic WSPD properties will be used in the sequel.

Given a set S of n points, a well-separated pair decomposition (WSPD) con-
sists of a sequence {A1, B1}, {A2, B2}, . . . , {Ak, Bk} of well-separated pairs of
subsets of S such that, for any two points p �= q of S, there is a unique index i
such that p ∈ Ai and q ∈ Bi holds, or vice versa.

Callahan and Kosaraju [3] showed that a WSPD of size k = O(n) always
exists, and that it can be efficiently computed in time O(n log n) using a split
tree. We are going to use a modified version of their result where each pair
{Ai, Bi} contains a singleton set and size k is allowed to be in O(n logn).

3.2 A General Algorithm

Given a real number κ > 1 and a geometric graph G, we show how to compute
the number ρG(κ) of all pairs of vertices in the graph for which the dilation is
at most κ.1 Now consider a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}
1 Clearly, we can obtain the number πG(κ) of vertex pairs whose dilation exceeds κ by

subtracting ρG(κ) from n
2

.

Exact and Approximation Algorithms for Computing the Dilation Spectrum 855

for the set of vertices of G. We may assume that each Ai is a singleton set,
{ai} and that k = O(n log n). We know that all geometric distances between
ai and a point of Bi are roughly equal. Let the distance between ai and any
representative point in Bi be denoted by Di. Hence, if we compute for each i,
1 ≤ i ≤ k, all points bi ∈ Bi whose distance dG(ai, bi) in G is at most κ(1+ε)·Di,
then we would have effectively computed all pairs of points in the pair {Ai, Bi}
for which their approximate dilation is at most κ. This observation leads to the
general algorithm, A, presented below in Figure 3.2; it could be easily modified

General Algorithm A
Input: A geometric graph G on a set S of points in Rd and a constant ε > 0.
Output: The number of pairs of vertices of G of dilation at most κ(1 + ε).
Step 1: Using separation constant s = 4/ε, compute a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}

for the set S, with the added condition that |Ai| = 1, for each i = 1, . . . , k.
Step 2: For each i, 1 ≤ i ≤ k, let Ai = {ai}, and Di denote the length |aib|,
where b is an arbitrary element of Bi. For i = 1, . . . , k. compute ni, the number
of points bi ∈ Bi, such that dG(ai, bi) ≤ κ(1 + ε) ·Di.
Step 3: Report N = k

i=1 ni.

to output the pairs of points of dilation ≤ κ(1 + ε).
The following lemma compares N , the output of Algorithm A, with the true

value of ρG(κ).

Lemma 2. The number of pairs of vertices in G with stretch factor at most κ
is at most equal to N . The number of pairs of vertices in G with stretch factor
at most κ(1 + ε)2 is at least equal to N . In other words,

ρG(κ) ≤ N ≤ ρG(κ(1 + ε)2)

Proof. In step 2 of algorithm A, Di is equal to |aib|, where b is an arbitrary
element of Bi. Step 2 of the algorithm counts all pairs of points bi ∈ Bi for
which |aibi| ≤ κ(1 + ε) ·Di.

If dG(ai, bi) ≤ κ|aibi|, then by the WSPD properties, dG(ai, bi) ≤ κ(1+ε) ·Di,
and thus the pair (ai, bi) is counted in step 2 of the algorithm, proving that
ρG(κ) ≤ N .

If dG(ai, bi) ≤ κ(1 + ε)Di, then it is counted in step 2 of the algorithm. But
then, by the WSPD property, dG(ai, bi) ≤ κ(1 + ε)2 · |aibi|, implying that this
pair has a dilation of at most κ(1 + ε)2. Thus, N ≤ ρG(κ(1 + ε)2).

This completes the proof.

3.3 Paths

Let the graph G be a simple path (p0, p1, . . . , pn−1) on the points of the set S,
and let ε > 0 be a constant.

856 R. Klein et al.

Following our general algorithm A of Section 3.2, we start by computing a
split tree T and a corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am, Bm}

for S, with separation constant s = 4/ε, where |Ai| = 1, for 1 ≤ i ≤ m, and
m = O(n log n). This can be done in time O(n log n).

By a simple postorder traversal of T , we store with each node u of T the
sorted list of indices of all points stored at the leaves of the subtree of u. Note
that this involves merging two sorted sublists at each node of the tree. Each set
Bi is represented by a node vi in the split tree T such that their subtrees contain
exactly the points of Bi in their leaves. Let the sorted list of the points for node
vi be denoted by Vi. Also since |Ai| = 1, it is represented by a leaf node ui in
the split tree.

Step 2 of our algorithm is implemented as follows. First, we traverse the path,
and compute for each vertex pj , 0 < j < n, the distance dG(p0, pj). Using this
information, we can compute for any 0 ≤ j < k < n, the distance dG(pj , pk) in
constant time, as the difference between dG(p0, pk) and dG(p0, pj).

Then, for 1 ≤ i ≤ m, use binary search to identify the two sublists of points
in Vi that lie before and after point ai. It is easy to observe that the two sublists
are effectively sorted by their distance from ai. Finally use two binary searches
to search the two sublists separately to identify the number of points bi ∈ Vi

such that dG(ai, bi) ≤ κ(1 + ε)Di.
It is easy to see that this correctly implements Step 2. Since it involves 2m =

O(n log n) binary searches, the running time of the entire algorithm is bounded
by O(n log2 n).

Theorem 3. Let S be a set of n points in Rd, let G be a simple path on the
points of S, and let ε be a positive constant. In O(n log2 n) time, we can compute
a number N that lies between ρG(κ) and ρG(κ(1 + ε)2).

Due to space limitations we can only mention that the same result can be
obtained for cycles.

3.4 Trees

It is well known that in any tree G having n vertices, there is a vertex v, whose
removal gives two graphs G′

1 and G′
2, each having at most 2n/3 vertices. More-

over, such a vertex v can be found in O(n) time. Each of the two graphs G′
i

is a forest of trees. We will call v a centroid vertex of G. Each of the graphs
G1 := G′

1 ∪ {v} and G2 := G′
2 ∪ {v} is connected and, hence, a tree again.

Let S be a set of n points in Rd, and let G be an arbitrary tree having the
points of S as its vertices. We will identify the vertices of G with the points of S.
Let ε > 0 be a constant. The following recursive algorithm, which is inspired by
the general algorithm A, solves the problem when the input graph G is a tree.

Step 1: Compute a centroid vertex v of G, and the corresponding decomposition
into trees G1 and G2. Note that v is a vertex of both these trees. Traverse each

Exact and Approximation Algorithms for Computing the Dilation Spectrum 857

tree in preorder, and store with each vertex p the distance dG(p, v) between p
and the centroid vertex v.

Step 2: Use the same algorithm to recursively solve the problem on graph G1
and on graph G2.

Step 3: Let s := 4/ε. Compute a split tree T and a corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am, Bm}

for the points of S, with separation constant s, having size m = O(n log n).

Step 4: For each node u of the split tree, denote by Su the set of points of S
that are stored in the subtree of u. Traverse T in postorder, and compute for
each of its nodes u the sorted sequence of nodes, S1

u, consisting of nodes in G1
sorted according to their distance from the centroid v. Similarly, compute the
sorted sequence of nodes, S2

u, consisting of nodes in G2 sorted according to their
distance from the centroid v.

Step 5: For each i, 1 ≤ i ≤ m, we do the following. Consider the pair {Ai, Bi} in
our WSPD, with Ai = {ai}, and the node vi in the split tree such that Bi = Svi .
Let the two sets computed for vi be S1

vi
and S2

vi
. If ai ∈ G1, then use binary

search to identify the number of points bi ∈ S2
vi

such that dG(ai, bi) ≤ κ(1+ε)Di.
Otherwise the search is performed in S2

vi
.

The correctness of the above algorithm is proved by induction and results from
the fact that Step 2 counts all pairs of nodes that involve ai and another node in
G1 (assuming that ai ∈ G1), while Step 5 counts all pairs of nodes that involve
ai and another node in G2. Note that the distance in G from point ai ∈ G1 to
point bi ∈ G2 is given by adding their distances to the centroid vertex v.

To prove the time complexity, let T (n) denote the running time of our algo-
rithm on an input tree having n vertices. Then, T (n) = O(n log2 n) + T (n′) +
T (n′′), where n′ and n′′ are positive integers such that n′ ≤ 2n/3, n′′ ≤ 2n/3,
and n′ + n′′ = n + 1. The O(n log2 n) term comes about because the binary
search spends O(log n) time on each of the O(n log n) well-separated pairs. The
above recurrence relation solves to T (n) = O(n log3 n).

Theorem 4. Let S be a set of n points in Rd, let G be a tree on the points of S,
and let ε be a positive constant. In O(n log3 n) time, we can compute a number
N such that it lies between ρG(κ) and ρG(κ(1 + ε)2).

4 Open Problems

Besides the obvious questions about possible improvement or generalization of
our algorithms, there seem to be some interesting structural problems one may
want to study. To what extend does the dilation spectrum of a graph, that is,
the function πG(κ), reflect the graph’s structure? And, what types of functions
πG(κ) can occur?

858 R. Klein et al.

Acknowledgement. The authors would like to thank the organizers and all par-
ticipants of the Korean workshop 2004 at Schloß Dagstuhl for establishing the
nice and stimulating atmosphere that gave rise to this work.

References

1. P. Agarwal, R. Klein, Ch. Knauer, S. Langerman, P. Morin, M. Sharir,
and M. Soss, Computing the detour and spanning ratio of paths, trees and cycles
in 2D and 3D, to appear in Discrete and Computational Geometry.

2. P. Agarwal, R. Klein, Ch. Knauer, and M. Sharir, Computing the detour of
polygonal curves, Technical Report B 02-03, Freie Universität Berlin, Fachbereich
Mathematik und Informatik, 2002.

3. P. B. Callahan and S. R. Kosaraju, A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields, J. ACM,
42 (1995), pp. 67–90.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1990.

5. D. Eppstein, Spanning trees and spanners, in Handbook of Computational Ge-
ometry, J.-R. Sack and J. Urrutia, eds., Elsevier Science, Amsterdam, 1999, pp.
425–461.

6. M. Farshi, P. Giannopoulos, and J. Gudmundsson, Finding the best shortcut
in a geometric network, 21st Ann. ACM Symp. Comput. Geom. (2005), pp. 327–
335.

7. G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with
applications, SIAM J. Comput., 16 (1987), pp. 1004–1022.

8. D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete
Comput. Geom. 2 (1987), pp. 127–151.

9. S. Langerman, P. Morin, and M. Soss, Computing the maximum detour and
spanning ratio of planar chains, trees and cycles, In Proceedings of the 19th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2002),
volume 2285 of LNCS, pages 250–261. Springer-Verlag, 2002.

10. N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some
of its algorithmic applications, Combinatorica, 15 (1995), pp. 215–245.

11. G. Narasimhan and M. Smid, Approximating the stretch factor of Euclidean
Graphs, SIAM J. Comput., 30(3) (2000), pp. 978–989.

12. G. Narasimhan and M. Smid, Geometric Spanner Networks, Cambridge Univer-
sity Press, to appear.

13. D. Peleg and A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp.
99–116.

14. M. Sharir and P. Agarwal, Davenport-Schinzel sequences and their geometric
applications, Cambridge University Press, New York, 1995.

15. M. Smid, Closest-point problems in computational geometry, in Handbook of Com-
putational Geometry, J.-R. Sack and J. Urrutia, eds., Elsevier Science, Amsterdam,
1999, pp. 877–935.

On the Computation of Colored Domino Tilings
of Simple and Non-simple Orthogonal Polygons

Chris Worman and Boting Yang

Department of Computer Science, University of Regina

Abstract. We explore the complexity of computing tilings of orthogonal
polygons using colored dominoes. A colored domino is a rotatable 2 ×
1 rectangle that is partitioned into two unit squares, which are called
faces, each of which is assigned a color. In a colored domino tiling of an
orthogonal polygon P , a set of dominoes completely covers P such that
no dominoes overlap and so that adjacent faces have the same color. We
describe an O(n) time algorithm for computing a colored domino tiling
of a simple orthogonal polygon, where n is the number of dominoes used
in the tiling. We also show that deciding whether or not a non-simple
orthogonal polygon can be tiled with colored dominoes is NP-complete.

1 Introduction

We study a computational tiling problem where the tiles model the commonly
used domino game piece. We consider tiling orthogonal polygons with so-called
colored dominoes, which are rotateable 2× 1 rectangles that are partitioned into
two colored faces. The colors on the domino faces are used to restrict how the
dominoes can be positioned: when two domino faces are positioned next to each
other in a tiling, their colors must coincide. Colored dominoes are similar to
Wang tiles [1, 11, 7, 17], which are unit squares with colored sides. Wang tiles
find application in DNA computing [1, 11] and image processing [5, 9].

Many variants of domino tiling problems have been studied, but most of the
results have focused on “colorless” dominoes, which are simply 2 × 1 rotate-
able rectangles (see, for example, [12, 6, 16, 14, 15, 8]). Results concerning col-
ored domino tilings have only arisen relatively recently [18, 3, 19]. In the colored
domino tiling problems studied in [18] and [3], a multiset of dominoes is pro-
vided, and in tilings the multiplicity of the dominoes cannot exceed those in
the multiset. In [18], the multiplicity of the provided dominoes equals that of
the multiplicity of the dominoes used in the tiling. An algorithm is described
for computing colored domino tilings of so-called “paths” or “cycles”. This al-
gorithm runs in time linear in the number of dominoes used in the tiling. The
authors of [18] also consider a colored domino tiling problem where some domi-
noes have already been positioned on the polygon, and we are asked to decide
if the tiling can be completed. This problem is shown to be NP-complete. In
[3], Biedl studies two variants of a domino tiling problem. In the first problem,
known as EXACT DOMINO TILING, the multiplicity of dominoes in the pro-
vided set is equal to multiplicity of the dominoes used in the tiling. Biedl shows

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 859–868, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

860 C. Worman and B. Yang

that EXACT DOMINO TILING is NP-complete, even for a very restricted class
of polygons known as “caterpillars”. It is also shown that EXACT DOMINO
TILING remains NP-complete when the dominoes are restricted to three colors.
In the second domino tiling problem studied in [3], which is called PARTIAL
DOMINO TILING, not all the dominoes are used in the tiling. It is shown that
PARTIAL DOMINO TILING is NP-complete, and remains so even for so-called
“paths” or “cycles”. It is also shown that PARTIAL DOMINO TILING is NP-
complete when the dominoes are restricted to three colors.

In the problems that we study, the set of dominoes used is not a multiset,
and each domino has two colors and can be used an unlimited number of times.
Thus in this kind of colored domino tiling problem, the set of dominoes provides
a set of possible “types” of dominoes that can be used in the tiling. In a previous
work we demonstrated that for simple layout polygons that can be tiled with
colored dominoes, two colors are always sufficient [19]. We also showed that
for tileable non-simple layout polygons, four colors are always sufficient and
sometimes necessary.

In the current paper we describe an O(n) time algorithm for computing a col-
ored domino tiling of a simple orthogonal polygon, where n is the number of domi-
noes used in the tiling1. We also show that deciding whether or not a non-simple
orthogonal polygon can be tiled with colored dominoes is NP-complete. Due to
space constraints, many details have been omitted in this version of the paper.

2 Definitions

A colored domino is a rotatable 2×1 rectangle that has been partitioned into two
colored unit squares, which we refer to as the faces of the colored domino. Since
all dominoes considered herein will be colored, we will often refer to “colored
dominoes” simply as “dominoes”. All polygons that we consider are orthogonal
polygons with integer coordinates. We adopt terminology similar to that found
in [18, 3, 19], and refer to such polygons as layout polygons. We refer to the set of
unit squares induced by the integer grid within a layout polygon P as the squares
in P , which are denoted by ρ(P). A tiling is a placement of dominoes from a set D
of dominoes onto a layout polygon P such that each square in ρ(P) is covered by
exactly one domino face, adjacent faces of dominoes have the same color, and the
union of all the dominoes in the tiling is P . We say that p, q ∈ ρ(P) are matched
under a tiling if p and q are covered by the same domino in the tiling. A tiling of
a layout polygon P therefore describes a perfect matching of ρ(P).

We are concerned with tilings that disallow twin dominoes, which are
monochromatic colored dominoes. The reason for excluding twin dominoes is ne-
cessitated from the problem statement: if we allow twin dominoes then color be-
comes irrelevant and the problem reduces to that of partitioning a polygon into
2 × 1 rectangles. Motivated by this restriction, we define Dk as follows: D1 is a
singleton containing a solitary twin domino, and for k ≥ 2, we define Dk to be
the set of

(
k
2

)
non-twin dominoes over k colors.

1 This algorithm was presented as an extended abstract in [19].

On the Computation of Colored Domino Tilings 861

Definition 1. k-tileable: A layout polygon P is k-tileable if and only if there
exists a tiling of P using dominoes from Dk.

Extending this notion slightly, we define a k-tiling to be a tiling that uses
dominoes from Dk. We study the following tiling decision problem:

Definition 2. TWINLESS TILING:
INSTANCE: A layout polygon P .
DECISION: Is P k-tileable for k ≥ 2?

In [19] it was shown that a simple layout polygon is k-tileable for k ≥ 2 if and
only if it is 2-tileable. Thus for simple layout polygons the decision associated
with the TWINLESS TILING problem can be restated as “Is P 2-tileable?”.

Next we introduce the main tools that we use to analyze colored domino
tilings.

Definition 3. Twin-Forcing Arrangement: Let P be a layout polygon with a
perfect matching M of ρ(P). A twin-forcing arrangement is a set of four squares
p, q, r, s ∈ ρ(P) contained in a 2 × 2 subrectangle of P , such that p and q are
adjacent and matched with each other, while r and s are adjacent, but r is not
matched with s.

One can easily show that a twin-forcing arrangement requires that p and q
must be covered with a twin domino. Next we introduce the concepts of leaves
and corners in layout polygons.

Definition 4. Leaf: Let L be a 2 × 1 subrectangle of P . Then L is a leaf of P
if L contains a square p such that p is adjacent to exactly one square in ρ(P).

Definition 5. Corner: Let C be a 2 × 2 subrectangle of P . Then C is a corner
of P if C contains a square p such that p is adjacent to only two other squares in
ρ(P).

The following two Lemmas about leaves and corners will be essential to our
algorithm for simple layout polygons.

Lemma 1. Let P be a k-tileable layout polygon for k ≥ 2 that contains a leaf L.
In any k-tiling of P there is only one domino that covers L.

Proof. (omitted)

Lemma 2. Let P be a k-tileable layout polygon for k ≥ 2 that contains a corner
C. In any k-tiling of P there are only two dominoes that cover C.

Proof. (omitted)

A key observation about leaves and corners is their existence in simple layout
polygons.

Lemma 3. If P is a simple layout polygon such that |ρ(P)| ≥ 2, then P contains
a leaf or a corner.

Proof. (omitted)

862 C. Worman and B. Yang

3 Tiling Simple Layout Polygons

In this Section we describe an algorithm for the TWINLESS TILING problem
for simple layout polygons. We note that our algorithm not only decides whether
or not a simple layout polygon is k-tileable for k ≥ 2, it also computes such a
tiling if one exists. Our algorithm operates on the following decomposition of the
layout polygon.

Definition 6. Leaf-Corner Decomposition: A leaf-corner decomposition of
a layout polygon P , denoted L(P), is defined recursively as follows: if P does not
contain a leaf or a corner, then L(P) := ∅. Otherwise, let X be a leaf or corner
of P , and let P1, P2, ..., Pl be the simple layout polygons obtained by removing X
from P . Then we define L(P) := {X}

⋃
L(P1)

⋃
L(P2)

⋃
...
⋃

L(Pl).

We pause here to consider an important note concerning the members of a leaf-
corner decomposition L(P). A member of L(P) is not necessarily a leaf or a corner
of P , although each member of L(P) is a leaf or a corner of some subpolygon of
P . For convenience., we will refer to the members of L(P) as leaves or corners.
We can justify this naming convention by observing that Lemma 1 and Lemma
2 hold for the members of L(P):

Lemma 4. Let P be a simple layout polygon that is k-tileable for k ≥ 2, and let
L(P) be a leaf-corner decomposition of P . If L ∈ L(P) is a 1×2 rectangle then in
any k-tiling of P for k ≥ 2, there is only one domino that covers L. Futhermore,
if C ∈ L(P) is a 2 × 2 rectangle then in any k-tiling of P , for k ≥ 2, there are
only two dominoes that cover C.

Proof. (omitted)

We say that a leaf-corner decomposition L(P) covers P if and only if the union
of all the members in L(P) is P .

Lemma 5. Given a simple layout polygon P and a leaf-corner decomposition
L(P), if L(P) does not cover P then P is not k-tileable for k ≥ 2.

Proof. (omitted)

Due to the following result, the main objective of our algorithm is to compute
a perfect matching of ρ(P) that does not contain any twin-forcing arrangements.

Lemma 6. Let P be a simple layout polygon. P is k-tileable with matching M ,
for k ≥ 2, if and only if M is a perfect matching of ρ(P) that does not contain a
twin-forcing arrangement.

Proof. (omitted)

Let L be a leaf, and C be a corner, from a leaf-corner decomposition L(P)
of a simple layout polygon P . According to Lemma 4, the squares in L must be
matched, and the squares contained C may be matched one of two ways, in any

On the Computation of Colored Domino Tilings 863

(c)

C1

C2 C3

(a) (b)

Fig. 1. A matching that forces another matching. (a) Three label corners. (b) Match-
ings of C2 and C3 that cause of twin-forcing arrangement. (c) A matching of C2 that
forces a matching of C3.

k-tiling of P , for k ≥ 2. Suppose we are given a perfect matching of ρ(P) that is
associated with a k-tiling of P for k ≥ 2, and let p be the highest and leftmost
square in C. If p is matched with its right neighbor, then we say that C is matched
“horizontally”, and deem C matched “vertically” otherwise. The key to our algo-
rithm is noticing that the matching of a leaf or a corner may “force” neighboring
leaves and corners to be matched a certain way if we are to avoid twin-forcing
arrangements. To illustrate this, consider the corners C1, C2, and C3 from the
leaf-corner decomposition of a layout polygon depicted in Figure 1(a). Suppose
the corner C2 is matched as in Figure 1(b). We can see that C1 can be matched
in either of two ways without causing a twin-forcing arrangement. This is not the
case for C3. If C3 is matched “vertically” (see Figure 1(b)) then a twin-forcing
arrangements arises. This forces C3 to be matched “horizontally” as in Figure
1(c).

We can generalize these observations in the following Lemma. We say that two
members X and Y of a leaf-corner decomposition are adjacent if there exists two
squares p, q ∈ ρ(P), such that p ∈ X , q ∈ Y , and p and q are adjacent.

Lemma 7. Let P be a simple layout polygon with a perfect matching M of ρ(P),
and a leaf-corner decomposition L(P) that covers P . L(P) satisfies the following
rules with respect to M if and only if M does not contain a twinforcing arrange-
ment:

1. For each edge e of each leaf L ∈ L(P), there is at most one member of L(P)
that both intersects e and is adjacent to L.

2. If Ci, Cj ∈ L(P) are two corners that share an entire edge, then Ci and Cj

are both matched horizontally or they are both matched vertically.
3. If L,Ci ∈ L(P) are a leaf and a corner such that L shares an entire vertical

(resp. horizontal) edge with Ci, then Ci is matched vertically (resp. horizon-
tally).

4. If X,Y ∈ L(P) are both adjacent to a corner Ci ∈ L(P), such that both X and
Y intersect the same vertical (resp. horizontal) edge of Ci, then Ci is matched
horizontally (resp. vertically).

Proof. (omitted)

Our algorithm encodes rules (1)-(4) to create a boolean expresion which is an
instance of the 2SAT problem, which is known to be solveable inO(n) time, where

864 C. Worman and B. Yang

n is the number of variables in the boolean expression [2]. Using this idea, we can
show the following:

Theorem 1. The TWINLESS TILING problem can be solved in O(|ρ(P)|) time
on simple layout polygons, or equivalently, O(n) time, where n is the number of
dominoes needed in the tiling.

Proof. (omitted)

4 Tiling Non-simple Layout Polygons

In this Section we show that the TWINLESS TILING problem is NP-complete for
non-simple layout polygons, i.e. layout polygons that contain holes. This problem
is in NP since we can “guess” a tiling and verify that this tiling is a k-tiling for
k ≥ 2 in non-deterministic polynomial time.

Our reduction is from a boolean satisfiability problem called PLANAR
3,4SAT. Let φ be a boolean expression in conjunctive normal form. We define
the inclusion graph of φ, denoted G(φ), to be the graph whose vertices are the
variables and clauses of φ. An edge (vi, cj) exists in G(φ) if and only if the vari-
able vi appears negated or unnegated in clause cj .

Definition 7. PLANAR 3,4SAT
INSTANCE: A boolean expression φ in conjunctive normal form such that:

(i) Each clause contains exactly 3 literals, (ii) Each variable appears negated or
unnegated at most 4 times in φ, and (iii) The inclusion graph G(φ) is planar.

DECISION: Is φ satisfiable?

The PLANAR 3,4SAT problem is known to be NP-complete (see [10] and [13]).
Our reduction will construct a layout polygon P that is k-tileable for k ≥ 2 if and
only if φ is satisfiable. To accomplish this, we will use a planar embedding ofG(φ)
as a template for P . Specifically, we will use a planar orthogonal grid drawing of
G(φ), which we denote as D(φ), which has the following properties: (i) Each edge
of G(φ) is drawn as a chain of orthogonal line segments, (ii) Each bend in the
drawing of an edge lies at an integer valued coordinate, (iii) Each node of G(φ)
is drawn as a point that is located at an integer valued coordinate, and (iv) All
edges are disjoint except when their endpoints meet at a node. We maintain the
graph theoretic terminology when refering to D(φ). For example, when we say
“an edge e in D(φ)” we are referring to the chain of orthogonal line segments
that constitute the drawing of the edge e in G(φ). Similarily, when we say “the
vertex v in D(φ)” we are referring to the point in the integer plane associated
with the vertex v in G(φ).

As already noted, D(φ) will be used as a template for P . So that our reduction
can be computed in polynomial time, we must ensure that the edges in D(φ) are
not too long. We can guarantee that each edge in D(φ) has a length in O(n2) if
D(φ) can occupies O(n2) space, where n is the number of variables in φ. Such a
planar orthogonal grid drawing can be computed in O(n) (see, for example, [4]).

On the Computation of Colored Domino Tilings 865

(b)(a)

center value
corner

terminals

Fig. 2. (a) The variable gadget. (b) The terminals, center, and value corner of a variable
gadget.

We note here that as part of our reduction, D(φ) will also be scaled by a constant
in order to ensure that P can be constructed correctly. The exact value of this
constant will be discussed in what follows.

To construct P , we will overlay various gadgets over the nodes and edges in
D(φ). These gadgets, which are layout polygons, will correspond to different as-
pects of φ. We employ gadgets that represent variables, negation, and clauses.
We also make use of a special gadget called a spacer that is used to ensure proper
connnections between variable gadgets and clause gadgets.

Variable Gadget: A variable gadget represents a particular variable from φ.
The tiling of a variable gadget will correspond to the variable being assigned a
particular truth value. The variable gadget is depicted in Figure 2(a). Figure 2(b)
identifies important aspects of the variable gadget. The terminals of a variable
gadget will be used to attach a variable gadget to the appropriate clause gad-
gets. The center will be used to position a variable gadget on the appropriate
node in D(φ). Specifically, if a variable gadget is representing a variable vi, then
the variable gadget is positioned in the plane so its center is located at the node
associated with vi in D(φ). The value corner is used to “set” the truth value of
variable. Specifically, the orientation (i.e. horizontal or vertical) of the matching
of the value corner with respect to a k-tiling for k ≥ 2 will determine the truth
value of the variable, where horizontal corresponds to “true”, and vertical cor-
responds to “false”. Although we have omitted the details in this version of the
paper, we can show the following:

Lemma 8. In a k-tiling of a variable gadget for k ≥ 2, the value corner of a
variable gadget is matched horizontally (resp. vertically) if and only if all squares
in the variable gadget are also matched horizontally (resp. vertically).

Negation Gadget: The “truth” value of a variable gadget will be transmitted
to a clause gadget according to the orientation of the tiling of the variable gadget.
When a variable appears negated in a clause, we must “flip” this orientation. The
gadget that accomplishes this is called the negation gadget and is depicted in
Figure 3(a). Figure 3(b) identifies two important regions of the negation gadget
called the input corner and the output corner. Figure 3(c) and (d) illustrates the

866 C. Worman and B. Yang

(d)(a)

input
corner

output
corner

(b) (c)

Fig. 3. (a) The negation gadget. (b) The input and output corners. (c)(d) The two
possible matchings of the negation gadget in a k-tiling for k ≥ 2.

fact that the orientation of the matching associated with a k-tiling for k ≥ 2 of
the input corner is always opposite to that of the output corner. Thus we have
demonstrated the following:

Lemma 9. In any k-tiling of a negation gadget for k ≥ 2, if the input corner
of the negation gadget is matched horizontally (resp. vertically), then the output
corner is matched vertically (resp. horizontally).

Clause Gadget: A clause gadget is used to represent a clause from φ (see
Figure 4(a)). Figure 4(b) identifies important aspects of the clause gadget. The
terminals in a clause gadget are used to connect a clause gadget to the appropri-
ate variable gadgets. The center of the clause-gadget is used to position a clause
gadget on the appropriate vertex in D(φ). Specifically, if a clause gadget is rep-
resenting a clause ci, then the clause gadget is positioned in the plane so that
the center is located at the vertex associated with ci. The clause gadget is then
rotated if necessary so that each of the terminals intersect a line segment that is
incident with the node associated with ci.

The clause gadget is constructed such that it is k-tileable for k ≥ 2 if and only
if at least one of the variable gadgets that is connected to it is tiled horizontally,
i.e. set to true. The details of this have been omitted in this version of the paper,
but we can show the following:

Lemma 10. In any k-tiling for k ≥ 2 of a clause gadget, at least one of the 2× 2
squares that surround the terminals must be tiled horizontally, i.e. in the “true”
orientation.

The final gadget that we require is called the spacer gadget, which is used to
ensure a proper connection between variable and clause gadgets (see Figure 5).

(a)

terminals

center

(b)

Fig. 4. (a) The clause gadget. (b) The terminals and center of the clause gadget.

On the Computation of Colored Domino Tilings 867

s

corner
output
corner

(a) (b)

p
r

q

input

Fig. 5. (a) The spacer gadget with the input and output corners identified. (b) The
forced matchings of the spacer gadget.

We can show that the spacer gadget is an identity gadget in the sense that the
input and output corners are always matched with the same orientation in any
k-tiling for k ≥ 2. Also, the distance between the input and ouput corners is
odd, and hence the spacer gadget is used to adjust the parity of connections be-
tween variable and clause gadgets. This is needed when we make connections be-
tween variable and clause gadgets on line segments of odd length in D(φ). The
details concerning the spacer gadget have been omitted in this version of the
paper.

Lemma 11. In any k-tiling of a spacer gadget for k ≥ 2, the input and output
corners are either both matched horizontally or both vertically.

From our construction we can see that P is k-tileable if and only if φ is satis-
fiable. Thus we have the following:

Theorem 2. The TWINLESS TILING problem is NP-complete for non-simple
layout polygons.

Acknowledgements

We would like to thank Therese Biedl for useful comments regarding the results
presented in Section 3.

References

1. L. Adleman, J. Kari, L. Kari, and D. Reishus. On the decidability of self-assembly
of infinite ribbons. Proceedings of FOCS 2002, IEEE Symposium on Foundations
of Computer Science, pages 530–537, 2002.

2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123, 1979.

3. T. Biedl. The complexity of domino tiling. In Canadian Conference on Computa-
tional Geometry (CCCG’05), pages 187–190, 2005.

4. T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput.
Geom. Theory Appl., 9(3):159–180, 1998.

868 C. Worman and B. Yang

5. M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and texture
generation. ACM Trans. Graph., 22(3):287–294, 2003.

6. G. Csizmadia, J. Czyzowicz, L. Gasieniec, F. Kranakis, and J. Urrutia. Domino
tilings of orthogonal polygons. In Canadian Conference on Computational Geom-
etry (CCCG’99), pages 154–157, 1999.

7. K. Culik. An aperiodic tiling of 13 wang tiles. Discrete Math, 160:245–251, 1996.
8. J. Czyzowicz, E. Kranakis, and J. Urrutia. Domino tilings and two-by-two squares.

In Canadian Conference on Computational Geometry (CCCG’97), 1997.
9. S. Hiller, O. Deussen, and A. Keller. Tiled blue noise samples. In VMV ’01: Pro-

ceedings of the Vision Modeling and Visualization Conference 2001, pages 265–272.
Aka GmbH, 2001.

10. K. Jansen and H. Müller. The minimum broadcast time problem for several pro-
cessor networks. Theoretical Computer Science, 147(1–2):69–85, 1995.

11. J. Kari. Infinite snake tiling problems. In M. Ito and M. Toyama, editors, Develop-
ments in Language Theory, 6th International Conference, DLT 2002, Kyoto, Japan,
September 18-21, 2002, Revised Papers, volume 2450 of Lecture Notes in Computer
Science, pages 67–77. Springer, 2003.

12. C. Kenyon and R. Kenyon. Tiling a polygon with rectangles. In 33rd Fundamentals
of Computer Science (FOCS), pages 610–619, 1992.

13. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,
1982.

14. M. L. N. Elkies, G. Kuperberg and J. Propp. Alternating sign matrices and domino
tilings, part 1. Journal of Algebraic Combinatorics 1, pages 111–132, 1992.

15. M. L. N. Elkies, G. Kuperberg and J. Propp. Alternating sign matrices and domino
tilings, part 2. Journal of Algebraic Combinatorics 1, pages 219–234, 1992.

16. J. Propp. A reciprocity theorem for domino tilings. The Electronic Journal of
Combinatorics, 8, 2001.

17. H. Wang. Proving theorems by pattern recognition. ii. Bell Systems Technical
Journal, (40):1–41, 1961.

18. C. Worman and M. Watson. Tiling layouts with dominoes. In Proceedings of the
16th Canadian Conference on Computational Geometry (CCCG’04), pages 86–90,
2004.

19. C. Worman and B. Yang. On the computation and chromatic number of colored
domino tilings. In Canadian Conference on Computational Geometry (CCCG’05),
2005.

Optimal Paths for Mutually Visible Agents

Joel Fenwick and V. Estivill-Castro

Institute for Integrated and Intelligent Systems,
Griffith University, Australia

j.fenwick@student.gu.edu.au, v.estivill-castro@griffith.edu.au

Abstract. We present linear-time algorithms for a pair of robots to
travel inside a simple polygon on paths of total minimum length while
maintaining visibility with one another. We show that the optimal paths
for this mutually visible constraint are almost always each agent’s short-
est path. The this may not happen only on a sub-case of when the line
of visibility of the source points crosses the line of visibility of the target
points. We also show that the travel schedule is computable, but that it
also suffers from a pathological case.

Keywords: Polygon, Shortest Path, Teams of Robots, Line of Visibility.

1 Introduction

Recently, tasks performed by groups of robots have sparked significant research
in robotics and multi-agent systems because many potential benefits arise (bet-
ter resource utilization, due to specialization and load balancing, and robustness
as failure of one agent does not necessarily imply the task is impossible by the
team). The focus has been on teams of robots performing task related to mobility
and in particular to exploration of terrains and map construction [1,7,11,13,12].
Settings vary from situations where the robots have previous knowledge of the
physical layout of their environment to settings where such knowledge is dis-
tributed and requires fusion [10]. Some of these research efforts consider con-
straints, like maintaining line of sight or proximity to enable communication [9].

However, little has been explored from the perspective of the theoretical pos-
sibilities of some of these tasks in abstractions of the problem. There is extensive
research in shortest paths problems [8]. For example, if one robot is to navigate a
large room for which it has a map that can be modelled as a simple polygon with
n vertices, the task of finding the shortest path from a source point s to a target
t can be achieved in O(n) time (first triangulate the polygon in O(n) time [3],
and then find the shortest path in the resulting planar graph [5]). If the room
is more complicated and needs to be modelled as a polygon with holes, then
the complexity of the problem blows out to exponential time since there may
be an exponential number of shortest paths. However, if the homotopy type is
given [6], the problem is back to polynomial time and much research has been re-
cently dedicated to this variant of the problem [2,4]. If there are multiple agents,
and agent ai is to travel from point si to point ti, then we can minimize the total

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 869–88 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1

870 J. Fenwick and V. Estivill-Castro

distance travelled by computing the shortest path for each robot (unless there is
some other constraint). We study here what we believe is a reasonable constraint
that one may require of a pair of robots. Namely, we require the robots to start
in a configuration where they are in line of sight and maintain that visibility
condition until they reach their destinations. We show that this constraint in-
volves a series of interesting results. Some of these are positive, in particular, we
show settings where two robots can maintain mutual visibility and travel each
on their shortest path. But, we also show in Section 4 that small changes in the
assumptions result in negative results. With this in mind Section 2 presents the
necessary definitions in full detail.

2 The Moving Points Case

We establish necessary definitions to present the problem formally.

Definition 1. A sequence 〈x0, . . . ,xn−1〉 of different 2D points such that only
consecutive line segments xi−1 mod nxi and xixi+1 mod n intersect and they do so
only at xi (for i = 0, . . . , n− 1) defines a simple polygon. The polygon consists
of both the interior and boundary. The line segment between two points u and v
is uv and has Euclidean length len(uv). The line through u,v is line(u,v).

A natural restriction explored in this paper is that agents must maintain a line of
sight. This is a reasonable abstraction for agents that communicate via infrared
signals, gestures, and even other wireless methods.

Definition 2. Two points in a polygon are mutually visible if the line segment
joining the points does not intersect the exterior of the polygon. In this case, the
line segment is named the sightline for those two points.

It is customary to model a robot as a point [8] (but see Section 4 for the impact
of changing this assumption). Note that the shortest path between two points s
and t in a polygon is composed of a sequence of line segments starting at s and
ending at t and joining at vertices of the polygon [8]. For the purposes of this
discussion a path containing three or more Co-linear vertices (of the polygon) in
sequence will not be simplified to a single line segment.

Definition 3. A mutually visible path problem(MVPP) is given by a simple
polygon P and four points (s1, s2, t1 and t2). The points s1 and s2 are mutually
visible, and so are t1 and t2. Two agents a1 and a2 are modelled as points capable
of moving at constant speed (this constant is the same for both agents) or waiting
(with acceleration being instantaneous). Find paths π1 and π2 for the agents and
sequences of pauses w1 and w2 such that agents moving along the paths and
pausing according to the sequences are mutually visible at all times.

This abstraction allows us to explore fundamental questions. The first question
is if such MVPPs always have a feasible solution. For this issue we need to
introduce some notation. In an MVPP, the start sightline is S = s1s2 while the
target sightline is T = t1t2. Together they will be referred as the sightlines of

Optimal Paths for Mutually Visible Agents 871

the MVPP. For an MVPP, let Π1 and Π2 be the shortest paths between (s1,t1)
and (s2,t2) respectively. We denote the number of line segments in path Πi by
|Πi|.

Definition 4. Two sightlines S and T are said to cross if S ∩ T = {cp} and
cp /∈ {s1, s2, t1, t2}. The point cp will be called the crossing point. This definition
is extended to apply to paths in the obvious way.

If ‖S ∩ T ‖ > 1 or cp is an endpoint, we say that the sightlines do not cross,
but intersect. We first make the observation that, if the sightlines S and T
cross, the MVPP does have a solution. Consider Fig. 1 (the dotted lines are
the sightlines, the dashed lines are shortest paths and the thicker lines are
part of the polygon boundary). When we discuss optimal solutions (shortest
in Euclidean metric), this special case will be important. One feasible solu-
tion is simply for agent a1 to move to the crossing point cp along the start-
ing sightline while agent a2 is stationary. Then agent a1 is stationary while
agent a2 moves to the crossing point of the MVPP’s sightlines also along the
starting sightline. Note that we allow the agents to occupy the same point.
From here, agent a1 travels to its target along
the target sightline while a2 is stationary.
The last step in the schedule is for agent a2 to
move to its target along the target sightline
while a1 is stationary. This example also il-
lustrates the type of feasible solutions for an
MVPP. In the case where the sightlines do
not cross we not only establish the existence
of solutions, but we can characterize optimal
solutions in the following sense.

Definition 5. In an MVPP, a solution (π1, π2, w1, w2) is optimal if the total
Euclidean length of the paths π1 and π2 is minimal among feasible solutions of
the MVPP.

The main results of this paper are the following theorems:

Theorem 1. If the sightlines of an MVPP do not cross, then the shortest paths
Π1 and Π2 between (s1, t1) and (s2, t2) respectively are a solution, and therefore
they are an optimal solution. Moreover, computing the sequence of pauses for both
agents requires linear time.

Theorem 2. If the sightlines of an MVPP cross, then either: the shortest paths
Π1 and Π2 are the paths of an optimal solution, or paths π′

1 and π′
2 (which

are the paths for an optimal solution) can be produced from Π1 and Π2 with a
combined length as close as desired to Π1 and Π2. Moreover, distinguishing the
two cases above is computable in linear time.

Π2

Π1

s2

cp

t1
s1

t2

Fig. 1. A MVPP where the sight-
lines cross

872 J. Fenwick and V. Estivill-Castro

Π2

Π1

t1 t2

s1 s2

Π2
Π1

t1 t2

s1 s2

Π2
Π1

t1 t2

s2s1

Fig. 2. No obstacle can be in the interior of the region bounded by Π1, Π2, S, T

2.1 Non-crossing Case

We prove Theorem 1 using the following two lemmas.

Lemma 1. Consider an MVPP where the sightlines do not cross and Π1, Π2
do not cross (other than at a vertex on both paths). If vertices u ∈ Π1,v ∈ Π2
are mutually visible then:
1. - If u and v are not final vertices, then they can see their successors u+1

and v+1 respectively.
2. - The interior of the region R bounded by the shortest paths and the sightlines

(ie the region bounded by Π1,Π2,S and T) is free of obstacles.
3. - The quadrilateral v,v+1,u+1,u is free of obstacles.

Proof. Paths are composed of unbroken line segments so no obstacle can block
vision from a vertex to its successor. The second assertion is illustrated in Fig 2.
No obstacle can cut any link in the path (assertion 1), no obstacle can cut either
of the sightlines and there are no holes in the polygons. Hence the interior of
the region must be free of obstacles. Since the quadrilateral in assertion 3 is a
subset of R, it must be free of obstacles. ��

We treat the crossing and non-crossing cases separately.

Lemma 2.Consider an MVPP where the sight-
lines do not cross and a vertex u on one short-
est path can see vertices v and v+1 on the
other shortest path. Then, u can see every
point on the path between v and v+1.

Proof. Proof by contradiction: Suppose ∃ point
p on the path between v and v+1 which is
not visible to u. The region bounded by uv ,
uv+1 and the path must be free of obstacles
(proof of Lemma 1) so the path must be non-
convex. But we know that the path must be
convex since it has minimal length and has
no obstacles affecting it on one side. ��

Π1

Π2

u v

u+1

v+1

Π2

Π1

u v

u+1

v+1

Fig. Two successive points on Π1

and Π2 where u and v are mutually
The solid lines are known

to not have obstacles obstructing
them.

3.

visible.

Optimal Paths for Mutually Visible Agents 873

In order to identify conditions under which an optimal solution still consists
of the shortest paths we start with the following lemma.

Lemma 3. Consider an MVPP where the sightlines cross. Then, each shortest
path Πi∈{1,2} must be convex chain, and for all points p ∈ Π1 and all points
q ∈ Π2, either the line segment pq is a sightline or it is not a sightline and
pq ∩ (Π1 ∪Π2) = {p, q} (that is, the obstacle blocking vision must be a section
of the boundary that is not part of the shortest paths).

Proof. First we show Π1 is convex and by symmetry Π2 is convex. But, as in
Lemma 2, this is easy to see from properties of shortest paths, the only way a

be free of obstacles (see Figure 3, and Lemma 1). Thus, it must be possible to
advance one of the agents to its next point. Note it is not always possible to
advance both agents simultaneously since if the quadrilateral has a reflex vertex
vision may be interrupted.

The pause sequences can be updated to take this movement into account and
the process repeated. If the paths cross (in the same sense as defined previously
for sightlines) then an extra vertex must be introduced at the intersection point
(allowing us to apply Lemma 1). If one path has fewer segments than the other,
the other agent can move to its target without pausing (Lemma 2). So we have
paths and a sequence of pauses which solves the problem. The solution is optimal
since the paths used are of minimal length. ��

The claim regarding linear-time computability is left till Section 3.

2.2 Crossing Case

This section proves Theorem 2. While we have shown that Fig. 1 has a solution,
it illustrates the difficulties of the optimal solution being the shortest paths. Note
that if one agent moves without the other moving as well, then the sightlines
will intersect the exterior of the polygon. That is, sightlines crossing as shown
in Fig. 1 imply that neither agent can start its sequence with a pause. For the
rest of this section, assume that we have an MVPP where the sightlines cross.
We also make the following simplifying observation. Consider an MVPP where
the lines cross, and assume that the first line segment in Πi∈{1,2} is on the start
sightline. Then the MVPP is equivalent to another MVPP where si is replaced
by the endpoint of the first line segment of Πi. This is simply because agent ai

can move along the start sightline to the endpoint of the first line segment in
Πi without losing site of the other agent. A similar reduction holds for the last
segment of Πi. Thus, in what follows we assume the sightlines cross and each of
the shortest paths coincides with the sightlines only at each of their sources and
each of their targets.

We now prove Theorem 1. Suppose that the agents have successfully moved
to u ∈ Π1 and v ∈ Π2 respectively and that u+1 ∈ Π1 and v+1 ∈ Π2 are
the next vertices on each path. The quadrilateral defined by u,u+1,v+1,v must

shortest path changes curvature is if there are boundary vertices on both sides
of the path. Since the sightlines ensure that there are no polygon vertices on one
side of the path, the path must be convex (Fig. 1 helps visualise this argument).

874 J. Fenwick and V. Estivill-Castro

Π2

Π1

t2 s2

t1
s1

s

pw1

cp

(a)

Π2

Π1 t1

pw1

s1

t2 s2

s

cp

s′

(b)

Fig. 4. Agents can start along their shortest path if both see an additional point s

The second claim now follows from the first. Consider the area bounded by the
line segments s1cp and cpt1 and Π1. This area does not intersect the exterior of
the polygon and similarly for the corresponding area for Π2. Thus, any possible
visibility problems must come from some other part of the polygon. ��

We will show that if at least one of the agents can get started (and can land
at its target), then the shortest paths are also solution and thus such solution is
optimal. We start by describing the conditions under which they can get started.

Lemma 4. In an MVPP where sightlines cross, if there is a points /∈ line(s1, s2)
such that s is visible to both s1 and s2, then the agents can start a feasible so-
lution along the shortest paths Π1 and Π2.

Proof. Without loss of generality, assume s is below the start sightline (refer to
Fig. 4). If s is above the start sightline reverse the roles of s1 and s2. Then, the
interior of the triangle s1, s2, s is empty of obstacles. Consider two cases:

1.- If s is below or on the target sightline, then the segment s2s can be extended
until Π1 (refer to Fig. 4 (a)). Let pw1 be the intersection of Π1 and the line
through s2 and s. Then, clearly agent a1 can start moving until pw1 while agent
a2 waits at s2 since the interior of the area bounded by the start sightline, the
sightline s2pw1 and Π1 is empty of obstacles. Note that after a1 reaches pw1, a2
can move to the intersection of line(pw1, cp) and Π2.
2.- The point s is above the target sightline (refer to Fig. 4 (b)). Then, consider

the crossing point s′ of the sightline s1s and the target sightline. Using s′ this
case reduces to the one before. ��

A symmetric proof provides the following lemma.

Lemma 5. Consider an MVPP where sightlines cross. If there is a point t /∈
t1t2 such that t is visible to both t1 and t2, then the agents can terminate a
feasible solution along the shortest paths Π1 and Π2.

Now, we only have one more case. But its treatment remains delicate. This is
the case where the start and target sightlines cross and no agent can start with
a pause. In this case, the set of points visible to both s1 and s2 is the maximal
unbroken segment of line(s1, s2). Because both agents must move simultaneously,

Optimal Paths for Mutually Visible Agents 875

an optimal solution would coincide with the shortest paths if there is a point
s′

1 in the first line segment of Π1, and a point s′
2 in the second line segment

of Π2 such that len(s′
1s1) =len(s′

2s2) and the sightline s′
1s

′
2 does not cross

the exterior of the polygon. Moreover, it must be the case that for all d with
0 ≤ d < len(s′

1s1), the sightline between sd
1 = s1 + d(s′

1 − s1)/len(s′
1s1) and

sd
2 = s2 +d(s′

2 −s2)/len(s′
1s1) does not cross the exterior of the polygon. We

show next that this condition can be tested in linear time. For convenience of the
argument consider the situation after a translation and a rotation that makes
s2 = (0, 0) and s1 to have its x coordinate 0 and y coordinate s1y = −len(s1s2).
Fig 5 illustrates this setting.

With the length L = −s1y of the starting line known we can

α

d

d

O2

O1

β

sd
2

s2

s1

sd
1

z

Fig. 5. Both
agents must
move

find an expression for the coordinates of the points the agents
travel in. Namely,

sd
1 = (d sin(π−α),−(L+d cos(π−α))) = (d sinα,−L+d cosα)

and sd
2 = (−d sin(π − β), d cos(π − β)) = (−d sinβ,−d cosβ).

Therefore, we can express the sightline parametrically since
sd

2s
d
1 = (−d sinβ + λ(d sinα+ d sinβ),−d cosβ + λ(d cosα−

L+ d cosβ)) , with 0 ≤ λ ≤ 1. We are interested in the point z
where the sightline of the agents intersects the start sightline.
This point has x = 0, and this gives λz = sinβ/(sinα+ sinβ).
With this value we obtain the following derivation.

zy = −d cosβ +
sinβ

sinα+ sinβ
(d cosα− L+ d cosβ)

=
−d cosβ(sinα+ sinβ) + sinβ(d cosα− L+ d cos β)

sinα+ sinβ

=
−d sinα cosβ − d sinβ cosβ + d sinβ cosα− L sinβ + d sinβ cosβ

sinα+ sinβ

=
d(− sinα cosβ + sinβ cosα) − L sinβ

sinα+ sinβ
=
d sin(β − α) − L sinβ

sinα+ sinβ

We are now in a position to analyse the change in zy as the agents travel. This
gives ∂zy/∂d = sin(β−α)

sin α+sin β and therefore, we find that that ∂zy/∂d = 0 implies
sin(β − α) = 0. We see that in this case β = α (since α, β ∈ (0, π)). In the
case where ∂zy/∂d > 0, sin(β − α) > 0 or β > α (ie the intersection point z
moves closer to s2) Conversely, it goes closer to s1 when ∂zy/∂d < 0. This is
sin(β − α) < 0 or β < α.

With respect to Fig. 5, we say that a vertex v of the polygon and on the
start sightline touches left if neither of the polygon edges incident on v intersect
the interior of the half-plane to the right of the start sightline (the obstacle O1
illustrates this). Similarly, we say touches right and an example is the vertices of
the obstacle O2. Now, traverse the boundary of the polygon and find the closest
vertex vr to s1 that touches right and the closest vertex vl to s2 that touches
left. Any sightlines for a successful solution must pass through the interval vrvl

876 J. Fenwick and V. Estivill-Castro

on the start sightline. We know this interval must exist since the target sightline
must pass through it. Moreover, we can verify this in O(n) time.

Lemma 6. In an MVPP where the sightlines cross and all points visible to both
s1 and s2 are in line(s1, s2) it is possible to verify in linear time if the shortest
paths can start an optimal solution.

The proof of this lemma is placed in the appendix but these results lead to the
following definition.

Definition 6. We say that a feasible solution can start on shortest paths if there
is a point s /∈ line(s1, s2) such that s is visible to both s1 and s2, or if zy is
between vR and uL (as defined above).

A similar definition with can also be tested in linear time can be made for when
a feasible solution can terminate on the shortest paths. We show here that once
we can start and terminate, then there is obstacle free space so the agents can
alternate between one moving and the other pausing, always making progress.
First, let us argue that we can always move one agent while the other waits.

t2

p

t1

s1

s2

q′

O

q

cp

t2

t1

s1

s2

O x1

x2

u

v
p2

p1

Fig. 6. (a) One crab step made by a2. (b) A sightline through x1x2.

Lemma 7. In an MVPP where the sightlines cross: Once the agents start, there
is no need to move them simultaneously unless this is necessary to terminate.

Proof. Consider a situation such as in Figure 6(a), in this case pq is a sightline.
Agent a2 moves to q′ where further progress is prevented by obstacle O. Now
the region between pq′ and the start and end sightlines (the shaded region in
the figure) must be free of obstacles (Lemma 3) so a1 must be able to make some
progress while a2 remains at q′ . ��

Lemma 8. In an MVPP with crossing sightlines, once the agents start, there
are points p1 ∈ Π1 and p2 ∈ Π2 such that p1,p2 is a sightline and there are
points x1 and x2 in the polygon such that:

1. x1x2 intersects p1p2 at a single point (ie x1x2 ∩p1p2 = {p} for some point
p in the polygon)

Optimal Paths for Mutually Visible Agents 877

2. ∀u ∈ Π1 past p1 and ∀v ∈ Π2 past p2 such that uv∩x1x2 is a singleton, then
uv is a sightline. (Note that if u = t1 and v = t2, we have a sightline,but
in that case uv ∩ x1x2 = x1x2)

Using the points x1 and x2 in the lemma above, we can move agents alternately
(switching to the other agent when the sightline touches x1 or x2).

Lemma 9. For all d > 0, the alternating process advances both agents until they
are both at less that d from their targets.

The ability to start and finish combined with the ability to reach a point arbi-
trarily close to the target gives us the required pause sequences. In cases where
Πi are not part of an optimal solution π′

i can be produced by starting and fin-
ishing at slightly steeper angles than Πi. This concludes Theorem 2. The detail
of this proofs as well as the proofs of the last two lemmas are in the appendix.

3 Complexity

Deciding if the shortest paths are an optimal solution does not require polygon
triangulation in the case that the sightlines do not cross. So this check is constant
time in this case. To produce the schedule would require linear time (O(|Π1| +
|Π2|)) after the production of the shortest paths because the proof of Theorem 1
ensures we always advance at least one vertex of a shortest path. In theory,
producing the shortest paths is O(n) by triangulation, so overall producing the
schedule takes linear time.

However in the case where the sightlines cross, we need to find if the boundary
of the polygon creates a situation such as in Fig 4. Thus, any algorithm here
will require Ω(n) time. But after computation of the shortest-paths in O(n)
time, the alternation algorithms is O(n + ‖w1‖) time where the length ‖w1‖
does not depend on n. Depending on the model of computation we use, we may
have several bounds for the computational time that do not depend on n (an
alternative we may wish to explore is if k bits are allowed for each coordinate of
the vertices of the polygon). In any case, ‖w1‖ = O(maxi ‖siti‖/m).

4 Final Remarks

What effect do changes in the problem definitions have? Polygons with non-zero
genus would significantly complicate matters since we could no longer assume
that the area bounded by the individual shortest paths and the sightlines was
free of obstacles. If the polygon is not simple, then the case where the sightlines
cross (eg if two vertices coincide at the intersection point) will admit Π1,Π2 as
a solution only in a much more restricted set of problems. On the other hand
allowing the agents to move at varying speeds would increase the number of
problems which are solvable.

One significant difference occurs if the problem definition is modified to al-
low the agents to have non-zero radius. Simply reducing to the point case by

878 J. Fenwick and V. Estivill-Castro

“thickening” the polygon boundary is insufficient. For example consider the case
where the agent’s position is constrained by its radius but vision is defined as
the line segments joining the center points being unobstructed. In this case there
are simple problems which have no feasible solution (see Figure 7).

References

1. T Bailey. Constrained initialisation for bearing-only SLAM. In IEEE International
Conference on Robotics and Automation, volume 2, pages 1966–1971, Taipei, Tai-
wan, September 14-19 2003.

2. S. Bespamyatnikh. Computing homotopic shortest paths in the plane. Journal of
Algorithms, 49(2):284–303, November 2003.

3. B. Chazelle. A theorem on polygon cutting with applications. In 23th Annu. IEEE
Sympos. Found. Comput. Sci, pages 339–34, 1982.

4. S. Efrat, S.G. Kobourov, and A. Lubiw. Computing homotopic shortest paths
efficiently. In Proceedings of the 10th Annual European Symposium on Algorithms,
pages 411–423, September 17-21 2002.

5. L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time al-
gorithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2:209–233, 1987.

6. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given
homotopy class. Computational Geometry: Theory and Applications, 4(2):63–97,
June 1994.

7. Andrew Howard. Multi-robot mapping using manifold representations. In Pro-
ceedings of the 2004 IEEE International Conference on Robotics and Automation,
volume 4, pages 4198–4203, New Orleans, LA, April 2004.

8. J.S.B Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack,
editor, Handbook of Computational Geometry, pages 633–701, Amsterdam, 2000.
Elsevier, North-Holland.

9. E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh. Decentralised SLAM
with low-bandwidth communication for teams of vehicles. In Intl. Conf. on Field
and Service FSR 2003, Lake Yamanaka, Japan, July 2003.

Even in the point case, what happens
if more agents are added to the problem?
The team of agents would maintain a visi-
bility graph but the constraints imposed on
such a graph could vary. The graph may
merely need to be connected, it may need to
maintain a given topology or be allowed to
change as long as it remains connected. Al-
ternatively one could insist on the graph be-
ing complete. Many other variants are pos-
sible. This paper demonstrates that small
modifications to the assumptions shift the
problem from practical polynomial time, to
completely intractable.

Fig. Non-zero radius problem
with no solution. There are no
paths which allow both agents to
be at their targets at the same time.
(Dashed lines show exclusion radius
around the obstacles).

7.

s1 s2

t1
t2

Optimal Paths for Mutually Visible Agents 879

11. J. Sullivan, S. Waydo, and M. Campbell. Using stream functions for complex
behavior and path generation. In AIAA Guidance, Navigation, and Control Con-
ference, Austin, Texas, August 11-14 2003. American Institute of Aeronautics and
Astronautics. AIAA-2003-5800.

12. S. Williams, G. Dissanayake, and H.F. Durrant-Whyte. An efficient approach to
the simultaneous localisation and mapping problem. In Proceedings of the IEEE
International Conference on Robotics and Automation, volume 1, pages 406–411,
Washington, DC, May 2002.

13. S.B. Williams, G. Dissanayake, and H. Durrant-Whyte. Towards multi-vehicle
simultaneous localisation and mapping. In IEEE International Conference on
Robotics and Automation, volume 3, pages 2743–274, Washington DC, May 2002.

Appendix

Proof (of Lemma 6). Traverse the boundary to find vrvl and also to find
min dist, the minimum perpendicular distance from vertices of the polygon
which do not lie on the start sightline to the start sightline. min dist is the
smallest of at most n positive real numbers, so it is positive. Let d = min dist.

Now, if β = α compute z = (0, limd→0+(zy) by Equation (1). That is, zy =
−L sinβ/ sin(β + α). If z lies now between vl and vr we know that z will be
stationary as the agents move and thus they can start.

If β �= α, test for which one is larger. In the case β > α, we see if there is
space between z and vr (namely zy is smaller than the y coordinate of vr).
In this case the agents can start. If vr has a y-coordinate smaller than zy, the
optimal solution does not use the shortest paths.

Finally, the case β < α is a test for space between z and vr. No space implies
the shortest paths cannot be the optimal solution, while if the y-coordinate of
vl is below zy then the agents can start. A situation where an obstacle cuts
the sightline cannot arise since d is smallest among all distances from a polygon
vertex not in the starting sightline to the starting sightline. ��

Proof (of Lemma 8). Figure 6(b) illustrates the symbols used in this proof.
Definition 6 describes the two ways an agent can start. First suppose that agents
can start because there is an s′ ∈ t1t2 visible to s1 and s2 and s′ /∈ line(s1, s2)
(from the proof of Lemma 4: if we have an s we can always choose such an s′).
Recall that we can chose the first pause of a2 as p2 = Π2 ∩ line(s1, s

′) and then
agent a1 moves to p1 = line(cp,p2) ∩Π1. Thus, p1 and p2 are as required (ie
p1p2 is a sightline). Now chose x1 = cp and x2 = s′ . Then, the first condition
is satisfied since x1x2 ∩ p1p2 = x1. The second condition is fulfilled since the
wedge s1, x2, t1 and the wedge s2, x1, t2 are free of obstacles.

The second way of starting is as in item 2 in Def. 6. Although cp may be
a vertex of the polygon there can not be obstacles touching cp on both sides
(in this case the polygon would not be simple). If necessary we reverse the
identifiers 1 and 2 so that there is no obstacle touching cp on the left (ie above

10. M. Rosencrantz, G. Gordon, and S. Thrun. Decentralized sensor fusion with dis-
tributed particle filters. In Proceedings of Conf. Uncertainty in Artificial Intelli-
gence, Acapulco, Mexico, 2003.

880 J. Fenwick and V. Estivill-Castro

let x1 = cp. Assume that p1p2 intersects t1t2 above the starting sightline or
at cp (otherwise, instead of fixing p2 the argument follows fixing p1). If point
p′

2 traces along Π2 from p2 while keeping a1 stationary at p1 then either p′
2

reaches t2 or further progress is prevented by an obstacle. Let x2 = p′
2p1 ∩t1t2.

Now we have x1x2 ∩ p1p2 = x1. Also, the wedge p1, x2, t1 is free of obstacles
as well as the wedge t2, x1, p2 so we have the second condition as well. ��

t2

s1
t1

s2
∆

L

p

ψ

M
θ

x1

x2

m

Fig. 8. ∆ is bounded below
by a positive constant

Choose a point pd and two angles b1, b2 as pd ∈ Π1 and at distance d from
t1. Let b1 be the angle between s1s2 and s1t1. Let b2 be the angle between
line(pd,x1) and s1t1 (measured on the same side as b1). This means that b1 <
ψ < b2, 0 < b1 < π and 0 < b2 < π so ∆ ≥ M is bounded below by k =
min(M(b1),M(b2)) > 0. Since the amount of progress for each agent up to and
including the desired position is at least k they are guaranteed to reach the
desired point. Because we can find a d > 0 so that we know how to terminate
simultaneously, the process is to alternate until both agents are within d of
their targets and then to terminate simultaneously. This proves the first claim
of Theorem 2.

In order to show the second claim we need to show how to construct a so-
lution which has length as close as desired to the length of Π1 and Π2. The
conditions under which Π1, Π2 are not part of an optimal solution are described
in Lemma 4. However if we are willing to leave Π1,Π2 then z can be moved
by modifying the angles which the agents move at initially. So pick some small
d > 0 and angles α′, β′ such that α′ ≤ α, β′ ≤ β and Zy(α′, β′, D) lies between

the starting sightline). Let p1 ∈ Π1 and p2 ∈ Π2 be the first pauses of both
agents that moved simultaneously. Clearly p1p2 is a sightline as required. Now

Proof (of Lemma 9). Without loss of generality, consider a single step of the
alternating process where a1 is stationary at p and a2 moves as illustrated by
Fig. 8. Let x1, x2 be as in Lemma 8. Consider a line L parallel to line(s1, t1)
through x2. Let θ > 0 be the angle L makes with x1x2.
Note that if x1 is below L (as in the figure), use −θ
instead. We let ψ be the angle between line(p,x1)
and s1t1. We are interested in bounding ∆, the dis-
placement on s2t2 made by a2. Bounding this from
below proves the result since we know progress on
the shortest paths Πi is monotonic with respect to
the segment siti. It is not hard to see that ∆ is
bounded by M , the length of the segment from x2
to the intersection of L and line(p,x1). If we let
m =len(x1x2), we find that M(ψ) = sin(θ+ψ)m

sin ψ .
Now, M(ψ) is continuous, differentiable and non-
zero for permissible range of angles. The function
M(ψ) has no stationary points in the interval (0, π)
since 0=∂M/∂ψ =(sinψ cos(θ+ψ)− sin(θ+ψ) cos ψ)
/sin2 ψ implies sin ψ cos(θ+ ψ) = sin(θ + ψ) cos ψ or
simply tanψ = tan(θ + ψ).

Optimal Paths for Mutually Visible Agents 881

applied to the target points can produce r1, r2 if required (if not let r1,r2 be
the respective target points).

Let π′
i∈{1,2} be the shortest path from qi to ri. These paths will be convex

and hence progress along them will result in monotonic progress relative to siti.
Notice also that these paths will not leave the region between the sightlines. We
can now use the reasoning from Lemma 7 and Lemma 8 to show that the agents
following such paths will reach r1, r2. So the starting and finishing diversions
and π′

i are a feasible solution. The only thing left is to prove they approach Πi.
This fact follows simply from the fact that the end points of Πi and π′

i can be
made as close as desired by reducing d. ��

Call the points the agents reach after this initial step q1, q2. If there is no prob-
lem starting but rather in finishing let qi = si(i ∈ {1, 2}). A similar process

vl and vr ∀D < d. Obviously d will also need to be small enough that the agents
can actually travel distance d without leaving the region between the sightlines.

Stacking and Bundling Two Convex Polygons�

Hee-Kap Ahn and Otfried Cheong

Division of Computer Science, Korea Advanced Institute of Science and Technology,
Daejeon, Korea

{heekap, otfried}@tclab.kaist.ac.kr

Abstract. Given two compact convex sets C1 and C2 in the plane,
we consider the problem of finding a placement ϕC1 of C1 that mini-
mizes the area of the convex hull of ϕC1 ∪C2. We first consider the case
where ϕC1 and C2 are allowed to intersect (as in “stacking” two flat
objects in a convex box), and then add the restriction that their interior
has to remain disjoint (as when “bundling” two convex objects together
into a tight bundle). In both cases, we consider both the case where
we are allowed to reorient C1, and where the orientation is fixed. In the
case without reorientations, we achieve exact near-linear time algorithms,
in the case with reorientations we compute a (1 + ε)-approximation in
time O(ε−1/2 log n+ε−3/2 log ε−1/2), if two sets are convex polygons with
n vertices in total.

1 Introduction

We consider the problem of stacking two flat objects into a box. The objects
will lie on top of each other, and our goal is to design a box that is as small as
possible, while (for simplicity) restricting it to be convex. This problem can be
modelled as follows: let C1 and C2 be planar compact convex sets, find the rigid
motion ϕ such that the area of the convex hull of ϕC1 ∪C2 is minimized. (Note
that considering convex sets only is no restriction, as the target function does
not change when we replace a set by its convex hull.)

We give an ε-approximation algorithm for this problem, which computes a
rigid motion ϕapp such that the area of the convex hull of ϕappC1 ∪C2 is at most
1 + ε times the optimally achievable area. The running time is O(ε−1/2TC +
ε−3/2 log ε−1/2), where TC is the time needed to find a point extreme in a given
direction, or the intersection of a given line with C1 and C2.

We also consider a related problem, where we wish to minimize the same
function, but with the restriction that C1 and C2 remain disjoint. This problem
arises in various applications, consider for instance the problem of minimizing
the cross section of a wire bundle consisting of two subsets of wires.

There has been a fair amount of work on the problem of maximizing the over-
lap (or, equivalently, minimizing the symmetric difference) of two shapes in the
context of shape matching [2,3,4,5,6,7,11] under translations or rigid motions.
Surprisingly, little is known about the problem of minimizing the convex hull

� This research was supported by LG Electronics.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 882–891, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stacking and Bundling Two Convex Polygons 883

of two shapes. Recently, Ahn et al. [2] gave an approximation algorithm to find
the line such that the convex hull of a given convex set C and a reflected copy
of C along is minimized. Their solution, however, does not generalize to our
more general problem. With application in the clothing industry, Milenkovic [10]
studied a problem of packing a set of polygons into another polygon (container)
without overlapping. Sugihara et al. [12] recently considered a two-dimensional
disk packing problem of finding the smallest enclosing circle containing a set
of disks (the cross section of a wire bundle), and gave a “shake-and-shrink”
algorithm that shakes the disks and shrinks the enclosing circle step-by-step.

2 Preliminaries

For a compact set S in the plane, let d(S) and w(S) denote the diameter and
width of S (the width is the minimum distance between two parallel lines en-
closing S). Also, let |S| denote the area of the convex hull of S. Note that
d(S) = d(conv(S)), w(S) = w(conv(S)), and (by definition) |S| = |conv(S)|.

We denote the interior of a set A ⊆ R2 by int(A) and its closure by cl(A).
In all problems considered in this paper, our goal is to minimize |ϕC1 ∪ C2|,

where C1 and C2 are given convex sets. We distinguish between the case where
ϕ ranges over all possible translations, and where it can be any rigid motion.
In addition, we distinguish the “box” case, where ϕC1 and C2 are allowed to
intersect (and always will in the optimal solution), and the “bundle” case, where
ϕC1 and C2 must be disjoint.

3 Stacking Polygons Without Reorientation

Let P andQ be convex polygons in the plane with n vertices in total. For a vector
r ∈ R2, let P+r denote the translation of P by r, that is, P+r = {p+r | p ∈ P}.
We consider the function ω(r) := |(P + r) ∪Q|.

Lemma 1. Let P and Q be convex polygons in the plane. Then the function
r '→ ω(r) is convex (that is, the volume above the graph of the function is convex).

Proof. Since a function R2 → R is convex if any cross section along a line is
convex, it suffices to prove the latter fact. Without loss of generality, we restrict
ourselves to horizontal lines. For t ∈ R, let Pt := P+(t, 0), that is, the translation
of P by t along the x-axis. We will show that the function t '→ ω(t) := |Pt ∪Q|
is convex. We do so by showing that the derivative ω′(t) is non-decreasing.

Consider the convex polygon Ct := conv(Pt ∪ Q). It consists of edges of Pt

(type 0 edges), edges of Q (type 2 edges), and type 1 edges connecting one vertex
of Pt with one vertex of Q. As t increases, the polygon Pt moves to the right,
while Q remains stationary. We consider how the area of Ct changes. As long as
the combinatorial structure of Ct remains the same, the change in |Ct| can be
expressed as the sum of changes incurred by the individual edges: moving edges
on the right side of Ct add area to Ct, while moving edges on the left side of Ct

remove area from Ct. For a compact set S, let h(S) denote the “height” of S,

884 H.-K. Ahn and O. Cheong

that is, the length of the projection of S onto the y-axis. For a type 0 edge e,
the area swept over when t increases by δ is δh(e). For a type 1 edge e, the
area swept over is δh(e)/2 (since one endpoint moves by δ, the area swept is a
triangle). Type 2 edges are stationary, and do not contribute to the change in
|Ct|.

It follows that as long as Ct+δ and Ct have the same combinatorial structure,
we have

ω(t+δ)−ω(t) = |Ct+δ|−|Ct| =
∑
e∈R0

t

δh(e)+
∑

e∈R1
t

δh(e)
2

−
∑
e∈L0

t

δh(e)−
∑
e∈L1

t

δh(e)
2

,

where Ri
t is the set of right edges of Ct of type i, and Li

t is the set of left edges
of Ct of type i. Taking the limit for δ → 0, we get

2ω′(t) = 2
∑
e∈R0

t

h(e) +
∑
e∈R1

t

h(e) − 2
∑
e∈L0

t

h(e) −
∑
e∈L1

t

h(e),

Now note that
∑
h(e) = h(C), when the sum is taken over all left edges or over

all right edges. It follows that∑
e∈R1

t

h(e) = h(C) −
∑
e∈R0

t

h(e) −
∑
e∈R2

t

h(e),

∑
e∈L1

t

h(e) = h(C) −
∑
e∈L0

t

h(e) −
∑
e∈L2

t

h(e).

Substituting into the previous equality we obtain

2ω′(t) =
∑

e∈R0
t

h(e) −
∑
e∈R2

t

h(e) −
∑
e∈L0

t

h(e) +
∑
e∈L2

t

h(e).

Consider now a left edge e of Pt. This edge appears as a type 0 edge of Ct if and
only if no vertex of Q lies on the left of the supporting line e of e. Since Pt moves
horizontally rightwards, there is a unique edge event for e where the moving e
touches the first vertex ve of the stationary Q. Let t(e) be the “time” of this
event, that is, the value of t such that ve ∈ e. Clearly, e ∈ L0

t if t < t(e), and
e �∈ L0

t if t > t(e) (and either can be true at t = t(e)). See Fig. 1. This implies
that the function t '→

∑
e∈L0

t
h(e) is non-increasing. Similarly, a right edge e of

Pt is in R0
t if and only if no vertex of Q lies to the right of e. This implies that

there is a “time” t(e) such that e �∈ R0
t if t < t(e) and e ∈ R0

t if t > t(e), and it
follows that t '→

∑
e∈R0

t
h(e) is non-decreasing. Analogously, we can show that

t '→
∑

e∈L2
t
h(e) is non-decreasing, while t '→

∑
e∈R2

t
h(e) is non-increasing. It

follows that ω′(t) is non-decreasing, and so ω(t) is convex, proving the lemma.

The proof above can be turned into an algorithm to compute the optimal
placement of P along a line.

Stacking and Bundling Two Convex Polygons 885

Pt

Q

�e

e

ve

t = t(e) t > t(e)

Pt

Q

Fig. 1. The unique edge event at time t = t(e) for a left edge e

Lemma 2. Let P and Q be convex polygons with n vertices in total, and let
be a line. Then we can compute minr∈� ω(r) in time O(n).

Proof. We choose a coordinate-system such that is the x-axis, and end up
with the setting of the proof of Lemma 1. Our task is to find a value t ∈ R such
that ω′(t− ε) � 0 and ω′(t+ ε) � 0 for ε small enough. As we saw in Lemma 1,
ω′(t) can be expressed as a linear combination of h(e), over all edges of Pt and
Q, and changes only whenever a vertex of Q lies on the supporting line of Pt,
and vice versa.

There are O(n) such values of t, and they can be computed in linear time
(observing that the vertex of Q hitting a line e first must have a tangent parallel
to e, and so it suffices to merge the lists of slopes of P and Q).

If we were willing to spend O(n log n) time, we could just sort all these val-
ues of t, and scan them in order while maintaining the value of ω′(t). We can
do better than this (at least asymptotically) by using a decimation approach
that repeatedly finds the median from a list of candidate values. The details are
similar to the algorithm described by Ahn et al. [2], and we omit them in this
extended abstract.

We now have all the tools we need to find the optimal placement.

Theorem 3. Let P and Q be convex polygons with n vertices in total. Then we
can compute a translation r ∈ R2 minimizing |(P + r) ∪Q| in time O(n log n).

Proof. De Berg et al. [7] gave anO(n logn) time algorithm to compute the trans-
lation r maximizing |(P + r) ∩Q|. Their algorithm made use of a subroutine to
find the best translation restricted to a line, and exploits the unimodularity of
the function r '→ |(P + r) ∩Q|. Since we have established the analogous proper-
ties for our function r '→ |(P +r)∪Q| in Lemmas 1 and 2, their technique can be
applied to our problem as well. We omit the details in this extended abstract.

886 H.-K. Ahn and O. Cheong

4 Stacking Polygons with Reorientations

We now consider the problem when arbitrary rigid motions of P are allowed, and
give an approximation algorithm. Let ϕopt be the rigid motion that minimizes
|ϕoptP ∪Q|. For a given ε > 0, our goal will be to find a rigid motion ϕapp such
that |ϕappP ∪Q| � (1 + ε)|ϕoptP ∪Q|.

Our algorithm is quite simple: We first generate a set Dε of O(1/ε) orien-
tations of P . For each orientation, we then compute the optimal translation of
(the rotated copy of) P , using Theorem 3. The total running time is clearly
O((1/ε)n logn), it remains to describe how to find Dε and to prove the approx-
imation bound.

The difficulty is that we cannot simply sample orientations uniformly. This
works when P and Q are rather round and “fat”, but the sampling resolution
would have to too fine when they are long and skinny. Fortunately, in the latter
case we can prove that the diameters of P and Q must be nearly aligned, and it
suffices to sample very finely around the orientation that achieves alignment.

We first show a lower bound on |C1 ∪C2| for two convex sets C1 and C2 based
on their diameter and width.

Lemma 4. Let C1 and C2 be convex sets in the plane. Then

|C1 ∪ C2| � 1
2

· max{d(C1), d(C2)} · max{w(C1), w(C2)}

Proof. Let pq be a diameter of C1, let R be a rectangle circumscribed to C1
with two sides parallel to pq such that C1 touches all four sides of R at points
p, q, r and s, and let w be the side of R orthogonal to pq.

Assume that d(C1) � d(C2). Clearly, conv(p, q, r, s) is contained in conv(C1 ∪
C2) and consists of two triangles with a common base pq. Since w � w(C1), it
has area at least d(C1) · w(C1)/2. Now let p′q′ be a line segment in C2 which
has length w(C2) and is orthogonal to pq. Note that there always exists such a
segment: in fact, C2 contains a segment of length w(C2) of every direction [9,
pg. 12, ex.4(a)]. Then conv(p, q, p′, q′) is contained in conv(C1 ∪ C2), and it has
area at least d(C1) · w(C2)/2. Therefore,

|C1 ∪ C2| � d(C1) · 1
2

· max{w(C1), w(C2)},

the lemma follows.

We now prove that diameters need to be nearly aligned for long and skinny
objects.

Lemma 5. Let C1 and C2 be convex sets in the plane, let ϕopt be the rigid
motion minimizing |ϕoptC1 ∪ C2|, and let ϑ be the smaller angle between two
diameters of ϕoptC1 and C2. Then

sinϑ � 2 · max{w(C1), w(C2)}
min{d(C1), d(C2)}

Stacking and Bundling Two Convex Polygons 887

Proof. Let pq be a diameter of ϕoptC1 and let p′q′ be a diameter of C2. Assume
that two diameters pq and p′q′ make an angle ϑ ∈ [0, π/2], as in Fig. 2. If two
diameters intersect at a point x, the convex hull consists of two triangles with a
common base pq and has area

|conv(p, q, p′, q′)| � 1
2

· d(C1) · (|p′x| + |xq′|) sinϑ =
1
2

· d(C1) · d(C2) · sinϑ.

If two diameters do not intersect, we can always translate one of them until
they intersect while the area function is non-increasing. Since conv(p, q, p′, q′) ⊂
conv(ϕoptC1 ∪C2), we have |ϕoptC1 ∪ C2| � 1

2 · d(C1) · d(C2) · sinϑ.
Consider now rectangles Ri circumscribed to Ci, with sides d(Ci) and w(Ci),

for i = 1, 2. There is a rigid motion ϕ such that ϕR1 ∪ R2 fits in a rectangles
with sides max{d(C1), d(C2)} and max{w(C1), w(C2)}, and so

|ϕoptC1 ∪ C2| � |ϕC1 ∪ C2| � |ϕR1 ∪R2| � max{d(C1), d(C2)} ·max{w(C1), w(C2)}.

Combining the upper and lower bounds for |ϕoptC1∪C2| proves the lemma.

ϑp q

p′

q′

x

Fig. 2. The convex hull of two diameters has area at least 1
2
· d(C1) · d(C2) · sin ϑ

We will now prove that sampling orientations works. Let peri(C) denote the
perimeter of a convex set C; we will make use of the inequality that for a convex
set C, peri(C) � πd(C) [13, pg. 257, ex.7.17a]. We also need the following lemma
proven by Ahn et al. [2].

Lemma 6. ([2]) Let C be a convex set, let r > 0, and let C′ be the set of points
at distance at most r from C (in other words, C′ is the Minkowski sum of C and
a disk of radius r). Then |C′| = |C| + r peri(C) + πr2.

Lemma 7. Let C1, C2 be convex sets, let ε > 0, and let ρ be a rotation of angle

δ � ε

24
max{w(C1), w(C2)}
min{d(C1), d(C2)}

.

around a point in C1. Then |ρC1 ∪ C2| � (1 + ε)|C1 ∪C2|.

Proof. Without loss of generality, we assume that d(C1) � d(C2). Let Q =
conv(C1 ∪ C2) and let Q′ = conv(ρC1 ∪ C2). Note that any point q in Q′ \ Q

888 H.-K. Ahn and O. Cheong

is at distance at most δd(C1) from the boundary of Q. Let T denote the set of
points that are at distance at most δd(C1) from the boundary of Q. Then we
have (Q ∪ T) ⊃ Q′. By Lemma 6, the area of T is

|T | � δd(C1) · peri(Q) + π(δd(C1))2

� δd(C1) · πd(Q) + π(δd(C1))2

� δd(C1) · 2πd(C2) + πδ2d(C1) · d(C2)

� δd(C1) · 2πd(C2) + δ(π2/2)d(C1) · d(C2)

= δd(C1) · d(C2) · (2π + π2/2)
� 12δd(C1) · d(C2)

� 12ε
24

d(C1) · d(C2)
min{d(C1), d(C2)}

max{w(C1), w(C2)}

=
ε

2
max{d(C1), d(C2)}max{w(C1), w(C2)}

� ε|Q|.

(The last inequality follows from Lemma 4.)

We can now state the algorithmic result.

Lemma 8. Let P and Q be convex polygons with n vertices in total, and let
ε > 0. Then we can compute a rigid motion ϕapp such that |ϕappP ∪ Q| �
(1 + ε)|ϕoptP ∪Q| in time O((1/ε)n logn).

Proof. In linear time, we compute width and diameter of both polygons. We
then sample orientations at interval ε

24
max{w(P),w(Q)}
min{d(P),d(Q)} , but omitting all directions

where the computed diameters make an angle ϑ with sinϑ > 2·max{w(P),w(Q)}
min{d(P),d(Q)} .

Clearly we have sampled O(1/ε) directions. For each of these, we then compute
the translation minimizing |ϕP ∪ Q| using Theorem 3. The whole procedure
takes time O((1/ε)n logn), and the approximation bound follows from Lem-
mas 5 and 7.

The time bound in Lemma 8 can be improved by a classical idea: we first
replace the input by approximations with O(1/

√
ε) vertices (that is, the com-

plexity of the problem is now independent of n). We then apply Lemma 8 to the
approximations. This will also allow us to solve the problem for more general
convex sets (not necessarily polygons).

Following Agarwal et al. [1], we say that a convex set C′ ⊂ C is an ε-kernel
of C if and only if for all u ∈ U , (1 − ε) dwidth(u,C) � dwidth(u,C′), where U
is the set of unit vectors in the plane and dwidth(u,C) denotes the directional
width of C in direction u, that is

dwidth(u,C) := max
x∈C

〈x, u〉 − min
x∈C

〈x, u〉.

There is a constant c>0 such that if C′ is an ε/c-kernel of C, then |C\C′| � ε|C|.

Stacking and Bundling Two Convex Polygons 889

Based on Dudley’s constructive proof from 1974 [8], Ahn et al. [2] gave an
algorithm that computes inner and outer approximations to a given convex setC.
The algorithm requires only two operations on the set C, namely (a) given a
query direction u ∈ U , find an extreme point in direction u; and (b) given a line
, find the line segment ∩ C. Let TC denote the time needed to answer any of
these queries.

Lemma 9. ([2]) Given a planar convex set C and ε > 0, one can construct in
time O(TC/

√
ε) a convex polygon C′ with O(1/

√
ε) vertices such that C ⊂ C′

and C is an ε-kernel of C′. If C is a convex n-gon whose vertices are given in a
sorted array, then we can compute C′ in time O(log n/

√
ε).

We can now give the main result of this section.

Theorem 10. Given two convex sets C1 and C2 in the plane and ε > 0, we can
compute in time O((TC1 + TC2)ε−1/2 + (ε−3/2) log(ε−1/2)) a rigid motion ϕapp

such that |ϕappC1 ∪ C2| � (1 + ε)minϕ |ϕC1 ∪ C2|, where the minimum is over
all rigid motions.

Proof. Let ε′ := ε/(3c). We construct the outer ε′-approximation of Lemma 9
to C1 and C2 in time O((TC1 + TC2)ε−1/2). Let Pi denote the outer approxima-
tion of Ci. We then apply Lemma 8 to compute a rigid motion ϕapp such that
|ϕappP1 ∪P2| � (1+ε/3)minϕ |ϕP1 ∪P2|. This takes time O((ε−3/2) log(ε−1/2)),
and it remains to prove the approximation bound.

By Lemma 9, Ci is an ε′-kernel of Pi, for i = 1, 2. This implies that conv(ϕoptC1
∪ C2) is an ε′-kernel of conv(ϕoptP1 ∪ P2), where ϕopt is the rigid motion mini-
mizing |ϕoptC1 ∪C2|. This implies that

|ϕoptP1 ∪ P2| � (1 +
ε

3
)|ϕoptC1 ∪ C2|,

and so we get

|ϕappC1 ∪C2| � |ϕappP1 ∪ P2| � (1 +
ε

3
)min

ϕ
|ϕP1 ∪ P2|

� (1 +
ε

3
)|ϕoptP1 ∪ P2| � (1 +

ε

3
)2|ϕoptC1 ∪C2|

� (1 + ε)|ϕoptC1 ∪ C2|,

proving the approximation bound.

5 Bundling Polygons with Translations

We now consider the problem of bundling two convex polygons, that is, we wish
to minimize |ϕP ∪ Q| under the restriction that the interiors of ϕP and Q are
disjoint.

Again we first consider the case of translations only, so we are looking for
r ∈ R2 such that |(P + r)∪Q| is minimal under the restriction that int(P + r)∩
int(Q) = ∅. Clearly, in the optimal solution P + r and Q are touching, and so it
suffices to “slide” P around Q, keeping their boundaries in contact.

890 H.-K. Ahn and O. Cheong

Theorem 11. Let P and Q be convex polygons with n vertices in total. Then we
can compute a translation r ∈ R2 minimizing |(P + r)∪Q| under the restriction
int(P + r) ∩ int(Q) = ∅ in time O(n).

Proof. We “slide” P around Q, that is we translate P such that it describes
a complete loop around Q while always remaining in contact with Q. We note
that the combinatorial structure of conv(P ∪Q) changes only when a line sup-
porting an edge of Q becomes tangent to P , or vice versa. Since each vertex
of P describes a convex path around Q, there are only O(n) such events. By
merging the lists of slopes of both polygons, we can precompute all such events
(in order of their occurrence) in linear time. Finally, it suffices to simulate the
entire sliding process. We omit the details in this extended abstract.

6 Bundling Polygons with Rigid Motions

We proceed very similarly to the stacking case: we prove that sampling direc-
tions is sufficient, restrict our attention to directions where the two diameters
are aligned (depending on the skinniness of the objects), and finally improve
the running time by using the core set approximation of Lemma 9. One may
conjecture that the optimal solution is obtained when two edges are in contact.
This is, however, not always the case (See Fig. 3).

(a) (b)

Fig. 3. (a) The optimal solution with edge-vertex contact. (b) By rotating the right
polygon slightly in counterclockwise orientation, the area of the convex hull has been
increased.

Lemma 12. Let C1 and C2 be convex sets in the plane, let ϕopt be a rigid
motion minimizing |ϕoptC1 ∪ C2| while keeping their interiors disjoint, and let
ϑ be the smaller angle between two diameters of ϕoptC1 and C2. Then,

sinϑ � 4 · max{w(C1), w(C2)}
min{d(C1), d(C2)}

Proof. As in Lemma 5, we first argue that |ϕoptC1∪C2| � 1
2 ·d(C1) ·d(C2) ·sinϑ

(the restriction can only increase the optimum). We then again consider the rect-
angles Ri with sides d(Ci) and w(Ci) circumscribed to Ci, for i = 1, 2. There is
a rigid motion ϕ that aligns them such that ϕR1 ∪ R2 fits in a rectangle with
sides 2 · max{d(C1), d(C2)} and max{w(C1), w(C2)}, implying the bound.

Stacking and Bundling Two Convex Polygons 891

Theorem 13. Given two convex sets C1 and C2 in the plane and α > 0, we
can compute in time O((TC1 + TC2)α−1/2 + (α−3/2)) a rigid motion ϕapp such
that the area of conv(ϕappC1 ∪C2) is at most 1 + ε times the minimum over all
rigid motions.

We omit the proof in this extended abstract.

References

1. P. K. Agarwal, S. Har-Peled, K. R. Varadarajan. Approximating Extent Measures
of Points. Journal of the ACM 51 (2004) 606–635.

2. H.-K. Ahn, P. Brass, O. Cheong, H.-S. Na, C.-S. Shin, and A. Vigneron. Inscrib-
ing an axially symmetric polygon and other approximation algorithms for planar
convex sets. To appear in Comput. Geom. Theory Appl.

3. H.-K. Ahn, O. Cheong, C.-D. Park, C.-S. Shin, and A. Vigneron. Maximizing the
overlap of two planar convex sets under rigid motions, Proc. 21st Annu. Symp.
Comput. geometry, (2005) 356–363.

4. H. Alt, J. Blömer, M. Godau, and H. Wagener. Approximation of convex polygons,
Proc. 17th Internat. Colloq. Automata Lang. Program., Lecture Notes Comput.
Sci. 443, p. 703–716, Springer-Verlag 1990.

5. H. Alt, U. Fuchs, G. Rote, and G. Weber. Matching convex shapes with respect
to the symmetric difference. Algorithmica, 21:89–103, 1998.

6. M. de Berg, S. Cabello, P. Giannopoulos, C. Knauer, R. van Oostrum, and
R. C. Veltkamp. Maximizing the area of overlap of two unions of disks under
rigid motion. Proc. Scandinavian Workshop on Algorithm Theory, 138–149, 2004.

7. M. de Berg, O. Cheong, O. Devillers, M. van Kreveld, and M. Teillaud. Computing
the maximum overlap of two convex polygons under translations. Theo. Comp. Sci.,
31:613–628, 1998.

8. R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries,
J. Approximation Theory 10 (1974) 227–236; Erratum in J. Approx. Theory 26
(1979) 192–193.

9. J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, New York, 2002
10. V. J. Milenkovic.Rotational polygon containment and minimum enclosure. Proc.

14th Annu. Symp. Comput. geometry, 1–8, 1998
11. D. M. Mount, R. Silverman, and A. Y. Wu. On the area of overlap of translated

polygons. Computer Vision and Image Understanding: CVIU, 64(1):53–61, 1996.
12. K. Sugihara, M. Sawai, H. Sano, D.-S. Kim and D. Kim. Disk Packing for the

Estimation of the Size of a Wire Bundle, Japan Journal of Industrial and Applied
Mathematics, 21(3):259–278, 2004.

13. I. M. Yaglom and V. G. Boltyanskii. Convex figures. Holt, Rinehart and Winston,
New York, 1961.

Algorithms for Range-Aggregate Query
Problems Involving Geometric Aggregation

Operations�

Prosenjit Gupta

Algorithms and Computation Theory Laboratory, International Institute of
Information Technology, Gachibowli, Hyderabad 500019, India

pgupta@iiit.net

Abstract. We consider variations of the standard orthogonal range
searching motivated by applications in database querying and VLSI lay-
out processing. In a generic instance of such a problem, called a range-
aggregate query problem we wish to preprocess a set S of geometric ob-
jects such that given a query orthogonal range q, a certain intersection
or proximity query on the objects of S intersected by q can be answered
efficiently. Efficient solutions are provided for point enclosure queries,
1-d interval intersection, 2-d orthogonal segment intersection and 1- and
2-d closest pair problems in this framework. Although range-aggregate
queries have been widely investigated in the past for aggregation func-
tions like average, count, min, max, sum etc. we consider geometric ag-
gregation operations in this paper.

1 Introduction

1.1 Range-Aggregate Query Problems

Range searching is a fairly well-studied problem in Computational Geometry
[1]. In such a problem, we are given a set S of n geometric objects. The goal is
to efficiently report or count the intersections of the given set of objects with a
given query range q. Since we are required to perform queries on the geometric
data set several times, it is worthwhile to arrange the information into a data
structure to facilitate searching.

In this paper, we consider a class of problems called range-aggregate query
problems [16] which deal with some composite queries involving range searching,
where we need to do more than just a simple range reporting or counting. In a
generic instance of a range-aggregate query problem, we wish to preprocess a set
of geometric objects S, such that given a query range q, a certain aggregation
function that operates on the objects of S′ = S ∩ q can be computed efficiently.
As an example consider the range-aggregate closest pair problem studied in [11]:

� This research is supported in part by grants SR/S3/EECE/22/2004 and
DST/INT/US/NSF-RPO-0155/04 from the Department of Science and Technology,
Government of India.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 892–901, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithms for Range-Aggregate Query Problems 893

“Preprocess a set S of points in IR2 such that given a query rectangle q, the
closest pair of points in S∩q can be reported efficiently”. An R-tree based solution
is provided for the problem in [11]. Aggregation functions are divided into three
classes [12,6]: distributive, algebraic and holistic. Distributive aggregates (e.g.
count, max, min, sum) can be computed by partitioning the input into disjoint
sets, aggregating each set individually and then obtaining the final result by
further aggregation of the partial results. Algebraic aggregates (e.g. average)
can be expressed as a function of distributive aggregates. Holistic aggregates
(e.g. median) cannot be computed by dividing the input into parts. Aggregation
functions may be geometric in nature like intersection, convex hull etc. [12].

1.2 Applications

In on-line analytical processing (OLAP), geographic information systems (GIS)
and other applications range aggregate queries play an important role in sum-
marizing information [16] and hence large number of algorithms and storage
schemes have been proposed. However most of these work consider functions
like count, sum, min, max, average etc. [5,7,16,18,17,19]. Other than the work
of [11] on the range-aggregate closest-pair problem, little or no work has been
done on range-aggregate queries with geometric aggregation functions.

In this paper, we consider some range-aggregate query problems with geomet-
ric aggregation functions. We mention some applications where such problems
can be useful. One of the most time-consuming steps in the map overlay process-
ing is line-breaking, which we can abstract as the pairwise segment intersection
problem [8]. If an user is interested in an overlay operation in a particular win-
dow of interest, a range-aggregate segment intersection query is useful. In a VLSI
layout editing environment [13], geometric queries commonly arise. However, the
user often zooms to a part of the layout and is interested in queries with respect
to the portion of the layout on the screen. The 2-d range-aggregate point en-
closure query and the 2-d range-aggregate interval intersection query are two
fundamental operations which can be useful in this context. VLSI design rules
are often based on the so-called lambda (λ) based design rules made popular by
Mead and Conway [9]. Design rule checking (DRC) is the process of checking if
the layout satisfies the given set of rules. One problem of interest to the designer
is to check whether certain features are apart at least by a required separation.
To check for violations in a part of the circuit, we can check if any two points in
a query range violate the minimum separation rule. This can be answered using
the range-aggregate closest-pair query.

1.3 Potential Approaches and Pitfalls

A range-aggregate query SR can be thought of as the composition of two queries:
the range query R and another query S. We can solve the range-aggregate query
problems using standard approaches. However, neither the technique of applying
a simple range search to solve problem R and then applying the rest of the query
S to the answer nor applying S followed by filtering using the query range R

894 P. Gupta

Table 1. Summary of results for range-aggregate query problems on S and T ; the
query is an orthogonal range; k is the output size.

Underlying Objects Objects Query Space Query time
space in S in T

IR1 points intervals point enclosures n log n log n + k

IRd points hyper point enclosures n logd n logd n + k
d ≥ 2 rectangles
IR1 intervals intervals intersections n log n log n + k

IR2 orthogonal orthogonal intersections n log2 n log2 n + k
segments segments

IR1 points - closest pair n O(1)
IR2 points - closest pair n2 log3 n log3 n

yields efficient solutions. This is also experimentally validated in [11] for the
range-aggregate closest pair problem.

As as example, let us consider the 2-dimensional range-aggregate orthogonal
segment intersection problem. Let S be a set of n orthogonal line segments in
IR2. We wish to preprocess S into a data structure such that given a query
rectangle q = [a, b] × [c, d], we can efficiently report the pairs (s1, s2), si ∈ S
where s1 intersects s2 and the intersection point of s1 and s2 lies inside q.

One simple solution would be to preprocess S such that given q, the t segments
of S′ ⊆ S that intersect q are retrieved. We can then run the O(t log t + k)
algorithm for finding pairwise segment intersections [3] on S′. Thus the overall
solution takes O(log n+ t log t + k) time, where k is the actual output size. If t
is large, this solution is inefficient.

An alternative solution will be to find all pairs of intersections in S inO(n log n
+ t) time, using the algorithm of [3] (where t is the number of pairs of segments
that intersect) and preprocess the intersection points for 2-dimensional orthogo-
nal range searching which takes O(t) space and O(log t+k) = O(log n+k) time,
where k is the actual output size. If t is large, this solution is inefficient in terms
of space. The challenge is to develop low-space, low-query-time solutions which
are also output-sensitive.

1.4 Our Contributions

From the above discussions, it is clear that different techniques are required to
solve the range-aggregate query problems efficiently. In this paper, we provide ef-
ficient output-sensitive solutions for several range-aggregate query problems. We
solve the 1-d range-aggregate point enclosure problem in Section 2, the 1-d range-
aggregate interval intersection problem in Section 3, the range-aggregate point
enclosure problem for d ≥ 2 in Section 4 and the 2-d range-aggregate orthog-
onal segment intersection problem in Section 5. We revisit the range-aggregate
closest-pair problem of [11] in Section 6. To the best of our knowledge, [11] is the
only earlier work on this class of problems which considers geometric aggregation
functions. Ours is the first systematic study of some fundamental intersection

Algorithms for Range-Aggregate Query Problems 895

and proximity problems in this framework. Our results are summarized in Ta-
ble 1. Due to lack of space, we omit some proofs and many details.

2 1-d Range-Aggregate Point Enclosure

In this section we consider the 1-d range-aggregate point enclosure problem.
Here the goal is to preprocess a set of points and intervals on the real line to
efficiently report all point-interval incidences that lie within a query interval.

Problem 1. Preprocess a set S of points and a set T of intervals on the x-axis,
with |S| + |T | = n such that given a query interval q = [a, b], all pairs (s, t), s ∈
S, t ∈ T satisfying s ∈ t ∩ q can be reported efficiently.

We sort the points in S in non-decreasing order and remove any point in S
which is not covered by any interval in T . We store the reduced set S′ in the
leaves of a binary search tree BT . We search in BT with the intervals t ∈ T
to find the points in S that intersect t. If no such points exist for an interval
t ∈ T , we remove it from T . Let T ′ ⊆ T be the reduced set. We preprocess the
intervals in T ′ into a segment tree ST . The intervals in T ′ partition the x-axis
it into 2|T ′| + 1 elementary intervals (some of which may be empty). We build
a segment tree ST which stores these elementary intervals at the leaves. Let v
be any node of ST . We associate with v an x-interval Int(v), which is the union
of the elementary intervals stored at the leaves in v’s subtree. We say that an
interval i ∈ T is allocated to a node v ∈ ST iff Int(v) �= ∅ and i covers Int(v)
but not Int(parent(v)). Let I(v) be the set of intervals allocated to v. For any
node v, let ANC(v) denote the nearest ancestor u of v such that I(u) �= ∅.

For each point s ∈ S′, if s lies at the boundary of two elementary intervals,
we let leftleaf(s) (respectively rightleaf(s)) denote the leaf in ST which cor-
responds to the elementary interval to the left (respectively right) of s. If s lies
in the interior of an elementary interval i, we let leftleaf(s) and rightleaf(s)
both point to i.

Given a query interval q = [a, b], first we search in BT to locate a′ (respectively
b′), the points with the smallest (respectively largest) x-coordinate greater than
or equal to (respectively less than or equal to) a (respectively b). Then for each
leaf of BT in the interval [a′, b′], we locate the leaves 1 = leftleaf() and
2 = rightleaf() in ST . In ST , we trace the path Π(1) from the node 1 to
the root using the ANC(v) pointers and report for each node v on the path,
pairs (p, i) for all i ∈ I(v) where p is the point corresponding to leaf 1 of
BT . If 2 �= 1, we trace the path Π(2) in ST from 2 to the root, reporting
point-interval incidences as above.

Theorem 1. A set S of points and a set T of intervals on the x-axis where
|S| + |T | = n, can be preprocessed into a data structure of size O(n logn) such
that given a query interval q = [a, b], all pairs (s, t), s ∈ S, t ∈ T such that
s ∈ t ∩ q can be reported in time O(log n+ k) where k is the output size.

896 P. Gupta

3 1-d Range-Aggregate Interval Intersection

In this section, we consider the 1-d range-aggregate interval intersection problem.
Here the goal is to preprocess a set S of intervals in the real line to efficiently
report pairwise intersections of intervals in S such that the intersections overlap
with the query interval q.

Problem 2. Preprocess a set S of n intervals on the x-axis, such that given a
query interval q = [a, b], all pairs (s, t), s ∈ S, t ∈ S satisfying s ∩ t ∩ q �= ∅ can
be reported efficiently.

Lemma 1. A pair of intervals (s, t) of S satisfies s ∩ t ∩ q �= ∅ iff
(i) An endpoint of s is in t ∩ q or
(ii) An endpoint of t is in s ∩ q or
(iii) q ⊆ (s ∩ t)

To report interval pairs satisfying conditions (i) or (ii) of Lemma 1, we simply
preprocess the intervals of S and the endpoints of the intervals into an instance
D1 of the data structure of Theorem 1. Given q, we query D1 and for every pair
(i, p) found, we report (i, p′) where p′ is the interval one of whose endpoints is
p. To report interval pairs satisfying condition (iii) of Lemma 1, we map each
interval i = [c, d] into the point F(i) = (c, d) ∈ IR2. We preprocess such points
into a data structure D2 for 2-d quadrant searching. This can be implemented
using a priority search tree [10]. We map the interval q = [a, b] into the northwest
quadrant NW (q) of the point (a, b) ∈ IR2. We query D2 with NW (q) and store
the result in a temporary list L(q). We report for each pair of points (p1, p2),
p1 ∈ L(q), p2 ∈ L(q), the interval pair (p′1, p

′
2) where p′1 (respectively p′2) is

the interval corresponding to p1 (respectively p2). Since |L(q)| ≤ min{n, k}, the
overhead only contributes a constant factor to the space and time bounds.

Theorem 2. A set S of n intervals on the x-axis can be preprocessed into a
data structure of size O(n log n) such that given a query interval q = [a, b], all
pairs (s, t), s ∈ S, t ∈ S such that s∩t∩q �= ∅ can be reported in time O(log n+k)
where k is the output size.

4 Range-Aggregate Point Enclosure for d ≥ 2

First, we consider the 2-d range-aggregate point enclosure problem. Here the
goal is to preprocess a set S of points and a set T of orthogonal rectangles, all in
IR2 to report all point-rectangle incidences inside a query orthogonal rectangle.

Problem 3. Preprocess a set S of points and a set T of axes-parallel rectangles
in IR2 with |S|+ |T | = n, such that that given a query rectangle q = [a, b]× [c, d],
all pairs (s, t), s ∈ S, t ∈ T satisfying s ∈ (t ∩ q) can be reported efficiently.

Lemma 2. For a query rectangle q, a point s and a rectangle t satisfy s∈(t∩ q)
iff
(i) sx ∈ tx ∩ qx and
(ii) sy ∈ ty ∩ qy

Algorithms for Range-Aggregate Query Problems 897

where sx, tx and qx are the x-projections of s, t and q respectively and where sy,
ty and qy are the y-projections of s, t and q respectively.

The problem is decomposable along the dimensions. We construct a two-level
data structure where the outer structure DS is an instance of the data structure
of Theorem 1 for 1-d range-aggregate point enclosure problem built on the x-
projections of the points in S and the rectangles in T . DS consists of a binary
search tree BT (S) and a segment tree ST (S). During preprocessing, we map the
the x-coordinates of the points in BT (S) to elementary intervals in ST (S) and
create the leftleaf and rightleaf pointers. At each internal node v of ST (S),
let S(v) denote the set of points from BT (S) lying in the elementary intervals
at the leaves of the subtree rooted at v. For node v, recall that I(v) is the set of
intervals (in this case x-projections of rectangles) allocated to v. At each such
node v, we create an instance D(v) of the data structure of Theorem 1 built on
the y-coordinates of the points in S(v) and the y-projections of the rectangles
in T , whose x-projections are in I(v).

Given the query rectangle q = [a, b] × [c, d], we query DS with q′ = [a, b] and
identify the canonical nodes v such that q′ covers Int(v) but q′ does not cover
Int(parent(v)). At each such node v, we query D(v) with q′′ = [c, d]. We report
the union of all the answers retrieved.

Lemma 3. Given a set S of points and a set T of axes-parallel rectangles in
IR2, and a query rectangle q, the query algorithm reports a pair (s, t), s ∈ S, t ∈ T
iff s ∈ (t ∩ q).

Proof. (⇐) Let s ∈ (t ∩ q). Hence sx ∈ qx. During preprocessing, s is mapped
to the appropriate elementary interval corresponding to a leaf s of the outer
segment tree ST (S) and is in each set S(v) for all nodes v in the path Π(s)
from s to the root of ST (S). Note that sx ∈ i for each i ∈ I(v) for all nodes v
on Π(s). Since sx ∈ tx, by construction of the segment tree, tx must correspond
to some such interval i stored at a node u on Π(s). Since D(u) is built with
y-coordinates of points in S(u) (which includes s) and y-projections of rectangles
in T whose x-projections are allocated to u (which includes t), and sy ∈ ty ∩ qy,
from the correctness of the structure of Theorem 1, it follows that the pair (s, t)
is reported while querying D(u).
(⇒) Let the query algorithm report a pair (s, t), s ∈ S, t ∈ T . It must be reported
while querying D(u) for some node u in ST (S). Hence sy ∈ ty ∩ qy. Since D(u)
is built with y-coordinates of points in S(u) and y-projections of rectangles in
T whose x-projections are in I(u), S(u) must include s and I(u) must include
tx. Hence sx ∈ tx. Since D(u) is selected as a canonical node, Int(u) ⊆ qx. Since
sx ∈ Int(u), we conclude that sx ∈ qx. Since sx ∈ tx and sx ∈ qx, sx ∈ tx ∩ qx.
Since sy ∈ ty ∩ qy also, we conclude that s ∈ t ∩ q.

Since the problem is decomposable along the dimensions, we can extend the
result to dimensions d > 2. We conclude:

Theorem 3. A set S of points and a set T of axes-parallel hyper-rectangles in
IRd for d ≥ 2 with |S| + |T | = n, can be preprocessed into a data structure of

898 P. Gupta

size O(n logd n) such that given a query hyper-rectangle q = [a1, b1] × [a2, b2] ×
. . .× [ad, bd], all pairs (s, t), s ∈ S, t ∈ T such that s ∈ (t ∩ q) can be reported in
time O(logd n+ k) where k is the output size.

5 Range-Aggregate Orthogonal Segment Intersection

In this section, we consider the 2-d range-aggregate orthogonal segment inter-
section problem. Here the goal is to preprocess a set S of orthogonal segments
in IR2 to report all intersections inside a query orthogonal range q.

Problem 4. Preprocess a set S of axes-parallel segments in IR2 such that that
given a query rectangle q = [a, b]×[c, d], all pairs (s1, s2), s1 ∈ S, s2 ∈ S such that
s1 intersects s2 and the intersection point lies in q, can be reported efficiently.

First we consider reporting the horizontal-vertical intersections:

Problem 5. Preprocess a set H of horizontal and a set V of vertical segments
all in IR2 such that that given a query rectangle q = [a, b] × [c, d], all pairs
(s1, s2), s1 ∈ H, s2 ∈ V such that s1 intersects s2 and the intersection point lies
in q, can be reported efficiently.

Our outer structure is an instance DS of the data structure of Theorem 1.
DS is built on a set of 1-dimensional points and a set of 1-dimensional intervals.
The set of points is the set of x-projections of the segments in V and the set of
intervals is the set of x-projections of the horizontal segments H . DS consists of
a segment tree ST (S) and a binary search tree BT (S). At each internal node v
of ST (S), let S(v) denote the set of points from BT (S) lying in the elementary
intervals at the leaves of the subtree rooted at v. For node v, recall that I(v) is
the set of intervals (in this case x-projections of horizontal segments) allocated
to v. At each such node v, we create an instance D(v) of the data structure of
Theorem 1. D(v) is built on a set of intervals and points. The set of intervals that
D(v) is built on are the y-projections of the vertical segments whose x-projections
are in S(v). The set of points that D(v) is built on are the y-projections of the
horizontal segments in H , whose x-projections are intervals allocated to v.

Given the query rectangle q = [a, b] × [c, d], we query DS with q′ = [a, b]
and identify the canonical nodes v such that q′ covers Int(v) but q′ does not
cover Int(parent(v)). At each such node v, we query D(v) with q′′ = [c, d]. The
query retrieves pairs of the form (i, p). For any such pair (i, p), we report (i′, p′),
where i′ is the vertical segment whose y-projection is the interval i and p′ is the
horizontal segment whose y-projection is the point p. We report the union of all
the answers retrieved.

Lemma 4. The query algorithm reports a pair (s1, s2), s1 ∈ H, s2 ∈ V iff s1 ∩
s2 ∈ q.

Proof. (⇐) Let s1 ∩ s2 ∈ q. Then the x-projection of the vertical segment s2 lies
in the x-projection of q. Hence the x-projection of s2 is in S(v) for a canonical
node v in ST (S) as identified while querying with the x-projection of q. This

Algorithms for Range-Aggregate Query Problems 899

implies that the interval set that D(v) is built on will include the y-projection
of s2. Since the x-projection of the horizontal segment s1 must also include the
x-projection of s2, by construction of the segment tree ST (S), I(v) must include
the x-projection of s1. Then the point set that D(v) is built on will include the
y-projection of s1. By the correctness of the structure of Theorem 1, the pair
(s1, s2) will be reported.
(⇒) Let the pair (s1, s2), s1 ∈ H, s2 ∈ V be reported. From the correctness of
the structure of Theorem 1, the y-projection of s1 must be in the y-projection of
s2 and also in the y-projection of q. If the pair is reported while querying D(v)
at node v, I(v) must include the x-projection of s1 and S(v) must include the
x-projection of s2. Hence the x-projection of s2 must be in the x-projection of s1.
Since v is a canonical node identified by querying ST (S) with the x-projection of
q, the x-projection of s2 must also be in the x-projection of q. Hence s1 ∩s2 ∈ q.

The case of intersections amongst horizontal segments is symmetrical to that
amongst vertical segments. We describe the former here. Formally the problem
can be stated as:

Problem 6. Preprocess a set H of horizontal segments in IR2 such that that given
a query rectangle q = [a, b] × [c, d], all pairs (s1, s2), s1 ∈ H, s2 ∈ H satisfying
s1 ∩ s2 ∩ q �= ∅ can be reported efficiently.

Lemma 5. Let s1 and s2 be horizontal segments. Then given a rectangle q =
[a, b] × [c, d], s1 ∩ s2 ∩ q �= ∅ iff
(i) s1 has an endpoint in s2 ∩ q or
(ii) s2 has an endpoint in s1 ∩ q or
(iii) The left edge of q intersects s1 ∩ s2

We first build a data structure D1 to cover cases (i) and (ii) of Lemma 5. We
preprocess the x-projections of the segments into a segment tree ST . At each
internal node v of ST , the set S(v) includes the endpoints of the segments which
define the endpoints of the elementary intervals at the leaves of the subtree rooted
at v. We store the y-coordinates of the intervals stored in I(v) in the leaves of
a binary search tree BT (v). During preprocessing, we map the y-coordinates of
the points in S(v) to the leaves of BT (v). Each leaf node is associated with a
list Y L() of such points.

Given the query rectangle q = [a, b] × [c, d], we query ST with q′ = [a, b] and
identify the canonical nodes v such that q′ covers Int(v) but q′ does not cover
Int(parent(v)). At each such node v, we query BT (v) with q′′ = [c, d]. For each
leaf node of BT (v) retrieved by the query, we report (s1, s2) where s1 is the
segment whose y-coordinate is stored in and s2 is the segment whose endpoint
is in L(). We report the union of all the answers retrieved.

Next we build a data structure D2 to cover case (iii) of Lemma 5. This is
similar to D1 with the exception of the secondary structure BT (v). In this case,
we store the y-coordinates of the intervals stored in I(v) in the leaves of a binary
search tree BT (v). Each leaf node is associated with a list Y L() of such y-
coordinates. Given the query rectangle q = [a, b] × [c, d], we query ST with a

900 P. Gupta

and identify the canonical nodes v such that a ∈ Int(v). At each such node
v, we query BT (v) with q′′ = [c, d]. For each leaf node of BT (v) retrieved
by the query, we report each pair (s1, s2) where s1 and s2 are segments whose
y-coordinates are stored in L(). We report the union of all the answers retrieved.

Theorem 4. A set S of n orthogonal segments in IR2 can be preprocessed into
a data structure of size O(n log2 n) such that given a query rectangle q = [a, b]×
[c, d], all pairs (s1, s2), s1 ∈ S, s2 ∈ S and s1 ∩ s2 ∩ q �= ∅ can be reported in time
O(log2 n+ k), where k is the output size.

6 Proximity in a Range

Geometric proximity problems arise in numerous applications and have been
widely studied in computational geometry. The closest-pair problem involves
finding a pair of points in a set such that the distance between them is minimal.
Work on the closest-pair and some related problems are surveyed in [14]. The
range-aggregate version was considered in [11] and a R-tree based solution was
given. We assume that all distances are euclidean distances.

To solve the 1-dimensional range-aggregate closest pair problem, we associate
with each point s ∈ S a real number g(s) being the distance between s and
the point immediately to its right. For the rightmost point r let g(r) = ∞.
We preprocess the points into an instance D of the data structure of [4] for 1-
dimensional range minimum query to find a point in a query range with minimum
g(s).

Theorem 5. A set S of n points in IR1 can be preprocessed into a data structure
of size O(n) such that given a query interval q = [a, b], the closest pair of points
in S ∩ q can be reported in time O(1).

To solve the 2-dimensional problem, we first find all pairwise distances be-
tween the points in S. We create O(n2) tuples (ax, ay, bx, by, d(a, b)) where
a = (ax, ay) and b = (bx, by) are points in S and d(a, b) is the euclidean dis-
tance between a and b. We preprocess these tuples into a data structure D for
the 4-dimensional range minimum query of [4]. An instance of D built on a set of
n points occupies O(n log3 n) space and can be queried in time O(log3 n). Given
q, we query D to find a pair (a, b) with the minimum value of d(a, b).

Theorem 6. A set S of n points in IR2 can be preprocessed into a data structure
of size O(n2 log3 n) such that given a query rectangle q = [a, b]× [c, d], the closest
pair of points in S ∩ q can be reported in time O(log3 n).

References

1. P.K. Agarwal, and J. Erickson. Geometric range searching and its relatives. In
B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, Contemporary Mathematics, 23, 1999, 1–56, American
Mathematical Society Press.

Algorithms for Range-Aggregate Query Problems 901

2. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications, Springer Verlag, 2000.

3. I.J. Balaban. An optimal algorithm for finding segment intersections. Proceedings,
11th Annual ACM Symposium on Computational Geometry, 1995, 211–219.

4. H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques for
geometry problems. Proceedings, ACM Symposium on Theory of Computing, 1984,
135–142.

5. S. Govindarajan, P.K. Agarwal, and L. Arge. CRB-Tree: An efficient indexing
scheme for Range Aggregate Queries. Proceedings, International Conference on
Database Theory, 2003, 143–157.

6. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Recichart, M. VenkatRao, F.
Pellow, and H. Pirahesh. Data Cube: A relational aggregation operator generalizing
Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery,
1(1), 1997, pp. 29–53.

7. S. Hong, B. Song, and S. Lee. Efficient execution of range-aggregate queries in data
warehouse environments. Proceedings, ICCM 01, Springer Verlag LNCS, Vol. 2224,
2001, 299–310.

8. R. Jampani, R. Thonangi, and P. Gupta. Overlaying multiple maps efficiently.
Proceedings, CIT 04, Springer Verlag LNCS, Vol. 3356, 2004, 263–272.

9. C.A. Mead, and L.A. Conway. Introduction to VLSI Systems, Addison Wesley,
USA, 1980.

10. E.M. McCreight. Priority search trees, SIAM Journal of Computing, 14(2), 1985,
257–276.

11. J. Shan, D. Zhang, and B. Salzberg. On spatial-range closest-pair query. Proceed-
ings, Symposium on Spatial and Temporal Databases, Springer Verlag LNCS, Vol.
2750, 2003, 252–269.

12. S. Shekhar, and S. Chawla. Spatial Databases: A Tour, Prentice Hall, 2002.
13. N. Sherwani. Algorithms for VLSI Physical Design Automation, Kluwer Academic,

1998.
14. M. Smid. Closest point problems in computational geometry. Handbook of Com-

putational Geometry, J. Sack and J. Urrutia editors, Elsevier, 2000, 877–935.
15. T.G. Szymanski, and C.J. van Wyk. Layout analysis and verification, in Physi-

cal Design Automation of VLSI Systems, B. Preas and M. Lorenzetti eds., Ben-
jamin/Cummins, 1988, pp. 347–407.

16. Y. Tao and D. Papadias. Range aggregate processing in spatial databases. IEEE
Transactions on Knowledge and Data Engineering, 16(12), 2004, 1555–1570.

17. D. Zhang, V.J. Tsotras. Improving min/max aggregation over spatial objects.
VLDB Journal 14(2), 2005, 170–181.

18. D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos, and B. Seeger. Efficient com-
putation of temporal aggregates with range restrictions. Proceedings, Symposium
on Principles of Database Systems, 2001.

19. D. Zhang, V.J. Tsotras, D. Gunopulos. Efficient aggregation over objects with
extent. Proceedings, Symposium on Principles of Database Systems, 2002, 121–132.

A (2 − c 1√
N

)–Approximation Algorithm
for the Stable Marriage Problem

Kazuo Iwama1,�, Shuichi Miyazaki2,��, and Naoya Yamauchi1

1 Graduate School of Informatics, Kyoto University
2 Academic Center for Computing and Media Studies, Kyoto University
{iwama, nyamauchi}@kuis.kyoto-u.ac.jp, shuichi@media.kyoto-u.ac.jp

Abstract. We consider the problem of finding a stable matching of
maximum size when both ties and unacceptable partners are allowed in
preference lists. This problem is NP-hard and the current best known
approximation algorithm achieves the approximation ratio 2 − c log N

N
,

where c is an arbitrary positive constant and N is the number of men in
an input. In this paper, we improve the ratio to 2 − c 1√

N
, where c is a

constant such that c ≤ 1

4
√

6
.

1 Introduction

An instance of the stable marriage problem consists of N men, N women, and
each person’s preference list. A preference list is a totally ordered list including all
members of the opposite sex depending on his/her preference. For a matching M
between men and women, a pair of a man m and a woman w is called a blocking
pair if m prefers w to his current partner and w prefers m to her current partner.
A matching with no blocking pair is called stable. Gale and Shapley showed that
every instance admits at least one stable matching, and proposed a polynomial-
time algorithm to find one, which is known as the Gale-Shapley algorithm [9].
There are several examples of using the stable marriage problem in assignment
systems. Probably, one of the most famous applications is to assign medical
students to hospitals based on preference lists of both sides, which is known
as NRMP in the U.S. [11, 28], CaRMS in Canada [6], SPA in Scotland [17, 18],
and JRMP in Japan [23]. Another application is to assign students to schools in
Singapore [32].

Considering such applications, it is unrealistic to require each participant to
submit a preference list strictly ordering all members of the opposite side. One
natural extension is to allow an incomplete list, namely, one may drop persons
from the list whom he/she does not want to be matched with. In this case, a
stable matching may not be a perfect matching, but all stable matchings for a

� Supported in part by Scientific Research Grant, Ministry of Japan, 16300002,
16092101 and 16092215.

�� Supported in part by Scientific Research Grant, Ministry of Japan, 15700010,
17700015 and 16092215.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 902–914, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A (2− c 1√
N

)–Approximation Algorithm for the Stable Marriage Problem 903

fixed instance are of the same size [10], and a slight modification of the Gale-
Shapley algorithm can find one in polynomial time. In fact, a lot of well-known
applications allow agents to submit incomplete lists. Another natural extension
is to allow ties in the list [11, 16]. Again, it is easy to find a stable matching by
a modified Gale-Shapley algorithm.

However, if we allow both extensions, one instance can admit stable matchings
of different sizes, and in a worst case, a smallest stable matching is of size only a
half of a largest one. It is known that the size of a stable matching we obtain is
essentially based on the way of tie-breaking (see [29] for example). If a matching
system does not allow ties, participants may have to break ties independently by
themselves, which may reduce the size of a resulting stable matching to a half
the optimal. Hence, it is important to allow not only incomplete lists but also
ties at the same time. Unfortunately, the problem of finding a maximum stable
matching, which we call MAX SMTI (MAXimum Stable Marriage with Ties
and Incomplete lists), is NP-hard [21, 29], and the current best polynomial-time
approximation algorithm achieves an approximation ratio 2 − c log N

N , where c is
an arbitrary positive constant [22].

Simply speaking, the algorithm in [22] starts from an arbitrary initial stable
matching, and at each iteration, successively improves the size of a stable match-
ing. While |M |, the size of the current solution, is at most OPT

2 + c logN , where
OPT is the size of an optimal solution, it can increase the size by at least one.
Hence, the size of a stable matching is eventually greater than OPT

2 + c logN .
To increase the size of a matching, it first finds a subset H of M , and removes
H from M . It then adds a set K of new edges to the matching M −H , where
K is computed from H . |K| is closely related to the approximation ratio; if all
edges of K satisfy some good property (say, Ψ), we can guarantee that the size
of a stable matching we finally obtain is at least OPT

2 + O(|K|). In [22], it was
proved that there exists a good H that produces K such that |K| = 2|H | and all
edges of K satisfy Ψ , but it was not known how to find it efficiently. Hence, we
had to rely on an exhaustive search, which allows |H | (and hence |K|) to be at
most O(logN) for polynomial-time computation. So, the obvious problem was
how to find this good subset H efficiently instead of the naive exhaustive search.

Our Contribution. In this paper, we modify the algorithm so that it does not
need exhaustive search, improving the approximation ratio to 2−c 1√

N
(c ≤ 1

4
√

6
).

To achieve this improvement, we relax the condition mentioned above. If K
contains a subset K ′ such that all edges in K ′ satisfy Ψ , then we can obtain a
stable matching of size at least OPT

2 + O(|K ′|). With this relaxation, we show
that |K ′| can be set as large as O(

√
|M |). To prove the correctness of this

relaxed condition, we use the fact that a minimum vertex cover for bipartite
graphs can be found in polynomial time. Also, for finding K that contains large
K ′, we exploit a polynomial-time algorithm for finding a maximum matching in
bipartite graphs, and multiple use of the Gale-Shapley algorithm.

Related Results. As mentioned above, MAX SMTI was proved to be NP-
hard [21] and then to be APX-hard [12]. Subsequently, it was shown that MAX

904 K. Iwama, S. Miyazaki, and N. Yamauchi

SMTI cannot be approximated within 21/19 unless P �=NP [14]. For restricted
inputs, there are a couple of approximation algorithms with factor better than
two [13, 14]. Other than SMTI, research on stable matchings has been quite in-
tensive recently, which includes studies on strong stability [20, 26], rank-maximal
matchings [19], Pareto optimal matchings [1], popular matchings [2], and oth-
ers [7, 3, 8].

There are several optimization problems that resemble MAX SMTI, where de-
signing a 2-approximation algorithm is trivial but obtaining a (2−ε)-approxima-
tion algorithm for a positive constant ε is extremely hard, such as Minimum
Vertex Cover (MIN VC for short) and Minimum Maximal Matching (MIN MM
for short). As is the case with MAX SMTI, there are a lot of approximability
results for these problems by restricting instances. For example, MIN VC is ap-
proximable within 7/6 if the maximum degree of an input graph is bounded
by 3 [5], or within 2/(1 + ε) if every vertex has degree at least ε|V | [25]. For
MIN MM, there is a (2 − 1/d)-approximation algorithm for regular graphs with
degree d [33], and PTAS for planar graphs [31]. For general inputs, (2 − o(1))-
approximation algorithms are presented for MIN VC, namely, 2 − log log |V |

2 log |V | and

2 − (1 − o(1))2 ln ln |V |
ln |V | [30, 4, 15]. Very recently, it is improved to 2 −Θ(1√

log |V |
)

[24].

2 Preliminaries

2.1 Notations and Definitions

In this section, we formally define MAX SMTI and approximation ratios. An
instance I of MAX SMTI comprises of N men, N women and each person’s
preference list that may be incomplete and may include ties. We usually use m,
mi, etc for men, and w, wi, etc for women. If a man m writes a woman w in his
list, we say that w is acceptable to m. If m strictly prefers wi to wj in I, we write
wi 7m wj . If wi and wj are tied in m’s list, we write wi =m wj . The statement
wi 6m wj is true if and only if wi 7m wj or wi =m wj . We use similar notations
for women’s preference lists.

A matching M is a set of pairs (m,w) such that m is acceptable to w and
vice versa, and each person appears at most once in M . For convenience, we
sometimes use the notation m ∈ M , which means that m is matched in M ,
namely, ∃w (m,w) ∈ M . If m �∈ M , we say that m is single in M . We sometimes
call a pair (m,w) ∈ M an edge of M .

If a man m is matched with a woman w in M , we write M(m) = w and
M(w) = m. We say that m and w form a blocking pair for M (or simply,
(m,w) blocks M) if the following three conditions are met: (i) M(m) �= w but
m and w are acceptable to each other. (ii) w 7m M(m) or m is single in M .
(iii) m 7w M(w) or w is single in M . A matching M is called stable if there is
no blocking pair for M . MAX SMTI is the problem of finding a largest stable
matching.

A (2− c 1√
N

)–Approximation Algorithm for the Stable Marriage Problem 905

A goodness measure of an approximation algorithm T of a maximization
problem is defined as usual: the approximation ratio of T is max{opt(x)/T (x)}
over all instances x of size N , where opt(x) and T (x) are the size of the optimal
and the algorithm’s solution, respectively. Throughout this paper, we denote the
optimal cost by OPT .

2.2 Algorithm LocalSearch(I)

In this section, we briefly review the algorithm LocalSearch presented in [22].
It takes a MAX SMTI instance I and outputs a stable matching for I. It consists
of two subroutines, called Increase and Stabilize. Increase takes a stable
matching M for I and outputs a (not necessarily stable) matching M ′ such that
|M ′| > |M | and M ′ satisfies the following property Π :

Π : For any blocking pair (m,w) for M ′, at least one of m and w is single in M ′.

Increase may fail to find such a matching. In that case, it returns error.
Stabilize takes a matching M ′ with property Π , and outputs a stable match-
ing of size at least |M ′|. Stabilize never fails. The whole description of Local-
Search is as follows:

Algorithm LocalSearch(I)
1: M = arbitrary stable matching for I.

/* This can be done in polynomial time by arbitrary tie-breaking
and applying the Gale-Shapley algorithm. */

2: while (true)
3: { M ′ = Increase (M).

If Increase returns an error, exit while loop and output M .
4: M = Stabilize (M ′). }

It was shown in [22] that while |M | ≤ OPT
2 + c logN , Increase never fails,

and hence we finally obtain a stable matching of size more than OPT
2 + c logN .

This gives an upper bound on the approximation ratio of LocalSearch.

3 Improved Algorithm

To obtain a better upper bound, we improve the subroutine Increase, and
show that it never fails if |M | < OPT

2 + c′
√

|M |. Here, c′ is a constant such
that c′ ≤ 1

8
√

6
. So, LocalSearch can obtain a stable matching of size at least

OPT
2 + c′

√
|M |.

Before presenting Increase, we give a couple of procedures used in Increase.
The following procedure MaxMatching takes a stable matching M , and outputs
a matching that matches a subset of women in M with a subset of men single
in M .

906 K. Iwama, S. Miyazaki, and N. Yamauchi

Procedure MaxMatching(M)
1: Construct a bipartite graph G = (U, V,E) in the following way.

U is the set of women in M .
V is the set of men single in M .
Give an edge between w ∈ U andm ∈ V if and only if M(w) =w m.

2: Find a maximum matching in G, and output it.

Next, we give the procedure MultipleGS. It takes a stable matching M and its
subset S ⊆ M . It outputs several matchings, each of which matches a subset of
men in S with a subset of women single in M . Fix a constant c′ (c′ ≤ 1

8
√

6
), and

define B = 4c′
√

|M |. (For the Gale-Shapley algorithm, see [11] for example.)

Procedure MultipleGS(M , S)
1: Let X be the set of men in S.
2: Let Y be the set of women single in M .
3: For each man m ∈ X , do the following.
4: { Delete all women not in Y from m’s preference list.
5: Break all ties in m’s preference list in an arbitrary way.

/* Call the resulting lists modified lists. */ }
6: For each woman w ∈ Y , do the following.
7: { Delete all men not in X from w’s preference list.
8: Break all ties in w’s preference list in an arbitrary way. }
9: For k = 1 to 2B − 1, do the following.

10: { For each man m ∈ X , delete, from m’s preference list, all women
whose position (with respect to his modified list) is greater than k.

11: Apply men-propose Gale-Shapley algorithm to X and Y , and let
the resulting matching be Qk. }

12: Partition X into |X |/2B sets X1, X2, · · · , X|X|/2B arbitrarily, each of
which is of size 2B.

13: For each Xi, do the following.
14: { For each man m ∈ Xi, delete, from m’s preference list, all women

whose position (with respect to his modified list) is greater than 2B.
15: Apply men-propose Gale-Shapley algorithm to Xi and Y , and let

the resulting matching be Q2B−1+i. }
16: Output Q1, · · · , Q2B−1+|S|/2B. /* Note that |S| = |X | */

Finally, we give Increase. Fig. 1 shows an example of the execution of
Increase up to the 8th line.

A (2− c 1√
N

)–Approximation Algorithm for the Stable Marriage Problem 907

...

... ...

single in single in
Mi

Mi
Pi

women men

womenmen
M

’

men womenM
men
single in

women

(1)

single in M M
... ...

...

’M

(2)

...

... ...

P

...

PiQi,j

M’’i,j

...

Mi

(5)

...

M j’’Y

(4)

...

......

...

X

P

Qj

(3)

M i’’

(4)

... ...

... P

Qi

Fig. 1. An example of computation by Increase

908 K. Iwama, S. Miyazaki, and N. Yamauchi

Procedure Increase(M)
1: Execute MaxMatching(M) and obtain a matching P .
2: Let M ′ be the subset of M such that w ∈ M ′ iff w ∈ P .
3: Execute MultipleGS(M,M ′) and obtain Q1, · · · , Q2B−1+|M ′|/2B.
4: For each Qi, do the following.
5: { Let M ′′

i be the subset of M ′ such that m ∈ M ′′
i iff m ∈ Qi.

6: Mi = M −M ′′
i .

7: For each woman w ∈ M ′′
i , add an edge (P (w), w) to Mi.

8: For each man m ∈ M ′′
i , add an edge (m,Qi(m)) to Mi.

9: Construct a bipartite graph Gi = (Ui, Vi, Ei) as follows.
Ui is the set of men in Mi.
Vi is the set of women in Mi.
Give an edge between m ∈ Ui and w ∈ Vi iff (m,w) blocks Mi.

10: Find a minimum vertex cover Ci for Gi.
11: From Mi, delete all edges connected to at least one vertex in Ci.
12: For each i, let M1,i = Mi. }
13 ∼ 24: Do the same operation as lines 1 through 12 by exchanging the role

of men and women, and let the resulting matchings be M2,i.
25: Let M∗ be a largest matching of all M1,i and M2,i.
26: If |M∗| > |M |, output M∗. Otherwise, output error.

Here, let us roughly explain an execution of the algorithm. Increase executes
computation on all possible i. An example of computation on fixed i is depicted
in Fig. 1. Vertices corresponding to men are denoted by filled circles, while those
corresponding to women are denoted by unfilled circles. Fig. 1 (1) shows an input
matching M . M is given to Procedure MaxMatching, and it returns P (Fig. 1
(2)). This P defines M ′, and then,M andM ′ are given to Procedure MultipleGS.
Fig. 1 (3) shows X and Y used in Procedure MultipleGS. MultipleGS returns
several matchings. Fix one matching Qi (Fig. 1 (4)). Then, M ′′

i is defined by
this Qi. Next, Increase increases the size of M (lines 6 through 8) by removing
edges (m,w) ∈ M ′′

i from M , and by matching m and w to single woman and
man, respectively, according to P and Qi. The resulting matching Mi is shown
in Fig. 1 (5). However, Mi may break the property Π . At lines 9 through 11, it
removes some edges of Mi so that the matching satisfies Π . This decreases the
size of matching, but in the next section, we will show that there is a good i
such that the size does not decrease too much.

4 Correctness Proof

It is not hard to see that Increase runs in time polynomial in N . (Note that
both maximum matchings and minimum vertex covers for bipartite graphs can
be computed in polynomial time [27].) Also, observe that all M1,i at the end of

A (2− c 1√
N

)–Approximation Algorithm for the Stable Marriage Problem 909

Increase satisfy Π . For, if there are edges e1 = (m,w) and e2 = (m′, w′) in
Mi such that m and w′ form a blocking pair, then at least one of e1 and e2 is
removed fromMi at line 11 of Increase. Similarly, allM2,i satisfy Π . Hence, the
output of Increase satisfies Property Π . It remains to show that |M∗| > |M |
if |M | < OPT

2 + c′
√

|M |. To this end, it suffices to show that there are a ∈ {1, 2}
and i∗ such that Ma,i∗ at the end of Increase satisfies |Ma,i∗ | > |M |.

First, let us fix an optimal solution Mopt, a largest stable matching for I,
and let M be an input for Increase, a stable matching for I. Let us define
the following bipartite graph GMopt,M : Each vertex of GMopt,M corresponds to a
person in I. There is an edge between vertices m and w if and only if Mopt(m) =
w or M(m) = w. If both Mopt(m) = w and M(m) = w hold, we give two edges
between m and w; hence GMopt,M is a multigraph. An edge (m,w) associated
with Mopt(m) = w is called an OPT-edge. Similarly, an edge associated with
M(m) = w is called an M -edge. Observe that the degree of each vertex is at
most two, and hence each connected component of GMopt,M is a simple path, a
cycle, or an isolated vertex. Partition M -edges of GMopt,M into good edges and
bad ones. If an edge is in the path of length three starting from and ending with
OPT-edges, then it is called good. Otherwise, it is bad. The following lemmas are
proved in [22].

Lemma 1. [22] If (m,w) is a good edge of M , then (i) w6mMopt(m), (ii) m6w

Mopt(w), and (iii) either w =m Mopt(m) or m =w Mopt(w).

Lemma 2. [22] Let t be a positive integer. If |M | < |Mopt|
2 + t, then the number

of bad edges in GMopt,M is less than 4t.

Since we assume that |M | < |Mopt|
2 + c′

√
|M |, the number of bad edges in M is

less than B(= 4c′
√

|M |).
Let (m,w) be a good edge. Then, by Lemma 1 (iii), either w =m Mopt(m) or

m =w Mopt(w). Without loss of generality, we assume that at least half of good
edges of M satisfy m =w Mopt(w), and prove that Increase finds a desirable i∗

during the execution of 1st through 12th lines. Otherwise, it finds i∗ during the
execution of lines 13 through 24, whose proof is similarly obtained and hence is
omitted in this paper.

Lemma 3. Let P be the matching obtained at line 1 of Increase. Consider a
woman w ∈ P such that (m,w) is a good edge of M . Then P (w) 6w Mopt(w).

Proof. By the construction of the bipartite graph G in MaxMatching, P (w) =w

M(w), and by Lemma 1 (ii), M(w) 6w Mopt(w). Hence, P (w) 6w Mopt(w). ��

Lemma 4. |P | ≥ |M|−B
2 .

Proof. By Lemma 2, the number of good edges in M is at least |M | −B. Recall
that we assume that at least half of these good edges (m,w) satisfy m =w

Mopt(w). Hence, this number of such w has an edge to Mopt(w) in the bipartite
graph G constructed in MaxMatching. Observe that Mopt(w) �= Mopt(w′) if

910 K. Iwama, S. Miyazaki, and N. Yamauchi

w �= w′. So a maximum matching in G is of size at least |M|−B
2 , which implies

|P | ≥ |M|−B
2 . ��

Lemma 5. There exists an i∗ such that Qi∗ at line 3 of Increase contains at
least B men m such that Qi∗(m) 6m Mopt(m).

Proof. Consider the execution of MultipleGS(M,M ′). Let us call preference lists
of men after MultipleGS(M,M ′) executes lines 4 and 5 modified lists.

Partition X into A0, A1, · · · , A2B in the following way. A0 is the set of men
m such that (m,M(m)) is a bad edge of M . Since there are less than B bad
edges, |A0| < B. Next, note that if (m,M(m)) ∈ M ′ is a good edge of M ,
then Mopt(m) is single in M , namely, Mopt(m) ∈ Y . This implies that Mopt(m)
remains in m’s modified list. For each i (1 ≤ i ≤ 2B − 1), let Ai be the set of
men m such that Mopt(m) is at the ith position of m’s modified list. Finally,
define A2B = X − (A0 ∪ A1 ∪ · · · ∪ A2B−1). We consider the following three
cases: (1) |A1| ≥ 2B. (2) There is an i (2 ≤ i ≤ 2B − 1) such that |Ai| ≥ 3B.
(3) |A1| < 2B and |Ai| < 3B for all i (2 ≤ i ≤ 2B − 1).

Case (1). We show that i∗, which we want to prove the existence, is 1. We
first show that |Q1| ≥ 2B. Consider the execution of lines 10 and 11 for k = 1.
Call preference lists of men after MultipleGS(M,M ′) executes line 10 short lists.
Consider a man m ∈ A1. There is only one woman in his short list, and she is
Mopt(m) by the definition of A1. Note that Mopt(m) �= Mopt(m′) for m �= m′.
So, there are at least |A1| ≥ 2B different women on the short lists of men in
X . During the execution of the Gale-Shapley algorithm, every man proposes to
a woman at the top of his list. So, at least 2B women receive a proposal. Once
a woman receives a proposal, she is matched at the end of the algorithm. So,
|Q1| ≥ 2B.

Now, consider an arbitrary man m ∈ Q1 ∩ (A1 ∪A2 ∪ · · · ∪A2B). Mopt(m) is
in his modified list as mentioned above, and m is matched with his first choice
woman in the modified list. This means that Q1(m) 6m Mopt(m). So, every
man in Q1 ∩ (A1 ∪ A2 ∪ · · · ∪ A2B) satisfies the condition of this lemma. Since
|A0| < B, |Q1 ∩ (A1 ∪A2 ∪ · · · ∪A2B)| ≥ |Q1| − |A0| > B as required.

Case (2). Consider the execution of MultipleGS at lines 10 and 11 for k = i
such that |Ai| ≥ 3B. Define a short list similarly as (1). For 0 ≤ j ≤ 2B and
1 ≤ ≤ i, let aj,� be the number of men in Aj who is matched in Qi with a
woman of his th choice with respect to his short list. Define

S1 =
∑

1≤j≤i,1≤�≤j

aj,� +
∑

i<j≤2B,1≤�≤i

aj,� and S2 =
∑

0≤j<�≤i

aj,�.

Then, the number of men who satisfy our condition, namely, who are matched
with a woman at least as good as his partner in Mopt, is at least S1, and the
size of matching Qi is |Qi| =

∑
0≤j≤2B,1≤�≤i aj,� = S1 + S2. Note that, for

each j (1 ≤ j ≤ i),
∑

1≤�<j aj,� men in Aj are matched with a woman strictly
better than his partner in Mopt (with respect to modified list). So, remaining

A (2− c 1√
N

)–Approximation Algorithm for the Stable Marriage Problem 911

|Aj | − (
∑

1≤�<j aj,�) men made a proposal to their jth choice, namely, their
partner inMopt. Hence, the number of men who made a proposal to his partner in
Mopt is at least

∑
1≤j≤i(|Aj |−(

∑
1≤�<j aj,�)). It then results that this number of

different women receive a proposal during the Gale-Shapley algorithm, and hence
the matching size is at least this number (for the same reason as given in case
(1)). Namely, |Qi| ≥

∑
1≤j≤i(|Aj | − (

∑
1≤�<j aj,�)). Because S2 ≤

∑
0≤j<i |Aj |,

S1 = |Qi| − S2 ≥ |Ai| − |A0| − (
∑

1≤j≤i,1≤�<j

aj,�). (1)

Also, the following inequality is obvious.

S1 ≥
∑

1≤j≤i,1≤�<j

aj,�. (2)

By adding (1) and (2), we obtain S1 ≥ (|Ai| − |A0|)/2 ≥ B. This completes the
proof.

Case (3). Consider the execution of MultipleGS at lines 12 through 15. Observe
that |X | = |M ′| = |P | ≥ |M|−B

2 (the last inequality comes from Lemma 4).
Recall that B = 4c′

√
|M | and c′ ≤ 1

8
√

6
. So, 6B2 − 3B < |X |/2.

Next, by the condition of this case, we have that∑
0≤i≤2B−1

|Ai| < B + 2B + 3B(2B − 2) = 6B2 − 3B <
|X |
2
.

Hence, when we partition |X | into |X |/2B sets, each of which contains 2B
men at line 12, there is at least one Xi such that |Xi ∩A2B| ≥ B. Each man in
Xi ∩A2B has his partner in Mopt at position greater than or equal to 2B in his
modified list. This means that each man in Xi ∩ A2B has a modified list with
length at least 2B. Because preference lists are cut into length 2B at the 14th
line, if a man in Xi ∩A2B gets a partner in Q2B−1+i, she is at least as good as
his partner in Mopt.

It remains to show that all men in Xi ∩ A2B are matched in Q2B−1+i: In
the execution of the Gale-Shapley algorithm at line 15, each man in Xi has a
preference list of length 2B. Suppose that there is a man m ∈ Xi ∩A2B who is
single in Q2B−1+i. Then, m was rejected by all 2B women on his list. At each
time a woman rejected m, she was matched. She never becomes single again and
hence these 2B women are matched at the end of the Gale-Shapley algorithm.
This contradicts the assumption that m is single in Q2B−1+i since there are only
2B men. ��

Now, let us consider the matching Mi∗ after Increase executes line 8. Note
that |Mi∗ | = |M | − |M ′′

i∗ | + 2|M ′′
i∗ | = |M | + |M ′′

i∗ |. We then count the number
of edges removed at line 11. There are six types of edges in Mi∗ : (1) Good
edges originally existed in M . (2) Bad edges originally existed in M . (3) Edges
(m,w) ∈ P added at line 7 such that P (w) 6w Mopt(w). (4) Edges in P added

912 K. Iwama, S. Miyazaki, and N. Yamauchi

at line 7, not of type (3). (5) Edges (m,w) ∈ Qi∗ added at line 8 such that
Qi∗(m) 6m Mopt(m). (6) Edges in Qi∗ added at line 8, not of type (5).

For = 1 through 6, let D� (resp., E�) denote the set of men (resp., women)
who are matched in Mi∗ by an edge of type () above.

Lemma 6. (m,w) is not a blocking pair for Mi∗ in each of the following cases:
(i) m ∈ D1 ∪D2 ∪D3 ∪D4. (ii) m ∈ D5 and w ∈ E1 ∪ E3. (iii) m ∈ D5 ∪D6
and w ∈ E5 ∪ E6.

Proof. (i) If m ∈ D1 ∪D2, m is matched with the same woman as in M , namely,
Mi∗(m) = M(m). If m ∈ D3 ∪D4, m is single in M . If w ∈ E1 ∪ E2, Mi∗(w) =
M(w). If w ∈ E3∪E4,Mi∗(w) =w M(w) by the construction of P . If w ∈ E5∪E6,
w is single in M . In any combination of m and w, it is easy to see that if (m,w)
blocks Mi∗ then it also blocks M , which contradicts the stability of M .

(ii) By the definition of D5, Mi∗(m) 6m Mopt(m). If w ∈ E1, Mi∗(w) 6w

Mopt(w) by Lemma 1 (ii). If w ∈ E3, Mi∗(w) 6w Mopt(w) by the definition of
E3. So, if (m,w) blocks Mi∗ , it also blocks Mopt, which contradicts the stability
of Mopt.

(iii) Recall that Qi∗ is obtained by breaking ties in preference lists, and apply-
ing the Gale-Shapley algorithm to D5 ∪D6 and E5 ∪E6. So there can never be
a blocking pair between D5 ∪D6 and E5 ∪E6 by the nature of the Gale-Shapley
algorithm. ��

By this lemma, if there is a blocking pair (m,w) for Mi∗ , then m ∈ D6
or w ∈ E2 ∪ E4. Consider the graph Gi∗ constructed at line 9. By the above
observation, the set of vertices corresponding to D6 ∪ E2 ∪ E4 is a vertex cover
for Gi∗ ; so |Ci∗ | ≤ |D6| + |E2| + |E4|.

If a woman w is in E4, then (M(w), w) is a bad edge of M , for if (M(w), w) is
good, w must be in E3 by Lemma 3. Also, by the definition of E2, if a woman w
is in E2, then (M(w), w) is a bad edge. Hence, |E2|+ |E4| ≤ (the number of bad
edges ofM)< B by Lemma 2. By the definition ofD5 andD6, |D5|+|D6| = |M ′′

i∗ |
and by Lemma 5, |D5| ≥ B. So, |D6| ≤ |M ′′

i∗ | −B and hence |Ci∗ | < |M ′′
i∗ |. For

each vertex in Ci∗ , at most one edge is removed from Mi∗ at line 11. Hence the
size of Mi∗ after removing edges at line 11 is at least |M |+ |M ′′

i∗ | − |Ci∗ | > |M |.
This completes the correctness proof.

Theorem 1. If M , an input for Increase, satisfies |M | < OPT
2 +c′

√
|M |, then

Increase does not fail. Here c′ (c′ ≤ 1
8
√

6
) is a constant fixed for the procedure

MultipleGS.

Corollary 1. The approximation ratio of LocalSearch is at most 2 − c 1√
N

,
where c is a constant such that c ≤ 1

4
√

6
.

Proof. By Theorem 1, LocalSearch finds a solutionM such that |M | ≥ OPT
2 +

c′
√

|M |. By multiplying both sides by 2
|M| , we have OPT

|M| ≤ 2 − 2c′ 1√
|M|

≤

2 − 2c′ 1√
N

. The last inequality follows from the fact that N ≥
√

|M |. ��

A (2− c 1√
N

)–Approximation Algorithm for the Stable Marriage Problem 913

References

1. D. J. Abraham, K. Cechlárová, D. F. Manlove and K. Mehlhorn, “Pareto optimality
in house allocation problems,” Proc. ISAAC 2004, LNCS 3341, pp. 3–15, 2004.

2. D. J. Abraham, R. W. Irving, T. Kavitha and K. Mehlhorn, “Popular matchings,”
Proc. SODA 2005, pp. 424–432, 2005.

3. V. Bansal, A. Agrawal and V. Malhotra, “Stable marriages with multiple partners:
efficient search for an optimal solution,” Proc. ICALP 2003, LNCS 2719, pp. 527–
542, 2003.

4. R. Bar-Yehuda and S. Even, “A local-ratio theorem for approximating the weighted
vertex cover problem,” In Analysis and Design of Algorithms for Combinatorial
Problems, volume 25 of Annals of Disc. Math., Elsevier Science Publishing Com-
pany, Amsterdam, pp. 27–46, 1985.

5. P. Berman and T. Fujito, “On the approximation properties of independent set
problem in degree 3 graphs,” Proc. WADS 95, LNCS 955, pp. 449–460, 1995.

6. Canadian Resident Matching Service (CaRMS), http://www.carms.ca/
7. K. Cechlárová, “On the complexity of exchange-stable roommates,” Discrete Ap-

plied Mathematics, Vol. 116, pp. 279–287, 2002.
8. T. Fleiner, “A fixed-point approach to stable matchings and some applications,”

Mathematics of Operations Research, Vol. 28, Issue 1, pp. 103–126, 2003.
9. D. Gale and L. S. Shapley, “College admissions and the stability of marriage,”

Amer. Math. Monthly, Vol. 69, pp. 9–15, 1962.
10. D. Gale and M. Sotomayor, “Some remarks on the stable matching problem,”

Discrete Applied Mathematics, Vol. 11, pp. 223–232, 1985.
11. D. Gusfield and R. Irving, “The Stable Marriage Problem: Structure and Algo-

rithms,” MIT Press, Boston, MA, 1989.
12. M. M. Halldórsson, R. Irving, K. Iwama, D. Manlove, S. Miyazaki, Y. Morita

and S. Scott, “Approximability results for stable marriage problems with ties,”
Theoretical Computer Science, Vol. 306, pp. 431–447, 2003.

13. M. M. Halldórsson, K. Iwama, S. Miyazaki and H. Yanagisawa, “Randomized
approximation of the stable marriage problem,” Theoretical Computer Science,
Vol. 325, No. 3, pp. 439–465, 2004.

14. M. M. Halldórsson, K. Iwama, S. Miyazaki and H. Yanagisawa, “Improved approxi-
mation of the stable marriage problem,” Proc. ESA 2003, LNCS 2832, pp. 266–277,
2003.

15. E. Halperin, “Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs,” Proc. SODA 2000, pp. 329–337, 2000.

16. R. Irving, “Stable marriage and indifference,” Discrete Applied Mathematics,
Vol. 48, pp. 261–272, 1994.

17. R. Irving, “Matching medical students to pairs of hospitals: a new variation on an
old theme,” Proc. ESA 98, LNCS 1461, pp. 381–392, 1998.

18. R. W. Irving, D. F. Manlove and S. Scott, “The hospital/residents problem with
ties,” Proc. SWAT 2000, LNCS 1851, pp. 259–271, 2000.

19. R. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch, “Rank-maximal
matchings,” Proc. SODA 2004, pp. 68–75, 2004.

20. R.W. Irving, D.F. Manlove, S. Scott, “Strong stability in the hospitals/residents
problem,” Proc. STACS 2003, LNCS 2607, pp. 439–450, 2003.

21. K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita, “Stable marriage with
incomplete lists and ties,” Proc. ICALP 99, LNCS 1644, pp. 443–452, 1999.

914 K. Iwama, S. Miyazaki, and N. Yamauchi

22. K. Iwama, S. Miyazaki and K. Okamoto, “A (2 − c log N/N)-approximation algo-
rithm for the stable marriage problem, Proc. SWAT 2004, LNCS 3111, pp. 349–361,
2004.

23. Japanese Resident Matching Program (JRMP), http://www.jrmp.jp/
24. G. Karakostas, “A better approximation ratio for the Vertex Cover problem,”

ECCC Report, TR04-084, 2004.
25. M. Karpinski, “Polynomial time approximation schemes for some dense instances

of NP-hard optimization problems,” Proc. RANDOM 97, LNCS 1269, pp. 1–14,
1997.

26. T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch, “Strongly stable matchings in
time O(nm) and extension to the hospitals-residents problem,” Proc. STACS 2004,
pp. 222–233, 2004.

27. E. L. Lawler, “Combinatorial Optimization: Networks and Matroids,” HOLT,
RINEHART AND WINSTON, 1976.

28. T. Le, V. Bhushan, and C. Amin, “First aid for the match, second edition,”
McGraw-Hill, Medical Publishing Division, 2001.

29. D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, Y. Morita, “Hard variants of
stable marriage,” Theoretical Computer Science, Vol. 276, Issue 1-2, pp. 261–279,
2002.

30. B. Monien and E. Speckenmeyer, “Ramsey numbers and an approximation algo-
rithm for the vertex cover problem,” Acta Inf., Vol. 22, pp. 115–123, 1985.

31. H. Nagamochi, Y. Nishida and T. Ibaraki, “Approximability of the minimum max-
imal matching problem in planar graphs,” Institute of Electronics, Information and
Communication Engineering, Transactions on Fundamentals, vol.E86-A, pp. 3251-
3258, 2003.

32. C.P. Teo, J.V. Sethuraman and W.P. Tan, “Gale-Shapley stable marriage problem
revisited: Strategic issues and applications,” Proc. IPCO 99, pp. 429–438, 1999.

33. M. Zito,“Randomized techniques in combinatorial algorithmics,” PhD thesis, Dept.
of Computer Science, University of Warwick, 1999.

Approximating the Traffic Grooming Problem�

(Extended Abstract)

Michele Flammini1, Luca Moscardelli1,
Mordechai Shalom2, and Shmuel Zaks2

1 Dipartmento di Informatica,
Universita degli Studi dell’Aquila, L’Aquila, Italy
{flammini, moscardelli}@di.univaq.it

2 Department of Computer Science, Technion, Haifa, Israel
{cmshalom, zaks}@cs.technion.ac.il

Abstract. The problem of grooming is central in studies of optical net-
works. In graph-theoretic terms, this can be viewed as assigning colors to
the lightpaths so that at most g of them (g being the grooming factor) can
share one edge. The cost of a coloring is the number of optical switches
(ADMs); each lightpath uses two ADM’s, one at each endpoint, and in
case g lightpaths of the same wavelength enter through the same edge
to one node, they can all use the same ADM (thus saving g− 1 ADMs).
The goal is to minimize the total number of ADMs. This problem was
shown to be NP-complete for g = 1 and for a general g. Exact solutions
are known for some specific cases, and approximation algorithms for cer-
tain topologies exist for g = 1. We present an approximation algorithm
for this problem. For every value of g the running time of the algorithm
is polynomial in the input size, and its approximation ratio for a wide
variety of network topologies - including the ring topology - is shown
to be 2 ln g + o(ln g). This is the first approximation algorithm for the
grooming problem with a general grooming factor g.

Keywords: Wavelength Assignment, Wavelength Division Multiplex-
ing(WDM), Optical Networks,Add-Drop Multiplexer(ADM), Traffic
Grooming.

1 Introduction

1.1 Background

Optical wavelength-division multiplexing (WDM) is today the most promising
technology, that enables us to deal with the enormous growth of traffic in com-
munication networks, like the Internet. A communication between a pair of nodes
is done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.

� This research was supported in part by the EU COST 293 (GRAAL) research fund.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 915–924, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

916 M. Flammini et al.

Most of the studies in optical networks dealt with the issue of assigning col-
ors to lightpaths, so that every two lightpaths that share an edge get different
colors.

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large portion
of the studies concentrates with the total hardware cost. The key point here
is that each lightpath uses two ADM’s, one at each endpoint. If two adjacent
lightpaths are assigned the same wavelength, then they can use the same ADM.
An ADM may be shared by at most two lightpaths. The total cost considered is
the total number of ADMs. Lightpaths sharing ADM’s in a common endpoint
can be thought as concatenated, so that they form longer paths or cycles. These
paths/cycles do not use any edge e ∈ E twice, for otherwise they cannot use the
same wavelength which is a necessary condition to share ADM’s.

Moreover, in studying the hardware cost, the issue of grooming became central.
This problem stems from the fact that the network usually supports traffic that
is at rates which are lower than the full wavelength capacity, and therefore
the network operator has to be able to put together (= groom) low-capacity
demands into the high capacity fibers. In graph-theoretic terms, this can viewed
as assigning colors to the lightpaths so that at most g of them (g being the
grooming factor) can share one edge. In terms of ADMs, each lightpath uses two
ADM’s, one at each endpoint, and in case g lightpaths of the same wavelength
enter through the same edge to one node, they can all use the same ADM (thus
saving g − 1 ADMs). The goal is to minimize the total number of ADMs. Note
that the above coloring problem is simply the case of g = 1.

We note that we deal with the single hop problem, where a connection is
carried along one wavelength. A nice review on traffic grooming problems can
be found in [1].

1.2 Previous Work

The problem of minimizing the number of ADMs for the case g = 1 was in-
troduced in [2] for ring topology. The problem was shown to be NP-complete
for ring networks in [3]. An approximation algorithm for the ring topology with
approximation ratio of 3/2 was presented in [4], and was improved in [5, 6] to
10/7+ ε and 10/7 respectively. For a general topology [3] describes an algorithm
with approximation ratio of 8/5. The same problem was studied in [7], and an
algorithm with approximation ratio 3/2 + ε was presented.

The notion of traffic grooming (g > 1) was introduced in [8] for the ring
topology. The problem was shown to be NP-complete in [9] for ring networks
and a general g. The uniform all-to-all traffic case, in which there is the same
demand between each pair of nodes, is studied in [9, 10] for various values of g;
an optimal construction for the uniform all-to-all problem, for the case g = 2 in
a path network was given in [11].

The hardness results of [3, 9] are for g = 1 and for general g, respectively. NP-
completeness results for ring and path networks are shown in [12] for general
values of g (in the strong sense) and for any fixed value of g.

Approximating the Traffic Grooming Problem 917

1.3 Our Contribution

We present an approximation algorithm for the general instance of the traffic
grooming problem, namely general topology and general set of requests. The
approximation ratio of our algorithm is 2 ln g + o(ln g) in ring networks, with
arbitrary set of requests. The ring topology is the most widely studied topol-
ogy due to its implementation in SONET networks. Therefore and for matter of
presentation, our discussion deals only with ring topologies. The extensions are
briefly discussed in Section 5. Note that the approximation ratio of any algorithm
for this problem is between 1 and 2g. To the best of our knowledge this is the
first approximation algorithm for the grooming problem with a general groom-
ing factor g. In Section 2 we describe the problem and make some preliminary
observations. The algorithm presented in Section 3, and analyzed in Section 4.
We conclude in Section 5 with possible extensions of this result and some open
problems. Some proofs are sketched or omitted in this Extended Abstract.

2 Problem Definition and Basic Observations

An instance of the traffic grooming problem is a triple (G,P, g) where G = (V,E)
is an undirected graph, P is a set of simple paths in G and g is a positive integer,
namely the grooming factor.

Given such an instance we define the following:

Definition 1. Given a subset Q ⊆ P and an edge e ∈ E, Qe is the set of
paths from Q using edge e. lQ(e) is the number of these paths, or in networking
terminology, the load induced on the edge e by the paths in Q. LQ is the maximum
load induced by the paths in Q on any edge of G. When Q = P , we will omit
the indices and simply write l(e) and L instead of lP (e) and LP respectively.
Formally,

∀Q ⊆ P, ∀e ∈ E :

Qe
def
= {p ∈ Q|e ∈ p}

lQ(e)
def
= |Qe|

LQ
def
= max

e∈E
lQ(e)

Definition 2. A coloring (or wavelength assignment) of (G,P) is a function
w : P '→ N+ = {1, 2, ...}. We extend the definition of w on any subset Q of P
as w(Q) = ∪p∈Qw(p). For a coloring w, a color λ and any Q ⊆ P , Qw

λ is the
subset of paths from Q colored λ by w and Qw

e,λ is the set of paths from Q, using
edge e and colored λ by w. Formally,

Qw
λ

def
= w−1(λ) ∩Q = {p ∈ Q|w(p) = λ}

Qw
e,λ

def
= Qe ∩Qw

λ .

918 M. Flammini et al.

Definition 3. A proper coloring (or wavelength assignment) w of (G,P, g) is a
coloring of P , in which for any edge e at most g paths using e are colored with
the same color. Formally, ∀λ ∈ N+, LP w

λ
≤ g.

Definition 4. A coloring w is a W -coloring of Q ⊆ P , if it colors the paths of
Q using exactly W colors. Formally, if |w(Q)| = W . A set Q is W -colorable if
there exists a proper W -coloring for it.

For a W -coloring of P , we will assume w.l.o.g. that w(P) = 1, 2, ...,W .
Observe that a set Q ⊆ P is 1-colorable iff LQ ≤ g.
Now we define the cost function #ADM , under the assumption that G is a

cycle.

Definition 5. For a coloring w of P , a subset Q ⊆ P and a node v ∈ V , Qv

is the subset of paths from Q having an endpoint in v. Qw
v,λ is the subset of

paths from Qv colored λ by w. #ADMw
λ (v) is the number of ADM’s operating

at wavelength λ at node v.
For each pair v ∈ V, λ ∈ {1, 2, ...,W} we need one ADM operating at wave-

length λ in node v iff there is at least one path colored λ among the paths having
an endpoint at v. Formally,

Qv
def
= {p ∈ Q|v is an endpoint of p}

touches(Q, v)
def
=

{
0 if Qv = ∅
1 otherwise

endpoints(Q)
def
=

∑
v∈V

touches(Q, v)

Qw
v,λ

def
= Qv ∩Qw

λ

#ADMw
λ (v)

def
= touches(Pw

λ , v)

#ADMw
λ (Q)

def
= endpoints(Qw

λ)

#ADMw
λ

def
= #ADMw

λ (P)

#ADMw def
=

∑
λ

#ADMw
λ

Definition 6. For any subset Q ⊆ P and any subset U ⊆ V , QU is the set of
paths in Q having at least one endpoint in U . Formally,

QU
def
=

⋃
u∈U

Qu.

The traffic grooming problem is the optimization problem of finding a proper
coloring w of (G,P, g) minimizing #ADMw.

Observe that endpoints and consequently #ADMw
λ are monotone non de-

creasing functions. Formally, if R ⊆ Q ⊆ P then

endpoints(R) ≤ endpoints(Q)
#ADMw

λ (R) ≤ #ADMw
λ (Q).

Approximating the Traffic Grooming Problem 919

3 Algorithm GROOMBYSC(k)

Given an instance (G,P, g) of the traffic grooming problem, our algorithm has a
parameter k which depends only on g. The value of k will be determined in the
analysis (see Section 4).

The algorithm has three phases. During phase 1 it computes 1-colorable sets
and their corresponding weights. It considers subsets of the paths P , of size at
most k · g. Whenever a 1-colorable set is found, it is added to the list of relevant
sets, together with its corresponding weight. In phase 2 it finds a set cover of
P using subsets calculated in phase 1. It uses the GREEDYSC approximation
algorithm for the minimum weight set cover problem presented in [13]. In phase
3 it transforms the set cover into a partition by eliminating intersections, then
colors the paths according the partition. Each set in the partition is colored with
one color.

1. Phase 1- Prepare the input for GREEDY:
S ← ∅
For each U ⊆ V , such that |U | ≤ k {

For each Q ⊆ PU , such that |Q| ≤ k · g {
If Q is 1-colorable then {

S ← S ∪ {Q}
weight[Q] = endpoints(Q) // weight[] is an associative
// array containing a weight for each set

}
}

}
2. Phase 2- Run GREEDYSC:

SC←GREEDY SC(S,weight).// Assume w.l.o.g SC={S1, S2, ..., SW }
3. Phase 3- Transform the Set Cover SC into a Partition PART :

PART ← ∅
For i = 1 to W {PARTi ← Si}
As long as there are two intersecting sets PARTi, PARTj {

PARTi ← PARTi \ PARTj

}
For λ = 1 to W{

PART ← PART ∪ {PARTλ}
For each p ∈ PARTλ{w(p) = λ}

}

4 Analysis

4.1 Correctness

Claim. w calculated by the algorithm is a coloring.

920 M. Flammini et al.

Proof. During phase 1, each path p ∈ P is included at least in one set Q ∈ S.
This is because the set {p} is considered during the loop and it is clearly found
to be 1-colorable. As SC is calculated in phase 2 a set cover of these sets, p is an
element of at least one set Si ∈ SC. During phase 3 intersections are eliminated,
therefore p is an element of exactly one set of PART . Therefore each p is assigned
exactly one value w(p) during phase 3. ��

Lemma 1. w calculated by the algorithm is a proper coloring.

Proof. For every color λ ∈ {1, 2, ...,W} the set of paths colored λ is exactly
PARTλ. It suffices to show that the sets PARTλ are 1-colorable.

A subset of an x-colorable set is x-colorable. By the code of phase 3 PARTλ ⊆
Sλ. By phase 1, Sλ is 1-colorable, therefore PARTλ is 1-colorable. ��

4.2 Running Time

Claim. The running time of GROOMBY SC(k) is polynomial in n = |P | and
m = |E|, for any given g and for all instances (G,P, g).

Proof. We will show that the running time of each one of the three phases is
poly(n,m).

– Phase 1:
The number of subsets of P considered during the first phase is O(ng·k)
since their sizes are at most g ·k. To check whether a set is 1-colorable takes
O(g ·k ·m) time. To calculate endpoints(Q) can be done in O(g ·k log |Q|) =
O(g · k · logm) time.
For any constant g, k is determined as a function of g only. Then g · k is a
constant. Therefore the running time of phase 1 is polynomial in n and m
for any given g.

– Phase 2:
The number of the sets in S is at most ng·k. The running time of GREEDYSC
is polynomial in |S| and |P |, namely poly(ng·k, n) = poly(n).

– Phase 3:
The running time of phase 3 is polynomial in the size of the cover which is
in turn polynomial in n. ��

4.3 Approximation Ratio

Lemma 2. Let Hn =1+ 1
2+...+ 1

n be the n-th harmonic number.GROOMBY SC

(k) is a Hg·k(1 + 2g
k) approximation algorithm for the traffic grooming problem

in ring networks.

Proof. Recall that in the Minimum Weight Set Cover problem, each subset Si

has an associated weight, weight[Si]. The weight of a cover is the sum of the
individual weights of its sets.

Approximating the Traffic Grooming Problem 921

Let w be the coloring returned by GROOMBY SC(k) and w∗ an optimal
coloring. We will use the shortcut #ADM∗ for #ADMw∗

.
On one hand

#ADMw =
∑

λ

#ADMw
λ =

∑
λ

endpoints(PARTλ)

≤
∑

λ

endpoints(Sλ) =
∑

λ

weight[Sλ] = weight(SC). (1)

On the other hand GREEDYSC is an Hf -approximation algorithm, where f
is the maximum cardinality of the sets in the input. In our case f = g · k. In
other words if SC∗ is a minimum weight set cover on the set S, we have

weight(SC) ≤ Hg·k weight(SC∗). (2)

Clearly if SC is an arbitrary set cover of S, by definition

weight(SC∗) ≤ weight(SC). (3)

Combining the inequalities (1), (2) and (3) we get

#ADMw ≤ Hg·k weight(SC)

for any set cover SC of S.
In the following claim we will show the existence of a set cover SC satisfying

weight(SC) ≤ #ADM∗ (1 + 2g
k

)
, which implies

#ADMw ≤ #ADM∗ Hg·k

(
1 +

2g
k

)
. ��

Claim. There exists a set cover SC of S, such that weight(SC) ≤ #ADM∗(
1 + 2g

k

)
.

Proof. Let w∗(P) = {1, 2, ...,W ∗} and 1 ≤ λ ≤ W ∗. Consider the set V ∗
λ of nodes

v such that ADM∗
λ(v) = 1, namely having an ADM operating at wavelength λ

at node v. We divide V ∗
λ into sets of k nodes starting from an arbitrary node

and going clockwise along the cycle (see Figure 1). Let Vλ,j be the subsets of
nodes obtained in this way. Let

#ADM∗
λ = |V ∗

λ | = kqλ + rλ (4)

where rλ = |V ∗
λ | mod k and 0 ≤ rλ < k.

Clearly ∀1 ≤ j ≤ qλ, |Vλ,j | = k, and in case rλ > 0 we have |Vλ,qλ+1| < k.
In both cases |Vλ,j | ≤ k. Therefore, each Vλ,j is considered in the outer loop of
phase 1 of the algorithm, and hence, is added to S.

For Vλ,j we define Sλ,j to be the set of paths in Pw∗

λ having their counter-
clockwise endpoint in Vλ,j . As Vλ,j has at most k nodes, and every node may
be the clockwise endpoint of at most g paths from a 1−colorable set, we have

922 M. Flammini et al.∣∣Sλ,j

∣∣ ≤ g · k. Therefore, Sλ,j is considered by the algorithm in the inner loop of
phase 1. Being 1-colorable it should be added to S, thus Sλ,j ∈ S.

Every p ∈ Pw∗

λ has its both endpoints in the sets Vλ,j . In particular, it has
its clockwise endpoint in Vλ,j for a certain j, thus it is an element of some

Sλ,j . Therefore SCλ
def
= ∪j

{
Sλ,j

}
is a cover of Pw∗

λ . Considering all colors

1 ≤ λ ≤ W ∗ we conclude that SC
def
= ∪W∗

λ=1SCλ is a cover of P .
Therefore SC is a cover of P with sets from S. It remains to show that its

weight has the claimed property.

S̄λ,j

Vλ,1

Vλ,j

at most g paths

Fig. 1. The sets Vλ,j and Sλ,j (k = 4)

Summing up equation (4) over all possible values of λ we obtain #ADM∗ =
k
∑

λ qλ +
∑

λ rλ, which implies:∑
λ

qλ ≤ #ADM∗

k
(5)

We claim that ∀j ≤ qλ, weight[Sλ,j] = endpoints(Sλ,j) ≤ k+ g. This is because:

– The endpoints of the paths with both endpoints in Sλ,j are in Vλ,j and
|Vλ,j | = k.

– The number of paths having only the clockwise endpoint in set Vλ,j is at
most g. This follows from the observation that these paths should use the
unique edge in the clockwise cut of Vλ,j . As the set Sλ,j is 1-colorable, the
number of these paths is at most g.

Approximating the Traffic Grooming Problem 923

For the set j = qλ + 1 (which exists only if rλ > 0) the above bound becomes
weight(Sλ,qλ+1) ≤ rλ + g · qλ. This is because:

– The endpoints of the paths with both endpoints in Sλ,qλ+1 are in Vλ,qλ+1
and |Vλ,qλ+1| = rλ.

– By the same argument as before, the paths having only the clockwise end-
point in Vλ,qλ+1 are at most g in number. When qλ ≥ 1, g ≤ g · qλ and we
are done. Otherwise qλ = 0 meaning that Vλ,1 is the unique set. Then the
number of paths having exactly one endpoint in the set is zero.

Summing up for all 1 ≤ j ≤ qλ + 1 we get:

weight(SCλ) ≤
qλ∑

j=1

(k+g)+rλ +g ·qλ = (k+g)qλ +rλ +g ·qλ = kqλ +rλ +2g ·qλ

Summing up for all λ and recalling (4) and (5) we get:

weight(SC) =
∑

λ

weight(SCλ)≤
∑

λ

(kqλ + rλ+2g · qλ) = #ADM∗ + 2g
∑

λ

qλ

≤ #ADM∗ + 2g
#ADM∗

k
=
(

1 +
2g
k

)
#ADM∗. ��

Theorem 1. There is a 2 ln g + o(ln g)-approximation algorithm for the traffic
grooming problem in ring networks.

Proof. The approximation ratio ρ of GROOMBYSC(k) is at most Hg·k
(
1 + 2g

k

)
.

We substitute k = g ln g and get:

ρ ≤ Hg2 ln g

(
1 +

2
ln g

)
≤ (1 + ln(g2 ln g))

(
1 +

2
ln g

)
= (1 + 2 ln g + ln ln g)

(
1 +

2
ln g

)
= 2 ln g + o(ln g) ��

5 Discussion and Open Problems

We presented an approximation algorithm for ring networks, whose approxima-
tion ratio is 2 ln g + o(ln g). Note that the approximation ratio of any algorithm
for this problem is between 1 and 2g.

Our algorithm can be used in arbitrary networks. In some topologies the
analysis will yield a similar result. For this, note that the only point in the
analysis that used the fact that the topology is a ring is where we considered
the unique edge between the blocks of an optimal solution. Therefore a similar
analysis follows for any topology and set of demands in which any solution can
be partitioned in a similar way. This clearly includes all graphs which consists
of blocks B0, B1, ..., Bb whose sizes are bounded by α ≤ k (k is the parameter
used in our analysis) and at most β = O(1) edges connecting consecutive blocks
Bi and Bi+1 mod b.

924 M. Flammini et al.

We mention few open problems which arise from this study.

– Improve the analysis of algorithm GROOMBY SC(k).
– Find an algorithm with a better performance guarantee.
– Analyze algorithm GROOMBY SC(k) for general topology and set of re-

quests.

References

1. K. Zhu and B. Mukherjee. A review of traffic grooming in wdm optical networks:
Architecture and challenges. Optical Networks Magazine, 4(2):55–64, March-April
2003.

2. O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a wdm ring to min-
imize cost of embedded sonet rings. In INFOCOM’98, Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies, pages 69–77,
1998.

3. T. Eilam, S. Moran, and S. Zaks. Lightpath arrangement in survivable rings to
minimize the switching cost. IEEE Journal of Selected Area on Communications,
20(1):172–182, Jan 2002.

4. G. Călinescu and P-J. Wan. Traffic partition in wdm/sonet rings to minimize sonet
adms. Journal of Combinatorial Optimization, 6(4):425–453, 2002.

5. M. Shalom and S. Zaks. A 10/7 + ε approximation scheme for minimizing the num-
ber of adms in sonet rings. In First Annual International Conference on Broadband
Networks, San-José, California, USA, October 2004.

6. L. Epstein and A. Levin. Better bounds for minimizing sonet adms. In 2nd Work-
shop on Approximation and Online Algorithms, Bergen, Norway, September 2004.

7. G. Călinescu, Ophir Frieder, and Peng-Jun Wan. Minimizing electronic line termi-
nals for automatic ring protection in general wdm optical networks. IEEE Journal
of Selected Area on Communications, 20(1):183–189, Jan 2002.

8. O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effective traffic grooming in wdm
rings. In INFOCOM’98, Seventeenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, 1998.

9. A. L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing elec-
tronic multiplexing costs in wdm ring networks. Journal of Lightwave Technology,
18(1):2–12, January 2000.

10. J-C. Bermond and D. Coudert. Traffic grooming in unidirectional WDM ring
networks using design theory. In IEEE ICC, Anchorage, Alaska, May 2003.

11. Jean-Claude Bérmond, Laurent Braud, and David Coudert. Traffic grooming on
the path. In 12 th Colloqium on Structural Information and Communication Com-
plexity, Le Mont Saint-Michel, France, May 2005.

12. M. Shalom, W. Unger, and S. Zaks. On the complexity of the traffic grooming
problem. In preparation, 2005.

13. V. Chvátal. A greedy heuristic for the set covering problem. Mathematics of
Operation Research, 4:233–235, 1979.

Scheduling to Minimize Makespan with
Time-Dependent Processing Times

L.Y. Kang1,2,�, T.C.E. Cheng2, C.T. Ng2, and M. Zhao1

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
lykang@staff.shu.edu.cn

2 Department of Logistics, The Hong Kong Polytechnic University

Abstract. In this paper we study the scheduling problem of minimiz-
ing makespan on identical parallel machines with time-dependent pro-
cessing times. We first consider the problem with time-dependent pro-
cessing times on two identical machines to minimize makespan, which
is NP-hard. We give a fully polynomial-time approximation scheme for
the problem. Furthermore, we generalize the result to the case with m
machines.

Keywords: makespan; fully polynomial approximation scheme; parallel
machines scheduling.

1 Introduction

In real-life applications, many systems exhibit dynamic behaviors characterized
by a set of dynamic parameters. This fact is commonly recognized in control the-
ory, system engineering and many other areas. Based on some scheduling prob-
lems with dynamic parameters considered by Gupta et al. [13], Gupta and Gupta
[12] introduced an interesting scheduling model in which the processing time of
a task is a polynomial function of its starting time. From a modelling perspec-
tive, however, the makespan scheduling problem with quadratic time-dependent
processing times is already very intricate. For this reason, most subsequent re-
search along this line has concentrated on problem with linear time-dependent
processing times[2,3,4,5,6,7,8,9,16]. Generally, there are two groups of models
to describe this kind of scheduling processes. The first group is devoted to the
problems in which the job processing times are characterized by non-decreasing
functions of their starting times, and the second group concerns the problems in
which the job processing times are nonincreasing functions of their processing
times. In this paper, we study the latter group of problems. In this standard
form, the processing time of a job is given by fi(t) = ai − bit, where t is the job
start time, ai is the ‘normal processing time’, which is the length of time required
to complete the job if it is scheduled first (t = 0), and bi > 0 is the job-dependent
decreasing rate, which determines the job’s (actual) processing time at t > 0.

Application examples of the non-decreasing model of job processing time
are quite intuitively different from their non-increasing counterparts. The

� Corresponding author.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 925–933, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

926 L.Y. Kang et al.

latter model can be used to describe the process by which aerial threats are
to be recognized by a radar station. In this case, a radar station has detected
some objects approaching it. The time required to recognize the objects decreases
as the objects get closer. Thus, the later the objects are detected, the smaller is
the time for their recognition. Another example refers to the so-called learning
effect. Assume that a worker has to assemble a large number of similar products.
The time required by the worker to assemble one product depends on his knowl-
edge, skills, organization of his working place and others. The worker learns how
to produce over time. After some time, he is better skilled, his working place is
better organized and his knowledge is increased. As a result of his learning, the
time required to assemble subsequent products decreases.

We adopt the three-field notation of Graham et al. [11] for describing tradi-
tional scheduling problem, α/β/γ, to denote our problems. The single machine
model with pj = aj − bjt has been suggested by Ho, Leung and Wei [14]. They
show that the sequence in nonincreasing order of aj/bj is optimal for the prob-
lem of minimizing maximum lateness and the jobs have a common due date.
Chen [10] gives an O(n2) algorithm for the problem where the objective is to
minimize number of tardy jobs. Cheng et al. [6] study the problems of schedul-
ing a set of jobs on a single or multiple machine without idle times where the
processing time of a job is piecewise linear nonincreasing function of its time.
They prove that the problem P2|pj = aj − bt|Cmax is NP-hard and the problem
P |pj = aj − bt|Cmax is strongly NP-hard.

In this paper, we study the followingm identical machines scheduling problem.
There are n independent jobs that need to be processed by m identical machines.
The machine is continuously available for processing from time zero onwards and
it can handle at most one job at a time. Each job Jj has basic processing time
aj (j = 1, . . . , n). The actual processing time pj of Jj depends on its start time
t, in the following way pj = aj − bjt, where bj > 0 is the decreasing rate of
Jj . It is assumed that the decreasing rate bj satisfies the following condition:
bj(

∑n
i=1 ai − aj) < aj . The condition ensures that all job-processing times are

positive in non-delay schedules. Without loss of generality, we assume that aj is
integral. The problem is to schedule the jobs to minimize makespan. We shall
denote this problem by Pm|pj = aj − bjt|Cmax. This paper considers only cases
where non-delay schedules are optimal.

The remainder of this paper is organized as follows. In Section 2 we give a
fully polynomial approximation scheme for two identical parallel machines and
prove its correctness and complexity. We generalize the result to the case with
m machines in Section 3.

2 A Fully Polynomial Time Approximation Scheme for
P2|pj = aj − bjt|Cmax

An algorithm A is a ρ-approximation algorithm for a minimization problem if
it produces a solution which is at most ρ times the optimal one, in time that
is polynomial in the input size. A family of algorithm {Aε} is called a fully

Scheduling to Minimize Makespan 927

polynomial time approximation scheme (FPTAS) if, for each ε > 0, the algorithm
Aε is a (1 + ε)-approximation algorithm running in time that is polynomial in
the input size and 1

ε . In the sequel, we assume 0 < ε ≤ 1.
Ho et al [14] showed that the nonincreasing order of aj/bj is optimal for

1|pj = aj − bjt|Cmax. So the following lemma follows.

Lemma 1. There exists an optimal job sequence for problem P2|pj = aj −
bjt|Cmax such that in each machine jobs are sequenced in nonincreasing order
of aj/bj.

Let us index all jobs so that a1/b1 ≥ a2/b2 ≥ . . . ≥ an/bn. We introduce 0-1
variables xj , j = 1, 2, . . . , n, where xj = 1 if job Jj is executed on machine 1 and
xj = 0 if job Jj is executed on machine 2. Let X be the set of all 0-1 vectors
x = (x1, x2, . . . , xn). Set

F0(x) = 0, G0(x) = 0;
Fj(x) = Fj−1(x) + xj(aj − bjFj−1(x));
Gj(x) = Gj−1(x) + (1 − xj)(aj − bjGj−1(x));
Q(x) = max(Fn(x), Gn(x)).

Thus the problem P2|pi = ai − bjt|Cmax reduces to the following problem

Minimize Q(x) for x ∈ X.

We introduce procedure Partition (A,H, ν) presented in [15] where A ⊆ Xj ,
H is a nonnegative function on Xj, and ν is a number. This procedure par-
titions A into disjoint subsets AH

1 , A
H
2 , . . . , A

H
rH

such that |H(x) − H(x′)| ≤
νmin{H(x), H(x′)} for any x, x′ from the same subset AH

l , l = 1, . . . , rH . The
following description gives details of Partition (A,H, ν).

Procedure Partition (A,H, ν)
Arrange vector x ∈ A in order x(1), x(2), . . . , x(|A|), where 0 ≤ H(x(1)) ≤

H(x(2)) ≤ . . . ≤ H(x(|A|)). Assign vectors x(1), x(2), . . . , x(i1) to set AH
1 until you

find i1 such that H(x(i1)) ≤ (1 + ν)H(x(1)) and H(x(i1+1)) > (1 + ν)H(x(1)). If
such an i1 does not exist, then take AH

1 = A and stop.
Assign x(i1+1), x(i1+2), . . . , x(i2) to set AH

2 until you find i2 such that
H(x(i2)) ≤ (1 + ν)H(x(i1+1)) and H(x(i2+1)) > (1 + ν)(x(i1+1)). If such an
i2 does not exist, then take AH

2 = A−AH
1 and stop.

Continue the above construction until x(|A|) is included in AH
rH

, for some rH .
The main properties of Partition were given in [15].

Proposition 1. |H(x) −H(x′)| ≤ νmin{H(x), H(x′)} for any x, x′ ∈ AH
l , l =

1, . . . , rH .

Proposition 2. rH ≤ logH(x|A|)/ν + 2 for 0 < ν ≤ 1 and 1 ≤ H(x|A|).

In the following we give a fully polynomial approximation scheme for P2|pj =
aj − bjt|Cmax.

928 L.Y. Kang et al.

Algorithm Aε

Step 1. Number jobs so that a1/b1 ≥ a2/b2 ≥ . . . ≥ an/bn. Set Y0 =
{(0, 0, . . . , 0)} and j = 1.

Step 2. For set Yj−1, generate set Y ′
j by adding 0 and 1 in position j of

each vector for Yj−1, i.e., Y ′
j = Yj−1 ∪ {x + (0, . . . , 0, xj = 1, 0, . . .)|x ∈ Yj−1}.

Calculate the following for any x ∈ Y ′
j .

Fj(x) = Fj−1(x) + xj(aj − bjFj−1(x))
Gj(x) = Gj−1(x) + (1 − xj)(aj − bjGj−1(x)).

If j = n then set Yn = Y ′
n and go to Step 3.

If j < n then set ν = ε
2(n+1) and perform the following computations.

Call partition (Y ′
j , Fj , ν) to partition set Y ′

j into disjoint subsets
Y

Fj

1 , Y
Fj

2 , . . . , Y
Fj
rf .

Call partition (Y ′
j , Gj , ν) to partition set Y ′

j into disjoint subsets
Y

Gj

1 , Y
Gj

2 , . . . , Y
Gj
rg .

Divided set Y ′
j into disjoint subsets Yab = Y

Fj
a ∩ Y

Gj

b , a = 1, . . . , rf , b =
1, . . . , rg. In each non-empty subset Yab, choose a vector x(ab) such that

Fj(x(ab)) = min{Fj(x)|x ∈ Yab}.

Set Yj := {x(ab)|a = 1, . . . , rf , b = 1, . . . , rg and Y
Fj
a ∩ Y

Gj

b �= ∅}; j := j + 1,
go to Step 2.

Step 3. Select vector x0 ∈ Yn such that Q(x0) =min{Q(x)|x ∈ Yn} =
min{max(Fn(x), Gn(x))|x ∈ Yn}.

Let x∗ = (x∗1, . . . , x
∗
n) be an optimal solution to the problem P2|pj = aj −

bjt|Cmax. Let L = log max{n, 1/ε, amax}. We have the following theorem.

Theorem 1. Algorithm Aε find x0 ∈ X such that Q(x0) ≤ (1 + ε)Q(x∗) in
O(n3L3/ε2).

Proof. Suppose that (x∗1, . . . , x
∗
j , 0, . . . , 0) ∈ Yab ⊆ Y ′

j for some j and a, b. Algo-
rithm Aε may not choose (x∗1, . . . , x

∗
j , 0, . . . , 0) for further construction, however,

for a vector x(ab) chosen instead of it, we have

|Fj(x∗) − Fj(x(ab))| ≤ νFj(x∗)

and

|Gj(x∗) −Gj(x(ab))| ≤ νGj(x∗).

Set ν1 = ν. Consider vectors (x∗1, . . . , x∗j , x
∗
j+1, 0, . . . , 0) and x̃(ab) =

(x(ab)
1 , . . . , x

(ab)
j , x∗j+1, 0, . . . , 0). We have

|Fj+1(x∗) − Fj+1(x̃(ab))|
= |Fj(x∗) + x∗j+1(aj+1 − bj+1Fj(x∗)) − (Fj(x(ab)) + x∗j+1(aj+1 − bj+1Fj(x(ab))))|

Scheduling to Minimize Makespan 929

= |(1 − bj+1x
∗
j+1)(Fj(x∗) − Fj(x(ab)))|

≤ (1 − bj+1x
∗
j+1)νFj(x∗)

≤ ν1(Fj(x∗) + x∗j+1(aj+1 − bj+1Fj(x∗)))
= ν1Fj+1(x∗). (1)

Similarly,

|Gj+1(x∗) −Gj+1(x̃(ab))| ≤ ν1Gj+1(x∗). (2)

Consequently,

Fj+1(x̃(ab)) ≤ (1 + ν1)Fj+1(x∗),

Gj+1(x̃(ab)) ≤ (1 + ν1)Gj+1(x∗).

Assume that x̃(ab) ∈ Yde ⊆ Y ′
j+1 and Algorithm Aε chooses x(de) ∈ Yde instead

of x̃(ab) in the (j + 1)st iteration, we have

|Fj+1(x̃(ab)) − Fj+1(x(de))| ≤ νFj+1(x̃(ab))
≤ ν(1 + ν1)Fj+1(x∗). (3)

and

|Gj+1(x̃(ab)) −Gj+1(x(de))| ≤ ν(1 + ν1)Gj+1(x∗). (4)

From (1) and (3), we obtain

|Fj+1(x∗) − Fj+1(x(de))|
≤ |Fj+1(x∗) − Fj+1(x̃(ab))| + |Fj+1(x̃(ab)) − Fj+1(x(de))|
≤ (ν + (1 + ν)ν1)Fj+1(x∗) (5)

From (2) and (4), we obtain

|Gj+1(x∗) −Gj+1(x(de))| ≤ (ν + (1 + ν)ν1)Gj+1(x∗). (6)

Set νl = ν + (1 + ν)νl−1, l = 2, . . . , n− j. From (5) and (6) we obtain

|Fj+1(x∗) − Fj+1(x(de))| ≤ ν2Fj+1(x∗),

and

|Gj+1(x∗) −Gj+1(x(de))| ≤ ν2Gj+1(x∗).

By repeating the above argument for j + 2, . . . , n. We show that there exists
x′ ∈ Yn such that

|Fn(x′) − Fn(x∗)| ≤ νn−j+1Fn(x∗),

930 L.Y. Kang et al.

and

|Gn(x′) −Gn(x∗)| ≤ νn−j+1Gn(x∗).

Since

νn−j+1 ≤ ν

n∑
j=0

(1 + ν)j

= (1 + ν)n+1 − 1

=
n+1∑
j=1

(n+ 1)(n) . . . (n− j + 2)
j!(n+ 1)j

(
ε

2
)j

≤
n+1∑
j=1

1
j!
ε

2
≤ ε,

we have

|Fn(x′) − Fn(x∗)| ≤ εFn(x∗), (7)

and

|Gn(x′) −Gn(x∗)| ≤ εGn(x∗). (8)

By (7) and (8), we have

|max(Fn(x′), Gn(x′)) − max(Fn(x∗), Gn(x∗))| ≤ ε max(Fn(x∗), Gn(x∗)). (9)

Then, in Step 3, vector x0 will be chosen such that

|max(Fn(x0), Gn(x0)) − max(Fn(x∗), Gn(x∗))|
≤ |max(Fn(x′), Gn(x′)) − max(Fn(x∗), Gn(x∗))|
≤ ε max(Fn(x∗), Gn(x∗)).

Then

max(Fn(x0), Gn(x0)) ≤ (1 + ε)max(Fn(x∗), Gn(x∗)).

So

Q(x0) ≤ (1 + ε)Q(x∗).

We now establish the time complexity of Algorithm Aε. Step 2 requires
O(|Y ′

j |log|Y ′
j |) time to complete. By Algorithm Aε, we have |Y ′

j+1| ≤ 2|Yj | ≤
2rfrg. By Proposition 3.2, rf ≤ 2(n+1)log(namax)/ε+2 ≤ 4(n+1)L/ε+2 and
rg ≤ 2(n+1)log(namax))/ε+2 ≤ 4(n+1)L/ε+2. Thus |Y ′

j | = O(n2L2/ε2), and
|Y ′

j |log|Y ′
j | = O(n2L3/ε2). Then Algorithm Aε runs in O(n3L3/ε2). ��

Scheduling to Minimize Makespan 931

3 A Fully Polynomial Approximation Algorithm Scheme
for the Problem with m Machines

In this section, we will generalize the above result to the case with m identical
parallel machines. We introduce variable xj , j = 1, . . . , n, where xj = k if job
Jj is executed on machine k, k ∈ {1, . . . ,m}. Let X be the set of all vector
x = (x1, . . . , xn) with xj = k, j = 1, . . . , n; k = 1, . . . ,m. Set

F i
0(x) = 0, i = 1, . . . ,m;

F k
j (x) = F k

j−1(x) + aj − bjF
k
j−1(x) for xj = k;

F i
j (x) = F i

j−1(x) for xj = k, i �= k;

Q(x) = maxm
j=1F

j
n(x).

The problem Pm|pj = aj − bjt|Cmax reduces to the following problem

minimize Q(x) for all x ∈ X.

Algorithm Aε
m

Step 1. Number jobs so that a1/b1 ≥ a2/b2 ≥ . . . ≥ an/bn. Set Y0 =
{(0, . . . , 0)}, j = 1, and F i

0 = 0, i = 1, . . . ,m.
Step 2. For set Yj−1, generate set Y ′

j by adding k, k = 1, . . . ,m in position j
of each vector for Yj−1. Calculate the following for any x ∈ Y ′

j , assume xj = k.

F k
j (x) = F k

j−1(x) + aj − bjF
k
j−1(x)

F i
j (x) = F i

j−1(x), i �= k.

If j = n then Yn = Y ′
n and go to Step 3.

If j < n then set ν = ε/2(n+ 1) and perform the following computations.
Call partition (Y ′

j , F
i
j , ν)(i = 1, . . . ,m) to partition set Y ′

j into disjoint subsets

Y
F i

j

1 , Y
F i

j

2 . . . , Y
F i

j
rfi

. Divided set Y ′
j into disjoint subsets Ya1...am = Y

F 1
j

a1 ∩. . .∩Y F m
j

am ,
a1 = 1, 2, . . . , rf1 ; . . . ; am = 1, 2, . . . , rfm . In each non-empty subset Ya1...am ,
choose a vector x(a1...am) such that

F 1
j (x(a1...am)) = min{F 1

j (x)|x ∈ Ya1...am}.

Set Yj := {x(a1...am)|a1 = 1, 2, . . . , rf1 ; . . . ; am = 1, 2, . . . , rfm and Y
F 1

j
a1 ∩ . . . ∩

Y
F m

j
am �= ∅}, j := j + 1, go to Step 2.
Step 3. Select vector x0 ∈ Yn such that Q(x0) =min{Q(x)|x ∈ Yn}.
Let x∗ = (x∗1, . . . , x

∗
n) be an optimal solution to the problem Pm|pj = aj −

bjt|Cmax. Let L = log max{n, 1/ε, amax}. As the similar argument in Theorem
2.1, we have the following result.

Theorem 2. Algorithm Aε
m finds x0 ∈ X for Pm|pj = aj −bjt|Cmax such that

Q(x0) ≤ (1 + ε)Q(x∗) in O(nm+1Lm+1/εm).

932 L.Y. Kang et al.

4 Conclusion

This paper studies the problem of scheduling jobs with time-dependent pro-
cessing times on m identical parallel machines. Our objective is to minimize
makespan. We first give a fully polynomial time approximation scheme for two
machines, then generalize the result to the the case with m machines.

Future research may focus on scheduling of time-dependent processing times
for more general decreasing types. It will also be interesting to investigate the
‘mirror’ problem in which the job processing times are nondecreasing function
of their start times.

Acknowledgments. This research was support in part by Hong Kong Polytechnic
University under Grant Number G-YW81. L.Y. Kang was also support by the
National Natural Science Foundation of China.

References

1. M. Behzad, G. Chartrand, and C. Wall, On minimal regular digraphs with given
girth, Fund. Math., 69 (1970) 227-231

2. A. Bachman and A. Janiak, Minimizing maximum lateness under linear deteriora-
tion, European Journal of Operational Research, 126 (2000), 557-566.

3. A. Bachman, A. Janiak and M.Y. Kovalyov, Minimizing the total weighted comple-
tion time of deteriorating jobs, Information Processing Letters, 81 (2002), 81-84.

4. S. Browne and U. Yechiali, Scheduling deteriorating jobs on a single processor,
Operations Research, 38 (1990), 495-498.

5. T.C.E. Cheng, L. Kang and CT Ng, Due-date assignment and single machine
scheduling with deteriorating jobs, Journal of Operational Research Society, 55
(2004), 198-203.

6. T.C.E. Cheng, Q. Ding, M.Y. Kovalyov, A. Bachman and A. Janiak, Scheduling
jobs with piecewise linear decreasing processing times, Naval Research Logistics,
50 (2003), 531-554.

7. T.C.E. Cheng, Q. Ding and B.M.T. Lin, A concise survey of scheduling with
time-dependent processing times, European Journal of Operational Research, 152
(2004), 1-13.

8. T.C.E. Cheng and Q. Ding, Single machine scheduling with deadlines and increas-
ing rates of processing times, Acta Informatica, 36 (2000), 673-692.

9. Z.L. Chen, Parallel machine scheduling with time-dependent processing times, Dis-
crete Applied Mathematics, 70(1996), 81-93.

10. Z.L. Chen, A note on single-processor scheduling with time dependent execution
time, Operational Research Letter, 17 (1995), 127-129.

11. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimiza-
tion and approximation in deterministic sequencing and scheduling: A survey, Ann
Discrete Math, 5 (1979), 287-326.

12. J.N.D. Gupta and S.K. Gupta, Single facility scheduling with nonlinear processing
times, Computers and Industrial Engineering, 14 (1988), 387-394.

13. S.K. Gupta, A.S. Kunnathur and K. Dandapani, Optimal repayment polices for
multiple loans, OMEGA, 15 (1987), 323-330.

Scheduling to Minimize Makespan 933

14. K.I.J. Ho, J.Y.T. Leung and W.D. Wei, Complexity of scheduling tasks with time
dependent execution time, Information Processing Letter, 48 (1993), 315-320.

15. M.Y. Kovalyov and W. Kubiak, A fully polynomial approximation scheme for
minimizing makespan of deteriorating jobs, Journal of Heuristics, 3 (1998), 287-
297.

16. G. Mosheiov, Multi-machines scheduling with linear deterioration, INFOR, 36
(1998), 205-214.

On Complexity and Approximability of the
Labeled Maximum/Perfect Matching Problems

Jérôme Monnot

CNRS, LAMSADE, Université Paris-Dauphine, Place du Maréchal de Lattre de,
Tassigny, 75775, Paris Cedex 16, France

monnot@lamsade.dauphine.fr

Abstract. In this paper, we deal with both the complexity and the
approximability of the labeled perfect matching problem in bipartite
graphs. Given a simple graph G = (V, E) with n vertices with a color
(or label) function L : E → {c1, . . . , cq}, the labeled maximum match-
ing problem consists in finding a maximum matching on G that uses a
minimum or a maximum number of colors.

Keywords: labeled matching; colored matching; bipartite graphs; NP-
complete; approximate algorithms.

1 Introduction

The maximum matching problem is one of the most known combinatorial op-
timization problem and arises in several applications such as images analysis,
artificial intelligence or scheduling. A matching M on a graph G = (V,E) on n
vertices is a subset of edges that are pairwise non adjacent; M is said maximum
if the size of the matching is maximum among the matchings of G and perfect if
it covers the vertex set of G (that is |M | = n

2). In the labeled maximum match-
ing problem (Labeled MM in short), we are given a simple graph G = (V,E)
on |V | = n vertices with a color (or label) function L : E → {c1, . . . , cq} on the
edge set of G. For i = 1, . . . , q, we denote by L−1({ci}) ⊆ E the set of edges of
color ci. The goal of Labeled Min MM (resp., Max MM) is to find a maxi-
mum matching on G using a minimum (resp., a maximum) number of colors. An
equivalent formulation of Labeled Min MM could be the following: if G[C] and
m∗ denote the subgraph induced by the edges of colors from C ⊆ {c1, . . . , cq} and
the size of the maximum matching of G respectively, then Labeled Min MM
aims at finding a subset C of minimum size such that G[C] contains a matching of
size m∗. The restriction of Labeled MM to the case where each color occurs at
most r times in I = (G,L) (i.e., |L−1({ci})| ≤ r for i = 1, . . . , q) will be denoted
by Labeled MMr. For the particular case where we deal with perfect match-
ings instead of maximum matchings, the labeled maximum matching problem is
called the labeled perfect matching problem and denoted by Labeled PM .

The Labeled Min MM problem has some relationship with the timetable
problem, since a solution may be seen as a matching between classes and teachers
that satisfies additional restrictions (for instance, a color corresponds to a school

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 934–943, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Complexity and Approximability 935

where we assume that a professor may teach in several schools). An inspector
would like to assess all teachers during one lecture of each one of them and it
would be desirable that (s)he visits not twice the same class. Hence the lectures
to be attended would form a maximum matching. For convenience the inspector
would like these lectures to take place in the smallest possible number of schools.
Then clearly the inspector has to construct a maximum matching meeting a
minimum number of colors in the graph associated with the lectures.

2 Previous Related Works and Generalization

Labeled problems have been mainly studied, from a complexity and an approx-
imability point of view, when Π is polynomial, [7,8,9,12,19,23,24]. For example,
the first labeled problem introduced in the literature is the Labeled minimum
spanning tree problem, which has several applications in communication network
design. This problem is NP-hard and many complexity and approximability re-
sults have been proposed in [7,9,12,19,23,24]. On the other hand, the Labeled
maximum spanning tree problem has been shown polynomial in [7]. More re-
cently, the Labeled path and the Labeled cycle problems have been studied
in [8]; in particular, the authors proved that the Labeled minimum path prob-
lem is NP-hard and provided some exact and approximation algorithms. Note
that the NP-completeness also appears in [11] since the Labeled minimum
path problem is a special case of the red-blue set cover problem. To our knowl-
edge, the Labeled minimum (or maximum) matching problem has not been
studied yet in the literature. However, the restricted perfect matching problem
[17] is very closed to the Labeled perfect matching. This latter problem aims
at determining, given a graph G = (V,E), a partition E1, . . . , Ek of E and k
positive integers r1, . . . , rk, whether there exists a perfect matching M on G sat-
isfying for all j = 1, . . . , k the restriction |M ∩ Ej | ≤ rj . The restricted perfect
matching problem is proved to be NP-complete in [17], even if (i) |Ej | ≤ 2,
(ii) rj = 1, and (iii) G is a bipartite graph. On the other hand, it is shown
in [25] that the restricted perfect matching problem is polynomial when G is a
complete bipartite graph and k = 2; some others results of this problem can be
found in [13]. A perfect matching M only verifying condition (ii) (that is to say
|M ∩ Ei| ≤ 1) is called good in [10]. Thus, we deduce that the Labeled max-
imum perfect matching problem is NP-hard in bipartite graph since the value
of an optimal solution opt(I) = n

2 iff G contains a good matching.
Most of the labelled problems can be embedded in the following framework.

Let Π be a NPO problem accepting simple graphs G = (V,E) as instances,
edge-subsets E′ ⊆ E verifying a given polynomial-time decidable property Pred
as solutions, and the solutions cardinality as objective function; the labeled prob-
lem associated to Π , denoted by LabeledΠ , seeks, given an instance I = (G,L)
where G = (V,E) is a simple graph and L is a mapping from E to {c1, . . . , cq},
in finding a subset E′ verifying Pred that optimizes the size of the set L(E′) =
{L(e) : e ∈ E′}. Note that two versions of Labeled Π may be considered

936 J. Monnot

according to the optimization goal: Labeled Min Π that consists of minimizing
|L(E′)| and Labeled Max Π that consists of maximizing |L(E′)|. Roughly
speaking, the mapping L corresponds to assigning a color (or a label) to each
edge and the goal of Labeled Min Π (resp., Max Π) is to find an edge subset
using the fewest (resp., the most) number of colors. If a given NPO problem Π is
NP-hard, then the associated labeled problem Labeled Π is clearly NP-hard
(consider a distinct color per edge). For instance, the Labeled Longest path
problem or the Labeled maximum induced matching problem are both NP-
hard. Moreover, if the decision problem associated to Π is NP-complete, (the
decision problem aims at deciding if a graph G contains an edge subset verifying
Pred), then LabeledMin Π can not be approximated within performance ratio
better than 2−ε for all ε > 0 unless P=NP, even if the graph is complete. Indeed,
if we color the edges fromG = (V,E) with a single color and then we complete the
graph, adding a new color per edge, then it is NP-complete to decide between
opt(I) = 1 and opt(I) ≥ 2, where opt(I) is the value of an optimal solution.
Notably, it is the case of the Labeled traveling salesman problem (Labeled
TSP in short) or the Labeled minimum partition problem into paths of length
k for any k ≥ 2. Note that the problem consisting in deciding whether opt(I) = n
in colored complete graphs Kn for Labeled Max TSP , has been studied. For
instance in [1,14,16], some conditions (mainly using probabilistic methods) were
mentioned for a colored complete graph Kn to contain a hamiltonian cycle using
n colors.

In this paper, we go into the investigation of the complexity and the approx-
imability of labeled matching problems in bipartite graphs. More precisely, we
deal with 2 extreme classes of 2-regular or n

2 -regular bipartite graphs. For both
cases, we obtain hardness results. For these graphs, observe that a maximum
matching is a perfect matching; thus, in these graphs Labeled MM and La-
beled PM are the same problem. In section 3, we analyze both the complexity
and the approximability of the Labeled minimum perfect matching problem
and the Labeled maximum perfect matching problem in 2-regular bipartite
graphs. Finally, section 4 focuses on the case of complete bipartite graphs Kn,n.

Now, we introduce some terminology and notations that will be used in the pa-
per. We denote by opt(I) and apx(I) the value of an optimal and an approximate
solution, respectively. We say that an algorithm A is an ε-approximation of La-
beled Min PM with ε ≥ 1 (resp., Max PM with ε ≤ 1) if apx(I) ≤ ε× opt(I)
(resp., apx(I) ≥ ε× opt(I)) for any instance I = (G,L), for more details see for
instance [4].

3 The 2-Regular Bipartite Case

In this section, we deal with a particular class of graphs that consist in a col-
lection of pairwise disjoints cycles of even length; note that such graphs are
2-regular bipartite graphs.

Theorem 1. Labeled Min PMr is APX-complete in 2-regular bipartite
graphs for any r ≥ 2 .

On Complexity and Approximability 937

Proof. Observe that any solution of Labeled Min PMr is an r-approximation.
The rest of the proof will be done via an approximation preserving reduction
from the minimum balanced satisfiability problem with clauses of size at most
r, Min balanced r-Sat for short. An instance I = (C, X) of Min balanced
r-Sat consists of a collection C = (C1, . . . , Cm) of clauses over the set X =
{x1, . . . , xn} of boolean variables, such that each clause Cj has at most r literals
and each variable appears positively as many times as negatively; let Bi denote
this number for any i = 1, . . . , n. The goal is to find a truth assignment f
satisfying a minimum number of clauses. Min balanced 2-Sat where 2 ≤
Bi ≤ 3 has been shown APX-complete by the way of an L-reduction from Max
balanced 2-Sat where Bi = 3, [6,18].

We only prove the case r = 2. Let I = (C, X) be an instance of Min balanced
2-Sat on m clauses C = {C1, . . . , Cm} and n variables X = {x1, . . . , xn} such
that each variable xi has either 2 occurrences positive and 2 occurrences negative,
or 3 occurrences positive and 3 occurrences negative. We build the instance
I ′ = (H,L) of Labeled Min PM2 where H is a collection of pairwise disjoints
cycles {H(x1), . . . , H(xn)} and L colors edges ofH with colors c1, . . . , cj , . . . , cm,
by applying the following process:

• For each variable xi, create 2Bi-long cycleH(xi) = {ei,1, . . . , ei,k, . . . , ei,2Bi}.
• Color the edges of H(xi) as follows: if xi appears positively in clauses
Cj1 , . . . , CjBi

and negatively in clauses Cj′1
, . . . , Cj′

Bi
, then set L(ei,2k) = cjk

and L(ei,2k−1) = cj′k for k = 1, . . . , Bi.

Clearly, H is made of n disjoint cycles and is painted with m colors. Moreover,
each color appears at most twice.

Let f∗ be an optimal truth assignment on I satisfying m∗ clauses and consider
the perfect matching M = ∪n

i=1Mi where Mi = {ei,2k|k = 1, . . . , Bi} if f(xi) =
true, Mi = {ei,2k−1|k = 1, . . . , Bi} otherwise; M uses exactly m∗ colors and
thus:

opt(I ′) ≤ m∗ (1)

Conversely, let M ′ be a perfect matching on H using apx(I ′) = m′ colors; if one
sets f ′(xi) = true if ei,2 ∈ M ′, f ′(xi) = false otherwise, we can easily observe
that the truth assignment f ′ satisfies m′ clauses.

apx(I) = m′ (2)

Hence, using inequalities (1) and (2) the result follows.

Trivially, the problem becomes obvious when each color is used exactly once.
We now show that we have a 2-approximation in 2-regular bipartite graphs,
showing that the restriction of Labeled Min PM to 2-regular bipartite graphs
is as hard as approximate as MinSat.

Theorem 2. There exists an approximation preserving reduction from La-
beled Min PM in 2-regular bipartite graphs to MinSat of expansion c(ε) = ε.

938 J. Monnot

Proof. The result comes from the reciprocal of the previous transformation. Let
I = (G,L) be an instance of Labeled Min PM where G = (V,E) is a collection
{H1, . . . , Hn} of disjoint cycles of even length and L(E) = {c1, . . . , cm} defines
the label set, we describe every cycle Hi as the union of two matchings Mi and
Mi. We construct an instance I ′ = (C, X) of MinSat where C = {C1, . . . , Cm}
is a set of m clauses and X = {x1, . . . , xn} is a set of n variables, as follows.
The clause set C is in one to one correspondence with the color set L(E) and the
variable set X is in one to one correspondence with the connected components
of G; a literal xi (resp., xi) appears in Cj iff cj ∈ L(Mi) (resp., cj ∈ L(Mi)). We
easily deduce that any truth assignment f on I ′ that satisfies k clauses can be
converted into a perfect matching Mf on I that uses k colors.

Using the 2-approximation of MinSat [20] and the Theorem 2, we deduce:

Corollary 1. Labeled Min PM in 2-regular bipartite graphs is 2-
approximable.

Dealing with Labeled Max PMr, the result of [17] shows that computing a
good matching is NP-hard even if the graph is bipartite and each color appears
at most twice; a good matching M is a perfect matching using |M | colors. Thus,
we deduce from this result that Labeled Max PMr is NP-hard for any r ≥ 2.
We strengthen this result using a reduction from Max balanced 2-Sat.

Theorem 3. Labeled Max PMr is APX-complete in 2-regular bipartite
graphs for any r ≥ 2 .

In the same way, there exists an approximation preserving reduction from
LabeledMax PM in 2-regular bipartite graphs to MaxSat of expansion c(ε) =
ε. Thus, using the approximate result for MaxSat [3], we obtain

Corollary 2. Labeled Max PM in 2-regular bipartite graphs is 0.7846-
approximable.

4 The Complete Bipartite Case

When considering complete bipartite graphs, we obtain several results:

Theorem 4. Labeled Min PMr is APX-complete in bipartite complete
graphs Kn,n for any r ≥ 6.

Proof. We give an approximation preserving L-reduction (cf. Papadimitriou &
Yannakakis [21]) from the restriction MinSC3 of the set cover problem, MinSC
for short. Given a family S = {S1, . . . , Sn0} of subsets and a ground set X =
{x1, . . . , xm0} (we assume that ∪n0

i=1Si = X), a set cover of X is a sub-family
S′ = {Sf(1), . . . , Sf(p)} ⊆ S such that ∪p

i=1Sf(i) = X ; MinSC is the problem
of determining a minimum-size set cover S∗ = {Sf∗(1), . . . , Sf∗(q)} of X . Its
restriction MinSC3 to instances where each set is of size at most 3 and each

On Complexity and Approximability 939

s1,j,f(2)

v1,j

s1,j,f(p)

s1,j,f(p−1)

s1,j,f(1) s2,j,f(1)

v2,j

s2,j,f(p)

Fig. 1. The gadget H(xj)

element xj appears in at most 3 and at least 2 different sets has been proved
APX-complete in [21].

Given an instance I0 = (S, X) of MinSC, its characteristic graph GI0 =
(L0, R0;EI0) is a bipartite graph with a left set L0 = {l1, . . . , ln0} that rep-
resents the members of the family S and a right set R0 = {r1, . . . , rm0} that
represents the elements of the ground set X ; the edge-set EI0 of the character-
istic graph is defined by EI0 = {[li, rj] : xj ∈ Si}. Note that GI0 is of maximum
degree 3 iff I0 is an instance of MinSC3. From I0 an instance of MinSC3, we
construct the instance I = (Kn,n, L) of Labeled Min PM6. First, we start
from a bipartite graph having m0 connected components H(xj) and n0 + m0
colors {c1, . . . , cn0+m0}, described as follows:

• For each element xj ∈ X , we build a gadgetH(xj) that consists of a bipartite
graph of 2(dGI0

(rj)+1) vertices and 3dGI0
(rj) edges, where dGI0

(rj) denotes
the degree of vertex rj ∈R0 in GI0 . The graph H(xj) is illustrated in Figure
1.

• Assume that vertices {lf(1), . . . , lf(p)} are the neighbors of rj in GI0 ,
then color H(xj) as follows: for any k = 1, . . . , p, L(v1,j, s1,j,f(k)) =
L(v2,j , s2,j,f(k)) = cf(k) and L(s1,j,f(k), s2,j,f(k)) = cn0+j .

– We complete H = ∪xj∈XH(xj) into Kn,n, by adding a new color per edge.

Clearly, Kn,n is complete bipartite and has 2n = 2
∑

rj∈R0
(dGI0

(rj) + 1) =
2|EI0 | + 2m0 vertices. Moreover, each color is used at most 6 times.

Let S∗ be an optimal set cover on I0. From S∗, we can easily construct a
perfect matching M∗ on I using exactly |S∗| +m0 colors (since we assume that
each element appears in at least 2 sets) and thus:

optLabeled Min PM6
(I) ≤ optMinSC3

(I0) +m0 (3)

Conversely, we can show that any perfect matching M may be polynomially
transformed into a perfect matching M” with value apx(I), using the edges of
H and verifying:

Property 1. apx(I) ≤ |L(M)|

940 J. Monnot

From such a matching, we may obtain a set cover S” = {Sk|ck ∈ L(M”)} on I0
verifying:

|S”| = apx(I) −m0 (4)

Using (3) and (4), we deduce optLabeled Min PM6
(I) = optMinSC3

(I0)+m0
and |S”| − optMinSC3

(I0) ≤ |L(M))| − optLabeled Min PM6
(I). Finally, since

optMinSC3
(I0) ≥ m0

3 the result follows.

Applying the same kind of proof from the vertex cover problem (MinVC in
short) in cubic graphs [2], we obtain a stronger result.

Theorem 5. Labeled Min PMr is APX-complete in bipartite complete
graphs Kn,n for any r ≥ 3.

Proof. Starting from a cubic graph G = (V,E) instance of MinVC, we associate
to each edge e = [x, y] ∈ E a 4-long cycle {a1,e, a2,e, a3,e, a4,e} together with a
coloration L given by: L(a1,e) = cx, L(a2,e) = cy and L(a3,e) = L(a4,e) = ce.
We complete this graph into a complete bipartite graph, adding a new color per
edge.

Unfortunately, we can not apply the proof of Theorem 2 since in this lat-
ter, on the one hand, we have some cycles of size 6 and, on the other hand,
a color may occur in different gadgets. One open question concerns the com-
plexity of Labeled Min PM2 in bipartite complete graphs. Moreover, from
Theorem 4, we can also obtain a stronger inapproximability result concerning
the general problem Labeled Min PM : one can not compute in polynomial-
time an approximate solution of Labeled Min PM that uses less than
(1/2 − ε)ln(optLabeled Max PM (I)) colors in complete bipartite graphs.

Corollary 3. For any ε > 0, Labeled Min PM is not (1
2 − ε)× ln(n) approx-

imable in complete bipartite graphs Kn,n, unless NP⊂DTIME(nloglogn).

Proof. First, we apply the construction made in Theorem 4, except that I0 =
(S, X) is an instance of MinSC such that the number of elements m0 is strictly
larger than the number of sets n0. From I0, we construct n0 instances I ′1, . . . , I ′n0

of Labeled Min PM where I ′i = (H,Li). The colors Li(E) are the same as
L(E), except that we replace colors cn0+1, . . . , cn0+m0 by ci. Finally, as previ-
ously, we complete each instance I ′i into a complete bipartite graph Kn,n by
adding a new color by edge.

Let S∗ be an optimal set cover on I0 and assume that Si ∈ S∗, we consider the
instance Ii of Labeled Min PM . From S∗, we can easily construct a perfect
matching M∗

i of Ii that uses exactly |S∗| colors. Conversely, let Mi be a perfect
matching on Ii; by construction, the subset S′ = {Sk : ck ∈ L(Mi)} of S is a
set cover of X using |L(Mi)| sets. Finally, let A be an approximate algorithm
for Labeled Min PM , we compute n0 perfect matchings Mi, applying A on
instances Ii. Thus, if we pick the matching that uses the minimum number of
colors, then we can polynomially construct a set cover on I0 of cardinality this
number of colors.

On Complexity and Approximability 941

Since n0 ≤ m0 − 1, the size n of a perfect matching of Kn,n verifies: n =
|EI0 |+m0 ≤ n0×m0+m0 ≤ m0(m0−1)+m0 = m2

0. Hence, from any algorithm
A solving Labeled Min PM within a performance ratio ρA(I) ≤ 1

2 × ln(n),
we can deduce an algorithm for MinSC that guarantees the performance ratio
1
2 ln(n) ≤ 1

2 ln(m2
0) = ln(m0). Since the negative result of [15] holds when n0 ≤

m0 − 1, i.e., MinSC is not (1 − ε) × ln(m0) approximable for any ε > 0, unless
NP⊂DTIME(nloglogn), we obtain a contradiction.

On the other hand, dealing with Labeled Max PMr in Kn,n, the result of
[10] shows that the case r = 2 is polynomial, whereas it becomes NP-hard when
r = Ω(n2). Indeed, it is proved in [10] that, on the one hand, we can compute
a good matching in Kn,n within polynomial-time when each color appears at
most twice and, on the other hand, there always exists a good matching in such
a graph if n ≥ 3. An interesting question is to decide the complexity and the
approximability of Labeled Max PMr when r is a constant greater than 2.

4.1 Approximation Algorithm for Labeled Min PMr

Let us consider the greedy algorithm for Labeled Min PMr in complete bi-
partite graphs that iteratively picks the color that induces the maximum-size
matching in the current graph and delete the corresponding vertices. Formally,
if L(G′) denotes the colors that are still available in the graph G′ at a given
iteration and if G′[c] (resp., G′[V ′]) denotes the subgraph of G′ that is induced
by the edges of color c (resp., by the vertices V ′), then the greedy algorithm
consists of the following process:

Greedy

1 Set C′ = ∅, V ′ = V and G′ = G;
2 While V ′ �= ∅ do

2.1 For all c ∈ L(G′), compute a maximum matching Mc in G′[c];
2.2 Select a color c∗ maximizing |Mc|;
2.3 C′ ← C′ ∪ {c∗}, V ′ ← V ′ \ V (Mc∗) and G′ = G[V ′];

3 output C′;

Theorem 6. Greedy is an Hr+r
2 -approximation of Labeled Min PMr in

complete bipartite graphs where Hr is the r-th harmonic number Hr =
∑r

i=1
1
i ,

and this ratio is tight.

Proof. Let I = (G,L) be an instance of Labeled Min PMr. We denote by C′
i

for i = 1, . . . , r be the set of colors of the approximate solution which appears
exactly i times in C′ and by pi its cardinality (thus, ∀c ∈ C′

i we have |Mc| = i in
G′[c]); finally, let Mi denote the matching with colors C′

i. If apx(I) = |C′|, then
we have:

apx(I) =
r∑

i=1

pi (5)

942 J. Monnot

Let C∗ be an optimal solution corresponding to the perfect matching M∗ of
size opt(I) = |C∗|; we denote by Ei the set of edges of M∗ that belong to
G[∪i

k=1V (Mk)], the subgraph induced by ∪i
k=1V (Mk) and we set qi = |Ei\Ei−1|

(where we assume that E0 = ∅). For any i = 1, . . . , r − 1, we get:

opt(I) ≥ 1
i

i∑
k=1

qk (6)

Indeed,
∑i

k=1 qk = |Ei| and by construction, each color appears at most i
times in G[∪i

k=1V (Mk)].
We also have the following inequality for any i = 1, . . . , r − 1:

opt(I) ≥ 1
r

(
2

i∑
k=1

k × pk −
i∑

k=1

qk

)
(7)

Since M∗ is a perfect matching, the quantity 2
∑i

k=1 k×pk−
∑i

k=1 qk counts the
edges of M∗ of which at least one endpoint belongs to G[∪i

k=1V (Mk)]. Because
each color appears on at most r edges, the result follows.

Finally, since
∑r

k=1 k×pk is the size of a perfect matching of G, the following
inequality holds:

opt(I) ≥ 1
r

r∑
k=1

k × pk (8)

Using equality (5) and adding inequalities (6) with coefficient αi = 1
2(i+1) for

i = 1, . . . , r − 1, inequalities (7) with coefficient βi = r
2i(i+1) for i = 1, . . . , r − 1

and inequality (8), we obtain:

apx(I) ≤
(
Hr + r

2

)
opt(I) (9)

The proof of the tightness is omitted.

We conjecture that Labeled Min PM is not O(nε)-approximable in com-
plete bipartite graphs. Thus, a challenge will be to give better approximate
algorithms or to improve the lower bound.

References

1. M. Albert, A. Frieze and B. Reed. Multicoloured Hamilton cycles. Electron. J.
Combin., 2, 1995 (Research Paper 10).

2. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. The-
oretical Computer Science 237:123-134, 2000.

3. T. Asano and D. P. Williamson Improved Approximation Algorithms for MAX
SAT. Journal of Algorithms 42(1):173-202, 2002.

4. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M.
Protasi. Complexity and Approximation (Combinatorial Optimization Problems
and Their Approximability Properties). Springer, Berlin, 1999.

On Complexity and Approximability 943

5. P. Berman, M. Karpinski, and A. D. Scott. Approximation Hardness of Short
Symmetric Instances of MAX-3SAT. ECCC TR-03-049, 2003.

6. P. Berman and M. Karpinski. On Some Tighter Inapproximability Results. ECCC
TR-05-029, 1998.

7. H. Broersma and X. Li. Spanning trees with many or few colors in edgecolored
graphs. Discussiones Mathematicae Graph Theory, 17(2):259-269, 1997.

8. H. Broersma, X. Li, G. J. Woeginger and S. Zhang. Paths and cycles in colored
graphs. Australasian J. Combin., 31:, 2005.

9. T. Brüggemann, J. Monnot, and G. J. Woeginger. Local search for the minimum la-
bel spanning tree problem with bounded color classes. Operations Research Letters
31(3):195-201, 2003.

10. K. Cameron. Coloured matchings in bipartite graphs. Discrete Mathematics,
169:205-209, 1997.

11. R. D. Carr, S. Doddi, G. Konjevod and M. V. Marathe. On the red-blue set cover
problem. SODA, 345-353, 2000.

12. R-S. Chang and S-J. Leu. The minimum labeling spanning trees. Information
Processing Letters, 63:277-282, 1997.

13. M. C. Costa, D. de Werra, C. Picouleau and B. Ries. Bicolored matchings in some
classes of graphs. technical report, 2004.

14. P. Erdös, J. Nešetřil and V. Rödl. On some problems related to partitions of edges
of a graph. Graphs and other combinatorial topics, Teubner, Leipzig, 54-63, 1983.

15. U. Feige. A threshold of for approximating set cover. J. ACM, 45:634-652, 1998.
16. A. Frieze and B. Reed. Polychromatic Hamilton cycles. Discrete Math. 118:69-74,

1993.
17. A. Itai, M. Rodeh, and S. Tanimoto. Some matching problems in bipartite graphs.

J. ACM, 25(4):517-525, 1978.
18. M. Karpinski. Personnal communication. 2005.
19. S. O. Krumke and H-C. Wirth. On the minimum label spanning tree problem.

Information Processing Letters, 66:81-85, 1998.
20. M. V. Marathe, S. S. Ravi. On Approximation Algorithms for the Minimum Sat-

isfiability Problem. Information Processing Letters, 58(1):23-29 1996.
21. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. J. of Comp. and Sys. Sci., 43:425-440, 1991.
22. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-

constant error-probability PCP characterization of NP. Proc. 29th Ann. ACM
Symp. on Theory of Comp., ACM, 475-484, 1997.

23. Y. Wan, G. Chen, and Y. Xu. A note on the minimum label spanning tree. Infor-
mation Processing Letters, 84;99-101, 2002.

24. Y. Xiong, B. Golden and E. Wasil. Worst-case behavior of the MVCA heuristic
for the minimum labeling spanning tree problem. Operations Research Letters
33(1):77-80, 2005.

25. T. Yi, K. G. Murty and C. Spera. Matchings in colored bipartite networks. Discrete
Applied Mathematics 121(1-3):261-277, 2002.

Finding a Weight-Constrained
Maximum-Density Subtree in a Tree

Sun-Yuan Hsieh and Ting-Yu Chou

Department of Computer Science and Information Engineering, National Cheng
Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan

hsiehsy@mail.ncku.edu.tw, janus@algorithm.csie.ncku.edu.tw

Abstract. Given a tree T = (V, E) of n vertices such that each node
v is associated with a value-weight pair (valv, wv), where value valv
is a real number and weight wv is a non-negative integer, the den-
sity of T is defined as Σv∈V valv

Σv∈V wv
. A subtree of T is a connected sub-

graph (V ′, E′) of T , where V ′ ⊆ V and E′ ⊆ E. Given two integers
wmin and wmax, the weight-constrained maximum-density subtree prob-
lem on T is to find a maximum-density subtree T ′ = (V ′, E′) satisfying
wmin ≤ Σv∈V ′wv ≤ wmax. In this paper, we first present an O(wmaxn)-
time algorithm to find a weight-constrained maximum-density path in a
tree, and then present an O(wmax

2n)-time algorithm to find a weight-
constrained maximum-density subtree in a tree. Finally, given a node
subset S ⊂ V , we also present an O(wmax

2n)-time algorithm to find a
weight-constrained maximum-density subtree of T which covers all the
nodes in S.

1 Introduction

Given a sequence S of n number pairs (ai, wi) with wi > 0 for i = 1, . . . , n,
and two weight bounds wmin and wmax, the maximum-density segment prob-
lem is to find a consecutive subsequence S(i, j) of S such that the density of
S(i, j), i.e., ai+ai+1+···+aj

wi+wi+1+···+wj
is maximum over all other subsequence of S satisfy-

ing wmin ≤ wi + wi+1 + · · · + wj ≤ wmax. This problem arises from the inves-
tigation of non-uniformity of nucleotide composition within genomic sequences,
which was first revealed through thermal melting and gradient centrifugation
experiments [4,9]. Researchers observed that the compositional heterogeneity is
highly correlated to the GC content of the genomic sequences [10,12], and this
motivates finding GC-rich segments. For the maximum-density segment prob-
lem, Goldwasser, Kao, and Lu [2] proposed an O(n log(wmax − wmin + 1))-time
algorithm. Chung and Lu [1] gave an O(n)-time algorithm based on bypassing
the complicated preprocessing step required in [2]. More research related to the
non-general case, i.e., wi = 1 for all indices i, can be found in [2,3,5,6,7,10,11]
and the references therein.

There are some invariants related to the maximum-density segment problem.
Given a tree with weight and length on each edge, Wu, Chao, and Tang [14]
presented an efficient algorithms for locating a maximum-weight path in a tree

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 944–953, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Finding a Weight-Constrained Maximum-Density Subtree in a Tree 945

whose length is at most a given upper bound. Their algorithm runs in O(n log2 n)
time and can be reduced to O(n log n) if the edge lengths are all integers in the
range [1, 2, . . . , O(n)], where n is the number of nodes of the input tree.

Quite recently, Lin, Kuo, and Chao [8] studied the problem of finding a length-
constrained maximum-density path in a rooted tree with each edge e is associated
with a weight w(e). They defined the density of a path with edges e1, e2, . . . , ek as

k
i=1 w(ei)

k , and presented an O(nL)-time algorithm to find a maximum-density
path of length at least L.

In this paper, we assume that each node v of a tree T = (V,E) is associated
with a value-weight pair (valv, wv), where value valv is a real number and weight
wv is a non-negative integer. The density of T , denoted by d(T), is defined as
Σv∈V valv
Σv∈V wv

. The weight-sum of T , denoted by w(T), is Σv∈Vwv. We consider the
following three problems.

Definition 1 (The weight-constrained maximum-density path prob-
lem). Given a tree T of n nodes associated with value-weight pairs, and two
bounded integers wmin and wmax, find a maximum-density path P in T such
that wmin ≤ w(P) ≤ wmax.

Definition 2 (The weight-constrained maximum-density subtree prob-
lem). Given a tree T of n nodes associated with value-weight pairs, and two
bounded integers wmin and wmax, find a maximum-density subtree T ′ in T such
that wmin ≤ w(T ′) ≤ wmax.

Definition 3 (The weight-constrained maximum-density Steiner tree
problem). Given a tree T of n nodes associated with value-weight pairs, two
bounded integers wmin and wmax, and a set of terminals S ⊂ V (T), find a
maximum-density subtree T ′ such that S ⊆ V (T ′) and wmin ≤ w(T ′) ≤ wmax.

In this paper, we develop pseudo-polynomial time algorithms for the above
problems. We first show that the weight-constrained maximum-density path
problem on trees can be solved in O(wmaxn) time. Based on this result, we
also show that both the weight-constrained maximum-density subtree problem
and the weight-constrained maximum-density Steiner tree problem on trees can
be solved in O(wmax

2n) time.

2 Preliminaries

A graph G is a pair (V,E), where V and E are the vertex set and the edge
set, respectively. We also use V (G) and E(G) to denote its vertex set and edge
set, respectively. A path is a simple graph whose vertices can be ordered so
that two vertices are adjacent if an only if they are consecutive in the list. A
subgraph of G = (V,E) is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. An
induced subgraph is an edge-preserving subgraph, that is, (V ′, E′) is an induced
subgraph of (V,E) iff V ′ ⊆ V and E′ = {(x, y) ∈ E| x, y ∈ V ′}. For graph-
theoretic terminologies and notations not mentioned here, readers should refer
to [13].

946 S.-Y. Hsieh and T.-Y. Chou

A tree is a connected graph and has no cycles. A rooted tree is a tree with
one node chosen as the root. For a node v in a rooted tree T with the root r, the
parent of v, denoted by par(v), is its neighbor on the unique path from v to r;
its children, denoted by childT (v), are its other neighbors; and its descendants
are the nodes u such that the unique path from u to r contains v. The leaves are
the nodes with no children. In contrast to the unrooted case, by the degree of
a node v, denoted by deg(v), we mean the number of children of v in the given
rooted tree. For a node v in T , the level of v, denoted by level(v), is the number
of edges between v and the root.

For a tree T , a subtree of T is a connected subgraph (V ′, E′) of T , where
V ′ ⊆ V and E′ ⊆ E. For a rooted tree T , the descendent-subtree rooted at v is
the subtree induced by all the descendants of v, rooted at v, which is denoted
by Tv. Note that for a rooted tree T , every descendent-subtree rooted at v is
a subtree rooted at v; the converse is not always true. For a given node v in
a rooted tree, the paths starting from v can be classified into two types: One
is to stretch downward its children only, called downward paths, and the other
is to include at least its parent, called upward paths. In the following sections,
the input instance of the problem is restricted to be the rooted tree. If it is not
the case, the tree can be easily transformed into a rooted one by selecting an
arbitrary node as the root.

3 Finding a Weight-Constrained Maximum-Density Path

For a node v in a rooted tree T , we use D1
v[i] and D2

v[i] to denote the highest
value and the second-best value of those downward paths starting from node v
of weight i, respectively. We aim at computing D1

v[i] and D2
v[i] for each node

v in T by bottom-up dynamic programming, where i = wv, wv + 1, . . . , wmax.
The function “max” always selects the maximum value of the downward paths.
If there exist at least two maximum-value downward paths, the function “2nd-
max” selects the maximum value; otherwise, it selects the second-best value.
If v is a leaf, then D1

v[i] equals valv if i = wv, and equals −∞ for otherwise.
Moreover, we define D2

v[i] to be −∞ for all 0 ≤ i ≤ wmax.1

Suppose that the internal node v has m children v1, v2, . . . , vm. Then, we have

D1
v[i] = max{D1

vj
[i− wv] + valv| 1 ≤ j ≤ m}, (1)

and

D2
v[i] = 2nd-max{D1

vj
[i− wv] + valv| 1 ≤ j ≤ m}. (2)

For each internal node v, we use d1
v[i] to record the contributor of D1

v[i],
which is a child of v providing the value to D1

v[i], i.e., d1
v[i] = vk if D1

v[i] =
D1

vk
[i − wv] + valv. We also use d2

v[i] to record the contributor of D2
v[i], which

1 For convenience, throughout this paper, we assume the value of an entry equals −∞
if the value of such an entry is not assigned.

Finding a Weight-Constrained Maximum-Density Subtree in a Tree 947

is another child of v (different from the first contributor) providing the value
to D2

v[i] if such a child exists. Let d1
v[i](or d2

v[i])=Null if the corresponding
contributor does not exist. Note that if there exist at least two downward paths
with the same highest value, then the node recorded in d2

v[i] is different with
that recorded in d1

v[i].

Lemma 1. The downward entries D1
v and D2

v, together with d1
v and d2

v, for all
nodes v in a rooted tree T can be computed in O(wmaxn) time.

Proof. Without loss of generality, we consider an internal node v has m children.
For a fixed weight i, it takes O(m) time to determine D1

v[i] and D2
v[i], together

with d1
v[i] and d2

v[i]. Thus it takes O(wmaxm) time to computed the downward
entries of node v. By a bottom-up evaluation of T , the downward entries of all
internal nodes v in tree T can be computed in O(wmaxn) time.

The computation of upward entries is similar to that of downward entries.
Let Uv[i] denote the highest value of those upward paths starting from node v
of weight i. For i = wv, wv + 1, . . . , wmax, we compute Uv[i] for each node v in
tree T by a top-down dynamic programming. Initially, Ur[i] = valr if i = wr ,
and Ur[i] = −∞ if i �= wr.

Let par(v) be the parent of node v. Then, we have

Uv[i] = max

Upar(v)[i− wv] + valv,

D1
par(v)[i− wv] + valv if v isn’t the contributor of

D1
par(v)[i− wv],

D2
par(v)[i− wv] + valv if D2

par(v)[i− wv] exists, and v is
the contributor of D1

par(v)[i− wv].

(3)

For each non-root node v, we also use uv[i] to record the contributor of Uv[i],
which is defined as follows:

uv[i] =

par(par(v)) if Uv[i] = Upar(v)[i− wv] + valv,

d1
par(v)[i− wv] if Uv[i] = D1

par(v)[i− wv] + valv,

d2
par(v)[i− wv] if Uv[i] = D2

par(v)[i− wv] + valv.

(4)

Note that uv[i] could be a child of par(v) or the parent of par(v).

Lemma 2. The upward entries Uv and uv for all nodes v in a rooted tree T can
be computed in O(wmaxn) time.

Proof. By Lemma 1, the downward entries of D1
v and D2

v, together with d1
v and

d2
v, for all nodes v in T can be computed in O(wmaxn) time. Therefore, according

to Equations 3 and 4, Uv[i] and uv[i] can be determined in O(1) time for a fixed
i. Thus Uv and uv for all nodes v can be computed in O(wmaxn) time.

Now we present an algorithm shown in Figure 1 for computing the density of
a maximum-density path under the weight-constraint.

948 S.-Y. Hsieh and T.-Y. Chou

Algorithm Mdp(T, r,wmin, wmax)
Input: A tree T rooted at r with n nodes, and two weight bounds wmin and wmax.
Output: The density of a weight-constrained maximum-density path in T .

1: Compute level(v)’s for all v ∈ V (T)
2: for all v ∈ V (T) in decreasing order of level(v) do
3: if v is a leaf then
4: D1

v[wv]← valv
5: else
6: for i← wv to wmax do
7: D1

v[i]← max{D1
vj

[i− wv] + valv| vj is a child of v}
8: D2

v[i]← 2nd-max{D1
vj

[i− wv] + valv| vj is a child of v}
9: compte d1

v[i] and d2
v[i]

10: end for
11: end if
12: end for
13: for all v ∈ V (T) in increasing order of level(v) do
14: if v is the root then
15: Uv[wv]← valv
16: else
17: for i← wv to wmax do
18: if v isn’t the contributor of D1

par(v)[i− wv] then

19: Uv[i]← max{Upar(v)[i−wv] + valv, D1
par(v)[i− wv] + valv}

20: compute uv[i] according to Equation 4
21: else
22: Uv[i]← max{Upar(v)[i−wv] + valv, D2

par(v)[i− wv] + valv}
23: compute uv[i] according to Equation 4
24: end if
25: end for
26: end if
27: end for

28: return max
v∈V (T)

{ max
wmin≤i≤wmax

i�=0

{D
1
v [i]
i

,
Uv[i]

i
}}

Fig. 1. Computing the density of a weight-constrained maximum-density path on T

Lemma 3. The density of a weight-constrained maximum-density path in a tree
can be found in O(wmaxn) time.

Proof. Given a tree, we first transform it into a rooted tree T . It is not difficult
to see that the density of a weight-constrained maximum-density path can be
computed by running Algorithm Mdp on T . According to Lemmas 1 and 2, all
the U,D1, D2, u, d1, d2 entries can be computed in O(wmaxn) time. Since the
number of nodes of T is O(n) and i is an integer between wmin and wmax,
the density formula shown in Line 28 of Algorithm Mdp can be computed in
O(wmaxn) time. Thus the result holds.

Finding a Weight-Constrained Maximum-Density Subtree in a Tree 949

Based on the information obtained after executing Algorithm Mdp, we can
also actually find a maximum-density path in O(n) time.

Theorem 1. The weight-constrained maximum-density path problem on trees
can be solved in O(wmaxn) time.

Proof. By Lemma 3 and an O(n)-time Algorithm Reconmdp, the result holds.

4 Finding a Weight-Constrained Maximum-Density
Subtree

In this section, we first prove that the decision version of the weight-constrained
maximum-density subtree problem is NP-complete. We then present an algo-
rithm to find a weight-constrained maximum-density subtree in a tree in O(wmax
2n) time.

4.1 The Decision Version is NP-Complete

We formally define the decision version of the weight-constrained maximum-
density subtree problem as follows.

Definition 4 (decision version). Given a tree T of n nodes in which each
node v is associated with a value-weight pair (valv, wv), two integers wmin and
wmax, and a target-density d, the problem is to determine whether there exists a
subtree T ′ with density no less than d and wmin ≤ w(T ′) ≤ wmax.

A star is a tree consisting of one node (central node) adjacent to all the others
(leaves). The n-node star is the complete bipartite graph K1,n.

Theorem 2. The decision version of the weight-constrained maximum-density
subtree problem is NP-complete.

Proof. First, the problem can be easily verified to be in NP.
Next, we give a polynomial-time reduction from a well-known NP-complete

problem SUBSET-SUM to the problem. The SUBSET-SUM problem is defined
as follows: Given a finite set S ⊂ N of n numbers x1, x2, . . . , xn and a target
number t ∈ N, we want to determine whether there is a subset S′ ⊆ S whose
elements sum to t.

The reduction converts the given set S to an n-node star T as follows:

1. Create a leaf vi of T for each element xi in S, and also create a central node
c.

2. Assign a weight-value pair (valvi , wvi) = (xi, xi) for each leaf vi, and assign
(0, 0) for the central node c.

3. Let both wmin and wmax be the target number t, and let d = 1.

Clearly, this reduction can be done in polynomial time.

Claim. There is a subset S′ of S whose elements sum to t if and only if the
n-node star T has a subtree T ′ satisfying d(T ′) ≥ d and wmin ≤ w(T ′) ≤ wmax.

950 S.-Y. Hsieh and T.-Y. Chou

Proof of the claim: Suppose that S′ = {xj1 , xj2 . . . , xjq} is a subset such
that

∑
i=1,2,...,q

xji = t. Then, the subtree of T , which is formed by corre-

sponding nodes of S′ and central node c obviously has value t and weight t.
Therefore, the density of the above subtree equals 1(≥ d = 1).
Now suppose that the n-node star T has a subtree T ′ of density at least
1 and wmin = t ≤ w(T ′) ≤ t = wmax. Therefore, w(T ′) = t. Since the
value and weight of each node of T are the same by the reduction, we have
d(T ′) = v∈V (T ′) valv

w(T ′) = t
t = 1. Therefore, the corresponding elements of the

leaves of T ′ form a subset S′ of S whose elements sums to t. ��

By Claim 4.1, we have a polynomial-time reduction from the SUBSET-SUM
problem to the decision version of the weight-constrained maximum-density sub-
tree problem. Therefore, the problem is NP-complete.

4.2 A Polynomial-Time Algorithm for Finding a Weight-
Constrained Maximum-Density Subtree

Here we present an O(wmax
2n)-time algorithm using the dynamic-programming

technique to solve the weight-constrained maximum-density subtree problem on
trees.

We first show that the problem has an optimal substructure property. Recall
that Tv is a descendent-subtree of T rooted at v, and deg(v) is the number of
children of a node v in a rooted tree T . For an internal node v ∈ V (T) with
children v1, v2, . . . , vdeg(v), let Cv

j [i] be the maximum total value of subtrees
rooted at v1, v2, . . . , vj , whose weights sum to i. Also let Bv[i] be the maximum-
value of a subtree of Tv rooted at v, with weight i. We have the following result.

Lemma 4 (optimal substructure). Suppose that T ′ is a weight-constrained
maximum-density subtree of a rooted tree T , and r′ is the root of T ′. Let childT ′

(r′) = {v1, v2, . . . , vq}(⊆ childT (r′)). Then, T ′ − T ′
vj

is a maximum-density sub-
tree of T − Tvj , rooted at r′, with the weight w(T ′ − T ′

vj
), where 1 ≤ j ≤ q.

For a leaf v of T , we compute Bv[i] = valv if i = wv; and Bv[i] = −∞
for otherwise. For an internal node v with children v1, v2, . . . , vdeg(v), we first
compute Cv

j [0] = 0 and Cv
j [i] for i = 1, . . . , wmax − wv and j = 1, 2, . . . , deg(v),

based on Lemmas ?? and 4 as follows:

Cv
j [i] =

{
max

0≤w≤i
{Cv

j−1[i− w] +Bvj [w]} if 1 < j ≤ deg(v),

Bv1 [i] if j = 1.
(5)

After computing Cv
deg(v)[wmax − wv], we obtain the maximum value of the

subtrees rooted at all the children of v, whose weights from 0 to wmax −wv. We
then compute Bv[i] where i = 0, 1, . . . , wmax as follows:

Bv[i] =

Cv

deg(v)[i− wv] + valv if wv ≤ i ≤ wmax,
0 if i = 0,
−∞ otherwise.

(6)

Finding a Weight-Constrained Maximum-Density Subtree in a Tree 951

We also record the following information for constructing a target tree.

cvj [i] =

k if Cv

j [i] = Cv
j−1[i− k] +Bj[k],

i if j = 1 and Cv
1 exists.

Null otherwise.
(7)

Lemma 5. All the entries Bv[i], Cv
j [i] (cvj [i]) can be computed in O(wmax

2n)
time, where n is the number of nodes of the given tree T .

Proof. For fixed i and j, Cv
j [i] can be determined using O(i) comparisons. Since

0 ≤ i ≤ wmax−wv, it takes O(wmax
2) time to calculate Cv

j [i]. Therefore, comput-
ing Cv

j [i]’s for all internal nodes takes O(wmax
2n) time. According to Equation 7,

all the cvj [i]’s can be determined in O(wmax
2n) time. By Equation 6, we can com-

puted Bv[i] from Cv
deg(v)[i−wv] in O(wmax) time, for all 0 ≤ i ≤ wmax. Therefore,

computing Bv[i]’s for all nodes v takes O(wmaxn) time. Thus the result holds.

An algorithm for computing the density of a weight-constrained maximum-
density subtree in a rooted tree is presented in Figure 2.

Lemma 6. The density of a weight-constrained maximum-density subtree in a
rooted tree can be computed in O(wmax

2n) time.

Proof. The correctness of Algorithm Mdt follows from Equations 5–7. The den-
sity of a weight-constrained maximum-density subtree can be computed using
the formula described in Line 22. We next analyze the time complexity of the
algorithm. Computing level(v)’s for all nodes v in T can be carried out in O(n)
time using the breath-first-search of T . Based on the counting sort to sort n inte-
gers of range [0, n], the decreasing order of all the levels of T can be determined
in O(n) time. Moreover, according to Lemma 5, Lines 2–21 can be implemented
to run in O(wmax

2n) time. In Line 22, computing the desired density takes
O((wmax − wmin)n) time. Therefore, the result holds.

After executing Algorithm Mdt on T , we can also actually find a weight-
constrained maximum-density subtree in a rooted tree T can be found in O(n)
time.

Theorem 3. The weight-constrained maximum-density subtree problem on trees
can be solved in O(wmax

2n) time.

Proof. We first transform a tree T into a rooted one. According to Lemmas 6,
we can solve the problem in O(wmax

2n) time.

5 Finding a Weight-Constrained Maximum-Density
Steiner Tree

In this section, we consider the weight-constrained maximum-density Steiner
tree problem. Given a set of terminals S ⊂ V of a rooted tree T = (V,E), a

952 S.-Y. Hsieh and T.-Y. Chou

Algorithm Mdt(T, r, wmin, wmax)
Input: A tree T rooted at r with n nodes, and two weight bounds wmin and wmax.
Output: The density of a weight-constrained maximum-density subtree in T .

1: compute level(v)’s for all v ∈ V (T)
2: for all v ∈ V (T) in decreasing order of level(v) do
3: if v is a leaf node then
4: Bv[wv] = valv
5: else
6: for j ← 1 to deg(v) do
7: for i← 0 to wmax −wv do
8: if j = 1 then
9: Cv

1 [i]← Bv1 [i]
10: compute cv

1 [i] according to Equation 7
11: else
12: Cv

j [i]← max
0≤w≤i

{Cv
j−1[i− w] + Bvj [w]}

13: compute cv
j [i] according to Equation 7

14: end if
15: end for
16: end for
17: for i← wv to wmax do
18: Bv[i]← Cv

deg(v)[i− wv] + valv
19: end for
20: end if
21: end for

22: return max
v∈V (T)

{ max
wmin≤i≤wmax

i�=0

{Bv[i]
i
}}

Fig. 2. An algorithm for computing the density of a weight-constrained maximum-
density subtree in a rooted tree T

set CS is a connecting set of S if S ⊆ CS and the subgraph (i.e., subtree) of T
induced by CS is connected. The set CS is further said to be minimal if CS − v
is not a connecting set of S for any node v ∈ CS . Note that if the subtree of T
induced by S is connected, then CS = S. For a connecting set CS of a rooted
tree T = (V,E), contracting CS to a supernode s in T is to obtain another tree
T ′ = (V −CS +s, E′), where E′ is obtained by deleting {(x, y)| x ∈ CS or y ∈ CS}
from E and adding one new edge (x, s) for each edge (x, y), where x /∈ CS and
y ∈ CS . Assume that Q = {(x, y)| x /∈ CS and y ∈ CS}. There are totally |Q|
created edges.

The key concept of our algorithm is first to root the given tree on an arbitrary
node v in terminal set S. We then find a minimal connecting set CS , and contract
it to a super-node s. This can be implemented in O(n) time. Note that s is
the root of the resulting tree T ′. The value-weight pair associated with s is
(vals, ws) = (

∑
v∈CS

valv,
∑

v∈CS
wv). By executing Algorithm Mdt on T ′, we

can find a weight-constrained maximum-density subtree rooted at s, denoted by

Finding a Weight-Constrained Maximum-Density Subtree in a Tree 953

T s. A weight-constrained maximum-density Steiner tree is thus the subtree of T
induced by V (T s) − s+ CS .

Theorem 4. The weight-constrained maximum-density Steiner tree problem on
trees can be solved in O(wmax

2n) time.

References

1. K. M. Chung and H. I. Lu, “An optimal algorithm for the maximum-density seg-
ment problem,” SIAM Journal on Computing, 34(2):373–387, 2004.

2. M. H. Goldwasser, M. Y. Kao, and H. I. Lu, “Fast algorithms for finding maximum-
density segments of a sequence with applications to bioinformatics,” Proceedings
of the Second International Workshop of Algorithms in Bioinformatics, Lecture
Notes in Computer Science 2452, pp. 157–171, Rome, Italy, 2002, Springer-Verlag.

3. X. Huang, “An algorithm for identifying regions of a DNA sequence that satisfy
a content requirement,” Computer Applications in the Biosciences, 10(3):219–225,
1994.

4. R. B. Inman, “A denaturation map of the 1 phage DNA molecule determined by
electron microscopy,” Journal of Molecular Biology, 18:464–476, 1966.

5. S. K. Kim, “Linear-time algorithm for finding a maximum-density segment of a
sequence,” Information Processing Letters, 86(6):339–342, 2003.

6. Y. L. Lin, X. Huang, T. Jiang, and K. M. Chao, “MAVG: locating non-overlapping
maximum average segments in a given sequence,” Bioinformatics, 19(1):151–152,
2003.

7. Y. L. Lin, T. Jiang, and K. M. Chao, “Algorithms for locating the length-
constrained heaviest segments, with aplications to biomolecular sequences anal-
ysis,” Journal of Computer and System Sciences, 65(3):570–586, 2002.

8. R. R. Lin, W. H. Kuo, and K. M. Chao, “Finding a length-constrained maximum-
density path in a tree,” Journal of Combinatorial Optimization, 9(2):147–156, 2005.

9. G. Macaya, J. P. Thiery, and G. Bernardi, “An approach to the organization
of eukaryotic genomes at a macromolecular level,” Journal of Molecular Biology,
108:237-254, 1976.

10. A. Nekrutenko and W. H. Li, “Assesment of compositional heterogeneity within
and between eukaryotic genomes,” Genome Research, 10:1986-1995, 2000.

11. P. Rice, I. Longden, and A. Bleasby, “EMBOSS: The European molecular biology
open software suite,” Trends in Genetics, 16(6):276-277, 2000.

12. N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodman, W.
Miller, and R. Hardison, “Comparison of five methods for finding conserved se-
quences in multiple alignments of gene regulatory regions,” Nucleic Acids Research,
27:3899-3910, 1999.

13. D. B. West, Introduction to Graph Theory, 2nd ed, Prentice Hall, Upper Saddle
River, NJ, 2001.

14. B. Y. Wu, K. M. Chao, and C. Y. Tang, “An efficient algorithm for the length-
constrained heaviest path problem on a tree,” Information Processing Letters,
69:63-67, 1999.

Finding Two Disjoint Paths in a Network with
Normalized α+-MIN-SUM Objective Function

Bing Yang1, S.Q. Zheng1, and Enyue Lu2

1 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75083-0688, USA

binyang@cisco.com, sizheng@utdallas.edu
2 Mathematics and Computer Science Department, Salisbury University,

Salisbury, MD 21801, USA
ealu@salisbury.edu

Abstract. Given a number α with 0 < α < 1, a network G = (V, E)
and two nodes s and t in G, we consider the problem of finding two
disjoint paths P1 and P2 from s to t such that length(P1) ≤ length(P2)
and length(P1) + α · length(P2) is minimized. The paths may be node-
disjoint or edge-disjoint, and the network may be directed or undirected.
This problem has applications in reliable communication. We prove an
approximation ratio 1+α

2α
for all four versions of this problem, and also

show that this ratio cannot be improved for the two directed versions un-
less P = NP. We also present Integer Linear Programming formulations
for all four versions of this problem. For a special case of this problem,
we give a polynomial-time algorithm for finding optimal solutions.

1 Introduction

A reliable telecommunication network, which is modeled by a graph G = (V,E),
is designed in such a way that multiple connections exist between every pair
of communicating nodes. Usually, paths are selected according to an objective
function. Each edge e in G is assigned a nonnegative length l(e), which reflects
the resource and/or performance associated with the edge, such as cost, distance,
latency, etc. We use l(P) to denote the length of path P . To avoid single point
of failure, the paths may be node-disjoint or edge disjoint, and the network may
be directed or undirected. Thus, a problem of finding disjoint paths has four
versions, namely

– node-disjoint paths in directed graphs (ND-D multiple-path problem);
– edge-disjoint paths in directed graphs (ED-D multiple-path problem);
– node-disjoint paths in undirected graphs (ND-UD multiple-path problem);
– edge-disjoint paths in undirected graphs (ED-UD multiple-path problem).

Various problems of finding optimized disjoint paths between two nodes s
and t in G have been investigated. Ford and Fulkson gave a polynomial-time
algorithm for finding two paths with minimum total length (called MIN-SUM 2-
Path Problem), using the algorithm of finding minimum weighted network flows

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 954–963, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Finding Two Disjoint Paths in a Network 955

[3] for all four versions. Suurballe and Tarjan provided different treatment, and
presented algorithms that are more efficient [11] [12]. Li et al. proved that all four
versions of the problem of finding two disjoint paths such that the length of the
longer path is minimized (called the MIN-MAX 2-Path Problem) are strongly
NP-complete [4]. They also considered a generalized MIN-SUM problem (which
we call the G-MIN-SUM k-Path Problem) assuming that each edge is associated
with k different lengths. The objective of this problem is to find k disjoint paths
such that the total length of the paths is minimized, where the jth edge-length
is associated with the jth path. They showed that all four versions of the G-
MIN-SUM k-path problem are strongly NP-complete even for k = 2 [5].

In [7], we considered the problem of finding two disjoint paths such that
the length of the shorter path is minimized (MIN-MIN 2-Path Problem). We
showed that all four versions of the MIN-MIN 2-path problem are strongly
NP-complete[7]. In the same paper, we also showed there does not exist any
polynomial-time approximation algorithm with a constant approximation ratio
for any of these four versions of the MIN-MIN 2-path problem unless P = NP .
In this paper we consider a generalized weighted 2-path problem. Let P1 and
P2 be two disjoint paths from s to t in a given graph G, and α a non-negative
value. Define

Lα(P1, P2) = l(P1) + α · l(P2).

Our objective is to find two disjoint paths P1 and P2 such that Lα(P1, P2) is
minimized. We call this problem the α-MIN -SUM 2-Path Problem. According
to the relative values of P1 and P2, this problem can be treated as having two
versions. One is to minimize

Lα−(P1, P2) = max{l(P1), l(P2)} + α · min{l(P1), l(P2)},
and the other is to minimize

Lα+(P1, P2) = min{l(P1), l(P2)} + α · max{l(P1), l(P2)}.
We name the former as the α−-MIN-SUM 2-path problem, and the latter

as the α+-MIN-SUM 2-path problem. It is clear that if α = 0, the α−-MIN-
SUM 2-path problem, and the α+-MIN-SUM 2-path problem degenerates to the
MIN-MAX 2-path problem and MIN-MIN 2-path problem, respectively, which
are NP-complete for all four versions. But if α = 1, both degenerate to the MIN-
SUM 2-path problem, which is polynomial-time solvable. Investigation on the α-
MIN-SUM 2-path problem is of theoretical interest: what are the computational
complexities of the α-MIN-SUM 2-path problem with 0 < α < 1? Since

l(P1) + α · l(P2) = α ·
(

1
α

· l(P1) + l(P2)
)
,

an α-MIN-SUM problem with α ≥ 1 can be transformed into a problem with
α ≤ 1. Hence, it is sufficient to only consider the problem with 0 < α ≤ 1.
Hence, it is sufficient to only consider the problem with 0 < α ≤ 1. We call

956 B. Yang, S.Q. Zheng, and E. Lu

the α−-MIN-SUM 2-path problem (resp. α+-MIN-SUM 2-path problem) with
0 ≤ α ≤ 1 the normalized α−-MIN-SUM 2-path problem (resp. normalized α+-
MIN-SUM 2-path problem). The relationship among these 2-path problems is
shown in Figure 1.

α--MIN-SUM

α+-MIN-SUM

α--MIN-SUM

α+-MIN-SUM

MIN-MAX

MIN-MIN

normalized

normalized

α = 1

α = 1

α = 0

α <= 1

α <= 1

α >= 1

α = 0

α >= 1
MIN-SUM

Fig. 1. Relations among various 2-path problems

In [4], Li et al. showed that the ED-D and ND-D versions of the normal-
ized α+-MIN-SUM are NP-complete. In [8], we showed that all four versions of
the normalized α−-MIN-SUM 2-path problem are NP-complete. We also showed
that an approximation ratio 2

1+α can be achieved for all four versions of the nor-
malized α−-MIN-SUM 2-path problem by using MIN-SUM 2-path solutions to
approximate normalized α−-MIN-SUM solutions, and proved that for directed
graphs there does not exist any polynomial-time approximation algorithm guar-
anteeing an approximation ratio smaller than 2

1+α unless P = NP .
In this paper, we show that an approximation ratio 1+α

2α can be achieved for
all four versions of the normalized α+-MIN-SUM 2-path problem, and prove
that for directed graphs there does not exist any polynomial-time approxima-
tion algorithm guaranteeing an smaller approximation ratio. We also present
Integer Linear Programming formulations for finding optimal solutions for all
four versions of the normalized α+-MIN-SUM 2-path problem. For special cases
of the ND-D and ED-D versions on acyclic graphs, we provide a polynomial-time
algorithm for finding optimal solutions.

2 Approximation Analysis

The ND-D and ED-D versions of the normalized α+-MIN-SUM 2-path problem
have been proved to be NP-complete by Li et al. in [4]. We conjecture that the
ND-UD and ED-UD versions of the normalized α+-MIN-SUM 2-path problem
are also NP-complete, but we have not been able to provide a proof.

In this section, we consider the problem of finding approximation solutions of
the normalized a+-MIN-SUM 2-path problem. We say that an instance of the
normalized α+-MIN-SUM 2-path problem is feasible if for which a feasible solu-
tion exists. We say that there exists an approximation algorithm with approxi-
mation ratio for the normalized α+-MIN-SUM 2-path problem Π if there exists a
polynomial-time algorithm A such that for the feasible instance space I of Π

Finding Two Disjoint Paths in a Network 957

l(P1) + α · l(P2)
l(P ∗

1) + α · l(P ∗
2)

≤ E, (1)

where (P1, P2) is the solution produced by algorithm A, (P ∗
1 , P

∗
2) is an optimal

solution, and E is an constant. We have the following results.

Lemma 1. For any 0 < β < γ < 1, let (P β
1 , P

β
2) and (P γ

1 , P
γ
2) denote any

optimal solution for the normalized α+-MIN-SUM 2-path problem with α = β

and α = γ, respectively. Then, l(P γ
1)+β·l(P γ

2)
l(P β

1)+β·l(P β
2)

≤ γ(1+β)
β(1+γ) .

Theorem 1. The optimal solution for the MIN-SUM 2-path problem corre-
sponding to the normalized α+-MIN-SUM 2-path problem is an approximation
solution to the normalized α+-MIN-SUM 2-path problem with an approximation
ratio 1+α

2α .

Theorem 2. For the two directed versions of the normalized α+-MIN-SUM 2-
path problem, if there exists a polynomial-time approximation algorithm with an
approximation ratio smaller than 1+α

2α , then P = NP.

Due to page limit, we omit formal proofs in the entire paper.

3 Integer Programming Solutions

The approximation ratio 1+α
2α , which cannot be improved for ND-D and ED-G

versions of the normalized α+-MIN-SUM 2-path problem assuming P �= NP ,
can be very large when α becomes small. When the input graph is not so large,
and there is a need to find an optimal solution, integer linear programming
(ILP) may be useful. In this section, we formulate all versions of the normalized
α+-MIN-SUM 2-path problem as ILP problems. Though these ILP problems,
which belong to the class of minimum cost unsplittable flow problems (defined
by Kleinberg [13]), are also NP-complete in general, some of their instances
may be practically solvable using commercially available software packages with
speed-up heuristics (e.g. [14][15]).

3.1 Edge-Disjoint Paths in Directed Graphs

We use network flow approach to solve the normalized α+-MIN-SUM 2-path
problem. For easy presentation, we use ci to denote the length of edge ei; i.e.
ci = l(ei) in this section.

Linear Programming Formulation of MIN-SUM 2-Path Problem. Some
of network path problems are solvable using linear programming (LP), and the
MIN-SUM 2-path problem is one of such problems. This is a classical formulation
[9]. Let P = (ej1 · · · ejk

) be a path from s to t in G. The cost of P is:

c(P) =
k∑

i=1

cji

958 B. Yang, S.Q. Zheng, and E. Lu

For a directed graph G of n nodes and m edges, we define its n×m node-edge
incidence matrix A = [aij] by

aij =

+1 if directed edge (arc) ej is incident out

of node i
−1 if directed edge (arc) ej is incident into

node i
0 otherwise

Let c and f be the vectors of the cost and the flow on the edges. Then an LP
formulation for the MIN-SUM 2-path problem is given as follows:

min z = cT f

Af =

+2
−2

0
0
0
0

0 ≤ fi, 1 ≤ i ≤ m

(2)

Integer Linear Programming Formulation for the Normalized α+-
MIN-SUM 2-Path Problem with α = 1

2 . We intend to use a similar method
as Equation (2) to solve the normalized α+-MIN-SUM 2-path problem. We in-
troduce the following constraints as the first requirement that ensures the flows
on two edge-disjoint paths to be 1 and 2, respectively:

Af =

+3
−3

0
...
0

fi ≤ 2
fi ∈ Z, 1 ≤ i ≤ m

(3)

Z is the set of non-negative integers. In addition, we need to prevent the cases of
path splicing and path splitting. We introduce a column vector g to characterize
the number of inputs on nodes, and add following constraints:

Ag =

+2
−2

0
...
0

gi ≤ 1
gi ∈ Z, 1 ≤ i ≤ m

(4)

Then, minimizing the total cost of min{P1, P2} + 1
2 max{P1, P2} is enforced by

using flow ratio 1 : 2. However, as g defines two disjoint paths, we want to further

Finding Two Disjoint Paths in a Network 959

enforce the paths given by f are exactly the same as those given by g. It can be
easily done by adding {

fi − gi ≥ 0
2gi − fi ≥ 0

Combining all above constraints, we have an ILP formulation

min z = cT f

Af =

+3
−3

0
...
0

, Ag =

+2
−2

0
...
0

fi − gi ≥ 0, 2gi − fi ≥ 0, gi ≤ 1
fi, gi ∈ Z, 1 ≤ i ≤ m

(5)

Theorem 3. For α = 1
2 , we can solve the normalized ED-D α+-MIN-SUM 2-

path problem by solving the corresponding ILP problem formulated by Equation
(5). The two disjoint paths P ∗

1 and P ∗
2 consist of the edges with flow 2 and edges

with flow 1, respectively, in the optimal solution of the ILP. Its actual optimal
value is 1

2 of the optimal value of the corresponding ILP solution.

Integer Linear Programming Formulation for the Normalized α+-
MIN-SUM 2-Path Problem with α = 1

M
. Now we consider a more general

case that α = 1
M , with M being an integer greater than 1. We use the same tech-

nique as previous section to tackle the problem: let first path have flow value
M and the second path have flow value 1. Then, we have the following ILP
formulation:

min z = cT f

Af =

+(M + 1)
−(M + 1)

0
...
0

, Ag =

+2
−2

0
...
0

fi − gi ≥ 0, Mgi − fi ≥ 0, gi ≤ 1
fi, gi ∈ Z, 1 ≤ i ≤ m

(6)

Theorem 4. For α = 1
M , we can solve the normalized ED-D α+-Min-Sum 2-

path problem by solving the corresponding ILP problem formulated by Equation
(6). Its actual optimal value is 1

M of the optimal value of the corresponding ILP
solution. The two paths can be constructed from the solution of Equation (6) by
the following operations:

(i) Remove all the edges with flow 0 from the graph.
(ii) Find the shortest path from s to t in the remaining graph, which is P ∗

1 .
(iii) The second path P ∗

2 consists of all the remaining edges.

960 B. Yang, S.Q. Zheng, and E. Lu

Integer Linear Programming Formulation for the Normalized α+-
MIN-SUM 2-Path Problem with α = N

M
. Now we consider the situations

that α is a rational number; i.e. α = N
M with N and M being integers and

N < M . The idea is to find two disjoint paths such that the first carries flow M ,
and the second carries flow N . This can be reduced to the problem with α = 1

M
as follows: (a) Let X = N − 1 and Y = M − (N − 1), and find 2 disjoint paths
with flows Y and 1; and (b) add flow X to both paths. The corresponding ILP
formulation is:

min z = XcT g + cT f

Af =

+(Y + 1)
−(Y + 1)

0
...
0

, Ag =

+2
−2

0
...
0

fi − gi ≥ 0, Y gi − fi ≥ 0, gi ≤ 1
fi, gi ∈ Z, 1 ≤ i ≤ m

(7)

Theorem 5. If Equation (7) has an optimal solution z∗ = min z, then the nor-
malized ED-D α+-MIN-SUM 2-path problem with α = 1

M has an optimal solution
with total length 1

M z∗, and the two paths can be constructed from the solution of
Equation (6) by the following operations:

(i) Remove all the edges with flow 0 from the graph.
(ii) Find the shortest path from s to t in the remaining graph, which is P ∗

1 .
(iii) The second path P ∗

2 consists of all the remaining edges.

Integer Linear Programming for the normalized α+-MIN-SUM 2-Path
Problem with Irrational α. For the case with α being an irrational number,
we could not use our previous technique. For all practical purposes, however, we
do not need to worry about this for the following two reasons:

(i) All the numbers represented in computer systems are rational numbers.
(ii) It is easy to use rational numbers to approximate irrational numbers.

3.2 ND-D, ED-UD and ND-UD Versions

We can reduce the ND-D version of the normalized α+-MIN-SUM 2-path prob-
lem to the ED-D version using the well-known node-splitting technique.

Given a directed graph G, we obtain a directed graph G′ as follows: replace
each node v (except s and t) by two nodes v′ and v′′ such that all edges ter-
minating at v are now terminating at v′, and all edges originating from v are
now originating from v′′; in addition, there add exactly one edge from v′ to v′′

(see Figure 2). Clearly, the problem of finding node-disjoint paths in G is equiv-
alent to the problem of finding edge-disjoint paths in G′. Then we can apply the
methods discussed in previous section by assigning cost 0 and capacity ∞ to all
newly introduced edges (due to node-splitting).

Finding Two Disjoint Paths in a Network 961

(a) (b)

v"v’v

Fig. 2. (a) Before node split. (b) After node split.

The ED-UD and ND-UD versions of the normalized α+-MIN-SUM 2-path
problem can be easily reduced to the ED-D and ND-D versions by converting
an undirected graph G to a directed graph G′, with each undirected edge in G
replaced by two directed edges with opposite directions.

4 Polynomial-Time Algorithm for Acyclic Directed Case

For the special case of the normalized α+-MIN-SUM 2-path problem on acyclic
directed graphs, there exists a polynomial-time algorithm to find optimal solu-
tions. The algorithm is obtained by extending Perl and Shiloach’s algorithm for
finding two disjoint paths between two sources and two destinations on acyclic
directed graphs [9].

For the acyclic ND-D version, we adopt a technique used in a pseudo-
polynomial time algorithm of [4]. Given an acyclic directed graph G = (V,E)
and source s and destination t, we can relabel nodes with number 1 to |V | to
ensure that any edge u → v in E satisfies u < v, s = 1 and t = |V | [9] (it is
assumed that s → t �∈ E; otherwise we can add a node u and replace s → t by
s → u and u → t). After the relabeling, we can transform graph G to an acyclic
directed graph G = (V ,E), whose nodes are arranged as a |V | × |V | array, as
follows:

V = {〈u, v〉|u, v ∈ V , and u �= v unless u = v = s or u = v = t}
E = {〈u, v〉 → 〈u,w〉|v → w ∈ E and v ≤ u}
∪{〈v, u〉 → 〈w, u〉|v → w ∈ E and v ≤ u}
Assign the lengths to edges in G as follows:
l(〈u, v〉 → 〈u,w〉) = α · l(v → w), and
l(〈v, u〉 → 〈w, u〉) = l(v → w).

Figure 3 shows an example of G and its corresponding G.
We call x and y of a node 〈x, y〉 in G the first and second label of the node,

respectively. Given a path P = 〈u1, v1〉 → 〈u2, v2〉 → · · · → 〈um, vm〉 from
〈1, 1〉 to 〈|V |, |V |〉 in G, let H(P) and V (P) be the set of horizontal and verti-
cal edges in P respectively. Define V1(P) = (ui,1, ui,2, · · · , ui,k) (resp. V2(P) =
(vj,1, vj,2, · · · , vj,k′)) as the sequence of distinct first (resp. second) labels of nodes
in V (P) (resp. H(P)). By a straightforward extension of the results of [9], we
know that there exist two node-disjoint paths P1 = ui,1 → ui,2 → · · · → ui,k

and P2 = vj,1 → vj,2 → · · · → vj,k′ from s to t (from 1 to |V | after relabel-
ing) in G if and only if there exists a path P from 〈1, 1〉 to 〈|V |, |V |〉 such that
V1(P) = ui,1 → ui,2 → · · · → ui,k and V2(P) = vj,1 → vj,2 → · · · → vj,k′ .
That is, P1 and P2 correspond to the vertical edges and horizontal edges in

962 B. Yang, S.Q. Zheng, and E. Lu

2α

α

α

α

α α

α

α

α

α

α

α αα

α α

α

α

2α

2α

α

2

1 1

1 11

(b)

<1,5> <1,6>

<2,4> <2,6>

<3,4> <3,6>

<6,5>

<1,1> <1,2> <1,3> <1,4>

<2,1> <2,3> <2,5>

<3,1> <3,2> <3,5>

<4,1> <4,2> <4,3> <4,5> <4,6>

<5,2> <5,3) <5,4> <5,6><5,1>

<6,1> <6,2> <6,3> <6,4> <6,6>

1

1

1

1 1

11

1 1

1

11

1

1

1

1

1

1

2 2 2

1 2 3

4 5 6

(a)

1

Fig. 3. (a) An acyclic graph G. (b) Graph G of (a)

P , respectively. In the example of Figure 3, there are two node-disjoint paths
P1 = 1 → 4 → 5 → 6 and P2 = 1 → 2 → 3 → 6 in G of (a). The corresponding
path in G is P = 〈1, 1〉 → 〈4, 1〉 → 〈4, 2〉 → 〈4, 3〉 → 〈4, 6〉 → 〈5, 6〉 → 〈6, 6〉, as
shown in (b).

Let P
∗

be a shortest path from 〈1, 1〉 to 〈|V |, |V |〉 in G. By the edge length
assignment of G, the two paths P1 and P2 corresponding to V1(P

∗
) = (ui,1, ui,2,

· · · , ui,k) and V2(P
∗
) = (vj,1, vj,2, · · · , vj,k′), respectively, form an optimal node-

disjoint solution, and furthermore, l(P1) ≤ l(P2). Based on these discussions, we
have the following 3-step algorithm:

1. Transform the given acyclic directed graph G into its corresponding graph
G, with all its edges assigned lengths as defined above.

2. Use Dijkstra’s shortest-path algorithm to find a shortest path P from 〈s, s〉
to 〈t, t〉 in G. If such a path does not exist, then two node-disjoint paths do
not exist in G.

3. The sets of vertical edges and the horizontal edges in P correspond to two
node-disjoint paths from s to t in G, which is a optimal solution.

Clearly, step 1) can be done in O(|V |·|E|) time, step 2) can be done in O(|V |4)
time, and step 3) can be done in O(|V |).

For the acyclic ED-D version, we directly apply a technique of [4] that trans-
forms the acyclic edge-disjoint case to the acyclic node-disjoint case, and then
apply the algorithm presented in the previous section. First, we transform the
given graph G = (V,E) to a corresponding directed line-graph G [1], which con-
tains O(|E|) nodes and O(|V |) edges. This can be done in O(|E|) time. Then,
finding two node-disjoint paths in G can be done in O(|E|4) time. For details,
refer to [4].

Finding Two Disjoint Paths in a Network 963

5 Concluding Remarks

A few problems remain open. Are the ED-UD and ND-UD versions of the nor-
malized α+-MIN-SUM 2-path problem also NP-complete? If the answer is affir-
mative, is the approximation ratio 1+α

2α also best possible? For what other special
graphs polynomial-time algorithms exist?

References

1. F. Harary, Graph Theory, Addison-Wesley, 1972.
2. S. Even, Graph Algorithms, Computer Science (1979).
3. L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton, 1962.
4. C. L. Li, S. T. McCormick, and D. Simchi-Levi, “The Complexity of Finding Two

Disjoint Paths with Min-Max Objective Function”, Discrete Appl. Math. 26(1)
(1990), 105-115.

5. C. L. Li, S. T. McCormick, and D. Simchi-Levi, “Finding Disjoint Paths with
Different Path-Costs: Complexity and Algorithms”, Networks, 22 (1992), 653-667.

6. S. Fortune, J. Hopcroft, and J. Wyllie, “The directed subgraph homeomorphism
problem”, Theoret. Comput. Sci., 10 (1980), 111-121.

7. B. Yang, S.Q. Zheng and S. Katukam, “Finding Two Disjoint Paths in a Network
with Min-Min Objective Function”, Proceedings of the 15th IASTED International
Conference on Parallel and Distributed Computing and Systems, (2003), 75-80.

8. B. Yang, S.Q. Zheng and E. Lu, “Finding Two Disjoint Paths in a Network with
Normalized α−-Min-Sum Objective Function”, Manuscript.

9. Y. Perl and Y. Shiloach, “Finding Two Disjoint Paths between Two Pairs of Ver-
tices in a Graph”, J. ACM, 25(1) (1978), 1-9.

10. Y. Shiloach, A polynomial solution to the undirected two paths problem. J. ACM
27(3) (1980) 445-456.

11. J. W. Suurballe, “Disjoint Paths in a Network”, Networks 4 (1974), 125-145.
12. J. W. Suurballe and R. E. Tarjan, “A Quick Method for Finding Shortest Pairs of

Disjoint Paths”, Networks 14 (1984), 325-336.
13. J. M. Kleinberg, “Single-source unsplittable flow.”, Proceedings of the 37th Annual

Symposium on foundations of Computer Science (1996) 68-77.
14. F. Fallah, S. Liao, S. Devadas, “Solving Covering Problems Using LPR-Based

Lower Bounds”, IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 8(1) (2000), 9-17.

15. F. Fallah, S. Devadas, K. Keutzer, “Functional Vector Generation for HDL Mod-
els Using Linear Programming and Boolean Satisfiability”, IEEE Transactions on
computer Aided Design of Integrated Circuits and Systems, 20(8) (2001), 994-1002.

Sensitivity Analysis of Minimum Spanning Trees
in Sub-inverse-Ackermann Time

Seth Pettie

Max Planck Institut für Informatik

Abstract. We present a deterministic algorithm for computing the
sensitivity of a minimum spanning tree or shortest path tree in
O(m log α(m, n)) time, where α is the inverse-Ackermann function. This
improves upon a long standing bound of O(mα(m, n)) established by
Tarjan. Our algorithms are based on an efficient split-findmin data struc-
ture, which maintains a collection of sequences of weighted elements
that may be split into smaller subsequences. As far as we are aware,
our split-findmin algorithm is the first with superlinear but sub-inverse-
Ackermann complexity.

1 Introduction

Split-findmin is a little known but key data structure in modern graph opti-
mization algorithms. It was originally designed for use in the weighted matching
and undirected all-pairs shortest path algorithms of Gabow and Tarjan [9, 12]
and has since been rediscovered as a critical component of the hierarchy-based
shortest path algorithms of Thorup [33], Hagerup [15], Pettie-Ramachandran
[28], and Pettie [24, 22, 23]. In this paper we apply split-findmin to the problem
of performing sensitivity analysis on minimum spanning trees (MST) and short-
est path trees. The MST sensitivity analysis problem is, given a graph G and
minimum spanning tree T = MST(G), to decide how much each individual edge
weight can be perturbed without invalidating the identity T = MST(G).

A twenty year old result of Tarjan [32] shows that MST sensitivity analysis
can be solved in O(mα(m,n)) time, where m and n are the number of edges and
vertices and α the inverse-Ackermann function. Furthermore, he showed that
single-source shortest path sensitivity analysis can be reduced to MST sensi-
tivity analysis in linear time. Tarjan’s algorithm has not seen any unqualified
improvements, though Dixon et al. [7] did present two MST sensitivity algo-
rithms, one running in expected linear time and another which is deterministic
and provably optimal, but whose complexity is only known to be O(mα(m,n)).

In this paper we present a simpler and faster MST sensitivity analysis al-
gorithm running in time O(m logα(m,n)). Given the notoriously slow growth
of the inverse-Ackermann function, an improvement on the order of α/ logα is
unlikely to have a devastating real-world impact. Although our algorithm is sub-
stantially simpler than that of [7] and may very well be empirically faster than
the competition, its real significance has little to do with practical issues, nor
does it have much to do with the sensitivity problem as such. As one may observe

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 964–973, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sensitivity Analysis of Minimum Spanning Trees 965

in Figure 1, the MST sensitivity analysis problem is related, via a tangled web
of reductions, to many fundamental algorithmic and data structuring problems.
Among those depicted in Figure 1, the two most important unsolved problems
are set maxima and the minimum spanning tree problem. MST sensitivity can
be expressed as a set maxima problem. In this paper we show that MST sen-
sitivity is reducible to both the minimum spanning tree problem itself and the
split-findmin data structure. These connections suggest that it is impossible to
solve such important optimization problems as minimum spanning trees and
single-source shortest paths without first understanding why a manifestly sim-
pler problem like MST sensitivity still eludes us. We view the MST sensitivity
analysis problem as an ideal test bed for experimenting with possible approaches
to solving its more difficult, high profile cousins.

Organization. In Section 1.1 we define all the MST related problems and data
structures mentioned in Figure 1. In Section 2 we define the split-findmin data
structure and give a new algorithm for MST sensitivity analysis. In Section 3 we
present a faster split-findmin data structure.

Minimum Spanning Tree

MST-Verification-Nontree

MST-Verification-Tree

MST-Sensitivity-Nontree MST-Sensitivity-Tree

Set Maxima

Soft Heap Verification

Online MST Verification

Interval-Max Data Struct.

LCA Data Struct.

SSSP Sensitivity

Split-Findmin Data Struct.

Undirected single-source shortest paths

(Un)Directed all-pairs shortest paths

Weighted matching

R
andom

ized:O
(m

)
w

.h.p.
D

eterm
inistic:

optim
albut

unknow
n

straightline
programs

randomized

+O(n log n)

O
(m

α
(m

,n
))

Θ
(m

)
Θ

(m
)

Θ
(m

α
(m

,n
))

O
(m

log
α
(m

,n))

Fig. 1. The incestuous family of minimum spanning tree related problems. Here A −→
B means that problem B can be solved by an algorithm that uses standard linear-time
routines (graph contraction, least common ancestor computations, etc.) plus calls to
an algorithm for problem A. The dashed arrows emanating from split-findmin are only
meant to illustrate other applications of the data structure. Some arrows are labeled
with properties of the reduction. For instance, the reduction [16] from the minimum
spanning tree problem to MST verification of non-tree edges is randomized.

966 S. Pettie

1.1 The Problems

Minimum Spanning Tree. Given a connected undirected graph G =
(V,E,w), find the spanning tree T ⊆ E minimizing w(T) =

∑
e∈T w(e).

For simplicity, assume throughout that edge weights are distinct. In find-
ing and verifying MSTs there are two useful properties to keep in mind.
Cut property: The lightest edge crossing the cut (V ′, V \V ′) is in MST(G),
for any V ′ ⊂ V . Cycle property: The heaviest edge on any cycle is not in
MST(G). The best bound on the deterministic complexity of this problem
is O(mα(m,n)), due to Chazelle [5]. Pettie and Ramachandran [26] gave a
deterministic, provably optimal algorithm whose running time is asymptotic
to the decision-tree complexity of the minimum spanning tree problem it-
self. Karger et al. [16] presented a randomized MST algorithm running in
expected linear time. Since the only non-trivial component of this algorithm
is a minimum spanning tree verification procedure, Figure 1 depicts this re-
sult as a randomized reduction from MST to MST verification. Pettie and
Ramachandran [27] presented alternative MST algorithms that run in ex-
pected linear time but use far fewer random bits. See Graham and Hell [14]
for a survey on the early history of the MST problem and Pettie [23–Chapter
7] for a recent survey.

MST Verification. We are given a graph G = (V,E,w) and a (not necessarily
minimum) spanning tree T ⊂ E. For e �∈ T let C(e) ∪ {e} be the unique
cycle in T ∪ {e} and for e ∈ T let C−1(e) = {f �∈ T : e ∈ C(f)}. That is,
C(e) is the path in T connecting the endpoints of e and C−1(e) is the set
of non-tree edges crossing the cut defined by T \{e}. In the non-tree-edge
half of the problem we decide for each e �∈ T whether e ∈ MST(T ∪ {e}),
which is tantamount to deciding whether w(e) < maxf∈C(e){w(f)}. The
tree-edge version of the problem is dual: for each e ∈ T we decide whether
w(T \{e} ∪ {f}) < w(T) for some f ∈ C−1(e).

MST/SSSP Sensitivity Analysis. We are given a weighted graphG and tree
T = MST(G). The sensitivity analysis problem is to decide how much each
individual edge weight can be altered without invalidating the identity T =
MST(G). We must compute for each edge e:

sens(e) =

maxf∈C(e){w(f)} for e �∈ T

minf∈C−1(e){w(f)} for e ∈ T

where min ∅ = ∞. By the cut and cycle properties it follows that a non-
tree edge e can be increased in weight arbitrarily or reduced by less than
w(e) − sens(e). Similarly, if e is a tree-edge it can be reduced arbitrarily or
increased by less than sens(e) − w(e).
Komlós [19] demonstrated that verification and sensitivity analysis of non-
tree edges requires a linear number of comparisons. Linear time implementa-
tions of Komlós’s algorithm were provided by Dixon et al. [7], King [18],
and Buchsbaum et al. [3]. In earlier work Tarjan [30] gave a verifica-
tion/sensitivity analysis algorithm for non-tree edges that runs in time

Sensitivity Analysis of Minimum Spanning Trees 967

O(mα(m,n)) and showed, furthermore, that it could be transformed [32]
into a verification/sensitivity analysis algorithm for tree edges with identical
complexity.

Online MST Verification. Given a weighted tree T we must preprocess it
in some way so as to answer online queries of the form: for e �∈ T , is e ∈
MST(T ∪ {e})? The query edges e are not known in advance. Pettie [21]
proved that any data structure answering m queries must take Ω(mα(m,n))
time, where n is the size of the tree. This bound is tight [4, 1].

Soft Heap Verification. Pettie and Ramachandran [27] consider a generic soft
heap (in contrast to Chazelle’s concrete data structure [6]) to be any data
structure that supports the priority queue operations insert, meld, delete,
and findmin, without the obligation that findmin queries be answered cor-
rectly. Given a transcript of priority queue operations, including their ar-
guments and outputs, some elements may bear witness to the fact that a
particular findmin query was answered incorrectly. These elements are said
to be corrupted. The soft heap verification problem is to determine the cor-
rupted elements and more generally, to compute the minimum amount that
every element needs to be increased such that all findmin queries are an-
swered correctly. It was observed in [27] that there are mutual reductions
between soft heap verification and MST sensitivity (non-tree edges), and
consequently, that soft heap verification can be solved in linear time.

Online Interval-Max. The problem is to preprocess a sequence (e1, . . . , en) of
elements from a total order such that for any two indices < r, max�≤i≤r{ei}
can be reported quickly. It is known [10, 19, 2] that answering interval-max
or -min queries is exactly the problem of answering least common ancestor
(LCA) queries and that with linear preprocessing both types of queries can
be handled in constant time. Katriel et al. [17] also proved that with an ad-
ditional O(n log n) time preprocessing, the Online MST Verification problem
can be reduced to Online Interval-Max.

Set Maxima. The input is a set system (or hypergraph) (χ,S) where χ is a
set of n weighted elements and S = {S1, . . . , Sm} is a collection of m subsets
of χ. The problem is to compute {maxS1, . . . ,maxSm} by comparing ele-
ments of χ. Goddard et al. [13] gave a randomized algorithm for set maxima
that performs O(min{n log(2 �m/n�), n logn}) comparisons, which is opti-
mal. Although the dependence on randomness can be reduced [25], no one
has yet to produce a non-trivial deterministic algorithm. The current bound
of min{n logn,

∑m
i=1 |Si|, n + m2m} comes from applying one of three triv-

ial algorithms. All instances of MST verification and sensitivity analysis are
reducible to set maxima. In the non-tree-edge version of these problems n
and m refer to the number of vertices and edges, respectively, and in their
tree-edge versions the roles of n and m are reversed.

Split-Findmin. A precise definition of this structure appears in Section 2.
Split-findmin may be regarded as a weighted version of split-find [20], which
is itself a time-reversed version of union-find [29]. On a pointer machine
union-find, split-find, and split-findmin all have Ω(n + mα(m,n)) lower
bounds [31, 20], where m is the number of operations and n the size of the

968 S. Pettie

structure. The same lower bound applies to union-find [8] in the cell-probe
and RAM models. Split-find, on the other hand, admits a trivial linear time
algorithm in the RAM model; see Gabow and Tarjan for the technique [11].
The results of this paper establish that the comparison complexity of split-
findmin is O(n+m logα(m,n)) and that on a RAM there is a data structure
with the same running time.

2 Sensitivity Analysis and Split-Findmin

The Split-Findmin structure maintains a set of sequences of weighted elements.
It supports the following operations:

init(e1, e2, . . . , en) : Initialize the sequence set S := {(e1, e2, . . . , en)} with
κ(ei) := ∞ for all i. S(ei) denotes the unique sequence in S containing ei.

split(ei) : Let S(ei) = (ej , . . . , ei−1, ei, . . . , ek).
Set S := S\S(ei) ∪ {(ej , . . . , ei−1), (ei, . . . , ek)}.

findmin(e) : Return minf∈S(e){κ(f)}.

decreasekey(e, w) : Set κ(e) := min{κ(e), w}.

In Section 3 we give a data structure that maintains the minimum element
in each sequence at all times. It executes m operations in O(m logα(m,n) + n)
time.

2.1 Sensitivity Analysis in Sub-inverse-Ackermann Time

In this subsection we calculate the sensitivity of tree edges. We create a
split-findmin structure where the initial sequence consists of a list of the vertices
in some preorder, w.r.t. an arbitrary root vertex. In general the sequences will
correspond to vertices or subtrees of the MST. We maintain the invariant that
κ(v) corresponds to the minimum weight edge incident to v crossing the cut
(S(v), V \S(v)). If r is the root of the subtree corresponding to S(v) then the
sensitivity of the edge (r, parent(r)) can be calculated from the minimum among
S(r).

Step 1. Root the spanning tree at an arbitrary vertex; the ancestor relation is
w.r.t. this orientation. For each non-tree edge (u, v), unless v is an ancestor
of u or the reverse, replace (u, v) with (u, lca(u, v)) and (v, lca(u, v)), where
the new edges inherit the weight of the old. If we have introduced multiple
edges between the same endpoints we discard all but the lightest.

Step 2. init(u1, . . . , un), where ui is the vertex with pre-order number i. Note
that for any subtree, the pre-order numbers of vertices in that subtree form
an unbroken interval.

Sensitivity Analysis of Minimum Spanning Trees 969

Step 3. 3.1 For i := 1 to n
3.2 If i > 1, sens(ui, parent(ui)) := findmin(ui)
3.3 Let uc1, . . . , uc�

be the children of ui

3.4 For j := 1 to ,
3.5 split(ucj)
3.6 For all non-tree edges (uk, ui) where k > i
3.7 decreasekey(uk, w(uk, ui))

The following lemma is used to prove that correct sens-values are assigned in
step 3.2.

Lemma 1. Let (uj , . . . , ui, . . .) be the sequence in the split-findmin structure
containing ui, after an arbitrary number of iterations of steps 3.1–3.7. Then this
sequence contains exactly those vertices in the subtree rooted at uj and:

κ(ui) = min{w(ui, uk) : k < j and (ui, uk) ∈ E}

where min ∅ = ∞. Furthermore, just before the ith iteration i = j.

Proof. By induction on the ancestry of the tree. The lemma clearly holds for i = 1,
where u1 is the root of the tree. For i > 1 the sequence containing i is, by the
induction hypothesis, (ui, uc1 , . . . , uc2, . . . , uc�

, . . .). We only need to show that the
combination of the splits in Step 3.5 and the decreasekeys in Step 3.7 ensure that
the induction hypothesis holds for iterations uc1, uc2 , uc3 , . . . , uc�

as well. After
performing split(uc1), . . . , split(uc�

) the sequences containing uc1, uc2 , . . . , uc�

clearly correspond to their respective subtrees. Let ucj be any child of ui and uk

be any vertex in the subtree of ucj . Before Step 3.7 we know, by the induction
hypothesis, that κ(uk) = min{w(uk, uν) : ν < i and (uk, uν) ∈ E}. To finish
the induction we must show that after Step 3.7 κ(uk) is correct w.r.t. its new
sequence beginning with ucj . That is, we must consider all edges (uk, uν) with
ν < cj rather than ν < i. Since the graph is simple and all edges connect nodes
to their ancestors, the only edge that could affect κ(uk) is (uk, ui). Performing
decreasekey(uk, w(uk, ui)) restores the invariantw.r.t.uk. Since the ith iteration of
Step 3.1 only performs splits and decreasekeys on elements in the subtree of ui, all
iterations in the interval i+1, . . . , cj−1 do not have any influence onucj ’s sequence.

Theorem 1. The sensitivity of aminimum spanning tree or single-source shortest
path tree can be computed in O(m logα(m,n)) time, where m is the number of
edges, n the number of vertices, and α the inverse-Ackermann function.

Proof. Correctness. Clearly Step 1 at most doubles the number of edges and does
not affect the sensitivity of any MST edge. In iteration i, sens(ui, parent(ui)) is
set to findmin(ui), which, by Lemma 1, is precisely the minimum weight of any
edge whose fundamental cycle includes (ui, parent(ui)). Running time. Step 1
requires a a least common ancestor computation, which takes linear time. Step
2 computes a pre-order numbering in O(n) time. After Step 1 the number of
non-tree edges is at most 2(m − n + 1). In Step 3 each non-tree edge induces
one decreasekey and each tree vertex induces one findmin and one split. By
Theorem 2 the total cost of all split-findmin operations is O(m logα(m,n)).

970 S. Pettie

3 A Faster Split-Findmin Structure

In this section we present a relatively simple split-findmin data structure that
runs in O(n + m logα(m,n)) time, where n is the length of the initial se-
quence and m the number of operations. Our structure borrows many ideas
from Gabow’s [9] original split-findmin data structure.

The analysis makes use of Ackermann’s function and its inverses:

A(1, j) = 2j for j ≥ 1
A(i, 1) = 2 for i > 1

A(i+ 1, j + 1) = A(i+ 1, j) · A(i, A(i+ 1, j)) for i, j ≥ 1

λi(n) = min{j : A(i, j) > n} and α(m,n) = min{i : A(i,
⌈

2n+m

n

⌉
) > n}

The definition of split-findmin from Section 2 says that all κ-values are initially
set to ∞. Here we consider a different version where κ-values are given. The
asymptotic complexity of these two versions is the same, of course. However in
this section we pay particular attention to the constant factors involved.

Lemma 2 shows that any split-findmin solver can be systematically trans-
formed into another with substantially cheaper splits and incrementally more
expensive decreasekeys.

Lemma 2. If there is a split-findmin structure that requires O(i) time and 2i+1
comparisons per decreasekey, and O(inλi(n)) time and 3inλi(n) comparisons for
all other operations, then there is also a split-findmin structure with parameters
O(i+ 1), 2i+ 3, O((i+ 1)nλi+1(n)), and 3(i+ 1)nλi+1(n).

Proof. Let SF i and SF i+1 be the assumed and derived data structures. At any
moment in its execution SF i+1 treats each sequence of length n′ as the con-
catenation of at most 2(λi+1(n′)− 1) plateaus and at most 2 singleton elements,
where a level j plateau is partitioned into less than A(i+ 1, j + 1)/A(i+ 1, j) =
A(i, A(i+1, j)) blocks of size exactly A(i+1, j). In each sequence the plateaus are
arranged in a bitonic order, with at most two plateaus per level. At initialization
SF i+1 scans the whole sequence, partitioning it into at most λi+1(n)−1 plateaus
and at most one singleton. Each plateau is managed by SF i as a separate in-
stance of split-findmin, where elements of SF i correspond to plateau blocks and
the key of an element is the minimum among the keys of its corresponding block.
Each plateau keeps a pointer to the sequence that contains it. Every block and
sequence keeps a pointer to its minimum element. Answering findmin queries
clearly requires no comparisons. To execute a decreasekey(e, w) we spend one
comparison updating κ(e) := min{κ(e), w} and another updating the sequence
minimum. If e is not a singleton then it is contained in some block b. We finish
by calling decreasekey(b, w), where the decreasekey function is supplied by SF i.
If SF i makes 2i+ 1 comparisons then SF i+1 makes 2i+ 3, as promised.

Consider a split operation that divides a level j block b in plateau p. Using
the split operation given by SF i, we split p just before and after the element

Sensitivity Analysis of Minimum Spanning Trees 971

corresponding to b. Let b0 and b1 be the constituent elements of b to the left
and right of the splitting point. We partition b0 and b1 into blocks and plateaus
(necessarily of levels less than j) just as in the initialization procedure. Notice
that to retain the bitonic order of plateaus we scan b0 from left to right and b1
from right to left. One of the two new sequences inherits the minimum element
from the original sequence. We find the minimum of the other sequence by taking
the minimum over each of its plateaus—this uses SF i’s findmin operation—and
the at most two singleton elements.

The comparisons performed in split operations can be divided into (a) those
used to find block minima, (b) those used to find sequence minima, and (c) those
performed by SF i. During the execution of the data structure each element
appears in at most λi+1(n) − 1 blocks. Thus, the number of comparisons in
(a) is

∑λi+1(n)−1
j≥1 (n − n/A(i + 1, j)), which is less than n(λi+1(n) − 1.5). For

(b) the number is n(2λi+1(n) − 1) since in any sequence there are at most
2(λi+1(n) − 1) plateaus and 2 singletons. For (c), notice that every element
corresponding to a block of size A(i + 1, j) appears in an instance of SF i with
less than A(i+1, j+1)/A(i+1, j) = A(i, A(i+1, j)) elements. Thus the number
contributed by (c) is:∑

1≤j<λi+1(n)

3inλi(A(i, A(i+ 1, j)) − 1)
A(i+ 1, j)

= 3in(λi+1(n) − 1)

Summing up (a)–(c), the number of comparisons performed outside of
decreasekeys is less than 3(i+ 1)nλi+1(n).

We can apply Lemma 2 to a simple split-findmin algorithm that supports
decreasekeys in constant time and splits in O(log n) time. We omit the proof of
Lemma 3.

Lemma 3. There is a split-findmin structure such that decreasekeys require
O(1) time and 3 comparisons and other operations require O(n logn) time in
total and less than 3n logn− 2n comparisons.

Theorem 2. There is a split-findmin structure that performs O(m logα(m,n))
comparisons. On a pointer machine it runs in O((m + n)α(m,n)) time and on
a random access machine it runs in O(n + m logα(m,n)) time, where n is the
length of the original sequence and m the number of decreasekeys.

Proof. In conjunction, Lemmas 2 and 3 prove that SFα runs in O(mα(m,n) +
α(m,n)nλα(m,n)(n)) time, which is O((m+n)α(m,n)) since λα(m,n)(n) = O(1+
m/n). We reduce the number of comparisons in two ways, then improve the
running time. Suppose we are performing a decreasekey on some element e. In
every SF i e is represented in at most one element and sequence. Let Ei and Si

be the element and sequence containing e in SF i, i.e., Ei and Si correspond to
a set of elements that include e. Let E0 be the block containing e in SF1. If we
assume for simplicity that none of Eα, Eα−1, . . . , E1 correspond to singletons,
then:

{e} = Eα ⊆ Eα−1 ⊆ · · · ⊆ E1 ⊆ E0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sα−1 ⊆ Sα = S(e)

972 S. Pettie

Thus a decreasekey on e can only affect some prefix of the the min-pointers in
Eα, . . . , E1, E0, S1, . . . , Sα. Using a binary search this prefix can be determined
and updated in O(α) time but with only �log(2α+ 2)� comparisons. We have
reduced the number of comparisons to O(nα(m,n)+m log α(m,n)). To get rid of
the nα(m,n) term we introduce another structure SF∗

i . Upon initialization SF∗
i

divides the full sequence into blocks of size i. At any point each sequence consists
of a subsequence of unbroken blocks and possibly two partial blocks, one at each
end. The unbroken blocks are handled by SF i, where each is treated as a single
element. SF∗

i keeps the keys of each block in sorted order. Findmins are easy to
handle, as are splits, which take O(i(n/i)λi(n/i)) = O(nλi(n)) comparisons and
O(in+ nλi(n)) time. The routine for decreasekeys takes O(i) time and O(log i)
comparisons. If element e lies in block b then decreasekey(e, w) will call SF i’s
decreasekey(b, w) then update the sorted order of block b.

Once we have bounded the number of element comparisons we can derive a
RAM-based data structure with the same running time. The idea is to precom-
pute a lookup table whose entries contain the decision-trees for each possible
operation, as applied to sequences of length log logn. A simple counting argu-
ment shows the table can be computed in o(n) time. This data structure can
be composed with SF2 to yield a split-findmin data structure for sequences of
length n. See [7, 3, 28] for a more leisurely description of this technique.

References

1. A. Alon and B. Schieber. Optimal preprocessing for answering on-line product
queries. Technical Report TR-71/87, Institute of Computer Science, Tel Aviv
University, 1987.

2. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings
4th Latin American Symp. on Theoretical Informatics (LATIN), LNCS Vol. 1776,
pages 88–94, 2000.

3. A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time pointer-
machine algorithms for LCAs, MST verification, and dominators. In Proc. 30th
ACM Symposium on Theory of Computing (STOC), pages 279–288, 1998.

4. B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algo-
rithmica, 2(3):337–361, 1987.

5. B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type
complexity. J. ACM, 47(6):1028–1047, 2000.

6. B. Chazelle. The soft heap: an approximate priority queue with optimal error rate.
J. ACM, 47(6):1012–1027, 2000.

7. B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity analysis of
minimum spanning trees in linear time. SIAM J. Comput., 21(6):1184–1192, 1992.

8. M. L. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proc. 21st ACM Symposium on Theory of Computing, pages 345–354, 1989.

9. H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In
Proc. 26th Symp. on Foundations of Computer Science (FOCS), pages 90–100,
1985.

10. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, pages 135–143, 1984.

Sensitivity Analysis of Minimum Spanning Trees 973

11. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci., 30(2):209–221, 1985.

12. H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-
matching problems. J. ACM, 38(4):815–853, 1991.

13. W. Goddard, C. Kenyon, V. King, and L. Schulman. Optimal randomized algo-
rithms for local sorting and set-maxima. SIAM J. Comput., 22(2):272–283, 1993.

14. R. L. Graham and P. Hell. On the history of the minimum spanning tree problem.
Ann. Hist. Comput., 7(1):43–57, 1985.

15. T. Hagerup. Improved shortest paths on the word RAM. In Proc. 27th Int’l
Colloq. on Automata, Languages, and Programming (ICALP), LNCS vol. 1853,
pages 61–72, 2000.

16. D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm
for finding minimum spanning trees. J. ACM, 42:321–329, 1995.

17. I. Katriel, P. Sanders, and J. L. Träff. A practical minimum spanning tree algorithm
using the cycle property. In Proc. 11th Annual European Symposium on Algorithms,
LNCS Vol. 2832, pages 679–690, 2003.

18. V. King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18(2):263–270, 1997.

19. J. Komlós. Linear verification for spanning trees. Combinatorica, 5(1):57–65, 1985.
20. H. LaPoutré. Lower bounds for the union-find and the split-find problem on pointer

machines. J. Comput. Syst. Sci., 52:87–99, 1996.
21. S. Pettie. An inverse-Ackermann type lower bound for online minimum spanning

tree verification. Combinatorica. to appear.
22. S. Pettie. On the comparison-addition complexity of all-pairs shortest paths. In

Proc. 13th Int’l Symp. Algorithms and Computation (ISAAC), pages 32–43, 2002.
23. S. Pettie. On the Shortest Path and Minimum Spanning Tree Problems. Ph.D.

thesis, The University of Texas at Austin, 2003. Department of Computer Sciences
Technical Report TR-03-35.

24. S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312(1):47–74, 2004.

25. S. Pettie and V. Ramachandran. Minimizing randomness in minimum spanning
tree, parallel connectivity and set maxima algorithms. In Proc. 13th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA), pages 713–722, 2002.

26. S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm.
J. ACM, 49(1):16–34, 2002.

27. S. Pettie and V. Ramachandran. New randomized minimum spanning tree algo-
rithms using exponentially fewer random bits. manuscript, submitted, 2005.

28. S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., 34(6):1398–1431, 2005.

29. R. E. Tarjan. Efficiency of a good but not linear set merging algorithm. J. ACM,
22:215–225, 1975.

30. R. E. Tarjan. Applications of path compression on balanced trees. J. ACM,
26(4):690–715, 1979.

31. R. E. Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. J. Comput. Syst. Sci., 18(2):110–127, 1979.

32. R. E. Tarjan. Sensitivity analysis of minimum spanning trees and shortest path
problems. Info. Proc. Lett., 14(1):30–33, 1982. See Corrigendum, IPL 23(4):219.

33. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM, 46(3):362–394, 1999.

Approximation Algorithms for Layered
Multicast Scheduling

Qingbo Cai and Vincenzo Liberatore

Case Western Reserve University, Cleveland, Ohio 44106, USA
{qxc6, vxl11}@cwru.edu

Abstract. Layered multicast is a scalable solution to data dissemination
in heterogeneous networks such as the Internet. In this paper, we study
the scheduling problem arising in the layered multicast context. Our goal
is to generate a multicast schedule for two different objectives, i.e., to
minimize the weighted sum (the L1 objective) of the per-layer average
waiting time, and to minimize the maximum approximation ratio (the
L∞ objective) of the subschedules on individual layers. Compared to
the previous work on multicast scheduling, this paper addresses the data
popularity and the interaction among layers simultaneously. We present a
simple randomized algorithm for both objectives of the layered multicast
scheduling problem. For the L1 objective, we provide a deterministic 2-
approximation algorithm for the general multi-layer cases. For the L∞
objective, we present an algorithm for the two-layer case which is 1.6875-
approximation ignoring an additive constant.

1 Introduction

Multicast is a scalable solution to data dissemination from a source node to mul-
tiple destination nodes. However, in heterogeneous networks such as the Internet,
there is no single transmission rate that can simultaneously enable efficient band-
width utilization on heterogeneous network connections. This problem can be
addressed with layered multicast communication [15,8], where the communica-
tion channel is divided into several logical layers and each receiver subscribes to
a set of layers according to its available bandwidth.

In layered multicast, the transmission rate increases exponentially from the
lower layers to upper ones. Layers are cumulative in the sense that receivers
subscribe to all layers that have bandwidth less than a certain threshold. The
performance of layered multicast critically depends on how data items are sched-
uled for transmission. The corresponding layered multicast scheduling problem
is an intricate generalization of the non-layered multicast scheduling problem
due to the interaction among layers.

Non-Layered Multicast Scheduling (NLMS). The NLMS problem has been the
focus of much previous work. The input to NLMS is a set of M equal size data
items each of which is associated with an access probability pi, and the capacity
of the communication channel W . The output is a schedule S specifying the data

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 974–983, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximation Algorithms for Layered Multicast Scheduling 975

items to be transmitted at each time-slot. The NLMS problem was introduced in
[1,2,3], corresponds to a special case of the Generalized Maintenance Scheduling
Problem (GMSP) without broadcast costs, and admits a simple and practical
2-approximation algorithm [4]. The golden ratio sequence algorithm (GRSA)
was developed in [11,10] and subsequently proven to be 9/8-approximation [4]
for NLMS. A polynomial-time approximation scheme (PTAS) [12] partitions the
data set by popularity and exhaustively searches all schedules for the popular
data. Several variants of NLMS have also been investigated [16,13,14,5]. The
NLMS problem can be solved in polynomial time in the special case when the
server multicasts only two data items [6]. Certain NLMS variants are NP-hard
[4,13,16], but the hardness of the original NLMS is an open problem.

Layered Multicast Scheduling (LMS). Previous work on LMS extensively focuses
on the arrangement of a file with erasure-correcting codes across multiple lay-
ers in a network with packet losses. Two data arrangements, SO and CO , are
proposed and use reception efficiency as the performance metric [17]. The multi-
rate scheme PO further improves over SO for some performance measures [9].
Another approach breaks a file into equal size groups, encodes individual groups,
and carefully interleaves the intra- and inter-group data [7].

Previous work on LMS ignores data popularity, which was a central factor in
the original NLMS problem. If data popularity is uniform, the optimal schedule
is flat and can be incrementally extended to higher layers if we shift it by a
number of transmission slots proportional to the period of an optimal schedule.
Otherwise, there is no clear way to obtain a provable performance guarantee by
shifting a schedule from the lower to the upper layers.

Theoretical Significance. The original NLMS problem is at heart similar to a
natural problem of combinatorial flavor: find an infinite sequence of the integers
{1, 2, . . . , n} that is “regular”, in the sense that, given a set of real numbers
{τ1, τ2, . . . , τn}, the integer i appears in the sequence (approximately) every τi
positions. The LMS problem is a stronger version in which we wish to find a
highly regular sequence that contains highly regular subsequences. Specifically,
suppose that we start with a regular sequence and we extract a subsequence
by taking one position out of 2 (4, 8, . . .). Then, we wish to ensure that the
subsequences are also regular in the sense that the integer i appears (approx-
imately) every τi positions. An LMS solution can be regarded as being “more
regular” than an NLMS solution in that regularity also holds if we “zoom in”
on the subsequences. In terms of layered multicast applications, subsequences
correspond to layers, and the problem becomes to find a good overall schedule
whose sub-schedules are also good.

An LMS algorithm is fundamentally different depending on whether its ap-
proximation ratio is greater than 2 or not. Specifically, a (2 + ε)-approximation
algorithm can be easily obtained by running the previously known PTAS [12]
for NLMS on each layer independently of the other layers. However, this (2+ ε)-
approximation algorithm is intuitively unsatisfactory, since it completely dis-
regards the fact that layers are cumulative so that the way how the data are

976 Q. Cai and V. Liberatore

scheduled across layers has an influence on the performance. By contrast, a 2-
approximation algorithm requires cross-layer interaction. Although a 2-approxi-
mation algorithm would shave off only an arbitrarily small factor from the (2+ε)-
approximation algorithm, it would highlight a qualitatively important construc-
tion in that it makes the layers interdependent.

A schedule could in principle have satisfactory performance for some layers
but not for others. The multiple per-layer objectives can be reconciled by taking
the weighted sum of per-layer costs using the user subscription profiles (i.e., the
distribution of users subscribing to a layer) as the weighting coefficients. How-
ever, subscription profiles are not always available in practice and, in these cases,
we adopt the L∞ norm by taking the maximum of per-layer approximation ra-
tios. Both objectives can arise in practice. The L1 objective corresponds to the
case where the user subscription profiles are known, and the L∞ objective may
be the only possible objective if the user subscription profiles are absent. For
the L1 objective, we obtain a 2-approximation algorithm by randomization and
derandomization via conditional expectations. Conditional expectations become
weaker or inapplicable under progressively more stringent objectives, so that we
turn to combinatorial constructions to exploit cross-layer dependence. Combina-
torial constructions differ from conditional expectations primarily in that they
use more structural information. For example, our 1.6875-approximation (ignor-
ing an additive constant) algorithm captures the “regularity” characteristics of
the golden ratio sequence schedule. For the strictest L∞ objective, this algorithm
establishes a combinatorial construction for the LMS problem by compressing
and stretching the golden ratio sequence schedule.

Our Results. Compared to the previous work on multicast scheduling, this paper
addresses the data popularity and the interaction among layers simultaneously.
To the best of our knowledge, this paper is the first to address LMS with data
popularity taken into account.

We provide a simple 2-approximation randomized algorithm for both objec-
tives of the LMS problem. After derandomization via conditional expectations,
we obtain a deterministic algorithm for the L1 objective and prove its perfor-
mance guarantee of 2 by the potential method.

The L∞ objective is substantially more complicated. We present a 1.6875-
approximation (ignoring an additive constant) algorithm in the two-layer case.
This algorithm is simple, but its performance analysis is complicated and can-
not use known techniques. In this algorithm, higher layer benefits from lower
layer either by sharing the transmissions of hot pages on the lower layer or by
borrowing bandwidth from the lower layer depending on the existence of hot
pages.

Organization. In Section 2, we formalize the LMS problem and introduce our
notations. Section 3 gives a lower bound to the cost of an optimal schedule, which
is the basis for the performance analysis in this paper. In Section 4, we present
a simple 2-approximation randomized algorithm for the LMS problem. Section
5 introduces a 2-approximation deterministic algorithm for the L1 objective.

Approximation Algorithms for Layered Multicast Scheduling 977

For the L∞ objective, we present a 1.6875-approximation (ignoring an additive
constant) algorithm for the two-layer LMS problem and analyze its performance
in Section 6. Finally, Section 7 concludes this paper.

2 Preliminaries

A multicast server maintains a database that contains N equal size pages num-
bered 1, . . . , N . Each page is associated with an access probability pi. The
server continuously and repeatedly transmits these pages on L layers numbered
0, . . . , L− 1 (L ≥ 2), where each layer corresponds to a multicast rate. The time
axis is divided into unit length time-slots, which is the duration for the server
to transmit one page on layer 0. During each time-slot, the number of pages
transmitted on layer l is defined as:

rl =

{
1, l = 0;
2l−1, 1 ≤ l ≤ L− 1.

Let Rl =
∑l

j=0 rj = 2l denote the cumulative rate for layer l. Without loss
of generality, we suppose RL−1 = 2L−1 ≤ N . A schedule is a sequence S =
{Al,t : 0 ≤ l ≤ L− 1, t ≥ 1}, where Al,t denotes the set of pages multicast on
layer l during time slot t. We then have |A0,t| = r0 = 1 and |Al,t| = rl = 2l−1,
(1 ≤ l ≤ L− 1).

We assume that a client receives every page the server multicasts. A client
is said to subscribe to layer l if he receives Al,t during time-slot t. When a
client subscribes to layer l, he also subscribes to layers 0, 1, . . . , l−1, since layers
are cumulative. The subscription level of a client is the highest layer that he
subscribes to. Let ql be the fraction of clients whose subscription levels are l.

Consider the scenario where a client accesses a page. Suppose, at the beginning
of time-slot t, a request for page i is raised by a client with subscription level
l. This request will be satisfied at the end of time-slot t′ (t ≤ t′) during which
page i is multicast on at least one of layers 0, 1, . . . , l, i.e., i ∈

⋃l
h=0Ah,t′ and

i /∈
⋃l

h=0Ah,j for all t ≤ j < t′. Then, the client has to wait wl,t(i) = t′ − t+ 1
time-slots before page i can be accessed. In the long run, the average waiting time
for the client to receive a page is Cost(S, l) = lim supn→∞

1
n

∑n
t=1

∑N
i=1 piwl,t(i).

An ideal schedule should satisfy the following requirements:

Reliable: Each page must be transmitted on layer 0. A consequence of relia-
bility is that clients can receive all pages independently of their subscription
levels.

Efficient: If the user subscription profiles (ql’s) are present, we look for a sched-
ule S to minimize the average per-client access cost (the L1 objective), i.e.,
to minimize

Cost(S) =
L−1∑
l=0

qlCost(S, l) =
L−1∑
l=0

ql lim sup
n→∞

1
n

n∑
t=1

N∑
i=1

piwl,t(i) .

978 Q. Cai and V. Liberatore

Otherwise, let OPTl denote the optimal value of Cost(S, l). Our goal is to
minimize the maximum of per-layer approximation ratios (the L∞ objective),
i.e., to minimize

max
0≤l≤L−1

{Cost(S, l)/OPTl} .

3 Lower Bound

The set of feasible schedules for LMS is a proper subset of the set of feasible
schedules for the GMSP problem [4] due to the reliability requirement. Conse-
quently, a lower bound for GMSP is also a lower bound for LMS. By referring
to GMSP, the optimal value of the following programs (1)-(3) is a lower bound
to Cost(S, l):

min
1
2

N∑
i=1

pi (τl,i + 1) (1)

s.t.
N∑

i=1

1
τl,i

≤ Rl (2)

τl,i ≥ 1 1 ≤ i ≤ N (3)

The optimal solution to (1)-(2), i.e., the non-linear programs above without the
constraint τi,l ≥ 1, is given by τl,i =

∑N
j=1

√
pj/

(
Rl

√
pi

)
[4].

Let τ∗l,i be an optimal solution to (1)-(3) and computed by an algorithm in [4].
Suppose that LBL is a lower bound to Cost(S). By applying the GMSP lower
bound to each layer, we have LBL = 1/2

∑L−1
l=0 ql

∑N
i=1 pi

(
τ∗0,i/Rl + 1

)
.

4 A Simple Randomized Algorithm

In spite of its simplicity, the randomized algorithm RA1 is our starting point
to explore the cross-layer dependence. More importantly, it lays the foundation
for the deterministic algorithm DA1, which is obtained by derandomizing RA1.
The algorithm is as follows:

Randomized algorithm 1 (RA1)
At time slot t (t = 1, 2, . . .):

for l = 0 . . . L− 1 do
for j = 1 . . . rl do

schedule page i on layer l with probability 1/τ∗0,i ;

In RA1, page i is receivable to layer l with the probability 1−
(
1 − 1/τ∗0,i

)Rl ,
and this probability increases as l increases. Therefore, lower layers benefit higher
layers by increasing the probability that a request is satisfied on higher layers.

Theorem 1. There exists a 2-approximation randomized algorithm for both ob-
jectives of the LMS problem.

Approximation Algorithms for Layered Multicast Scheduling 979

Proof (Sketch). In RA1, the expected waiting time for page i on layer l is 1/(1−
(1 − 1/τ∗0,i)

Rl), which is less than τ∗0,i/Rl + 1 by induction. Then, by comparing
the expected waiting time E[Cost(S, l)] of a schedule S by RA1 with the lower
bound

(
1/2

(
τ∗0,i/Rl + 1

))
, we conclude that RA1 is 2-approximation for each

layer. ��

5 A Deterministic Algorithm for the L1 Objective

At time-slot t (t ≥ 0), let st
l,i denote the number of time-slots elapsed from the

most recent transmission of page i on any of the layers 0, . . . , l. We assume that
all pages are transmitted on layer 0 at time-slot 0, i.e., s0l,i = 0. The state vector is

defined as
−→
st =

(−→
st
0 , . . . ,

−−→
st

L−1

)
, where

−→
st

l =
(
st

l,1, . . . , s
t
l,N

)
. Then, the cost of a

schedule S incurred at time-slot t can be rewritten as
∑L−1

l=0 ql
∑N

i=1 pi

(
st

l,i + 1
)
.

Deterministic algorithm 1 (DA1)
At time slot t:

U = ∅;
for l = 0 to L− 1

for i = 1 to rl
On layer l, schedule page j (j /∈ U) that maximizes∑L−1

k=l qkpj

(
st−1

k,j + 1
) 1− 1

τ∗
0,j

Rk−Rl−1−i

1− 1− 1
τ∗
0,j

Rk
;

U = U ∪ {j};

We now give some intuitions for algorithm DA 1. First, when scheduling a
layer, we consider its influence on higher layers by taking higher layers’ state
into account. Second, it is natural not to reschedule a page which is already
scheduled on that layer or lower layers at the same time-slot. Therefore, for each
time-slot, we keep track of the set (U) of pages that have been scheduled so far.

Theorem 2. There exists a 2-approximation deterministic algorithm for the L1
objective of the LMS problem.

Proof (Sketch). Although a standard technique (conditional expectations) is
used to obtain DA1 from derandomizing RA1, it is not suitable for the per-
formance proof of DA1, since the cost is defined in the long-run average form
and the choice at an individual time-slot has no remarkable influence on the
average cost. Hence, we apply the potential method as in [4,12]. The potential
function of schedule S at time-slot t is defined by

Φ(t, S) =
∑L−1

l=0 ql
∑N

i=1
pis

t
l,i

1− 1− 1
τ∗
0,i

2l .

Note that Φ(t, S) ≥ 0 (t ≥ 1) and Φ(0, S) = 0, since s0l,i = 0 (0 ≤ l ≤ L − 1, 1 ≤
i ≤ N). ��

980 Q. Cai and V. Liberatore

6 An Approximation Algorithm for the L∞ Objective in
the Two Layer Case

For the strictest L∞ objective, several complications arise. First, conditional
expectations become weaker or inapplicable. Second, although the golden ratio
sequence algorithm (GRSA) is 9/8-approximation for the NLMS problem [4],
its performance for the LMS problem is unknown, since the “regularity” prop-
erty (i.e., the three-gap property as described later) is not guaranteed to hold
for the subschedules on each layer. However, we can establish a combinatorial
construction by stretching and compressing the golden ratio sequence schedule,
where the stretching and compressing ratio is determined by carefully balancing
the provable performance guarantee on each layer such that the L∞ objective is
minimized. The algorithm is simple and elegant, but the performance analysis
is substantially more complicated.

Deterministic algorithm 2 (DA2)
– If there are hot pages (the classification is specified later), we ignore them on
layer 1, and use GRSA to schedule the remaining non-hot pages on layer 1. The
schedule on layer 0 is generated by GRSA for all (hot and non-hot) pages.
– Otherwise, 1 out of 3 time-slots on layer 0 is reserved for layer 1. We apply
GRSA to generate an original schedule S′ for NLMS, and fill S′ in the time-slots
available to layer 0 and 1 respectively (see Fig. 1).

3 1 5 2

4

4 16 46

6

4 125161

1

3

(a)

(b)

(c)

6 1

3

254 1 4 1

14 6 3 6 1 5

. . .

. . .

 . . .

 . . .

. . .

Fig. 1. An illustration of the algorithm DA2 when there are no hot pages. (a) An
original schedule S′ generated by GRSA for NLMS; (b) A partial schedule after filling
S′ into layer 1 and the reserved time-slots on layer 0; (c) A complete schedule after
filling S′ into the non-reserved time-slots on layer 0.

The main idea behind the algorithm DA2 is that hot pages are transmitted
frequently on layer 0, and layer 1 may ignore them without considerable sacrifice
to the performance since layers are cumulative so that layer 1 can receive pages
transmitted on layer 0. However, if there are no such hot pages, layer 1 will
suffer from neglecting pages. In this case, layer 1 may still benefit from layer 0
by reserving a fraction of transmission capacity on layer 0 for layer 1, and this
fraction can be determined by carefully balancing the approximation ratios of
both layers so that the maximum ratio is minimized.

Approximation Algorithms for Layered Multicast Scheduling 981

In DA2, the pages are categorized into hot pages and non-hot pages. The
classification of a hot page is done by examining if there is an inter-transmission
gap of 1 for this page in the original GRSA schedule. There are two reasons for
this classification. First, the pages with inter-transmission gaps of 1 are indeed
pages with high access probability and there are at most two such pages due to
the three-gap property of GRSA. Second, it is not suitable for these pages to
use reserved time-slots because two adjacent transmissions of these pages may
fall into the same time-slot after filling the original GRSA schedule on layer 1,
and consequently may invalidate the benefit of reserved time-slots.

We now briefly recall GRSA. Let fi = 1/τ∗0,i be the optimal transmission
frequency of page i for layer 0. GRSA generates a schedule of length Fk (k ≥ 8),
where each page i (1 ≤ i ≤ N) appears Ni (Ni = �fiFk� or �fiFk�) times. Let
Ni = Fki + Si (0 ≤ Si < Fki−1), i.e., Fki is the largest Fibonacci number which
is no more than Ni. GRSA generates a schedule where there are at most three
types of inter-transmission gaps for each page i: i) Si gaps of length Fk−ki ; ii)
Fki−2 + Si gaps of length Fk−ki+1; iii) Fki−1 − Si gaps of length Fk−ki+2.

Due to the three-gap property above and our page classification, the hot pages
are those pages with Ni = Fki + Si, where k − 2 ≤ ki ≤ k − 1. We have the
following lemmas in the presence of hot pages.

Lemma 1. If there is a hot page i with ki = k−1, then Cost(S, 1) ≤ 1.39OPT1.

Proof. Consider an optimal solution to programs (1)-(3) for this case. Without
the constraint (3), page i has τ∗0,i < Fk/(Fk−1+Si−1) < 2, and τ∗1,i = τ∗0,i/2 < 1,
which is set to 1 by an argument in [1]. Consequently, the optimal cost incurred
by page i is Fk in a schedule of length Fk. Then, for the remaining pages, we
obtain τ∗1,j (j �= i) by computing an optimal solution to programs (1)-(3) with
R1 replaced by 1.

In the analysis, we only count the transmissions of hot pages i on layer 0 as the
contribution made to layer 1 by layer 0. Due to GRSA on layer 0, page i has two
types of gaps: Fk−3 +2Si gaps of length 1 and Fk−2 −Si gaps of length 2. Thus,
the total cost incurred by page i for layer 1 is Fk−3 +2Si +3 (Fk−2 − Si) = Fk +
Fk−2 −Si. Therefore, the approximation ratio for page i is (Fk +Fk−2 −Si)/Fk,
which is no more than 1.39. For the remaining pages, the approximation ratio is
9/8 by GRSA on layer 1. Hence, the approximation ratio for layer 1 is no more
than the maximum ratio of pages, i.e., max{1.39, 9/8} = 1.39. ��

Lemma 2. If there is a hot page i with ki = k−2, then Cost(S, 1) ≤ 1.628OPT1.

Proof (Sketch). On layer 0, pages i have 3 types of gaps: Si gaps of length 1,
Fk−4 + Si gaps of length 2, and Fk−3 − Si gaps of length 3. When there is a
page i with τ∗1,i ≤ 1, we have a constraint for Si such that Si ≥ Fk/2−Fk−2 −1.
By the application of this constraint and similar calculation as in the proof of
Lemma 1, we can bound the approximation ratio for page i from above by 1.619.
Then, the approximation ratio of layer 1 is at most max{1.619, 9/8} = 1.619.

If pages i satisfies τ∗1,i > 1, there must be a constraint Si < Fk/2 − Fk−2 − 1.
Then, the approximation ratio r for page i is r = 4 (3Fk−1 − 2Si) (Fk−2 + Si)

982 Q. Cai and V. Liberatore

/ (Fk (Fk + 2Fk−2 + 2Si)). By looking at r as a function of Si and solving the
equation r′(Si) = 0, we have

rmax = 8 + 2Fk−1
Fk

− 4
√

3 + Fk−1
Fk

< 1.628 .

For the remaining pages j (j �= i), let τ1,j be the average inter-transmission gap
of page j. Then, we have τ1,j ≤ 9

∑N
m=1,m =i

√
pm/(8

√
pj) due to GRSA. We

can prove that τ1,j/τ
∗
1,j < 1.393 using the constraint τ∗0,i =

∑N
m=1

√
pm/

√
pi ≤

Fk/ (Fk−2 + Si − 1). Then, the approximation ratio for layer 1 is no more than
max {1.628, 1.393} = 1.628. ��
Lemma 3. If there are hot pages, the algorithm DA2 generates a schedule S
such that max0≤l≤1{Cost(S, l)/OPTl} ≤ 1.628.

Proof. This lemma immediately follows from Lemma 1, Lemma 2, and the fact
that Cost(S, 0)/OPT0 ≤ 9/8 due to GRSA on layer 0. ��

When no hot pages exist (i.e., ki ≤ k − 3 for all 1 ≤ i ≤ N), the following
lemma gives an upper bound to Cost(S, l).

Lemma 4. If there are no hot pages, the algorithm DA2 generates a schedule S
such that Cost(S, l) ≤ 1.6875OPTl + 53/64 for 0 ≤ l ≤ L− 1.

Proof (Sketch). In the analysis, we only consider the transmissions in the re-
served time-slots on layer 0 as the benefit that layer 1 can gain from layer 0.
Obviously, for layer 1, any inter-transmission gap of length v in the original
GRSA schedule will be reduced in length when v ≥ 4, and may remain the same
if v < 4 after schedule “compression” for layer 1. To get a precise approximation
analysis, we individually discuss the performances for the pages i with gap length
v < 4 (i.e., ki = k− 3 or ki = k− 4), and v ≥ 4 (i.e., ki ≥ k− 5). Meanwhile, an
original gap of length v, after being “stretched” on layer 0, becomes 3/2 v if v is
even, and 3/2 v ± 1/2 if v is odd. This lemma can be proved by carefully calcu-
lating the cost on each layer using the numeric properties of Fibonacci numbers
and applying appropriate constraints implied by DA2 in various cases.

Theorem 3. For the L∞ objective in the two layer case (L = 2), DA2 generates
a schedule S where Cost(S, l) ≤ 1.6875OPTl + 53/64 for 0 ≤ l ≤ L− 1.

Proof. The proof follows from Lemma 3 and 4. ��

7 Concluding Remarks

We have studied the LMS problem with or without the knowledge of the user
subscription profiles, i.e., the L1 and L∞ objectives respectively. A deterministic
2-approximation algorithm is obtained for the L1 objective. However, the L∞
objective is substantially more complicated than the L1 objective. For the L∞
objective, the algorithm DA2 has a good performance guarantee (1.6875 ignoring
an additive constant) only for the two-layer case. Therefore, a natural direction
for further investigation would be to achieve an efficient algorithm to the LMS
problem with any number of layers for the L∞ objective.

Approximation Algorithms for Layered Multicast Scheduling 983

Acknowledgement

The authors acknowledge Kirk Pruhs from University of Pittsburgh for discus-
sion on this problem, and anonymous reviewers for helpful comments.

References

1. M.H. Ammar, J.W. Wong: The Design of Teletext Broadcast Cycles. Performance
Evaluations. 5:4 (1985) 235–242

2. M.H. Ammar, J.W. Wong: On the Optimality of Cyclic Transmission in Teletext
Systems. IEEE Transactions on Communications.35:1 (1987) 68–73

3. S. Anily, C. A. Glass, R. Hassin: The scheduling of maintenance service. Discrete
Applied Mathematics. 80 (1998) 27–42

4. A. Bar-Noy, R. Bhatia, J. Naor, B. Schieber: Minimizing Service and Operation
Costs of Periodic Scheduling. In Mathematics of Operations Research. 27:3 (2002)
518–544

5. A. Bar-Noy, B. Patt-Shamir, I. Ziper: Broadcast Disks with Polynomial Cost Func-
tions. Proc. of IEEE INFOCOM’00. 575–584

6. A. Bar-Noy, Y. Shilo: Optimal Broadcasting of Two Files over an Asymmetric
Channel. Journal of Parallel and Distributed Computing. 60:4 (2000) 474–493

7. Y. Birk, D. Crupnicoff: A Multicast Transmission Schedule for Scalable Multi-Rate
Distribution of Bulk Data using Non-Scalable Erasure-Correcting Codes. Proc. of
IEEE INFOCOM’03. 1033–1043

8. J. Byers, M. Luby, M. Mitzenmacher: Fine-Grained Layered Multicast. Proc. of
IEEE INFOCOM’01. 1143–1151

9. M. J. Donahoo, M. H. Ammar, E. W. Zegura: Multiple-Channel Multicast Schedul-
ing for Scalable Bulk-data Transport. Proc. of IEEE INFOCOM’99. 847–855.

10. M. Hofri, Z. Rosberg: Packet Delay under the Golden Ratio Weighted TDM Pol-
icy in a multiple-access channel. IEEE Transactions on Information Theory. 33:3
(1987) 341–349

11. A. Itai, Z. Rosberg: A golden ratio control policy for a multiple-access channel.
IEEE Transactions on Automatic Control. 29:8 (1984) 712–718

12. C. Kenyon, N. Schabanel, N. Young: Polynomial-Time Approximation Scheme for
Data Broadcast. Proc. of the 32nd Annual ACM Symp. on Theory of Computing
(STOC 2000). 659–666

13. C. Kenyon, N. Schabanel: The Data Broadcast Problem with non-uniform trans-
mission times. Proc. of the 10th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA 1999). 547–556

14. V. Liberatore: Multicast scheduling for list requests. Proc. of IEEE INFOCOM’02.
1129–1137

15. S. McCanne, V. Jacobson, M. Vetterli: Receiver-driven Layered Multicast. ACM
Special Interest Group on Data Communication (SIGCOMM 1996). 117–130

16. N. Schabanel: The Data Broadcast Problem with Preemption. Proc of the 17th
International Symp. on Theoretical Computer Science (STACS 2000). 181–192

17. L. Vicisano: Notes on a cumulative layered organisation of data packets across
multiple streams with different rates. Unpublished notes.

Minimum Weight Triangulation
by Cutting Out Triangles

Magdalene Grantson1, Christian Borgelt2, and Christos Levcopoulos1

1 Department of Computer Science,
Lund University, Box 118, 221 Lund, Sweden
{magdalene, christos}@cs.lth.se

2 Department of Knowledge Processing and Language Engineering,
University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

borgelt@iws.cs.uni-magdeburg.de

Abstract. We describe a fixed parameter algorithm for computing the
minimum weight triangulation (MWT) of a simple polygon with (n− k)
vertices on the perimeter and k hole vertices in the interior, that is, for
a total of n vertices. Our algorithm is based on cutting out empty trian-
gles (that is, triangles not containing any holes) from the polygon and
processing the parts or the rest of the polygon recursively. We show that
with our algorithm a minimum weight triangulation can be found in time
at most O(n3k! k), and thus in O(n3) if k is constant. We also note that
k! can actually be replaced by bk for some constant b. We implemented
our algorithm in Java and report experiments backing our analysis.

1 Introduction

A triangulation of a set S of n points in the plane is a maximal set of non-
intersecting edges connecting the points in S. A minimum weight triangula-
tion (MWT) of S is a triangulation of minimum total edge length. (Note that
a MWT need not be unique.) Although it is unknown whether the problem of
computing a MWT of a set S of points is NP-complete or solvable in polynomial
time [3], it is surely a non-trivial problem, for which no efficient (i.e. polynomial
time) algorithm is known. The MWT problem has been studied extensively in
computational geometry and has applications in computer graphics [11], image
processing [10], database systems [8], and data compression [9].

In this paper we consider the slightly more general problem of finding a MWT
of a simple polygon with (n − k) vertices on the perimeter and k hole vertices
in the interior, that is, for a total of n vertices. In this case a triangulation is a
maximal set of non-intersecting edges (in addition to the perimeter edges), all
of which lie inside the polygon. Note that the problem of finding the MWT of a
set S of points can be reduced to this problem by finding the convex hull of S,
which is then treated as a (convex) polygon, while all vertices not on the convex
hull are treated as holes. Here, however, we do not require the polygon to be
convex and thus solve a more general problem. Note also that for k = 0 (no
holes) a MWT can be found by dynamic programming in time O(n3) [4, 7].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 984–994, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Minimum Weight Triangulation by Cutting Out Triangles 985

Recent attempts to give exact algorithms for computing a MWT in the general
case exploit the idea of parameterization. The basis of such approaches is the
notion of a so-called fixed parameter algorithm. Generally, such an algorithm has
a time complexity of O(nc · f(k)), where n is the input size, k is a (constrained)
parameter, c is a constant independent of k, and f is an arbitrary function [2].
The idea is that an algorithm with such a time complexity can be tractable if the
parameter k is constrained. For example, for constant k the problem becomes
efficiently tractable, because then the time complexity is polynomial in n.

W.r.t. a MWT of a simple polygon with holes the total number n of vertices
is the size of the input and we may choose the number k of hole vertices as the
constrained parameter. An algorithm based on such an approach was presented
in [6] and analyzed to run in O(n5 log(n) 6k) time. In [5] we presented an im-
proved algorithm, which we analyzed to run in O(n44kk) time. We implemented
our algorithm in Java and performed experiments backing our analysis.

In this paper we also present a fixed parameter algorithm for the MWT prob-
lem, which, however, is based on a different idea. The algorithm developed in [5]
repeatedly splits a pointgon with lexi-monotone paths and processes the parts
recursively. In contrast to this, our new algorithm repeatedly cuts empty trian-
gles (that is, triangles not containing any holes) from the polygon and processes
the parts or the remaining polygon recursively. We analyze that our algorithm
runs in at most O(n3k! k) time, and thus in O(n3) time if k is constant. We
also note that k! can actually be replaced by bk for some constant b. Again we
implemented our algorithm in Java and report experiments backing our analysis.

2 Preliminaries and Basic Idea

As already pointed out, we consider as input a simple polygon with (n − k)
vertices on the perimeter and k hole vertices, thus a total of n input vertices.
Following [1], we call such a polygon with holes a pointgon for short. We denote
the set of perimeter vertices by Vp = {v0, v1, . . . , vn−k−1}, assuming that they are
numbered in counterclockwise order starting at an arbitrary vertex. The set of
hole vertices we denote by Vh = {vn−k, vn−k+1, . . . , vn−1}. The set of all vertices
is denoted by V = Vp ∪ Vh, the pointgon formed by them is denoted by G.

The core idea of our algorithm is based on the following simple observation:

Observation 1. With the definition s(i) = (i+1) mod (n−k), let ei = (vi, vs(i)),
1 ≤ i < n − k, be an arbitrary edge on the perimeter of a pointgon G. Then in
every triangulation T of G there exists a vertex v ∈ V \{vi, vs(i))}, adjacent to
vi and vs(i) that together with vi and vs(i) forms an empty triangle, that is, a
triangle without any hole vertices in its interior.

As a consequence of this observation, we can try to find the MWT of a given
pointgon G—which is not a triangle without hole vertices itself—by checking all
possible empty triangles that can be built over an arbitrarily chosen perimeter
edge (vi, vs(i)). Each such empty triangle splits the pointgon into at most two
sub-pointgons (see Figure 1), which are then processed recursively.

986 M. Grantson, C. Borgelt, and C. Levcopoulos

vi

vs(i)

vp

Case I

vi

vs(i) vcc

Case II

vi

vs(i)

vc

Case III

vi

vs(i)

vh

Case IV

Fig. 1. The four possible ways of forming a triangle from a perimeter edge (vi, vs(i))
(encircled points). A black point indicates a vertex belonging to Vp, a white point a
vertex belonging to Vh.

We consider four cases I, II, III, IV in our recursion, as shown in Figure 1.
Note that cases II and III can be included as special cases into case I. In the
following description, vc is the vertex adjacent to vi in clockwise direction, and
vcc is the vertex adjacent to vs(i) in counterclockwise direction.

I In this case we consider all empty triangles formed by vi, vs(i), and a perime-
ter vertex vp ∈ Vp\{vi, vs(i), vc, vcc}. Each such triangle (vi, vs(i), vp) splits
the pointgon G into two sub-pointgons, one to the left and one to the right
of the triangle. We denote the set of all such triangles by Θp(G, vi), where
the second argument vi indicates the base edge ei = (vi, vs(i)) of the triangle.
For each θ ∈ Θp(G, vi), we denote by L(G, θ) and R(G, θ) the sub-pointgons
to the left and to the right of θ, respectively.

II In this case we consider the triangle (vi, vs(i), vcc), provided that it is empty.
Cutting such a triangle from G yields the sub-pointgon L(G, (vi, vs(i), vcc))
to the left of the triangle. (There is no sub-pointgon to the right.)

III In this case we consider the triangle (vi, vs(i), vc), provided that it is empty.
Cutting such a triangle from G yields the sub-pointgon R(G, (vi, vs(i), vc))
to the right of the triangle. (There is no sub-pointgon to the left.)

IV In this case we consider all empty triangles formed by vi, vs(i), and any hole
vertex vh ∈ Vh. Cutting any such triangle from the pointgon G leaves a sub-
pointgon. We denote the set of all such triangles by Θh(G, vi), where the
second argument vi indicates the base edge ei = (vi, vs(i)) of the triangle.
For each θ ∈ Θh(G, vi), we denote by L(G, θ) the remaining sub-pointgon.

Given this, the weight of a MWT of G can be computed recursively as

MWT(G) = min
{

min
θ∈Θ(G,vi)

{
MWT(L(G, θ)) + MWT(R(G, θ)) + |(vi, vs(i)|

}
,

MWT(L(G, (vi, vs(i), vcc))) + |(vi, vs(i))| + |(vs(i), vcc)|,

MWT(R(G, (vi, vs(i), vc))) + |(vi, vs(i))| + |(vi, vc)|,

min
θh∈θ(G,vh)

{
MWT(L(G, θh)) + |(vi, vs(i))|

}}
,

where i is an arbitrary integer number in {1, . . . , n− k − 1}. The four terms in
the outer minimum refer to the cases I, II, III, and IV, respectively.

Minimum Weight Triangulation by Cutting Out Triangles 987

Although the above recursive formula only computes the weight of a MWT,
it is easy to see how it can be extended to yield the edges of a MWT. For this,
each recursive call also has to return the set of edges that is added in order to
achieve a triangulation. The union of these sets of edges for the term that yields
the minimum weight is a MWT for the original pointgon G.

Technically, one selects an arbitrary initial perimeter edge (vi, vs(i)) of the
pointgon G to be triangulated. Then all triangles listed in the above four cases I,
II, III, and IV are generated. Each of these is cut out of the pointgon and the
parts or the rest is processed recursively. The minimum weight triangulation is
obtained as the minimum over all resulting triangulations.

3 Dynamic Programming

The basic idea, as it was outlined in the preceding section, solves the MWT
problem of an input pointgonG in a recursive manner. However, it is immediately
clear that it should not be implemented in this way, because several branches of
the tree recursion lead to the same sub-pointgon. Hence a direct implementation
would lead to considerable redundant computations. A better approach consists
in using dynamic programming, which ensures that each possible subproblem is
solved at most once, thus rendering the computation much more efficient.

To apply dynamic programming, we have to identify the classes of subprob-
lems that we encounter in the recursion, and we have to find a representation
for them. The basic idea is to exploit the fact that we can choose freely, which
perimeter edge of a sub-pointgon we want to use as the base of the triangles.
By always choosing an edge that was a side of the triangle chosen in the preced-
ing recursion step (preferring the left side if both are in the new subproblem), we
can achieve that the sides of the triangles chosen in consecutive recursion steps
connect into a path through the holes (of the input pointgon). As a consequence,
every subproblem we encounter can be described by a path π through zero or
more hole vertices and a possible coherent perimeter piece δp of G (see Figure 2).
We show later that we actually encounter only subproblems of this type.

We represent a subproblem by an index word over an alphabet with n charac-
ters, which uniquely identifies each subproblem. This index word has the general
form (vi, π) and describes a counterclockwise walk round the perimeter of the
subproblem. The first element is the so-called anchor vi of the subproblem, which
may be a perimeter vertex or a hole vertex of the input pointgon. π describes
a sequence of hole vertices of the input pointgon, i.e., all elements of π are in
Vh, with the possible exception of the last element, which may be a perimeter
vertex sπ ∈ Vp of the input pointgon. Note that in this case a possible coherent
perimeter piece between the anchor vi and the end vertex sπ (if it exists) is not
part of the subproblem representation, but is left implicit. Note that in the case
where the path π bounding a subproblem loops back to the anchor, this end
vertex is not contained in π to avoid duplicate entries. As a consequence we can
have at most O(n2k!) index words, where the n2 comes from the possible choices
of the anchor and the end vertex, and the k! from the possible sequences of holes.

988 M. Grantson, C. Borgelt, and C. Levcopoulos

The general idea of using such an index word is the following: in order to
avoid redundant computations, we have to be able to efficiently store and re-
trieve the solutions of already solved subproblems. For the problem at hand it
is most convenient to use a trie structure, which is accessed through the index
word representing a subproblem. That is, for our implementation, we do not
use the standard, table-based form of dynamic programming, but a version of
implementing the recursion outlined above, which is sometimes called “memo-
rized”. In each recursive call, we first access the trie structure (using the index
word of a sub-pointgon) in order to find out whether the solution of the current
subproblem is already known. If it is, we simply retrieve and return the solution.
Otherwise we actually carry out the split computations and in the end store the
found solution in the trie. Although this approach is slightly less efficient than a
true table-based version (since there are superfluous accesses to the trie, namely
the unsuccessful ones), its additional costs do not worsen the asymptotic time
complexity. The following pseudocode describes our algorithm:

function MWT (word key) : real
begin

if key is in trie
then return trie.getweight(key); fi;
if polygon(key) is a triangle
and polygon(key) contains no holes
then wgt = perimeter length(polygon(key));

trie.add(key, wgt, ⊥);
return wgt;

fi;
min = +∞; best = ⊥;
for all triangles θ ∈ Θp(polygon(key), key .vi) (∗ case I ∗)

∪ {(key .vi, key .vs(i), vc(key .vi))} (∗ case II ∗)
∪ {(key .vi, key .vs(i), vcc(key .vi))} (∗ case III ∗)
∪ Θh(polygon(key), key .vi) do (∗ case IV ∗)

wgt = MWT(L(key , θ)) + MWT(R(key , θ)) + |vi, vs(i)|;
if (wgt < min)
then min = wgt ; best = θ; fi;

done;
trie.add(key, min, best);
return min;

end;

In this pseudocode the symbol ⊥ is used to indicate that there is no triangle θ
that can be cut out. (This is, of course, only the case if the sub-pointgon is itself
a triangle without holes.) key .vi and key .vs(i) are the anchor and the first vertex
on the path representing a subproblem. vc and vcc are to be seen as functions
yielding the clockwise or the counterclockwise neighbor on the perimeter of the
subproblem. Note that if we are in one of the cases II, III, or IV, one of L(key , θ)
or R(key , θ) is empty. It should be clear that in this case the corresponding term
is dropped from the sum computing the triangulation weight.

Minimum Weight Triangulation by Cutting Out Triangles 989

type A

vi

vs(i)

type B

vi

vs(i)

Fig. 2. The two types of pointgons we encounter. A black point indicates a vertex
belonging to Vp, a white point a vertex belonging to Vh, a grey point a vertex either
in Vp or in Vh. The encircled and labeled points are the anchors. Thick lines indicate
pieces of the perimeter of the input pointgon.

To collect the edges of the solution, the following function is used:

function collect (word key) : set of edges
begin

π = trie.getpath(key);
if π = ⊥ then return ∅; fi;
return collect(L(key , θ)) ∪ collect(R(key , θ)) ∪ edges(θ);

end;

This function is called with the index word describing the input pointgon, that
is, an index word consisting only of the initial anchor vertex vi.

3.1 Types of Pointgons

Apart from the input pointgon, which is of neither of these types, we encounter
two types of sub-pointgons (see Figure 2 for sketches):

A Sub-pointgons of this type are bounded by a coherent perimeter piece of the
original pointgon and a path π through zero or more hole vertices. Its anchor
is the vertex at the clockwise end of the path (perimeter vertex).

B Sub-pointgons of this type are bounded by a path π through hole vertices
and zero or one perimeter vertex vp ∈ Vp of the input pointgon. Its anchor
is the lexicographically smallest vertex (hole or perimeter vertex).

We show now that we only encounter these two types of pointgons in the recur-
sion. For this, recall that in each step of the recursion, one of the four cases I,
II, III, and IV is used to cut a triangle from a pointgon (see Section 2).

Type A Pointgons. (Note that the input pointgon, although strictly speaking
it is not of this type, behaves exactly in the same way.) The different splits
of type A pointgons are sketched in Figure 3. Note that the triangle is always
formed over the edge at the clockwise end of the path through hole vertices.
Therefore, if we have a triangle of case I, we obtain either two sub-pointgons of
type A or one sub-pointgon of type A and B each. If the triangle is of case II,
then depending on the number of vertices in the coherent perimeter section the
result is either a sub-pointgon of type A or of type B. Type B results if there
are only two perimeter vertices in the section, type A otherwise. If the triangle
is of case III or case IV, the result is necessarily of type A again. Note from the
sketches in Figure 3 how the anchors of the sub-pointgons are selected.

990 M. Grantson, C. Borgelt, and C. Levcopoulos

Case I

v vA1

vA2

A1 A2

Case I

v vA

vB

A B

Case II

v

vA
A

Case II

v

vB
B

Case III

v
vA

A

Case IV

v vA

A

Fig. 3. Behavior of Type A pointgons in the recursion (possible splits). v denotes the
original anchor and v∗, ∗ ∈ {A, B}, denotes the anchor of a sub-pointgon of type ∗ due
to the split.

Type B Pointgons. Since type B pointgons do not have a consecutive perime-
ter piece of the input pointgon (they may contain at most one perimeter vertex),
it is immediately clear that regardless of the case we consider, the resulting sub-
pointgon(s) must be of type B again (cf. Figure 1, which shows the four cases).
It is only important to notice that in a sub-pointgon to the right of the triangle,
the anchor has to be set to the lexicographically smallest vertex on the perimeter
of the sub-pointgon. (Note that in a sub-pointgon to the left of the triangle the
old anchor must still be the lexicographically smallest vertex.)

4 Analysis

In order to estimate the time complexity of our algorithm, we multiply the
(worst case) number of subproblems by the (worst case) time it takes to process
one subproblem. This time is computed as the (worst case) number of possible
triangles that can be built over a given perimeter edge multiplied with the (worst
case) time for processing one such triangle.

As discussed in Section 3, there are at most O(n2k!) possible subproblems if
we proceed in the described manner. The factor k! is actually an overestimate
as the path through the holes must not intersect itself. Drawing on bounds for
planar configurations of a set of points [12], it can be shown that the actual
number of valid paths is only O(bk) for some constant b. However, the best
known asymptotic bounds on the constant b are fairly large, so that for practical
purposes, for which k has to be very small, O(k!) is a better estimate.

Given a subproblem and a perimeter edge of this subproblem, there are at
most n− 2 possible triangles that can be built over the given edge, as there are
at most n− 2 possible choices for the tip of the triangle.

For each triangle, we have to check whether its two additional sides (the base
of the triangle, of course, need not be checked) intersects the perimeter of the
sub-pointgon. This check can be made very efficient by a preprocessing step in

Minimum Weight Triangulation by Cutting Out Triangles 991

which we determine for each edge that could be part of a triangle whether it
intersects the perimeter of the input pointgon or not. The resulting table has a
size of at most n2, which is negligible compared to the number of subproblems,
and its computation takes at most O(n3) time, because each of the edges has to
be checked against the n − k perimeter edges. With this table we can check in
O(1) whether a given triangle intersects a (possibly existing) perimeter piece.

In addition, we have to check for an intersection of the two added triangle
sides with the path through hole vertices, which contains at most k + 1 edges.
Since we have to check for each of the edges on the path whether it intersects
with one of the two triangle sides, this check can be carried out in O(k).

Finally we have to check whether the triangle is empty (i.e., contains no
hole vertices). This also takes at most O(k) time, because we have to check the
location of at most k hole vertices w.r.t. the triangle sides.

Once a triangle is found to be valid, the sub-pointgons have to be constructed
by collecting their at most k+2 defining vertices, and their solutions have to be
looked up using the describing index words. Both operations obviously take O(k)
time. Finally the length of the base of the triangle and maybe also the length
of one of the added sides have to be computed, which takes constant time.
As a consequence processing one triangle takes in all O(k) time.

As a consequence the overall time complexity is at most

O
(

n2k!︸︷︷︸
subproblems

· n︸︷︷︸
triangles

· k︸︷︷︸
time/triangle

)
= O(n3k! k).

5 Implementation

As already pointed out above, we implemented our algorithm in Java. Example
results for different numbers of holes and perimeter vertices are shown in Table 1.
The test system was an Intel Pentium 4C@2.6GHz with 1GB of main memory
running S.u.S.E. Linux 9.3 and Sun Java 1.5.0 01. All execution times are aver-
ages of 20 runs, carried out on randomly generated convex pointgons. We used
convex pointgons, because they seem to represent the worst case. Non-convex
pointgons, due to intersections of paths through holes with the perimeter, are
usually processed faster (there are fewer possible sub-pointgons). The left table
shows the results for the algorithm as it was described in the preceding sections,
while the right table shows the results for the algorithm we developed in [5].
As these tables show, our new algorithm beats the previous one by an order of
magnitude, making it the method of choice for few hole vertices.

To check our theoretical result about the time complexities, we computed
the ratios of the measured execution times to the theoretical values (see last
columns of both tables; note that the two algorithms have different theoretical
time complexities). As can be seen, these ratios are decreasing for increasing
values of n and k, indicating that the theoretical time complexity is actually a
worst case, while average results in practice are considerably better. As pointed
out above, it can even be shown that the dependence on k is actually only O(bk)
for some constant b, and thus asymptotically better than O(k!) = O(kk).

992 M. Grantson, C. Borgelt, and C. Levcopoulos

Table 1. Results obtained with our Java implementations of the described MWT al-
gorithm (left) and the path-based algorithm of [5] (right, version without hole distribu-
tion). All results are averages over 20 runs, with randomly generated convex pointgons.

n− k k time in seconds time/n3k! k
3 1 0.008± 0.000 1.250·10−4

6 1 0.009± 0.000 2.624·10−5

9 2 0.014± 0.001 2.630·10−6

12 3 0.039± 0.005 4.280·10−7

15 4 0.060± 0.004 3.417·10−8

18 5 0.092± 0.017 2.420·10−9

21 6 0.272± 0.102 2.962·10−10

24 7 0.885± 0.285 3.607·10−11

27 8 2.849± 0.818 3.961·10−12

30 9 12.791± 5.480 5.566·10−13

n− k k time in seconds time/n44kk

3 1 0.010± 0.000 9.766·10−6

6 1 0.011± 0.000 1.145·10−6

9 2 0.049± 0.004 1.046·10−7

12 3 0.076± 0.006 7.819·10−9

15 4 0.151± 0.029 1.132·10−9

18 5 0.535± 0.144 3.734·10−10

21 6 2.115± 0.869 1.619·10−10

24 7 9.142± 3.982 8.631·10−11

27 8 43.548±19.198 5.535·10−11

30 9 176.588±71.473 3.235·10−11

Fig. 4. A screen shot of the graphical user interface to our implementation of the
described algorithm. The program allows for loading pointgons from a text file, gener-
ating random pointgons, finding their minimum weight triangulation, and modifying a
triangulation as well as recomputing its weight in order to check whether it is actually
minimal. When a MWT is computed, search statistics are printed about the number
of triangles, subproblems, and separating paths considered. This screen shot shows the
MWT of a randomly generated (star-like) pointgon with 16 vertices on the perimeter
and 8 holes, which has 37 edges (excluding the perimeter edges). It was computed in
about 0.3 seconds (on an Intel Pentium 4C@2.6GHz system with 1GB of main memory
running S.u.S.E. Linux 9.3 and Sun Java 1.5.0 01).

To give an impression of the graphical user interface (GUI) of the program,
Figure 4 shows a screen shot of the main window. With this user interface it is
possible to load pointgons from text files, to generate random pointgons, to find
their minimum weight triangulation, and to modify a triangulation as well as to
recompute its weight in order to check whether it is actually minimal. Apart from

Minimum Weight Triangulation by Cutting Out Triangles 993

the GUI version, the program can be invoked on the command line, a feature we
exploited to script the test runs reported above. The Java source code of our im-
plementation as well as an executable Java archive (jar) can be downloaded free
of charge at http://fuzzy.cs.uni-magdeburg.de/~borgelt/pointgon.html.

6 Conclusions

We described a fixed parameter algorithm for computing the minimum weight
triangulation of a simple polygon with hole vertices, which is based on recur-
sively cutting out empty triangles from the input pointgon. As we showed in our
analysis, the time complexity of our algorithm is O(n3k! k). (Note that we use
k! instead of bk, for some constant b, because in known upper bounds on the
number of crossing-free paths of a set of points the constant b is so large that bk

is worse than k! for the small values of k that are practically relevant.) W.r.t.
the total number of vertices it is therefore much better than the algorithm we
developed in [5] (time complexity O(n44kk)). An important advantage of our
algorithm is that for a constant number of holes (and in particular for no holes,
i.e. for k = 0) it achieves the best known O(n3) time bound for the minimum
weight triangulation of a simple polygon. In addition, we presented a Java im-
plementation of our algorithm, and reported experiments that were carried out
with this implementation. These experiments indicate that the actual time com-
plexity may be considerably better than the result of our theoretical analysis
(presumably due to an overestimate of the number of subproblems).

References

1. O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu. The Zigzag Path of a
Pseudo-Triangulation. Proc. 8th Workshop on Algorithms and Data Structures
(WADS 2003), LNCS 2748, 377–388. Springer-Verlag, Berlin, Germany 2003

2. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, New York,
NY, USA 1999

3. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to Theory
of NP-Completeness. Freeman, New York, NY, USA 1979

4. P.D. Gilbert. New Results in Planar Triangulations. Report R-850. University of
Illinois, Coordinated Science Lab, 1979

5. M. Grantson, C. Borgelt and C. Levcopoulos. A Fixed Parameter Algorithm for
Minimum Weight Triangulation: Analysis and Experiments. Technical Report LU-
CS-TR:2005-234, ISSN 1650-1276 Report 154. Lund University, Sweden 2005

6. M. Hoffmann and Y. Okamoto. The Minimum Triangulation Problem with Few
Inner Points. Proc. 1st Int. Workshop on Parameterized and Exact Computation
(IWPEC 2004), LNCS 3162, 200–212. Springer-Verlag, Berlin, Germany 2004

7. G.T. Klincsek. Minimal Triangulations of Polygonal Domains. Annals of Discrete
Mathematics 9:121–123. ACM Press, New York, NY, USA 1980

8. E. Lodi, F. Luccio, C. Mugnai, and L. Pagli. On Two-Dimensional Data Organi-
zation, Part I. Fundaments Informaticae 2:211–226. Polish Mathematical Society,
Warsaw, Poland 1979

994 M. Grantson, C. Borgelt, and C. Levcopoulos

9. A. Lubiw. The Boolean Basis Problem and How to Cover Some Polygons by
Rectangles. SIAM Journal on Discrete Mathematics 3:98–115. Society of Industrial
and Applied Mathematics, Philadelphia, PA, USA 1990

10. D. Moitra. Finding a Minimum Cover for Binary Images: An Optimal Parallel
Algorithm. Algorithmica 6:624–657. Springer-Verlag, Heidelberg, Germany 1991

11. D. Plaisted and J. Hong. A Heuristic Triangulation Algorithm. Journal of Algo-
rithms 8:405–437 Academic Press, San Diego, CA, USA 1987

12. M. Sharir and E. Welzl. On the Number of Crossing-Free Matchings (Cycles and
Partitions), Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2006), to appear.

Multi-directional Width-Bounded Geometric
Separator and Protein Folding�

Bin Fu1,2, Sorinel A Oprisan3, and Lizhe Xu1,2

1 Dept. of Computer Science, University of New Orleans, LA 70148, USA
2 Research Institute for Children, 200 Henry Clay Avenue, LA 70118

3 Dept. of Psychology, University of New Orleans, LA 70148
fu@cs.uno.edu, soprisan@uno.edu, lxu@chnola-research.org

Abstract. We introduce the concept of multi-directional width-bounded
geometric separator and get improved separator for the grid graph, which
improves exact algorithm for the protein folding problem in the HP-model.
For a grid graph G with n grid points P , there exists a separator A ⊆ P
such that A has less than or equal to 1.02074

√
n points, and G − A has

two disconnected subgraphs with less than or equal to 2
3
n nodes on each of

them. We also derive 0.7555
√

n lower bound for such a separator on grid
graph. The previous upper bound record for the grid graph 2

3
-separator is

1.129
√

n [6].

1 Introduction

Lipton and Tarjan [11] showed that every n vertices planar graph has at most√
8n vertices whose removal separates the graph into two disconnected parts of

size at most 2
3n. Their 2

3 -separator was improved by a series of papers [4, 8, 1, 5]
with best record 1.97

√
n by Djidjev and Venkatesan [5]. Spielman and Teng [14]

found a 3
4 -separator with size 1.82

√
n for planar graphs. Some other forms of

the geometric separators were studied by Miller, Teng, Thurston, and Vavasis
[12] and by Smith and Wormald [13]. If each of n input points is covered by at
most k regular geometric object such as circles, rectangles, etc, then there exist
O(

√
k · n) size separators [12, 13]. In particular, Smith and Wormald obtained

the separator of size 4
√
n for the case k = 1. The lower bounds 1.555

√
n and

1.581
√
n for the 2

3 -separator for the planar graph were proven by Djidev [5], and
by Smith and Wormald [13], respectively.

Each edge in a grid graph connects two grid points of distance 1 in the set of
vertices. Thus a grid graph is a special planar graph. Fu and Wang [6] developed a
method for deriving sharper upper bound separator for grid graphs by controlling
the distance to the separator line. Their separator is determined by a straight
line on the plane and the set of grid points with distance less than or equal to
1
2 to the line. They proved that for an n vertices grid graph on the plane, there
is a separator that has less than or equal to 1.129

√
n grid points and each of

� This research is supported by Louisiana Board of Regents fund under contract num-
ber LEQSF(2004-07)-RD-A-35.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 995–1006, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

996 B. Fu, S.A. Oprisan, and L. Xu

two disconnected subgraphs has at most 2
3n grid points. Using this separator

and their approximation to the separator line, they obtained the first nO(n1− 1
d)-

time exact algorithm for the d-dimensional protein folding problem of the HP-
model. The method of Fu and Wang [6] was further developed and generalized
by Fu [7]. The notion of width-bounded geometric separator was introduced by
Fu [7]. For a positive constant a and a set of points Q on the plane, an a-wide
separator is the region between two parallel lines of distance a that partitions
Q into Q1 (on the left side of the separator’s region), S (inside the separator’s
region), and Q2 (on the right side of the separator’s region). The width-bounded
geometric separators were applied to many other problems, which include the
disk covering problem on the plane, the maximum independent set problem, the
vertex covering problem, and dominating set problem on disk graphs. Fu [7]
derived 2O(

√
n)-time exact algorithms for all of them, whose previous algorithms

need nO(
√

n) time.
This paper introduces the concept of a multi-directional width-bounded sepa-

rator. For a set of points P on the plane and two vectors v1 and v2, the (a, b)-wide
separator (along the directions v1 and v2) is the region of points that have dis-
tance less than or equal to a to L along v1 or distance less than or equal to
b to L along v2, where L is a straight line (separator line) on the plane. The
separator size is measured by the number of points from P in the region and the
line L partitions the set P into two balanced subsets. In this paper we use this
new method to improve the separator for the grid graph. The multi-directional
width approach is different from that used in [6, 7], which only controls the reg-
ular distance to the middle line in the separator area. Pursuing smaller and
more balanced separator is an interesting problem in combinatorics and also
gives more efficient algorithms for the divide and conquer applications. For a
grid graph G with n grid points P , there exists a separator subset A ⊆ P such
that A has up to 1.02074

√
n points, and G−A has two disconnected subgraphs

with up to 2
3n nodes on each of them. This improves the previous 1.129

√
n size

separator for the grid graph [6]. We also prove a 0.7555
√
n lower bound for the

size of the separators for grid graphs. Our lower bound is based on a result that
the shortest curve partitioning an unit circle into two areas with ratio 1 : 2 is a
circle arc. Its length is less than that of the straight line partitioning the circle
with the same ratio.

Protein structure prediction with computational technology is one of the most
significant problems in bioinformatics. A simplified representation of proteins is
a lattice conformation, which is a self-avoiding sequence in Z3. An important
representative of lattice models is the HP-model, which was introduced by Lau
and Dill [9, 10]. In this model, the 20 amino acids are reduced to a two letter
alphabet by H and P, where H represents hydrophobic amino acids, and P, po-
lar or hydrophilic amino acids. Two monomers form a contact in some specific
conformation if they are not consecutive, but occupy neighboring positions in
the conformation (i.e., the distance vector between their positions in the confor-
mation is a unit vector). A conformation with minimal energy is a conformation
with the maximal number of contacts between non-consecutive H-monomers (see

Multi-directional Width-Bounded Geometric Separator and Protein Folding 997

Figure 3). The folding problem in the HP-model is to find the conformation for
any HP-sequence with minimal energy. This problem was proved to be NP-hard
in both 2D and 3D [2, 3]. We will apply our new separator to the protein fold-
ing problem in the 2D HP model to get an O(n5.563

√
n) time exact algorithm,

improving the previous O(n6.145
√

n)-time algorithm [6].

2 Separators Upper Bound for Grid Graphs

We first give a series of notations. For a set A, |A| denotes the number of elements
in A. For two points p1, p2 in the d-dimensional space (Rd), dist(p1, p2) is the
Euclidean distance. For a set A ⊆ Rd, dist(p1, A) = minq∈A dist(p1, q). The
integer set is represented by Z = {· · · ,−2,−1, 0, 1, 2, · · ·}. For integers x1 and
x2, (x1, x2) is a grid point. A grid square is an 1 × 1 square that has four grid
points as its four corner points. For a set V of grid points on the plane, let EV

be the set of edges (vi, vj) (straight line segments) such that vi, vj ∈ V and
dist(vi, vj) = 1. Define G = (V,EV) as the grid graph. For 0 < α < 1, an α-
separator for a grid graphG = (V,EV) is a subset A ⊆ V such thatG−A has two
disconnected areas G1 = (V1, EV1) and G2 = (V2, EV2) with |V1|, |V2| ≤ α|V |.
Define C(o, r) = {(x, y)|dist((x, y), o) ≤ r}, which is the disc area with center at
point o and radius r. For r > 0, define D(r) to be the union region of 4 discs
C((0,−r), r) ∪C((0, r), r) ∪C((−r, 0), r) ∪C((r, 0), r) (see the left of Figure 1).
For a region R on the plane, define G(R) to be the set of all grid points in the
region R. For a 2D vector v, a line L in R2 through a fixed point p0 ∈ R2 along
the direction v corresponds to the equation p = p0 + tv that characterizes all the
points p on L, where the parameter t ∈ (−∞,+∞). For a point p0 and a line L,
the distance of p0 to L along direction v is dist(p0, q), where q is the intersection
between p = p0 + tv and L. Let v1, v2, · · · , vk be k fixed vectors. A point p has
distance ≤ (a1, · · · , ak) to L along directions v1, v2, · · · , vk if p has distance ≤ ai

along direction vi for some i = 1, · · · , k.

Definition 1. Let P be a set of points in R2, v1, · · · , vm be 2D vectors, and
w1, · · · , wm be positive real numbers. A (w1, · · · , wm)-wide separator for the set
P along the directions v1, · · · , vm is a region R determined by a line L. The
region R consists all points with distance ≤ (w1, · · · , wm) along v1, · · · , vm. The
separator size is measured by the number of points of P in the region R. Its
balance number is the least number α such that each side of L has at most α|P |
points from P .

In the rest of this paper, we use two vectors v1 = (1, 0) an v2 = (0, 1) to
represent the horizontal and vertical directions, respectively. If a point p has
distance ≤ (a, a) from a line L, it means that the point p has distance ≤ a from
L along either direction (1, 0) or (0, 1) in the rest of this paper.

Lemma 1. ([15]) For an n-element set P in a d-dimensional space, there is a
point q with the property that any half-space that does not contain q covers at
most d

d+1n elements of P . (Such a point q is called a centerpoint of P).

998 B. Fu, S.A. Oprisan, and L. Xu

�

���
��

��
����

��
��
��

x

y �

��
�

�
�

�
�

�
�

�
�

�
�

p = (x, y)

θ1

θ2

α
d2

d1

p2 = (x, y + a)

p1 = (x, y − a) x

y

o

Fig. 1. Left: Area of grid points with maximal expectation. Right: Probability analysis.

Lemma 2. Let P be a set of grid points on the plane and (0, 0) �∈ P . The sum∑
p=(x,y)∈P max(|x|

x2+y2 ,
|y|

x2+y2) is maximal when P ⊆ G(D(R)), where R is the
least radius with |G(D(R))| ≥ |P |.

Proof. Let L be the line segment connecting o = (0, 0) and p = (x, y). If p′ =
(x′, y′) is another point between o and p on the line L, we have max(|x|,|y|)

dist(o,p) =
max(|x′|,|y′|)

dist(o,p′) . Since dist(o, p) > dist(o, p′), we have max(|x|,|y|)
dist(o,p)2 < max(|x′|,|y′|)

dist(o,p′)2 . For

the constant c, let |x|
x2+y2 = c or |y|

x2+y2 = c. We have x2 + y2 − 1
c |x| = 0 or

x2 + y2 − 1
c |y| = 0. The two equations characterize the four circles of D(1

2c). All
points on the external boundary D(r) have the same value max(|x|,|y|)

dist(o,p)2 . �

Let a be a constant > 0, p and o be two points on the plane, and P be
a set of points on the plane. We define the function fp,o,a(L) = 1 if p has
≤ (a, a) distance to the line L and L is through o; and 0 otherwise. Define
FP,o,a(L) =

∑
p∈P fp,o,a(L), which is the number of points of P with ≤ (a, a)

distance to L for the line L through o. The expectation E(FP,o,a) is the expected
number of points in P with distance ≤ (a, a) to the random line L through o.

Lemma 3. Let a > 0 be a constant and δ > 0 be a small constant. Let P
be a set of n grid points on the plane and o be a point on the plane. Then
E(FP,o,a) ≤ (4π+8)(1+δ)a

√
n

π
√

4+2π
.

Proof. Without loss generality, we assume that o = (0, 0) (Notice that FP,o,a is
invariant under translation). Let ε > 0 be a small constant that will be fixed later.
Let us consider a grid point p = (x, y) ∈ P on the plane and let p1 = (x, y − a)
and p2 = (x, y+a). The angle between the two lines op1 and op2 will be estimated
(Figure 1). Let d = dist(o, p), d1 = dist(o, p1) and d2 = dist(o, p2). Define the
angles θ1 = pop1, θ2 = pop2 and α = op2p.

From a
sin θ2

= d
sin α , we have sin θ2 = a

d · sinα = a
d · |x|

d2
= a|x|

dd2
. Similarly,

sin θ1 = a|x|
dd1

. If d > a, then a|x|
d(d+a) ≤ sin θ1, sin θ2 ≤ a|x|

d(d−a) .

Multi-directional Width-Bounded Geometric Separator and Protein Folding 999

Let β1 = poq1 (β2 = poq2) be the angle between the line segments op and
oq1 (oq2 respectively), where q1 = (x − a, y) and q2 = (x + a, y). If d > a, then
we also have a|y|

d(d+a) ≤ sinβ1, sinβ2 ≤ a|y|
d(d−a) . There is a constant d0 such that

if d > d0, then we have the following inequalities: (i) a|y|
d2 (1 − ε) ≤ β1, β2 ≤

a|y|
d2 (1 + ε), (ii) a|x|

d2 (1 − ε) ≤ θ1, θ2 ≤ a|x|
d2 (1 + ε), and (iii) (1−ε)amax(|x′|,|y′|)

d′2 <
a max(|x|,|y|)

d2 < (1+ε)a max(|x′|,|y′|)
d′2 for any (x′, y′) with dist((x, y), (x′, y′)) ≤

√
2,

where d′ = dist((x′, y′), o).
Let Pr(o, p, a) be the probability that the point p has distance ≤ (a, a)

to a random line L through o. If d ≤ d0, then Pr(o, p, a) ≤ 1. Otherwise,
Pr(o, p, a) ≤ max(2 max(β1,β2),2max(θ1,θ2))

π ≤ 2
π max

(
a|y|
d2 ,

a|x|
d2

)
(1 + ε). The num-

ber of grid points with distance ≤ d0 to o is ≤ π(d0 +
√

2)2. Then E(FP,o,a) =∑
p∈P E(fo,p,a) =

∑
p∈P Pr(o, p, a) ≤

∑
p∈P and dist(p,o)>d0

Pr(o, p, a) +∑
p∈P and dist(p,o)≤d0

Pr(o, p, a) ≤ 2(1+ε)
π

∑
p∈P and dist(p,o)>d0

max
(

|x|
d2 ,

|y|
d2

)
+

π(d0 +
√

2)2.
We only consider the case to make

∑
p∈P and d>d0

max(|x|d2 ,
|y|
d2) maximal. By

Lemma 2, it is maximal when the points of P are in the area D(R) with the
smallest R.

For a grid point p = (i, j), define grid1(p) = {(x, y)|i− 1
2 < x < i+ 1

2 and j−
1
2 < y < j+ 1

2}, and grid2(p) = {(x, y)|i− 1
2 ≤ x ≤ i+ 1

2 and j− 1
2 ≤ y ≤ j+ 1

2}.
If the grid point p �∈ D(R), then grid1(p) ∩ D(R −

√
2

2) = ∅. The area size of
D(R) is 2πR2 + 4R2. Assume R is the minimal radius such that D(R) contains
at least n grid points. The region D(R − ε) contains < n grid points for every
ε > 0. This implies D(R − ε −

√
2

2) ⊆ ∪grid point p∈D(R−ε)grid2(p). Therefore,

2π(R−
√

2
2 −ε)2 +4(R−

√
2

2 −ε)2 ≤ n. Hence, R ≤
√

n√
4+2π

+
√

2
2 +ε <

√
n√

4+2π
+

√
2

(the constant ε will be ≤
√

2
2).

Let A1 = {p = (x, y) ∈ D(R)|the angle between op and x-axis is in [0, π
4]},

which is the 1
8 area of D(R). The probability that a point p(= (x, y)) has dis-

tance ≤ (a, a) to the random line L is ≤ 2(1+ε)ax
πd2 for p in A1 with dist(p, o) > d0.

The expectation of the number of points (with distance ≤ (a, a) to L and dis-
tance > d0 to o) of P in the area A1 is

∑
p∈A1∩P and dist(p,o)>d0

Pr(o, p, a) ≤∑
p∈A1∩P and dist(p,o)>d0

2(1+ε)ax
πd2 ≤

∫ ∫
A1

2(1+ε)2ax
πd2 dxdy =

2(1+ε)2a
π

∫ π
4

0

∫ 2R cos θ

0
r cos θ

r2 · rdrdθ = 2(1+ε)2a
π

∫ π
4

0

∫ 2R cos θ

0 cos θdrdθ =
2(1+ε)2aR

π

∫ π
4

0 2(cos θ)2dθ = 2(1+ε)2aR
π · (π

4 + 1
2) = (1+ε)2aR

π · (π
2 + 1).

Since R ≤
√

n√
4+2π

+
√

2, the total expectation is

E(FP,o,a) ≤ 8
∑

p∈A1∩P and dist(p,o)>d0
Pr(o, p, a)+π(d0 +

√
2)2 ≤ 8(1+ε)2aR

π ·
(π

2 + 1) + π(d0 +
√

2)2 ≤ (4π+8)(1+3ε)a
√

n

π
√

4+2π
≤ (4π+8)(1+δ)a

√
n

π
√

4+2π
for all large n. We

assign to the constant ε the value min(δ
3 ,

√
2

2). �

1000 B. Fu, S.A. Oprisan, and L. Xu

Theorem 1. Let a > 0 be a constant and P be a set of n grid points on the
plane. Let δ > 0 be a small constant. There is a line L such that the number of
points in P with ≤ (a, a) distance to L is ≤ (4π+8)(1+δ)a

√
n

π
√

4+2π
, and each half plane

has ≤ 2n
3 points from P for all large n.

Proof. Let o be the center point of set P (by Lemma 1). The theorem follows
from Lemma 3. �

The following corollary shows that for each grid graph of n nodes, its 2
3 -

separator size is bounded by 1.02074
√
n. For two grid points of distance 1, if

they stay on different sides of separator line L, one of them has ≤ (1
2 ,

1
2) distance

to L.

Corollary 1. Let P be a set of n grid points on the plane. There is a line L such
that the number of points in P with ≤ (1/2, 1/2) distance to L is ≤ 1.02074

√
n,

and each half plane has ≤ 2n
3 points from P .

Proof. By Theorem 1 with a = 1
2 , we have, 8(1+ε)

π
1
2 · (π

2 + 1) · 1√
4+2π

< 1.02074
when ε is small enough. �

3 Separator Lower Bound for Grid Graphs

In this section we prove the existence of a lower bound of 0.7555
√
n for the grid

graph separator. We calculate the length of the shortest curve partitioning the
unit circle into two areas with ratio 1 : 2 (Theorem 2). A simple closed curve in
the plane does not cross itself. Jordan’s theorem states that every simple closed
curve divides the plane into two compartments, one inside the curve and one
outside of it, and that it is impossible to pass continuously from one to the other
without crossing the curve.

Theorem 2. The shortest curve that partitions an unit circle into two regions
with ratio 1 : 2 has length > 1.8937.

Proof. (Sketch) Using the standard method of variational calculus, the shortest
curve partitioning the unit circle with the fixed area ratio between two regions
is a circle arc. Using the numerical method, we can calculate the length of the
circle arc. �

Definition 2. A graph is connected if there is a path between every two nodes
in the graph. For a connected grid graph G = (V,EV), a contour of G is a
circular path C = v1v2 · · · vkv1 such that 1) (vi, vi+1) ∈ EV (i = 1, 2, · · · , k − 1)
and (vk, v1) ∈ EV ; 2) all points of V are in the one side of C; and 3) for any
i ≤ j, v1 · · · vi−1vj+1 · · · vkv1 does not satisfy both 1) and 2). A point v ∈ V is a
boundary point if d(v, u) = 1 for some grid point u �∈ V . A contour C separates
w from all grid points V if every path from w to a node in V intersects C.

Multi-directional Width-Bounded Geometric Separator and Protein Folding 1001

Example: Let V be the set of all dotted grid points in Figure 2.
C = v1v2v3v4v5v6v7v8v9v10v11v12v13v14v1 is a contour for V . The condition 3)

prevents C′ = v1v2v15v2v3v4v5v6v7v8v9v10v11v12v13v14v1 from being a contour.

Lemma 4. Let G = (V,EV) be a connected grid graph. If the grid point v ∈ V
and grid point w �∈ V have the distance dist(v, w) = 1, then there is a contour
C such that C contains v and separates w from all grid points of V .

Proof. Imagine that a region starting from the grid point w grows until it touches
all of the reachable edges of G (but never crosses any of them). Since G is a
connected grid graph, the boundary forms a contour that consists of edges of G.
As dist(w, v) = 1, the vertex v should appear in the contour. �

Lemma 5. Let G = (V,EV) be a grid graph and C be a contour of G. Let
U = {u|u is a grid point not in V with dist(u, v) = 1 for some v ∈ V and
C separates u from V }. Then there is a list of grid points u1, u2, · · · , um+1 in U
such that um+1 = u1, dist(ui, ui+1) ≤

√
2 for i = 1, 2, · · · ,m and all points of P

are on one side of the circle path u1u2 · · ·um+1 (the edge connecting every two
consecutive points u1, u2 is straight line).

Proof. Walking along the contour C = v1 · · · vkv1, we assume that only the left
side has the points from V . A point vi on C is called special point if vi−1 = vi+1.
The point v9 is a special point at the contour v1v2 · · · v14v1 in Figure 2. For each
edge (vi, vi+1) in C, the grid square, which is on the right side of (vi, vi+1) and
contains (vi, vi+1) as one of the four boundary edges, has at least one point not
in V . Let S1, S2, · · · , Sk be those grid squares for (v1, v2), (v2, v3), · · · , (vk, v1),
respectively. For each special point vi on C, it has two special grid squares
S′

i and S′′
i that share the edge (vi, u) for some u ∈ U with dist(u, vi) = 1 and

dist(u, vi−1) = 2 (for example, S′
9 and S′′

9 on Figure 2). Insert S′
i and S′′

i between
Si and Si+1. We get a new list of grid squares H1, H2, · · · , Hm. We claim that
for every two consecutive Hi and Hi+1, there are grid points ui ∈ Hi ∩ U and
ui+1 ∈ Hi+1 ∩ U with dist(ui, ui+1) ≤

√
2. The lemma is verified by checking

the following cases:
Case 1. Hi = Sj and Hi+1 = Sj+1 for some j < k.
Subcase 1.1. Sj and Sj+1 share one edge vj+1u. An example of this subcase

is the grid squares S1 and S2 on Figure 2. It is easy to see that u ∈ U since u is
on the right side when walking along the cycle path C.

Subcase 1.2. Sj = Sj+1. An example of this subcase is the grid squares S5
and S6 on Figure 2. This is a trivial case.

Subcase 1.3. Sj and Sj+1 only share the point vj+1. An example of this
subcase is the grid squares S11 and S12 on Figure 2. We have grid points u1 ∈
U and u2 ∈ U such that dist(u1, vj+1) = 1, dist(u2, vj+1) = 1. Furthermore,
dist(u1, u2) =

√
2.

Case 2. Hi = S′′
j and Hi+1 = Sj for some j < m. An example of this subcase

is the grid squares S′′
9 and S9 on Figure 2. The two squares share the edge vju

for some u ∈ U .

1002 B. Fu, S.A. Oprisan, and L. Xu

Case 3. Hi = S′
j and Hi+1 = S′′

j . An example of this subcase is the grid
squares S′

9 and S′′
9 on Figure 2. The two squares share the edge uju for some

u ∈ U .
Case 4. Hi = Sj−1 and Hi = S′

j. An example of this subcase is the grid
squares S8 and S′

9 on Figure 2. The two squares share vju for some u ∈ U . �

�v1

S1

S2

�
�v2 �v15

�v5

S5 = S6

S7 = S8 S′
9

S′′
9S9S10 = S11

S12

�v4�v3

�v14

�v13 �v12

�v11 �v8 = v10 �v9

�
v7

�
v6

Fig. 2. Contour C = v1v2 · · · v14v1. The node v9 is a special point. When walking along
v1 · · · v14v1, we see that each Si is the grid square on the right of vivi+1.

Definition 3. For a region R on the plane, define A(R) to be the area size of
R. An unit circle has radius 1. For a region R in the unit circle, L(R) is the
length of the boundary of R inside the internal area of the unit circle. A region
R inside a unit circle is type 1 region if part of its boundary is from the unit
circle boundary. Otherwise, it is called type 2 region, which does not share any
boundary with the unit circle.

Lemma 6. Assume s > 0 is a constant and p1, p2 are two points on the plane.
We have 1) the area with the shortest boundary and area size s on the plane is
a circle with radius

√
s
π ; and 2) the shortest curve that is through both p1 and

p2, and forms an area of size s with the line segment p1p2 is a circle arc.

The proof of Lemma 6 can be found in regular variational calculus textbooks
(e.g. [16]). Let R be a type 1 region of area size s. Let C be the part of R
boundary that is an unit circle arc with p1 and p2 as two end points. Let C′ be
the rest of the boundary of R. Let R′ be the region with the boundary C and
line segment p1p2. Assume the length of C′ is minimal. If A(R) = A(R′), then
C′ is the same as the line segment p1p2. If A(R) < A(R′), then C′ is a circle arc
inside R′ (between C and p1p2). If A(R) > A(R′), then C′ is also a circle arc
outside R′. Those facts above follow from Lemma 6.

Lemma 7. Let s ≤ π be a constant. Let R1, R2, · · · , Rk be k regions inside
an unit circle (they may have overlaps),

∑k
i=1A(Ri) = s and

∑k
i=1 L(Ri) is

minimal. Then k = 1 and R1 is a type 1 region.

Multi-directional Width-Bounded Geometric Separator and Protein Folding 1003

Proof. We consider the regions R1, · · · , Rk that satisfy
∑k

i=1A(Ri) = s and∑k
i=1 L(Ri) is minimal for k ≥ 1. Each Ri(i = 1, · · · , k) is either type 1 or type

2 region. The part of boundary of Ri that is also the boundary of the unit circle
is called old boundary. Otherwise it is called type new boundary.

A type 2 region has to be a circle (by Lemma 6). For a type 1 region, its new
boundary inside the unit circle is also a circle arc (otherwise, its length is not
minimal by part 2 of Lemma 6). If we have both type 1 region R1 and type 2
regionR2. MoveR1 to R∗

1 andR2 toR∗
2 on the plane so thatR∗

1 andR∗
2 have some

intersection (not a circle) at their new boundaries. Let R′
2 be the circle with the

same area size as R∗
1∩R∗

2. The boundary length of R′
2 is less than that of R∗

1∩R∗
2.

So, L(R1) + L(R2) reduces to L(R∗
1 ∪ R∗

2) + L(R′
2) if R1 and R2 are replaced

by R∗
1 ∪R∗

2 and R′
2 (Notice that A(R1) +A(R2) = A(R∗

1 ∪R∗
2) +A(R∗

1 ∩R∗
2) =

A(R∗
1 ∪R∗

2) +A(R′
2)). This contradicts that

∑k
i=1 L(Ri) is minimal. Therefore,

there is no type 2 region. We only have type 1 regions left. Assume that R1 and
R2 are two type 1 regions. Let R1 and R2 have the unit circle arcs p1p2 and
p2p3 respectively. They can merge into another type 1 region R with the unit
circle arc p1p2p3 and the same area size A(R) = A(R1) + A(R2). Furthermore,
L(R) < L(R1) + L(R2). A contradiction again. Therefore, k = 1 and R1 is a
type 1 region. �

Definition 4. Let q be a positive real number. Partition the plane into q × q
squares by the horizontal lines y = iq and vertical lines x = jq (i, j ∈ Z). Each
point (iq, jq) is a (q, q)-grid point, where i, j ∈ Z.

Lemma 8. Let V be the set of all (q, q) grid points in the unit circle C. Let G =
(V,EV) be the grid graph on V , where EV = {(vi, vj)|dist(vi, vj) = 1 and vi, vj ∈
V }. Let t be a constant ≥ 1. Assume that l is a curve that partitions a unit circle
C into two regions U1 and U2 with A(U1)

A(U2)
= 1

t . If the minimal length of l is c0,

then every t
t+1 -separator for the grid graph G has a size ≥ (c0−o(1))(

√
n−

√
2π)√

2
√

π
.

Proof. Assume that the unit circle C area has n (q, q)-grid points. We have
π(1 + q

√
2)2 ≥ n · q2. It implies q ≤ 1√

n√
π
−
√

2
. Assume S ⊆ V is the smallest

separator for G = (V,EV) such that G−S has two disconnected subgraphs G1 =
(V1, EV1) and G2 = (V2, EV2), which satisfy |V1|, |V2| ≤ tn

t+1 . By Corollary 1,
|S| ≤ 1.021

√
n. Let G1 have connected components F1, · · · , Fm. By Lemma 5,

each Fi is surrounded by a circular path Hi with grid points not from G1.
Actually, the grid points of Hi inside C are from the separator A. Let P1, · · · , Pk

be the parts of H1, · · · , Hm inside the C. They consist of vertices in A and the
distance between every two consecutive vertices in each Pi is ≤

√
2q (by Lemma 5

and scaling (q, q) grid points to (1, 1) grid points).
The number of (q, q)-grid points with distance ≤ 2q to the unit circle boundary

is O(
√
n). For a (q, q)-grid point p = (iq, jq) and h > 0, define gridh(p) =

{(x, y)|iq − h
2 ≤ x ≤ iq + h

2 and jq − h
2 ≤ y ≤ jq + h

2 }. Let VH be the set of
all (q, q)-grid points in H1, · · · , Hm and VP be the set of all (q, q)-grid points in

1004 B. Fu, S.A. Oprisan, and L. Xu

P1, · · · , Pk. Let S1 = ∪p∈V1gridq(p). Since |V1| + |V2| + |S| = n, |V1|, |V2| ≤ tn
t+1 ,

and |S| ≤ 1.021
√
n, we have tn

t+1q
2 ≥ A(S1) ≥ (n

t+1 − 1.021
√
n)q2.

Assume that P1, · · · , Pk together with the circle boundary partition the unit
circle into two parts X1 and X2, where X1 contains all grid points of V1 and X2
contains all grid points of V2. It is easy to see that S1 −∪p∈VH grid2q(p) ⊆ X1 ⊆
S1∪(∪p∈VH grid2q(p)). Therefore,A(S1)−O(q2

√
n) ≤ A(X1) ≤ A(S1)+O(q2

√
n).

Thus, A(S1) −O(1√
n
) ≤ A(X1) ≤ A(S1) +O(1√

n
).

For the variable x ≤ π
2 , define the function g(x) to be the length of the shortest

curve that partitions the unit circle into regions Q1 and Q2 with A(Q1) = x.
Then g(x) is an increasing continuous function. For a small real number δ > 0,

let D be the disk of area size δ. Therefore, D has radius
√

δ
π . Put D into

the region Q2 and let D be tangent to the boundary of Q1. The length of the

boundary of Q1 ∪D inside the unit circle is g(x)+ 2π
√

δ
π = g(x)+ 2

√
δπ. Thus,

g(x+ δ) ≤ g(x) + 2
√
δπ.

Assume that total length of P1, · · · , Pk is minimal, then k = 1 by Lemma 7.
The length of P1 is at least g(1

3) − o(1) = c0 − o(1) by the analysis in the last
paragraph. Since every two consecutive grid points in P1 has distance ≤

√
2q,

there are at least c0−o(1)
q
√

2
≥ (c0−o(1))(

√
n√
π
−
√

2)
√

2
= (c0−o(1))(

√
n−

√
2π)√

2
√

π
grid points of

A along P1. �

Theorem 3. There exists a grid graph G = (V,EV) such that for any A ⊆ V

if G − A has two disconnected graphs G1 and G2, and Gi(i = 1, 2) has ≤ 2|V |
3

nodes, then |A| ≥ 0.7555
√
n when n is large.

Proof. By Theorem 2, the length of the shortest curve partitioning the unit circle
into 1 : 2 ratio is ≥ 1.8937. By Lemma 8 with c0 = 1.8937 and k = 1, we have
|A| ≥ 0.7555

√
n. �

�P �H

�P �P

�H �H

�P�H

Fig. 3. The sequence PHPPHHPH is put on the 2 dimensional grid. There are 2 H-H
contacts marked by the dotted lines.

4 Application to Protein Folding in the HP-Model

We have shown that there is a size O(
√
n) separator line to partition the folding

problem of n letters into 2 problems in a balanced way. The 2 smaller problems

Multi-directional Width-Bounded Geometric Separator and Protein Folding 1005

are recursively solved and their solutions are merged to derive the solution to
the original problem. As the separator has only O(

√
n) letters, there are at most

nO(
√

n) cases to partition the problem. The major revision from the algorithm
in [6] is the approximation of the optimal separator line.

Theorem 4. There is a O(n5.563
√

n) time algorithm for the 2D protein folding
problem in the HP-model.

Proof. (Sketch) The algorithm is similar to that in [6]. We still use approximation
to the separator line. Lemma 3 shows that we can avoid the separator line that
is almost parallel or vertical to the x-axis. Let δ > 0 be a small constant. Let
a = 1

2 , c = 2
3 + δ and d = k0(a + δ), where k0 = (4π+8)(1+δ)

π
√

4+2π
such that k0a

√
n

is the upper bound for the number of grid points with ≤ (a, a) distance to the
separator line (by Theorem 1). With the reduced separator, its computational
time is (n

δ)O(log n)2O(
√

n)n
d(1

1−
√

c
)
√

n = O(n5.563
√

n). �

Acknowledgement. We are very grateful to Seth Pincus and Sansan Lin for
their valuable comments on the earlier version of this paper. We are also grateful
to the reviewers from ISAAC 2005 for their helpful comments.

References

1. N. Alon, P.Seymour, and R.Thomas, Planar Separator, SIAM J. Discr. Math.
7,2(1990) 184-193.

2. B. Berger and T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete, Journal of Computational Biology, 5(1998), 27-40.

3. P. Crescenzi and D. Goldman and C. Papadimitriou and A. Piccolboni and M.
Yannakakis,On the complexity of protein folding, Journal of computational biology,
5(1998), 423-465.

4. H.N. Djidjev, On the problem of partitioning planar graphs. SIAM Journal on
Discrete Mathematics, 3(2) June, 1982, pp. 229-240.

5. H. N. Djidjev and S. M. Venkatesan, Reduced constants for simple cycle graph
separation, Acta informatica, 34(1997), pp. 231-234.

6. B. Fu and W. Wang, A 2O(n1−1/d log n)-time algorithm for d-dimensional protein
folding in the HP-model, Proceedings of 31st International Colloquium on Au-
tomata, Languages and Programming, 2004, pp.630-644.

7. B. Fu, Theory and application of width bounded geometric separator, Electronic
Colloquium on Computational Complexity 2005, TR05-13.

8. H.Gazit, An improved algorithm for separating a planar graph, manuscript, USC,
1986.

9. K. F. Lau and K. A. Dill, A lattice statistical mechanics model of the conforma-
tional and sequence spaces of proteins, Macromolecules, 22(1989), 3986-3997.

10. K. F. Lau and K. A. Dill, Theory for protein mutability and biogenesis, Proc. Natl.
Acad. Sci, 87(1990), 638-642.

11. R. J. Lipton and R. Tarjan, A separator theorem for planar graph, SIAM J. Appl.
Math. 36(1979) 177-189.

1006 B. Fu, S.A. Oprisan, and L. Xu

12. G. L. Miller, S.-H. Teng, W. P. Thurston, S. A. Vavasis: Separators for sphere-
packings and nearest neighbor graphs. J. ACM 44(1): 1-29 (1997)

13. W. D. Smith and N. C. Wormald, Application of geometric separator theorems,
FOCS 1998, 232-243.

14. D. A. Spielman and S. H. Teng, Disk packings and planar separators, 12th Annual
ACM Symposium on Computational Geometry, 1996, pp.349-358.

15. J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley-Interscience Publica-
tion, 1995.

16. R. Weinstock, Calculus of variations, McGraw-Hill, 1952.

Shortest Paths and Voronoi Diagrams
with Transportation Networks

Under General Distances
[Extended Abstract]

Sang Won Bae and Kyung-Yong Chwa

Division of Computer Science, Department of EECS,
Korea Advanced Institute of Science and Technology, Daejeon, Korea

{swbae, kychwa}@jupiter.kaist.ac.kr

Abstract. Transportation networks model facilities for fast movement
on the plane. A transportation network, together with its underlying dis-
tance, induces a new distance. Previously, only the Euclidean and the
L1 distances have been considered as such underlying distances. How-
ever, this paper first considers distances induced by general distances
and transportation networks, and present a unifying approach to com-
pute Voronoi diagrams under such a general setting. With this approach,
we show that an algorithm for convex distances can be easily obtained.

1 Introduction

Transportation networks model facilities for fast movement on the plane. They
consist of roads and nodes; roads are assumed to be segments along which one
can move at a certain fixed speed and nodes are endpoints of roads. We assume
that there are no crossings among roads but roads can share their endpoints as
nodes. We thus define a transportation network as a plane graph whose vertices
are nodes and whose edges are roads with speeds assigned. Also, we assume that
one can access or leave a road through any point on the road. This, as Aichholzer
et al. [3] pointed out, makes the problem distinguishable from and more difficult
than those in other similar settings such as the airlift distance.

In the presence of a transportation network, the distance between two points
is defined to be the shortest elapsed time among all possible paths joining the
two points using the roads of the network. We call such an induced distance a
transportation distance. (In other literature [2, 3], it is called a time distance or a
city metric.) More precisely, a transportation distance is induced on the plane by
a transportation network and its underlying distance that measures the distance
between two points without roads.

Since early considerations for roads [7, 17, 20], fundamental geometric prob-
lems, such as shortest paths and Voronoi diagrams, under transportation dis-
tances have been receiving much attention recently [1, 2, 3, 4, 8, 18]. However,
underlying distances considered in the literature were only the Euclidean dis-
tance [2, 4] and the L1 distance [1, 3, 8]. Since transportation distances have

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1007–1018, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1008 S.W. Bae and K.-Y. Chwa

quite different properties depending on their underlying distances, there has not
been a common approach to extend such problems to more general underlying
distances. This paper thus considers geometric problems, in particular, short-
est paths and Voronoi diagrams under transportation distances induced from
general distances.

The Results. This paper presents, to the best of our knowledge, the first result
that studies general underlying distances and gives algorithms for computing
Voronoi diagrams with transportation networks, in Section 3. More precisely,
we classify transportable distance functions where transportation networks and
transportation distances are well-defined. Transportable distances include asym-
metric convex distances, nice metrics, and even transportation distances. In this
general setting, a unifying approach to compute Voronoi diagrams is presented.

As a special case of transportable distances, we take the convex distances into
account in Section 4. Based on the approach in Section 3 together with geometric
and algorithmic observations on convex distances, we first obtain an efficient and
practical algorithm that computes the Voronoi diagram with a transportation
network under a convex distance.

For the L1 metric, previous work considered only isothetic networks and a
single or a constant number of speeds for roads [3, 8]. Our results first deal
with more general transportation networks, which have no restriction except for
straightness; the roads can have arbitrarily fixed speeds and directions. For the
Euclidean metric, we obtain the same time and space bounds as those of the
previously best results [4].

Note that a resulting diagram of our algorithm is in fact a refined diagram
of the real Voronoi diagram so that it consists of shortest-paths information in
each cell and it can also serve as a shortest path map structure.

2 Preliminaries

2.1 Transportation Networks Under General Distances

Here, we let d : R2 ×R2 → R be a total distance function. For the Euclidean and
the L1 distances, a transportation network can be sufficiently represented as a
planar straight-line graph. If, however, we consider more general distances, the
meaning of “straight” should be reconsidered. Note that a straight segment is a
shortest path or a geodesic on the Euclidean plane or on the L1 plane. Geodesics,
in general, naturally generalize straight segments, and a road can be defined to
be a segment along a geodesic. Thus, in order to build a transportation network
under d, d needs to admit a geodesic between any two points on the plane.

In this step, we define a transportable distance that satisfies several axioms. It
is easy to observe that distances that admit geodesics and are possibly asymmet-
ric are transportable. We will show that transportable distances admit a geodesic
between any two points on the plane. We call a distance d over R2 transportable
if the following properties hold:

Shortest Paths and Voronoi Diagrams with Transportation Networks 1009

1. d is non-negative and d(p, q) = d(q, p) = 0 iff p = q and d satisfies the
triangle inequality.

2. The backward topology induced by d on X induces the Euclidean topology.
3. The backward d-balls are bounded with respect to the Euclidean metric.
4. For any two points p and r, there exists a point q /∈ {p, r} such that d(p, q)+

d(q, r) = d(p, r).

Distances with Condition 1 are called quasi-metrics and they induce two
associated topologies by two families of open balls, B+

d (x, ε) = {y|d(x, y) < ε}
and B−

d (x, ε) = {y|d(y, x) < ε}, called forward and backward, respectively [9, 16].
Here, we consider only the backward case since we shall take only the inward
Voronoi diagrams into account; Voronoi sites are supposed to be static and fixed.
In fact, Conditions 2-4 of the definition of transportable distances mimic those of
nice metrics in the sense of Klein and Wood [13]. By these conditions, (R2, d) is
known to be backward-complete [16]. Also, we can find a geodesic, whose length
is the same as the distance, between two points in R2.

Lemma 1. Let d be a transportable distance. Then, for any two points p and
r, there exists a path π from p to r such that for each point q on π the equality
d(p, r) = d(p, q) + d(q, r) holds.

Such paths are called d-straight and they generalize straight line segments
with respect to the Euclidean metric, indeed. This lemma can be shown by
Menger’s Verbindbarkeitssatz that implies the existence of d-straight paths in a
complete metric space [19].

Now, we are able to define a transportation network under a transportable
distance d. Since d can be asymmetric, roads in a transportation network may
have an orientation. Thus, throughout this paper, a transportation network un-
der d is defined to be a directed plane graph G = (V,E) such that any edge e in
E is a segment of a d-straight line and has its own weight v(e) > 1, called speed.
We note that an edge has an orientation so that it can be regarded as a one-way
road. And we call edges in E roads and vertices in V nodes, and roads and nodes
may denote d-straight paths and points by themselves referenced. Two incident
nodes of a road e is identified by p1(e) and p2(e), where e has the orientation
toward p2(e) from p1(e). Note that any crossings among roads can be removed
by introducing additional nodes. An anomaly occurs when we think of a two-way
road. Thus, we allow coincidence only for two roads having the same incident
nodes.

Now, we consider a distance dG induced by a transportable distance d and a
transportation network G = (V,E) under d, which can be defined as follows:

dG(p, q) = min
P=(p1,··· ,p�)∈P(p,q)

�−1∑
i=1

1
vi
d(pi, pi+1),

where P(p, q) is the set of all piecewise d-straight paths from p to q and vi = v(e)
if there exists an oriented road e ∈ E such that the path from pi to pi+1 passes
along e, otherwise, vi = 1. We call dG the transportation distance induced by d

1010 S.W. Bae and K.-Y. Chwa

and G. Note that transportable distances include nice metrics, convex distances,
and even transportation distances.

2.2 Needles

Bae and Chwa [4, 4] defined a needle as a generalized Voronoi site, which is
very useful for a transportation network. In fact, the concept of needles was
first proposed by Aichholzer, Aurenhammer, and Palop [3] but needles were not
thought of as Voronoi sites in their results.

Here, we consider a needle under a transportable distance d. A needle p
under d can be represented by a 4-tuple (p1(p), p2(p), t1(p), t2(p)) with t2(p) ≥
t1(p) ≥ 0, where p1(p), p2(p) are two endpoints and t1(p), t2(p) are additive
weights of the two endpoints, respectively. In addition, a needle under d is d-
straight in a sense that it can be viewed as a set of weighted points on the
d-straight path from p2(p) to p1(p). Other terms associated with a needle under
d are determined in a similar way with the Euclidean case. Thus, let s(p) be the
set of points on the d-straight path from p2(p) to p1(p), and v(p) be the speed
of p, defined by d(p2(p), p1(p))/(t2(p) − t1(p)).

The distance from any point x to a needle p is measured as d(x,p) =
miny∈s(p){d(x, y) +wp(y)}, where wp(y) is the weight assigned to y on p, given
as wp(y) = t1(p) + d(y, p1(p))/v(p), for all y ∈ s(p).

For the Euclidean case, the Voronoi diagram for pairwise non-piercing needles
has been shown to be an abstract Voronoi diagram. Two needles are called non-
piercing if, and only if, the bisector between them contains at most one connected
component. For more details, we refer to [4, 4].

3 Voronoi Diagrams Under Transportation Distances

3.1 dG-Straight Paths and Needles

As noted in the previous section, a transportable distance d and a transportation
network G induce a new distance dG and dG-straight paths. The structure of
any dG-straight path can be represented by a string of {S, T}, where S denotes
a d-straight path without using any road and T denotes that along a road.

Let us consider a single road e as a simpler case. Given a transportation
network G with only one road e, a dG-straight path is of the form STS or its
substring except for SS. This is quite immediate; paths represented by longer
strings than STS can be reduced since a road is d-straight and d satisfies the
triangle inequality. Thus, any dG-straight path P from p to q using a road e
can be represented as P = (p, p′, q′, q), where p′ is the entering point to e and
q′ is the exiting point to q. We then call q′ a footpoint of q on e. A point may
have several or infinitely many footpoints on a road. Let FPe(q) be the set of
footpoints of q on e for all dG-straight paths from any point to q using e. Let us
consider a total order ≺e on the points on a road e, where x ≺e y for x, y ∈ e
if the orientation of the d-straight path from x to y is equivalent to that of e.
Then, the following property of footpoints can be shown.

Shortest Paths and Voronoi Diagrams with Transportation Networks 1011

Lemma 2. Let F ⊆ e be connected. Then, the following are equivalent.

1. F is a connected component of FPe(q).
2. F has the least point q0 with respect to ≺e such that q0 ∈ FPe(q), and

d(q1, q) = d(q1, q2)/v(e) + d(q2, q) for any q1, q2 ∈ F with q1 ≺e q2.

For such a shortest path P = (p, p′, q′, q), we can find a needle q such that
d(p,q) = dG(p, q). Such a needle q is said to be produced on a road e from a
point q for a footpoint q′, and can be defined by setting parameters as follows;
p1(q) = q′, p2(q) = p1(e), t1(q) = d(q′, q), and t2(q) = d(p′q′)/v(e) + d(q′, q).
We let σe(q) be the set of needles produced on e from q for the least footpoint
of every connected component in FPe(q). Also, both of FPe(·) and σe(·) can be
naturally extended for needles since shortest paths to a needle under dG are also
dG-straight paths.

Lemma 3. If a transportation network G under d contains only one road e, for
a point x and a needle p, dG(x,p) = d(x, σe(p) ∪ {p}).

Now, we consider multiple roads. Let σG(p) =
⋃

e∈E σe(p) and σG(A) =⋃
p∈A σG(p) for a set A of needles. Since dG-straight paths may pass through

several roads, we apply σG(·) repeatedly. We thus let σk
G(p) = σG(σk−1

G (p)) and
σ0

G(p) = {p}. Also, we let Sk
p denote

⋃k
i=0 σ

i
G(p) and Sp denote S∞

p .

Theorem 4. Given a transportable distance d and a transportation network G
under d, for a point x and a needle p,

dG(x,p) = d(x,Sp).

Proof. We first define dk
G(p, q) be the length of a shortest path from p to q where

the path passes through at most k roads in G. Surely, dG(p, q) = d∞G (p, q).
We claim that dk

G(x,p) = d(x,Sk
p), which directly implies the theorem. We

prove this by induction. Lemma 3 gives us an inductive basis.We haved(x,S�+1
p)=

min{d(x,S�
p), d(x, σ�+1

G (p))} = min{d(x,S�
p), d(x, σG(σ�

G(p)))}. By inductive hy-
pothesis and Lemma 3, the equation is evaluated as d(x,S�+1

p) = min{d�
G(x,p),

d1
G(x, σ�

G(p))}.
As pointed out in the proof of Lemma 3, d1

G(x, σ�
G(p)) implies a shortest path

to a needle in σ�
G(p) using exactly one road in G, and further a shortest path

to p using exactly + 1 roads. Therefore, we conclude d(x,S�+1
p) = d�+1

G (x,p),
implying the theorem. ��

Theorem 4 says a nice relation between needles and roads. Furthermore, it di-
rectly implies that the Voronoi diagram Vd(S) under d for S induces the Voronoi
diagram VdG(S) under dG for S, where S denotes

⋃
p∈S Sp. In other words, any

Voronoi region in Vd(S) is completely contained in a Voronoi region in VdG(S),
i.e., VdG(S) is a sub-diagram of Vd(S).

Corollary 5. VdG(S) can be extracted from Vd(S) in time linear in the size of
Vd(S).

1012 S.W. Bae and K.-Y. Chwa

3.2 Computing Effective Needles

In this subsection, we present an algorithm for computing the Voronoi diagram
VdG(S) for a given set S of sites under dG. The algorithm consists of three phases;
it first computes the set S of needles fromG and S, secondly, the Voronoi diagram
Vd(S) for S under d is constructed, and the Voronoi diagram VdG(S) for S under
dG is finally obtained from Vd(S).

The second phase, computing Vd(S), would be solved by several technics and
general approaches to compute Voronoi diagrams, such as the abstract Voronoi
diagram [10]. Also, the third phase can be done by Corollary 5. We therefore
focus on the first phase, computing S—in fact, its finite subset—from G and S.

Recall that S is defined as all the needles recursively produced from given
sites and contains infinitely many useless needles, that is, needles that do not
constitute the Voronoi diagram Vd(S). We call a needle p ∈ S effective with
respect to S if the Voronoi region of p in Vd(S) is not empty. Let S∗ ⊆ S be
the largest set of effective needles with respect to S, i.e., Vd(S∗) = Vd(S). Our
algorithm computes S∗ from G and S.

The algorithm works with handling events, which are defined by a certain
situation at a time. Here, at each time t, we implicitly maintain the (backward)
dG-balls of the given sites, where the backward dG-ball of a site p is defined as
the set B−

dG
(p, t) = {x|dG(x, p) < t}, and dG-balls expand as time t increases.

Here, we have only one kind of events, called birth events which occur when a
dG-ball touches any footpoint on a road during their expansions; at that time a
new needle will be produced in the algorithm. We can determine a birth event
associated with a footpoint of a needle on a road. In order to handle events, we
need two data structures: Let Q be an event queue implemented as a priority
queue such that the priority of an event e is its occurring time and Q supports in-
serting, deleting, and extracting-minimum in logarithmic time with linear space.
And, let T1, T2, · · · , Tm be balanced binary search trees, each associated with ei,
where the road set E is given as {e1, e2, · · · , em}. Each Ti stores needles on
ei in order and the precedence for a needle p follows from that of p1(p) with
respect to ≺ei . Ti supports inserting and deleting of a needle in logarithmic time,
and also a linear scan for needles currently in Ti in linear time and space.

Now, we are ready to describe the algorithm ComputeEffectiveNeedles.
First, the algorithm computes σG(S) and the associating birth events, and insert
events into Q. Then, while the event queue Q is not empty, repeat the following
procedure: (1)Extract the next upcoming event b, say that b is a birth event on
a road ei associated with a needle p. (2)Test the effectiveness of p and, (3)if
the test has passed, compute birth events associated with σG(p), and insert the
events into Q.

ComputeEffectiveNeedles returns exactly S∗ by the effectiveness test in
(2). This test can be done by checking if the associating footpoint of the current
event has been already dominated by dG-balls of other sites. Thus, if the test is
passed, we decide that the new needle should be effective and insert it into Ti.
The following lemma shows that the effectiveness test is necessary and sufficient
to compute S∗.

Shortest Paths and Voronoi Diagrams with Transportation Networks 1013

Lemma 6. For every birth event and its associating needle p, p is effective with
respect to S if and only if it passes the effectiveness test of Algorithm Compute-
EffectiveNeedles.

The algorithm always ends, which can be shown by the finiteness of S∗. The
effectiveness test always fails if all the roads are covered with the dG-balls after
some large time T and there exists such T since distances between any two
points in the space are always defined. Hence, S∗ contains a finite number of
needles. Moreover, the number of events handled while running the algorithm is
also bounded by the following lemma.

Lemma 7. S∗ is finite and the number of handled events is O(s · |S∗|), where
s is the maximum cardinality of σG(p) for any needle p.

We end this section with the following conclusion.

Theorem 8. Given a transportable distance d, a transportation network G un-
der d, and a set S of sites, S∗ can be computed in O(ε(log ε+ Tef)) time, where
ε is the number of events handled while running the algorithm, the same as
O(s · |S∗|), and Tef denotes time taken to test the effectiveness.

In most natural cases, such as the Euclidean metric and convex distances,
sufficiently Tef = O(log ε) so that the total running time becomes O(ε log ε).

4 Transportation Networks Under Convex Distances

In this section, we deal with convex distances as a special case of transportable
distances. We thus investigate geometric and algorithmic properties of the in-
duced distance by a convex distance and a transportation network, and construct
algorithms that compute the Voronoi diagram for given sites under the induced
distance.

In order to devise such an algorithm, we apply the abstract scheme described
in the previous section; a bundle of properties have to be shown: how to compute
needles produced from a needle, how to check the effectiveness of needles, how
many needles and events to handle, how to compute the Voronoi diagram for
needles, and some technical lemmas to reduce the complexity.

A convex distance is defined by a compact and convex body C containing the
origin, or the center, and is measured as the factor that C centered at the source
should be expanded or contracted for its boundary to touch the destination.
Note that a convex distance is symmetric, i.e. being a metric, if and only if C is
symmetric at its center.

We consider the convex C as a black box which supports some kinds of ele-
mentary operations. These are finding the Euclidean distance from the center to
the boundary in a given direction, finding two lines which meet at a given point
and are tangent to C, finding the footpoint for a needle and a road, and com-
puting the bisecting curve between two sites under the convex distance based on
C. Here, we assume that these operations consume reasonable time bounds.

1014 S.W. Bae and K.-Y. Chwa

Throughout this section, for a convex body C, we denote by C+p a translation
of C by a vector p and by λC an expansion or a contraction of C by a factor λ.
And, we may denote by C′ the reflected body of C at its center and by ∂C the
boundary of C.

4.1 Roads and Needles Under a Convex Distance

For the Euclidean distance, to take a shortest path with a road e, one should
enter or exit e with angle π/2±α, where sinα = 1/v(e) [2]. For a convex distance
d based on C, there also exist such entering or exiting angles for a road that they
lead to a shortest path. We can obtain these angles by simple operations on C.
First, we pick a point x on e not p2(e) and consider (d(x, p2(e))/v(e))C′ +p2(e),
say D. We then compute two lines which meet at x and are tangent to D. Each
of the two lines is above or below e. We let α+

e and α−
e be two inward directions

perpendicular to the two lines. And, let us consider two directions from p2(e)
to two meeting points between the two lines and D. We then let β+

e and β−
e be

reflections of the two directions at the center of D. The symbols + and − mean
“above” and “below” with respect to e, respectively. See Figure 1(a).

Lemma 9. Given a road e under a convex distance d, any shortest path from p
to q passing through e has the following properties:

– If p is above e, either the access direction is α+
e or the access point is p1(e).

– If p is below e, either the access direction is α−
e or the access point is p1(e).

– If q is above e, either the leaving direction is β+
e or the exiting point is p2(e).

– If q is below e, either the leaving direction is β−
e or the exiting point is p2(e).

α+
e

α−
e

β−
e

β+
e

→ e

D

p

q

p1(e) p2(e)

(a) A road e and a shortest
path from p to q

α+
p

α−
p

β−
p

β+
p

p
p2(p) p1(p)

p

(b) A needle p and a shortest
path from p to p

Fig. 1. Directions defined for a road and for a needle

By the observation of Lemma 9, we can easily find a shortest path with one
road. For instance, Figure 1(a) shows a shortest path from p to q using road e.

We can define similar terms for a needle as we did for a road. The (backward)
d-ball B−

d (p, t) of p can be computed as follows: If 0 < t ≤ t1(p), B−
d (p, t) is

empty. If t1(p) < t ≤ t2(p),B−
d (p, t) is the convex hull of (t−t1(p))C′+p1(p) and

the point x on p such that d(x, p1(p))/v(t) = wp(x) − t1(p). And, if t > t2(p),
B−

d (p, t) is the convex hull of (t−t1(p))C′+p1(p) and (t−t2(p))C′+p2(p). Thus,

Shortest Paths and Voronoi Diagrams with Transportation Networks 1015

when t > t1(p), ∂B−
d (p, t) contains two line segments tangent to two scaled C′

and the slopes of these line segments do not change even if t changes. Hence, the
meeting points between the line segments and the convex bodies scaled from C′

make 4 rays, and they have two directions −β+
p and −β−

p . Then, we can define
α+

p , α−
p , β+

p , and β−
p , equivalently as for a road, see Figure 1(b). Note that if

p ∈ σe(q) for any needle q, then α+
p = α+

e , α−
p = α−

e , β+
p = β+

e , and β−
p = β−

e ,
by definition of σe(q).

4.2 Computing S∗

In this subsection, we discuss how to compute S∗ for given sites S from the
algorithm ComputeEffectiveNeedles described in the previous section.

The footpoints. Under a convex distance, any needle has at most one connected
component of footpoints on a road. Actually, Lemma 9 tells us how to compute
the least footpoint of a point p on a road e; it can be obtained as either the
intersecting point of the road e and the ray with direction −β+

e or −β−
e from p,

or just p2(e).

Lemma 10. Let d be a convex distance based on a convex C and G be a trans-
portation network under d. For a road e in G and a needle p, the number of
connected components of footpoints of p on e is at most one and the least foot-
point is either the least footpoint of p1(p) or p2(p), or just p2(e).

The effectiveness test. At every time a birth event occurs, the effectiveness test
is done by testing if the point where the event occurs is dominated by other
already produced effective needles at that time. Under a convex distance, d-balls
of any needle are convex so that we can test the effectiveness in logarithmic
time by maintaining the tree structures Ti and doing a couple of operations on
them.

The number of needles and events. By convexity of convex distances, we can show
a couple of lemmas that prove the number of needles and events we handle.

Lemma 11. Let p be a needle produced on a road e from a needle q. For another
road e′ ∈ E, if p does not dominate any node of e or e′, no needles in σe′(p)
are effective with respect to S.

Lemma 12. S∗ contains at most O(m(n+m)) needles, where n is the number
of sites in S and m is the number of roads in G. Further, the number of handled
events while the algorithm ComputeEffectiveNeedles running is O(m2(n+
m)).

Remarks. Consequently, we have an algorithm to compute S∗ in O(m2(n +
m)(log(n+m) + Top(C))) time with O(m2(n+m)) space by Theorem 8, where
Top(C) is time taken during a simple operation on C. This complexity, however,
can be reduced by small modifications on the algorithm. For the Euclidean case,
Bae and Chwa [4] additionally maintains node events, which occur whenB−

dG
(p, t)

1016 S.W. Bae and K.-Y. Chwa

first touches a node, to reduce the number of events to O(m(n +m)). Here, we
also can apply the approach by Lemma 11.

The authors also introduced primitive paths; a path is called primitive if the
path contains no nodes in its interior and passes through at most one road. We
can show the lemma of primitive paths in our setting, following from Lemma 11.

Lemma 13. Given a transportation network G under a convex distance d, for
two points p and q, there exists a dG-straight path P from p to q such that P is
a sequence of shortest primitive paths whose endpoints are p, q, or nodes in V .

By Lemma 13 together with node events, we can improve our algorithm to be
more efficient. Indeed, we can compute a shortest path for two given points
by constructing an edge-weighted complete graph such that vertices are nodes
and two given points, and edges are shortest primitive paths among vertices.
Furthermore, we can use the graph to avoid useless computations during the
algorithm. For more details, we refer to [4].

Lemma 14. One can compute S∗ in O(m(n + m)(m + logn + Top(C))) time
with O(m(n +m)) space.

4.3 Voronoi Diagrams for Needles

In general, bisectors between two needles under a convex distance can be parted
into two connected components. However, it will be shown that S∗ can be re-
placed by such nice needles, so called non-piercing, that the Voronoi diagram
for them is an abstract Voronoi diagram which can be computed in the optimal
time and space.

Computing the Voronoi diagrams for non-piercing needles. The abstract Voronoi
diagram is a unifying approach to define and compute general Voronoi diagrams,
introduced by Klein [10]. In this model, we deal with not a distance but bisecting
curves J(p, q) defined in an abstract fashion between two sites p and q. A system
(S, {J(p, q)|p, q ∈ S, p �= q}) of bisecting curves for S is called admissible if the
following conditions are fulfilled: (1) J(p, q) is homeomorphic to a line or empty,
(2) R(p, q) ∩R(q, r) ⊂ R(p, r), (3) for any subset S′ ⊆ S and p ∈ S′, R(p, S′) is
path-connected if it is nonempty, and (4) the intersection of any two bisectors
consists of finitely many components, whereR(p, q) = {x ∈ R2|d(x, p) < d(x, q)},
R(p, S) =

⋂
q∈S,p=q R(p, q), and J(p, q) is the bisector between p and q.

In fact, the first three conditions are enough to handle abstract Voronoi di-
agrams theoretically but the fourth one is necessary in a technical sense [11].
Though all convex distances satisfy the first three ones, there exist convex dis-
tances violating the fourth one. We guarantee the fourth condition by postulating
that ∂C is semialgebraic [5]. We also note that two-dimensional bisectors can be
avoided by a total order on given sites [13].

Lemma 15. Let S be a set of pairwise non-piercing needles under a convex
distance d based on C whose boundary is semialgebraic. Then, the system (S,
{J(p,q)| p,q ∈ S, p �= q}) of bisecting curves for S is admissible.

Shortest Paths and Voronoi Diagrams with Transportation Networks 1017

There are several optimal algorithms computing abstract Voronoi diagrams
[10, 15, 12, 6]. These algorithms assume that the bisector between two sites can
be computed in constant time, and construct the Voronoi diagram in O(n log n)
time with O(n) space when n sites are given. In our setting, we assume that
a representation of the bisector between two needles has the complexity Sb(C),
and can be computed in Tb(C) time.

Corollary 16. Let S be a set of n pairwise non-piercing needles under a convex
distance d based on a convex C. Then, the Voronoi diagram Vd(S) for S can be
computed in O(Tb(C) · n logn) time and O(Sb(C) · n) space.

Making S∗ pairwise non-piercing. We can make S∗ pairwise non-piercing by the
procedure introduced in the proof of Lemma 2 in [4]. The only difference arises
when we consider non-piercing needles as input sites; the produced needles on
the roads may pierce the original needles. This problem can be solved by cutting
a pierced original needle into two non-pierced needles. Since these piercing cases
can occur only between original needles and produced needles dominating a node,
we can check all the cases in O(Top(C) ·mn) time and the asymptotic number
of needles does not increase. We denote by S∗np the resulting set of pairwise non-
piercing needles for a given set S of pairwise non-piercing needles. Note that
Vd(S∗np) is a refined diagram of Vd(S∗).

4.4 Putting It All Together

From the previous discussions, we finally conclude the following theorem.

Theorem 17. Let d be a convex distance based on a convex C whose boundary
is semialgebraic, G be a transportation network with m roads under d, and S be
a set of n sites. Then, the Voronoi diagram VdG(S) under dG can be computed
in O(m(n+m)(m+ Tb(C) log(n+m) + Top(C))) time with O(Sb(C)m(n+m))
space, where Top(C), Tb(C), and Sb(C) are defined as before.

If C is a k-gon, we can see that Top(C) = O(log k), Tb(C) = Sb(C) = O(k) [14].

Corollary 18. Let d be a convex distance based on a convex k-gon C, G be a
transportation network with m roads under d, and S be a set of n sites. Then,
the Voronoi diagram VdG(S) under dG can be computed in O(m(n + m)(m +
k log(n+m))) time with O(km(n+m)) space.

References

1. M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma, B. Palop, and
V. Sacristán. Proximity problems for time metrics induced by the l1 metric and
isothetic networks. IX Encuetros en Geometria Computacional, 2001.

2. M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma, B. Palop, and
V. Sacristán. Voronoi diagram for services neighboring a highway. Information
Processing Letters, 86:283–288, 2003.

1018 S.W. Bae and K.-Y. Chwa

3. O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest paths, straight skeletons,
and the city voronoi diagram. In Proceedings of the 8th SoCG, pages 151–159,
2002.

4. S. W. Bae and K.-Y. Chwa. Voronoi diagrams with a transportation network on
the euclidean plane. Technical report, Korea Advanced Institute of Science and
Technology, 2005. A preliminary version appeared in proceedings of ISAAC 2004.

5. A. G. Corbalan, M. Mazon, and T. Recio. Geometry of bisectors for strictly convex
distances. International Journal of Computertational Gemoetry and Applications,
6(1):45–58, 1996.

6. F. Dehne and R. Klein. “the big sweep”: On the power of the wavefront approach
to Voronoi diagrams. Algorithmica, 17:19–32, 1997.

7. L. Gewali, A. Meng, Joseph S. B. Mitchell, and S. Ntafos. Path planning in 0/1/∞
weighted regions with applications. ORSA J. Comput., 2(3):253–272, 1990.

8. R. Görke and A. Wolff. Computing the city voronoi diagram faster. In Proc. 21st
Euro. Workshop on Comput. Geom., pages 155–158, 2005.

9. J. C. Kelly. Bitopological spaces. Proc. London Math. Soc., 13(3):71–89, 1963.
10. R. Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of LNCS. Springer-

Verlag, Berlin, Germany, 1989.
11. R. Klein. Private communication, 2005.
12. R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construction of

abstract voronoi diagrams. Computational Geometry: Theory and Applications,
3:157–184, 1993.

13. R. Klein and D. Wood. Voronoi diagrams based on general metrics in the plane.
In Proc. 5th STACS, volume 294 of LNCS, pages 281–291. Springer-Verlag, 1988.

14. L. Ma. Bisectors and Voronoi Diagams for Convex Distance Functions. PhD thesis,
Fern Unversität Hagen, 2000.

15. K. Mehlhorn, S. Meiser, and C. O’Dunlaing. On the construction of abstract
Voronoi diagrams. Discrete Comput. Geom., 6:211–224, 1991.

16. A. C. G. Mennucci. On asymmetric distances. Preprint, 2004. available at
http://cvgmt.sns.it/cgi/get.cgi/papers/and04/.

17. J. S. B. Mitchell. Shortest paths among obstacles, zero-cost regions, and “roads”.
Technical Report 764, School Oper. Res. Indust. Engrg., Cornell Univ., Ithaca,
NY, 1987.

18. B. Palop. Algorithmic problems on proximity and location under metric constraints.
PhD thesis, U. Politécnica de Catalunya, 2003.

19. W. Rinow. Die innere Geometrie der Metrischen Räume, volume 105
of Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen.
Springer-Verlag, Berlin, 1961.

20. N. C. Rowe. Roads, rivers, and obstacles: optimal two-dimensional path planning
around linear features for a mobile agent. Internat. J. Robot. Res., 9:67–73, 1990.

Approximation Algorithms for Computing the
Earth Mover’s Distance Under Transformations

Oliver Klein1,� and Remco C. Veltkamp2

1 Department of Computer Science, FU Berlin
oklein@inf.fu-berlin.de

2 Department of Computer Science, Universiteit Utrecht
remco.veltkamp@cs.uu.nl

Abstract. The Earth Mover’s Distance (EMD) on weighted point sets
is a distance measure with many applications. Since there are no known
exact algorithms to compute the minimum EMD under transformations,
it is useful to estimate the minimum EMD under various classes of
transformations. For weighted point sets in the plane, we will show a 2-
approximation algorithm for translations, a 4-approximation algorithm
for rigid motions and an 8-approximation algorithm for similarity trans-
formations. The runtime for translations is O(T EMD(n, m)), the runtime
of the latter two algorithms is O(nmT EMD(n, m)), where T EMD(n, m)
is the time to compute the EMD between two fixed weighted point sets
with n and m points, respectively. All these algorithms are based on a
more general structure, namely on reference points. This leads to elegant
generalizations to higher dimensions. We give a comprehensive discussion
of reference points for weighted point sets with respect to the EMD.

1 Introduction

The Earth Mover’s Distance on weighted point sets is a very useful distance
measure for e.g. shape matching, colour-based image retrieval and music score
matching, see [5], [6], [7] and [11] for more information. For these applications
it is useful to have a quick estimation on the minimum distance between two
weighted point sets which can be achieved under a considered class of transforma-
tions T . Thus we want to find algorithms to compute an approximation where
EMDapx(A,B) ≤ α · min{EMD(A,Φ(B)) : Φ ∈ T }. This problem was first
regarded by Cohen ([5]). He constructed an iterative Flow-Transformation algo-
rithm, which he proved to converge, but not necessarily to the global minimum.
In this paper we will take a different approach and use reference points to get an
approximation on the problem. These points have already been introduced in [1]
and [2] to construct approximation algorithms for matching compact subsets of
Rd under translations, rigid motions and similarity transformations with respect

� This research was supported by the Deutsche Forschungsgemeinschaft within the Eu-
ropean graduate program ’Combinatorics, Geometry and Computation’ (No. GRK
588/2).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1019–1028, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1020 O. Klein and R.C. Veltkamp

to the Hausdorff-distance. Also approximation algorithms using reference points
for matching with respect to the Area of Symmetric Difference have been given,
see [3] and [12]. A general discussion of reference point methods for matching
according to the Hausdorff-distance has been given in [1]. Here we will extend
the definition of reference points to weighted point sets and get fast constant
factor approximation algorithms for matching weighted point sets under trans-
lations, rigid motions and similarity transformations with respect to the EMD.
Quite recently, Cabello et al. ([4]) have been working on similar problems. The
advantage of our approach is that the results given can be applied to arbitrary
dimension and distance measure on the ground set, even on more than the in this
abstract mentioned Lp-distances. Therefore the results are widely applicable.

2 Basic Definitions

Definition 1 (Weighted Point Set). ([6]) Let A = {a1, a2, ..., an} be a weight-
ed point set such that ai = (pi, αi) for i = 1, ..., n, where pi is a point in Rd and
αi ∈ R+

0 its corresponding weight. Let WA =
∑n

i=1 αi be the total weight of A.
Let Wd be the set of all weighted point sets in Rd and Wd,G be the set of all
weighted point sets in Rd with total weight G ∈ R+.

In the following we will use a considered class of transformations on both
weighted point sets and discrete subsets of Rd. By a transformation on a weight-
ed point set we mean to transform the coordinates of the weighted points and
leave their weights unchanged.

We now introduce the center of mass, which plays an important role in our
approximation algorithms. The computation time of this point is linear, so it
does not affect the runtime of the presented algorithms.

Definition 2 (Center of Mass). Let A = {(pi, αi)i=1,...,n} ∈ Wd,G be a
weighted point set for some G ∈ R+. The center of mass of A is defined as
C(A) = 1

W A

∑n
i=1 αipi.

As we will see, the center of mass is an instance of a more general class
of mappings, namely reference points. Later we will prove the correctness of
abstract algorithms based on this class of mappings. By plugging in the center
of mass we will get concrete and implementable algorithms.

Definition 3 (Reference Point). ([1]) Let K be a subset of Wd and δ : K ×
K → R+

0 be a distance measure on K. Let || · || : Rd → R+
0 be any norm on Rd.

A mapping r : K → Rd is called a δ-reference point for K with respect to a set
of transformations T on K, if the following two conditions hold:

1. Equivariance with respect to T : For all A ∈ K and Φ ∈ T we have

r(Φ(A)) = Φ(r(A)).
2. Lipschitz-continuity: There is a constant c ≥ 0, such that for all A,B ∈ K,

||r(A) − r(B)|| ≤ c · δ(A,B).

We call c the quality of the δ-reference point r.

Approximation Algorithms for Computing the Earth Mover’s Distance 1021

In section 4.3 we will construct approximation algorithms for similarities. For
this reason we will have to rescale one of the weighted point sets. Unfortunately,
rescaling in a way that the diameters of the underlying point sets in Rd are
equal, does not work. The key to a working algorithm is to rescale the set in
a way that the normalized first moments with respect to their reference points
coincide. Here we give the well known definition of the normalized first moment
of a weighted point set with respect to an arbitrary point p ∈ Rd.

Definition 4 (Normalized First Moment). Let A = {(pi, αi)i=1,...,n} ∈
Wd,G be a weighted point set for some G ∈ R+ and let p ∈ Rd be an arbi-
trary point. We call mp(A) = 1

W A

∑n
i=1 αi||pi − p|| the normalized first moment

of A with respect to p.

Note that the normalized first moment of a weighted point set with respect
to an arbitrary point can be calculated efficiently in linear time.

Next we will introduce the EMD, a distance measure on weighted point sets.

Definition 5 (Earth Mover’s Distance). ([5]) Let A = {(pi, αi)i=1,...,n},
B = {(qj , βj)j=1,...,m} ∈Wd be weighted point sets with total weights WA, WB ∈
R+. Let D : Rd × Rd → R+

0 be a distance measure on the ground set Rd. The
Earth Mover’s Distance between A and B is defined as

EMD(A,B) =
minF∈F

∑n
i=1

∑m
j=1 fijD(pi, qj)

min{WA,WB}
where F = {fij} is a feasible flow, i.e.

1. fij ≥ 0, i = 1, ..., n, j = 1, ...,m
2.

∑m
j=1 fij ≤ αi, i = 1, ..., n

3.
∑n

i=1 fij ≤ βj , j = 1, ...,m
4.

∑n
i=1

∑m
j=1 fij = min{WA,WB}

For the rest of the paper the distance measure D used in the definition of the
EMD will be the metric induced by the norm used in the definition of the EMD-
reference point. When working with weighted point sets in Rd we will call Rd the
ground set and D : Rd × Rd → R+

0 the ground distance. If D is the Euclidean
Distance, we will also use EEMD as a notation for the Euclidean Earth Mover’s
Distance. If D is any Lp-distance for 1 ≤ p ≤ ∞ we will write EMDp to denote
the Earth Mover’s Distance based on this distance measure.

3 EMD-Reference Points

In this section we discuss the existence of EMD-reference points. We start with
a negative result.

3.1 Non-existence of EMD-Reference Points for Non-equal Total
Weights

Let r be any reference point with respect to translations. Regarding the weighted
point sets A := {(p, 1)}, B := {(q, 1)} and C := A ∪ B, p �= q ∈ Rd, we can
easilysee that EMD(A,C) = EMD(B,C) = 0 and therefore r(A) = r(C) =

1022 O. Klein and R.C. Veltkamp

r(B). On the other hand, B is a translation of A by q − p �= 0 and therefore,
by equivariance, r(B) has to be a translation of r(A) by q − p, which leads to a
contradiction. Thereby we have proven the following theorem:

Theorem 1. There is no EMD-reference point for weighted point sets with un-
equal total weights with respect to all transformation sets that include transla-
tions.

Unfortunately, Theorem 1 has a deep impact on the usability of the refer-
ence point approach for shape matching since it makes it impossible to use this
approach for partial matching applications. For a more detailed discussion on
partial matching using Mass Transportation Distances, see [6].

3.2 The Center of Mass as a Reference Point

In the next section we will present approximation algorithms for the EMD un-
der transformations using EMD-reference points. Since this would be useless if
there was no EMD-reference point, we will restrain the consideration to weighted
point sets with equal total weight. In this case, the equivariance of the center of
mass under affine transformations is well known and the proof of the Lipschitz-
continuity appeared already in [5]. Therefore we can formulate the following
theorem:

Theorem 2. The center of mass is an EMD-reference point for weighted point
sets with equal total weight with respect to affine transformations. Its quality is
1. This holds for any dimension d and any distance measure on the ground set.

3.3 Lower Bound on the Quality of an EMD-Reference Point

Using the center of mass to construct implementable algorithms raises the ques-
tion if there is a better reference point. We can prove that the center of mass is
optimal in the sence that there is no reference point inducing a better quality.
But we do not know so far if there is a reference point inducing approximation
algorithms with a better approximation factor.

Theorem 3. Let r : Wd,G → Rd be an EMD-reference point with respect to any
transformation set including the set of translations for some G ∈ R+ and some
dimension d, and let c be its quality. Then c ≥ 1. This holds for any distance
measure on the ground set.

4 Approximation Algorithms Using EMD-Reference
Points

The following three sections are organized as follows: In each section we consider
a class of transformations, construct an approximation algorithm for matching
under these transformations for general EMD-reference points and finally use
the center of mass to get a concrete algorithm.

Approximation Algorithms for Computing the Earth Mover’s Distance 1023

For the rest of the paper let A = {(pi, αi)i=1,...,n}, B = {(qj, βj)j=1,...,m} ∈
Wd,G be two weighted point sets in dimension d with positive equal total weight
G ∈ R+. Please be reminded that the following results do not hold for weighted
point sets with unequal total weight. Further, let r : Wd,G → Rd be an EMD-
reference point for weighted point sets with respect to the considered class of
transformations with quality c. Let T ref(n) be the time to compute the EMD-
reference point of A, TEMD(n,m) and TEEMD(n,m) be the time to compute
the EMD and EEMD between A and B and T rot(n,m) be the time needed to
find a rotation R around a fixed point minimizing EMD(A,R(B)).

An upper bound on TEMD(n,m) and TEEMD(n,m) is O((nm)2 log(n+m))
using a strongly polynomial minimum cost flow algorithm by Orlin ([9]). In
practice, an algorithm using the simplex method to solve the linear program
will be faster. Since we are developing approximation algorithms anyway, one
can consider using an (1 + ε)-approximation algorithm for the Earth Mover’s
Distance by Cabello et al. ([4]) with runtime O(n2

ε2 log2(n
ε)).

4.1 Translations

The first algorithm will find an approximation for the EMD under translations:

Algorithm TranslationApx:
1. Compute r(A) and r(B) and translate B by r(A)− r(B). Let B′

be the image of B.
2. Output B′ together with the approximate distance EMD(A,B′).

Theorem 4. Algorithm TranslationApx finds an approximately optimal match-
ing for translations with approximation factor c+1 in time O(T ref (max{n,m})+
TEMD(n,m)). This holds for arbitrary dimension d and distance measure on the
ground set.

Applying the center of mass leads to the following corollary. The approxima-
tion factor of 2 is tight, a proof for this can also be found in [8].
Corollary 1. Algorithm TranslationApx using the center of mass as an EMD-
reference point induces an approximation algorithm with approximation factor
2. Its runtime is O(TEMD(n,m)).

4.2 Rigid Motions

The following algorithm is a first approach to get an approximation on the EMD
under rigid motions, i.e. combinations of translations and rotations:

Algorithm RigidMotionApx:
1. Compute r(A) and r(B) and translate B by r(A)− r(B). Let B′

be the image of B.
2. Find an optimal matching of A and B′ under rotations of B′

around r(A). Let B′′ be the image of B′ under this rotation.
3. Output B′′ and the approximate distance EMD(A,B′′).

1024 O. Klein and R.C. Veltkamp

Theorem 5. Algorithm RigidMotionApx finds an approximately optimal match-
ing for rigid motions with approximation factor c+1 in time O(T ref (max{n,m})
+TEMD(n,m)+T rot(n,m)). This holds for arbitrary dimension d and distance
measure on the ground set.

Corollary 2. Algorithm RigidMotionApx using the center of mass as EMD-
reference point induces an approximation algorithm with approximation factor 2
in time O(T rot(n,m) +TEMD(n,m)). This holds for arbitrary dimension d and
distance measure on the ground set .

Since the position of the EMD-reference point as rotation center is fixed,
several degrees of freedom have been eliminated and the problem to find the
optimal rotation should be easier than the one finding the optimal rigid motion
itself. Unfortunately, even for this problem no efficient algorithm is known so
far. Therefore it would be nice to have at least an approximation algorithm for
this problem. In the next lemma we will give an approximation for the Euclidean
Distance as the ground distance. This result was already published in [4]. Next
we will use this lemma to extend the result to all Lp-distances, 1 ≤ p ≤ ∞.
Unfortunately, the approximation factor will be worse than 2 for p �= 2.

Lemma 1. Let A,B ∈Wd be two weighted point sets and p∗ be any point. Let
Rot(p∗) be the set of all rotations around p∗. Then there is a rotation R′ ∈
Rot(p∗) such that R′ aligns p∗ and any two points of A and B, and

EEMD(A,R′(B)) ≤ 2 · min
R∈Rot(p∗)

EEMD(A,R(B)).

As mentioned above, we will now use the last lemma to extend the result to
all Lp-distances, 1 ≤ p ≤ ∞. The proof is based on the fact that for 1 ≤ p, q ≤ ∞
and any vector v ∈ Rd it holds that ||v||p ≤

√
d||v||q.

Lemma 2. Let A,B ∈Wd be two weighted point sets and p∗ be any point. Let
Rot(p∗) be the set of all rotations around p∗. Then there is a rotation R′ ∈
Rot(p∗) such that R′ aligns p∗ and any two points of A and B, and

EMDp(A,R′(B)) ≤ 2
√
d · min

R∈Rot(p∗)
EMDp(A,R(B)).

An Applicable Algorithm in the Plane. Based on the last two lemmata
we are able to construct an approximation algorithm for the problem of find-
ing an optimal rotation of a weighted point set around their coinciding reference
points. In this section we will discuss the case of weighted point sets in the plane.

Algorithm RotationApx
1. Compute the minimum EMD over all possible alignments of the

coinciding reference points and any two points of A and B.

Since there are O(nm) possibilities to align the reference point and any two
points of A and B, the runtime of this algorithm is O(nmTEMD(n,m)). Using

Approximation Algorithms for Computing the Earth Mover’s Distance 1025

this algorithm, we now get an easy to implement and fast approximation al-
gorithm for rigid motions. Unfortunately, the fact that we now constructed an
implementable algorithm must be paid by an increased approximation factor.
Figure 1 shows an illustration of this algorithm.

Algorithm RigidMotionApxUsingRotationApx
1. Compute r(A) and r(B) and translate B by r(A)− r(B). Let B′

be the image of B.
2. Find a best matching of A and B′ under rotations of B′ around

r(A) = r(B′) where r(A) and any two points in A and B′ are
aligned. Let B′′ be the image of B′ under this rotation.

3. Output B′′ and the approximate distance EMD(A,B′′).

a 1

a 3

a 2

a 1

a 3

a 2

a 1

a 3

a 2

a 1

a 2

a 3

a 1

a 3

a 2

a 1

a 3

a 2

Two arbitrary weighted point sets.

After second rotation.

After third rotation.

Now with coinciding reference points.

After first rotation with points on a line.

After fourth, there are two more!

Fig. 1. Illustration of algorithm RigidMotionApxUsingRotationApx

Theorem 6. Regarding EEMD in the plane, Algorithm RigidMotionApxUsing-
RotationApx finds an approximately optimal matching for rigid motions with
approximation factor 2(c+1) in time O(T ref (max{n,m})+nmTEEMD(n,m)).

Using Lemma 2 we can extend the result to all Lp-distances:

Theorem 7. Regarding EMDp in the plane, 1 ≤ p ≤ ∞, Algorithm Rigid-
MotionApxUsingRotationApx finds an approximately optimal matching for rigid
motions with approximation factor 2

√
2(c + 1) in time O(T ref (max{n,m}) +

nmTEMDp(n,m)).

1026 O. Klein and R.C. Veltkamp

Application of the center of mass as an EMD-reference point leads to the
following corollary:

Corollary 3. Algorithm RigidMotionApxUsingRotationApx using the center of
mass as EMD-reference point induces an approximation algorithm with approx-
imation factor 4 in case of the Euclidean Distance in the plane and 4

√
2 for any

other Lp distance, 1 ≤ p ≤ ∞. Its runtime is O(nmTEMDp(n,m)).

In this section we have constructed approximation algorithms to minimize the
EMD of weighted point sets under rigid motions in the plane. These algorithms
have elegant generalizations to higher dimensions. In case of dimension d ≥ 3,
the approximation factor of the implementable algorithm using the center of
mass as a reference point is 2d−1

√
d(c + 1) and the runtime is O(ndTEMD) if

m = O(n), see [8].

4.3 Similarities

In the following we present approximation algorithms for matching weighted
point sets under similarity transformations, i.e. combinations of translations, ro-
tations and scalings. More precisely, we want to compute minS EMD(A,S(B)),
where the minimum is taken over all similarity transformations S. Note that in
this case exchanging A and B makes a difference.

Algorithm SimilarityApx:
1. Compute r(A) and r(B) and translate B by r(A)− r(B). Let B′

be the image of B.
2. Scale B′ by mr(A)(A)

mr(B′)(B′) around r(A) and let B′′ be the image of
B′ under this scaling.

3. Find an optimal matching of A and B′′ under rotations of B′′

around r(A). Let B′′′ be the image of B′′ under this rotation.
4. Output B′′′ and the approximate distance EMD(A,B′′′).

To show the correctness of this algorithm we use the following two lemmata:

Lemma 3. Let A ∈ Wd,G for some G ∈ R+ and let mp(A) be its normalized
first moment with respect to some point p ∈ Rd. Let τ1, τ2 be scalings around the
same center p and ratios γ1 and γ2, respectively. Then

EMD(τ1(A), τ2(A)) ≤ |(γ1 − γ2)|mp(A).

This lemma gives a new lower bound for the EMD of weighted point sets:

Lemma 4. Let A,B ∈Wd,G for some G ∈ R+. Then

|mr(A)(A)−mr(B)(B)| ≤ (1 + c)EMD(A,B).

Using Lemmata 3 and 4 we can prove the following:

Approximation Algorithms for Computing the Earth Mover’s Distance 1027

Theorem 8. Algorithm SimilarityApx finds an approximately optimal matching
for similarities with approximation factor 2(c+1) in time O(T ref (max{n,m})+
TEMD(n,m) + T rot(n,m)). This holds for arbitrary dimension d and distance
measure on the ground set.

Corollary 4. Algorithm SimilarityApx using the center of mass as EMD-refer-
ence point induces an approximation algorithm with approximation factor 4. Its
runtime is O(TEMD(n,m) + T rot(n,m)). This holds for any dimension of the
ground set and every distance measure defined on it.

As for RigidMotionApx, SimilarityApx depends on finding the optimal rota-
tion, which is impractical. Again, we make this algorithm practical and efficient
by using RotationApx and again we have to pay by a worse approximation factor.

Algorithm SimilarityApxUsingRotationApx
1. Compute r(A) and r(B) and translate B by r(A)− r(B). Let B′

be the image of B.
2. Scale B′ by mr(A)(A)

mr(B′)(B′) around r(A) = r(B′) and let B′′ be the
image of B′ under this scaling.

3. Find a best matching of A and B′′ under rotations of B′′ around
r(A) = r(B′′) where r(A) and any two points in A and B′′ are
aligned. Let B′′′ be the image of B′′ under this rotation.

4. Output B′′′ and the approximate distance EEMD(A,B′′′).

Theorem 9. Regarding EEMD in the plane, Algorithm SimilarityApxUsingRo-
tationApx finds an approximately optimal matching for similarities with approx-
imation factor 4(c+ 1) in time O(T ref (max{n,m}) + nmTEEMD(n,m)).

Using Lemma 2 we can easily see:

Theorem 10. Regarding EMDp in the plane, 1 ≤ p ≤ ∞, Algorithm Simi-
larityApxUsingRotationApx finds an approximately optimal matching for sim-
ilarities with approximation factor 4

√
2(c + 1) in time O(T ref (max{n,m}) +

nmTEMDp(n,m)).

Application of the center of mass as an EMD-reference point leads to the
following corollary:

Corollary 5. AlgorithmSimilarityApxUsingRotationApxusing the center ofmass
as an EMD-reference point induces an approximation algorithm with approxima-
tion factor 8 in case of the Euclidean Distance in the plane and 8

√
2 for any other

Lp distance, 1 ≤ p ≤ ∞. Its runtime is O(nmTEMDp(n,m)).

5 Conclusion

In this paper we introduced EMD-reference points for weighted point sets and
constructed efficient approximation algorithms for matching under various classes

1028 O. Klein and R.C. Veltkamp

of transformations. In contrast to previous work, this approach allows elegant
extension to higher dimensions and more general ground distances. Additionally,
we presented the center of mass as an EMD-reference point for weighted point
sets with equal total weight. This reference point, in fact, turns out to be an
optimal reference point in the sence that there is none with a Lipschitz-constant
smaller than 1. Unfortunately, the center of mass is no EMD-reference point
if you consider the set of all weighted point sets, including those with differ-
ent total weights. Even worse, there is no EMD-reference point for all weighted
point sets. A variation of the EMD is the Proportional Transportation Distance
(PTD). We can show that the center of mass is a PTD-reference point even for
weighted point sets with different total weights and all theorems and corollaries
mentioned in this paper carry over.

References

1. H. Alt, O. Aichholzer, G. Rote. Matching Shapes with a Reference Point. In
Proc. 10th Annual Symposium on Computational Geometry, pages 85–92, 1994.

2. H. Alt, B. Behrends, J. Blömer. Approximate Matching of Polygonal Shapes. In
Proc. 7th Ann. Symp. on Comp. Geometry, pages 186–193, 1991.

3. H. Alt, U. Fuchs, G. Rote, G. Weber. Matching Convex Shapes with Respect to
the Symmetric Difference. In Proc. 4th Ann. Eur. Symp. on Algorithms, Barcelona,
LNCS Vol. 1136, pages 320–333, Springer Verlag, 1996.

4. S. Cabello, P. Giannopoulos, C. Knauer, G. Rote. Matching Point Sets with
respect to the Earth Mover’s Distance. In Proc. ESA, 2005.

5. S. Cohen. Finding Color and Shape Patterns in Images. PhD thesis, Stanford
University, Department of Compute Science, 1999.

6. P. Giannopoulos, R. Veltkamp. A pseudo-metric for weighted point sets. In Proc.
7th European Conf. Comp. Vision, LNCS 2352, pages 715–731, 2002.

7. K. Graumann, T. Darell. Fast contour matching using approximate Earth Mover’s
Distance. In Proc. of the IEEE Conf. Comp. Vision and Pattern Recognition, LNCS
2352, pages I: 220–227, 2004.

8. O. Klein, R. C. Veltkamp. Approximation Algorithms for the Earth Mover’s
Distance Under Transformations Using Reference Points. Technical Report UU-CS-
2005-003, http://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2005/2005-003.pdf,
2005.

9. J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. In
Operations Research, vol.41,no.2, pages 338–350, 1993.

10. Y. Rubner, C. Tomasi, L. J. Guibas. The Earth Mover’s Distance as a Metric
for Image Retrieval. In Int. J. of Comp. Vision 40(2), pages 99–121, 2000.

11. R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wierking, R. Oostrum. Using
transportation distances for measuring melodic similarity. In Proc. of the 4th Int.
Conf. Music Inf. Retrieval, pages 107–114, 2003.

12. G. Weber. The Centroid is a Reference Point for the Symmetric Difference in d
Dimensions. Tech. Rep. UoA-SE-2004-1, The University of Auckland, 2004.

Fast k-Means Algorithms with Constant
Approximation

Mingjun Song and Sanguthevar Rajasekaran

Computer Science and Engineering,
University of Connecticut,

Storrs CT 06269, USA
{mjsong, rajasek}@engr.uconn.edu

Abstract. In this paper we study the k-means clustering problem. It
is well-known that the general version of this problem is NP-hard. Nu-
merous approximation algorithms have been proposed for this problem.
In this paper, we proposed three constant approximation algorithms for
k-means clustering. The first algorithm runs in time O((k

ε
)knd), where

k is the number of clusters, n is the size of input points, d is dimension
of attributes. The second algorithm runs in time O(k3n2 log n). This is
the first algorithm for k-means clustering that runs in time polynomial
in n, k and d. The run time of the third algorithm O(k5 log3 kd) is
independent of n. Though an algorithm whose run time is independent
of n is known for the k-median problem, ours is the first such algorithm
for the k-means problem.

1 Introduction

Among the different clustering techniques known, k-means is very popular. In
this problem, given a set P ⊂ �d of n data points and a number k, we are
required to partition P into k subsets (i.e., clusters). Each such cluster has a
center defined by the centroid (i.e.,mean) of the points in that cluster. The
partitioning should minimize the following cost function:

P (K) =
∑
x∈P

‖x−K(x)‖2,

Where K(x) denotes the nearest centroid to x, and ‖x−y‖ denotes the Euclidean
distance between two points x and y.

One of the most popular heuristic algorithms for k-means is Lloyd’s algorithm
[1], which initially chooses k centers randomly. For each input point, the nearest
center is identified. Points that choose the same center belong to a cluster. Now
new centers are calculated for the clusters. Each input point identifies its nearest
center; and so on. This process is repeated until no changes occur. The process
of identifying the nearest center for each input point and recomputing centers is
refered to as an iteration. The number of iterations taken by Lloyd’s algorithm is
unknown. This algorithm may converge to a local minimum with an arbitrarily
bad distortion with respect to the optimal solution [2].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1029–1038, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1030 M. Song and S. Rajasekaran

Researches have been conducted to find algorithms with bounded quality,
either (1 + ε)-approximation or constant approximation. Matousek [3] has pre-
sented a (1+ε)-approximation algorithm with a run time of O(n logk nε−2k2d) for
any fixed ε > 0, k, and d using the approximate centroid set idea. The centroid
set was constructed by recursively subdividing the 3-enlargement cube of the
bounding box of the point set P . Then the algorithm generates all well-spread
k-tuples and returns the k-tuple with the minimum cost.

Kanungo et al. [2] have given a (9 + ε)-approximation algorithm. This algo-
rithm uses an ε-approximate centroid set generated from the algorithm of [3] as
the candidate centers. The algorithm starts with k initial centers selected from
the candidate centers, and iteratively removes p centers (for some appropriate
value of p) and replaces them with another p centers from the candidate centers
if the resulting cost decreases. The running time is O(n logn + nε−d log(1/ε) +
n2k3 logn).

The algorithm of Har-Peled Mazumdar [4] takes time O(n + kk+2ε−(2d+1)k

logk+1 n logk 1
ε) to find a (1 + ε)-approximate solution to the k-means problem.

If k and d are fixed, the run time is O(n). The algorithm constructed a corset by
sampling in an exponential grid. The authors achieved the linear time solution
by combining many other known algorithms.

Kumar et al. [5] propose a simple (1+ ε)-approximation algorithm with a run
time of O(2(k

ε)O(1)
dn). The idea of the algorithm is to approximate the centroid

of the largest cluster by trying all subsets of constant size from the sample,
and doing the same on the smaller cluster by pruning points from the larger
cluster.

A problem closely related to k-means clustering is the k-median clustering
problem. In this problem the objective is to minimize the sum of the distances
to the nearest median. Also, the cluster centers should form a subset of the input
points. Finding optimal solutions to k-means and k-medians problems are NP -
hard. Jain et. al. [8] even showed that it is NP -hard to obtain an approximation
within a factor of 1 + 2

e . Thus most of the research focusses on approximation
algorithms. In this paper, we focus on constant approximations to the k-means
problem. None of the previous (O(1)-approximation) algorithms for the k-means
problem run in time polynomial on n, k and d at the same time. We present
three algorithms in this paper. Run time of the first one is polynomial on n and
d, of the second one is polynomial on n, k and d, of the third one is polynomial
on k and d while being independent of n.

2 Algorithm1

This algorithm is inspired by the following facts: the centroid of one cluster can
be approximated by the centroid of a random sample from this cluster. Also the
centroid of the sample can be approximated by the closest point to the centroid
of the samples. Inaba et. al. [9] showed the first approximation by the following
lemma.

Fast k-Means Algorithms with Constant Approximation 1031

Lemma 1. [9] Let P be the set of input points, T be a random sample with
size of |T | from P , µP be the centroid of P , µT be the centroid of T , then with
probability at least 1− δ (δ > 0),∑

xi∈P

‖xi − µT ‖2 ≤ (1 +
1

δ|T |)
∑

xi∈P

‖xi − µP ‖2 .

Let δ = 1
4 . Then if we choose |T | to be 4

ε , with a probability at least 3
4 , the

cost computed using the centroid of the sample is 1 + ε approximation to the
real cost.

We show the second approximation by the following lemma.

Lemma 2. Let CT be the closest point within the sample to the centroid of the
sample, then with probability greater than 1

12 ,∑
xi∈P

‖xi − CT ‖2 ≤ (5 + 2ε)
∑
xi∈P

‖xi − µP ‖2 .

Proof. By the doubled triangle inequality,

‖xi − CT ‖2 ≤ 2(‖xi − µT ‖2 + ‖CT − µT ‖2).

With respect to the second term on the right side of the above inequality,

∑
xi∈P

‖CT − µT ‖2 = |P | ‖CT − µT ‖2 ≤
|P |
|T |

∑
xi∈P

‖xi − µT ‖2 = |P |V ar(T),

Where V ar(T) is the variance of the sample and is defined as 1
|T |

∑
xi∈P ‖xi−µT ‖2.

Let V ar(P) denote the variance of P , then we have[7],

E(V ar(T)) =
|T | − 1
|T | V ar(P).

By Markov’s inequality,

Pr[V ar(T) ≤ 1.5V ar(P)] ≥ 1− |T | − 1
1.5|T | >

1
3
.

Thus, with a probability greater than 1
3 ,∑

xi∈P

‖CT − µT ‖2 ≤ 1.5|P |V ar(P) = 1.5
∑
xi∈P

‖xi − µP ‖2 .

Let A represents this event, B be the event of satisfying the statement of
Lemma 1 (with δ = 1

4), then Pr(AB) = 1−Pr(Ā
⋃
B̄) ≥ 1−(Pr(Ā)+Pr(B̄)) =

Pr(A) + Pr(B) − 1 > 3
4 + 1

3 − 1 = 1
12 .

1032 M. Song and S. Rajasekaran

Therefore, with a probability greater than 1
12 ,∑

xi∈P

‖xi − CT ‖2 ≤ 2
∑

xi∈P

‖xi − µT ‖2 + 2
∑
xi∈P

‖CT − µT ‖2

≤ 2(1 + ε)
∑

xi∈P

‖xi − µP ‖2 + 3
∑

xi∈P

‖xi − µP ‖2

= (5 + 2ε)
∑
xi∈P

‖xi − µP ‖2 . ��

Next, we will figure out the sample size |T | such that the sample would in-
cludes 4

ε points for each cluster with high probability. Let ns be the size of the
smallest cluster, and assume ns = α |P |

k (The similar assumption is found in
[6]). By Chernoff Bounds, we have the following inequality with respect to the
number of points (Xs) falling in the smallest cluster:

Pr[Xs ≥ β|T | ns

|P |] ≥ 1− exp(− (1− β)2

2
|T | ns

|P |),

then

Pr[Xs ≥ β|T |α
k

] ≥ 1− exp(− (1− β)2

2
|T |α

k
).

Let β|T |αk = 4
ε , and β = 1

2 , then |T | = 8
εαk. The probability is greater than

1− exp(− 1
ε).

Therefore, we get algorithm1:
1) Draw a random sample of size 8

εαk, where α = nsk
n , ns is the size of the

smallest cluster, n = |P |.
2) Using each k-subset of sample points as centers, calculate the cost of clus-

tering with respect to all the original input points.
3) Retrieve the k-subset that results in the minimum cost.

Theorem 1. The output of algorithm1 is a (5+2ε)-approximation to the optimal
clustering with a probability greater than 1

12 . Algorithm1 runs in time O((k
ε)knd).

Proof. The cost of clusters from algorithm1 is less than the cost of the following
clustering: Each center of the cluster is the closest point within the sample
to the centroid of the sample. By Lemma 2 and simple summation, (5 + 2ε)-
approximation holds. Obviously, The running time is O((k

ε)knd). ��

3 Algorithm2

In this section we present an algorithm with a running time that is polynomial on
n, k and d. Kanungo et al. [2]’s local search algorithm is polynomial on n and k,
but exponential on d because they used the candidate centroid sets constructed
by the algorithm of [3]. In our algorithm, we employ the local search algorithm,

Fast k-Means Algorithms with Constant Approximation 1033

but we use all the input points as the candidate centers instead of just the
candidate centroid sets. The algorithm is described as follows:

1) Initially select an arbitrary set of k centers (S) from the input points.
2) For some integer p, swap between any subset of p′ (p′ ≤ p) centers from S

and p′ elements from the input points if the new centers decrease the cost.
3) Repeat step 2 until there is no cost change.

Theorem 2. The local search algorithm using all input points as candidate cen-
ters yields an O(1)-approximation to the optimal k-means clustering problem.

To prove this theorem, we prove some related lemmas.

Lemma 3. Let CP be the closest input point to the mean of the input points P .
Then, ∑

xi∈P

‖xi − CP ‖2 ≤ 2
∑
xi∈P

‖xi − µP ‖2 .

Proof. ∑
xi∈P

‖xi − CP ‖2 ≤
∑

xi∈P

((xi − µP) + (µP − CP))2

=
∑

xi∈P

‖xi − µP ‖2 + 2
∑

xi∈P

((xi − µP)(µP − CP))

+
∑
xi∈P

‖CP − µP ‖2

≤
∑

xi∈P

‖xi − µP ‖2 + 2(µP − CP)
∑

xi∈P

(xi − µP)

+
∑
xi∈P

‖xi − µP ‖2

= 2
∑
xi∈P

‖xi − µP ‖2 .��

Lemma 4. The algorithm that enumerates all sets of k points from the input,
uses them as centers, computes the clustering cost for each such set, and iden-
tifies the best set yields a 2-approximation to the optimal k-means clustering
problem.

Proof. The cost of the algorithm described in the lemma is less than the cost
of the following algorithm: The center of each cluster is taken to be the closest
point to the centroid of this cluster. By Lemma 3, this lemma follows. ��

Next, we prove theorem 2.

Proof. We use the same construction of the set of swap pairs as [2]. The readers
are referred to [2] for details. Here, we redescribe the representation of some
symbols. S is a local optimal set of k centers resulting from the local search

1034 M. Song and S. Rajasekaran

algorithm, O is the optimal set of k centers from the input points. (O) denotes
the cost using the optimal centers O, (S) denotes the cost using the heuristic
centers S. For any optimal center o ∈ O, so represents the closest heuristic
center in S to o, NO(o) represents the neighborhood of o. For any point q ∈ P ,
sq denotes the closest heuristic center to q, oq denotes the closest optimal center
to q, soq denotes the closest heuristic center to oq. We use d(x, y) to denote the
Euclidean distance between two points x and y, i.e. ‖x − y‖, and (x, y) to
denote ‖x− y‖2.

The following two lemmas adapted from [2] will be used.

Lemma 5. [2]
0 ≤ (O)− 3(S) + 2R,

where R =
∑

q∈P (q, soq).

Lemma 6. [2] Let α > 0 and α2 = i s2
i

i o2
i

for two sequences of reals < oi > and
< si >, then

n∑
i=1

oisi ≤
1
α

n∑
i=1

s2i .

First, consider the 1-swap case. By the triangle inequality and lemma 6, we
have

R =
∑
o∈O

∑
q∈NO(o)

(q, so)

=
∑
o∈O

∑
q∈NO(o)

((q, o) +(o, so) + 2d(q, o)d(o, so))

≤
∑
o∈O

∑
q∈NO(o)

((q, o) +(o, sq) + 2d(q, o)d(o, sq))

=
∑
q∈P

((q, oq) +(oq, sq) + 2d(q, oq)d(oq , sq))

≤
∑
q∈P

((q, oq) +
∑
q∈P

(d(oq, q) + d(q, sq))2 + 2
∑
q∈P

d(q, oq)(d(oq , q) + d(q, sq))

= 4
∑
q∈P

(q, oq) +
∑
q∈P

(q, sq) + 4
∑
q∈P

d(q, oq)d(q, sq)

≤ 4(O) +(S) +
4
α
(S)

= 4(O) + (1 +
4
α

)(S).

By lemma 5, we have

0 ≤ (O) − 3(S) + 2(4(O) + (1 +
4
α

)(S)),

0 ≤ 9(O)− (1 − 8
α

)(S),

Fast k-Means Algorithms with Constant Approximation 1035

9
1− 8

α

≥ (S)
(O)

= α2,

(α+ 1)(α− 9) ≤ 0.

We get α ≤ 9. Therefore, (S) ≤ 81(O).
Second, for p-swap case, by the replacement of 2R with (1 + 1

p) in lemma 5,
we have

0 ≤ (O) − (2 +
1
p
)(S) + (1 +

1
p
)(4(O) + (1 +

4
α
(S)))

= (5 +
4
p
)(O) − (1− 4

α
(1 +

1
p
))(S),

5 + 4
p

1− 4
α (1 + 1

p

≥ (S)
(O)

= α2,

(α+ 1)(α− (5 +
4
p
)) ≤ 0.

We get

α ≤ 5 +
4
p
.

Therefore,

(S) ≤ (5 +
4
p
)2(O).

As p increases, �(S)
�(O) approaches 25. Further, using lemma 4, the output of

algorithm2 is a 50-approximation to the optimal k-means clustering.

The number of swaps the algorithm takes is proportional to log(�(S0)
�(O)), where

S0 is the initial solution. Because (S0) is polynomial in n, the algorithm ter-
minates after O(k logn) swaps. Each swap involves nk candidate sets of centers
in the worst case. For each set, computing the cost of clusters requires O(nk)
time. Therefore, the running time of the algorithm is O(k3n2 lognd).

4 Algorithm3

In this algorithm, we apply the sampling approach of [6] for k-median clustering.
These samples resulting from this approach are processed by algorithm2 to yield
a solution. The algorithm has a run time that is polynomial in k and d while
being independent of n. A description of the algorithm follows.

1) Draw a random sample T of size 512k
α log(32k), where α = nsk

n , ns is the
size of the smallest cluster.

2) Do k-means clustering on the sample using algorithm2
3) Use the centers from step 2 as the centers for all the input points P .
Replacing n in the run time of algorithm2 with the sample size, we see that

the run time of Algorithm3 is O(k5 log3 kd).

1036 M. Song and S. Rajasekaran

Theorem 3. The output of Algorithm3 is an O(1)-approximation to the optimal
k-means clustering with probability greater than 1/32.

We precede the proof of this theorem with the following lemma.

Lemma 7. For any subset of k centers KT ⊆ T , and any subset of k centers
KP ⊆ P ,

T (KT) ≤ 4T (KP),

whereT (KT) =
∑

x∈T ‖x−KT (x)‖2,T (KP) =
∑

x∈T ‖x−KP (x)‖2, KT (x)
is the closest point in KT to x, KP (x) is the closest point in KP to x.

Proof. Let qT (KP (x)) denote the closest point in T to KP (x). For any x ∈ T ,

‖x−KT (x)‖2 ≤ ‖x− qT (KP (x))‖2≤ 2(‖x−KP (x)‖2+‖KP (x)− q(KP (x))‖2).

By the definition of qT (KP (x)),

‖KP (x) − qT (KP (x))‖ ≤ ‖x−KP (x)‖ .

Thus we have,
‖x−KT (x)‖2 ≤ 4 ‖x−KP (x)‖2 .

Therefore,
T (KT) ≤ 4T (KP).��

Next, we prove the theorem. We adapt the proof from [6] given for the k-
medians problem.

Proof. Let K = K1, ...,Kk denote the set of centers obtained by algorithm3,
K∗ = K∗

1 , ...,K
∗
k denote the optimal centroid set, K(K∗

i) denote the closest
center in K to K∗

i , N(K∗
i) denote the neighborhood of K∗

i , ni = |N(K∗
i)|,

nT
i = |N(K∗

i) ∩ T |. For any x ∈ P , let K(x) denote the closest center in K
to x, K∗(x) denote the closest center in K∗ to x. Let Qi =

∑
x∈N(K∗

i) ‖x −
K∗

i ‖2, Ri =
∑

x∈N(K∗
i) ‖x − K(x)‖2, QT

i =
∑

x∈N(K∗
i)∩T ‖x − K∗

i ‖2, RT
i =∑

x∈N(K∗
i)∩T ‖x−K(x)‖2. It follows that

∑
1≤i≤k Qi = P (K∗),

∑
1≤i≤k Ri =

P (K),
∑

1≤i≤k Q
T
i = T (K∗), and

∑
1≤i≤k R

T
i = T (K).

By the doubled triangle inequality,

‖K∗
i −K(K∗

i)‖2 ≤ minx∈N(K∗
i)∩T ‖K∗

i −K(x)‖2

≤ minx∈N(K∗
i)∩T 2(‖x−K∗

i ‖
2 + ‖x−K(x)‖2

≤ 2
nT

i

∑
x∈N(K∗

i)∩T

(‖x−K∗
i ‖

2 + ‖x−K(x)‖2

=
2
nT

i

(QT
i +RT

i).

Fast k-Means Algorithms with Constant Approximation 1037

For x ∈ N(K∗
i),

‖x−K(x)‖2 ≤ ‖x−K(K∗
i)‖2

≤ 2(‖x−K∗(x)‖2 + ‖K∗(x) −K(K∗
i)‖2).

Therefore,

P (K) ≤ 2
∑
x∈P

‖x−K∗(x)‖2 + 2
k∑

i=1

∑
x∈N(K∗

i)

2
nT

i

(QT
i + RT

i)

= 2
∑
x∈P

‖x−K∗(x)‖2 + 4
k∑

i=1

ni

nT
i

(QT
i +RT

i).

By Chernoff Bounds,

Pr[nT
i < βni(s/n)] < exp(−sni(1− β)2/(2n)).

Assume ni ≥ αn
k , then if s = 2k

(1−β)2α log(32k), Pr[nT
i < βni(s/n)] < 1/32.

Therefore,

P (K) ≤ 2P (K∗) +
4n
sβ

k∑
i=1

(QT
i +RT

i)

= 2P (K∗) +
4n
sβ

(T (K) +T (K∗)).

By Lemma 4,
T (K) ≤ c2T (K∗

T),
where c2 = 50, and K∗

T is the optimal clustering for sample T .
By Lemma 7,

T (K∗
T) ≤ 4T (K∗).

Thus
T (K) ≤ 4c2T (K∗),

and
P (K) ≤ 2P (K∗) +

4n
sβ

(1 + 4c2)T (K∗).

It is known that
E(T (K∗)) =

s− 1
n
P (K∗).

By Markov’s inequality,

Pr[T (K∗) ≤ 16s
15n
P (K∗)] >

1
16
.

Let β = 15
16 (the corresponding sample size is 512k

α log(32k)). We have

Pr[P (K) ≤ 2P (K∗) + 4(1 + 4c2)P (K∗)] > 1− 1
32
− 15

16
=

1
32
.

Therefore, with probability greater than 1/32,

S(K∗) ≤ (6 + 16c2)P (K∗). ��

1038 M. Song and S. Rajasekaran

5 Conclusion

In this paper we have proposed three O(1)-approximation algorithms for the
k-means clustering problem. Algorithm2 is the first algorithm for the k-means
problem whose run time is polynomial in n, k, and d. There is a trade-off between
the approximation ratio and the running time. Although the constant seems big,
it is the bound in the worst case. In practice, especially when n is large, we could
get better approximations. Also, the run time of Algorithm3 is independent of
n. No prior algorithm for the k-means problem had this property.

References

1. Lloyd, S.P.: Least sqares quantization in PCM. IEEE Transactions on Information
Theory, 28:129-137(1982).

2. Kanungo,T., Mount,D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., and Wu,
A.Y.: A local search approximation algorithm for k-means clustering. In: Proceed-
ings of the 18th Annual ACM Symposium on Computational Geometry, (2002)10-18.

3. Matousek, J.: On approximate geometric k-clustering. Discrete and Computational
Geometry, 24:61-84, (2000).

4. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and
their applications, To appear in: Proceedings of the 36th Annual Symposium on
Theory of Computing, (2004).

5. Kumar,A., Sabharwal, Y. and Sen, S.: A simple linear time (1 + ε)-approximation
algorithm for k-means clustering in any dimensions. To appear in: Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS
’04), (2004).

6. Meyerson, A., O’callaghan, A., and Plotkin, S.: A k-median algorithm with running
time independent of data size. Machine Learning, 56:61-87, (2004).

7. Milton J., and Arnold, J.: Introduction to Probability and Statistics, 3rd edition,
McGraw Hill, (1994).

8. Jain, K., Mahdian, M. and Saberi, A.: A new greedy approach for facility location
problems. In Proceedings of the 34th ACM Symposium on Theory of Computation,
(2002)731-740.

9. Inaba, M., Katoh,N., and Imai, H.: Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. In: Proceedings of the Tenth Annual
ACM Symposium on Computational Geometry, Stony Brook, NY, (1994)332-339.

On Efficient Weighted Rectangle Packing
with Large Resources�

Aleksei V. Fishkin1, Olga Gerber2, and Klaus Jansen2

1 University of Liverpool, Chadwick Building, Peach Street, Liverpool, L69 7ZF, UK
avf@csc.liv.ac.uk

2 Institute of Computer Science, University of Kiel, 24118 Kiel, Germany
{oge, kj}@informatik.uni-kiel.de

Abstract. We address the problem of packing of a set of n weighted
rectangles into a single rectangle so that the total weight of the packed
rectangles is maximized. We consider the case of large resources, that
is, the single rectangle is Ω(1/ε3) times larger than any rectangle to be
packed, for small ε > 0. We present an algorithm which finds a packing
of a subset of rectangles with the total weight at least (1− ε) times the
optimum. The running time of the algorithm is polynomial in n and 1/ε.
As an application we present a (2 + ε)-approximation algorithm for a
special case of the advertisement placement problem.

Keywords: rectangle packing, approximation, resources.

1 Introduction

There has recently been increasing interest in solving 2D packing problems such
as 2D strip packing [20, 23, 26], 2D bin packing [5, 6, 7, 24], and 2D rectangle
packing [2, 3, 18]. These problems play an important role in a variety of appli-
cations in Computer Science and Operations Research, e.g. cutting stock, VLSI
design, image processing, and multiprocessor scheduling, just to name a few.

In this paper we address the problem of packing a set of weighted rectangles
into a single rectangle so that the total weight of the packed rectangles is max-
imized. More precisely, we are given a single rectangle R of width a > 0 and
height b > 0, and a set L of n rectangles Ri (i = 1, . . . , n) of widths ai ∈ (0, a]
and heights bi ∈ (0, b]. Each rectangle Ri has a positive weight wi > 0. For
any subset of rectangles L′ ⊆ L, a packing of L′ into R is a positioning of the
rectangles from L′ within the area [0, a] × [0, b] of R, so that all the rectangles
of L′ have disjoint interiors. Rectangles are not allowed to rotate. The goal is
to find a subset of rectangles, L′ ⊆ L, and a packing of L′ into R, of maximum
weight,

∑
Ri∈L′ wi.

This problem is known to be strongly NP-hard even for the case of packing
squares with unit weights [22]. Hence it is very unlikely that any polynomial

� Supported by EU-Project CRESCCO IST-2001-33135, and by EU-Project AEOLUS
015964.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1039–1050, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1040 A.V. Fishkin, O. Gerber, and K. Jansen

time algorithm for this problem exists. So, we look for efficient heuristics with
good performance guarantees.

A polynomial time algorithm A is said to be a ρ-approximation algorithm
for a maximization (minimization) problem Π if on every instance I of Π algo-
rithm A outputs a feasible solution with a value A(I) ≥ 1

ρ ·OPT(I) (respectively
A(I) ≤ ρ ·OPT(I)), where OPT(I) is the optimum. The value of ρ ≥ 1 is called
the approximation ratio or performance ratio. If ρ is achieved on instances I with
OPT(I) tending to infinity, then A is said to be an asymptotic ρ-approximation
algorithm. A polynomial time approximation scheme (PTAS) is a family of ap-
proximation algorithms {Aε}ε>0 such that Aε is a (1 + ε)-approximation algo-
rithm and its running time is polynomial in the size of I. If the running time
of each Aε is polynomial in the size of I and 1/ε, then {Aε}ε>0 is called a fully
polynomial time approximation scheme (FPTAS).

The 1-dimensional version of our packing problem is the knapsack problem:
given a knapsack capacity B and a set of items with profits and sizes, pack the
items into a knapsack of size B so that the total profit of the packed items is
maximized. The knapsack is weakly NP-hard [12], and it admits an FPTAS [19,
21]. In contrast, our 2D version is strongly NP-hard, and, hence, it admits no
FPTAS unless P = NP .

One can find a relationship between our packing problem and the 2D bin
packing: given a set L of rectangles of specified size (width, height), pack the
rectangles into N square bins of unit area such thatN is minimized. The problem
is strongly NP-hard [22] and there is no better than a 2-approximation algorithm
for it [10], unless P = NP . A long history of approximation results exists for
this problem and its special cases [5, 6, 7, 24]. Recently, it has been shown that
the general version with rectangles does not admit an asymptotic FPTAS unless
P = NP , and there is one if all rectangles are squares [5]. In [9] a polynomial
algorithm was presented which packs any set of rectangles into a sequence of
square bins of side length (1 + ε), and the number of that bins is at most the
minimum number of unit bins required to pack the rectangles.

Finally, one can also find a relationship between our problem and 2D strip
packing [13]: given a set of rectangles pack the rectangles into a vertical strip
[0, 1]× [0,+∞) so that the height of the packing is minimized. The problem is
strongly NP-hard since it includes the classical bin packing problem as a special
case. In fact many simple “shelves” heuristics come from that, e.g. Bottom-Left,
First-Fit, First-Fit-Decreasing-Height [4, 8, 14, 25], with the best asymptotic per-
formance ratio of 5/4 [2]. There are two algorithms having the same absolute
performance ratio, 2 [23, 26], and there is an asymptotic FPTAS if all rectangles
have side lengths at most 1 [20].

In contrast to all the above mentioned problems, there are just few results
known for packing rectangles into a rectangle so as to maximize the total weight.
For a long time the only known result has been an asymptotic (4/3)-
approximation algorithm for packing squares with unit weights into a rectan-
gle [3]. Only very recently this algorithm has been improved to a PTAS [17].
For packing rectangles, two approximability results have been presented in [18]:

On Efficient Weighted Rectangle Packing with Large Resources 1041

a simple (3 + ε)-approximation algorithm whose running time is polynomial in
the number of rectangles n and 1/ε from one side, and a sophisticated (2 + ε)-
approximation algorithm whose running time is double exponential in 1/ε.

In this paper we consider the so-called case of large resources, that is, the
single rectangle R has a width a > 0 and height b > 0, whereas each rectangle
Ri in L has a width ai ∈ (0, a] and height bi ∈ (0, ε3 · b], for some small enough
ε > 0. We present an algorithm which finds a packing of a subset of L into R
whose total weight is at least (1 − ε) times the optimum. The running time of
the algorithm is polynomial in n and 1/ε.

There are three main steps of our algorithm: LP approximation, Rounding,
and Shifting. In the first step we relax our problem to fractional packing: any
rectangle is allowed to be cut by horizontal lines into several fractional rectangles
of the same width, and then some of that fractions are independently packed.
In order to find a solution to the relaxation we formulate a linear program (LP)
which consists of an exponential number of variables. Since we cannot solve it
directly, we reformulate the LP as an instance of the resource-sharing problem
and then make use of some recent approximation tools for it (see [15, 16] for de-
tails). By approximating a sequence of O(n/ε2) instances of the resource-sharing
problem, that is performed in quite an elegant way, we find an approximate LP
solution. In the second step of our algorithm, we round this LP solution to a
“near-optimal” solution. Namely, by solving and rounding O(1/ε2) instances of
the fractional knapsack problem we find a subset of rectangles which can be
packed within the area [0, a]× [0, (1+O(ε))b+O(1/ε2)] by using a strip packing
algorithm from [20], and its total weight is (1 − O(ε)) times the optimum. In
the third step of the algorithm, we apply a shifting technique. We cut the pack-
ing into small pieces of roughly equal heights O(ε2b), and then remove some
less weighted part. This is done so that the final packing fits within the area
[0, a] × [0, b], and its total weight still remains within (1 − O(ε)) times the op-
timum. By an appropriate combination of these ideas and a careful analysis of
the algorithm, we prove the following result.

Theorem 1. Fro any ε ∈ (0, 1/35] and any single rectangle R of width a > 0
and height b > 0, and a set L of rectangles Ri (i = 1, . . . , n) of widths ai ∈ (0, a]
and heights bi ∈ (0, ε3 · b], there is an algorithm Aε which outputs a packing
of a subset of L within the area [0, a] × [0, b] of R whose total weight Aε(L) ≥
(1 − 72ε)OPT(L), where OPT(L) is the optimum. The running time of Aε is
polynomial in n and 1/ε.

Remark. The O(1/ε2) bound given in [20] comes within the shifting step of the
algorithm, which only works if all bi = O(ε3b), and then makes some play in
(1 − O(ε)) bound. In order to get an (1 − ε)-approximation, we must scale all
values in an appropriate way. This leads to an upper bound 1/β on the value of
ε. So far, we can bound β by 2.6× 103 if all bi ∈ (0, ε3 · b], and by 2.5× 102 if all
bi ∈ (0, ε4 · b]. It is believed that all bounds can be further improved.

Interestingly, by considering a weakly restricted case we are able to achieve the
best possible approximation result, in terms of trade-off between approximation
ratio and running time. From theoretical point of view this makes a significant

1042 A.V. Fishkin, O. Gerber, and K. Jansen

step in understanding the approximation properties of the problem. In order to
cope with the problem we design several new approximation techniques, some
of those are nice combinations of various classical techniques used for knapsack
problems, strip packing, and, surprisingly, for the resource-sharing problem.

More generally, it should be noted that – although phrased in terms of “pack-
ing” – our result really is about dynamic storage, i.e., given a set of tasks L and a
resource pool R, we fix the resources R and attempt to maximize the amount of
L serviced. Thus, we can reformulate our Theorem in terms of dynamic storage,
e.g., if the resources of R are large, Ω(1/ε3), then one can efficiently serve at
least a fraction (1− ε) of the maximum amount of tasks L.

Due to the difference in side lengths the number of the packed rectangles
is large indeed. However, that case occurs widely in practice. As an example
consider the advertisement placement problem for newspapers and the Inter-
net [1, 11]: we are given k identical pages on which advertisements may be placed,
where each page appears as a rectangle of size (a, b), and a set of n advertise-
ments where each ith (i = 1, . . . , n) advertisement appears as a small rectangle
of size (ai, bi) with an associated profit pi; overlapping is not allowed; and, it
is required to maximize the total profit of the advertisements placed on all k
pages. We can find an approximate solution as follows. We first take all k pages
together, as a rectangle of size (a, k · b), and run our packing algorithm. This
outputs a packing within [0, a]×[0, k ·b] whose profit is at least (1−ε)OPT. Next,
we draw (k − 1) vertical lines that cut this packing into k “pages” of equal size
(a, b). Now one can obtain two feasible solutions for the original problem: one
with those rectangles that lie inside the k “pages”, and one with those rectangles
that are cut by the (k− 1) lines (for each line the rectangles fit on a page of size
(a, b)). We pick up the one with maximum profit, that is least (1− ε)OPT/2.

Theorem 2. If the number of pages k = Ω(1/ε3) for some small enough ε >
0, then there is a (2 + ε)-approximation algorithm. The running time of the
algorithm is polynomial in n and 1/ε.

Organization. The paper is organized as follows. Section 2 introduces notations
and presents some preliminary results. Section 3 describes the steps of our algo-
rithm. Due to space limitations, proofs and technical details are omitted.

2 Preliminaries

We will use the following notations. We write (p, q) to denote a rectangle whose
width p > 0 and height q > 0. In the input, we are given a dedicated rectangle
R = (a, b), a set L of rectangles Ri = (ai, bi) (i = 1, . . . , n) with positive weights
wi > 0, and an accuracy ε ∈ (0, 1] such that all ai ∈ (0, a] and bi ∈ (0, ε3 · b]. We
write wmax = maxn

i=1 wi to denote the maximum rectangle weight, and OPT
to denote the optimum weight. For simplicity, we scale all widths by a and
all heights by maxRi∈L bi. Hence, throughout of the paper we assume w.l.o.g.
that each Ri has side lengths ai, bi ∈ (0, 1], whereas R has unit width a = 1
and height b ≥ 1/ε3. In addition, we also assume w.l.o.g. that wmax ∈ [ε, 1],

On Efficient Weighted Rectangle Packing with Large Resources 1043

OPT ∈ [wmax, n · wmax], and ε is selected such that ε ∈ (0, 1/4] and 1/ε is
integral.

2.1 The LP Formulation

Here we relax the problem to fractional packing: any rectangle Ri from L is
allowed to be cut by horizontal lines into fractional several rectangles of the
same width, and then some of them are independently packed within the area of
R. We formulate the relaxation as an LP. We find an approximate LP solution
in the first step of our algorithm.

First, we need some definitions. We start with configurations. Let L be a set of
rectangles. A configuration is a sebset of rectangles C ⊆ L whose total width is
at most 1, i.e. they are able to occur at the same level. Without loss of generality,
the configurations are assumed to be arbitrary ordered.

Let #C be the number of distinct configurations. (Notice that #C is O(2n).)
Then, for each configuration Cj we define a variable yj ≥ 0, whose interpretation
will be the height of Cj . For simplicity, we use y to denote the vector of all yj ≥ 0
(j = 1, . . . ,#C).

Let (1, b) be a rectangle of height b. A fractional packing of L into (1, b) is
a packing within the area [0, 1]× [0, b] of any set of rectangles obtained from L
by subdividing some of the rectangles by horizontal cuts: each rectangle (ai, bi)
is replaced by a sequence (ai, xi1 · bi), (ai, xi2 · bi), . . . , (ai, xik

· bi) of rectangles
with the same width bi such that the total sum xi =

∑k
j=1 xij is a fraction in

[0, 1].
For simplicity, we write x to denote the vector of all xi (i = 1, . . . , n), and L(x)

to denote the set of all (ai, xi · bi) (i = 1, . . . , n). The weight of L(x) is defined
as

∑n
i=1 xi · wi. We say that L(x) is integral if all xi ∈ {0, 1} (i = 1, . . . , n), i.e.

L(x) is a subset of L that consists of all rectangles Ri with xi = 1, and fractional
otherwise.

Now we can define the values of yj (j = 1, . . . ,#C) in the vector y as follows.
We scan the area [0, 1] × [0, b] bottom-up with a horizontal sweep line y =
h, 0 ≤ h ≤ b. (Here y means the ordinate axis, or Y -line.) Every such line
canonically associates to a configuration, that consists of all the rectangles of
L whose fractions’ interior is intersected by the sweep line. The value of yj ,
1 ≤ j ≤ #C, is equal to the measure of the h’s such that the sweep line y = h
is associated to configuration Cj . Thus, the sum of yj over all configurations Cj

is at most b.
So, we are ready to combine the two ideas togeter. We look for a fractional

packing of L within the area [0, 1]× [0, b] whose total weight is maximum. This
relaxation can be formulated as the following linear program LP (L, b):

maximize
∑n

i=1 xi · wi

subject to
∑

j:Ri∈Cj
yj ≥ xi · bi, for all i = 1, . . . , n,∑#C

j=1 yj ≤ b,

yj ≥ 0, for all j = 1, . . . ,#C,
xi ∈ [0, 1], for all i = 1, . . . , n.

(1)

1044 A.V. Fishkin, O. Gerber, and K. Jansen

Each xi defines a fraction of rectangle Ri. Each yj defines the height value of
configuration Cj . The objective value defines the total fractional weight. In the
first line, the sum of yj over all configurations Cj that include rectangle Ri is at
least xi times its height bi. In the second line, the sum of yj over all configurations
Cj is bounded by b. In the last two lines, all yj are non-negative and all xi are
fractions in [0, 1]. We can conclude the following result.

Lemma 1. Let OPT be the optimum of LP (L, b). Then, OPT is an upper bound
on OPT.

2.2 Separating Rectangles

Let ε′ = ε/(2 + ε). Let (p, q) be a rectangle of width p > 0 and height q > 0.
We say that (p, q) narrow if its width p is at most ε′, and wide otherwise. For
any given set of rectangles Q, we will write Qwide to denote the set of all wide
rectangles in Q, and Qnarrow to denote the set of all narrow rectangles in Q,
respectively. So, Q is partitioned into Qnarrow and Qwide. This will be used later
in the LP rounding step of our algorithm.

2.3 The KR-Algorithm

By adopting the result in [20] we can move from a fractional packing to a “non-
fractional” packing.

Theorem 3. Let h ≥ b and L(x) be a (possibly fractional) solution for LP (L, h).
Then, there is an algorithm which, given an accuracy ε ∈ (0, 1], finds a position-
ing of all rectangles (ai, xi · bi) (i = 1, . . . , n) from L(x) within the vertical
strip [0, 1] × [0,∞) of unit width such that all the rectangles of L(x) have dis-
joint interiors and the height to which the strip is filled is bounded by h′ ≤
h(1 + 1/(mε′))/(1− ε′) + 4m+ 1, where m = �(1/ε′)2� and ε′ = ε/(2 + ε). The
running time of the algorithm is polynomial in n and 1/ε.

Remark. For simplicity, such an algorithm is called the KR-algorithm, and its
running time is denoted by KR(n, ε).

2.4 An Outline of the Algorithm

In overall we can describe an outline of our algorithm as follows:
Algorithm Aε:
Input: A set L of rectangles, rectangle R = (1, b), and accuracy ε > 0.
Output: A packing of a subset of L in the area [0, 1]× [0, b] of R.
[LP approximation] Define ε̄ = ε2/n. Perform a modified linear search over all
ε̄-approximate solutions for a sequence of n/ε2 instances of the resource-sharing
problem. This defines an LP solution L(x) for LP (L, (1 + 2ε)b) whose weight is
at least (1− 3ε)OPT.

On Efficient Weighted Rectangle Packing with Large Resources 1045

[Rounding] Define ε′ = ε/(2 + ε) and m = �1/(ε′)2�. Perform the partition
Lwide = L\Lnarrow to set aside the rectangles of width less than ε′. Round L(x)
to a subset of rectangles L′ ⊆ L which is given as the union of m non-intersecting
groups ∪m

k=1L
′
wide,k of wide rectangles and a subset L′

narrow of narrow rectangles.
The weight of L′ is at least (1 − 3ε)OPT. Given accuracy ε, using the KR-
algorithm on the set L′ of rectangles outputs a strip-packing of L′ within the
area [0, 1]× [0, (1 +O(ε))b +O(1/ε2)].
[Shifting] Cut the strip-packing of L′ into small pieces of roughly equal heights
O(ε2b), and then remove some less weighted part. This gives a packing within
the area [0, 1]× [0, b] of R. The weight of the rectangles in the packing is at least
(1−O(ε))OPT.

Remark. In order to obtain a (1−ε)-approximation, we need to define bounds on
b and ε, use Aε together with Lemmas 4, 5, 6, and then scale ε in an appropriate
way. If b ≥ 1/ε4 and ε ∈ (0, 1/10], the algorithm outputs a packing whose
weight is at least (1 − 22ε)OPT. If b ≥ 1/ε3 and ε ∈ (0, 1/35], the algorithm
outputs a packing whose weight is at least (1− 72ε)OPT. Hence, we can obtain
a required algorithm either for b ≥ 1/ε4 and ε ∈ (0, 1/220], or for b ≥ 1/ε3

and ε ∈ (0, 1/2520]. In the first case b ≈ 2.4 × 109. In the second case b ≈
1.6 × 1010. Notice also that some steps of our algorithm can be performed in a
more efficient way. For example, one can improve the search procedure in Step
1. Here we mainly concentrate our attention on the polynomial time efficiency
of the algorithm.

3 The Packing Algorithm

As described in Section 2.4, our algorithm consists of the three main steps: LP
approximation, Rounding, and Shifting. The first step is described in Section 3.1,
and the next two steps are described in Sections 3.2, 3.3 respectively.

3.1 LP Approximation

Here we work with our LP formulation LP (L, b). Since the number of configu-
rations #C = O(2n), i.e. the LP is large, we look for an LP approximation. We
transform the LP to the resource-sharing problem. By performing a modified
linear search over approximate solutions for the latter problem, we find a solu-
tion L(x) for LP (L, (1 + 2ε)b), whose weight is at least (1 − 3ε)OPT. In order
to resolve the resource-sharing problem in a required time we use the results
from [15, 16]. We formulate the block-problem and present a block solver for it,
due to space limitations we omit proofs.

Resource-sharing problem. We can assume w.l.o.g. that the LP optimum OPT
is lower bounded by the maximum weight wmax and upper bounded by n ·wmax,
i.e. OPT ∈ [wmax, nwmax]. Then, for each value w ∈ [wmax, nwmax] we introduce
the following resource-sharing problem:

1046 A.V. Fishkin, O. Gerber, and K. Jansen

maximize λ
subject to

∑n
i=1 xi · (wi/w) ≥ λ,∑

j:Ri∈Cj
[yj/bi]− xi + 1 ≥ λ, for all i = 1, . . . , n,∑#C

j=1 yj/b ≤ 1,
yj ≥ 0, for all j = 1, . . . ,#C,
xi ∈ [0, 1], for all i = 1, . . . , n.

(2)

Lemma 2. Let λ∗ be the optimum. If λ∗ < 1, then the value of w is larger than
OPT.

Linear search. Assume that we can solve any instance of the above resource-
sharing problem to the optimum. Then, we can perform a search at each value
w ∈ {(1 + ε2 ·)wmax| = 0, 1, . . . , (n − 1)/ε2}, and simply take a solution
(x, y) given by the maximum value of w whose optimum λ∗ ≥ 1. First, this
solution (x, y) is feasible for LP (L, b). Second, we know that OPT ≥ wmax,
and, due to the search procedure, w + ε2wmax > OPT. Hence, the objective
value at (x, y) is at least w ≥ OPT−ε2wmax ≥ (1−ε2)OPT. Thus, this solution
(x, y) is “near” optimal for LP (L, b). Unfortunately, we cannot resolve the above
resource-sharing problem, and so we need to look for approximate solutions.

Approximating the general resource-sharing problem. Let M and N be two pos-
itive integers. Let B be a non-empty compact convex set in RN . Let fm :
B → R+ (m = 0, . . . ,M) be non-negative linear functions over B. Let λ(z) =
maxM

m=1 fm(z). Then, the general resource-sharing problem can be formulated
as the following linear program: max{λ(z)|z ∈ B}.

A price vector is a vector p of non-negative values pm ≥ 0 (m = 0, . . . ,M)
such that

∑M
m=0 pm = 1. Let Λ(p, z) =

∑M
m=0 pmfm(z). Then, for any fixed p,

the block problem is defined as the following linear program: max{Λ(p, z)|z ∈ B}.
Let λ∗ be the optimum. For an accuracy ε̄ ∈ (0, 1], a solution z ∈ B is called

an ε̄-approximate solution if λ(z) ≥ (1 − ε̄)λ∗. Let Λ∗(p) be the optimum. For
an accuracy t̄ ∈ (0, 1], a solution z(p) ∈ B is called a (p, t̄)-approximate solution
if Λ(p, z(p)) ≥ (1− t̄)Λ∗(p).

If N is polynomial in M , then we can solve the two LPs in time polynomial
in M . If N = O(2M), i.e. N can be exponential in M , then the LPs are large.
In order to cope with that case, we will use the following result.

Theorem 4 (Grigoriadis et al. [15], Jansen [16]). For any given ε̄ > 0,
there is a resource sharing algorithm RSA(ε̄) which finds an ε̄-approximate so-
lution for the resource-sharing problem, provided that given any t̄ = Θ(ε̄), any
price vector p there is a block solver algorithm BSA(p, t̄) which finds a (p, t̄)-
approximate solution for the block problem. The algorithm RSA(ε̄) runs as a
sequence of O(M(lnM + ε̄−2 ln ε̄−1)) iterative steps, each of those requires a call
to BSA(p, t̄) and incurs an overhead of O(M ln ln(Mε̄−1)) elementary opera-
tions.

Remark. The algorithm proposed in [16] uses price vectors p whose positive
coordinates pm = Ω([ε̄/M]q) (m = 0, 1, . . . ,M), for some constant q. We use
this important fact in the analysis of our algorithm.

On Efficient Weighted Rectangle Packing with Large Resources 1047

Solving the block problem. In order to approximate (2) we turn to the block
problem. Let w ∈ [wmax, nwmax]. Let x and y denote the vectors of all xi’s and
yj ’s. Let B(x) be the set of all x such that xi ∈ [0, 1] for all i = 1, . . . , n. Let B(y)
be the set of all y such that

∑#C
j=1 yj/b ≤ 1 and yj ≥ 0, for all j = 1, . . . ,#C.

Then, B(x) and B(y) are non-empty, compact and convex.
For any given price vector p of non-negative values pi ≥ 0 (i = 0, . . . , n)

such that
∑n

i=0 pi = 1 we define the objective function of the block problem as
Λ(p, x, y) = p0[

∑n
i=1 xi ·(wi/w)]+

∑n
i=1 pi[

∑
j:Ri∈Cj

yj/bi−xi+1]. For simplicity,
we combine the coefficients for each of the variables. For xi and yj we get ci =
p0(wi/w) − pi

∑
j:Ri∈Cj

1 and dj =
∑

Ri∈Cj
pi/bi, respectively. Let Λ(p, x) =∑n

i=1 ci · xi and Λ(p, y) =
∑#C

j=1 dj · yj. Then, x and y are independent.
So, we reformulate the block problem as two LPs: max{Λ(p, x)|x ∈ B(x)} and

max{Λ(p, y)|y ∈ B(y)}. Now it is quite an easy task to define optimal solutions.
Let x∗ and y∗ be defined such that (i) x∗i = 0 if ci is non-positive, and x∗i = 1
otherwise (i = 1, . . . , n), (2) y∗k = b, and y∗j = 0 for all Cj �= Ck (j = 1, . . . ,#C),
where Ck is a configuration with dk = max#C

j=1 dj . Then, x∗ and y∗ define an
optimal solution for the block problem.

Recall now that the number of configurations #C can be exponential. Hence,
we cannot find an optimal solution as defined above in a straightforward way.
Our idea is to look for an approximation. In overall, we prove the following
result.

Lemma 3. Let q be some positive constant. Then, for any accuracy ε̄ > 0 and
any price vector p whose positive coordinates pi = Ω([ε̄/M]q) (i = 0, . . . , n),
there is a block solver algorithm BSA(p, ε̄) which finds a (p, ε̄)-approximate so-
lution for the block problem in O(n2 · [M/ε̄]q) +KS(n, ε̄) time, where KS(n, ε̄)
is time required to find an (1 − ε̄)-approximate solution for an instance of the
knapsack problem with n items (for example O(n/ε̄3)).

Using ε̄-approximate solutions. Now we can use ε̄-approximate solutions of our
resource-sharing problem. Let w ∈ [wmax, n · wmax]. Let λ∗ be the optimum
of the resource-sharing problem for given w. Let (x, y) be an ε̄-approximate
solution that satisfies the constrains of (2) for some λ ≥ λ∗(1− ε̄). Assume that
λ < (1 − ε̄). Then λ∗ < 1, and by Lemma 2, we can conclude that OPT is
smaller than w. Now assume that λ ≥ (1 − ε̄) and ε̄ = ε2/n. For such values
of λ and ε̄, we can see the following three facts. First, consider all xi < ε/n.
Then,

∑
Ri∈L : xi ≤ ε/n xi · wi < (ε/n) · [

∑n
i=1 wi] ≤ ε · wmax. Second, for

each xi ≥ ε/n, we have that xi − ε̄ = xi − ε2/n ≥ xi − εxi = (1 − ε)xi.
Third, for ε ∈ (0, 1/4] we have that (1 − ε)(1 + 2ε) = 1 + ε − 2ε2 > 1. Hence,∑#C

j=1 yj/(1− ε) ≤ b/(1− ε) ≤ b(1 + 2ε).
Using this ε̄-approximate solution (x, y) we can create a new solution as

follows. For each xi < ε/n, we set the value of xi to 0. Then, from w ∈
[wmax, n · wmax] the objective function value can be bounded as

∑n
i=1 xi · wi ≥

λ · w − ε · wmax ≥ (1 − ε2/n)w − ε · wmax ≥ (1 − ε2/n − ε)w ≥ (1 − 2ε)w.
Next, notice the following. If xi = 0, then using yj ≥ 0 we obviously get∑

j:Ri∈Cj
yj/bi ≥ 0 = (1 − ε)xi. If xi ≥ ε/n, then using λ ≥ (1 − ε̄) we can

1048 A.V. Fishkin, O. Gerber, and K. Jansen

bound
∑

j:Ri∈Cj
yj/bi ≥ λ+ xi − 1 ≥ xi − ε̄ = xi − ε2/n ≥ xi − εxi = (1− ε)xi.

By scaling the values of all yj (j = 1, . . . ,#C) by 1/(1 − ε), the new values
of all xi and yj satisfy

∑n
i=1 xi · wi ≥ (1 − 2ε)w,

∑
j:Ri∈Cj

yj ≥ bi · xi for all

i = 1, . . . , n, and
∑#C

j=1 yj ≤ b(1 + 2ε), where all yj ≥ 0 and all xi ∈ [0, 1].

Modified linear search. Now we can modify our linear search. We define ε̄ = ε2/n.
Then, we perform a search at each value w ∈ {(1+ ε2 ·)wmax| = 0, 1, . . . , (n−
1)/ε2}. Each time we find an ε̄-approximate solution, and then modify it as
shown above. We take the modified ε̄-approximate solution (x, y) given by the
maximum value of w, that is feasible for LP (L, (1 + 2ε)b). Furthermore, the
objective function value at (x, y) is at least (1− 3ε)OPT. So, we conclude with
the following result.

Lemma 4. Let ε ∈ (0, 1/4] and ε̄ = ε2/n. Then, by performing a linear search
over ε̄-approximate solutions for a sequence of n/ε2 instances of the resource-
sharing problem, one can determine a feasible (possibly fractional) solution L(x)
for LP (L, (1 + 2ε)b) whose objective function is at least (1 − 3ε)OPT.

3.2 Rounding

Here we round our LP solution L(x). We separate the rectangles of L into nar-
row, Lnarrow, and wide, Lwide. First, we round Lnarrow(x). We find a subset,
L′

narrow ⊆ Lnarrow, of narrow rectangles whose weight is at least the weight of
Lnarrow(x), and total area is at most the area of Lnarrow(x) plus 1. This can be
done by selecting the rectangles (ai, xi · bi) appearing in Lnarrow(x) in order of
non-increasing ratio wi/(ai · bi).

Next, we round Lwide(x). We define H(x) =
∑

Ri∈Lwide
xi · bi, that is the

total height of Lwide(x). Here, in the beginning we select the fractional rect-
angles (ai, xi · bi) form Lwide(x) in order of non-increasing widths ai one by
one, and working in a greedy way create m = �1/(ε′)2� non-intersecting groups
Lwide,1(x), Lwide,2(x), . . . , Lwide,m(x) of roughly equal heights (ε′2) ·H(x). (Ties
are broken arbitrarily.) Then, for each kth group Lwide,k(x) we find a subset,
L′

wide,k ⊆ Lnarrow, of narrow rectangles whose weight is at least the weight of
Lwide,k(x), and total height is at most the height of Lwide,k(x) plus 1. This can
be done by selecting the rectangles (ai, xi · bi) appearing in Lwide,k(x) in order
of non-increasing ratio wi/bi.

The main idea behind the above rounding procedure is that to keep preserved
a “nice area” for narrow rectangles, and “nice heights” for all m = O(1/ε2)
groups of wide rectangles. In overall, we can show that the subset of rectangles
L′ ⊆ L given as the union of ∪m

k=1L
′
wide,k and L′

narrow, can be nicely packed
within the area [0, 1]× [0, (1 + O(ε))b +O(1/ε2)].

Lemma 5. Let α ≥ 1 and β ≥ 4. Let b ≥ (α/ε3) and ε ∈ (0, 1/β]. Then, a
fractional solution, L(x), can be rounded to a subset L′ ⊆ L of rectangles so
that the weight of L′ is at least (1 − δ1 · ε)OPT, where δ1 = 3, and the KR-
algorithm outputs a packing of L′ within the area [0, 1] × [(1 + δ2 · ε)b], where
δ2 = 4 + (33/β) + (82/β2) if α = 1/ε, and δ2 = 32 + (45/β) + (42/β2) if

On Efficient Weighted Rectangle Packing with Large Resources 1049

α = 1. The complete rounding and packing procedure requires at most O([1/ε2] ·
(n logn) + KR(n, ε)) running time, where KR(n, ε) is the running time of the
KR-algorithm.

Remark: One can also obtain slightly different bounds by taking α ∈ {10, 20}.

3.3 Shifting

Assume that we are given a strip packing of L′ within the area [0, 1]× [0, (1+δ2 ·
ε)b], and the weight of L′ is at least (1− δ1 · ε)OPT, for some δ1, δ2 = O(1). The
idea of our shifting technique is to cut this strip packing into k =

⌊
(1+δ2·ε)b+2
(δ2·ε)b+2

⌋
pieces of roughly equal height (δ2 · ε)b. Putting some bound together we can
show that there must exit one piece whose weight is at most [2OPT](1/k) ≤
2ε(δ2 + 1)OPT. So, throwing away this piece can decrease the weight of L′ to
(1− (δ1+2δ2 +2)ε)OPT, but it reduces the height of the strip packing to b. This
gives an approximate packing within the required area [0, 1]× [0, b]. Omitting all
technical details, we use Lemma 5 and obtain the following result.

Lemma 6. Let α ≥ 1 and β ≥ 4. Let b ≥ α/ε3 and ε ∈ (0, 1/β]. Then, given
a packing of L(x̄) in the area [0, 1] × [0, (1 + δ2 · ε)b] whose weight is at least
(1−δ1·ε)OPT, in time O(n+1/ε) one can obtain a packing in the area [0, 1]×[0, b]
whose weight is at least (1 − 22ε)OPT if α = 1/ε and β = 10, and at least
(1− 72ε)OPT if α = 1 and β = 35.

References

1. M. Adler, P. Gibbons, and Y. Matias. Scheduling space-sharing for internet adver-
tising. Journal of Scheduling, 1998.

2. B.S. Baker, D.J. Brown, and H.P. Katseff. A 5/4 algorithm for two dimensional
packing. Journal of Algorithms, 2:348–368, 1981.

3. B.S. Baker, A.R. Calderbank, E.G. Coffman, and J.C. Lagarias. Approximation
algorithms for maximizing the number of squares packed into a rectangle. SIAM
Journal on Algebraic and Discrete Methods, 4:383–397, 1983.

4. B.S. Baker, E.G. Coffman, and R.L. Rivest. Orthogonal packings in two dimen-
sions. SIAM Journal on Computing, 9:846–855, 1980.

5. N. Bansal and M. Sviridenko. New approximability and inapproximability results
for 2-dimensional bin packing. In Proceedings 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 189–196, 2004.

6. A. Caprara. Packing 2-dimensional bins in harmony. In Proceedings 43rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 490–499, 2002.

7. F.R.K. Chung, M.R. Garey, and D.S. Johnson. On packing two-dimensional bins.
SIAM Journal on Algebraic and Discrete Methods, 3:66–76, 1982.

8. E.G.Jr. Coffman, M.R. Garey, D.S. Johnson, and R.E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Comput-
ing, 9:808–826, 1980.

9. J.R. Correa and C. Kenyon. Approximation schemes for multidimensional pack-
ing. In Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 179–188, 2004.

1050 A.V. Fishkin, O. Gerber, and K. Jansen

10. C.E. Ferreira, F.K. Miyazawa, and Y. Wakabayashi. Packing squares into squares.
Perquisa Operacional, 19:349–355, 1999.

11. A. Freund and J. Naor. Approximating the advertisement placement problem. In
Proceedings 9th Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO), LNCS 2337, pages 415–424, 2002.

12. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. Freeman, San Francisco, CA, 1979.

13. P.C. Gilmore and R.E. Gomory. Multistage cutting stock problems of two and
more dimensions. Operations Research, 13:94–120, 1965.

14. I. Golan. Performance bounds for orthogonal, oriented two-dimensional packing
algorithms. SIAM Journal on Computing, 10:571–582, 1981.

15. M.D. Grigoriadis, L.G. Khachiyan, L. Porkolab, and J. Villavicencio. Approximate
max-min resource sharing for structured concave optimization. SIAM Journal on
Optimization, 41:1081–1091, 2001.

16. K. Jansen. Approximation algorithms for the general max-min resource sharing
problem: faster and simpler. In Proceedings 9th Scandinavian Workshop on Algo-
rithm Theory (SWAT), 2004. To appear.

17. K. Jansen and G. Zhang. Maximizing the number of packed rectangles. In Pro-
ceedings 9th Scandinavian Workshop on Algorithm Theory (SWAT), 2004.

18. K. Jansen and G. Zhang. On rectangle packing: maximizing benefits. In Proceedings
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 197–
206, 2004.

19. Hans Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004.
20. C. Kenyon and E. Rémila. Approximate strip-packing. In Proceedings 37th Annual

Symposium on Foundations of Computer Science (FOCS), pages 31–36, 1996.
21. E. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4:339–356, 1979.
22. J.Y.-T. Leung, T.W. Tam, C.S. Wong, G.H. Young, and F.Y.L. Chin. Packing

squares into a square. Journal of Parallel and Distributed Computing, 10:271–275,
1990.

23. I. Schiermeyer. Reverse fit: a 2-optimal algorithm for packing rectangles. In Pro-
ceedings 2nd European Symposium on Algorithms (ESA), pages 290–299, 1994.

24. S. Seiden and R. van Stee. New bounds for multi-dimentional packing. Algorith-
mica, 36(3):261–293, 2003.

25. D.D. Sleator. A 2.5 times optimal algorithm for bin packing in two dimensions.
Informatin Processing Letters, (10):37–40, 1980.

26. A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing, 26(2):401–409, 1997.

On Routing in VLSI Design
and Communication Networks�

Tamás Terlaky1, Anthony Vannelli2, and Hu Zhang1

1 AdvOL, Department of Computing and Software,
McMaster University, Hamilton, Canada
{terlaky, zhanghu}@mcmaster.ca

2 Department of Electrical and Computer Engineering,
University of Waterloo, Canada
a.vannelli@ece.uwaterloo.ca

Abstract. In this paper, we study the global routing problem in VLSI
design and the multicast routing problem in communication networks.
We first propose new and realistic models for both problems. Both prob-
lems are NP-hard. We present the integer programming formulation of
both problems and solve the linear programming (LP) relaxations ap-
proximately by the fast approximation algorithms for min-max resource-
sharing problems in [10]. For the global routing problem, we investigate
particular properties of lattice graphs and propose a combinatorial tech-
nique to overcome the hardness due to the bend-dependent vertex cost.
Finally we develop asymptotic approximation algorithms for both prob-
lems depending on the best known approximation ratio for the minimum
Steiner tree problem. They are the first known theoretical approximation
bound results for these problems.

1 Introduction

Hardness of many combinatorial problems is represented by two characteristics
in their mathematical programming formulation: First, the integrality of vari-
ables leads to NP-hardness for many problems. Second, in general the limited
resources represented by the constraints increase the complexity of the problems.
In fact the occurrence of constraints changes the feasible set of the problem, i.e.,
the polytope of the mathematical program. Thus the characteristics of the prob-
lem differs much from the original one. Furthermore, in many problems arising
in graph theory, when trees are required to be generated instead of paths, NP-
hardness appears again.

In this paper, we shall study routing problems in two different engineering
applications: in VLSI design and in multicast communication networks. In both
problems, there are only limited resources shared by multiple entities. Further-
more, the solutions of both problems consist of trees generated for these enti-
ties. Specifically, we shall study the global routing problem in VLSI design and
� Research supported by a MITACS grant for all the authors, the NSERC Discovery

Grant #5-48923 for the first and third author, the NSERC Grant #15296 for the
second author, and the Canada Research Chair Program for the first author.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1051–1060, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1052 T. Terlaky, A. Vannelli, and H. Zhang

the multicast routing problem in communication networks. There exist capacity
constraints on all edges. The purpose of both problems is to minimize the total
cost (e.g., the overall edge length of the trees or with some additional cost).
As described above, both problems are hard. We propose the first asymptotic
approximation algorithms for both problems. In addition, as a byproduct, we
develop a combinatorial technique for lattice graphs with bend-dependent ver-
tex cost, which can be applied to many optimization problems in VLSI design
and transportation networks.

Global routing in VLSI design: In the global routing stage of VLSI design, the
circuits are assumed to be in a one-layer frame. The channels on a chip form the
edge set of a lattice graph, and their crosses consist of the vertex set. A group of
pins to be connected is called a net. Wires are to be routed along the channels
to connect the nets with respect to the channel capacity, and certain objective
functions (e.g., overall wirelength or maximum edge congestion) are optimized.

The global routing problem is NP-hard [14]. Therefore, heuristics tend to be
used to find reasonable solutions in fast time. In sequential global routing, nets
are ordered to their routing importance, then each net is routed separately. This
method is called the maze runner method and was initially introduced by Lee
[13]. Enhancements to the maze runner heuristics were shown in [9]. The quality
of a sequential global router depends on the ordering of the nets.

Integer programming methodologies allow global routing problems to be
solved in a “global” sense by routing all the nets simultaneously. This class
of techniques is used to formulate the global routing problem as a 0-1 integer
programming problem where the objective is to select one Steiner tree for each
net such that the total wirelength (tree length) is minimized and channel capac-
ity (edge capacity) constraints are not violated. Three traditional models of the
global routing by integer programming are listed in [3]. In the first model [20],
the goal is to minimize the overall wirelength with respect to the capacity con-
straints. The goal of the second model is to minimize the maximum tree length
[15]. The third model is to minimize the maximum edge congestion [17]. Based
on the above traditional models, two new models are proposed in [3,4]. In the
first model, the goal is to minimize a linear combination of overall wirelength,
overall number of vias (bends of the routed paths or trees) and the maximum
edge congestion. The weights of these three terms depends on a pre-specified
set of trees. A big improvement is that the impact of vias is counted, while
vias increase the hardness of manufacturing and leads to more heat generation
in general. In the second model, besides the objective in the first model, the
maximum edge congestion is also to be minimized.

Multicast routing in communication networks: We notice that one model of the
global routing problem in VLSI design [17] is to minimize the maximum edge
congestion, which is essentially equivalent to the multicast congestion problem
[2,11] or multicast packing problem [7] in communication networks. In fact there
are many similarities between the routing problems in VLSI design and routing
problems in communication networks.

On Routing in VLSI Design and Communication Networks 1053

A multicast communication network consists of a number of processors (usu-
ally routers) and other devices. The processors can receive, duplicate and deliver
packets of data, and are linked by infrastructure backbone. The signals are trans-
mitted among processors through fixed cables. Furthermore, for each cable there
is a bandwidth (capacity) constraint. There exist a certain number of requests
in a multicast communication network. Each request utilizes some of the proces-
sors. One processor in a request is the source processor to send the data packets,
and others are destinations of the signal flows. Thus, it is required to find a
routing tree for each request in the network structure such that the transmission
can be realized.

From algorithmic point of view, a communication network can be represented
by an undirected graph, where the vertices are the processor and the edges are
the cables. A request is a subset of the vertex set. A solution of the multicast
routing problem is a set of trees spanning the requests with respect to the edge
capacity constraints. And the goal is to minimize the total cost. In the multicast
congestion/multicast packing problem, there is no edge capacity nor cost of the
routing. The goal is to minimize the maximum edge congestion [2,11]. Another
related problem is the so-called group multicast routing problem [6,12]. Recently,
the problem to maximize the number of successfully routed requests with respect
to the edge capacity is studied in [18].

Our contribution: In this paper, we propose generalizedmodels for the global rout-
ing problem in VLSI design and the multicast routing in communication networks.
For the global routing problem, our model generalizes the previous models devel-
oped in [3,4,17,20]. Here we consider the three important factors in global routing:
the totalwirelength, the edge congestion, and thenumber ofbends.The edge capac-
ity can vary according to the local requirement instead of posing extra edge length
as penalty for the high congested edges. The goal is to optimize a combination of
the total wirelength and total number of bends. Similarly, for the multicast routing
problem, ourmodel also generalizes the previousmodels in [2,6,11,12]. It is a special
case of the global routing problem, but in arbitrary graphs. In our approximation
algorithms for the routing problems, we first apply binary search strategy to re-
formulate the linear relaxations to min-max resource-sharing problems or packing
problems. Then we use the approximationalgorithm in [10] as a subroutine to solve
the packing problems. We show that the block problem of the multicast routing
problem is the minimum Steiner tree problem in graphs. We also develop a com-
binatorial technique for lattice graphs, with which we also convert the block prob-
lem of the global routing problem to the minimum Steiner tree problem. Finally
we obtain asymptotic approximation algorithms for the routing problems. To our
best knowledge, no approximation results have been previously reported for these
problems. In addition, with the combinatorial technique for lattice graphs, we also
present polynomial time algorithms for some generalized optimization problems in
urban transportation networks.

The remaining part of this paper is organized as follows: We give the formal
models of the routing problems in Section 2 and reformulate them to the packing
problems in Section 3. The approximation algorithms are presented in Section

1054 T. Terlaky, A. Vannelli, and H. Zhang

4, and the approximation guarantee is shown in Section 5. Finally we address
some more applications of the combinatorial technique in Section 6. Due to the
limit of space we do not give proofs of our results in this version. We refer the
readers to the full version of our paper [19] for details.

2 Mathematical Formulation

The global routing problem in VLSI design we study is defined as follows: Given
an edge-weighted lattice graph and a set of nets (subsets of the vertex set),
the edge set is associated with a nonnegative length function and a positive
capacity function. Furthermore, there also exists a vertex cost function. The
solution is a set of trees spanning the given nets. The total cost of a solution
consists of two parts: the edge cost and the bend-dependent vertex cost. The edge
cost is the sum of edge length of the generated trees, and the bend-dependent
vertex cost is caused by the structure of the generated trees. For a tree in a
solution in the given lattice graph, if the tree has a bend at vertex v, then its
bend-dependent vertex cost on v is the given vertex cost. Otherwise, its bend-
dependent vertex cost on v is 0. In fact a bend on a vertex corresponds a via
in VLSI design, which leads to extra cost for manufacturing and results in risk
of hot spots. The goal of the problem is to minimize the overall cost, which is
a linear combination of the total edge cost and the total bend-dependent vertex
cost, while the edge capacity constraints are fulfilled. In the multicast routing
problem in communication networks, we are given an edge-weighted undirected
graph and requests. There are a nonnegative cost function and a positive capacity
function associated to the edge set. The goal is to find a set of trees spanning
the requests with respect to the edge capacity constraints, such that the overall
cost is minimized. Indeed the minimum Steiner tree problem in graphs, which is
APX -hard [5], is a special case of our global routing problem, where the vertex
cost is 0 and all edge capacities are 1.

Given an planar edge-weighted lattice graph G = (V,E) (with some rectan-
gular holes) and nets S1, . . . , SK ⊆ V , the edge set is associated with a length
function l : E → IR+ ∪{0} and a capacity function c : E → IR+. Without loss of
generality, we assume that |Sk| is bounded by some constant for all k = 1, . . . ,K.
Furthermore, there also exists a vertex cost w : V → IR+ ∪ {0}. A feasible so-
lution is a set of K trees spanning S1, . . . , SK with respect to the edge capacity
constraints. The goal of the global routing problem in VLSI design is to minimize
the overall cost defined as a linear combination αltotal + βvtotal, where ltotal is
the sum of edge length of all K trees and vtotal is the sum of numbers of bends
of all K trees, while α, β ≥ 0 are artificial weights corresponding to the impact
of the total wirelength and the total number of vias. For simplicity, we denote
by ci the capacity of edge ei ∈ E from now on.

We now develop the integer linear program formulation of our generalized
model. Denote by Tk the set of all trees in G connecting the vertices in Sk. It is
worth noting that |Tk| can be exponentially large. We also denote by xk(T) the
indicator variable as follows: If T ∈ Tk is selected for the net Sk, then xk(T) = 1;

On Routing in VLSI Design and Communication Networks 1055

Otherwise xk(T) = 0. In addition, we define by l(T) and v(T) the length of tree
T and the number of bends of tree T , respectively. Therefore the integer linear
program formulation of the global routing problem in VLSI design is as follows:

min α
∑K

k=1
∑

T∈Tk
l(T)xk(T) + β

∑K
k=1

∑
T∈Tk

v(T)xk(T)
s.t.

∑
T∈Tk

xk(T) = 1, ∀k;∑K
k=1

∑
T∈Tk&ei∈T xk(T) ≤ ci, ∀ei ∈ E;

xk(T) ∈ {0, 1}, ∀T&k.

(1)

Here the first set of constraints means that for any set Tk we choose exactly one
tree for Sk, and the second set of constraints are capacity constraints.

In the multicast routing problem in communication networks, G can be an
arbitrary graph. Formally, we are given an edge-weighted undirected graph G =
(V,E) and requests S1, . . . , SK ⊆ V . There is a cost function l : E → IR+ ∪ {0}
and a capacity function c : E → IR+ associated to the edge set. The goal is to find
K trees spanning S1, . . . , SK with respect to the edge capacity constraints, such
that the overall cost is minimized. The integer linear programming formulation
of the multicast routing problem in communication networks is similar to (1)
except that the weight β = 0 and α = 1. Accordingly, we just need to study the
integer linear program (1) for both problems.

3 Packing Formulation of the Generalized Model

We can show that the optimum value of the integer linear program (1) is equiv-
alent to the optimum value of the following integer linear program:

min g
s.t.

∑K
k=1

∑
T∈Tk

(αl(T) + βv(T))xk(T) ≤ g,∑K
k=1

∑
T∈Tk&ei∈T xk(T) ≤ ci, ∀ei ∈ E;∑

T∈Tk
xk(T) = 1, ∀k;

xk(T) ∈ {0, 1}, ∀T&k.

(2)

Furthermore, we can show that any ρ-approximate solution of (2) is also a ρ-
approximate solution of (1) for any ρ ≥ 1. We shall study (2) instead of (1).

As usual, we shall study the LP-relaxation of (2), and then apply rounding
techniques to obtain a feasible solution. It is worth noting that there may be
exponentially many variables in (2) and its LP-relaxation. Thus many exact
algorithms for LPs such as standard interior point methods can not be applied.
The LP-relaxation of (2) may be solved by the volumetric-center [1] or the
ellipsoid methods with separation oracle. However, those approaches will lead
to a large running time. Therefore, we shall study approximation algorithms for
the LP-relaxation of (1).

Now we consider the LP-relaxation of (2). For any given ε ∈ (0, 1), we can
show if we can solve the following linear program (see [19] for details)

1056 T. Terlaky, A. Vannelli, and H. Zhang

min λ
s.t.

∑K
k=1

∑
T∈Tk

(αl(T) + βv(T))xk(T)/g ≤ λ,∑K
k=1

∑
T∈Tk&ei∈T xk(T)/ci ≤ λ, ∀ei ∈ E;∑

T∈Tk
xk(T) = 1, ∀k;

xk(T) ∈ [0, 1], ∀T&k,

(3)

then we can find a (1+ ε)-approximate solution to the LP-relaxation of (2). The
remaining task is to solve (3). Here we call the linear program (3) the packing
formulation of the global routing problem in VLSI design.

4 Approximation Algorithms for the LP-Relaxations

We shall present approximation algorithms for the LP-relaxations of the multi-
cast routing problem in communication networks and the global routing problem
in VLSI design in this section. Here we call the linear relaxation of the multi-
cast routing problem (respectively, the global routing problem) the fractional
multicast routing problem (respectively, the fractional global routing problem).

4.1 Approximation Algorithms for Fractional Multicast Routing

In the fractional multicast routing problem in communication networks, we shall
minimize the overall edge length of the trees spanning requests with respect to
the capacity constraints (e.g., α = 1 and β = 0). We notice that (3) is indeed the
formulation of the convex min-max resource-sharing problems (packing problems
in the linear case) in [8,10,21]. The convex min-max resource-sharing problems
is defined as follows:

min{λ|fm(x) ≤ λ,m = 1, . . . ,M, x ∈ B}, (4)

where B ⊆ IRN is a nonempty convex compact set and fm : B → IR+ are
nonnegative continuous convex functions on B for m ∈ {1, . . . ,M}. Let f(x) =
(f1(x), . . . , fM (x))T and λ(x) = maxm∈{1,...,M} fm(x) for x = (x1, . . . , xN)T ∈
B. Denote by x∗ the optimal solution and by λ∗ = λ(x∗) the optimal value
of (4). In [8,21], algorithms are proposed to find (1 + ε)-approximate solutions
to (4) provided an oracle to deliver a (1 + O(ε))-approximate solution to the
corresponding block problem (which depends on the specified f(x)). However,
in the fractional multicast routing problem in communication networks (also the
fractional global routing in VLSI design), we shall show that there is no PTAS
for the block problems. Therefore there only exist r-approximation algorithms
for the block problem with r > 1. In such a case the algorithms in [8,21] are not
applicable. An approximation algorithm for convex min-max resource-sharing
problems with only weak block solvers is proposed in [10].

The algorithm is based on the Lagrangian relaxation. The algorithm main-
tains a pair of a feasible solution x and a price vector (dual vector) p ∈ P =
{p ∈ IRM |

∑M
m=1 pm = 1, pm ≥ 0}. The block problem ABS(p, t, r) of (4) is

to compute x̂ = x̂(p) ∈ B such that pT f(x̂) ≤ r(1 + t)min{pT f(y)|y ∈ B}
[10], where t = O(ε) and r ≥ 1 is the approximation ratio. Furthermore, the

On Routing in VLSI Design and Communication Networks 1057

algorithm is an iterative method, where in each iteration an approximate block
solver is called as an oracle once. More details of packing problems or convex
min-max resource-sharing problems can be found in [22].

Proposition 1. [10] For any ε ∈ (0, 1), there exists an Algorithm L that finds
an r(1+ ε)-approximate solution to (4) in O(M(logM + ε−2 log ε−1)) iterations
and an r(1 +O(ε))-approximate block solver is called once in each iteration.

In the fractional multicast routing problem in communication networks, the
packing constraints are: fi =

∑K
k=1

∑
T∈Tk&ei∈T xk(T)/ci, for i = 1, . . . ,m, and

fm+1 =
∑K

k=1
∑

T∈Tk
l(T)xk(T)/g. Then we can directly apply algorithm L here

and the following theorem holds (see [19] for proof).

Theorem 1. For any accuracy ε ∈ (0, 1), there exists an r(1+ε)-approximation
algorithm for the fractional multicast routing problem in communication net-
works provided an r-approximate minimum Steiner tree solver.

4.2 Approximation Algorithms for Fractional Global Routing

The fractional global routing problem is formulated as the linear program (3),
where the weight of overall number of bends (vias) β �= 0. We shall also apply
the approximation algorithm L in [10] for this problems. Here the block problem
is different from that for the multicast routing problem due to the additional
cost caused by the tree bends. However, we still have the following result for the
fractional global routing problem:

Theorem 2. For any accuracy ε ∈ (0, 1), there exists an r(1+ε)-approximation
algorithm for the fractional global routing problem in VLSI design (3) provided
an r-approximate minimum Steiner tree solver.

We only show the main idea of the proof in this version. For the original lattice
graph G = (V,E), we construct a two-layer graph H , where on each layer the
vertex set is identical to V , and all horizontal edges are in the lower layer, while
all vertical edges are in the upper layer. In addition, Each pair of vertices in the

v

x

y

Fig. 1. Original lattice graph G

v’

x

y
z

v

Fig. 2. Two-layer graph H

1058 T. Terlaky, A. Vannelli, and H. Zhang

two layers corresponding to the same vertex in V is connected by a new edge (see
Figure 1) and 2). In this way, a bend in G corresponds to crossing the new edge
in H once. We assign the vertex cost in G to the new edges in H . Thus the block
problem is shown the minimum Steiner tree problem inH , and the theorem follows
(see [19] for details). This technique is called the virtual layer method.

5 Approximation Algorithms

We have presented r(1 + ε)-approximation algorithms for the fractional global
routing problem in VLSI design and the multicast routing problem in commu-
nication networks in Section 4. Then we use the randomized rounding in [16,17]
to obtain feasible solutions. Let OPT denote the optimal objective value of the
LP-relaxation (3). Directly from [16] we have the following theorem:

Theorem 3. There are approximation algorithms for the global routing problem
in VLSI design and the multicast routing problem in communication networks
such that the objective value is bounded by r(1 + ε)OPT + (exp(1)− 1)(1 + ε)

√
rOPT lnm, if rOPT > lnm;

r(1 + ε)OPT +
exp(1)(1 + ε) lnm

1 + ln (lnm/(rOPT))
, otherwise.

If rOPT > lnm, the objective value generated by our algorithm is at most
exp(1)r(1 + ε)OPT . In the other case, the objective value generated by our
algorithm is at most r(1 + ε)OPT + O(lnm). Therefore, we obtain asymptotic
approximation algorithms for the routing problems.

In (1) there are exponential number of variables. However, by applying Algo-
rithm L, we just need to generate K minimum Steiner trees for the K
nets/requests in each iteration corresponding to the current price vector. So there
are only a polynomial number of Steiner trees generated in Algorithm L in total.

Corollary 1. The approximation algorithms for the global routing problem in
VLSI design and the multicast routing problem in communication networks only
generates at most O(Km(logm+ ε−2 log ε−1)) Steiner trees.

This is similar to the column generation technique for linear programs, and
the hardness due to exponential number of variables in (1) is overcome.

6 More Applications of the Virtual Layer Method

We consider an optimization problem as follows: In a given lattice graph G =
(V,E), there is a source-destination pair (s, t) and an amount of demand d ≤
mine c(e) between the pair, where c(e) is the capacity of edge e. There is an edge
cost function l : E → IR+ ∪ {0}. Furthermore, for each vertex there is a vertex
cost w : V → IR+ ∪ {0}. A feasible solution is a routed path connecting the
source and the destination. The overall cost of the path is the sum of edge costs

On Routing in VLSI Design and Communication Networks 1059

and bend-dependent vertex costs. The goal of the problem is to find a routing
path between the source and the destination such that the overall cost of the
path is minimized.

This problem is a variant of the classical shortest path problem in lattice
graphs, which has a realistic background in urban transportation networks. In
many cases the urban transportation networks are lattice graphs or can be rep-
resented as lattice graphs. When a vehicle reaches an intersection, it can turn
left or right, or drive straightly through the intersection. The delays correspond-
ing to these three choices are different. We assume that the delays to turn left
and right are identical due to the traffic situation, pedestrians and traffic signal
lights. The delay to pass straightly is much less than the delays of turns and can
also be merged to the edge cost. To deliver a certain amount commodity from a
source to a destination in such a transportation network, a routing path for the
vehicle with minimum overall time is to be designed. To solve this problem, we
can directly apply the virtual layer method and the following theorem holds:

Theorem 4. The shortest path problem in lattice graphs, where the total cost
is the sum of edge costs and the bend-dependent vertex costs, is polynomial time
solvable.

Corollary 2. The splitable min-cost flow problem (or the splitable min-cost mul-
ticommodity flow problem) in lattice graphs, where the total cost is the sum of
edge costs and the bend-dependent vertex costs, is polynomial time solvable.

7 Conclusions and Future Research

In this paper we have presented approximation algorithms for the global routing
problem in VLSI design and the multicast routing problem in communication
networks. Our models generate many previous models for these routing problems.
In fact, with binary search technique one can study a bicriteria version of the
minimization problem with two objective functions: the overall cost and the
maximum edge congestion. There are many interesting topics for further study.
First, we intend to apply the virtual layer method to more optimization problems
in lattice graphs. Second, we would like to propose more general models for the
global routing problem in VLSI design and the multicast routing problems in
communication networks such that the impact of more factors are included. Nice
problems arise when one studies the 3-dimensional lattice graphs for the global
routing problem. We shall also implement our algorithm to explore the power of
our approximation algorithm in computational practice.

References

1. K. M. Anstreicher, Towards a practical volumetric cutting plane method for con-
vex programming, SIAM Journal on Optimization, 9 (1999), 190-206.

2. A. Baltz and A. Srivastav, Fast approximation of minimum multicast congestion
- implementation versus theory, RAIRO Operations Research, 38 (2004), 319-344.

1060 T. Terlaky, A. Vannelli, and H. Zhang

3. L. Behjat, New modeling and optimization techniques for the global routing prob-
lem, Ph.D. Thesis, University of Waterloo, 2002.

4. L. Behjat, A. Vannelli, W. Rosehart, Linear programming models for the global
routing problem, to appear in Informs Journal on Computing, 2004.

5. M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2,
Information Professing Letters, 32 (1989), 171-176.

6. M. Cai, X. Deng and L. Wang, Minimum k arborescences with bandwidth con-
straints, Algorithmica, 38 (2004), 529-537.

7. S. Chen, O. Günlük and B. Yener, The multicast packing problem, IEEE/ACM
Transactions on Networking, 8(3) (2000), 311-318.

8. M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel price-
directive decomposition, Mathematics of Operations Research, 2 (1996), 321-340.

9. F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM
Journal on Computing, 4(3) (1975), 221-225.

10. K. Jansen and H. Zhang, Approximation algorithms for general packing problems
with modified logarithmic potential function, Proceedings of TCS 2002, 255-266.

11. K. Jansen and H. Zhang, An approximation algorithm for the multicast congestion
problem via minimum Steiner trees, Proceedings of ARACNE 2002, 77-90.

12. X. Jia and L. Wang, A group multicast routing algorithm by using multiple min-
imum Steiner trees, Computer Communications, 20 (1997), 750-758.

13. C. Y. Lee, An algorithm for path connection and its application, IRE Transactions
on Electronic Computers, 10 (1961), 346-365.

14. T. Lengauer, Combinatorial algorithms for integrated circuit layout, J. Wiley, New
York, 1990.

15. T. Lengauer and M. Lungering, Provably good global routing of integrated cir-
cuits, SIAM Journal on Optimization, 11(1) (2000), 1-30.

16. P. Raghavan, Probabilistic construction of deterministic algorithms: approximat-
ing packing integer programs, Journal of Computer and System Sciences, 37
(1988), 130-143.

17. P. Raghavan and C. D. Thompson, Randomized rounding: a technique for prov-
ably good algorithms and algorithmic proofs, Combinatorica, 7(4) (1987), 365-374.

18. M. Saad, T. Terlaky, A. Vannelli, and H. Zhang, Packing trees in communication
networks, to appear in Proceedings of WINE 2005, LNCS.

19. T. Terlaky, A. Vannelli and H. Zhang, On routing in VLSI design and communica-
tion networks, Technical Report, AdvOL #2005-14, Advanced Optimization Lab.,
McMaster University, http://www.cas.mcmaster.ca/~oplab/research.htm.

20. A. Vannelli, An adaptation of the interior point method for solving the global
routing problem, IEEE Transactions on Computer-Aided Design, 10(2) (1991),
193-203.

21. J. Villavicencio and M. D. Grigoriadis, Approximate Lagrangian decomposi-
tion with a modified Karmarkar logarithmic potential, Network Optimization,
P. Pardalos, D. W. Hearn and W. W. Hager (Eds.), Lecture Notes in Economics
and Mathematical Systems 450, Springer-Verlag, Berlin, (1997), 471-485.

22. H. Zhang, Approximation algorithms for min-max resource sharing and malleable
tasks scheduling, Ph.D. Thesis, University of Kiel, 2004.

The Capacitated Traveling Salesman Problem
with Pickups and Deliveries on a Tree

Andrew Lim, Fan Wang, and Zhou Xu�

Department of Industrial Engineering and Engineering Management,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{iealim, fanwang, xuzhou}@ust.hk

1 Introduction

The Capacitated Traveling Salesman Problem with Pickups and Deliveries
(CTSP-PD) [1] can be defined on an undirected graph T = (V,E), where V
is a set of n vertices and E is a set of edges. A nonnegative weight d(e) is as-
sociated with each edge e ∈ E to indicate its length. Each vertex is either a
pickup point, a delivery point, or a transient point. At each pickup point is a
load of unit size that can be shipped to any delivery point which requests a load
of unit size. Hence we can use a(v) = 1, 0,−1 to indicate v to be a pickup, a
transient, or a delivery point, and a(v) is referred to as the volume of v. The total
volumes for pickups and for deliveries are usually assumed to be balanced, i.e.,∑

v∈V a(v) = 0, which implies that all loads in pickup points must be shipped
to delivery points [1]. Among V , one particular vertex r ∈ V is designated as
a depot, at which a vehicle of limited capacity of k ≥ 1 starts and ends. The
problem aims to determine a minimum length feasible route that picks up and
delivers all loads without violating the vehicle capacity.

The CTSP-PD on a general graph is NP-hard in the strong sense because it
coincides with the TSP. It was first studied by [6] together with a polynomial
time algorithm which achieved an approximation factor of (5α + 2 − 5α/k),
where α is the approximation factor of the TSP algorithm. Later, [1] pro-
posed the other two approximation algorithms for the CTSP-PD on a gen-
eral graph, and they achieved approximation factors of (4α + 1 − 2α/k) and
α+ �log2 k�/2 + (2�k/2� − 1)/2�log2 k	 respectively. Other related routing prob-
lems include the capacitated vehicle routing problem [4], the swapping problem
[3, 2], the stacker crane problem [9], and etc. See [12] for a detailed survey.

Routing problems on a tree-shaped network have also been studied in a great
deal of literatures [7, 8, 13, 11], because of its wide application in transportation
industry. For example, Labbe et al demonstrated a lot of real applications of the
tree network, such as river networks, some railway networks, pit mine railways,
and mining or logging areas in Northern Canada [14]. Basnet and et al. proposed
heuristics for vehicle routing problem on tree-like networks, especially for those

� Corresponding Author.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1061–1070, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1062 A. Lim, F. Wang, and Z. Xu

rural systems where supply (or delivery) nodes are located on rural roads leading
off from a few highways which form the “trunks” of a tree-like network [5].

We thus focus our interest in the CTSP-PD on a tree. We have proved its
NP-hardness in a strong sense, and proposed a 2-approximation algorithm with
a time complexity of O[n2/min(n, k)] for the CTSP-PD on a tree. Since the TSP
on a tree can be solved optimally in a trivial way, a straightforward approach to
solve the CTSP-PD on a tree is to apply the approximation algorithms devised
for the general graph case in [6, 1]. Since α = 1 in this case, their approximation
factors are (7− 5/k) for [6], (5− 2/k) and 1 + �log2 k�/2 + (2�k/2�− 1)/2�log2 k	

for [1] respectively. Comparing with them, our method has a much smaller ap-
proximation factor.

The approximation algorithm presented in this paper is based on a recurrent
construction process, which is differently from those approaches for the CTSP-
PD in a general graph in [6, 1]. The rest of the paper is organized as follows.
Section 2 introduces basic notation and derives a lower bound of the length of
the shortest route for the CTSP-PD on a tree. Afterwards a 2-approximation
algorithm is presented and analyzed in Section 3. Due to the lack of space, some
statements here are presented without details of proofs. (Refer to [15] for details.)

2 Preliminaries

Without loss of generality, we let the tree T rooted at the depot r. For each
vertex v ∈ V , let child(v) denote its children set, p(v) denote its parent, e(v)
indicate the edge between p(v) and v, T (v) represent the sub-tree rooted by
v, and b(v) represent the number of vertices in T (v). Let A(v) =

∑
i∈T (v) a(v)

indicate the total volume of products in sub-tree T (v).
Let L(H) denote the length of a route H of the CTSP-PD on the T . Let H∗

denote the shortest feasible solution to the CTSP-PD on the T , and therefore,
L(H∗) is the length of the shortest feasible solution and often referred to as the
optimal length. Furthermore, we define the length of a route set by summing up
all the lengths of routes in the set. In other words, let L(A) denote the length
of a route set A and L(A) =

∑
H∈A L(H).

The following theorem reveals that the CTSP-PD on a tree is NP-hard in
the strong sense, and therefore, no efficient algorithm exists unless NP = P .

Theorem 1. Finding a shortest feasible solution to the CTSP-PD on a tree T
is NP-hard in the strong sense.

Proof. It can be proved by a reduction from the 3-Partition problem [10]. For
the lack of space, we omit the details here. ��

2.1 Assumptions About T

To simplify the presentation along the paper, we will always assume that the
tree T is standard according to the following definition.

The Capacitated Traveling Salesman Problem 1063

Definition 1. The tree T is standard if T satisfies the following conditions.

1. Each leaf of T is either pickup point or delivery point.
2. Each non-leaf of T must be transit-point.
3. For each non-leaf v ∈ V , the child(v) satisfies

(a) either every u ∈ child(v) has A(u) ≥ 0;
(b) or every u ∈ child(v) has A(u) < 0;
(c) or v has exactly two children, i.e., child(v) = {u1, u2}, where A(u1) ≥ 0

and A(u2) < 0.

It is easy to see the assumption is safe, since any tree T can be transformed to
a standard tree T̃ so that each feasible route to the CTSP in T̃ corresponds to
a route to the CTSP in T with the same length. Details are omitted for the lack
of space.

2.2 Lower Bound of L(H∗)

Since the vehicle can carry at most k units of products once at a time and the
route forms a close loop starting and ending at the root r, each edge e(v) must
be traversed at least 2n(v) times, where n(v) = max{�|A(v)|/k�, 1}. Hence, the
length of the shortest route is at least LB(r), where

LB(v) = 2d(e(v))n(v), for v ∈ V and v is a leaf;

LB(v) =
∑

i∈T (v)

2d(e(v))n(v), for v ∈ V and v is not a leaf.

Lemma 1. Each edge e(v) is visited at least 2n(v) times, and LB(r) ≤ L(H∗).

3 A 2-Approximation Algorithm

Briefly speaking, our approximation algorithm constructs a series of route sets
for all vertices, recurrently from leaves to the root of the tree. For each v ∈ V ,
the route set is denoted by Hv and contains h(v) routes, i.e., Hv = {Hv,j |1 ≤
j ≤ h(v)}. In the rest of this section, we will explain the details about the
construction of Hv.

3.1 w-Structured Route Set

In order to ensure its total length close to the LB(v), the route set Hv that we
are going to construct holds a w-structure, which will be defined later. To ease
the presentation, let

α(x) =
{

k, if x ≥ k and x mod k = 0
x mod k, if x ≤ k − 1 (1)

We use s−(v, j) and s+(v, j) respectively denote the units of products that are
initially carried from p(v) to v and the units that are finally carried from v to
p(v) by the route Hv,j ∈ Hv for 1 ≤ j ≤ h(v).

1064 A. Lim, F. Wang, and Z. Xu

Definition 2. For v ∈ V and 0 ≤ w ≤ k, a route set Hv = {Hv,j |1 ≤ j ≤ h(v)}
holds a w-structure if it satisfies the following five conditions.

1. Routes in Hv satisfy all the pickup and the delivery requests for vertices in
T (v) and visits each edge e(u) for u in T (v) at most 2[n(u) + 1] times.

2. Each route Hv,j for 1 ≤ j ≤ h(v) starts from p(v) to v through e(v), ends
from v to p(v) through e(v), and never traverses e(v) in between, and there-
fore, routes in Hv traverse e(v) totally at most 2h(v) times.

3. The route Hv,1 starts with w units of products from p(v) to v, i.e., s−v,1 = w.
4. Hv can be divided into two disjoint subsets, i.e., Yv = {Hv,j |1 ≤ j ≤ y(v)}

and Xv = {Hv,j |y(v) + 1 ≤ j ≤ h(v)} where 0 ≤ y(v) ≤ h(v), satisfying:
(a) If y(v) > 1, then h(v) = y(v) implying Xv = ∅; otherwise either h(v) =

y(v) implying Xv = ∅, or h(v) = y(v) + 1 and Xv = {Hv,h(v)} with
s+v,h(v) = s−v,h(v) = 0;

(b) If A(v) > 0, then y(v) = �(A(v) + w)/k�, s−(v, j) = 0 for 2 ≤ j ≤ y(v),
s+(v, j) = k for 1 ≤ j ≤ y(v)− 1, and s+(v, y(v)) = α(A(v) + w).

(c) If A(v) < 0, then y(v) = �−(A(v) +w)/k�+ 1, s−(v, j) = k for 2 ≤ j ≤
y(v), s+(v, j) = 0 for 1 ≤ j ≤ y(v)− 1, and s+(v, y(v)) = α(A(v) + w);

(d) If A(v) = 0, then y(v) = 1 and s+v,1 = w;

Condition 2 implies that Hv totally traverses e(v) at most 2h(v) times. Con-
dition 4 claims that the w-structured route set Hv can be participated into two
disjoint subsets Yv and Xv, and Condition 4(a) says that Xv is either empty set,
or may contain a single route Hv,h(v), which carries nothing into and out of T (v)
if Y (v) contains more than one route. The Xv may be redundant, but such a re-
dundant provides us a flexibility to construct a heuristic solution with a certain
quality guarantee in polynomial time. The Conditions 4(b) and 4(c) restrict the
routes in Yv to carry products out of (or into) the T (v) as many as possible, if
A(v) > 0 (or A(v) < 0 respectively). The Condition 4(d) forces the vehicle to
carry equal units of loads when it moves into and out of the T (v). Based on the
above definition of the w-structured route set, the following proposition can be
easily observed.

Proposition 1. A w-structured route set Hv = Yv ∪Xv for v ∈ V where 0 ≤
w ≤ k, we have 1 ≤ y(v) ≤ h(v) ≤ y(v) + 1, h(v) ≤ n(v) + 1, and thus routes in
Hv visit e(v) at most 2(n(v) + 1) times in total.

Notice that A(r) = 0 because of the balance between pickup and delivery
points. Thus, a 0-structured route set Hr must be able to satisfy all the pickup
and the delivery requests in T and to visit each edge e(u) for u ∈ V at most
2[n(u) + 1] times, and thus has a total length at most two times of the optimal
length.

3.2 Route Construction

To construct a 0-structured route set as a special case for the root r, we are
now going to present a recurrent process to generate a w-structured route
set Hv together with Yv and Xv, for any vertex v ∈ V and 0 ≤ w ≤ k.

The Capacitated Traveling Salesman Problem 1065

Algorithm 1 illustrates the recurrent framework, and thus, the construc-
tion of the 0-structured route set for the root r can be started by calling
Construct(r, 0). According to the assumption that T is standard, five cases,
including Case 0, 1, 2, 3a, and 3b, as shown in Algorithm 1, need to be consid-
ered for any execution of Construct(v, w) where v ∈ V and w. The recurrence
happens since sub-procedures, ConstructCase1(v, w), ConstructCase2(v, w),
ConstructCase3a(v, w), and ConstructCase3b(v, w), are based on route sets
for children of v, and these route sets are obtained by calling ConstructCase()
recurrently.

Algorithm 1 Construct(v, w): to construct a w-structured route set Hv =
Yv ∪Xv for subtree T (v) where v ∈ V
1: if v is a leaf of T then
2: Call ConstructCaseLeaf(v, w) to get Hv together with Yv and Xv;
3: else
4: Consider the following three cases to get Hv together with Yv and Xv ;

– Case 1: when A(u) ≥ 0 for all u ∈ child(v), call ConstructCase1(v, w);
– Case 2: when A(u) < 0 for all u ∈ child(v), call ConstructCase2(v, w);
– Case 3a: when A(u1) ≥ 0 and A(u2) < 0 and A(v) ≥ 0 where child(v) =

{u1, u2}, call ConstructCase3a(v,w);
– Case 3b: when A(u1) ≥ 0 and A(u2) < 0 and A(v) < 0 where child(v) =

{u1, u2}, call ConstructCase3b(v,w);

5: end if
6: Return Hv = Yv ∪Xv;

To fill the details for Algorithm 3.2 and prove the correctness of Algorithm 3.2,
we will show the Claim 1 is true for all vertices v ∈ V through a constructive
proof by induction from leaves to the root.

Claim 1. For a vertex v ∈ V , it can take only O[b2(v)/min(b(v), k)] time to
construct a w-structured route set Hv for each 0 ≤ w ≤ k.

Lemma 2. Case 0: Claim 1 is true for all leaves v ∈ V .

Proof. Consider a leaf v ∈ V . Since T is standard, either A(v) = a(v) = 1
or A(v) = a(v) = −1. For any w with 0 ≤ w ≤ k, a w-structured route set
Hv = Yv ∪Xv can be easily constructed by Algorithm 2. ��

Lemma 3. Case 1: For a non-leaf v ∈ V with A(u) ≥ 0 for all u ∈ child(v), if
Claim 1 is true for all u ∈ child(v), it is still true for v.

Proof. Consider a non-leaf v ∈ V with A(u) ≥ 0 for all u ∈ child(v). Let
child(v) = {u1, u2, ..., ut} denote the set of t children of v. We have that A(v) =∑t

i=1A(ui) and b(v) =
∑t

i=1 b(ui) + 1.

1066 A. Lim, F. Wang, and Z. Xu

Algorithm 2 ConstructCaseLeaf(v, w): to construct a w-structured route set
Hv = Yv ∪Xv for a leaf v
1: Xv ← ∅;
2: if a(v) = 1 then
3: if w < k then
4: Yv = {Hv,1}, where Hv,1 starts from p(v) with w unit products, picks up one

unit from v, and carries w + 1 units to p(v);
5: else
6: Yv = {Hv,1, Hv,2}, where Hv,1 starts from p(v) to v with k units and comes

back to p(v), while Hv,2 starts from p(v) with nothing, but picks up one unit
from v, and carries it to p(v).

7: end if
8: else
9: if w > 0 then

10: Yv = {Hv,1}, where Hv,1 starts from p(v) with w unit products, delivers one
unit to v, and carries w − 1 units to p(v);

11: else
12: Yv = {Hv,1, Hv,2}, where Hv,1 starts from p(v) to v with nothing and comes

back to p(v), while Hv,2 starts from p(v) with k units, delivers one unit to v,
and carries k − 1 units to p(v).

13: end if
14: end if
15: Return Hv = Yv ∪Xv;

By the induction assumption, for each u ∈ child(v) it can take only O[b2(u)/
min(b(u), k)] time to construct a s-structured route set Hu = Yu ∪Xu for each
0 ≤ s ≤ k. We are now going to construct a w-structured route set Hv = Yv∪Xv

for any 0 ≤ w ≤ k in the following way as shown in Algorithm 3.
Since every ui ∈ child(v) has A(ui) ≥ 0, we know A(v) ≥ 0. Our construction

of a w-structured route set for v is based on a series of wi-structured route sets
Hui = Yui ∪ Xui for i = 1, ..., t, where s−(u1, 1) = w1 = w, and s−(ui, 1) =
wi = s+(ui−1, y(ui−1)) for 2 ≤ i ≤ t. In other words, the first route in Hui

carries into T (v) the same units of products as that are carried out of T (v) by
the last route in Hui−1 . By A(v) =

∑t
i=1A(ui) and s−(u1, 1) = w, we know that

s+(ut, y(ut)) = α(A(v)+w). Because of the induction assumption, each route set
Hui can be obtained in O(b2(ui)/min(b(ui), k)) time. Furthermore, each route
Hui,j , for 1 ≤ i ≤ t and 1 ≤ j ≤ y(ui), can extend its start point and end point
from v to p(v). Since s−(ui, 1) = s+(ui−1, y(ui−1)) = wi for 2 ≤ i ≤ t, every
Hui,1 can then be appended to Hui−1,y(ui−1).

After the above appending process, we can decide Hv = Yv ∪ Xv as follows.
For Yv, the first y(u1) routes in it equals routes Hu1,j for 1 ≤ j ≤ y(u1), the
next [y(u2) − 1] routes equals routes Hu2,j for 2 ≤ j ≤ y(u2), ..., and the last
[y(ut)− 1] routes of Hv equals routes Hut,j for 2 ≤ j ≤ y(ut). In total, there are
y(v) = [

∑t
i=1 y(ui)− t+ 1] routes in Yv. For Xv, it can be decided based on Yv

and S, where S = ∪t
i=1Xui , as shown in Algorithm 3.2. It can be seen that the

Hv = Yv ∪Xv constructed satisfies all the constraints of Definition 2 and must

The Capacitated Traveling Salesman Problem 1067

Algorithm 3 ConstructCase1(v, w): to construct a w-structured route set Hv =
Yv ∪Xv for a non-leaf v with A(ui) ≥ 0 for all ui ∈ child(v) = {u1, u2, ..., ut}
1: For i = 1, 2, ..., t, call Construct(v, wi) to construct a wi-structured route set Hui ,

where w1 = w and wi = s+(ui−1, y(ui−1)).
2: For i = t, t− 1, ..., 2, append Hui−1,y(ui−1) to Hui,1 so that vehicle starts from p(v)

to v, follows Hui−1,y(ui−1) until it visits v again, then the vehicle changes to follow
Hui,1 and comes back to p(v);

3: Let Yv ← {Hu1,j : 1 ≤ j ≤ y(u1)} ∪ {Hui,j : 2 ≤ i ≤ t, 2 ≤ j ≤ y(ui)}, and let
S ← ∪t

i=1Xui ;
4: if S = ∅ then
5: Let Xv ← ∅;
6: else
7: Link routes in S one by one into a single route Hv,y(v)+1 and extend its start

and end points to p(v);
8: Let Xv ← {Hv,y(v)+1} if y(v) = 1, and otherwise, let Xv ← ∅ and insert Hv,y(v)+1

before Hv,2.
9: end if

10: Return Hv = Yv ∪Xv;

Algorithm 4 ConstructCase2(v, w): to construct a w-structured route set Hv =
Yv ∪Xv for a non-leaf v with A(ui) < 0 for all ui ∈ child(v) = {u1, u2, ..., ut}
1: For i = 1, 2, ..., t, call Construct(v, wi) to construct a wi-structured route set Hui ,

where w1 = w and wi = s+(ui−1, y(ui−1)).
2: For i = t, t− 1, ..., 2, append Hui−1,y(ui−1) to Hui,1 so that vehicle starts from p(v)

to v, follows Hui−1,y(ui−1) until it visits v again, then the vehicle changes to follow
Hui,1 and comes back to p(v);

3: Let Yv ← {Hu1,j : 1 ≤ j ≤ y(u1)} ∪ {Hui,j : 2 ≤ i ≤ t, 2 ≤ j ≤ y(ui)};
4: Let S ← ∪t

i=1Xui ;
5: if S = ∅ then
6: Let Xv ← ∅;
7: else
8: Link routes in S one by one into a single route Hv,y(v)+1 and extend its start

and end points to p(v);
9: Let Xv ← {Hv,y(v)+1} if y(v) = 1, and otherwise, let Xv ← ∅ and append

Hv,y(v)+1 after Hv,1.
10: end if
11: Return Hv = Yv ∪Xv;

be a w-structured route set. Finally, the time complexity of the above can also
be shown as O[b2(v)/min(b(v), k)], because each route set Hui can be obtained
in O[b2(v)/min(b(ui), k)] for 1 ≤ i ≤ t by the induction assumption. ��

Lemma 4. Case 2: For a non-leaf v ∈ V with A(u) < 0 for all u ∈ child(v), if
Claim 1 is true for all u ∈ child(v), it is still true for v.

Proof. The construction for Case 2 is very similar to Case 1, as shown in Algo-
rithm 4. Details are omitted for the lack of space.

1068 A. Lim, F. Wang, and Z. Xu

Algorithm 5 ConstructCase3a(v, w): to construct a w-structured route set
Hv = Yv ∪ Xv for a non-leaf v with A(u1) ≥ 0 and A(u2) < 0 and A(v) ≥ 0
where child(v) = {u1, u2}
1: For i = 1, 2, call Construct(ui, wi) to construct a wi-structured route set Hui =

Yui ∪Xui , where w1 = w and w2 = s+(u1, y(u1)), and extend each route Hui,j to
start and end at p(v) instead of v, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ h(ui);

2: Let S ← Xu1 ∪Xu2 ;
3: if y(u1) = 1 then
4: Construct Hv,1 that follows Hu1,1 and Hu2,1 consecutively, and let Yv ← {Hv,1};
5: else
6: Let q ← y(u1)−y(u2), Hv,j ← Hu1,j for 1 ≤ j ≤ q, and Yv ← {Hv,j : 1 ≤ j ≤ q};
7: Construct a route A that follows Hu1,y(u1) and Hu2,1;
8: if s+(u2, 1) > 0 then
9: Let Hv,q+1 = A and Yv ← Yv ∪ {Hv,q+1};

10: else
11: Let S ← S ∪ {A};
12: if y(u2) ≥ 2 then
13: Construct a route B that follows Hui,q+1, Hu2,2, Hu1,q+2, ..., Hu2,y(u2);
14: Let S ← S ∪ {B} if s−(u1, q + 1) = s+(u2, y(u2)) = 0, and otherwise, let

Yv,q+1 ← B and Yv ← Yv ∪ {Hv,q+1};
15: end if
16: end if
17: end if
18: Let Yv ← {Hv,1} and S ← S −Hv,1, if Yv = ∅;
19: Decide Xv based on Yv and S in the same way as that in ConstructCase1(v, w);
20: Return Hv = Yv ∪Xv;

Lemma 5. Case 3a: For a non-leaf v ∈ V with A(u1) ≥ 0 and A(u2) < 0 and
A(v) ≥ 0 where child(v) = {u1, u2}, if Claim 1 is true for u1 and u2, it is still
true for v.

Proof. Similarly to Case 1, a wi-structured route set Hui = Yui ∪ Xui can be
constructed in O(b2(ui)/min(b(ui), k)) time for i = 1, 2 sequentially, where
w1 = w = s−(u1, 1) and w2 = s+(u1, y(u1)) = s−(u2, 1). Since A(u1) +A(u2) =
A(v) and s+(u1, y(u1)) = s−(u2, 1) = α(A(u1)+w) ≤ k and A(u2) < 0, we know
s−(u1, 1) = w, and s+(u2, y(u2)) = [A(v) + w] mod k ≤ k − 1. Furthermore,
since A(u1) +A(u2) ≥ 0 and w1 − s+(u2, y(u2)) ≥ −(k − 1), we can derive that
y(u1) ≥ y(u2), which implies that the number of routes in Yu1 is at least as large
as that in Yu2 . Based on this, the route set Hv = Yv ∪Xv can be constructed by
Algorithm 5. It first decides Yv and S, where the route set S contains routes that
starts and ends with zero unit products, so that routes in Yv ∪ S can together
serve all the requests in T (v), and each route in Yv carries as many products from
T (v) as the vehicle can, and therefore satisfy Condition 4(b), 4(c), and 4(d) of
Definition 2. Then it decides Xv, based on Yv and S, through the same approach
as that for Case 1, so that all the conditions of Definition 2 are satisfied, and

The Capacitated Traveling Salesman Problem 1069

Algorithm 6 ConstructCase3b(v, w): to construct a w-structured route set
Hv = Yv ∪ Xv for a non-leaf v with A(u1) ≥ 0 and A(u2) < 0 and A(v) < 0
where child(v) = {u1, u2}
1: For i = 1, 2, call Construct(ui, wi) to construct a wi-structured route set Hui =

Yui ∪Xui , where w1 = w and w2 = s+(u1, y(u1)), and extend each route Hui,j to
start and end at p(v) instead of v, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ h(ui);

2: Let S ← Xu1 ∪Xu2 ;
3: if y(u1) = 1 then
4: Construct a route Hv,1 that follows Hu1,1 and Hu2,1 consecutively, let Hv,j ←

Hu2,j for 2 ≤ j ≤ y(u2), and Yv ← {Hv,j : 1 ≤ j ≤ y(u2)};
5: else
6: Construct a route Hv,1 that follows Hu1,j and Hu2,1+j alternatively for j =

1, 2, ..., y(u1)− 1, and let Yv ← {Hv,1};
7: Construct a route B that follows Hu1,y(u1) and Hu2,1 consecutively, and let

S ← S ∪ {B}.
8: Let Hv,j ← Hu2,j for 2 ≤ j ≤ y(u2), and Yv ← Yv ∪ {Hv,j , 2 ≤ j ≤ y(u2)}
9: end if

10: Decide Xv based on Yv and S in the same way as that in ConstructCase2(v, w);
11: Return Hv = Yv ∪Xv;

Hv = Yv ∪ Xv must be a w-structured route set. the time consuming for the
construction of Hv = Yv ∪Xv can also been seen to be O[b2(v)/min(b(v), k)].

��
Lemma 6. Case 3b: For a non-leaf v ∈ V with A(u1) ≥ 0 and A(u2) < 0 and
A(v) < 0 where child(v) = {u1, u2}, if Claim 1 is true for u1 and u2, it is still
true for v.

Proof. The construction for Case 3b is similar to Case 3, as shown in Algorithm 6.
Details are omitted for the lack of space. ��

3.3 Approximation Factor

Theorem 2. The CTSP-PD on a tree can be approximatively solved in
O[n/min(n, k)] time to achieve an approximation factor of 2.

Proof. By Lemma 2–Lemma 6, we know Claim 1 is true for all vertices v ∈ V .
Hence, we can construct a 0-structured route set Hr = Yr∪Xr in O[n/min(n, k)]
time. The Yr must contain exactly one routeHr,1. IfXr is not empty but contains
an extra route Hr,2, we can construct a feasible H by following Hr,2 and Hr,1
consecutively, otherwise let H = Hr,1. Hence, H becomes a feasible solution and
L(H) = L(Hr). Since routes in Hr traverses each edge e(v) for v ∈ V at most
2[n(v) + 1] time, we have L(H) = L(Hr) ≤

∑
v∈V 2[n(v) + 1]d(e(v)) ≤ LB(r) +

2L(T), where L(T) is the total edge length of the tree T . By LB(r) ≥ 2L(T) and
Lemma 1, we have L(H) = L(Hr) ≤ 2LB(r) ≤ 2L(H∗), which completes the
proof. Remark that the approximation factor of two can be shown to be tight to
our algorithm. (Refer [15] for details) ��

1070 A. Lim, F. Wang, and Z. Xu

4 Conclusion

We presented a 2-approximation algorithm for the capacitated traveling sales-
man problem with pickup and delivery (CTSP-PD) on a tree. Although only a
unit requests is considered for each pickup or delivery point, our methods can
be extended to solve multiple unit case. We also remark here that the algorithm
proposed in this paper can be further adapted to optimally solve some special
cases of the CTSP-PD, including the case that k is infinity or unit. However,
due to the lack of space, we have omitted these extensions here but presented
them in [15]. Our future research will focus on how to design approximation
algorithms for the CTSP-PD on a general graph by employing the results from
cases on a line and a tree.

References

1. S. Anily and J. Bramel. Approximation algorithms for the capacitated traveling
salesman problem with pickups and deliveries. Naval Research Logistics, 56:654–
670, 1999.

2. S. Anily, M. Gendreau, and G. Laporte. The swapping problem on a line. SIAM
Jounral on Computing., 29(1):327–335, 1999.

3. S. Anily and R. Hassin. The swapping problem. Networks, 22:419–433, 1992.
4. T. Asano, N. Katoh, and K. Kawashima. A new approximation algorithm for

the capacitated vehicle routing problems on a tree. Journal of Combinatorial
Optimization, 5(2):213–231, 2000.

5. C. Basnet, L.R. Foulds, and J.M. Wilson. Heuristics for vehicle routing on tree-like
networks. Journal of the Operational Research Society, 50:627–635, 1999.

6. P. Chalasani and R. Motwani. Approximating capacitated routing and delivery
problems. SIAM J. Comput., 28(6):2133–2149, 1999.

7. G. N. Frederickson. Notes on the complexity of a simple transportation problem.
SIAM J. Comput., 22:57–61, 1993.

8. G. N. Frederickson and D. Guan. Preemptive ensemble motion planning on a tree.
SIAM J. Comput., 21:1130–1152, 1992.

9. G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for
some routing problems. SIAM J. Comput., 7:178–193, 1978.

10. M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

11. Shinya Hamaguchi and Naoki Katoh. A capacitated vehicle routing problem on a
tree. Proc. of ISAAC98, Lecture Notes in Computer Science, pages 397–407, 1998.

12. H. Hernandez-Perez and J.J. Salazar-Gonzalez. Heuristics for the one-
commodity pickup-and-delivery traveling salesman problem. Transportation Sci-
ence, 38(2):245–255, 2004.

13. Y. Karuno, H. Nagamochi, and T. Ibaraki. Vehicle scheduling on a tree with release
and handling times. Proc. of ISAAC93, Lecture Notes in Computer Science, pages
486–495, 1993.

14. M. Labbe, G. Laporte, and H. Mercure. Capacitated vehicle routing problems on
trees. Operations Research, 39(2):616–622, 1991.

15. A. Lim, F. Wang, and Z. Xu. A 2-approximation algorithm for capacitated traveling
salesman problem with pickup and delivery on a tree (complete version), Sept. 2005.
Working Paper, Hong Kong University of Science and Technology.

Distance Labeling in Hyperbolic Graphs

Cyril Gavoille� and Olivier Ly

LaBRI – Bordeaux University

Abstract. A graph G is δ-hyperbolic if for any four vertices u, v, x, y of G
the two larger of the three distance sums dG(u, v) + dG(x, y), dG(u, x) +
dG(v, y), dG(u, y) + dG(v, x) differ by at most δ, and the smallest δ � 0 for
which G is δ-hyperbolic is called the hyperbolicity of G.

In this paper, we construct a distance labeling scheme for bounded hyper-
bolicity graphs, that is a vertex labeling such that the distance between any
two vertices of G can be estimated from their labels, without any other source
of information. More precisely, our scheme assigns labels of O(log2 n) bits
for bounded hyperbolicity graphs with n vertices such that distances can be
approximated within an additive error of O(log n). The label length is optimal
for every additive error up to nε. We also show a lower bound of Ω(log log n)
on the approximation factor, namely every s-multiplicative approximate distance
labeling scheme on bounded hyperbolicity graphs with polylogarithmic labels
requires s = Ω(log log n).

Keywords: Distance queries, distance labeling scheme, hyperbolic graphs.

1 Introduction

It is well-known that a metric space (V, d) embeds into a tree metric if and only if
the 4-point condition holds, that is, for any 4 points u, v, x, y of V the two larger of
the sums d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x) are equals [1]. More
generally, if the two larger sums differ by at most δ, then the metric space is said to
be δ-hyperbolic. Introduced by Gromov [21, 20], δ-hyperbolic spaces arise naturally
in the area of geometric group theory. In a certain extend hyperbolicity measures the
deviation from tree-likeness. And thus, it appears in a natural way as a generalization of
the study of trees in metric graph theory [4, 5, 13], classification theory [8], phylogenetic
analysis [29], and Gauber dynamics also known as Gibbs samplers [25].

A graphG = (V,E) is δ-hyperbolic if (V, dG) is a δ-hyperbolic metric space, where
dG is the shortest-path metric of G, associating to each pair of vertices the length of a
shortest path connecting them. The hyperbolicity of G is the smallest δ � 0 for which
G is δ-hyperbolic. The graphs considered in this paper are unweighted, simple, and
connected.

0-hyperbolic graphs are precisely the block graphs [5, 12, 24], i.e., graphs in which
every 2-connected subgraph is a clique, and chordal graphs, i.e., the graphs contain-
ing no induced cycles of length larger than three, are 2-hyperbolic [7]. It is not dif-
ficult to see from the definition that graphs of diameter D are (2 �D/2�)-hyperbolic.

� Supported by the project “PairAPair” of the ACI Masses de Données.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1071–1079, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1072 C. Gavoille and O. Ly

1-hyperbolic graphs have been partially characterized in [26], and recently a full char-
acterization has been given in terms of a convexity condition and forbidden isometric
subgraphs [3].

This paper deals with the problem of the distance computation and distributed abil-
ities of δ-hyperbolic graphs. Commonly, when we make a query concerning a set of
nodes in a graph (adjacency, distance, connectivity, etc.), we need to make a global
access to the structure. In our approach, the compromise is to store the maximum of
information in a label associated with a vertex to have directly what we need with a
local access. Motivation of localized data-structures in distributed computing is survey
and widely discussed in [18].

We are especially interested in the distance labeling problem, introduced by Peleg
in [30]. The problem consists in labeling the vertices of a graph in order to compute
or estimate the distance between any two of its vertices x and y using only the infor-
mation stored in the labels of x and y, without any other source of information. The
main parameters taken into account when designing a solution is the maximum label
length (in bits) assigned by the labeling. More formally, an (s, r)-approximate distance
labeling scheme on a given graph family F is a pair 〈L, f〉, L is called the labeling func-
tion and f the distance decoder, such that, for every G ∈ F and for all x, y ∈ V (G):
L(x,G) ∈ {0, 1}∗, and dG(x, y) � f(L(x,G), L(y,G)) � s · dG(x, y) + r. If
s = 1 and r = 0, then we shortly deal with a distance labeling scheme (or DLS). Also,
an (s, 0)-approximate DLS is called s-multiplicative, and a (1, r)-approximate DLS is
called r-additive.

Related works for distance labeling. The main results on the field are that general
graphs support an (exact) distance labeling scheme with labels of O(n) bits [19],
and that trees [2, 30], bounded tree-width graphs [19], distance-hereditary graphs [16],
bounded clique-width graphs [10], some non-positively curved plane graphs [9], all
support distance labeling schemes with O(log2 n) bit labels. Since 0-hyperbolic graphs
are block graphs, which are distance-hereditary, it follows that this class supports a
O(log2 n) bit label DLS.

TheO(n) bit upper bound is tight for general graphs (simply by counting the number
of n-vertex graphs), and a lower bound ofΩ(log2 n) bit on the label length is known for
trees [19], implying that all the results mentioned above (including 0-hyperbolic graphs)
are tight as well since all of them contains trees. Recently, [17, 6] showed an optimal
bound ofO(log n) bits for interval graphs, permutation graphs, and their generalizations
(circular-arc graphs and cicurlar permutation graphs).

Other results concern approximated distance labeling schemes. For arbitrary graphs,
the best scheme in date is due to Thorup and Zwick [34]. They propose a (2k − 1)-
multiplicative DLS, for each integral parameter k � 1, with labels of O(n1/k log2 n)
bits. Moreover, Ω(n1/k) bit labels are required in the worst-case for every s-
multiplicative DLS with s < 2k+ 1. In fact, this result relies to a 1963 girth conjecture
of Erdös [14] proved for k = 1, 2, 3 and 5. However, for all the other values of k, the
results of [27] implies that the Ω(n1/k) lower bound is true for s < 4k/3 + 2.

In [15], it is proved that trees (and bounded tree-width graphs as well) enjoy a
(1 + 1/ logn)-multiplicative DLS with labels of O(log n · log logn) bits, and this is
tight in terms of label length and approximation. They also design some O(1)-additive

Distance Labeling in Hyperbolic Graphs 1073

DLS with O(log2 n) bit labels for several families of graphs including: the graphs with
bounded longest induced cycle, and, more generally, the graphs of bounded tree-length,
i.e., that admit a Robertson-Seymour tree-decomposition in bags of bounded diame-
ter (see [11]). Interestingly, it is easy to show that every exact DLS for these families
of graphs needs labels of Ω(n) bits in the worst-case (e.g., considering some chordal
graphs, namely the split graphs [15]).

Recently, the graphs with doubling dimension α have been considered, i.e., the
graphs for which, for every r, each ball of radius 2r can be covered by at most 2α

balls of radius r. It generalizes Euclidian metrics and bounded growth graphs, and
includes many realistic networks. After several successive improvements [22, 32, 28],
the best scheme in date, due to Slivkins [31], is a (1 + ε)-multiplicative DLS with
O(ε−O(α) logn · log logn) bit labels. This is optimal for bounded α by combining the
results of [28] and the lower bound of [15] for trees. Finally, in [33], it is shown that
planar graphs enjoy a (1+ ε)-multiplicative DLS with labels of O(ε−1 log3 n) bits (see
also [23]).

Our results. From the above list of results, it is clear that 0-hyperbolic graphs enjoy an
(exact) DLS with O(log2 n) bit labels, and that moreover every DLS for 2-hyperbolic
graphs requires some labels of Ω(n) bits. Again, some chordal graphs, that are all 2-
hyperbolic, require Ω(n) bit labels [15].

Our first contribution is a lower bound on an s-multiplicative DLS for bounded hy-
perbolicity graphs. We construct a family of bounded hyperbolic graphs for which, for
every integer k � 1, every s-multiplicative DLS with s < 2 log k + O(1) requires
some labels of Ω(n/ log k)1/k bits. In particular, for k = Θ(log n/ log logn), it im-
plies that any s-multiplicative DLS using labels of any poly-logarithmic length requires
s = Ω(log logn).

On the positive side, we construct for δ-hyperbolic graphs an δ log n-additive DLS
with labels of O(log2 n) bits. The label length is optimal since every r-additive DLS
for trees, and thus for δ-hyperbolic graphs for every δ � 0, requires Ω(log2(n/r))
bit labels [19]. In the full version, we show that any poly-log label DLS for bounded
hyperbolic graphs requires r = Ω(logn), proving the optimality of the approximation
of our scheme.

Due to the lack of space, proofs appear in the full version.

2 Pyramidal Construction

Our lower bound combines several ingredients. First we show how to construct from
any graph G a graph P , called the pyramid of G, such that: 1) G is a subgraph of P ; 2)
P has bounded hyperbolicity (i.e., bounded by some constant independent of G); and
3) dP (x, y) � 2 log dG(x, y) − O(1) for all x,y in G. In particular the girth of P is at
least the log of the girth of G.

Let G be a graph. Let D denote the diameter of G. Let us consider �logD� + 1
copies of G denoted by G0, G1, . . . , G�log D	. Let us consider a new graph constructed
as follows: we start from the disjoint union of the Gi’s. We add some new edge as
follows: First, for any vertex v of G, let us denote vi the copy of v in Gi. For any
i = 0, . . . , �logD� − 1, let us add an edge between vi and vi+1. Such an edge shall

1074 C. Gavoille and O. Ly

be said to be vertical. Second, by induction, let us add a new edge between any two
vertices of Gi, let say vi

1 and vi
2, if their copies in Gi−1, vi−1

1 and vi−1
2 , are at distance

2. Such an edge but also any orginal edge of some Gi’s shall be said to be transversal.
The graph that we obtain is denoted by P (G), it is called the pyramid graph of G, G0
is called the base of P (G).

Lemma 1. There exists a constantK such that for anyG, the hyperbolicity of P (G) is
at most K .

Geodesics of P (G). Here we consider the shape of geodesics of P (G) in order to prove
that dP (G)(x, y) � 2 log dG(x, y) − O(1) for all x,y in G. The successive steps of this
study are presented here along the following propositions. For any vertex v of P (G), let
us call the height of v the unique i such that v ∈ Gi, it shall be denoted by h(v). For any
two vertices v1 and v2 of the same height h, we denote dGh

(v1, v2) the distance between
v1 and v2 in the subgraph of P (G) generated by the vertices of Gh. We denote by DGh

the maximum of dGh
. If p is a geodesic, i.e., a shortest path, then (p) denotes its length.

Proposition 1. Let v1 and v2 be two vertices of G. Then dGh
(vh

1 , v
h
2) =⌈

dG(v1, v2)/2h
⌉
. In particular DGh

�
⌈
D/2h

⌉
.

Proposition 2. Let p be a geodesic of P (G) which only uses transversal edges. Then
(p) � 5.

Let us consider a path p = v0v1 . . . vt of length t. Let us consider the sequence of
respective heights : h0h1 . . . ht. We say that p is increasing (resp. decreasing) if the
sequence of heights is increasing (resp. decreasing).

Proposition 3. Let p = v0v1 . . . vt be a geodesic of P (G). Let us assume that h(v0) �
h(vt). Then there exists a vertex vi of p such that v0 . . . vi is increasing and vi . . . vt is
decreasing.

We consider a special kind of geodesic that we call straight geodesic. These are those
having the following shape: first, it starts by using a sequence of vertical edges; second,
it carries on by a sequence of transversal edges; and finally it uses a sequence of vertical
edges.

Proposition 4. For any geodesic p, there exists a straight geodesic p′ with same ex-
tremities. Moreover, p is totally included into a 5-neighbourhood of p′ and conversely.

Proposition 5. Let x and y be two vertices of P (G). Let p be such a straight geodesic
between x and y. Let us assume that h(x) � h(y). Let x′ be the copy of x in Gh(y). Let
h be the minimal of the lengths of the vertical parts of p Then log(dGh(y)(x

′, y))− 3 �
h � log(dGh(y)(x

′, y))− 1

The following proposition compares distances of P (G) with those of the Gi’s.

Proposition 6. Let x and y be two vertices of P (G) with h(x) � h(y). Let x′ be the
copy of x in Gh(y). Then h(y) − h(x) + 2 log(dGh(y) (x

′, y)) − 3 � dP (G)(x, y) �
h(y)− h(x) + 2 log(dGh(y) (x

′, y)) + 4.

In particular, for all x, y ∈ G, 2 log(dG(x, y)) − 3 � dP (G)(x, y) �
2 log(dG(x, y)) + 4.

Distance Labeling in Hyperbolic Graphs 1075

Proposition 7. If p and p′ are two geodesics with same extremities, then p is totally
included into a 11-neighbourhood of p′ and conversely.

Sketch of the Proof of Lemma 1. Let us be given with 3 vertices x, y and z of P (G)
(see Fig. 1). We consider 3 geodesics pxy, pyz and pxz connecting respectively x and
y, y and z, and x and z. By the criterion of Rips (cf. [20]), it suffices to show that
there exists a constant K ′, independent of x, y and z, such that pxz is included into the
K ′-neighbourhood of pxy ∪ pyz. First, let us assume that pxy, pyz and pxz are straight.

g

x

z

y

e

c
a

b

f

d

Fig. 1. Rips’s Criterion

We claim that in this case pxz is included into a 5-neighbourhood of pxy ∪ pyz . Let us
consider the notations indicated in Figure 1. Let us look at vertices of pxz case by case:

– Vertices of pxz which are located between x and a belong also to pxy .
– Without loss of generality, let us suppose that pxy is higher than pyz. Vertices be-

tween a and b are at distance at most 3 from pxy. Indeed, if a is higher than b, it
is true seeing that the segment ab is totally included into pxy. If b is higher than a,
one can verify the previous claim by applying Proposition 5.

– By Proposition 2, vertices between b and d are at distance at most 5 from b, and
therefore at most 8 from a.

– Vertices between d and g are within a distance at most 3 from d and therefore at
most 11 from a.

– Vertices between g and f are at most at distance 5 from the segment ec, because of
the length of ef which is at most 5.

– Finally, vertices between f and z belong to pyz.

We conclude that pxz is totally included into the 11-neighbourhood of pxy ∪ pyz .
The general case where pxy, pyz and pxz are not straight can be obtained from the

above discussion by applying Proposition 4: we get that in general, pxz is included into
the 21-neighbourhood of pxy ∪ pyz. ��

3 Distance Labeling Lower Bound

We consider the conjecture of Erdös according to which for any pair of integers k � 1
and n � 1, the maximal number of edges of a graph of girth 2k + 2 with n vertices is

1076 C. Gavoille and O. Ly

Ω(n1+1/k) (see [14]). It is true for k = 1, 2, 3, 5; it is also true if we consider graphs of
girth 4k/3 + 3 (see [27]). In the following, for any k and n we shall consider a graph
Gn,k of girth 4k/3 + 3 with n vertices and with maximal number of edges equal to
Ω(n1+1/k).

We consider subgraphs defined by subsets of edges: given a graph G, a subset E of
edges of G defines a subgraphH whose vertices are the vertices of G and whose edges
are the elements of E.

Proposition 8. Let us fix k � 1 and n � 1, and let us consider a subgraph H of Gn,k.
Let us considerP (H) the pyramid graph ofH , and a pair (x, y) made of two vertices of
the base ofP (H) which are connected by an edge inGn,k. Then either dP (H)(x, y) = 1
or dP (H)(x, y) � 2 log(4k/3 + 2)− 3.

Theorem 1. For n � 1 and k � 1, there exists a family Fn,k of graphs of bounded
hyperbolicity with O(n log k) vertices for which every (s, r)-approximated distance la-
beling scheme such that s + r < 2 log(4/3k + 2) − 3 requires labels of Ω(n1/k)
bits.

In particular, for k = Θ(log n/ log log n), every s-multiplicative DLS on n-vertex
bounded hyperbolic graphs with poly-log label length requires s = Ω(log log n).

Proof. Let us consider the family Fn,k of the pyramid graphs of the connected subgraphs
of Gn,k. By maximality of the number of edges, it is not difficult to see that Gn,k has
diameter O(k). We restrict ourself to connected subgraphs of diameter O(k) by fixing
some shortest path spanning tree in Gn,k. Observe that pyramid graphs that we obtain
have O(n log k) vertices. By Lemma 1, Fn,k is of bounded hyperbolicity. Let us be
given with an (s, r)-approximated distance labeling scheme 〈L, f〉 for Fn,k.

For eachH ∈ Fn,k, let us denote by SH the wordL(1, H)#L(2, H)# . . .#L(n,H)
obtained by concatenation of the labels of all the vertices of its base. We suppose that the
vertex set of Gn,k is {1, 2, . . . , n}. Besides, we use a special symbol # as delimiter.

Let us assume that maxH∈Fn,k,x∈V (H){|L(x,H)|} < c · n1/k for some constant

c > 0. It follows that the number of words for Fn,k is at most 2c·n1+1/k

. Because

|Fn,k| = 2|E(Gn,k)−(n−1)| � 2c′·n1+1/k

for some suitable constant c′ > 0. This implies,
for c < c′ that there exists a pair H1 and H2 of distinct graphs of Fn,k such that L does
not distinguish H1 and H2, i.e., SH1 = SH2 . Let us choose a pair of vertices (x, y) of
Gn,k such that (x, y) is an edge of the base of H1 but not of the base of H2. If such a
pair does not exist, we exchange H1 and H2. If we cannot find such a pair, this means
that H1 = H2 which is a contradiction.
SH1 = SH2 implies L(x,H1) = L(x,H2) and L(y,H1) = L(y,H2); and thus

f(L(x,H1), L(y,H1)) = f(L(x,H2), L(y,H2)).
Besides, by definition of 〈L, f〉, we have dH1(x, y) � f(L(x,H1), L(y,H1) �

s · dH1(x, y) + r and dH2(x, y) � f(L(x,H2), L(y,H2) � s · dH2 (x, y) + r.
All together we get dH2(x, y) � s · dH1(x, y) + r. But dH1(x, y) = 1 by as-

sumption, and dH2(x, y) � 2 log(4k/3 + 2) − 3 by Proposition 8. Finally we get
s+ r � 2 log(4k/3 + 2)− 3.

Distance Labeling in Hyperbolic Graphs 1077

By contraposition, we have thus proved that for any k and any n, s + r <
2 log(4k/3 + 2)− 3 implies that maxH∈Fn,k,x∈V (H){|L(x,H)|} � c · n1/k. �

4 Tree Approximation and Distance Labeling

This section is devoted to the proof of Theorem 2. It is based on the classical result
about approximation of hyperbolic metric spaces by real trees (cf. e.g. [20–Thm. 12,
p. 33]. We set up a combinatorial version of this result based on the same method of
proof.

We use the characterization of hyperbolicity in terms of Gromov product. LetG be a
connected finite graph. Let x, y andw be vertices ofG. One defines the Gromov product
of x and y regarding w to be (x|y)w = 1

2 (|x − w| + |y − w| − |x− y|) where |u − v|
denotes dG(u, v). Let G be a connected undirected finite graph. Then the hyperbolicity
of G is equal to 2 maxx,y,z,w∈G{min{(x|z)w, (z|y)w} − (x|y)w} (see [20]).

Proposition 9. Let X be a finite 0-hyperbolic metric space with integral distances;
let D be the diameter of X . Then there exists a mapping σ : X → T where T is a
tree of at most 2(|X | − 1) · D nodes such that for any pair (x, y) of elements of X ,
dT (x, y) = 2dX(x, y).

Let G be a connected undirected finite graph. Let us fix a vertex w0 of G. In
the following, |x − w0| shall be denoted by |x| for any vertex x of G, it shall
be called the length of x (regarding w0). Following [20], let us define (x|y)′ =
max{min2�j��{(xj−1|xj)w0} where x1, . . . , x� denotes any sequence of vertices.
And from this, let |x− y|′ = |x|+ |y| − 2(x|y)′.
Lemma 2. Let δ be the hyperbolicity of G. Then for any pair of vertices x and y of G,
we have |x− y| − δ log n � |x− y|′ � |x− y|
Then we consider the equivalence relation defined by x ≡ y if and only if |x −
y|′ = 0. And the metric space whose elements are G/ ≡ provided with the distance
d′([x]≡, [y]≡) = |x− y|′. We have the following property:

Lemma 3. (G/ ≡, d′) is a 0-hyperbolic metric space.

Theorem 2. The family of δ-hyperbolic graphs with n vertices have a δ logn-additive
distance labeling scheme with O(log2 n) bit labels.

Proof. Let us be given with G a δ-hyperbolic graph with n vertices. We consider the
mapping chain G

π−→ G/ ≡ σ−→ T where G
π−→ G/ ≡ is defined as above and

G/ ≡ σ−→ T as in Proposition 9 (let us recall that G/ ≡ is 0-hyperbolic).
Since T is a tree, there exists an exact distance labeling scheme 〈LT , fT 〉 using

labels of length 0(log2 |T |) (cf. [19]). By Proposition 9, |T | � 2(n − 1)2 because
|G/ ≡ | � n. So, labels used by 〈LT , fT 〉 are of length O(log2 n). Besides we have
|x− y| − δ logn � 1

2dT (σ ◦ π(x), σ ◦ π(y)) � |x− y|.
Finally, let us define L(x,G) = LT (σ◦π(x)) and f(1, 2) = 1

2fT (1, 2)+δ logn.
Then 〈L, f〉 satisfies the conditions of the Theorem. �

1078 C. Gavoille and O. Ly

References

1. Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On the
approximability of numerical taxonomy (fitting distances by tree metrics). In 7th Symposium
on Discrete Algorithms (SODA), pages 365–372. ACM-SIAM, January 1996.

2. Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances in
trees. In 14th Symposium on Discrete Algorithms (SODA), pages 689–698. ACM-SIAM,
January 2003.

3. Hans-Jürgen Bandelt and Victor D. Chepoi. 1-hyperbolic graphs. SIAM Journal on Discrete
Mathematics, 16(2):323–334, 2003.

4. Hans-Jürgen Bandelt, A. Henkmann, and F. Nicolai. Powers of distance-hereditary graphs.
Discrete Mathematics, 145:37–60, 1995.

5. Hans-Jürgen Bandelt and Henry Martyn Mulder. Distance-hereditary graphs. Journal of
Combinatorial Theory, Series B, 41:182–208, 1986.

6. Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-structure for comparability
graphs. Research Report RR-1343-05, LaBRI, University of Bordeaux 1, 351, cours de la
Libération, 33405 Talence Cedex, France, February 2005.

7. Gunnar Brinkmann, Jack H. Koolen, and Vincent Moulton. On the hyperbolicity of chordal
graphs. Annals of Combinatorics, 5(1):61–65, 2001.

8. Peter Buneman. The recovery of trees from measures of dissimilarity. Mathematics in Ar-
chaeological and Historical Sciences, pages 387–395, 1971.

9. Victor D. Chepoi, Feodor F. Dragan, and Yann Vaxes. Distance and routing labeling schemes
for non-positively curved plane graphs. Journal of Algorithms, 2005. To appear.

10. Bruno Courcelle and Rémi Vanicat. Query efficient implementation of graphs of bounded
clique-width. Discrete Applied Mathematics, 131:129–150, 2003.

11. Yon Dourisboure and Cyril Gavoille. Tree-decomposition of graphs with small diameter
bags. In J. Fila, editor, 2nd European Conference on Combinatorics, Graph Theory and
Applications (EUROCOMB), pages 100–104, September 2003.

12. Andreas W. M. Dress, Vincent Moulton, and Michael A. Steel. Trees, taxonomy, and strongly
compatible multi-state characters. Advances in Applied Mathematics, 19:1–30, 1997.

13. Andreas W. M. Dress, Vincent Moulton, and Werner Terhalle. T-theory: an overview. Euro-
pean Journal of Combinatorics, 17:161–175, 1996.

14. Paul Erdös. Extremal problems in graph theory. In Publ. House Cszechoslovak Acad. Sci.,
Prague, pages 29–36, 1964.

15. Cyril Gavoille, Michal Katz, Nir A. Katz, Christophe Paul, and David Peleg. Approximate
distance labeling schemes. In F. Meyer auf der Heide, editor, 9th Annual European Sym-
posium on Algorithms (ESA), volume 2161 of Lecture Notes in Computer Science, pages
476–488. Springer, August 2001.

16. Cyril Gavoille and Christophe Paul. Distance labeling scheme and split decomposition. Dis-
crete Mathematics, 273(1-3):115–130, 2003.

17. Cyril Gavoille and Christophe Paul. Optimal distance labeling schemes for interval and
circular-arc graphs. In G. Di Battista and U. Zwick, editors, 11th Annual European Sym-
posium on Algorithms (ESA), volume 2832 of Lecture Notes in Computer Science, pages
254–265. Springer, September 2003.

18. Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Journal
of Distributed Computing, 16:111–120, May 2003. PODC 20-Year Special Issue.

19. Cyril Gavoille, David Peleg, Stéphane Pérennès, and Ran Raz. Distance labeling in graphs.
Journal of Algorithms, 53(1):85–112, 2004.

20. Etienne Ghys and Pierre de La Harpe. Sur les Groupes Hyperboliques d’après Mikhael
Gromov. Birkhäuser, 1990.

Distance Labeling in Hyperbolic Graphs 1079

21. Mikhael Gromov. Hyperbolic groups. Essays in Group Theory, Mathematical Sciences
Research Institute Publications, 8:75–263, 1987.

22. Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and
low-distortion embeddings. In 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 534–543. IEEE Computer Society Press, October 2003.

23. Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a pez dispenser (or, routing
issues in mpls). SIAM Journal on Computing, 34(2):453–474, 2005.

24. Edward Howorka. On metric properties of certain clique graphs. Journal of Combinatorial
Theory, Series B, 27:67–74, 1979.

25. Haim Kaplan and Tova Milo. Parent and ancestor queries using a compact index. In 20th

ACM Symposium on Principles of Database Systems (PODS). ACM-SIAM, May 2001.
26. Jack H. Koolen and Vincent Moulton. Hyperbolic bridged graphs. European Journal of

Combinatorics, 23(6):683–699, 2002.
27. Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new series of dense graphs

of high girth. Bulletin of the American Mathematical Society (New Series), 32(1):73–79,
January 1995.

28. Manor Mendel and Sariel Har-Peled. Fast construction of nets in low dimensional met-
rics, and their applications. In 21st Annual ACM Symposium on Computational Geometry
(SoCG), pages 150–158, 2005.

29. Vincent Moulton and Michael A. Steel. Retractions of finite distance functions onto tree
metrics. Discrete Applied Mathematics, 91:215–233, 1999.

30. David Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory, 33:167–176,
2000.

31. Aleksandrs Slivkins. Distance estimation and object location via rings of neighbors. In 24th

Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 41–50.
ACM Press, 2005.

32. Kunal Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In 36th

Annual ACM Symposium on Theory of Computing (STOC), pages 281–290, June 2004.
33. Mikkel Thorup. Compact oracles for reachability and approximate distances in planar di-

graphs. Journal of the ACM, 51(6):993–1024, November 2004.
34. Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):

1–24, January 2005.

Multi-source Trees: Algorithms for Minimizing
Eccentricity Cost Metrics

Paraskevi Fragopoulou1, Stavros D. Nikolopoulos2, and Leonidas Palios2

1 Department of Applied Informatics and Multimedia,
Technological Educational Institute of Crete,

P.O.Box 1939, GR-71004 Heraklion-Crete, Greece
fragopou@epp.teiher.gr

2 Department of Computer Science, University of Ioannina,
GR-45110 Ioannina, Greece
{stavros, palios}@cs.uoi.gr

Abstract. We consider generalizations of the k-source sum of vertex
eccentricity problem (k-SVET) and the k-source sum of source eccen-
tricity problem (k-SSET) [1], which we call SDET and SSET, respec-
tively, and provide efficient algorithms for their solution. The SDET
(SSET, resp.) problem is defined as follows: given a weighted graph G
and sets S of source nodes and D of destination nodes, which are sub-
sets of the vertex set of G, construct a tree-subgraph T of G which con-
nects all sources and destinations and minimizes the SDET cost function

d∈D maxs∈S dT (s, d) (the SSET cost function s∈S maxd∈D dT (s, d),
respectively). We describe an O(nm log n)-time algorithm for the SDET
problem and thus, by symmetry, to the SSET problem, where n and m
are the numbers of vertices and edges in G. The algorithm introduces
efficient ways to identify candidates for the sought tree and to narrow
down their number to O(m). Our algorithm readily implies O(nm log n)-
time algorithms for the k-SVET and k-SSET problems as well.

Keywords: Multi-source trees, eccentricity, weighted graphs, networks,
communication, algorithms, complexity.

1 Introduction

The work in this paper is motivated by problems in collective communication on
networks modeled by graphs. In the general case, a group of network nodes, de-
fined as the sources, wish to consistently transmit information to another group
of network nodes, the destinations. This type of collective communication is
served by the establishment of a tree T connecting the sources to the destinations
which minimizes certain criteria in order to guarantee efficient communication.
The criteria to optimize are diverse and various cases have been considered in
the literature [1, 3, 6, 7, 9]. The main reason is that different applications pose
different cost requirements; note also that some of these cost requirements lead
to intractable problems in general graphs. The problem of collective communi-
cation from a single source node is a well studied problem [4, 5, 8, 10]. Multiple
sources have also been considered [3, 6], although to a lesser degree.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1080–1089, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1081

In its general form, the construction of optimum communication spanning
trees was initiated in [4] where the problem was defined on the complete graph
with a length and a requirement on its edges; the cost measure that had to be
minimized was the sum of vertex distances weighted by the requirements between
all vertices of the graph (network). By setting the requirement equal to 0 and
parameterizing the number of source nodes, we obtain the k-SPST problem or
sum of distances from every source to every destination, which was studied in
[3] and was shown to be NP-complete. Some exact solutions were provided for
the 2-source SPST problem on restricted classes of graphs, such as unicycles and
cactuses [3]. Furthermore, approximation algorithms for both the 2-source SPST
problem on general graphs [3] and the all source SPST problem [10] are available.
In [9], heuristic algorithms were given for the minimum partial spanning trees
taking into consideration the delay between a single source node and a group of
destination nodes, while trying to bound the maximum difference in these delays.
Another problem, the k-MEST problem, is defined in terms of the maximum
distance from a source to a destination, known as the maximum eccentricity.
This cost function was studied in [3] for some special types of graphs; in [6], the
problem in its general form (arbitrary sets of source and destination nodes) was
shown to be tractable and an efficient polynomial algorithm which for a graph on
n vertices runs in O(n3) time was given. The same was independently established
in [7] considering all graph vertices as destinations via an O(n3 +nm logn)-time
algorithm, where m is the number of edges of the graph.

The k-SPST problem takes into consideration all source-destination distances
but defines an intractable problem, whereas the k-MEST problem takes into con-
sideration only the maximum source-destination distance and thus does not give
any indication for the distances for the rest of the source-destination pairs. Two
cost functions that fill the gap between these two extreme cases were introduced
in [1]: the k-SVET cost function or sum of vertex eccentricities spanning tree is
defined as the sum of distances from each destination to its most distant graph
vertex in the constructed spanning tree, and the k-SSET cost function or sum of
source eccentricities spanning tree is defined as the sum of distances from each
source to its most distant vertex in the constructed tree.

In this paper, we consider the following generalizations of the k-SVET and
the k-SSET problems: for a set of source nodes and a set of destination nodes,
which are arbitrary subsets of the vertex set of a graph, we are interested in
minimizing the sum of distances from each destination (source, respectively)
to its most distant source (destination, respectively) node in the constructed
tree. Under this generalization, the two problems, the generalized k-SVET and
k-SSET, become symmetric (simply exchange S and D) and thus the results
derived for one of them apply to the other in a straightforward manner. We call
the generalized k-SVET problem SDET and the generalized k-SSET problem
SSET. We derive an O(nm logn)-time algorithm for the SDET problem and
thus, by symmetry, to the SSET problem, where n and m are the numbers
of vertices and edges of the given graph (network). The algorithm introduces
efficient ways to identify candidates for the sought tree and to narrow down their

1082 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

Fig. 1. The midpoints of the vertices x, y, z on an edge uv of length 12

number to O(m). Our algorithm readily implies O(nm log n)-time algorithms for
the k-SVET and k-SSET problems as well.

2 Theoretical Framework

Let G be a simple weighted graph which models a network and has vertex
set V (G), edge set E(G), and non-negative symmetric weights on the edges,
and let S,D ⊆ V (G) be the set of source nodes and the set of destination nodes,
respectively; the sets S and D do not need to be disjoint. By d(u, v) we de-
note the length (weight) of the shortest path from vertex u to vertex v in the
graph G, and by dT (u, v) the length (weight) of the path from node u to node v
in a spanning tree T of G.

Let uv be an edge of G. A point on uv is either a vertex-endpoint or a location
on uv. For any two points α, β on uv, we denote by (α, β) the length from α
to β along uv. Thus, the length (weight) of the edge uv is denoted by (u, v).
(Note that d(u, v) ≤ (u, v), although (u, v), d(u, v) are not necessarily equal.)
With respect to the edge uv, we partition the vertex set V (G) as follows:
Vu = {u} ∪ {w | the shortest paths from v to w all go along the edge vu }
Vv = {v} ∪ {w | the shortest paths from u to w all go along the edge uv }
Vuv = V (G) − (Vu ∪ Vv).

(For example, in Figure 1, Vu = {u}, Vv = {v, w}, and Vuv = {x, y, z}.) For each
vertex x ∈ Vuv, we define the midpoint µx of x with respect to uv as the point
on uv such that (v, µx) = 1/2 ·

(
d(u, x) − d(v, x) + (u, v)

)
; note that for each

such vertex x, any shortest path from µx to x through u and any shortest path
from µx to x through v are of equal length (see Figure 1).

Let T be a spanning tree of the graph G and let u, v be any two distinct
vertices of G. The removal of the path ρ connecting u, v in T produces two
subtrees of T , containing u and v, respectively. Then, we say that a vertex x
that does not belong to the path ρ is connected to u (v, resp.) in T if x and u
(v, resp.) belong to the same subtree. Then, the definitions of Vu, Vv, Vuv, and
of the midpoint of a vertex imply the following observation:

Observation 1. Let p be a point on an edge uv and Tp a shortest paths tree
rooted at p. Then, for any vertex x ∈ V (G), we have:

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1083

(i) If x ∈ Vu then vertex x is connected to u in Tp; if x ∈ Vv then vertex x is
connected to v in Tp.

(ii) If x ∈ Vuv then: if the midpoint µx of x with respect to uv is located in the
interval [u, p) then vertex x is connected to v in Tp; if µx is located in the
interval (p, v] then x is connected to u in Tp; if µx coincides with p, then x
may be connected either to u or to v in Tp.

Observation 1 implies the following corollary.

Corollary 1. If a vertex x is connected to u in a shortest paths tree Tp rooted
at a point p of an edge uv, then x is connected to u in any shortest paths tree
rooted at any point in the interval [u, p]; if x is connected to v in Tp, then x is
connected to v in any shortest paths tree rooted at any point in the interval [p, v].

Given a spanning tree T of the graph G and a vertex v, a critical source for
vertex v in T is an element of the set S of source nodes at maximum distance
from v in T . For the tree T , two sources at maximum intrasource distance in T
(i.e., their distance in T is no less than the distance of any other pair of sources)
form a pair of critical sources. It is important to note that a tree T may have
more than one pair of critical sources; if this is the case, then we can show the
following:

Lemma 1. Let T be a spanning tree of a graph, a set S of source nodes, and
suppose that T has more than one pair of critical sources. Then:

(i) The midpoints of all the paths in T connecting pairs of critical sources coin-
cide.

(ii) Let a, b and c, d be two pairs of critical sources. Then, a, c and b, d or a, d
and b, c are also pairs of critical sources.

The following lemma, established in [1], gives properties of trees which are
important both for the k-SVET and the SDET problems.

Lemma 2. [1] Let s1 and s2 be two sources with maximum intrasource distance
in a tree T . For any vertex d ∈ V (T) and any source si ∈ S − {s1, s2}, either
dT (d, si) ≤ dT (d, s1) or dT (d, si) ≤ dT (d, s2).

In other words, for each vertex v in a tree T with a pair s1, s2 of critical sources, s1
or s2 is a critical source for v in T . Based on this and other results, Connamacher
and Proskurowski [1] showed the following theorem (the same technique had been
used to show that the maximum eccentricity problem is polynomial [6]):

Theorem 1. [1] Given a weighted graph G, there exists a point χ such that any
shortest paths tree rooted at χ is an optimal tree for the k-SVET problem.

Theorem 1 shows that the tree minimizing the k-SVET cost function is a shortest
paths tree rooted at a vertex or at a point on an edge of G. In a similar fashion,
we can show the following:

Theorem 2. Given a weighted graph G, a set S of source nodes, and a set D
of destination nodes, there exists an optimal tree for the SDET problem which
is a shortest paths tree rooted at a point on an edge of the graph G.

1084 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

3 The Algorithm

Our algorithm for the SDET problem relies on Theorem 2. It receives as input a
weighted undirected graph G with non-negative symmetric weights and outputs
a shortest paths tree that minimizes the SDET cost function. In high level, it
works as follows:

Algorithm SDET

1. for each vertex v of the graph G do
1.1 compute the distances d(v, x) in G from v to every other vertex x ∈

V (G);
1.2 associate each pair v, x with either a neighbor u of v if all the shortest

paths from v to x go along the edge uv, or with v otherwise;
2. mincost← +∞;

for each edge uv of G do
2.1 determine the description of a shortest paths tree T of G rooted at a

point on the edge uv which minimizes the SDET cost function over all
shortest paths trees rooted at points of uv and let cost(T) be the value
of the SDET cost function for T ;

2.2 if cost(T) < mincost
then save the description of T as it gives the currently optimal tree Topt;

mincost← cost(T);
3. Construct the tree Topt from its description and clip it by repeatedly remo-

ving leaves that do not belong to S ∪D.

Clearly, the correctness of Step 2.1 implies the correctness of the entire algorithm.
For the execution of Step 2.1 on an edge uv, we first compute a list Luv of shortest
paths trees rooted at points on uv, which includes a tree exhibiting the minimum
of the SDET cost function over all shortest paths trees rooted on uv, and then,
among the trees in Luv, we select one with the minimum value of the SDET
cost; these are discussed in the following subsections.

3.1 Finding Candidates (for the Optimal Tree) Rooted on an Edge

Let us consider an edge uv of the input graph G. In order to guarantee the
correctness of our algorithm, we should consider all structurally different short-
est paths trees of G rooted at points on uv. Observation 1 narrows down the
possibilities and determines which vertices are connected to u and which to v
in a tree: it implies that if we walk along the edge uv from u to v and compute
the shortest paths tree rooted at the current point of uv, the tree is unique and
remains the same for as long as we do not cross any midpoint; when we cross the
midpoint µx of a vertex x, then x, which has been connected to u in the shortest
paths trees considered so far, gets now connected to v. Since the vertices in Vuv

are those contributing midpoints on the edge uv, we consider the partition of
the set S of source nodes into the following three sets:

Su = S ∩ Vu Sv = S ∩ Vv Suv = S ∩ Vuv

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1085

(for example, if S = {x, y, z, w} in Figure 1, then Su = ∅, Sv = {w}, and
Suv = {x, y, z}).

The following lemma, which we establish, helps us avoid additional unneces-
sary work as well.

Lemma 3. Let G be a graph, and S,D ⊆ V (G) be sets of source and destination
nodes, respectively. For the computation of an optimal solution for the SDET
problem for G,S,D, it suffices that we consider only shortest paths trees of G
rooted at points r satisfying both following conditions:

(i) the root r of the tree lies on the path connecting a pair of critical sources in
the tree;

(ii) the root r and the (common) midpoint of all the paths connecting pairs of
critical sources in the tree are located on (the closure of) an edge of G.

Lemma 3 has the following very important implications:

Corollary 2. Let G,S,D be as described in Lemma 3. For the computation of
an optimal solution for the SDET problem for G,S,D, it suffices that we consider
only shortest paths trees T of G such that if σu (σv, resp.) is a source connected
to u (v, resp.) in T at maximum distance from u (v, resp.), the midpoint of the
path connecting σu and σv in T belongs to the edge uv. Then, in any such tree:

(i) the sources σu, σv form a pair of critical sources in T ;
(ii) the source σu (σv, resp.) is critical for every vertex x connected to v (u,

resp.) in T .

Finally, if the midpoints of k source nodes with respect to the edge uv coincide
at a point p, then there are 2k structurally different shortest paths trees rooted
at p (and in fact, even more if midpoints of other vertices also coincide with p).
Yet, in such a case, we can show the following:

Lemma 4. Let G be a graph, S,D ⊆ V (G) be sets of source and destination
nodes, respectively, and A ⊆ S be a set of source nodes whose midpoints all fall at
a point r on an edge uv of G. Then, for the computation of an optimal solution
for the SDET problem for G,S,D, among all the shortest paths trees of G rooted
at r, it suffices that we consider only those in which the sources in A are either
all connected to u or all connected to v.

The details of the processing of an edge uv of the input graph G are given
in the Algorithm Trees Rooted on Edge presented below. For an edge uv of
G, the algorithm produces a list Luv of shortest paths trees rooted at points on
uv, which is guaranteed to include a tree minimizing the SDET cost function
over all such trees with their roots on uv; the trees are listed in Luv in the order
their roots are met along uv from u to v, and each such tree T is represented by
its root r, the distance δu(r) of u to the critical sources in T connected to u, the
distance δv(r) of v to the critical sources in T connected to v, and a number kS(r)
such that the sources stored in a subarray Σ[1..kS(r)] of an array Σ of size |S|

1086 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

are those connected to v in T whereas the remaining ones are those connected to
u. We also note that in the case that the midpoints of several sources coincide,
Algorithm Trees Rooted on Edge considers more possibilities than the two
specified in Lemma 4; nevertheless, it certainly considers those two.

Algorithm Trees Rooted on Edge

1. Compute the sets Su, Sv, and Suv, and the midpoints of the source nodes in
Suv as well as their distances from vertex u on the edge uv;

2. Construct a sorted list (s1, s2, . . . , st) of the source nodes in Suv in order of
non-decreasing distance of their midpoints (on the edge uv) from u;
Construct a sorted array Σ of the source nodes which stores the elements
of Sv, followed by the sources s1, s2, . . . , st in that order, followed by the
elements in Su;
s0 ← source node in Sv (if any) at maximum distance from v;
st+1 ← source node in Su (if any) at maximum distance from u;

3. Construct two arrays: Au = [d(u, s1), d(u, s2), . . . , d(u, st), d(u, st+1)] and
Av = [d(v, s0), d(v, s1), d(v, s2), . . . , d(v, st)];

4. Compute the suffix-maxima [a1, a2, . . . , at+1] on the array Au and the prefix-
maxima [b0, b1, . . . , bt] on the array Av, i.e., ai = max{d(u, si), d(u, si+1), . . .,
d(u, st+1)} and bi = max{d(v, s0), d(v, s1), . . . , d(v, si)};

5. Luv ← an empty list;
for each i = 0, 1, 2, . . . , t do

{consider the shortest paths tree rooted at u if i = 0 or at µsi otherwise,
in which the sources in Sv ∪ {s1, s2, . . . , si} are connected to v and
the sources in {si+1, si+2, . . . , st+1} ∪ Su are connected to u}
if (i = 0 and Sv = ∅) or (i = t and Su = ∅)
then do nothing; {b0 or at+1 are not well defined}
else if | ai+1 − bi | ≤ (u, v)

then {the midpoint of the paths connecting pairs of critical
sources belongs to uv}

if i = 0 then r← u;
else r← midpoint µsi of si on the edge uv;

δu(r)← ai+1;
δv(r)← bi;
kS(r)← |Sv|+ i;
insert at the end of Luv a record for a shortest paths tree
represented by its root r, δu(r), δv(r), and kS(r);

6. Return the list Luv of shortest paths trees and the array Σ;

The correctness of the algorithm follows from Observation 1, Theorem 2, Corol-
lary 2, and Lemma 4. It is not difficult to see that the algorithm runs in
O(|S| log |S|) time. Thus, we have:

Lemma 5. Given a weighted graph G, a set of source nodes S ⊆ V (G), and an
edge uv of G, Algorithm Trees Rooted on Edge computes in O(|S| log |S|)
time a collection of shortest paths trees rooted at points on uv among which there
is one that minimizes the SDET cost function over all shortest paths trees rooted
on uv.

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1087

3.2 Selecting a Shortest Paths Tree of Minimum Cost Among
Those Rooted at Points of an Edge

Let uv be an edge of the given graph G. In light of Lemma 5, finding a shortest
paths tree of minimum SDET cost among those rooted at points on uv reduces
to finding a tree of minimum SDET cost among those computed by Algorithm
Trees Rooted on Edge (see Section 3.1). We process these trees in the order
their roots are met on the edge uv from u to v; similarly, we process the desti-
nation nodes in the order their midpoints are met on the edge uv from u to v.
If we consider the partition of the set D of destination nodes into

Du = D ∩ Vu, Dv = D ∩ Vv, Duv = D ∩ Vuv ,

then, for any shortest paths tree T rooted at a point r of uv and any destina-
tion node d, Observation 1 specifies whether d is connected to u or to v in T .
Additionally, the critical sources connected to u (v, resp.) are critical for each
destination node connected to v (u, resp.); see Corollary 2. Finally, Lemma 6
(similar to Lemma 4) addresses the case of destination nodes whose midpoints
coincide with the root of a shortest paths tree.

Lemma 6. Let G be a graph, D ⊆ V (G) the set of destination nodes, B ⊆ D be
a set of destination nodes whose midpoints all fall at a point r on an edge uv of
G, and let σu, σv be sources connected to u and v, repsectively, forming a critical
pair in a shortest paths tree rooted at r. Then, for the computation of an optimal
solution for the SDET problem for G,S,D, among all the shortest paths trees of
G rooted at r, it suffices that we consider only the one in which the destinations
in B are either all connected to v if d(u, σu) + (u, r) < (r, v) + d(v, σv), or all
connected to u otherwise.

The details of the computation are given below:

Algorithm Edge Min Cost

1. Compute the sets Du, Dv, and Duv, and the midpoints of the destination
nodes in Duv as well as their distances from vertex u on the edge uv;

2. Construct a sorted array∆ of the destination nodes which stores the elements
of Dv, followed by the elements of Duv in order of non-decreasing distance
of their midpoints (on the edge uv) from u, followed by the elements in Du;

3. Execute Algorithm Trees Rooted on Edge on the edge uv: in addition to
an ordered arrayΣ of the sources, the algorithm returns a list Luv of shortest
paths trees rooted at points on uv in the order their roots r1, r2, . . . , rt′
appear along uv from u to v; the tree rooted at ri is also associated with the
distances δu(ri) and δv(ri), and the number kS(ri) (see Section 3.1);

4. cu ←
∑

x∈D−Dv
d(u, x) and cv ←

∑
x∈Dv

d(v, x);
j ← |Dv|+ 1 and mincost← +∞;
for each candidate root location ri ∈ Luv, 1 ≤ i ≤ t′, do
4.1 while j ≤ |D| − |Du| and µ∆[j] is to the left of ri on the edge uv do

subtract the value d(u,∆[j]) from cu;
add the value d(v,∆[j]) to cv;
j ← j + 1;

1088 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

4.2 if δu(ri) + (u, ri) < (ri, v) + δv(ri) {apply Lemma 6}
then while j ≤ |D| − |Du| and µ∆[j] coincides with ri do

subtract the value d(u,∆[j]) from cu;
add the value d(v,∆[j]) to cv;
j ← j + 1;

kD(ri)← j − 1; {number of destination nodes connected to v}
4.3 cost← cv + kD(ri) ·

(
(u, v) + δu(ri)

)
+

cu +
(
|D| − kD(ri)

)
·
(
(u, v) + δv(ri)

)
;

if cost < mincost
then r̂uv ← ri;

mincost← cost;
5. return a description of the computed shortest paths tree consisting of its

root r̂uv , its costmincost, the ordered pair (u, v), and the source nodes stored
in Σ[1..kS(r̂uv)] and the destination nodes stored in ∆[1..kD(r̂uv)] which are
to be connected to v whereas the remaining source and destination nodes
are to be connected to u;

The correctness of the algorithm follows from the discussion preceding the de-
scription of the algorithm. Regarding the complexity of the algorithm, we have:
Step 1 requires O(|D|) time, Step 2 O(|D| log |D|) time, Step 3 O(|S| log |S|) time
(Lemma 5), Step 4 O(|S|+ |D|) time (for each di ∈ D, the distances d(u, di) and
d(v, di) are available in constant time thanks to Step 1 of Algorithm SDET and
we spend O(1) time for each candidate root ri and each destination node), and
Step 5 O(|S|+|D|) time. In total, the algorithm runs in O(|S| log |S|+|D| log |D|)
time. Thus, we have the following result.

Lemma 7. Given a weighted graph G, a set of source nodes S ⊆ V (G), a
set of destination nodes D ⊆ V (G), and an edge uv of G, then Algorithm
Edge Min Cost runs in O(|S| log |S| + |D| log |D|) time and produces the de-
scription of a shortest paths tree of G rooted at a point of uv which minimizes
the SDET cost function over all shortest paths trees rooted at points on uv.

3.3 Time Complexity of Algorithm SDET

We assume that the input graph G has n vertices and m edges and is given in
adjacency list representation.

Step 1: The distances d(v, x) from v to all other vertices x of the input graph G
can be computed using the well known Dijkstra’s algorithm in O((n+m) logn)
time [2]. Since |S|+ |D| = O(n), we have that Step 1.1 is executed in O(n(n +
m) logn) time. Finding whether the shortest paths from vertex v to any source
or destination node x all go along the same edge incident on v or not can be
easily carried out by executing a slightly modified version of Dijkstra’s algorithm
for v which maintains this information; the modified version runs in O(n(n +
m) logn) time for all pairs of vertices of G as well. In total, Step 1 requires
O(n(n+m) logn) time.
Step 2: Since Algorithm Edge Min Cost runs in O(|S| log |S| + |D| log |D|)
time for each edge of G (Lemma 7), the step is executed in O(nm log n) time.

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1089

Step 3: The shortest paths tree Topt can be constructed from its description in
O((n + m) log n) time by using Dijkstra’s algorithm to determine the desired
shortest paths, while the clipping of unnecessary leaves takes O(n) time.

Therefore, we obtain the following result.

Theorem 3. The SDET problem on a weighted graph G on n vertices and m
edges is solved in O(nm log n) time.

4 Concluding Remarks

We described an algorithm for the SDET problem, which runs in O(nm log n)
time and, to the best of our knowledge, is the first one for the problem in
question. The algorithm also provides O(nm log n)-time algorithms for the k-
SVET and k-SSET problems for which it has only been proven that they are
polynomial. The obvious open question is whether a faster algorithm can be
obtained for the SDET problem; a potential improvement would arise if the set
of edges contributing candidate roots for the sought shortest paths tree could be
narrowed to only o(m) edges.

References

1. H.S. Connamacher and A. Proskurowski, “The complexity of minimizing certain
cost metrics for k-source spanning trees”, Discrete Applied Mathematics 131 (2003)
113–127.

2. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms
(2nd edition), MIT Press, Inc., 2001.

3. A.M. Farley, P. Fragopoulou, D.W. Krumme, A. Proskurowski, and D. Richards,
“Multi-source spanning tree problems”, Journal of Interconnection Networks 1
(2000) 61–71.

4. T.C. Hu, “Optimum communication spanning trees”, SIAM Journal on Computing
3 (1974) 188–195.

5. D.S. Johnson, J.K. Lenstra, and A.H.G. Rinnoy Kan, “The complexity of the
network design problem”, Networks 8 (1978) 279–285.

6. D.W. Krumme and P. Fragopoulou, “Minimum eccentricity multicast trees”, Dis-
crete Mathematics and Theoretical Computer Science 4 (2001) 157–172.

7. B. McMahan and A. Proskurowski, “Multi-source spanning trees: algorithms for
minimizing source eccentricities”, Discrete Applied Mathematics 137 (2004) 213–
222.

8. R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrantz, and S.S. Ravi, “Spanning
trees - short or small”, SIAM Journal of Discrete Mathematics 9 (1996) 178–200.

9. G.N. Rouskas and I. Baldine, “Multicast routing with end-to-end delay and delay
variation constraints”, IEEE Journal on Selected Areas in Communications 15
(1997) 346–356.

10. B.Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C.Y. Tang, “A polynomial
time approximation scheme for minimum routing cost spanning trees”, Proc. 9th
Annual ACM-SIAM Symposium on Discrete Algorithms – SODA’98 (1998) 21–32.

Edge-Pancyclicity of Twisted Cubes

Jianxi Fan1, Xiaola Lin2, Xiaohua Jia1, and Rynson W.H. Lau1

1 Department of Computer Science,
City University of Hong Kong, Kowloon,

Hong Kong, China
{fanort, csjia, rynson}@cityu.edu.hk

2 College of Information Science and Technology,
Sun Yat-sen University,

Guangzhou, China
issxlin@zsu.edu.cn

Abstract. Twisted cubes are attractive alternatives to hypercubes. In
this paper, we study a stronger pancyclicity of twisted cubes. We prove
that the n-dimensional twisted cube is edge-pancyclic for n ≥ 3. That is,
for any (x, y) ∈ E(TQn)(n ≥ 3) and any integer l with 4 ≤ l ≤ 2n, a cycle
C of length l can be embedded with dilation 1 into TQn such that (x, y)
is in C. It is clear that an edge-pancyclic graph is also a node-pancyclic
graph. Therefore, TQn is also a node-pancyclic graph for n ≥ 3.

1 Introduction

Interconnection networks take a key role in parallel computing systems. An in-
terconnection network can be represented by a graph G = (V,E), where V
represents the node set and E represents the edge set. In this paper, we use
graphs and interconnection networks interchangeably.

Graph embedding is to embed a graph into another graph. This operation is
required in interconnection networks. Graph embedding can be formally defined
as: Given two graphs G1 = (V1, E1) and G2 = (V2, E2), an embedding from G1
to G2 is an injective mapping ψ : V1 →V2. An important performance metric of
embedding is dilation. The dilation of embedding ψ is defined as

dil(G1, G2, ψ) = max{dist(G2, ψ(u), ψ(v))|(u, v) ∈ E1},

where dist(G2, ψ(u), ψ(v)) denotes the distance between the two nodes ψ(u)
and ψ(v) in G2. The smaller the dilation of an embedding is, the shorter the
communication delay that the graph G2 simulates the graph G1. We call ψ the
optimal embedding from G1 to G2, if ψ has the smallest dilation in all the
embeddings from G1 to G2. Clearly, the dilation of the optimal embedding is at
least 1. In fact, under this circumstance, G1 is a subgraph of G2. Finding the
optimal embedding of graphs is NP-hard.

Many graph embeddings take cycles, trees, meshes, paths, etc. as guest graphs
[5], [9], [11], [13], [15], [18], [19], because these interconnection networks are
widely used in parallel computing systems.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1090–1099, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Edge-Pancyclicity of Twisted Cubes 1091

Twisted cubes [1], [12] are attractive alternatives to hypercubes. It possesses
some desirable features for interconnection networks [12]. The diameters, wide
diameters, and faulty diameters in twisted cubes are about half of those in com-
parable hypercubes [7]. A complete binary tree can be embedded into a twisted
cube [2]. Recently, it was also proved that twisted cubes have the same diagnos-
ability as hypercubes under the t/k-diagnosis strategy based on the well-known
PMC diagnostic model [8]. In particular, it is shown, respectively, that twisted
cubes are pancyclic graphs [7] and that the n-dimensional twisted cube is (n−2)-
Hamiltonian (n ≥ 2) and (n− 3)-Hamiltonian connected (n ≥ 3) [14].

In this paper, we will study a stronger result on the pancyclicity of twisted
cubes. We will prove that the n-dimensional twisted cube is an edge-pancyclic
graph when n ≥ 3. Obviously, an edge-pancyclic graph is also a node-pancyclic
graph. The issues on node-pancyclicity and edge-pancyclicity have been dis-
cussed in [3], [4], [6], [10], [16], [17].

2 Preliminaries

In this section, we give some definitions and notations used in the paper.
Let G = (V,E) be a graph. A path P from node u to node v in G is denoted

by P : u = u(0), u(1), . . . , u(k) = v. The number k of edges in path P is called
the length of path P . Nodes u and v are called the two end nodes of path P . If
u = v, then P is called a cycle.

If (x, y) is an edge in a cycle C, then the path between x and y in C is denoted
by C − (x, y), which is a path after deleting the edge (x, y) in C.
G is called a pancyclic graph, if G contains any cycle of length l with 3 ≤

l ≤ |V |, i. e., any cycle of length l with 4 ≤ l ≤ |V |, can be embedded into
G with dilation 1. However, there is no cycle of length 3 in twisted cubes. For
convenience of discussion in this paper, we call G a pancyclic graph, if G contains
any cycle of length l with 4 ≤ l ≤ |V |. Similarly, we define node-pancyclic graphs
and edge-pancyclic graphs as follows:
G is called a node-pancyclic graph if, for every node u and any integer l with

4 ≤ l ≤ |V |, there exists a cycle C of length l in G such that u is in C. G is
called an edge-pancyclic graph if, for every edge (u, v) and any integer l with
4 ≤ l ≤ |V |, there exists a cycle C′ of length l in G such that (u, v) is in C′.
Obviously, if G is an edge-pancyclic graph, then it is also a node-pancyclic graph.

Let G1 and G2 be two subgraphs of G. We use G1
⋃
G2 to denote the sub-

graph induced by V (G1)
⋃
V (G2) of G. The cartesian product of G1 and G2 is

defined as the graph G1 ×G2, where V (G1 ×G2)= V (G1)×V (G2), and for any
x, y ∈V (G1 × G2), x = (u, u′), y = (v, v′), (x, y)∈ E(G1 × G2) if and only if
u = v and (u′, v′)∈ E(G2), or u′ = v′ and (u, v)∈ E(G1).

A binary string u of length n will be denoted by un−1un−2 . . . u0. The com-
plement of ui will be denoted by ui = 1− ui. In [12], the n-dimensional twisted
cube TQn was defined. It is an n-regular graph with 2n nodes and n2n−1 edges,
where n is an odd integer. We label all the nodes of TQn by binary strings of

1092 J. Fan et al.

� � �
� ��

�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

001 101

000 100

011 111

110 010

(a) (b)

� � �
� ��

�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

� � �
� �

�

�

�

�

���
�

�
�

�
�

��

�
�

�
�

�
�

�
��

� � �
� ��

�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

� � �
� �

�

�

�

�

���
�

�
�

�
�

��

�
�

�
�

�
�

�
��

		�

���

		�

		�

���

���

		�

		�

���

���

���

���

a

a

b

b

c

c

d

d

e

e

f

f
01001

01101

01000
01100

01011 01111

01110 01010

11101
11001

11100
11000

11111 11011

11010 11110

00001 00101

00000
00100

00011 00111

00110 00010

1000110101

10000
10100

1001110111

1011010010

Fig. 1. (a) The 3-dimensional twisted cube TQ3. (b) The 5-dimensional twisted cube
TQ5, where the end nodes of a missing edge are marked with arrows labeled with the
same letter.

length n. In this paper, we will not distinguish between the nodes of TQn and
their labels. If u = un−1un−2 . . . u0∈ V (TQn), for 0 ≤ i ≤ n − 1, we define
f(u, i) = ui

⊕
ui−1

⊕
. . .

⊕
u0, where

⊕
is the exclusive operation. According

to the definition of TQn in [12], we may give a recursive definition of TQn for
any odd integer n ≥ 1 as follows:

Definition 1. The 1-dimensional twisted cube TQ1 is defined as the complete
graph with two nodes labelled 0 and 1. For an odd integer n ≥ 3, TQn con-
sists of four subcubes TQ00

n−2, TQ
01
n−2, TQ

10
n−2, TQ

11
n−2, where TQab

n−2 is iso-
morphic to TQn−2 and V (TQab

n−2) = { abx| x ∈ V (TQn−2) } and E(TQab
n−2)

= { (abx, aby)| (x, y) ∈ E(TQn−2) } for a, b ∈ { 0, 1 }; and V (TQn) =⋃
a,b∈{0,1}

V (TQab
n−2), E(TQn) =

⋃
a,b∈{0,1}

E(TQab
n−2)

⋃
E′, where for the nodes

u = un−1un−2 . . . u0, v = vn−1vn−2 . . . v0 ∈ V (TQn), (u, v) ∈ E′ if u and v
satisfy one of the following three conditions:
(1) u = vn−1vn−2vn−3 . . . v0;
(2) u = vn−1 vn−2vn−3 . . . v0 and f(u, n− 3) = 0;
(3) u = vn−1 vn−2vn−3 . . . v0 and f(u, n− 3) = 1.

According to Definition 1, Fig. 1 shows TQ3 and TQ5.

Notation 1. For n ≥ 3 and a, b ∈ {0, 1}, the four subcubes of TQn are denoted
by TQab

n−2, TQ
(1−a)b
n−2 , TQa(1−b)

n−2 , and TQ
(1−a)(1−b)
n−2 , respectively.

Edge-Pancyclicity of Twisted Cubes 1093

3 Edge-Pancyclicity of Twisted Cubes

In this section, we will prove that TQn is an edge-pancyclic graph for n ≥ 3. To
prove this result, we introduce the following two results associated with crossed
cubes. In the following, the parameter n always denotes an odd integer.

Crossed cubes are also variants of hypercubes [9], [15]. The n-dimensional
crossed cube, denoted by CQn, is recursively defined as follows.

Definition 2. CQ1 is the complete graph on two nodes whose addresses are 0
and 1. CQn consists of two subcubes CQ0

n−1 and CQ1
n−1. The most significant

bit of the addresses of the nodes of CQ0
n−1 and CQ1

n−1 are 0 and 1, respectively.
The nodes u = un−1un−2 . . . u1u0 and v = vn−1vn−2 . . . v1v0, where un−1 = 0
and vn−1 = 1, are joined by an edge in CQn if and only if

(1) un−2 = vn−2 if n is even, and
(2) (u2i+1u2i, v2i+1v2i) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}, for 0 ≤ i <

�n−1
2 �.
CQ3 is shown in Fig 2. From Fig 1 and Fig 2, we can easily verify the follow-

ing result.

Lemma 1. TQ3 is isomorphic to CQ3.

� � �
� ��

�

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

001 011

000 010

111 101

100 110

Fig. 2. The 3-dimensional crossed cube CQ3

Lemma 2 [10]. If n ≥ 2, for any (x, y) ∈ E(CQn) and any integer l with
4 ≤ l ≤ 2n, there exists a cycle C of length l such that (x, y) is in C.

Theorem 1. TQn is an edge-pancyclic graph for n ≥ 3.

Proof. We use induction on n. By Lemma 1, TQ3 is isomorphic to CQ3. Further,
by Lemma 2, the theorem holds in TQ3.

Supposing that the theorem holds for n = τ−2 (τ ≥ 5), we will prove the the-
orem still holds for n = τ. For any an edge (u, v) ∈ E(TQτ) and any a, b ∈ {0, 1},
we separately deal with the following cases.

Case 1. u, v ∈ V (TQab
τ−2). For 4 ≤ l ≤ 2τ , we have the following sub-cases.

Case 1.1. 4 ≤ l ≤ 2τ−2. By the induction hypothesis, there is a cycle of length
l that contains (u, v) in TQab

τ−2.

1094 J. Fan et al.

�v′
�
u′

�v′′�v
�u
C1

�
u′′

C2

TQab
τ−2 TQ

(1−a)b
τ−2

(a)

�x
�
u

�w
�

v

C1 C2

TQab
τ−2 TQ

(1−a)b
τ−2

(c)

�x
�
u

�w
�

v

C1

TQab
τ−2 TQ

(1−a)b
τ−2

�y � s
C2

TQ
a(1−b)
τ−2 TQ

(1−a)(1−b)
τ−2

(d)

�x � y�v
�u
P

C1

TQab
τ−2 TQ

(1−a)b
τ−2

�x′′
�
x′

�y′′

�
y′

C21 C22

TQ
a(1−b)
τ−2 TQ

(1−a)(1−b)
τ−2

(b)

�u �x

TQab
τ−2 TQ

(1−a)b
τ−2

�v � w
C ′

TQ
a(1−b)
τ−2 TQ

(1−a)(1−b)
τ−2

(e)

Fig. 3. The cycle of length l that contains (u, v) in TQτ , where a straight line represents
an edge and a curve line represents a path between two nodes

Case 1.2. 2τ−2 + 1 ≤ l ≤ 2τ−1. Let l1 = � l
2�, l2 = l − l1. Then l1 + l2 = l and

4 ≤ 2τ−3 ≤ l1 ≤ l2 ≤ 2τ−2. By the induction hypothesis, there is a cycle C1 of
length l1 that contains (u, v) in TQab

τ−2 (See Fig.3 (a)). Select an edge (u′, v′)
in C1. Further, by Definition 1, we can respectively select the neighbors u′′ and
v′′, in TQ

(1−a)b
τ−2 , of the nodes u′ and v′. By the induction hypothesis, there is a

cycle C2 of length l2 that contains (u′′, v′′) in TQ
(1−a)b
τ−2 . Then

Edge-Pancyclicity of Twisted Cubes 1095

C1 − (u′, v′), C2 − (v′′, u′′), u′

is a cycle of length (l1−1)+(l2−1)+2= l that contains (u, v) in TQab
τ−2

⋃
TQ

(1−a)b
τ−2

and thus in TQτ .

Case 1.3. 2τ−1 + 1 ≤ l ≤ 2τ . Let l1 = � l
2�, l2 = l − l1. Then l1 + l2 = l and

2τ−2 ≤ l1 ≤ l2 ≤ 2τ−1.
We can prove the following Claim:

Claim. If (u, v) ∈ E(TQab
τ−2), then there exists a cycle C of length l′ with

2τ−2 ≤ l′ ≤ 2τ−1 in TQab
τ−2

⋃
TQ

(1−a)b
τ−2 , such that C contains (u, v) and there

exists an edge (x, y) in C with x ∈ V (TQab
τ−2) and y ∈ V (TQ(1−a)b

τ−2).
Now we prove the above claim. Let u′ and v′ be the neighbors, in TQ(1−a)b

τ−2 , of
u and v, respectively. Then, (u′, v′) ∈ E(TQ(1−a)b

τ−2). By the induction hypothesis,
there is a cycle C′ of length 2τ−2 − 2 that contains (u′, v′) in TQ

(1−a)b
τ−2 . Let

x = u and y = u′. Then, u, v, C′ − (v′, u′), u is a cycle C of length 2τ−2 in
TQab

τ−2
⋃
TQ

(1−a)b
τ−2 , such that C′ contains (u, v) and (x, y) with x ∈ V (TQab

τ−2)
and y ∈ V (TQ(1−a)b

τ−2). Thus, the claim holds for l′ = 2τ−2.
For 2τ−2 + 1 ≤ l′ ≤ 2τ−1, by Case 1. 2, there is a cycle C′′ of length l′

that contains (u, v) in TQab
τ−2

⋃
TQ

(1−a)b
τ−2 . Considering that l′ ≥ 2τ−2 + 1 ≥

V (TQab
τ−2), there exists an edge (x, y) in C′′ with x ∈ V (TQab

τ−2) and y ∈
V (TQ(1−a)b

τ−2) (Otherwise, all the nodes of C′′ are in TQab
τ−2 and the length of C′′

is at most 2τ−2).
In summary, the above claim holds.
Since 2τ−2 ≤ l1 ≤ 2τ−1, according to the above claim, there always exists

a cycle C1 of length l1 in TQab
τ−2

⋃
TQ

(1−a)b
τ−2 , such that C1 contains (u, v) and

there exists an edge (x, y) in C1 with x ∈ V (TQab
τ−2) and y ∈ V (TQ(1−a)b

τ−2).
Suppose that x is between v and y in C1 (See Fig.3 (b)).

Let x′ and y′ be the neighbors, in TQ
a(1−b)
τ−2

⋃
TQ

(1−a)(1−b)
τ−2 , of x and y, re-

spectively. Then we have x′ ∈ V (TQa(1−b)
τ−2) and y′ ∈ V (TQ(1−a)(1−b)

τ−2), or x′ ∈
V (TQ(1−a)(1−b)

τ−2) and y′∈V (TQa(1−b)
τ−2); and (x′, y′)∈E(TQa(1−b)

τ−2
⋃
TQ

(1−a)(1−b)
τ−2).

Without loss of generality, we assume that x′∈V (TQa(1−b)
τ−2), y′∈V (TQ(1−a)(1−b)

τ−2).
Select a neighbor x′′, in TQ

(1−a)b
τ−2 , of x′. Further, select the neighbor y′′, in

TQ
(1−a)(1−b)
τ−2 , of x′′. By Definition 1, we have (y′, y′′) ∈ E(TQ(1−a)(1−b)

τ−2). Let
l21 = � l2

2 �, l22 = l2− l1. Then l21 + l22 = l2 and 4 ≤ 2τ−3 ≤ l21 ≤ l22 ≤ 2τ−2. By
the induction hypothesis, there is a cycle C21 of length l21 that contains (x′, x′′)
in TQ

a(1−b)
τ−2 and a cycle C22 of length l22 that contains (y′, y′′) in TQ

(1−a)(1−b)
τ−2 .

Then,

C1 − (x, y), C22 − (y′, y′′), C21 − (x′′, x′), x

is a cycle of length (l1 − 1) + (l22 − 1) + (l11 − 1) + 3 = l that contains (u, v)
in TQτ .

1096 J. Fan et al.

Case 2. u ∈ V (TQab
τ−2) and v ∈ V (TQ(1−a)b

τ−2). For 4 ≤ l ≤ 2τ , we have the
following sub-cases.

Case 2.1. l = 4. Select a neighbor x, in TQab
τ−2, of u. Let w be the neighbor, in

TQ
(1−a)b
τ−2 , of x. By Definition 1, (v, w) ∈ E(TQ(1−a)b

τ−2). Thus,

u, v, w, x, u

is a cycle of length 4 that contains (u, v) in TQab
τ−2

⋃
TQ

(1−a)b
τ−2 and thus in TQτ .

Case 2.2. l = 5. Let u = un−1un−2 . . . u0. Then v = un−1un−2 . . . u0. Let
y = un−1un−2 . . . u0. Then,f(v, τ − 3) = f(y, τ − 3). Further, let w and x be
the neighbors, in TQ

a(1−b)
τ−2

⋃
TQ

(1−a)(1−b)
τ−2 , of v and y, respectively. According

to Definition 1, (w, x) ∈ E(TQτ). Thus,

u, v, w, x, y, u

be a cycle of length 5 that contains (u, v) in TQτ .

Case 2.3. 6 ≤ l ≤ 2τ−1. Let u, v, w, x, u be a cycle, found in Case 2. 1, of length
4 in TQab

τ−2
⋃
TQ

(1−a)b
τ−2 .

Case 2.3.1. 6 ≤ l ≤ 2τ−2 + 2. By the induction hypothesis, there is a cycle C
of length l − 2 that contains (v, w) in TQ

(1−a)b
τ−2 . Then

u,C − (v, w), x, u

is a cycle of length (l− 3) + 3 = l that contains (u, v) in TQab
τ−2

⋃
TQ

(1−a)b
τ−2 and

thus in TQτ .

Case 2.3.2. 2τ−2 + 3 ≤ l ≤ 2τ−1. Let l1 = � l
2�, l2 = l − l1. Then l1 + l2 = l

and 5 ≤ 2τ−3 +1 ≤ l1 ≤ l2 ≤ 2τ−2. By the induction hypothesis, there is a cycle
C1 of length l1 that contains (u, x) in TQab

τ−2 and a cycle C2 of length l2 that
contains (v, w) in TQ

(1−a)b
τ−2 (See Fig. 3 (c)). Then

C1 − (u, x), C2 − (w, v), u

is a cycle of length (l1−1)+(l2−1)+2= l that contains (u, v) in TQab
τ−2

⋃
TQ

(1−a)b
τ−2

and thus in TQτ .

Case 2.4. 2τ−1 + 1 ≤ l ≤ 2τ . Let l1 = � l
2�, l2 = l − l1. Then l1 + l2 = l and

8 ≤ 2τ−2 ≤ l1 ≤ l2 ≤ 2τ−1. By Case 2. 3, there is a cycle C1 of length l1 that
contains (u, v) in TQab

τ−2
⋃
TQ

(1−a)b
τ−2 . Clearly, there is an edge (x,w) in C1 such

that x ∈ V (TQab
τ−2)−{u} and w ∈ V (TQ(1−a)b

τ−2)−{v} (See Fig. 3 (d)). Let y and
s be the neighbors, in TQ

a(1−b)
τ−2

⋃
TQ

(1−a)(1−b)
τ−2 , of x and w, respectively. Then

we have s ∈ V (TQa(1−b)
τ−2) and y ∈ V (TQ(1−a)(1−b)

τ−2), or s ∈ V (TQ(1−a)(1−b)
τ−2)

Edge-Pancyclicity of Twisted Cubes 1097

and y ∈ V (TQa(1−b)
τ−2); and (y, s) ∈ E(TQa(1−b)

τ−2
⋃
TQ

(1−a)(1−b)
τ−2). Without loss

of generality, we assume that y ∈ V (TQa(1−b)
τ−2), s ∈ V (TQ(1−a)(1−b)

τ−2). Since
8 ≤ l2 ≤ 2τ−1, by Case 2. 3, there is a cycle C2 of length l2 that contains (y, s)
in TQ

a(1−b)
τ−2

⋃
TQ

(1−a)(1−b)
τ−2 . Then

C1 − (x,w), C2 − (s, y), x

is a cycle of length (l1 − 1) + (l2 − 1) + 2 = l that contains (u, v) in in TQτ .

Case 3. u ∈ V (TQab
τ−2

⋃
TQ

(1−a)b
τ−2) and v ∈ V (TQa(1−b)

τ−2
⋃
TQ

(1−a)(1−b)
τ−2).With-

out loss of generality, we have the following sub-cases.

Case 3.1. u ∈ V (TQab
τ−2) and v ∈ V (TQa(1−b)

τ−2). Let x be the neighbor, in
TQ

(1−a)b
τ−2 , of u and let w be the neighbor, in TQ(1−a)(1−b)

τ−2 , of v. By Definition 1,
(x,w) ∈ E(TQτ). Thus,

u, v, w, x, u

is a cycle of length 4 that contains (u, v) in TQτ . For 5 ≤ l ≤ 2τ , we have the
following sub-cases.

Case 3.1.1. l = 5. Let x = xτ−1xτ−2 . . . x0 and y = xτ−1xτ−2 . . . x1x0. Then,
u = xτ−1xτ−2 . . . x0 and v = xτ−1xτ−2xτ−3xτ−4 . . . x0. Further, let s be the
neighbor, in TQa(1−b)

τ−2
⋃
TQ

(1−a)(1−b)
τ−2 , of y.According to Definition 1, (x, y), (v, s) ∈

E(TQτ). Thus,
u, v, s, y, x, u

be a cycle of length 5 that contains (u, v) in TQτ .

Case 3.1.2. 6 ≤ l ≤ 2τ−1 + 2. By Cases 2. 1, 2. 2, and 2. 3, there is a cycle C′

of length l − 2 that contains (v, w) in TQ
a(1−b)
τ−2

⋃
TQ

(1−a)(1−b)
τ−2 (See Fig. 4 (a)).

Then
u,C′ − (v, w), x, u

is a cycle of length (l − 3) + 3 = l that contains (u, v) in TQτ .

Case 3.1.3. 2τ−1 + 3 ≤ l ≤ 2τ . Let l1 = � l
2�, l2 = l − l1. Then l1 + l2 = l and

9 ≤ 2τ−2 +1 ≤ l1 ≤ l2 ≤ 2τ−1. By Case 2. 3, there is a cycle C′
1 of length l1 that

contains (u, x) in TQab
τ−2

⋃
TQ

(1−a)b
τ−2 and a cycle C′

2 of length l2 that contains
(w, v) in TQ

a(1−b)
τ−2

⋃
TQ

(1−a)(1−b)
τ−2 (See Fig. 4 (b)). Then,

C′
1 − (u, x), C′

2 − (w, v), u

is a cycle of length (l1 − 1) + (l2 − 1) + 2 = l that contains (u, v) in TQτ .

Case 3.2. u ∈ V (TQab
τ−2) and v ∈ V (TQ(1−a)(1−b)

τ−2). Let x be the neighbor, in
TQ

(1−a)b
τ−2 , of u and let w be the neighbor, in TQ(1−a)(1−b)

τ−2 , of v. By Definition 1,
(x,w) ∈ E(TQτ). Thus,

u, v, w, x, u

1098 J. Fan et al.

�u �x

TQab
τ−2 TQ

(1−a)b
τ−2

�v �w
C ′

TQ
a(1−b)
τ−2 TQ

(1−a)(1−b)
τ−2

(a) (b)

�
u

�
x

C ′
1

TQab
τ−2 TQ

(1−a)b
τ−2

�v � w
C ′

2

TQ
a(1−b)
τ−2 TQ

(1−a)(1−b)
τ−2

Fig. 4. The cycle of length l that contains (u, v) in TQτ , where a straight line represents
an edge and a curve line represents a path between two nodes

is a cycle of length 4 that contains (u, v) in TQτ . For 5 ≤ l ≤ 2τ , we have the
following sub-cases.

Case 3.2.1. l = 5. Let u = uτ−1uτ−2 . . . u0. Then x = uτ−1uτ−2uτ−3 . . . u0
and v = uτ−1uτ−2uτ−3 uτ−4 . . . u0. Further, let y = uτ−1uτ−2uτ−3 . . . u1u0 and
s = uτ−1uτ−2uτ−3uτ−4 . . . u1u0. According to Definition 1, (v, s), (x, y), (y, s)
∈ E(TQτ). Thus,

u, v, s, y, x, u

is a cycle of length 5 that contains (u, v) in TQτ .

Case 3.2.2. 6 ≤ l ≤ 2τ−1 + 2. Similar to Case 3. 1. 2, we can get a cycle of
length l that contains (u, v) in TQτ .

Case 3.2.3. 2τ−1 + 3 ≤ l ≤ 2τ . Similar to Case 3. 1. 3, we can get a cycle of
length l that contains (u, v) in TQτ .

So far, we have proven that the theorem also holds for n = τ. Hence, the
theorem holds. �

Acknowledgments

This research is partially supported by Hong Kong grants CERG under
No. 9040816 and No. 9040909.

Edge-Pancyclicity of Twisted Cubes 1099

References

1. S. Abraham, K. Padmanabhan, The Twisted Cube Topology for Multiprocessors:
A Study in Networks Asymmetry, J. Parallel and Distributes Computing, vol. 13,
no. 1, pp. 104–110, 1991.

2. E. Abuelrub and S. Bettayeb, Embedding of Complete Binary Trees in Twisted
Hypercubes, Proc. Int’l Conf. Computer Applications in Design, Simulation, and
Analysis, pp. 1–4, 1993.

3. B. Alspach, D. Hare, Edge-pancyclic block-intersection graphs, Discrete Mathe-
matics, vol. 97, pp. 17–24, 1991.

4. T. Araki, Edge-pancyclicity of recursive circulants, Information Processing Letters,
vol. 88, pp. 287–292, 2003.

5. L. Auletta, A. A. Rescigno, V. Scarano, Embedding Graphs onto the Supercube,
IEEE Trans. Computers, vol. 44, no. 4, pp. 593–597, 1995.

6. J. Bang-Jansen, Y. Guo, A note on vertex pancyclic oriented graphs, J. Graph
Theory, vol. 31, pp. 313–318, 1999.

7. C. -P. Chang, J. -N. Wang, L. -H. Hsu, Topological Properties of Twisted Cubes,
Inform. Sci., vol. 113, pp. 147–167, 1999.

8. J. Fan, X. Lin, The t/k-Diagnosability of the BC Graphs, IEEE Trans. Computers,
vol. 54, no. 2, pp. 176–184, 2005.

9. J. Fan, X. Lin, X. Jia, Optimal Path Embedding in Crossed Cubes, IEEE Trans.
Parallel and Distributed Systems, accepted.

10. J. Fan, X. Lin, X. Jia, Node-Pancyclicity and Edge-Pancyclicity of Crossed Cubes,
Info. Process. Lett., vol. 93, pp. 133–138, 2005.

11. J. -S. Fu, Fault-Tolerant Cycle Embedding in the Hypercube, Parallel Computing,
vol. 29, no. 6, pp. 821–832, 2003.

12. P. A. J. Hilbers, M. R. J. Koopman, J. L. A. Van de Snepscheut, The Twisted Cube,
PARLE: Parallel Architectures and Languages Europe, Parallel Architectures, vol.
1, J. deBakker, A. Numan, and P. Trelearen, Berlin: Springer-Verlag, pp. 152–158,
1987.

13. H. -C. Hsu, T. -K. Li, J. J. M. Tan, L. -H. Hsu, Fault Hamiltonicity and Fault
Hamiltonian Connectivity of the Arrangement Graphs, IEEE Trans. Computers,
vol. 53, no. 1, pp. 39–53, 2004.

14. W. -T. Huang, J. J. M. Tan, C. -N. Hung, L. -H. Hsu, Fault-Tolerant Hamiltonicity
of Twisted Cubes, J. Parallel and Distributes Computing, vol. 62, pp. 591–604,
2002.

15. P. Kulasinghe and S. Bettayeb, Embedding Binary Trees into Crossed Cubes, IEEE
Trans. Computers, vol. 44, no.7, pp. 923–929, 1995.

16. K. -W. Lih, S. Zengmin, W. Weifan, Z. Kemin, Edge-pancyclicity of coupled graphs,
Discrete Applied Mathematics, vol. 119, pp. 259–264, 2002.

17. B. Randerath, I. Schiermeyer, M. Tewes, L. Volkmann, Vertex pancyclic graphs,
Discrete Applied Mathematics, vol. 120, pp. 219–237, 2002.

18. M. -C. Yang, T. -K. Li, J. J. M. Tan, L. -H. Hsu, Fault-Tolerant Cycle-Embedding
of Crossed Cubes, Info. Process. Lett., vol. 88, no. 4, pp. 149–154, 2003.

19. P. -J. Yang, S. -B. Tien, C. S. Raghavendra, Embedding of Rings and Meshes onto
Faulty Hypercubes Using Free Dimensions, IEEE Trans. Computers, vol. 43, no.
5, pp. 608–613, 1994.

Combinatorial Network Abstraction
by Trees and Distances

Stefan Eckhardt1, Sven Kosub1, Moritz G. Maaß1,�,
Hanjo Täubig1,��, and Sebastian Wernicke2,� � �

1 Fakultät für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching, Germany
{eckhardt, kosub, maass, taeubig}@in.tum.de

2 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

wernicke@minet.uni-jena.de

Abstract. This work draws attention to combinatorial network abstrac-
tion problems which are specified by a class P of pattern graphs and
a real-valued similarity measure � based on certain graph properties.
For fixed P and �, the optimization task on any graph G is to find a
subgraph G′ which belongs to P and minimizes �(G, G′). We consider
this problem for the natural case of trees and distance-based similar-
ity measures. In particular, we systematically study spanning trees of
graphs that minimize distances, approximate distances, and approximate
closeness-centrality with respect to some standard vector and matrix
norms. The complexity analysis shows that all considered variants of the
problem are NP-complete, except for the case of distance-minimization
with respect to the L∞ norm. We further show that unless P = NP, there
exist no polynomial-time constant-factor approximation algorithms for
the distance-approximation problems if a subset of edges can be forced
into the spanning tree.

1 Introduction

Motivation. Network analysis aims at algorithmically exposing certain mean-
ingful structures and characteristics of a complex network that can be considered
essential for its functionality (see, e.g., [3] for a recent survey). A (simple) sub-
network containing only the essential parts of a given network is what we refer
to as a network abstraction.

In this work, we formalize the combinatorial network abstraction problem by
specifying a class P of admissible pattern graphs and a real-valued similarity
measure & that rates the degree of correct approximation of a given graph G

� Supported by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).
�� Supported by DFG, grant Ma-870/6-1 (DFG-SPP 1126 Algorithmik großer und

komplexer Netzwerke).
� � � Supported by Deutsche Telekom Stiftung and Studienstiftung des deutschen

Volkes.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1100–1109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Combinatorial Network Abstraction by Trees and Distances 1101

by a subgraph G′ ⊆ G based on certain graph properties. For a fixed pattern
class P and a fixed measure &, the optimization task is to find for any input
graph G a subgraph G′ which belongs to P such that &(G,G′) is minimal.

Here, we restrict ourselves to trees as the class of pattern graphs (although
some results seem to easily carry over to related structures such as spanning
subgraphs with a restricted number of edges) because they are the sparsest
and simplest subgraphs that may connect all vertices of a network. Moreover,
for several applications the use of spanning trees as an approximation of the
network has some promising advantages:

1. Understanding network dynamics. A recent study [15] of communication ker-
nels (which handle the majority of network traffic) shows that the organi-
zation of many complex networks is heavily influenced by their scale-free
spanning trees.

2. Guiding graph-layout for large networks. We can use elegant tree-layout al-
gorithms for drawing a tree that closely reflects the main characteristics of
a given network.

3. Compressing networks. Even with most complex networks being sparse them-
selves, abstraction by trees reduces network sizes significantly.

In search of suitable graph properties for which a high amount of similarity
between a network and its abstraction is desirable, we concentrate in this paper
on distances as an inherent graph property. To quantify this degree of similar-
ity, we use standard vector and matrix norms ‖ · ‖r (see Sect. 2 for a review
and definitions) on the distance matrix DG of an input graph G and the dis-
tance matrices of its spanning trees. To this end, we consider the following three
optimization problems:

1. Find a spanning tree that minimizes distances. This corresponds to a simi-
larity measure &r(G, T) = ‖DT ‖r. As an example, for the L1 norm, the tree
realizing the minimum is known as the minimum average distance tree (or,
MAD-tree for short) [14, 8]. For the L∞ matrix norm, the tree realizing the
minimum is known as the minimum diameter spanning tree [6, 12].

2. Find a spanning tree that approximates distances. This corresponds to a
similarity measure &r(G, T) = ‖DT − DG‖r. As an example, for the L∞
matrix norm, we seek a tree that, for all vertex pairs, does not exceed a
certain amount of additive increase in distance. Such trees are known as
additive tree-spanners [17]. With the L1 norm, we are again looking for a
MAD-tree.

3. Find a spanning tree that approximates centralities. In this paper, we con-
sider the popular notion of closeness centrality [2, 23] which, for any graph
G = (V,E) and vertex v ∈ V , is defined as cG(v) = (

∑
t∈V dG(v, t))−1. The

optimization problem is then based on the similarity measure &r(G, T) =
‖cG − cT ‖r for some vector norm ‖ · ‖r.

Note that—except for the L1 matrix norm—distance-minimizing spanning trees
and optimal distance-approximating spanning trees typically cannot be used to

1102 S. Eckhardt et al.

A graph G. with ‖DT ‖L,∞ = 2� + 4

A spanning tree for G

and ‖DT − DG‖L,∞ = 2.

A spanning tree for G

with ‖DT ‖L,∞ = 2� + 2

and ‖DT − DG‖L,∞ = 2� + 1.

��

Fig. 1. Distance-minimization and distance-approximation do not provide good ap-
proximate solutions for each other with respect to the norm L∞

provide good approximate solutions for each other. An example for this (with
respect to L∞) is given in Fig. 1.

Results. We study the impact of the norm on the computational complexity
of the above-mentioned network abstraction problems. For computing distance-
minimizing spanning trees, two results have already been known, namely that
there exists a polynomial-time algorithm for computing a minimum diameter
spanning tree [6, 12] and that it is NP-complete to decide on input (G, γ) whether
there is a spanning tree T of G such that ‖DT‖L,1 ≤ γ [14]. For distance-
approximating spanning trees, even for L1 and L∞, no such results have so far
been established to the best of our knowledge.1

In Sect. 3.2, we prove that deciding whether there exists a spanning tree T
such that ‖DT‖r ≤ γ for any given instance (G, γ) is NP-complete for all matrix
norms within our framework where complexity has been unknown so far. We also
consider fixed-edge versions (as, e.g., in [5]) where problem instances additionally
specify a set of edges E0 that must be contained in the spanning tree. If we allow
arbitrary edge sets for E0, then even Minimum Diameter Spanning Tree
becomes NP-complete.

In Sect. 3.3, we prove that deciding whether there is a spanning tree T of G
such that ‖DT − DG‖ ≤ γ for any given instance (G, γ) is NP-complete for
all matrix norms within our framework, i.e., essentially for all standard norms
(with exception of the spectral norm, a case which is left open). This is some-
what surprising, since at least in the case of L∞ one might have hoped for a
polynomial-time algorithm based on the polynomial-time algorithms for com-
puting minimum diameter spanning trees. We also prove that the fixed-edge
versions of finding optimal distance-approximating spanning trees cannot be ap-
proximated in polynomial-time within constant factor unless P = NP.

Finally, in Sect. 3.4, we prove that with respect to closeness centrality, deciding
for a given instance (G, γ) whether there is a spanning tree T such that ‖cG −
cT ‖r ≤ γ is NP-complete for the L1 vector norm.

Related work. Besides the already mentioned minimum diameter spanning
trees [6, 12] and MAD-trees [14, 8], several notions of distance-approximability
by trees have been considered in the literature. One variant is obtained by
considering the stretch dT (u, v)/dG(u, v) over all distinct vertices u, v ∈ V . If
the stretch is at most γ, then the tree is called γ-multiplicative tree spanner
1 Note that in contrast to some claims in the literature the results in [18] do not provide

a proof for the NP-completeness of deciding whether there is a spanning tree T with
‖DT −DG‖L,∞ ≤ γ, neither does an easily conceivable adaption.

Combinatorial Network Abstraction by Trees and Distances 1103

(see, e.g., [22]—recently, also combinations of additive and multiplicative tree-
spanners have been studied [10]). Finding a minimum maximum-stretch tree is
NP-hard even for unweighted planar graphs [11] and cannot be approximated
by a factor better than (1 +

√
5)/2 unless P = NP [19]. The problem of finding

a minimum average-stretch tree is also NP-hard [14].
Spanning subgraphs (not only trees) with certain bounds on distance increases

have been intensively studied since the pioneering work in [1, 21, 7]. The most
general formulation of a spanner problem is the following [18]: A spanning sub-
graph H of G is an f(x)-spanner for G if and only if dH(u, v) ≤ f(dG(u, v))
for all u, v ∈ V (G). The computational problem then is to find an f(x)-spanner
with the minimum number of edges, a problem somewhat dual to ours since it
fixes a bound on the distance increase and tries to minimize the size of the sub-
graphs, whereas we fix the size of the subgraph and try to minimize the bounds.
In a series of papers, the hardness of the spanner problems has been exhibited
(see, e.g., [20, 5, 4, 16]). The version closest to our problem is to ask for a given
graph G and two given parameters m, t if there exists an additive t-spanner
for G with no more than m edges. This problem is NP-complete [18]. In the
case that m = n − 1 is fixed, it becomes the problem of finding the best possi-
ble distance-approximating spanning tree with respect to ‖ · ‖L,∞. However, the
corresponding NP-completeness proof for the general case relies heavily on the
number of edges in the instance and hence a translation to an NP-completeness
proof for the tree case is not obvious.

2 Notation

We consider simple, undirected, and unweighted graphs G with vertex set V and
edge set E. For two vertices v, w ∈ V , the distance between v and w (i.e., the
minimum number of edges in a path between u to v) in G is denoted by dG(v, w).
The corresponding distance matrix is denoted by DG. Clearly, DG is symmetric
with all entries being non-negative. Moreover, for any spanning tree T of a graph
G, we have DT [i, j] ≥ DG[i, j] for all vi, vj ∈ V . We use the following well-known
norms to evaluate a matrix A in n×n:

– The Lp norms ‖A‖L,p
def=

(∑n
i=1

∑n
j=1 |ai,j |p

)1/p for 1 ≤ p <∞.2

– The L∞ norm ‖A‖L,∞
def= maxi,j∈{1,...,n} |ai,j |.

– The maximum-column-sum norm ‖A‖1 def= maxj∈{1,...,n}
∑n

i=1 |ai,j |.
– The maximum-row-sum norm ‖A‖∞ def= maxi∈{1,...,n}

∑n
j=1 |ai,j |.

Trivially, for symmetric matrices we have ‖A‖1 = ‖A‖∞. Therefore, we only
consider the maximum-column-sum norm in our results to avoid redundancy.

2 In the last part of the paper, we use Lp norms for vectors as well: for any 1 ≤ p <∞
and vector x ∈ n, define ‖x‖p def= (n

i=1 |xi|p)1/p.

1104 S. Eckhardt et al.

3 Hardness Results

All our theorems establish hardness results that rely on similar constructions
(which, however, depend on parameters that must be tuned in a non-trivial
manner). We gather these essential constructions in the next section, followed
by our results.

Note that, due to lack of space, we defer the proofs for our results to [9].

3.1 Gadgets

Graph representation of X3C instances. Given a family C = {C1, . . . , Cs} of
3-element subsets of a set L = {l1, . . . , l3m}, the NP-complete problem Exact-
3-Cover (X3C) asks whether there exists a subfamily S ⊆ C of pairwise disjoint
sets such that

⋃
A∈S = L. A subfamily S satisfying this property is called an

admissible solution to (C, L). Suppose we are given an X3C instance (C, L) and
let a, b be arbitrary natural numbers. Following a construction from [14], we
define the graph Ga,b(C, L) to consist of the vertex set

V
def= C ∪ L ∪ {r1, . . . , ra}︸ ︷︷ ︸

def= R

∪ {x}︸︷︷︸
def= X

∪{k1,1, . . . , k1,b, . . . , k3m,1, . . . , k3m,b}︸ ︷︷ ︸
def= K

and the edge set

E
def=

{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪

{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪

∪
{
{lµ, Cν} | lµ ∈ Cν

}
∪

{
{lµ, lν} | µ, ν ∈ {1, . . . , 3m}

}
∪

∪
{
{kµ,ν , lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}
.

This construction is illustrated in Fig. 2. Given an admissible solution S to an
X3C instance (C, L), we can identify a corresponding spanning subgraph TS
called solution tree in Ga,b(C, L) through the edge set

E(TS) =
{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪

{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪

∪
{
{lµ, Cν} | lµ ∈ Cν and Cν ∈ S

}
∪

∪
{
{kµ,ν , lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}
.

9b
k 11 k 1b

K

L

X

R

C

r r

c 1 c 7

1

x

l1 l9

a

k 91 k

7

K

L

X

R

C

r r1

x

l1 l9

a

k 91 k 9b
k 11 k 1b

c 1 c

Fig. 2. Graph representation of an X3C instance and a corresponding solution tree

Combinatorial Network Abstraction by Trees and Distances 1105

S = {s1, s2, s3, s4} C = {{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}

gadget for s1 gadget for s2 gadget for s3 gadget for s4

clause paths of length 2n(m + 2)

safety paths of

length 2n(m + 2)

elongation

path

literal

path

a ba′

Fig. 3. Construction of a 2HS gadget G(C,S , k). The dashed paths that are drawn
bold consist solely of edges that must be contained in a spanning tree for the graph.

Lemma 1. Let (C, L) be an X3C instance, a, b ∈ . Let T be any spanning
tree of the graph Ga,b(C, L). There exists an admissible solution S ⊆ C such that
T = TS if and only if the following conditions are satisfied:

1. For all µ ∈ {1, . . . , s}, the tree T contains the edge {Cµ, x}.
2. For all µ ∈ {1, . . . , 3m}, there is a ν ∈ {1, . . . , s} such that T contains the

edge {lµ, Cν}.
3. For all µ ∈ {1, . . . , s}, vertex Cµ has either four neighbors in T or one. ��

Graph representation of 2HS instances. Given a family C = {C1, . . . , Cm}
of 2-element subsets of a set S = {s1, . . . , sn} and a natural number k, the
NP-complete 2-Hitting Set (2HS) problem asks whether there exists a sub-
set S′ ⊆ S such that ‖S′‖ ≤ k and S′ ∩ Cµ �= ∅ for all µ ∈ {1, . . . ,m}.3 A
subset S′ ⊆ S having this property is called an admissible solution to a 2HS
instance (C,S, k). Suppose we are given an instance (C,S, k) of 2HS where
‖C‖ = m and ‖S‖ = n. We define the graph G(C,S, k) to consist of

– two vertices a, a′, and b,
– for each sµ ∈ S, consisting of vertices vµ, v

′
µ, uµ

1 , . . . , u
µ
m+1 and vµ

1 , . . . , v
µ
m,

– for each clauseCµ = {sν , sκ} ∈ C, clause paths of length 2n(m+2) connecting
vν

µ with vκ
µ and safety paths of length 2n(m+ 2) connecting vν

µ with a′.

For each sµ ∈ S the literal gadget Gµ consists of two vertices vµ and v′µ called con-
nection vertices. Both vµ and v′µ are connected via a path (vµ, u

µ
1 , . . . , u

µ
m+1v

′
µ)

of length m + 2 called elongation path and a path (vµ, v
µ
1 , . . . , v

µ
mv

′
µ) of length

m+ 1 called the literal path. The construction is illustrated in Fig. 3.

Lemma 2. Let (C,S, k) be an instance of 2HS. Then we have dG(C,S,k)(a, b) =
2 + n(m+ 2). Moreover, there exists an admissible solution S′ ⊆ S to (C,S, k)
if and only if there exists a spanning tree T of G(C,S, k) containing all edges in
the clause paths such that dT (a, b) ≤ dG(C,S,k)(a, b) + k. ��

3 2HS is better known as Vertex Cover. For the sake of readability (i.e., to avoid
an overuse of the terms “vertices” and “edges”), we use the 2HS formulation.

1106 S. Eckhardt et al.

3.2 Trees That Minimize Distances

Here we consider the problem of computing a spanning tree for a graph which
minimizes distances among the vertices under certain matrix norms ‖ · ‖r.

Problem: Distance-Minimizing Spanning Tree (DMST)
Input: A graph G and an algebraic number γ.
Question: Does G contain a spanning tree T with ‖DT‖r ≤ γ?

Using the graph representation Ga,b(C, L) for any X3C instance (C, L), the
following theorem can be shown.

Theorem 3. DMST with respect to the norms ‖·‖1 and ‖·‖L,p is NP-complete
for all p ∈ +, even when restricted to planar graphs. ��

It is known that a minimum-diameter spanning tree in a graph—i.e., DMST
with respect to ‖ · ‖L,∞)—can be found in polynomial time [6, 12]. However, the
next theorem shows that the fixed-edge version of this problem is intractable. This
version additionally contains an edge set E0 ⊆ E(G) and we seek a spanning
tree T such that ‖DT‖r ≤ γ and E0 ⊆ E(T). Using the graph representation
G(C,S, k) for any given instance (C,S, k) of 2HS gives us the following theorem.

Theorem 4. The fixed-edge version of DMST with respect to the norm ‖ ·‖L,∞
is NP-complete. ��

3.3 Trees That Approximate Distances

We now turn to the problem of finding spanning trees that approximate the
distances in a graph under a given matrix norm ‖ · ‖r. We also examine the
fixed-edge version of this problem, which is specified in the same way as for
DMST.

Problem: Distance-Approximating Spanning Tree (DAST)
Input: A graph G and an algebraic number γ
Question: Does G contain a spanning tree T with ‖DT −DG‖r ≤ γ?

NP-completeness results. Using the graph representationGa,b(C, L) for any X3C
instance (C, L), the following theorem can be shown.

Theorem 5. DAST with respect to the norms ‖ ·‖1 and ‖ ·‖L,p is NP-complete
for all p ∈ +. ��

For proving the NP-completeness for the L∞ matrix norm, it is helpful to
first establish the result for the fixed-edge version (by reduction from 2HS).

Lemma 6. The fixed-edge version of DAST with respect to the norm ‖ · ‖L,∞
is NP-complete. ��

Combinatorial Network Abstraction by Trees and Distances 1107

To get rid of the fixed edges, we replace them by cycles such that deleting a
fixed edge will cause the distance between two cycle vertices to increase by more
than the allowed threshold γ, which then gives us the hardness result for the
norm ‖ · ‖L,∞.4

Lemma 7. Let G = (V,E) be any graph and let {v, w} be an arbitrary non-
bridge edge in G. For k > 3, let G′ be the graph resulting from adding a path
(v, u1, . . . , uk, w) to G where uµ /∈ V for all µ ∈ {1, . . . , k}. There exists a span-
ning tree T of G which includes the edge {v, w} and satisfies ‖DT −DG‖L,∞ ≤ k
if and only if there exists a spanning tree T ′ of G′ with ‖DT ′−DG′‖L,∞ ≤ k. ��

Theorem 8. DAST with respect to the norm ‖ · ‖L,∞ is NP-complete. ��

Inapproximability results. We now show that—independent of the norm—it is
hard to approximate the fixed-edge version of DAST in polynomial time within
a constant factor. Let G be a graph and E′ ⊆ E(G) be the set of fixed edges.
We say that an algorithm A is a polynomial-time constant-factor approximation
algorithm for the fixed-edge version of DAST with respect to ‖ · ‖r if, for some
constant δ > 0, it computes a spanning tree TA of G with E′ ⊆ E(T) in polyno-
mial time such that ‖DTA −DG‖r ≤ δ · ‖DTopt −DG‖r. Here, Topt is the optimal
tree, i.e., ‖DTopt −DG‖r = minT ‖DT −DG‖r for all spanning trees T of G.

2HS is not polynomial-time approximable within a constant factor better than
7/6 unless P = NP [13]. To make use of this in our context, note that the main
idea behind the graph representationG(C,S, k) for any given instance (C,S, k) of
2HS is that choosing an element from S into the solution corresponds to opening
a literal path in G(C,S, k). This opening is “penalized” by the elongation path,
increasing the distance between the vertices a and b. The key idea now is to
increase this penalty in a super-linear way by recursively replacing elongation
paths with graph representations of the given 2HS instance.

More formally, suppose we are given an instance (C,S, k) of 2HS where
‖C‖ = m and ‖S‖ = n. For j ∈ + we define the graph G(C,S, k, j) recursively
as follows: For j = 1, the graph G(C,S, k, j) is just the graph G(C,S, k). For
j > 1, define lj−1

def= dG(C,S,k,j−1)(a, b). Then G(C,S, k, j) consists of

– three vertices a, a′, and b,
– literal paths Pµ for each sµ ∈ S, consisting of vertices vµ

1 , . . . , v
µ
lj−1−1,

– elongation gadgets Gµ for each sµ ∈ S, consisting of a copy ofG(C,S, k, j−1),
with the vertices a, a′, and b in G(C,S, k, j − 1) relabeled as aµ, a′µ and bµ,

– for each Cµ = {sν, sκ} ∈ C, clause paths and safety paths of length 2nlj−1
connecting vν

µ with vκ
µ and vν

µ with a′, respectively.

For each clause Cµ ∈ C the vertices aµ and bµ are connected via a literal path
(aµ, v

µ
1 , . . . , v

µ
lj−1−1, bµ). Furthermore, the edges {a, a′}, {a′, a1}, {bm, b}, and the

4 A similar technique with two cycles was used in [5–Lemma 3] to guarantee that any
minimum t-spanner (i.e., a spanning subgraph with smallest number of edges such
that dG(u, v) ≤ t · dT (u, v) for all u, v ∈ V) contains a certain edge. However, this
construction does not work in the context of additive distance growth and trees.

1108 S. Eckhardt et al.

edges {bi, ai+1} for all 1 ≤ i ≤ m−1 are in G(C,S, k, j). Note that the graph size
is polynomial in the size of the instance (C,S, k) and j. The following analogue
to Lemma 2 can be established for our new graph representation of 2HS:

Lemma 9. Let (C,S, k) be a given instance of 2HS and j ∈ +. Then, we
have that dG(C,S,k,j)(a, b) = 3nj+1−1

n−1 + nj(m − 1) − 1. Moreover, there exists
an admissible solution S′ ⊆ S to (C,S, k) if and only if there exists a spanning
tree T of G(C,S, k, j) containing all edges in the clause paths of all instances
G(C,S, k, j′), for j′ < j, of which G(C,S, k, j) is composed, including the clause
paths in G(C,S, k, j) such that dT (a, b) ≤ dG(C,S,k,j)(a, b) + kj. ��
Lemma 10. Unless P = NP, there is no polynomial-time algorithm A that,
given a 2HS instance (C,S, k) and parameter j ∈ +, computes a spanning
tree TA of G(C,S, k, j) such that dTA(a, b) − dG(C,S,k,j)(a, b) ≤ δ · dTopt(a, b) −
dG(C,S,k,j)(a, b) for any δ > 0. Here, Topt is a spanning tree of G(C,S, k, j)
such that dTopt(a, b) − dG(C,S,k,j)(a, b) = minT dT (a, b) − dG(C,S,k,j)(a, b) where
the minimum is taken over all spanning trees that include all clause paths. ��
Theorem 11. Unless P = NP, there is no polynomial-time constant-factor ap-
proximation algorithm for the fixed-edge version of DAST with respect to the
norms ‖ · ‖L,∞, ‖ · ‖L,p, and ‖ · ‖1. ��

3.4 Trees That Approximate Centralities

Closeness centrality cG : V → for a graphG = (V,E) is defined for all v ∈ V as
cG(v) def= (

∑
t∈V dG(v, t))−1 [2, 23]. Here we consider the problem of computing

a spanning tree such that its centrality function is as close as possible to the
centrality function of the original graph with respect to some vector norm ‖ · ‖r.

Problem: Closeness-Approximating Spanning Tree (CAST)
Input: A graph G and an algebraic number γ
Question: Does G contain a spanning tree T with ‖cG − cT ‖r ≤ γ?

By a reduction from our X3C gadget, we can show the following theorem.

Theorem 12. CAST with respect to the norm ‖·‖1 is NP-complete, even when
restricted to planar graphs. ��

4 Conclusion

We have introduced the problem of combinatorial network abstraction and sys-
tematically studied it for the natural case of trees and distance-based similarity
measures. This provides the first computational complexity study in this area,
presented in a unifying framework.

As an interesting problem left open here, future research might consider the
presented problems with respect to the spectral norm—in the light that NP-
completeness appears with coarser norms and the value of the spectral norm is
always smaller than that of the norms considered here, there might even be a
chance for polynomial-time solvability.

Combinatorial Network Abstraction by Trees and Distances 1109

References

1. B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823,
1985.

2. M. A. Beauchamp. An improved index of centrality. Behavioral Science, 10:161–
163, 1965.

3. U. Brandes and T. Erlebach, editors. Network Analysis: Methodological Founda-
tions, volume 3418 of LNCS. Springer-Verlag, 2005.

4. U. Brandes and D. Handke. NP-completeness results for minimum planar spanners.
Discr. Math. & Theor. Comp. Sci., 3(1):1–10, 1998.

5. L. Cai. NP-completeness of minimum spanner problems. Discr. Appl. Math.,
48(2):187–194, 1994.

6. P. M. Camerini, G. Galbiati, and F. Maffioli. Complexity of spanning tree problems:
Part I. Europ. J. Oper. Res., 5(5):346–352, 1980.

7. L. P. Chew. There are planar graphs almost as good as the complete graph. J.
Comp. Sys. Sci., 39(2):205–219, 1989.

8. E. Dahlhaus, P. Dankelmann, W. Goddard, and H. C. Swart. MAD trees and
distance-hereditary graphs. Discr. Appl. Math., 131(1):151–167, 2003.

9. S. Eckhardt, S. Kosub, M. G. Maaß, H. Täubig, and S. Wernicke. Combinato-
rial network abstraction by trees and distances. Technical Report TUM-I0502,
Technische Universität München, Institut für Informatik, 2005.

10. M. Elkin and D. Peleg. (1 + ε, β)-spanner constructions for general graphs. SIAM
J. Comp., 33(3):608–631, 2004.

11. S. P. Fekete and J. Kremer. Tree spanners in planar graphs. Discr. Appl. Math.,
108(1–2):85–103, 2001.

12. R. Hassin and A. Tamir. On the minimum diameter spanning tree problem. Inform.
Proc. Lett., 53(2):109–111, 1995.

13. J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
14. D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. The complexity of the

network design problem. Networks, 8:279–285, 1978.
15. D.-H. Kim, J. D. Noh, and H. Jeong. Scale-free trees: The skeletons of complex

networks. Phys. Rev. E, 70(046126), 2004.
16. G. Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–

450, 2001.
17. D. Kratsch, H.-O. Le, H. Müller, E. Prisner, and D. Wagner. Additive tree spanners.

SIAM J. Discr. Math., 17(2):332–340, 2003.
18. A. L. Liestman and T. C. Shermer. Additive graph spanners. Networks, 23(4):343–

363, 1993.
19. D. Peleg and E. Reshef. Low complexity variants of the arrow distributed directory.

J. Comp. Sys. Sci., 63(3):474–485, 2001.
20. D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116,

1989.
21. D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J.

Comp., 18(4):740–747, 1989.
22. E. Prisner. Distance approximating spanning trees. In Proc. STACS’97, volume

1200 of LNCS, pages 499–510. Springer-Verlag, 1997.
23. G. Sabidussi. The centrality index of a graph. Psychometrica, 31:581–603, 1966.

Drawing Phylogenetic Trees�

(Extended Abstract)

Christian Bachmaier, Ulrik Brandes, and Barbara Schlieper

Department of Computer & Information Science, University of Konstanz, Germany
{christian.bachmaier, ulrik.brandes, barbara.schlieper}@uni-konstanz.de

Abstract. We present linear-time algorithms for drawing phylogenetic
trees in radial and circular representations. In radial drawings given edge
lengths (representing evolutionary distances) are preserved, but labels
(names of taxons represented in the leaves) need to be adjusted, whereas
in circular drawings labels are perfectly spread out, but edge lengths
adjusted. Our algorithms produce drawings that are unique solutions to
reasonable criteria and assign to each subtree a wedge of its own. The
linear running time is particularly interesting in the circular case, because
our approach is a special case of Tutte’s barycentric layout algorithm
involving the solution of a system of linear equations.

1 Introduction

Phylogeny is the study of the evolutionary relationships within a group of or-
ganisms. A phylogenetic tree represents the evolutionary distances among the
organisms represented by its leaves. Due to the increasing size of data sets,
drawings are essential for exploration and analysis. In addition to the usual re-
quirements for arbitrary tree structures, drawings of phylogenetic trees should
also depict given edge lengths and leaf names. Standard approaches [3,12,18] do
not take these criteria into account (see [2,7] for an overview of tree drawing algo-
rithms). Popular software tools in computational biology such as TreeView [10],
PAUP∗ [14], or PHYLIP [11] also provide drawings of phylogenetic trees, but
the underlying algorithms are not documented.

There are essentially two forms of representation for phylogenetic trees. For an
overview see, e. g., [1]. Both are variations of dendrograms, since many algorithms
for the construction of phylogenetic trees are based on clustering (see, e. g., [15]).
They differ in that leaf labels are either placed monotonically along one axis
or around the tree structure. While the first class of representations is very
similar to standard dendrograms and easy to layout, it is somewhat difficult to
understand the nesting of subtrees from the resulting drawings. We focus on the
algorithmically more challenging and graphically more appealing second class of
representations.

In radial tree drawings edges extend radially monotonic away from the root,
and we give a linear-time algorithm that preserves all edge lengths exactly. In
� Partially supported by DFG under grant Br 2158/1-2.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1110–1121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Drawing Phylogenetic Trees 1111

circular tree drawings leaves are placed equidistantly on the perimeter of a circle
and the tree is confined to the inside of the circle. Note that it may not be
possible to preserve edge lengths in this representation. We give an algorithm
that heuristically minimizes length deviations and, even though based on solving
a system of linear equations, runs in linear time as well. Both algorithms yield
drawings that are unique in a well-defined sense up to scaling, rotation, and
translation. Since each subtree is confined to a wedge rather than an interval of
its own, their nesting structure is more apparent than in vertical or horizontal
representations. While, typically, phylogenetic trees are cases extended binary
trees, our algorithms apply to general trees.

This paper is organized as follows. Basic notation and some background is
provided in Sect. 2. In Sects. 3 and 4 we present our algorithms for radial and
circular representations, and conclude in Sect. 5.

2 Preliminaries

Throughout the paper let T = (V,E, δ) denote a phylogenetic tree with n = |V |
vertices, m = |E| edges, and positive edge lengths δ : E → R+. The leaves of a
phylogenetic tree represent the species, molecules, or DNA sequences (taxons)
under study and its inner vertices represent virtual or hypothetical ancestors.
The length of an edge represents the evolutionary divergence between its incident
vertices, and the entire tree represents a tree metric fitted to a (potentially noisy
and incomplete) dissimilarity matrix defined over all taxons. Since we want the
length of an edge e ∈ E to resemble δ(e) as closely as possible, only positive
values are allowed. If a method for tree construction, e. g., [5, 6, 9, 13], assigns
negative or zero length to an edge, we set it to a small positive constant, e. g.,
to a fraction of the smallest positive edge length in the tree.

Let deg : V → N denote the number of edges incident to a vertex and note
that typical tree reconstruction methods yield rooted trees in which most inner
vertices have two children. We use root(T) to refer to the root of a tree T . Each
vertex v ∈ V \{root(T)} has an unique parent parent(v), and we denote the set of
children by children(v). For a vertex v ∈ V let T (v) be the induced subtree, i. e.,
the subtree of all descendants of v (including v itself). Clearly, T (root(T)) = T .
For a subtree T (v) of T we use leaves (T (v)) containing all vertices v in T (v)
which have deg(v) = 1 in T to denote the set of its leaves. Tree edges are directed
away from the root, i. e., for an edge (u, v) we have u = parent(v). We sometimes
use {u, v} to refer to the underlying undirected edge.

Finally, we assume that in ordered trees the outgoing edges are to be drawn
in counterclockwise order, i. e., for an inner vertex other than the root the coun-
terclockwise first edge after the incoming edge is that of the first child.

3 Radial Drawings

In this section, we describe a drawing algorithm that yields a planar radial draw-
ing of a phylogenetic tree T = (V,E, δ). It is NP-complete to decide whether a

1112 C. Bachmaier, U. Brandes, and B. Schlieper

graph can be drawn in the plane with prescribed edge lengths, even if the graph
is planar and all edges have unit lengths [4], but for trees we can represent any
assignment of positive edge lengths exactly.

3.1 Basic Algorithm

The main idea is to assign to each subtree T (v) a wedge of angular width propor-
tional to the number of leaves in T (v). The wedge of an inner vertex is divided
among its children, and tree edges are drawn along wedge angle bisectors, so
that they can have any length without violating disjointness. See Fig. 1 for il-
lustration. Algorithm 1 therefore traverses the input tree twice:

– in a postorder traversal, the number lv = |leaves(Tv)| of leaves in each subtree
T (v) is determined, and

– in a subsequent preorder traversal, a child w of an inner vertex v is placed
at distance δ(v, w) on the angular bisector of the wedge reserved for w.

w2

w1

v

u

!
v
/2

±
u

v
(

,
)

T w(2)

T w(1)leaves(
(

))

T
w

1

lea
ve

s(
(

))
T
w 2

±
v
w

(
,

)
1

±
v
w

(
,

)2!
w

2
1

!
w /22

!
w2

!
w1

!
v
/2

!
w /21

!
w /22

Fig. 1. Wedges of vertex v’s neighbors

The following theorem shows that the layouts determined by Algorithm 1 are
essentially the only ones that fulfill all natural requirements for radial drawings
of trees with given edge lengths.

Theorem 1. For an unrooted ordered phylogenetic tree T = (V,E, δ), there is a
unique planar radial drawing up to rotation, translation and scaling, that satisfies
the following properties:

1. Relative edge lengths are preserved exactly.
2. Disjoint subtrees are confined to disjoint wedges.
3. Subtrees are centered at the bisectors of their wedges.
4. The angular width of the wedge of a subtree is proportional to the number of

leaves in that subtree.

Moreover, it can be computed in linear time.

Drawing Phylogenetic Trees 1113

Algorithm 1: RADIAL-LAYOUT
Input: Rooted tree T = (V,E, δ)
Data: Vertex arrays l (number of leaves in subtree), ω (wedge size), and τ

(angle of right wedge border)
Output: Coordinates xv for all v ∈ V
begin

postorder_traversal (root(T))
xroot(T) ← (0, 0)
ωroot(T) ← 2π
τroot(T) ← 0
preorder_traversal (root(T))

end
procedure postorder_traversal(vertex v)

if deg(v) = 1 then
lv ← 1

else
lv ← 0
foreach w ∈ children(v) do

postorder_traversal(w)
lv ← lv + lw

procedure preorder_traversal(vertex v)
if v �= root(T) then

u← parent(v)
xv ← xu + δ(u, v) ·

(
cos(τv + ωv

2), sin(τv + ωv

2)
)

η ← τv
foreach w ∈ children(v) do

ωw ← lw
lroot(T)

· 2π
τw ← η
η ← η + ωw

preorder_traversal(w)

Proof. Choose any vertex as the root. By Property 4, the angular width of the
wedge of a subtree T (v) is

ωv = α · |leaves (T (v)) |
|leaves(T)| . (1)

If the root is altered such that u = parent(v) becomes a child of v in the newly
rooted tree T ′, then

|leaves (T ′(u)) |
|leaves(T ′)| =

|leaves(T)| − |leaves (T (v)) |
|leaves(T)| , (2)

1114 C. Bachmaier, U. Brandes, and B. Schlieper

so that the proportionality factor α = 2π and Properties 4, 3 and 2 imply that
angles between incident edges are independent of the actual choice of the root.
Since relative lengths of edges need to be preserved as well, layouts are unique up
to rotation, translation and scaling. Planarity is implied. Clearly, Algorithm 1
determines the desired layouts in linear time. ��

3.2 Extensions

Labels of leaves are placed on the angle bisector of the respective wedge. Since
the angle of a leaf wedge is 2π

|leaves(T)| , labels placed close to their leaf may not
fit into the wedge. When using a font of height h, non-overlapping labels are
guaranteed if they are placed at distance at least

h

2 · tan (π / |leaves(T)|) (3)

from the parent of their associated leaf.
While the number of leaves is a good indicator of how much angular space is

required by a subtree, other scaling schemes can be used to emphasize different
aspects such as height, size, or importance of subtrees.

Since child orders are respected by the algorithm, we may sort children ac-
cording to, say, the size of their subtrees in a preprocessing step. This serves to
modify the general appearance of the final layout.

While the confinement of subtrees to wedges of their own nicely separates
them, it also results in poor angular resolution and a fair amount of wasted
drawing space. We may thus wish to relax this requirement and increase an-
gles between incident edges where possible. This can be achieved during post-
processing using a bottom-up traversal, in which the angle between outgoing
edges of a vertex v are scaled to the maximum value possible within the wedge
of v rooted at parent(v) (see Fig. 2). Note that labels need to be be taken into
account in this angular spreading step, and that the resulting drawings depend
on the choice of root. Our experiments suggest that placing the root at the center
of the tree yields favorable results.

u

z

¯

°z

°
0

d

kx xv z
- k

2

±
u

v
(

,
)

v

w
k

b

z

!v

2
kx

x
v

z- k2

®(,)u v

b

Fig. 2. Increasing angles to fill empty strips around subtrees

Drawing Phylogenetic Trees 1115

4 Circle Drawings

Since it can be difficult to place labels in radial tree drawings, we describe a
second method to draw phylogenetic trees. Here, leaves are placed equidistantly
along the perimeter of a circle. Again, each leaf thus obtains a wedge of angular
width 2π

|leaves(T)| , but now the radius of the circle determines the maximum height
of the font according to (3). It is easy to see that, with this constraint, it might
not be possible to draw all edges e ∈ E with length proportional to δ(e). Edge
length preservation therefore turns into an optimization criterion.

4.1 Basic Algorithm

We use a variant of the weighted version of Tutte’s barycentric layout algo-
rithm [16, 17]. The general idea is to fix some vertices to the boundary of a
convex polygon and place all other vertices in the weighted barycenter of their
neighbors, i. e. vi is positioned at xi =

∑
vj∈V (aijxj) where aij is the relative

influence of vj on vi.
For circular drawings, the leaves of a tree T are fixed to a circle and we define

weights aij by (4). These weights reflect the desired edge lengths, i. e., the shorter
an edge {vi, vj} should be, the more influence has xj on the resulting coordinate
xi. In the original Tutte algorithm aij = 1

deg(vi)
. Note that the weights aij sum

up to 1 for each vi, so that vi is placed inside of the convex hull of its neighbors.
Since we fix leaves to the perimeter of a circle, we can expect in general that

an inner vertex of a tree is placed between its children on the one side and its
parent on the other side. To counterbalance the accumulated radial influence of
the children, their weight is scaled down.

sij =

1

δ(vi, vj) · (deg(vi)− 1)
if vi = parent(vj),

1
δ(vi, vj)

if vj = parent(vi)

aij =

sij∑

{vi,vj′}∈E sij′
if {vi, vj} ∈ E,

0 otherwise

(4)

In the following, let V = {v1, . . . , vn} with leaves(T) = {v1, . . . , vk} for k =⌈
n
2

⌉
. After fixing the leaves equidistantly around the circle, we need to solve

ak+1,1 . . . ak+1,n

...
...

an,1 . . . an,n

 ·

x1

...

xn

 =

xk+1
...
xn

 . (5)

1116 C. Bachmaier, U. Brandes, and B. Schlieper

By the following lemma, this can be done in linear time by traversing the tree
first in postorder to resolve the influence of leaves and then in preorder passing
down positions of parents.

Lemma 1. For vi ∈ V and vp = parent(vi) define coefficients

ci =

0 if vi ∈ leaves(T) ∪ {root(T)},
api

1−
∑

(vi,vj)∈E(aijcj)
otherwise (6a)

and offsets

di =

xi if vi ∈ leaves(T),∑

(vi,vj)∈E(aijdj)

1−
∑

(vi,vj)∈E(aijcj)
otherwise .

(6b)

Then, (5) has a unique solution with

xi =

{
di if vi = root(T),
cixp + di otherwise

(7)

for all inner vertices vi ∈ V \ leaves(T).

Proof. We use induction over the vertices. For the base case let vi be an inner
vertex having only leaves as children. Then in case vi �= root(T) let vp be the
parent of vi and thus

xi = apixp +
∑

(vi,vj)∈E

(aij xj︸︷︷︸
=dj

) =
api

1− 0
xp +

∑
(vi,vj)∈E(aijdj)

1− 0
=

=
api

1−
∑

(vi,vj)∈E(aijcj)
xp +

∑
(vi,vj)∈E(aijdj)

1−
∑

(vi,vj)∈E(aijcj)
= cixp + di .

(8)

The case vi = root(T) is a special case of (8) which uses only the second addend.
For the inductive step let vi �= root(T) be an inner vertex and vp the parent of
vi. Then

xi = apixp +
∑

(vi,vj)∈E

(aijxj)
i. h.= apixp +

∑
(vi,vj)∈E

(aij(cjxi + dj)) =

= apixp + xi

∑
(vi,vj)∈E

(aijcj) +
∑

(vi,vj)∈E

(aijdj) =

=
api

1−
∑

(vi,vj)∈E(aijcj)
xp +

∑
(vi,vj)∈E(aijdj)

1−
∑

(vi,vj)∈E(aijcj)
= cixp + di .

(9)

The proof for vi = root(T) is a special case of (9) which uses only the second
addend. ��

Drawing Phylogenetic Trees 1117

Algorithm 2: CIRCLE-LAYOUT
Input: Ordered rooted tree T = (V, E, δ)
Data: Vertex arrays c (coefficient), d (offset), and edge array s (weighting)
Output: Coordinates xv in/on the unit circle for each vertex v ∈ V

begin
i← 0
k ← 0
foreach v ∈ V do

if deg(v) = 1 then k ← k + 1

postorder_traversal (root(T))
preorder_traversal (root(T))

end
procedure postorder_traversal(vertex v)

foreach w ∈ children(v) do
postorder_traversal(w) // opt. ordered by h(w) + δ(v,w)

if is_leaf(v) or (v = root(T) and deg (root(T)) = 1) then
cv ← 0
dv ← cos 2πi

k
, sin 2πi

k
// fix vertex on circle

i← i + 1
else

S ← 0
foreach adjacent edge e← {v, w} do

if v = root(T) or w = parent(v) then
se ← 1

δ(e)

else
se ← 1

δ(e)·(deg(v)−1)

S ← S + se

t← t′ ← 0
foreach outgoing edge e← (v, w) do

t← t + se
S
· cw

t′ ← t′ + se
S
· dw

if v �= root(T) then
e← (parent(v), v)
cv ← se

S·(1−t)

dv ← t′

1−t

procedure preorder_traversal(vertex v)
if v = root(T) then

xv ← dv

else
u← parent(v)
xv ← cv · xu + dv

foreach w ∈ children(v) do
preorder_traversal(w)

1118 C. Bachmaier, U. Brandes, and B. Schlieper

Theorem 2. For a rooted ordered phylogenetic tree T = (V,E, δ), there is a
unique planar circle drawing up to rotation, translation, and scaling, that satisfies
the following properties:

1. Leaves are placed equidistantly on the perimeter of a circle.
2. Disjoint subtrees are confined to disjoint wedges.
3. Inner vertices are placed in the weighted barycenter of their neighbors with

weights defined by Eq. (4).

Moreover, it can be computed in linear time.

The most general version of Tutte’s algorithm for arbitrary graphs fixes at
least one vertex of each component and simply places each vertex in the barycen-
ter of its neighbors, which yields a unique solution. The running time corre-
sponds to solving n symmetric equations, which can be done in O(n3) time.
For planar graphs O(n logn) time can be achieved [8], but it is not known
whether this is also a lower bound. We showed that for trees with all leaves
in convex position, the running time is in O(n). Giving up planarity this re-
sult can be generalized to trees having arbitrary fixed vertices (at least one).
Consider a fixed inner vertex v and let each other vertex w in the subtree
T (v) be free. Then T (v) collapses to the position of v. On the other hand, if
v has a fixed ancestor u, then all positions of vertices in T (v) are computed
and for the rest a restart on T \T (v) ∪ {v} computes all remaining positions.
It follows by induction that our algorithm computes in O(n) time the unique
solution.

Note that the desirable property of disjoint subtree wedges together with
the circular leaves constraint further restricts the class of edge lengths that
can are represented exactly. Nevertheless, our experiments indicate that typical
phylogenetic tree metrics are represented fairly accurately.

4.2 Extensions

Our weights depend on the choice of the root, since re-rooting the tree changes
weights along the path between the previous and the new root. The rationale
behind reducing the influence weights of children suggests that the tree should be
rooted at its center (minimum eccentricity element). Using weights independent
of the parent-child relation the layout can be made independent of the root just
like the radial layouts discussed in the previous section.

It is easy to see that by fixing the order of leaves we are also fixing the child
order of all inner vertices. If no particular order is given, we can permute the
children of inner vertices to improve edge lengths preservation. Ordering the chil-
dren of each vertex v according to ascending height h(w) of the subtrees T (w)
plus δ(v, w) ensures that shallow and deep subtrees are never placed alternat-
ingly. See Fig. 3. Though sorting the children leads to O(n log n) preprocessing

Drawing Phylogenetic Trees 1119

time in general, most phylogenetic trees have bounded degree, so that sorting
can be performed in linear time.

Since correct edge lengths cannot be guaranteed in circle drawings, we use
the following coloring scheme to depict the error: Let σ = e=(u,v)∈E‖xv−xu‖2

e∈E δ(e)

be the mean resolution of the drawing, i. e., the scaling factor between drawn
units and length units of δ. Then we obtain the (multiplicative) error of an edge
e = (u, v) by fe = ‖xu−xv‖2

σ·δ(e) , which we encode into a color rgb: R+ → [0; 1]3

by

rgb(fe) =

(0, 0, 1) if fe ≤ 1

2 ,

(0, 0,− log2(fe)) if 1
2 < fe < 1,

(log2(fe), 0, 0) if 1 ≤ fe < 2,
(1, 0, 0) if 2 ≤ fe .

(10)

so that blue and red signify edges that are too short and too long, respectively.
100% red means that the edge is at least twice as long as desired whereas 100%
blue means that the edge should be at least twice as long. Weaker saturation
reflects intermediate values. Black edges have the correct lengths.

v

Fig. 3. Ordering children according to subtree hight supports postulated edge lengths

5 Discussion

We have presented two linear-time algorithms for drawing phylogenetic trees.
Example drawings are shown in Figs. 4 and 5. Both are easy to implement
and scale very well. While the algorithm for radial drawings preserves edge
lengths exactly, the algorithm for circle drawings is constrained by having leaves
fixed on the perimeter of a circle. Since each inner vertex is positioned in
the weighted barycenter of its neighbors, it would be interesting to devise a
weighting scheme that, in a sense to be defined, is provably optimal with re-
spect to the pre-specified edge lengths. A related open question is the com-
plexity status of deciding whether a circle drawing preserving the edge lengths
exists.

1120 C. Bachmaier, U. Brandes, and B. Schlieper

pseudomona

microc
occu

shewanella

sa
lm

on
ell

a

eco
li--

bacillus--

m
y
co

-g
en

tl

C
h
la

m
y
d
ia

B

th
e
rm

o
to

g
a

b
o
re

li
a
-b

de
in
on

em
a-

T
th

er
m

o
p
h
i

T
aq

u
at

iu
s

plectonema
gloeobacte

anacystis-

gracilaria

p
orp

h
yra--

sm
ith

o
ra

--

lam
inaria-coscinodia

cyclotella

ochromonas

cynophora

raphidonem

as
ta

sia
---eugle
na--

-

b
ry

o
p
si
s-

-

ch
lo

re
ll
a
-

go
n
iu

m
--
--

ch
la
m
yd

om
o

ch
ara-----

n
ico

-ta
b
a
c

n
ico

-sy
l-A

a
ra

b
id

o
p
si

g
ly

c
in

e
--
-

(a) Our basic algorithm

pseudomona

micro
coc

cu

shewanella
sa

lm
on

ell
a

eco
li--

bacillus--

m
y
co

-g
en

tl

C
h
la

m
y
d
ia

B

th
e
rm

o
to

g
a

b
o
re

li
a
-b

de
ino

ne
ma-

T
th

er
m

o
p
h
i

T
aq

ua
ti
us

plecto
nema

gloeobacte

anacystis-
grac

ilari
a

p
o
rp

h
y
ra

--

sm
ith

o
ra

--

lam
inaria-

coscinodia

cyclotella

ochromonas

cynophora

rap
hidonem

as
ta

si
a-

--eu
gle

na

b
ry

o
p
sis--

c
h
lo

re
ll
a
-

g
o
n
iu

m
--
--

ch
la
m
yd

om
o

chara-----

nico-tabac
nico-syl-A

a
ra

b
id

o
p
si

g
ly

c
in

e
--
-

(b) Angle-spread extension

Fig. 4. Radial drawing examples

pseudomona

micrococcu

shewanella

salmonella
ecoli-----bacillus--

m
y
co

-g
en

tl

C
h
la

m
y
d
ia

B

th
erm

o
to

g
a

b
o
re

lia
-b

d
e
in

o
n
e
m

a
-

T
th

e
rm

o
p
h
i

T
a
q
u
a
ti
u
spl
ec

to
ne

m
agl

oe
ob

ac
te

an
ac

ys
tis

-

g
ra

c
il
a
ri
a

po
rp

hy
ra

--

sm
ith

or
a-
-

lam
ina

ria
-

cos
cin

odia

cyclotell
a

o
ch

ro
m

o
n
a
s

cy
n
o
p
h
o
ra

rap
hidonem

astasia

euglena---

b
ry

o
p
sis--

ch
lo

rella
-

g
o
n
iu

m

c
h
la

m
y
d
o
m

o

chara-----

nico-tabac

nico-syl-A

arabidopsi

glycine---

(a) Our basic algorithm

ps
eu

do
mon

a

micro
coc

cu

shewanella

sa
lm

on
el
la

ec
ol
i--

b
a
ci
ll
u
s-
-

m
yco-gentl

C
h
la

m
y
d
ia

B

th
erm

o
to

g
a

b
o
re

lia
-b

d
e
in

o
n
e
m

a
-

T
th

e
rm

o
p
h
i

T
a
q
u
a
ti
u
s

plectonema

gloeobacte

anacystis-

g
ra

ci
la

ri
a

po
rp

hy
ra

--

smithora
--

laminaria-

coscinodia

cyclotella

oc
hr

om
on

ascy
no

ph
or

a

raphidonem

astasia---

euglena---

b
ry

o
p
sis--c

h
lo

re
ll
a
-

g
o
n
iu

m
--
--

ch
la

m
y
d
o
m

o

chara-----
nico-tabacnico-syl-A

a
ra

b
id

o
p
si

g
ly

cin
e---

(b) Re-rooted at center

Fig. 5. Circular drawing examples

Acknowledgment. We wish to thank Lars Volkhardt for implementing our
algorithms in Java using yFiles version 2.3 [19], and Falk Schreiber from the
Institute of Plant Genetics and Crop Plant Research in Gatersleben for providing
real-world data.

Drawing Phylogenetic Trees 1121

References

1. S. F. Carrizo. Phylogenetic trees: An information visualization perspective. In
Y.-P. Phoebe Chen, editor, Asia-Pacific Bioinformatics Conference (APBC 2004),
volume 29 of CRPIT, pages 315–320. Australian Compter Science, 2004.

2. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

3. P. Eades. Drawing free trees. Bulletin of the Institute of Combinatorics and its
Applications, 5:10–36, 1992.

4. P. Eades and N. C. Wormald. Fixed edge-length graph drawing is NP-hard.
Discrete Applied Mathematics, 28:111–134, 1990.

5. J. Felsenstein. Maximum likelihood and minimum-steps methods for estimating
evolutionary trees from data on discrete characters. Systematic Zoology, 22:240–
249, 1973.

6. W. M. Fitch. Torward defining the course of evolution: Minimum change for a
specified tree topology. Systematic Zoology, 20:406–416, 1971.

7. M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

8. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16:346–358, 1979.

9. C. D. Michener and R. R. Sokal. A quantitative approach to a problem in classi-
fication. Evolution, 11:130–162, 1957.

10. R. D. M. Page. TreeView. http://taxonomy.zoology.gla.ac.uk/rod/treeview.
html. University of Glasgow.

11. PHYLIP.Phylogeny inference package. http://evolution.genetics.washington.
edu/ phylip.html.

12. E. M. Reingold and J. S. Tilford. Tidies drawing of trees. IEEE Transactions on
Software Engineering, 7(2):223–228, 1981.

13. N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

14. D. L. Swofford. PAUP∗. Phylogenetic analysis using parsimony (and other meth-
ods). http://paup.csit.fsu.edu/. Florida State University.

15. D. L. Swofford, G. J. Olsen, P. J. Waddel, and D. M. Hillis. Phylogenetic inference.
In D. Hillis, C. Moritz, and B. Mable, editors, Molecular Systematics, pages 407–
514. Sinauer Associates, 2nd edition, 1996.

16. W. T. Tutte. Convex representations of graphs. In Proc. London Mathematical
Society, Third Series, volume 10, pages 304–320, 1960.

17. W. T. Tutte. How to draw a graph. In Proc. London Mathematical Society, Third
Series, volume 13, pages 743–768, 1963.

18. J. Q. Walker. A node-positioning algorithm for general trees. Software Practice &
Experience, 20(7):685–705, 1990.

19. R. Wiese, M. Eiglsperger, and M. Kaufmann. yFiles: Visualization and automatic
layout of graphs. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proc. Graph
Drawing 2001, volume 2265 of LNCS, pages 453–454. Springer, 2002.

Localized and Compact Data-Structure for
Comparability Graphs

(Extended Abstract)

Fabrice Bazzaro� and Cyril Gavoille�

LaBRI UMR CNRS 5800, Université Bordeaux 1, 33405 Talence Cedex, France
{bazzaro, gavoille}@labri.fr

Abstract. We show that every comparability graph of any two-
dimensional poset over n elements (a.k.a. permutation graph) can be
preprocessed in O(n) time, if two linear extensions of the poset are given,
to produce an O(n) space data-structure supporting distance queries in
constant time. The data-structure is localized and given as a distance
labeling, that is each vertex receives a label of O(log n) bits so that dis-
tance queries between any two vertices are answered by inspecting on
their labels only. As a byproduct, our data-structure supports all-pair
shortest-path queries in O(d) time for distance-d pairs, and so identifies
in constant time the first edge along a shortest path between any source
and destination. More fundamentally, we show that this optimal space
and time data-structure cannot be extended for higher dimension posets
(we prove that for comparability graphs of three-dimensional posets, ev-
ery distance labeling scheme requires Ω(n1/3) bit labels).

1 Introduction

The dimension of a partially ordered set (or poset for short) P = (V,<) is
a fundamental invariant. It is the minimum number d of totally ordered sets
(V,<1), . . . , (V,<d) whose intersection is P , i.e., x < y if and only if x <i y
for all i ∈ {1, . . . , d}. Each total order <i is called linear extension of P , and a
k-dimensional poset is a poset of dimension at most k.

The comparability graph of a poset P = (V,<) is the graph G = (V,E) such
that {x, y} ∈ E if and only if x < y or y < x. The important point is that all
posets with the same comparability graph have the same dimension [5]. So the
comparability graph is definitively a fundamental tool for the study of posets.

Of special interest are the two-dimensional posets because they can be charac-
terized in term of a single ordering [15]. It is NP-complete to recognize posets of
dimension three [33] whereas linear time (linear in the size of the relation) algo-
rithms exist for two-dimensional posets [26]. Actually, the comparability graphs
of two-dimensional posets are exactly the permutation graphs, namely the inter-
section graphs of straight segments between two parallel lines [3]. Intersection
� The two authors are supported by the project “PairAPair” of the ACI Masses de

Données.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1122–1131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Localized and Compact Data-Structure for Comparability Graphs 1123

graphs are graphs in which vertices are mapped to objects, with the vertices
defined to be adjacent if and only if the corresponding objects have nonempty
intersection. See [27] for a comprehensive introduction to the intersection graphs.

This paper deals with the problem of the distance computation and dis-
tributed abilities of comparability graphs. Commonly, when we make a query
concerning a set of nodes in a graph (adjacency, distance, connectivity, etc.), we
need to make a global access to the structure. In our approach, the compromise is
to store the maximum of information in a label associated with a vertex to have
directly what we need with a local access. Motivation of localized data-structures
in distributed computing is surveyed and widely discussed in [19].

We are especially interested in the distance labeling problem, introduced
in [28]. The problem consists in labeling the vertices of a graph to compute
the distance between any two of its vertices x and y using only the information
stored in the labels of x and y, without any other source of information. The
main parameters taken into account when designing a solution are: (1) length (in
bits) of the labels; (2) time complexity to decode the distance from the labels;
and (3) time complexity to preprocess the graph and to compute all the labels.

Related works. Distance computation in graphs is one of the most fundamental
graph algorithmic problem. Computing the distance matrix of a general graph
is strongly related to Boolean matrix multiplication [13], and achieving this task
as quickly as possible is a widely open problem.

However, the time complexity of this problem is known, and can be reduced
significantly from the naive O(n3) upper bound, for many families of graphs:
planar graphs [12, 25, 31], bounded tree-width graphs [6], interval graphs [2, 7,
18], etc.

Beyond the classical all-pair distance problem, whose goal is to preprocess
(possibly linearly) a graph and to produce a data-structure supporting distance
or shortest-path queries in the minimum time complexity, the distance labeling
problem is a variant in which the queries must be answered locally, by looking
at the information related to the concerned vertices only. Introduced in [28],
it generalizes adjacency labeling [1, 23] whose goal is only to decide whether
the distance is 1 or not between any two vertices. At this point, it is worth
to mention that any distance labeling scheme on a family F of graphs with
(n) bit labels converts trivially into a non-distributed data-structure for F
of O((n) · n/ logn) space supporting distance queries within the same time
complexity, being assumed that a cell of space can store Ω(logn) bits of data.

The main results on the field are that general graphs support a distance
labeling scheme with labels of O(n) bits [20], and that trees [1, 28], bounded
tree-width graphs [20], distance-hereditary graphs [17], bounded clique-width
graphs [11], some non-positively curved plane graphs [8], interval and permu-
tation graphs, all support distance labeling schemes with O(log2 n) bit labels.
There are also deep results concerning approximated distance labeling schemes
we will not discuss here, e.g., see [16, 30, 31, 32].

The O(n) bit upper bound is tight for general graphs, and a lower bound of
Ω(log2 n) bit on the label length is known for trees [20], implying that all the

1124 F. Bazzaro and C. Gavoille

results mentioned above are tight as well, excepted for interval and permutation
graphs that does not contain trees. Recently, [18] showed an optimal bound of
O(log n) bits for interval graphs and circular-arc graphs.

Concerning permutation graphs, we should mention the related work of [29].
It is shown how to compute one fixed BFS tree and DFS tree in O(n) and
O(n log logn) time respectively when the permutation of the graph is given. Al-
though original, the technique is limited; it does not allow us to choose arbitrarily
the root of the trees.
Our results. In this paper, we are only interested in comparability graphs, and in
particular the permutation graphs, the comparability graphs of two-dimensional
posets. This latter family is well-known and have a lot of valuable properties due
to its characterizations as a partially ordered sets [15], as an intersection graph of
segments between two parallel lines [21] or as an Asteroidal Triple-free graph [10].

We show that permutation graphs with n vertices enjoy a distance labeling
with labels of length O(log n) bits, more precisely 9 �logn�+6 bits. The distance
can be computed in constant time, and all the labels are computed in O(n) time
if a realizer (the two linear extensions of the poset) is given. (Such realizer can
be obtained be in O(n +m) time [26] otherwise, m the number of edges). This
result has optimal complexities (label length, distance decoder time complexity,
and preprocessing time complexity). It improves within a logn factor on the
label length the previous result of Katz, Katz and Peleg [24] in the STACS ’00.

We also show that 3 logn bits for the label length of any labeling distance
scheme is inevitably in the worst-case. As intermediate combinatorial result to
prove this latter Information-Theoretic lower bound, and of independent interest,
we prove that there are 2Ω(n log n) unlabeled permutation graphs with n vertices.

As remarked previously, this leads to an optimal O(n) space data-structure
supporting distance queries in constant time, and computable in O(n) time. We
also show how to adapt our data-structure such that a length-d shortest path
can be extracted in O(d) time for any distance-d pair of vertices. One can also
use our localized data-structure to identify the first shortest-path edge, and we
therefore present a new shortest-path compact routing scheme for permutation
graphs, improving the result of [14]. All these results can be extended to circular
permutation graphs, a natural generalization of permutation graphs.

Looking for a generalized scheme with O(f(d) log n) bit labels for all compara-
bility graphs of d-dimensional posets, we have proved that unfortunately no such
function f(d) can exist. More precisely, for every distance labeling scheme, there
are comparability graphs of posets of dimension three that requires Ω(n1/3) bit
labels. This makes a difference between comparability graphs of two- and three-
dimensional posets for distance computation. This could not be observed when
only adjacency is required, since O(log n) bit labels suffices for comparability
graphs of bounded dimension posets.

Outline of the paper. Let us sketch our distance labeling scheme. We use a 2D geo-
metric representation of the permutation graph, each vertex being associated with
a point of N2, and u is adjacent to v if and only if v is in the South-East or North-
West quadrant aroundu (cf. Fig. 2). For our purpose, two sets of points (or vertices)

Localized and Compact Data-Structure for Comparability Graphs 1125

are of special interests: those with no neighbors in their North-West quadrant (call
A), and those with no neighbors in their South-East quadrant (callB). Intuitively,
one can always construct a shortest path between non-adjacent vertices by using
only edges alternating between A and B. The main difficulty resides in deciding
whether the first edge must be incident to a vertex of A or of B.

The first trick is to treat differently short and long distances. We entirely
characterize distances � 3 by comparing the coordinates of six specific vertices
spread around each vertex (three belongs to A and three to B). Then, for long
distances, i.e., distances � 4, we show that they reduce to the distance com-
putation between vertices of two intermediate graphs, GA and GB, defined on
respectively the vertices of A and of B. The edges of GA and GB are entirely
determined by an asymmetric relation between the points of A and of B, and
we show that a distance labeling for these graphs with O(log n) bit labels is pos-
sible. The distance is then computed by evaluating the distance in the graphs
GA and GB between the six points associated with the source and the six points
associated with the destination.

Finally, after several optimizations, the resulting data-structure is extremely
simple. It is composed of 9 integers of {0, . . . , n− 1} plus 6 bits. The distance
decoder simply consists of a constant number of additions and comparisons on
these integers.

Background and preliminaries are presented in Section 2, and the implemen-
tation of the scheme is presented in Section 3. An extension of the data-structure
for all-pair shortest-path queries, compact routing, and to circular permutation
graphs is discussed in Section 4.

Due to space limitation, the proofs can be found in [4].

2 Preliminaries

We consider simple undirected graphs. Moreover, along this paper, we will as-
sume that graphs are connected. We denote by dG(u, v) the distance between u
and v in G. For a vertex u of graph G, we denote by N(u) the set of neighbors
of u, and N [u] := N(u) ∪ {u}.

A permutation graph is an intersection graph of straight segments between
two parallel lines [21]. On Fig. 1, Segment 1 intersects the segments 2,5,6,7, so in
the permutation graph vertex 1 is adjacent to the vertices 2,5,6,7. More formally,
a permutation graph is isomorphic to a graph G = (V,E) with V = {1, . . . , n}
such that there exists a permutation π of V , called realizer of G, satisfying: u is
adjacent to v if and only if u < v and π−1(u) > π−1(v).

It is not difficult to see that the isomorphism and the permutation π can be
combined to form two linear extensions of a 2-dimensional poset. Actually, per-
mutation graphs are exactly the comparability graphs of 2-dimensional posets [3].

We can draw in the plane a permutation graph G with the realizer π, by
associating with each vertex u ∈ {1, . . . , n} the point of coordinates (u, π−1(u)).
Within this graphic representation, the neighbors of u are the points located in
the North-West and South-East quadrants around u (see Fig. 2 for an example).

1126 F. Bazzaro and C. Gavoille

10

4

27

8

11
1 2 3 4 5 6 7 8 9

4 9387 2 15 6 11 10

10 11u =

π =

6

91

5
3

Fig. 1. A permutation graph G with the realizer π = (5, 7, 2, 6, 1, 11, 8, 10, 4, 3, 9)

Hereafter, we assume that G = (V,E) is a given connected permutation graph,
and π a realizer of G. Since V = {1, . . . , n}, we use the total ordering on natural
numbers as total ordering of the vertices of G. We partition the neighbors of u
in the subsets N+(u) := {v ∈ N(u) | v > u} and N−(u) := {v ∈ N(u) | v < u}
(see left side of Fig. 2).

We distinguish two particular subsets of vertices, A and B depicted in
black and gray on Fig. 2, defined by A := {u ∈ V | N−(u) = ∅} and B :=
{u ∈ V | N+(u) = ∅}. Note that A and B are nonempty stables of G. If G is
connected and has at least one edge, then A ∩B = ∅. Moreover, we check that
G is bipartite if and only if V = A ∪B.

Lemma 1. For every u ∈ V , there exist a−(u), a+(u) ∈ A such that a−(u) �
a+(u) and N [u]∩A = [a−(u), a+(u)]∩A. Similarly, there exist b−(u), b+(u) ∈ B
such that b−(u) � b+(u) and N [u] ∩B = [b−(u), b+(u)] ∩B.

According to Lemma 1, N [u] ∩ A and N [u] ∩ B are never empty and are
consecutive in A and B respectively. Observe also that necessarily a−(u) =
min {N [u] ∩A} and a+(u) = max {N [u] ∩A}, and similarly for b−(u) and b+(u).

Hereafter, we denote by GA the intersection graph of the family
{[b−(u), b+(u)] | u ∈ A}. Similarly, we denote by GB the intersection graph of
the family {[a−(u), a+(u)] | u ∈ B}. By construction, GA and GB are interval
graphs with vertex sets A and B respectively. As we will see later in Lemma 4,
GA and GB are proper interval graphs.

The interesting connection between G and GA, GB is the following:

Lemma 2. For all u, v ∈ A, dG(u, v) = 2dGA(u, v), and for all u, v ∈ B,
dG(u, v) = 2dGB (u, v).

E.g., in our example, dG(1, 9) = 4 because 1, 9 ∈ A and dGA(1, 9) = 2. By
Lemma 2, since G is connected, GA and GB are connected too. We are now
ready to prove the main result of this section that is the heart of our distance
decoder.

Theorem 1. Let u, v be two vertices with u < v. Then,

1. if π−1(u) > π−1(v), then dG(u, v) = 1;
2. otherwise, if a−(v) � a+(u) or b−(v) � b+(u), then dG(u, v) = 2;
3. otherwise, if a−(v) � a+(b+(u)) or b−(v) � b+(a+(u)), then dG(u, v) = 3;

Localized and Compact Data-Structure for Comparability Graphs 1127

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

u

π−1(u)

A

B

N+(u)

N−(u)
u

Fig. 2. Graphic representation of the permutation graph of Fig. 1

4. otherwise, dG(u, v) is the minimum between the four distances:

• 2 + 2dGB (b+(u), b−(v))
• 2 + 2dGA(a+(u), a−(v))

• 3 + 2dGA(a+(b+(u)), a−(v))
• 3+2dGB(b+(a+(u))), b−(v))

3 Implementation of the Scheme

Distance labeling for proper interval graphs. An interval graph is the intersection
graph of a family of intervals of the real line. The layout of an interval graph is
the set of intervals associated with each vertex of the graph. A layout is proper
if no intervals are strictly contained in another one, i.e., there are no intervals
[a, b] and [c, d] with a < c and d < b (however a = c, or b = d is possible). The
graphs having such layouts are called proper interval graphs.

Motivated by Lemma 2, we will use as a sub-routine the distance labeling
scheme of [18] for proper interval graphs that we need to detail. To compute all
the labels in O(n) time, the scheme of [18] takes as input a proper layout in a
special form: a normalized proper layout. A layout is normalized if: (1) the left
boundaries of the intervals are distinct; (2) the intervals are sorted according to
their left boundaries (so there is a way to list them in O(n) time by increasing left
boundary); (3) the boundaries are integers bounded by some polynomials of n (so
that boundaries can be manipulated in constant time on RAM-word computers).
Note that the layouts provided by the linear time recognizing algorithms of [9, 22]
have such properties. Observe also that a layout satisfying properties (2) and
(3) can be easily transformed in O(n) time in a normalized layout by scanning
all the intervals by increasing left boundaries.

Consider any connected proper interval graph H with n vertices with a nor-
malized proper layout LH = {[lH(u),rH(u)] | u ∈ V (H)}. In [18], it has been
proved that in O(n) time it is possible to compute two mappings λH , σH :

1128 F. Bazzaro and C. Gavoille

V (H) → {0, . . . , n− 1} such that the distance between any two vertices x, y
can be computed as combinations of λH(x), σH(x) and λH(y), σH(y). In other
words, the family of proper interval graphs supports a distance labeling scheme
with 2 �logn� bit labels, and this is tight up to an additive log logn term [18].
The mappings λH and σH are respectively based on a BFS and a DFS initiated
from the vertex x0 of H whose left boundary is minimum in LH .

Let us define the binary relation adjH(x, y) ∈ {0, 1} by: adjH(x, y) = 1 if
and only if λH(x) < λH(y) and σH(x) > σH(y). These mappings satisfy the
following properties:

Lemma 3 ([18]). For all distinct vertices x and y of H with λH(x) � λH(y):

1. dH(x, y) = λH(y)− λH(x) + 1− adjH(x, y).
2. λH(x) = dH(x0, x).
3. σH is bijective.
4. If λH(x) = λH(y), then lH(x) < lH(y) if and only if σH(x) < σH(y).

Lemma 4. The families IA := {[b−(u), b+(u)] | u ∈ A} and IB :=
{[a−(u), a+(u)] | u ∈ B} are proper layouts of the graphs GA and GB.

Distance decoder. At this step, we have enough material to prove that permuta-
tion graphs enjoy an O(log n) bit distance labeling scheme. Indeed, Theorem 1
can be easily implemented with short labels. Each vertex u could store: (1) the
integers u and π−1(u) in order to compute distances � 1; (2) the x-coordinates
about the six vertices a−(u), a+(u), b−(u), b+(u), a+(b+(u)), b+(a+(u)) for dis-
tances 2 and 3; and (3) the distance labels (two integers per label) in the proper
interval graphs GA and GB about the same six vertices for distances � 4. The
resulting label is composed of a total of 2 + 6 + 6 × 2 = 20 integers in O(n).
Thus such a label is of length 20 logn + O(1) bits. However, we will show how
to significantly reduce this length.

In order to apply the result of [18] (Lemma 3) we need to transform the
initial layouts IA and IB into the normalized layouts that we denote hereafter by
LA = {[lA(u),rA(u)] | u ∈ A} and LB = {[lB(u),rB(u)] | u ∈ B} respectively.
Clearly, all the boundaries of IA and of IB are in O(n), so sorting them can be
done in O(n) time. Actually, we check that the left boundaries of IA and IB are
already sorted if A and B are sorted. To produce normalized layouts, the left
boundaries are ordered and distinguished with the following rule:

∀u, v ∈ A, lA(u) < lA(v) iff b−(u) < b−(v), or b−(u) = b−(v) and u < v.

Similary, left boundaries of B are ordered such that lB(u) < lB(v) if and only
if a−(u) < a−(v), or a−(u) = a−(v) and u < v. This can be done in linear
time by scanning the left boundaries of IA (and of IB) by increasing order, and
by shifting them to produce LA. We check that the resulting boundaries are in
O(n). We can prove the following properties for the layouts LA and LB:

Lemma 5. For all u, v ∈ A, u < v if and only if lA(u) < lA(v). Similarly, for
all u, v ∈ B, u < v if and only if lB(u) < lB(v).

Localized and Compact Data-Structure for Comparability Graphs 1129

Let λA, σA and λB , σB be the mappings obtained after application of Lemma 3
for the graphs GA and GB with normalized proper layouts LA and LB . We are
now ready to define the label of u, which is composed of the 14 following fields:

label(u) := 〈u, π−1(u), λA(a), σA(a), λB(b), σB(b), . . . 〉

for all a ∈ {a−(u), a+(u), a+(b+(u))} and b ∈ {b−(u), b+(u), b+(a+(u))}.
The information about the six vertices needed to compute the 4 distances

involved at Step 4 of Theorem 1 is available in the labels. So, when implementing
the distance decoder the only problem concerns the comparison tests between
vertices, involved at Steps 2 and Steps 3 of Theorem 1. For these two steps, we
need to make comparison tests between some vertices of A or some vertices of
B. Typically, in Step 2 for instance, we need to test whether a−(v) � a−(u) or
not. The problem is solved thanks to the next lemma.

Lemma 6.
For all au, av ∈ A,
au � av if and only if:

• σA(au) = σA(av), or
• λA(au) < λA(av), or
• λA(au) = λA(av) and
σA(au) < σA(av).

For all bu, bv ∈ B,
bu � bv if and only if:

• σB(bu) = σB(bv), or
• λB(bu) < λB(bv), or
• λB(bu) = λB(bv) and
σB(bu) < σB(bv).

Therefore, according to Lemma 3, Lemma 6 and Theorem 1, the distance
decoder takes a constant number of integer additions and comparisons.

Label size. Since each field of label(u) ranges in {0, . . . , n− 1} (formally we need
to decrease by 1 the two first fields), the label size is a priori 14 �logn�. However
we will work a little and use correlations between some values of label(u) to
reduced it to 9 logn + O(1). As we will see all the six λ’s values involved in
label(u) are strongly related.

The precise description of the final implementation of label(u) is given in the
proof of Lemma 7, which is based on the following fact: Let u ∈ V . For all
a ∈ N [u] ∩A and b ∈ N [u] ∩B, |λA(a)− λB(b)| � 1.

Lemma 7. Labels are of 9 �logn� + 6 bits at most, and it takes constant time
to decode the distance from the labels.

In [4] we show that label(u) for all u ∈ V can be computed in linear time
once the realizer π is given. Combining this with Lemma 7, we obtain:

Theorem 2. Permutation graphs with n vertices enjoy a distance labeling
scheme using labels of 9 �log n�+ 6 bits. The distance decoder has constant time
complexity, and given a realizer of the graph, i.e., a permutation of {1, . . . , n},
all the labels can be computed in O(n) time.

1130 F. Bazzaro and C. Gavoille

4 Extensions

The full explanations of the following results are presented in [4].

Theorem 3. Given a realizer of a permutation graph of n vertices, one can
construct in O(n) time an O(n) space data-structure supporting all-pair shortest
path extraction in linear time (linear in the length of the shortest path returned).

Theorem 4. Permutation graphs have a shortest-path routing scheme with con-
stant time protocol, and with O(log n) bit addresses, and, for every vertex u, the
routing table of u is of size O(deg(u) logn) bits. If the graph is bipartite then the
size of the local routing tables can be reduced to O(log n) bit per vertex. Moreover,
given a realizer of the graph, addresses and routing tables can be constructed in
O(n) time.

Theorem 5. Circular permutation graphs with n vertices enjoy a distance la-
beling scheme with O(log n) bit labels and constant time distance decoder.

Theorem 6. There are comparability graphs of three-dimensional posets for
which every distance labeling scheme requires Ω(n1/3) bit labels.

Theorem 7. The number P (n) of labeled n-vertex connected permutation
graphs satisfies 1

n logP (n) � 2 logn − O(log logn). It follows that there are
2Ω(n log n) unlabeled n-vertex permutation graphs.

Theorem 8. Any distance labeling scheme on the family of n-vertex permuta-
tion graphs requires a label of length at least 3 logn−O(log logn) bits.

References

1. S. Alstrup, P. Bille, and T. Rauhe, Labeling schemes for small distances in
trees, in 14th Symp. on Disc. Algorithms (SODA), ACM-SIAM, 2003, pp. 689–698.

2. M. Atallah, D. Chen, and D. Lee, An optimal algorithm for shortest paths on
weighted interval and circular-arc graphs, with applications, Algorithm., 14 (1995).

3. K. A. Baker, P. C. Fishburn, and F. S. Roberts, Partial orders of dimension
2, Networks, 2 (1971), pp. 11–28.

4. F. Bazzaro and C. Gavoille, Localized and compact data-structure for compa-
rability graphs, RR-1343-05, LaBRI, University of Bordeaux 1, Feb. 2005.

5. A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes – A survey, SIAM
Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.

6. S. Chaudhuri and C. D. Zaroliagis, Shortest paths in digraphs of small
treewidth. Part I: Sequential algorithms, Algorithmica, 27 (2000), pp. 212–226.

7. D. Chen, D. Lee, R. Sridhar, and C. Sekharan, Solving the all-pair shortest
path query problem on interval and circular-arc graphs, Networks, 31 (1998).

8. V. D. Chepoi, F. F. Dragan, and Y. Vaxes, Distance and routing labeling
schemes for non-positively curved plane graphs, J. of Algorithms, (2005).

9. D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague, Simple
linear time algorithm of unit interval graphs, Inf. Proc. Letters, 55 (1995).

Localized and Compact Data-Structure for Comparability Graphs 1131

10. D. G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, SIAM
Journal on Discrete Mathematics, 10 (1997), pp. 399–430.

11. B. Courcelle and R. Vanicat, Query efficient implementation of graphs of
bounded clique-width, Discrete Applied Mathematics, 131 (2003), pp. 129–150.

12. H. N. Djidjev, Efficient algorithms for shortest path queries in planar digraphs,
in 22nd WG, vol. 1197 of LNCS, Springer, June 1996, pp. 151–165.

13. D. Dor, S. Halperin, and U. Zwick, All-pairs almost shortest paths, SIAM
Journal on Computing, 29 (2000), pp. 1740–1759.

14. F. F. Dragan and I. Lomonosov, New routing schemes for interval graphs,
circular-arc graphs, and permutation graphs, in 14th PDCS, Nov. 2002, pp. 78–83.

15. B. Dushnik and E. W. Miller, Partially ordered sets, American Journal of Math-
ematics, 63 (1941), pp. 600–610.

16. C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg, Approximate
distance labeling schemes, in 9th ESA, vol. 2161 of LNCS, 2001, pp. 476–488.

17. C. Gavoille and C. Paul, Distance labeling scheme and split decomposition,
Discrete Mathematics, 273 (2003), pp. 115–130.

18. , Optimal distance labeling schemes for interval and circular-arc graphs, in
11th ESA, vol. 2832 of LNCS, Springer, Sept. 2003, pp. 254–265.

19. C. Gavoille and D. Peleg, Compact and localized distributed data structures, J.
of Distributed Computing, 16 (2003), pp. 111–120. PODC 20-Year Special Issue.

20. C. Gavoille, D. Peleg, S. Pérennès, and R. Raz, Distance labeling in graphs,
Journal of Algorithms, 53 (2004), pp. 85–112.

21. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
Harcourt Brace Jovanovich, Academic Press ed., 1980.

22. C. M. Herrera de Figueiredo, J. a. Meidanis, and C. Picinin de Mello, A
linear-time algorithm for proper interval recognition, Information Processing Let-
ters, 56 (1995), pp. 179–184.

23. S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, SIAM
Journal on Discrete Mathematics, 5 (1992), pp. 596–603.

24. M. Katz, N. Katz, and D. Peleg, Distance labeling schemes for well-separated
graph classes, in 17th STACS, vol. 1770 of LNCS, 2000, pp. 516–528.

25. P. N. Klein, S. Rao, M. R. Henzinger, and S. Subramanian, Faster shortest-
path algorithms for planar graphs, J. of Comp. and Sys. Sci., 55 (1997), pp. 3–23.

26. R. M. McConnell and J. P. Spinrad, Linear-time transitive orientation, in 8th

Symp. on Discrete Algorithms (SODA), ACM-SIAM, Jan. 1997, pp. 19–25.
27. T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM

Monographs on Discrete Mathematics and Applications, 1999.
28. D. Peleg, Proximity-preserving labeling schemes, Journal of Graph Theory, 33

(2000), pp. 167–176.
29. C. J. Rhee, Y. D. Liang, S. K. Dhall, and S. Lakshmivarahan, Efficient al-

gorithms for finding depth-first and breadth-first search trees in permutation graphs,
Information Processing Letters, 49 (1994), pp. 45–50.

30. K. Talwar, Bypassing the embedding: Algorithms for low dimensional metrics, in
36th STOC, ACM Press, June 2004, pp. 281–290.

31. M. Thorup, Compact oracles for reachability and approximate distances in planar
digraphs, in 42nd FOCS, IEEE Computer Society Press, Oct. 2001, pp. 242–251.

32. M. Thorup and U. Zwick, Approximate distance oracles, in 33rd Annual ACM
Symp. on Theory of Computing (STOC), ACM Press, July 2001, pp. 183–192.

33. M. Yannakakis, The complexity of the parital order dimension problem, SIAM
Journal on Algebraic and Discrete Methods, 3 (1982), pp. 351–358.

Representation of Graphs by OBDDs

Robin Nunkesser1 and Philipp Woelfel2,�

1 FB Informatik, LS2, Universität Dortmund, 44221 Dortmund, Germany
robin.nunkesser@udo.edu

2 University of Toronto, 10 King’s College Road, Toronto M5S 3G4, Canada
pwoelfel@cs.toronto.edu

Abstract. In this paper, the space requirements for the OBDD repre-
sentation of certain graph classes, specifically cographs, several types of
graphs with few P4s, unit interval graphs, interval graphs and bipartite
graphs are investigated. Upper and lower bounds are proven for all these
graph classes and it is shown that in most (but not all) cases a represen-
tation of the graphs by OBDDs is advantageous with respect to space
requirements.

1 Introduction

Some modern applications require such huge graphs that the usual, explicit rep-
resentation by adjacency lists or adjacency matrices is infeasible. E.g., a typical
state transition graph arising in the process of verification and synthesis of se-
quential circuits may consist of 1027 vertices and 1036 edges. Such huge graphs
appear also if the basic graph as e.g. the street network of a city is interlinked
with other components as e.g. traffic amount and time slots.

In order to be able to store huge graphs, implicit representations of graphs
can be used. In the standard implicit representation the vertices of a graph are
labeled in such a way that adjacency of two vertices is uniquely determined by
their labels (a prominent example is the representation of interval graphs, where
the nodes are labeled by intervals and two nodes are adjacent if and only if the
corresponding intervals intersect). However, such an implicit representation is
not a generic graph representation because by each representation only a small
number of graphs can be described (e.g. most graphs are not interval graphs).
Hence, for different graph classes different implicit representations and different
algorithms are needed.

Another approach is to use a generic graph representation (i.e. a represen-
tation which can represent all graphs) which requires less space for sufficiently
structured graphs than for unstructured graphs. One idea is to store the char-
acteristic function of the vertex and the edge set by a generic data structure for
boolean functions. A data structure which is well suited for this task is the Or-
dered Binary Decision Diagram (OBDD), because for all important operations
on boolean functions (e.g. the synthesis operation, substitution by constants or

� Supported in part by DFG grants We 1066/10-1 and Wo 1232/1-1.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1132–1142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Representation of Graphs by OBDDs 1133

satisfiability test) efficient algorithms are known. Such OBDD operations allow
to efficiently convert any graph represented by e.g. an adjacency list or an adja-
cency matrix to a corresponding OBDD representation. Moreover, it has turned
out that several graph problems can be solved with a polylogarithmic number
of OBDD operations, if the input graphs are represented by OBDDs. Recently,
several OBDD algorithms for fundamental graph problems have been devised, as
e.g. for network flow maximization [8, 15], topological sorting [19] or for finding
shortest paths in networks [16].

Since an OBDD representation is a generic representation of graphs, most
graphs cannot be represented in less space by OBDDs than by adjacency ma-
trices or adjacency lists. But one hopes (and we show in this paper) that for
sufficiently structured inputs as they may appear in practical applications, a
good compression can be achieved. Experimental studies have already shown
that in many practical relevant cases OBDD representations of graphs may be
advantageous. However, it has not yet been theoretically investigated for which
general graph classes this is the case. While it is obvious that very simply struc-
tured graphs as e.g. grid networks have a small OBDD representation, this is
not clear for more complicated graph classes. In this paper, we start filling this
gap by investigating several important graph classes with respect to their space
requirements in an OBDD representation.

In the following, let Bn denote the class of boolean functions f : {0, 1}n →
{0, 1}. OBDDs have been introduced by Bryant in 1986 [3] as a representation
type for boolean functions.

Definition 1. Let Xn = {x1, . . . , xn} be a set of boolean variables. A variable
ordering π on Xn is a bijection π : {1, . . . , n} → Xn, leading to the ordered list
π(1), . . . , π(n) of the variables. A π-OBDD on Xn for a variable ordering π is a
directed acyclic graph with one root, two sinks labeled with 0 and 1, respectively,
and the following properties: Each inner node is labeled by a variable from Xn

and has two outgoing edges, one of them labeled by 0, the other by 1. If an edge
leads from a node labeled by xi to a node labeled by xj , then π−1(xi) < π−1(xj).

A π-OBDD is said to represent a boolean function f ∈ Bn, if for any a =
(a1, . . . , an) ∈ {0, 1}n, the path starting at the root and leading from any xi

node over the edge labeled by the value of ai, ends at a sink with label f(a).
The size of a π-OBDD G is the number of its nodes and is denoted by |G|. The
π-OBDD size of a boolean function f (π-OBDD(f)) is the size of the minimum
π-OBDD computing f . The OBDD size of a boolean function f (OBDD(f)) is
the size of the minimum π-OBDD computing f for some variable ordering π.

Let G = (V,E) be a graph. We can use an OBDD for representing the graphG
by letting it represent the characteristic function χE : E → {0, 1} of the edge set,
where χE(v1, v2) = 1⇔ {v1, v2} ∈ E. We denote the binary value represented by
the n bit string zn−1 . . . z0 ∈ {0, 1}n by |z| :=

∑n−1
i=0 zi2i. Conversely we denote

by [k]n, n ≥ �log (k + 1)�, the n bit string representing the integer k ≥ 0, i.e.
the string zn−1 . . . z0 ∈ {0, 1}n with k = |z|. In order to encode the vertices by
boolean variables, we use the convention that V = {[0]n, . . . , [N − 1]n}, where

1134 R. Nunkesser and P. Woelfel

N ≥ 0 and n = �logN�. Thus, we can store V using n bits or by a π-OBDD for
the characteristic function χV of V , and the minimal π-OBDD for χV has a size
of O(n log n) = O(logN log logN) for all variable orderings π.

Definition 2. The π-OBDD size of a graph G = (V,E) (π-OBDD(G)) is the
size of the minimum π-OBDD computing χE for some labeling of the vertices.
Analogously, the OBDD size of G is the minimum of π-OBDD(G) for all variable
orderings π. The worst-case OBDD size of a graph class G is the maximum of
OBDD(G) over all G ∈ G.

Breitbart, Hunt III and Rosenkrantz have shown in [2] that any function
f ∈ Bn can be represented by a π-OBDD of size (2 +O(1)) 2n/n (for any variable
ordering π). Hence, the π-OBDD size of any graph with N vertices is bounded by
(4 +O(1))N2/ logN , because n < 2 + 2 logN for appropriately chosen vertex
labels. In order to obtain a general bound which is better for not very dense
graphs, we may use the fact that the π-OBDD size of any function f ∈ Bn

is bounded by roughly n · |f−1(1)|. This yields the following straight forward
proposition.

Proposition 1. Let G = (V,E) be a graph with N := |V | and M := |E|. The
OBDD size of G is bounded above by

min
{
(4 +O(1))N2/ logN, 2M · (2 �logN� − �logM�) + 1

}
.

Note that if a graph G with N edges and M vertices is given by an adjacency
matrix or adjacency list, then the OBDD for G satisfying the size bound of
the above Proposition can be constructed in time O(M logN log2M). Hence,
OBDDs are a truly generic graph representation.

Obviously, an OBDD B can be uniquely described by O (|B| (log |B|+ logn))
bits. Consider a graph G with N vertices and M edges. The above proposition
shows that an OBDD representation for dense graphs needs at most O(N2)
bits and thus is at most a constant factor larger than the representation by
adjacency matrices. Since O (M logN(logM + log logN)) bits are sufficient to
store G an OBDD representation is more space efficient than an adjacency ma-
trix for not very dense graphs. An adjacency list representation of G needs
O ((N +M) logN) bits. However, an adjacency test may take linear time in the
worst case. Here, OBDDs are more efficient because adjacency can be tested
in O(logN) time (start at the root of the OBDD and traverse the graph ac-
cording to the input until the sink is found). Hence, the space requirements of
OBDDs are only little worse than that of adjacency lists and much better than
that of adjacency matrices for sparse graphs, while the adjacency test is less
efficient than that of a matrix representation but much better than that of a list
representation in the worst case.

But Proposition 1 covers only the worst case. In the following we will show
that several very natural and large graph classes have OBDD sizes which yield
a much better space behaviour than that of explicit representations. We start
in Sect. 2 with the investigation of several types of graph classes which do not

Representation of Graphs by OBDDs 1135

contain many P4s, most prominently cographs. We show that the worst-case
OBDD size of these graphs is between Ω(N/ logN) and O(N logN). In Sect. 3
we investigate interval graphs. We show that the worst-case OBDD size of unit
interval graphs is between Ω(N/ logN) and O(N/

√
logN), while that of general

interval graphs is between Ω(N) and O(N3/2/ log3/4N). Finally, in Sect. 4 we
try to find a natural graph class which is very hard to represent for OBDDs.
We show that the representation of some bipartite graphs requires OBDDs of
size Ω(N2/ logN). Hence, the OBDD representation of bipartite graphs is not
necessarily more space efficient than that of an adjacency matrix representation.

2 Graphs with Few Induced P4s

Hereinafter P4 denotes a chordless path with four vertices and three edges. Many
graphs with few induced P4s have common properties such as a unique (up to
isomorphism) tree representation. Starting from the tree representation devel-
oped by Lerchs [4] of the well-known class of cographs (graphs with no induced
P4), Jamison and Olariu have developed and studied tree representations for
various graph classes with few induced P4s such as P4-reducible graphs [9], P4-
extendible graphs [10] and P4-sparse graphs [11]. P4-reducible graphs contain no
vertex, that belongs to more than one induced P4, P4-extendible graphs contain
at most one additional vertex for each induced P4 p that induces a different
P4 together with three vertices from p and in P4-sparse graphs every set of five
vertices induces one P4 at most. In the following discussion we omit P4-reducible
graphs, because their class is the intersection of the classes of P4-extendible and
P4-sparse graphs.

All these graph classes have in common that they can be constructed from
single vertex graphs by graph operations which join several vertex disjoint graphs
together. Consider for example two graphs G1 = (V1, E1) and G2 = (V2, E2) on
two disjoint vertex sets. Then the union of G1 and G2 is G1∪G2 := (V1∪V2, E1∪
E2) and the join is G1 + G2 := (V1 ∪ V2, E1 ∪ E2 ∪ E′), where E′ contains all
edges {v1, v2} with v1 ∈ V1 and v2 ∈ V2. It is well-known that any cograph can
be obtained from single vertex graphs by a sequence of ∪ and + operations.

Now consider a setΩ of operations, each of them joining several vertex disjoint
graphs together. Further assume that a graph G can be constructed from single
vertex graphs by using only the joining operations in Ω. Then G has a natural
representation as a rooted tree T (G) which can be constructed recursively as
follows: If G is a single vertex graph, consisting of the vertex v, then T (G) = v.
If G = ω(G1, . . . , Gk) for an operation ω ∈ Ω, then the root of T (G) is a vertex
labeled with ω whose children are the roots of the trees T (G1), . . . , T (Gk) (note
that the order of the children may be important).

In order to obtain upper bounds for the OBDD-size of graph classes which
have a tree representation, we devise an algorithm which has the following prop-
erty: In each step of the algorithm a variable is queried (in the order determined
by the variable ordering π). In the ith step the variable π(i) is queried and after
the query the algorithm stores a state value qi which depends only on the previ-

1136 R. Nunkesser and P. Woelfel

ous stored state value and the result of the variable query. Each possible stored
state value qi of the algorithm corresponds to an OBDD node labeled with the
variable π(i+1) and thus the sum of the number of possible state values qi over
all 0 ≤ i ≤ n is the number of OBDD nodes (q0 is the unique starting state
corresponding to the root of the OBDD and the two possible final state values
qn+1 ∈ {0, 1} corresponding to the sinks of the OBDD). It is obvious how to
construct the π-OBDD corresponding to such an algorithm.

A tree representation of a graph is helpful if we want to devise an algorithm
deciding adjacency which can then be turned into an OBDD for the graph. E.g.
if G is a cograph, then two vertices v1 and v2 are adjacent if and only if the least
common ancestor of v1 and v2 in T (G), lca(v1, v2), is labeled with +. Hence,
for the algorithm it suffices to determine the lca of v1 and v2. For P4-extendible
graphs and P4-sparse graphs adjacency is not so simple to determine. However,
we develop a new tree representation for these graphs such that adjacency of
two vertices can be determined by computing the lca of two vertices and some
additional information.

Recall that V = {[0]n , . . . , [N − 1]n}. We label the vertices for our represen-
tation in such a way that |v1| is less than |v2| for two vertices v1, v2, if a preorder
traversal of T (G) traverses the leaf corresponding to v1 first. Furthermore, for
two vertices v1, v2 of a graph G = (V,E) with a tree representation T (G) let
δd (v1, v2) be ||v1| − |v2||, if ||v1| − |v2|| ≤ d and 0 otherwise. Let c : V → IN be
the function with c(v) = i if the vertex v is the ith child of its parent in T (G).

Lemma 1. Let G be the class of either cographs, P4-sparse graphs or P4-
extendible graphs. Then there is a tree representation T (G) for all graphs
G = (V,E) ∈ G such that for any two vertices v1, v2 ∈ V the characteristic
function χE (v1, v2) is uniquely determined by

(a) lca (v1, v2), in the case of cographs,
(b) lca (v1, v2), δ1 (v1, v2), |v1| mod 2, |v2| mod 2 and the information whether
|v1| < |v2|, in the case of P4-sparse graphs,

(c) lca (v1, v2), δ4 (v1, v2), c (v1), |v1| mod 2, |v2| mod 2 and the information
whether |v1| < |v2|, in the case of P4-extendible graphs.

The proof of part (a) follows right away from the definition of cographs. The
proofs of parts (b) and (c) are omitted due to space restrictions and can be found
in the full version of the paper.

The following algorithm determines the lowest common ancestor (lca) of two
nodes in a tree representation. The idea of the algorithm is to search the lca
starting in the leaf corresponding to v1 and ascending successively while reading
the vertex coding of v2.

Algorithm 1. The algorithm is defined for a fixed tree T with N leaves labeled
with values from {0, 1}n, n = �logN�, in such a way that if v0, . . . , vN−1 are the
leaves found in a preorder traversal then |vi| = i. The inputs of the algorithm are
x, y ∈ {0, 1}n and the output is the lca of x and y if x and y are both leaves in
the tree. If either x or y is not a leaf of T , then the output is −∞. The algorithm
queries all input variables once in the order xn−1, . . . , x0, yn−1, . . . , y0 and after

Representation of Graphs by OBDDs 1137

each query two values b and c are stored. The value of c is one of the relations
“<”, “>” or “=” and b is a node in T .

We describe two invariants which are true after each step of the algorithm
unless the algorithm terminated. Consider a situation in which all variables up
to yi, 0 ≤ i ≤ n − 1, have been queried and the algorithm has not terminated.
The first invariant is that c is the relation between |xn−1 . . . xi| and |yn−1 . . . yi|
(e.g., if c=“<”, then |xn−1 . . . xi| < |yn−1 . . . yi|). Now assume c = “<” and let
y0

i be the leaf yn−1 . . . yi0 . . . 0. The second invariant is that b = lca(x, y0
i) and

y1
i = yn−1 . . . yi1 . . . 1 is not in the subtree rooted at b. For the case c = “>”,

the invariant is analogous, but the roles of y0
i and y1

i are exchanged. In the case
c = “=”, we have b = x.

Note that if these invariants are true, then by knowing c and b, the value of
yn−1 . . . yi is uniquely determined. For c = “=” this is obvious. For c = “<”,
this follows because due to the enumeration of the leaves, in the right subtree
of the tree rooted at b, there can only be one leaf an−1 . . . ai0 . . . 0 such that
an−1 . . . ai1 . . . 1 is not in this subtree. The case c = “>” is analogous. Hence,
it suffices to describe an algorithm for which these invariants remain true after
each query of a y variable and which – under the assumption that the invariant
remains true – outputs the correct result.

Step 1: Store “=” in c. Query all x variables and let b be the corresponding
leaf of T . If there is no corresponding leaf: output −∞. Clearly, the invariants
remain true after this step unless the algorithm terminates.
Step 2: Query the next y variable, say yi. Since the invariants were true before
querying yi, by knowing b and c we now know yn−1 . . . yi. If c = “=” and yi = bi,
we can proceed with querying the next variable because the invariants remain
true. Hence, we continue with Step 2, again. If c = “=” and yi �= bi, then we
have found the most significant bit in which x and y differ. We can change the
value of c to “<” or “>” such that it reflects the relation between |xn−1 . . . xi|
and |yn−1 . . . yi|. Hence, if we reach this point in any case c �= “=”. Let b′ be
lca(b, y0

i) (= lca(x, y0
i)) in the case c = “<” and b′ = lca(b, y1

i) (= lca(x, y1
i)) in

the case c = “>”. Since we know yn−1 . . . yi and b, b′ is uniquely determined, if
it exists. However, it may happen that such a b′ does not exist. In this case y
cannot be a leaf of the tree and thus we output −∞. Assume c = “<” (the case
c = “>” is analogous with the roles of y1

i and y0
i exchanged). If the leaf y1

i is
not in the subtree rooted at b′, then we replace b with b′. Clearly, the invariants
are now true again and we proceed with the next y variable by going to Step 2.
If on the other hand, y1

i is in the subtree rooted at b′, then obviously all leaves
yn−1 . . . yiai−1 . . . a0 for ai−1 . . . a0 ∈ {0, 1}i are in this subtree. Hence, b′ is the
lca of x and y and we output b′.

Note that after querying the last y variable, the algorithm terminates in Step 2,
because either an appropriate b′ is not found (and the algorithm outputs −∞)
or the found b′ is in fact the lca of x and y.

Theorem 1. The OBDD size of a cograph with N vertices is at most 3N
�logN�.

1138 R. Nunkesser and P. Woelfel

Proof. Let V = {v0, . . . , vN−1} and let G = (V,E) be a cograph. Let T (G) be
the tree representation of G as described before Lemma 1. We have shown above
that Algorithm 1 computes for two vertices u, v ∈ V (given by n-bit strings
x, y) the corresponding lca(u, v) in T (G) by querying each x- and y-variable
at most once in the order xn−1, . . . , x0, yn−1, . . . , y0. According to Lemma 1 the
adjacency of u and v in G is uniquely determined by their lca, and thus the algo-
rithm describes a π-OBDD for the variable ordering π with (π(1), . . . , π(2n)) =
(xn−1, . . . , x0, yn−1, . . . , y0). In the following we bound the number of possible
states the algorithm has to store after each variable query.

For Step 1 it suffices to store xn−1 . . . xi once theses variables have been
queried. If it turns out that |xn−1 . . . xi0 . . . 0| is at leastN , the algorithm outputs
−∞. Then the π-OBDD has at most as many nodes as a complete binary tree
in the first n levels and the (n + 1)th level has at most N nodes. Hence, there
are at most 2n − 1 < 2N − 1 x nodes and at most N yn−1 nodes

Now consider Step 2. As long as b is a leaf, the value of c is “=” and once b
is no leaf anymore, the value of c is either “<” or “>”. Hence, by knowing c, we
can conclude on whether b is a leaf or not. Since there are N leaves and at most
N − 1 inner nodes, 3N states suffice for storing c and b. Therefore, there are at
most 3N yi nodes for 0 ≤ i < n − 1. To conclude, the total number of y nodes
of the OBDD is bounded by N + (n− 1) · 3N = 3N · �logN� − 2N. ��

In order to obtain OBDDs for P4-sparse and P4-extendible graphs, our Algo-
rithm 1 has to be modified in such a way that it computes in addition to the
lca of two leaves the other information which is needed in order to decide adja-
cency between the vertices v1 and v2, as described in Lemma 1. The necessary
modifications of the algorithm can be found in the full version of the paper.

Theorem 2. The OBDD size of P4-sparse graphs and P4-extendible graphs is
O(N logN).

We contrast the above results by a lower bound for cographs, which also
applies to its superclasses of P4-reducible, P4-extendible and P4-sparse graphs.

Theorem 3. The worst-case OBDD size of cographs is at least 1.832·N/ logN−
O(1).

We prove this with counting arguments. Let in the following NG(N) denote
the number of graphs with N vertices in a graph class G. Note that unless stated
otherwise the graphs in the considered graph classes G are unlabeled.

Proposition 2. Consider functions sN : IN → IR for N ∈ IN and
let G be a graph class that allows the addition of isolated vertices. If
limN→∞(2sN log sN+sN log log N+O(sN) · (NG(N))−1) < 1, then for large enough
N there are graphs with N or more vertices in G such that the OBDD size of
these graphs is more than sN .

Proof. Wegener has shown in [18] that OBDDs of size s can compute at most
sns (s+ 1)2s /s! = 2s log s+s log n+O(s) different functions f ∈ Bn. It is easy to see
that if the limit in the claim is less than 1, then for large enough N there are
more graphs than OBDDs for functions in n = 2 · �logN� variables. ��

Representation of Graphs by OBDDs 1139

An asymptotic formula due to Finch [6] states that the number of graphs in the
class of cographs C satisfies NC (N) ∼ λκNN− 3

2 for the constants λ = 0.4127 . . .
and κ = 3.5608 Since κN = 2N ·1.8322..., Theorem 3 follows directly from
Proposition 2.

3 Interval Graphs

An interval graph is defined by a set of closed intervals I ⊆ IR2, each of them
corresponding to a vertex in the graph. Two vertices are adjacent if and only if
the corresponding two intervals intersect.

We first analyse unit interval graphs, i.e. interval graphs where the underlying
intervals have unit length. Therefore, we can identify the intervals with just one
endpoint. We assume w.l.o.g. that no two intervals have the same endpoints and
label the vertices in such way that if the interval represented by a vertex v1
starts further left than the interval represented by a vertex v2, then |v1| < |v2|.

Theorem 4. The OBDD size of unit interval graphs with N vertices is bounded
above by O(N/

√
logN).

In order to proof this result we use the characterization of minimal OBDDs
due to Sieling and Wegener [17]: The minimal π-OBDD representing a function f
on x1, . . . , xn has as many nodes labeled with the variable xi, 1 ≤ i ≤ n, as there
are different subfunctions of f essentially depending on xi when all variables xj

with π−1(xj) < π−1(xi) are set to constants (a subfunction essentially depends
on a variable xi, if the substitution xi = 0 leads to a different subfunction than
the substitution xi = 1).

Proof (of Theorem 4). Let G = (V,E) be a unit interval graph labeled as de-
scribed above. For x ∈ {0, 1}n let the interval corresponding to the vertex x
be denoted by I(x) = [a, a + 1], where a ∈ IR. Let π be the variable ordering
where (π(1), . . . , π(2n)) = (xn−1, yn−1, . . . , x0, y0). Further, let f := χE and sk,�,
1 ≤ k < n, ∈ {k−1, k}, be the number of non-constant subfunctions f|α,β of f ,
where α is an assignment to the variables xn−1, . . . , xn−k and β is an assignment
to the variables yn−1, . . . , yn−�. Then sk,k is an upper bound on the number of
xk nodes and sk,k−1 is an upper bound on the number of yk nodes as stated in
Sect 1. For the sake of simplicity we assume k = using the simple observation
that sk,k+1 is at most 2sk,k and denote sk,k by sk.

Since there are 22m

boolean functions in m variables, we have

sk ≤ 222n−2k

. (1)

If k is small, we need a better bound. We derive an upper bound for the num-
ber of non-constant subfunctions f|α,β, where α and β are assignments to the
variables xn . . . xn−k and yn . . . yn−k, respectively, and |α| ≤ |β|. Then sk is at
most twice the result. Let (α1, β1), . . . , (αp, βp) be different pairs of assignments
to the x and y variables such that |αi| ≤ |βi| and f|αi,βi

�∈ {0, 1} (i.e. these

1140 R. Nunkesser and P. Woelfel

subfunctions are not constant) for all 1 ≤ i ≤ p. Furthermore, assume that
(|α1|, |β1|) , . . . , (|αp|, |βp|) are ordered lexicographically. We prove below that

∀ 1 ≤ i ≤ p : |βi| ≤ |βi+1| . (2)

Using the fact that (|α1|, |β1|), . . . , (|αp|, |βp|) are ordered lexicographically, it
is easy to see that the number of these pairs, p, is bounded by |αp| + |βp| + 1.
Hence, we obtain p ≤ 2k+1 − 1 and thus sk ≤ 2k+2 − 2. Using the upper bound
of (1) it follows that sk ≤ min{2k+2 − 2, 222n−2k}. We plug this inequality into
the upper bound 2 +

∑n−1
k=0 (sk + 2sk) on the OBDD size of G, and using simple

algebra obtain an upper bound of O(N/
√

logN).
It remains to prove the claim (2). If |αi| = |αi+1|, this follows right away from

the lexicographical ordering of the pairs (|αj |, |βj |). Hence, assume |αi| < |αi+1|.
If (2) is not true, i.e. |βi+1| < |βi|, then we have |αi| < |αi+1| ≤ |βi+1| < |βi|
(recall that we only count the pairs (αj , βj) where |αj | ≤ |βj |). Since f|αi,βi

is
not the constant 0-function, there is an assignment c to the remaining x variables
xn−k−1, . . . , x0 and an assignment d to the remaining y variables yn−k−1, . . . , y0
such that f|αi,βi

(c, d) = 1. Hence, χE(αic, βid) = 1 and the intervals I(αic)
and I(βid) intersect. Now consider additional arbitrary assignments c′ to the
remaining x variables and d′ to the remaining y variables. Obviously, then |αic| <
|αi+1c

′| < |βid| and |αic| < |βi+1d
′| < |βid|. Hence, the intervals I(αi+1c

′)
and I(βi+1d

′) are neither right of I(βid) nor left of I(αic). But since the latter
intervals intersect, obviously I(αi+1c

′) and I(βi+1d
′) intersect, too. Because this

is true for all c′ and d′ we obtain that f|αi+1,βi+1 = 1, which contradicts the
assumption that this subfunction is not constant. ��

Using a similar idea yields an upper bound for general interval graphs stated
in the following theorem (the proof can be found in the full version of the paper).

Theorem 5. Interval graphs with N vertices have OBDDs of size
O(N3/2/ log3/4N).

Finch [5] provided an asymptotic formula for the size of the class of unit
interval graphs U , NU (N) ∼ 1

8eκ
√

π
4N

N
3
2
, and Gavoille and Paul [7] obtained

an asymptotic formula for the size of the class of general interval graphs I:
NI (N) ≥ 2N log N−O(N). Thus, the following lower bounds follow directly from
Proposition 2.

Theorem 6. For all ε > 0, the worst-case OBDD size of unit interval graphs
with N vertices is at least (2−ε)N/ logN−O(1) and the worst-case OBDD size
of interval graphs with N vertices is at least (1 − ε)N −O(1).

4 Bipartite Graphs

The goal of this section is to show for a specific graph class that a representa-
tion by OBDDs is not necessarily more space efficient than a representation by
adjacency matrices.

Representation of Graphs by OBDDs 1141

Theorem 7. For all ε > 0, the worst-case OBDD size of bipartite graphs with
N vertices is at least (1

8 − ε)N2/ logN −O(1).

Proof. We consider the class of labeled 2-coloured graphs, where different colour-
ings of 2-colourable (bipartite) graphs lead to different graphs. The asymptotic
relation between the size of the class of labeled 2-coloured graphs C� and the
class of labeled 2-colourable graphs B� has been proven by Prömel and Steger in
[13] to be as follows: limN→∞NC�

(N) /NB�
(N) = 2. Therefore, a random bipar-

tite graphs has almost surely only one 2-colouring (and the inverse 2-colouring).
Asymptotics for the number of labeled 2-coloured graphs were given by Wright

[20, 14] as NC�
(N) ∼ κ2

N2
4 2N

√(2
N ln 2

)
where κ = 1±0.0000013097 . . . is a con-

stant. According to Prömel [12] the relation between the number of labeled and
unlabeled bipartite graphs is bounded by N !. Combining all these results leads
to the following relation for the size of the class of unlabeled bipartite graphs

B: limN→∞ 2(N !)NB (N) /2
N2
4 2N

√(2
N ln 2

)
≤ 1. The lower bound now follows

directly from Proposition 2. ��
The disadvantage of proving lower bounds with counting arguments is that

they only show the existence of graphs which are hard to represent. However,
such graphs might for large N never appear in applications because e.g. they
are not computable in polynomial time. A statement showing how to construct
such a graph or at least telling us that such a graph is computable in polynomial
time has much more relevance. In order to achieve such results, we show how
any boolean function can be represented by a bipartite graph. This way, we can
conclude from known lower bounds for the OBDD size of boolean function on
lower bounds for the OBDD size of the corresponding bipartite graphs.

Definition 3. Let f ∈ Bn, n even, be a boolean function. The bipartite graph
Gf = (V1∪V2, E) is given by the vertex sets V1 := {v1 ∈ {0, 1}

n
2
∣∣ |v1| < 2

n
2 } and

V2 := {v2 ∈ {0, 1}
n
2 +1 | 2 n

2 ≤ |v2| < 2
n
2 +1} and the edge set E := {{v1, v2}|v1 ∈

V1, v2 ∈ V2, f(v1[|v2| − 2
n
2]n

2
) = 1}.

Theorem 8. For each function f ∈ Bn there is a bipartite graph Gf = (V,E)
such that the OBDD size of χE is not smaller than the OBDD size of f .

Proof. Let us assume that an OBDD B with smaller size exists for χE . Let{
x0, . . . , xn

2
, y0, . . . , yn

2

}
be the set of variables of χE , then

f
(
x1, . . . , xn

2
, y1, . . . , yn

2

)
= χE

(
0, x1, . . . , xn

2
, 1, y1, . . . , yn

2

)
follows from Definition 3. We therefore can construct an OBDD for f from B by
redirecting all edges leading to a node labeled with x0 or y0 to the appropriate
0-successor or 1-successor of this node, respectively. We represent f with this
OBDD of smaller size, which is a contradiction. ��

Andreev, Baskakov, Clementi and Rolim [1] presented a boolean function
which is computable in polynomial time and has an OBDD size of 2n−O(log2 n).
According to the knowledge of the authors this is the best known lower bound
for the OBDD size of a function in P .

1142 R. Nunkesser and P. Woelfel

Corollary 1. There is a bipartite graph Gf , f ∈ B2k, with N = 2k+1 vertices
which is computable in polynomial time and for which the OBDD size of χE is
at least N2/(logN)O(log log N).

Acknowledgment. The authors thank Ingo Wegener for helpful comments on
the paper.

References

1. A. Andreev, J. Baskakov, A. Clementi, and J. Rolim. Small pseudo-random sets
yield hard functions: New tight explicit lower bounds for branching programs. In
26th ICALP, volume 1644 of LNCS, pp. 179–189. 1999.

2. Y. Breitbart, H. Hunt III, and D. Rosenkrantz. On the size of binary decision
diagrams representing boolean functions. Theor. Comp. Sci., 145:45–69, 1995.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., C-35:677–691, 1986.

4. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible
graphs. Discrete Appl. Math., 3:163–174, 1981.

5. S. R. Finch. Mathematical Constants. Cambridge University Press, 2003.
6. S. R. Finch. Series-parallel networks, 2003. Supplementary Material for [5].
7. C. Gavoille and C. Paul. Optimal distance labeling schemes for interval and

circular-arc graphs. In G. Di Battista and U. Zwick, editors, 11th ESA, volume
2832 of LNCS. Springer, 2003.

8. G. D. Hachtel and F. Somenzi. A symbolic algorithm for maximum flow in 0-1
networks. Formal Methods in System Design, 10:207–219, 1997.

9. B. Jamison and S. Olariu. p4-reducible graphs - a class of uniquely tree repre-
sentable graphs. Stud. Appl. Math., 81:79–87, 1989.

10. B. Jamison and S. Olariu. On a unique tree representation for p4-extendible graphs.
Discrete Appl. Math., 34:151–164, 1991.

11. B. Jamison and S. Olariu. A tree representation for p4-sparse graphs. Discrete
Appl. Math., 35:115–129, 1992.

12. H. J. Prömel. Counting unlabeled structures. J. Combin. Theory Ser. A, 44:83–93,
1987.

13. H. J. Prömel and A. Steger. Random l-colorable graphs. Random Structures
Algorithms, 6:21–37, 1995.

14. R. C. Read and E. M. Wright. Coloured graphs: A correction and extension. Canad.
J. Math., 22:594–596, 1970.

15. D. Sawitzki. Implicit flow maximization by iterative squaring. In P. Van
Emde Boas, J. Pokorny, M. Bielikova, and J. Stuller, editors, 30th SOFSEM, vol-
ume 2932 of LNCS, pp. 301–313. Springer, 2004.

16. D. Sawitzki. A symbolic approach to the all-pairs shortest-paths problem. In 30th
WG, volume 3353 of LNCS, pp. 154 – 116. 2004.

17. D. Sieling and I. Wegener. NC-algorithms for operations on binary decision dia-
grams. Parallel Processing Letters, 3:3–12, 1993.

18. I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.
19. P. Woelfel. Symbolic topological sorting with OBDDs. Journal of Discrete Algo-

rithms, to appear.
20. E. M. Wright. Counting coloured graphs. Canad. J. Math., 13:683–693, 1961.

Space-Efficient Construction of LZ-Index�

Diego Arroyuelo and Gonzalo Navarro

Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, Santiago, Chile

{darroyue, gnavarro}@dcc.uchile.cl

Abstract. A compressed full-text self-index is a data structure that replaces a text
and in addition gives indexed access to it, while taking space proportional to the
compressed text size. The LZ-index, in particular, requires 4uHk(1 + o(1)) bits
of space, where u is the text length in characters and Hk is its k-th order empirical
entropy. Although in practice the LZ-index needs 1.0-1.5 times the text size, its
construction requires much more main memory (around 5 times the text size),
which limits its applicability to large texts. In this paper we present a practical
space-efficient algorithm to construct LZ-index, requiring (4+ε)uHk +o(u) bits
of space, for any constant 0 < ε < 1, and O(σu) time, being σ the alphabet size.
Our experimental results show that our method is efficient in practice, needing an
amount of memory close to that of the final index.

1 Introduction and Previous Work

A full-text database is a system providing fast access to a large mass of textual data. The
simplest (yet realistic and rather common) scenario is as follows. The text collection
is regarded as a unique sequence of characters T1...u over an alphabet Σ of size σ,
and the search pattern P1...m as another (short) sequence over Σ. Then the text search
problem consists of finding all the occ occurrences of P in T . To provide fast access,
data structures called indexes are built on the text. Typical text databases contain natural
language texts, DNA or protein sequences, MIDI pitch sequences, program code, etc.

Until a short time ago, the smallest indexes available in practice were the suffix
arrays [21], requiring u log u bits (log means log2 in this paper). Since the text requires
u logσ bits to be represented, this index is usually much larger than the text (typically
4 times the text size). To handle huge texts like the Human Genome (about 3 × 109

base pairs), one solution is to store the indexes on secondary memory. However, this
has significant influence on the running time of an application, as access to secondary
memory is considerably slower.

Several attempts to reduce the space of the suffix trees [2] or arrays [13,17,19,1]
focused on reducing the size of the data structures but not the text, and did not relate
text compressibility with the size of its index.

A parallel track started at about the same time [15,14,10,28,4,5,6,8,9,20,7], with the
distinguishing feature of providing compressed indexes, whose sizes are proportional
to the compressed text size. Moreover, in most cases, those indexes replace the text by

� Supported in part by CONICYT PhD Fellowship Program (first author) and Fondecyt Grant
1-050493 (second author).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1143–1152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1144 D. Arroyuelo and G. Navarro

being able to reproduce any text substring. This is called self-indexing. Taking space
proportional to the compressed text, replacing it, and providing efficient indexed access
to it, is an unprecedented breakthrough in text indexing and compression.

The LZ-index [24,25,26] is a full-text self-index on these lines, based on the Ziv-
Lempel parsing of the text. If the text is parsed into n phrases by the LZ78 algorithm
[29], then the LZ-index takes 4n logn(1+ o(1)) bits of space, which is 4 times the size
of the compressed text and also 4 times the k-th order text entropy, i.e. 4uHk + o((1 +
Hk)u), for any k = o(log n/ log2 σ) [16,6]. See the original article for details on its
search algorithms, as we focus only in construction in this paper.

However, all these works do not consider the space-efficient construction of the in-
dexes. For example, construction of CS-array [28] and FM-index [4] involves build-
ing first the suffix array of the text. Similarly, the LZ-index is constructed over a non-
compressed intermediate representation. In both cases, one needs about 5 times the text
size. For example, the Human Genome may fit in 1 GB of main memory using these
indexes (and thus it can be operated entirely in RAM on a desktop computer), but 15
GB of main memory are needed to build them! Using secondary memory for the con-
struction is usually rather inefficient.

The works of T.-W. Lam et al. [18] and W.-K.Hon et al. [12] deal with the space
(and time) efficient construction of CS-array. The former work presents an algorithm
that uses (2H0 +1+ ε)u bits of space to build the CS-array, whereH0 is the 0-th order
empirical entropy of the text, and ε is any positive constant; the construction time is
O(σu log u), which is good enough if the alphabet is small (as in the case of DNA), but
may be impractical in the case of proteins and Oriental languages, such as Chinese or
Japanese. The second work [12] addresses this problem by requiring (H0 +2+ ε)u bits
of space and O(u log u) time to build the CS-array. Also, they show how to build the
FM-index from CS-array in O(u) time.

Our work follows this line of research. We present a practical and efficient algorithm
to construct the LZ-index using little space. Our idea is to replace the (non-compressed)
intermediate representations of the tries that conform the index by space-efficient coun-
terparts. Basically, we use the balanced parentheses representation of Munro and Raman
[23] as an intermediate representation for the tries, but we modify such representation
to allow fast incremental construction directly from the text. The resulting intermedi-
ate data structure consists of a tree whose nodes are small subsequences of balanced
parentheses, which are easier and cheaper to update. The idea is inspired in the work
of Clark and Munro [3], yet ours differs in numerous technical aspects and practical
considerations (structuring inside the nodes, overflow management policies, etc.).

Our algorithm requires (4+ε)uHk+o(u) bits to build the LZ-index, for any constant
0 < ε < 1. This is very close to the space the final LZ-index requires to operate.
This is the first construction algorithm for a self-index requiring space proportional
to Hk instead of H0. In practice our algorithm also requires about the same memory
as the final index. That is, wherever the LZ-index can be used, we can build it. The
indexing speed is approximately 5 sec/MB in a 2GHz machine, which is competitive
with the (non-space-efficient) construction of FM-index and much faster than CS-array
construction [26]. We argue that our method outperforms (in time) previous work [12]
when indexing the Human Genome, using about the same indexing space.

Space-Efficient Construction of LZ-Index 1145

2 The LZ-Index Data Structure

Assume that the text T1...u has been partitioned using the LZ78 [29] algorithm into
n+1 blocks T = B0 . . . Bn, such thatB0 = ε; ∀k �= ,Bk �= B�; and ∀k � 1, ∃ < k,
c ∈ Σ, Bk = B� · c. To ensure that Bn is not a prefix of another Bi, we append to T a
special character “$” �∈ Σ. The data structures that conform LZ-index are [26,25]:

1. LZTrie: is the trie formed by all the blocksB0 . . . Bn. Given the properties of LZ78
compression, this trie has exactly n+ 1 nodes, each one corresponding to a string.

2. RevTrie: is the trie formed by all the reverse strings Br
0 . . . B

r
n. In this trie there

could be internal nodes not representing any block. We call these nodes empty.
3. Node: is a mapping from block identifiers to their node in LZTrie.
4. RNode: is a mapping from block identifiers to their node in RevTrie.

Each of these 4 structures requires n logn(1 + o(1)) = uHk(1 + o(1)) bits of space.
For the construction of LZTrie we traverse the text and at the same time build a

normal trie (using one pointer per parent-child relation) of the strings represented by
Ziv-Lempel blocks. At step k (assume Bk = Bi · c), we read the text that follows and
step down the trie until we cannot continue. At this point we create a new trie leaf (child
of the trie node of block i, by character c, and assigning the leaf block number k), go
to the root again, and go on with step k + 1 reading the rest of the text. The process
completes when the last block finishes with the text terminator “$”.

Then we compact the normal trie, essentially using the parentheses representation
of Munro and Raman [23]. We traverse the normal trie in preorder, writing an opening
parenthesis when going down to a node, and a closing parenthesis when going up.

The LZTrie structure consists of the above sequence of parentheses plus a sequence
lets of characters that label each trie edge and a sequence ids of block identifiers, both
in preorder. We identify a trie node x with its opening parenthesis in the representa-
tion. The subtree of x contains those nodes (parentheses) enclosed between the opening
parenthesis representing x and its matching closing parenthesis.

Once the LZTrie is built we free the space of the normal trie, and build Node. This
is just an array with the n nodes of LZTrie, using �logn� bits for each. It is built as the
inverse of permutation ids.

To construct RevTrie we traverse LZTrie in depth-first order, generating each string
stored in LZTrie in constant time, and then inserting it into a normal trie of reversed
strings. We then traverse the trie and represent it using a sequence of parentheses and
block identifiers, rids. Empty unary nodes are removed only at this step. Finally, we
build the normal reverse trie and build RNode as the inverse permutation of rids.

In the experiments of the original LZ-index [26,25], the largest extra space needed to
build LZTrie is that of the normal trie, which is 1.7–2.0 times the text size. The indexing
space for the normal reverse trie is, in some cases, 4 times the text size. This is, mainly,
because of the empty unary nodes. This space dictates the maximum indexing space
of the algorithm (note that the text itself can be processed by buffers and hence does
not require significant space). The overall indexing space was 4.8–5.8 times the text
size for English text, and 3.4–3.7 times the text size for DNA. As a comparison, the
construction of a plain suffix array without any extra data structure requires 5 times the
text size.

1146 D. Arroyuelo and G. Navarro

3 Space-Efficient Construction of LZTrie

The main memory requirement to build the LZ-index comes from the normal tries used
to build LZTrie and RevTrie. We focus on building those tries in little memory, by re-
placing them with space-efficient data structures that support insertions. These can be
seen as hybrids between normal tries and their final parentheses representations.

Let us start with LZTrie. In its final representation as a linear sequence of balanced
parentheses [23], the insertion of a new node at any position of the sequence may force
rebuilding the sequence from scratch. To avoid that cost, we work on a hierarchical
representation of balanced parentheses (hrbp for short), such that we rebuild only a
small part of the entire sequence to insert a new node.

In a hrbp we cut the trie in pages, that is, in subsets of trie nodes such that if a node x
is stored in page q, then node y, the parent of x, is: (1) also stored in q (enclosing x), or
(2) stored in a page p, the parent page of q, and hence y is ancestor of all nodes stored
in q. We store in p information indicating that node y encloses all nodes in q. In a hrbp
we arrange the pages in a tree, thus the entire trie is represented by a tree of pages.

We represent a page as a contiguous block of memory. Let N1 < . . . < Nt be even
integers. We say that a page has size Ni if it can store Ni parentheses (Ni/2 nodes),
although its physical size is larger than Ni bits. Each page p of size Ni consists of: Ni

bits to represent a subsequence of balanced parentheses;Ni/2 bits (the flags) indicating
which opening parentheses (nodes) in a page have their subtree stored in a child page;
�logNi/2� bits to tell the number of nodes stored in the page; (Ni/2)�logu� bits to
store the block identifiers (ids) in the page (in preorder); (Ni/2)�logσ� bits to store the
characters (lets) in the page (in preorder); and a variable number of pointers to child
pages. The number of pointers varies from 0 to Ni/2, and it corresponds to the number
of flags with value 1 in p. To maintain a constant physical page size, these pointers are
stored in a separately allocated array, and we store a pointer to them in the page.

As in the parentheses representation of LZTrie, in the hrbp a node encloses its sub-
tree, but not necessarily a node and its subtree are stored both in the same page. If the
subtree of the j-th opening parenthesis of page p is stored in page q, then q is a child
page of p and the j-th flag in p has the value 1. If the number of flags in 1 before the j-th
flag (not including it) is h, then the h-th pointer of p points to q. An important property
we enforce is that sibling nodes must be stored all in the same page.

Initially, the data structure consists of a sole empty page (the root page) of size N1.
The construction of LZTrie proceeds as explained in Section 2, but this time the nodes
are inserted in a hrbp of LZTrie, instead of a normal trie. The insertion of a new node
Bk = Bi · c in the hrbp implies to recompute the page in which the insertion is done.
If the new leaf must become j-th opening parenthesis in the page (counting from left to
right), then we insert “()” at the corresponding parentheses position and the j-th flag
is set to 0. Also, c is inserted at position j within the characters, and k is inserted at the
same position within the identifiers.

We do not store information to traverse the parentheses sequence in the pages of the
hrbp. Instead, all the navigation inside each page is done sequentially, in a singleO(Nt)
time pass: the first child of an opening parenthesis starts at the next position (unless that
contains a closing parenthesis, in which case the node is a leaf in the page), and the next
sibling starts right after the closing parenthesis matching the current position, which is

Space-Efficient Construction of LZ-Index 1147

found sequentially. As we traverse the page, we maintain the current position j in flags,
ids and lets, as well as the count h of 1-bits seen in flags.

A page overflow occurs when inserting a new node in a full page p. If the size of p
is Ni, 1 � i < t, we perform a grow operation on p, which allocates a new page p′

of size Ni+1, copies the content of p to p′, frees p, and replaces the pointer to p by a
pointer to p′ in the parent of p. If the size of p is Nt, instead, we select a subset of nodes
to be copied to a new child page of p and then deleted from p.

We only allow the selection of the whole subtree of a node in the page (without
selecting the node itself). This simple way ensures that sibling nodes are always stored
in the same page. As the maximum number of siblings is σ, we must have Nt � 2σ so
that a page with children always has space for its top-level nodes at least. We choose the
subtree of maximum size not exceedingNt/2 nodes. It is easy to see that this guarantees
that the size of the new leaf p′ is at least �Nt/(2σ)� − 1 nodes.

Assume we have selected in this way the subtree of the j-th opening parenthesis in
the page. The selected subtree is copied to a new page p′, whose size is the minimum
Ni suitable to hold the subtree. As p′ is a new leaf page, all its flags are initialized to
0. Next we add in p a pointer to p′, inserted at the current (j-th) position, and set to
1 the j-th bit in flags. Finally, we delete from p the selected subtree. After that, if the
number of parentheses in p does not exceed Ni for some i < t, we perform a shrink
operation, which is the opposite of grow.

Once we solved the overflow, the insertion of the new node may have to be done in
p or in p′, but we are sure that there is room for the new pair of parentheses in either
page. The following lemma states the condition to achieve a minimum fill ratio α in the
pages of the data structure, thus controlling the wasted space. The proof is obvious.

Lemma 1. Let 0 < α < 1 be a real number. If each page has the smallest posible size
Ni to hold its parentheses, and we define Ni = Ni−1/α, i = 2, . . . , t, and 2 � N1 �
2/α, then all pages of the data structure have a fill ratio of at least α.

As the trie has n nodes, we need 2n + n + n log u + n log σ + n log u(2σ/Nt)
bits of storage to represent the parentheses, flags, identifiers, characters and pointers
to child pages, respectively. The last bound holds because leaves are created with at
least Nt/(2σ) nodes and thus there is at worst one pointer for each Nt/(2σ) nodes
(except the root). If, in addition, we define the Nis as in Lemma 1, in the worst case the
construction algorithm needs n

α (3 + logσ+ (1 + 2σ/Nt) log u) bits of storage. We can
relate this space requeriment toHk: as n log u = uHk+O(kn log σ) for any k [16], and
since n � u/ logσ u, the space is 1+2σ/Nt

α uHk + o(u) for any k = o(logn/ log3 σ).
When constructing LZTrie, the navigational cost per character of the text is O(Nt)

in the worst case. Hence, the overall navigational cost is O(Ntu). On the other hand,
the cost of rebuilding pages after an insertion is O(Nt), with or without page overflows.
As there are n insertions, the total cost is O(Ntn). However, the constant involved with
page overflows is greater than that of simple insertions, thus in practice we expect that
larger values of α yield a greater construction time (and a smaller space requirement).
In general, choosing Nt = 2σ/γ for any constant 0 < γ < 1, we get 1+γ

α uHk + o(u)
bits of space, which can be made (1 + ε)uHk + o(u) for any constant 0 < ε < 1 by
properly choosing γ and α. The construction time is O(1

γσu) = O(σu).

1148 D. Arroyuelo and G. Navarro

Once we construct the hrbp for LZTrie, we build the final version of LZTrie in O(n)
time. We perform a preorder traversal on the hrbp, writing an opening parenthesis each
time we reach a node, then checking the corresponding flag, traversing the subtree of
the node recursively in preorder (which, depending of the flag, may be stored in the
same or in a child page), and then writing a closing parenthesis.

4 Space-Efficient Construction of RevTrie

For the space-efficient construction of RevTrie, we use a hrbp to represent not the orig-
inal reverse trie but its PATRICIA tree [22], which compresses empty unary paths of
the reverse trie. This yields an important saving of space. We do not store the skips in
each node since they can be computed using the connection with LZTrie. We store, in
the nodes of the reverse trie, pointers to nodes of LZTrie, instead of the corresponding
block identifiers. Each pointer uses �log 2n� bits. This is done to avoid access to Node
when constructing the reverse trie, so we can build Node after both tries have been built
(thus reducing the indexing space). The empty non-unary nodes are marked by storing
in them the same pointer to LZTrie stored in their first child.

To construct the reverse trie we traverse LZTrie in depth-first order, generating each
string Bi stored in LZTrie in constant time, and then inserting its reverse Br

i into the
reverse trie. As we compress empty unary paths, the edges of the trie are labeled with
strings instead of simple characters. The PATRICIA tree stores only the first character
of the string that labels the edge. Given a node v in the reverse trie, the position of the
character in Br

i on which v discriminates is 1 plus the length of the string represented
by v. If v is not an empty node, then it stores a pointer to LZTrie node nv . The length of
the string is the same as the depth of nv in LZTrie, which can be computed in constant
time [26]. On the other hand, if v is an empty node, we we must use instead a procedure
similar to that used in [26] to compute the string that labels an edge of the trie.

The hrbp of the reverse trie requires at least 1
α (2n′ + n′ + n′ log 2n + n′ log σ +

(2σ/Nt)n′ logn′) bits of storage to represent the parentheses, flags, pointers to LZTrie,
characters and pointers to child pages, respectively, where n′ � n is the number of
nodes in the reverse trie. As we compress unary paths, n′ � 2n, and thus the space is
upper bounded by 2(1+2σ/Nt)

α uHk + o(u). However, in practice we expect that n′ will
be much less than 2n (see Section 5 for empirical results).

For each string Br
i to be inserted in the reverse trie, 1 � i � n, the navigational

cost is O(Nt|Br
i |+ |Br

i |2) in the worst case (when we work O(Nt) per character, and
every traversed node is empty). The total construction cost is

∑n
i=1 (Nt|Br

i |+ |Br
i |2).

The sum
∑n

i=1 |Br
i |2 is usually O(u logσ u), but in pathological cases it is O(u3/2).

To have a better theoretical bound, we can explicitly store the skips, using 2 log log u
extra bits per node (inserting empty unary nodes when the skip is exceeded). In this
way, one of each log2 u empty unary nodes could be explicitly represented. In the
worst case there are O(u) empty unary nodes, of which O(u

log u) are explicitly rep-
resented. This means o(u) extra bits in the hrbp, and the construction cost is reduced to∑n

i=1 (Nt|Br
i |+ |Br

i |). As
∑n

i=1 |Br
i | = u, the total cost is O(Ntu).

After we construct the hrbp for the reverse trie, we construct RevTrie directly from
the hrbp in O(n′) time, replacing the pointers to LZTrie by the corresponding block

Space-Efficient Construction of LZ-Index 1149

identifiers (rids), and then we free the space of the hrbp. If we use n′ logn bits for the
rids array, RevTrie requires 2uHk + o(u) bits of storage, and the whole index requires
5uHk(1+o(1)) bits. Instead, we can represent the rids array with n logn bits (i.e., only
the non-empty nodes), plus a bitmap of 2n(1 + o(1)) bits supporting rank queries in
O(1) time [27]. The j-th bit of the bitmap is 1 if the node represented by the j-th open
parenthesis is not an empty node, otherwise the bit is 0. The rids index corresponding
to the j-th opening parenthesis is rank(j). Using this representation, RevTrie requires
uHk + o(u) bits of storage. This was unclear in the original LZ-index paper [26,25].

We finally build Node mapping from ids array in time O(n) and n logn = uHk +
o(u) bits of space, and RNode from rids in O(n′) time and n logn′ = uHk + o(u) bits.

Now we summarize the construction process, and show in parentheses the total space
requeriment and the time in each step. Then, we conclude with a theorem.

1. We build the hrbp of LZTrie from the text ((1 + ε)uHk + o(u) bits, O(σu) time).
2. We build LZTrie from its hrbp ((1 + ε)uHk + uHk + o(u) bits, O(n) time).
3. We free the hrbp of LZTrie and build the hrbp of the reverse trie from LZTrie ((2 +

ε)uHk + uHk + o(u) bits, O(σu) time).
4. We build RevTrie from its hrbp ((2+ ε)uHk +uHk +uHk +o(u) bits, O(n) time).
5. We free the hrbp of RevTrie and build Node from ids (uHk + uHk + uHk + o(u)

bits, O(n) time).
6. We build RNode from rids (uHk + uHk + uHk + uHk + o(u) bits, O(n) time).

Theorem 1. Our space-efficient algorithm to construct LZ-index requires (4+ε)uHk+
o(u) bits of space, reached at step 4 above, andO(σu) time. This holds for any constant
0 < ε < 1 and any k = o(log n/ log3 σ).

5 Experimental Results

For the experiments we use the file ohsumed.88-91 from the OHSUMED collection
[11], as a representative of other text collections we tested, such as DNA, music, and
others. We use incremental subsets of the file, ranging from 10MB to 100MB. We run
our experiments on an AMD Athlon processor at 2GHz, 1024MB of RAM and 512Kb
of cache, running version 2.6.7-gentoo-r11 of Linux kernel. We compiled the code with
gcc 3.3.4 using optimization option -O9. Times were obtained using 10 repetitions.

In Fig. 1 we show the construction space for LZTrie and RevTrie. As expected, the
construction space is smaller as we use a greater value of α. On average, the construc-
tion space of LZTrie ranges from approximately 0.5 (α = 0.95) to 0.64 (α = 0.5) times
the text size, and from approximately 1.00 (α = 0.95) to 1.27 (α = 0.5) times the size
of the final version of LZTrie. For construction of RevTrie the space varies from 0.52
(α = 0.95) to 0.65 (α = 0.5) times the text size, and from 1.47 (α = 0.95) to 1.85
(α = 0.5) times the size of the final RevTrie. The greater difference among RevTrie and
its hrbp is due to the fact that the final version of the trie does not store the characters.
As a comparison, the original construction algorithm [26] (labeled “Original” in the
plots) needs on average 1.82 times the text size to hold the normal trie and 3.30 times
to hold the normal reverse trie. The sizes as a fraction of the final tries are 3.62 and 9.87
times, respectively.

1150 D. Arroyuelo and G. Navarro

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90 100

S
iz

e
in

 M
eg

ab
yt

es

Megabytes of text

LZTrie construction space

alpha=0.5
alpha=0.6
alpha=0.7
alpha=0.8
alpha=0.9

alpha=0.95
Original

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

S
iz

e
in

 M
eg

ab
yt

es

Megabytes of text

RevTrie construction space

alpha=0.5
alpha=0.6
alpha=0.7
alpha=0.8
alpha=0.9

alpha=0.95
Original

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

S
iz

e
in

 M
eg

ab
yt

es

Megabytes of text

Space requirement of LZ-index construction, alpha=0.5

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

S
iz

e
in

 M
eg

ab
yt

es

Megabytes of text

Space requirement of LZ-index construction, alpha=0.95

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

Fig. 1. Size of the hrbps of LZTrie and RevTrie, N1 = 2, Nt = 512

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

LZTrie construction time

alpha=0.5
alpha=0.6
alpha=0.7
alpha=0.8
alpha=0.9

alpha=0.95
Original

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

RevTrie construction time

alpha=0.5
alpha=0.6
alpha=0.7
alpha=0.8
alpha=0.9

alpha=0.95
Original

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90 100

S
ec

on
ds

 o
f u

se
r

tim
e

Megabytes of text

LZ-index construction time

alpha=0.5
alpha=0.6
alpha=0.7
alpha=0.8
alpha=0.9

alpha=0.95
Original

Fig. 2. Average user time to build LZTrie, RevTrie and the whole LZ-index, N1 = 2, Nt = 512

In the same Fig. 1 (below) we show the space requirements in each step of the
construction. The space to construct LZ-index varies from 1.46 (α = 0.95) to 1.49
(α = 0.5) times the text size, and from 1.00 (α = 0.95) to 1.02 (α = 0.5) times the
size of the final index (labeled “Step 6” in the plots). This confirms that the indexing
space is about the same to that needed by the final index. For α = 0.5 the maximum is
reached in step 4, as predicted in the analysis. However, for α = 0.95 the maximum is
reached in step 6, mainly because in the experiments the number of nodes of the reverse
trie is (on average) n′ ≈ 1.032n, which is much less than the pesimistic theoretic bound
n′ � 2n we used in the space requirement analysis.

In Fig. 2 we show the indexing time for the tries and the whole index. The average in-
dexing rate for LZTrie varies from 0.805MB/sec (α = 0.95) to 0.828MB/sec (α = 0.5).
For RevTrie it varies from 0.302MB/sec (α = 0.95) to 0.309MB/sec (α = 0.5). The
whole indexing rate varies from 0.217MB/sec (α = 0.95) to 0.223MB/sec (α = 0.5).
As we expected, the indexing rate is greater as α becomes smaller. The original con-
struction has an average indexing rate of 2.745MB/sec for LZTrie, 2.752MB/sec for
RevTrie, and 1.310MB/sec for the whole indexing process. Thus the succinct construc-
tion is 6 times slower in practice, as the upper bound O(σu) is too pessimistic.

Space-Efficient Construction of LZ-Index 1151

We also tested our algorithm on DNA data 1, where the indexing rate is about
0.197MB/sec (α = 0.95, N1 = 2, Nt = 192), using on average 1.19 times the text
size of main memory to index. Extrapolating these results we can argue that the human
genome can be indexed in approximately 4.23 hours and using less than 4 GB of main
memory. As a comparison, W.-K. Hon et al. [12] argued that they can index the human
genome in 20 hours (although they do not describe the CPU of the machine used).

6 Conclusions and Future Work

In this paper we proposed a practical space-efficient algorithm to construct LZ-index.
The basic idea is to construct the tries of LZ-index using space-efficient intermediate
representations that allow fast incremental insertion of nodes. The algorithm requires
at most (4 + ε)uHk + o(u) bits (0 < ε < 1) to construct LZ-index for the text T1...u

in time O(σu), being σ the alphabet size. This is the first construction algorithm of a
compressed full-text index whose space requirement is related toHk (the k-th order em-
pirical entropy of the text). In our experiments the construction required approximately
1.45 times the text size, or 1.02 times the final index size, which is much better than
the original LZ-index construction algorithm (4–5 times the text size), and the indexing
speed was approximately of 5sec/MB.

We believe that our intermediate hrbp representation could be made searchable, so
that it could be taken as the final index. The result would be a LZ-index supporting
efficient insertion of new text. Those pages could also be handled in secondary mem-
ory, so as to have an efficient disk-based LZ-index. Furthermore, the hrbp might have
independent interest as a practical technique to represent dynamic general trees in little
space, so we plan to work on making them fully dynamic. For the near future, we plan
to compare our method against previous work [12], both in time and space.

References

1. M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on suffix
arrays. In Proc. SPIRE’02, LNCS 2476, pages 31–43, 2002.

2. A Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on Words,
NATO ISI Series, pages 85–96. Springer-Verlag, 1985.

3. D. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proc. SODA’96,
pages 383–391, 1996.

4. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc
FOCS’00, pages 390–398, 2000.

5. P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In Proc.
SODA’01, pages 269–278, 2001.

6. P. Ferragina and G. Manzini. On compressing and indexing data. Technical Report TR-02-
01, Dipartamento di Informatica, Univ. of Pisa, 2002.

7. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly FM-index. In
Proc.SPIRE’04, LNCS 3246, pages 150–160. Springer, 2004.

8. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
SODA’03, pages 841–850. SIAM, 2003.

1 52.71MB from GenBank (Homo Sapiens DNA, http://www.ncbi.nlm.nih.gov).

1152 D. Arroyuelo and G. Navarro

9. R. Grossi, A. Gupta, and J.S. Vitter. When indexing equals compression: experiments with
compressing suffix arrays and applications. In Proc. SODA’04, pages 636–645. SIAM, 2004.

10. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. In Proc. STOC’00, pages 397–406, 2000.

11. W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumed: An interactive retrieval evalua-
tion and new large test collection for research. In Proc. SIGIR’94, pages 192–201, 1994.

12. W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Constructing compressed suffix arrays
with large alphabets. In Proc. ISAAC’03, LNCS 2906, pages 240–249, 2003.

13. J. Kärkkäinen. Suffix cactus: a cross between suffix tree and suffix array. In Proc. CPM’95,
LNCS 937, pages 191–204, 1995.

14. J. Kärkkäinen. Repetition-based text indexes. PhD thesis, Dept. of Computer Science, Uni-
versity of Helsinki, Finland, 1999.

15. J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for
string matching. In Proc. WSP’96, pages 141–155. Carleton University Press, 1996.

16. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algo-
rithms. SIAM Journal on Computing, 29(3):893–911, 1999.

17. S. Kurtz. Reducing the space requeriments of suffix trees. Technical Report 98-03, Technis-
che Kakultät, Universität Bielefeld, Germany, 1998.

18. T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A space and time efficient algorithm
for constructing compressed suffix arrays. In Proc. COCOON 2002, pages 401–410, 2002.

19. V. Mäkinen. Compact suffix array - a space-efficient full-text index. Fundamenta Informati-
cae, 56(1–2):191–210, 2003.

20. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. In Proc.
CPM’05, LNCS 3537, pages 45–56, 2005.

21. U. Manber and G. Myers. Suffix arrays: A new method for on–line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

22. D. R. Morrison. Patricia – practical algorithm to retrieve information coded in alphanumeric.
Journal of the ACM, 15(4):514–534, 1968.

23. I. Munro and V. Raman. Succinct representation of balanced parentheses, static trees and
planar graphs. In Proc. FOCS’97, pages 118–126, 1997.

24. G. Navarro. Indexing text using the Ziv-Lempel trie. In Proc. SPIRE’04, LNCS 2476, pages
325–336, 2002.

25. G. Navarro. Indexing text using the Ziv-Lempel trie. Technical Report TR/DCC-2002-
2, Dept. of Computer Science, Univ. of Chile, 2002. ftp://ftp.dcc.uchile.cl/
pub/users/gnavarro/lzindex.ps.gz.

26. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms (JDA),
2(1):87–114, 2004.

27. V. Raman and S. Rao. Static dictionaries supporting rank. In Proc. ISAAC ’99, LNCS 1741,
pages 18–26, 1999.

28. K. Sadakane. Compressed text databases with efficient query algorithms based on the com-
pressed suffix array. In Proc. ISAAC’00, LNCS 1969, pages 410–421, 2000.

29. J. Ziv and A. Lempel. Compression of individual sequences via variable–rate coding. IEEE
Trans. Inform. Theory, 24(5):530–536, 1978.

Longest Increasing Subsequences in Windows
Based on Canonical Antichain Partition

Erdong Chen, Hao Yuan, and Linji Yang

Department of Computer Science and Engineering,
Shanghai Jiao Tong University,
200030 Shanghai, P.R. China

{edchen, hyuan, ljyang}@cs.sjtu.edu.cn

Abstract. We consider the Lisw problem, which is to find the longest
increasing subsequences (LIS) in a sliding window of fixed-size w over a
sequence π1π2 . . . πn. Formally, it is to find a LIS for every window in a set
SFIX = π〈i + 1, i + w〉 0 ≤ i ≤ n− w ∪ π〈1, i〉, π〈n− i, n〉 i < w ,
where a window π〈l, r〉 is a subsequence πlπl+1 . . . πr. By maintaining a
canonical antichain partition in windows, we present an optimal output-
sensitive algorithm to solve this problem in O(output) time, where
output is the sum of the length of the n + w − 1 longest increasing
subsequences in those windows of SFIX. In addition, we propose a more
generalized problem called Lisset , which is to find the LIS for every
window in a set SVAR containing variable-size windows. By applying our
algorithm, we provide an efficient solution for Lisset problem which
is better than the straight forward generalization of classical LIS algo-
rithms. An upper bound of our algorithm on Lisset is discussed.

1 Introduction

Given a sequence π = π1π2 . . . πn of n elements, the longest increasing subse-
quences (LIS) problem is to find a longest subsequence σ = πi1πi2 . . . πiT such
that 1 ≤ i1 < i2 < · · · < iT ≤ n and πi1 < πi2 < · · · < πiT . The Lisset problem
proposed in this paper, is to find the longest increasing subsequences in a set
of variable-size windows, which is to solve the LIS problem in a subsequence
π〈l, r〉 = πlπl+1 . . . πr for different pairs of indices l and r.

In [1], Albert et al. defined the problem Lisw , which is to find the longest
increasing subsequences in sliding windows over a sequence of n elements. A w-
size window is a subsequence π〈i+1, i+w〉 for some 0 ≤ i ≤ n−w. Additionally,
all the truncated windows π〈1, j〉 for j < w and π〈j, n〉 for j > n − w + 1 are
also regarded as w-size windows(see Fig. 1 for example). Albert et al. proposed
an algorithm to solve the Lisw problem in O(n log logn+output) time, where
output is the total size of the output. In this paper, we will give a faster
algorithm for this problem, which runs in O(output) time. Our algorithm solves
Lisw problem in optimal time, linear on the size of the output.

The remainder of this paper is organized as follows. In Section 2, some prob-
lems and techniques related to Lisset are reviewed. In Section 3, the Lisset

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1153–1162, 2005.
Springer-Verlag Berlin Heidelberg 2005

1154 E. Chen, H. Yuan, and L. Yang

6 9 8 2 3 6

Fig. 1. Sliding windows of size 3 over sequence 6, 9, 8, 2, 3, 6 (LISW problem)

problem is defined, which takes Lisw as a subcase. In Section 4, the Canon-
ical Antichain Partition is discussed, which is the basic data structure of our
algorithm. In Section 5, we give design and analysis of a sweep algorithm on
Lisset problem and Lisw problem, and summarize our contributions. Finally,
conclusions and future work are discussed in Section 6.

2 Related Work

The longest increasing subsequences problem is a fundamental combinatorial
problem which has been widely studied[2, 3, 4]. Knuth proposed an O(n log n)
algorithm whose mechanism is to maintain the first row of Young tableau [5].
Fredman proved an Ω(n log n) lower bound under the decision tree model [6].
However, an O(n log logn) algorithm is possible by using van Emde Boas tree
[7] on a permutation.

David et al.[8] proposed two algorithms for LIS problem in data streaming
model[9]. One is to decide whether the LIS of a given stream of integers drawn
from {1 . . .M} has length at least k using O(k logM) space and update time
O(min {log k, log log k}), and the other is a multipass data streaming algorithm
to return the actual LIS itself using space O(k1+ε logM). If n w(average
window size), then our algorithm is a data streaming algorithm which makes
only a single pass over the input sequence with O(w) space.

Longest Increasing Subsequence has been widely used in bioinformatics[10].
On the topic of alignment of sequences, Zhang proposed a BLAST+LIS strategy
to find the correct longest consecutive list of high scoring segment pairs(HSPs)
in the BLAST output, if the BLAST output contains multiple HSPs for a pair
of sequences; hence reduced the redundant HSPs in each hit and filtered out the
redundant genomic hits[11].

3 Problem Definition

The longest increasing subsequence (LIS) in a window W = π〈l, r〉 is a longest
subsequence σ = πi1πi2 . . . πit such that l ≤ i1 < i2 < · · · < it ≤ r and πi1 <
πi2 < · · · < πit . Given a window W, let ω(W) = |σ| denote the length of such
LIS in window W.

LIS in Windows Based on Canonical Antichain Partition 1155

Let S =
{
Wi

∣∣Wi = π〈li, ri〉
}

be a set ofm variable-size windows. The Lisset
problem is to calculate ω(Wi) and find out a corresponding LIS in Wi for each
i(1 <= i <= m).

4 Canonical Antichain Partition

Given a sequence π = π1π2 . . . πn, each element πi may be represented by a point
(i, πi) in the plane. For example, the sequence 6, 9, 8, 2, 3, 5, 1, 4, 7, is represented
by p1p2 . . . p9(See Fig. 2). Let P be the planar point set of n elements in the form
of (i, πi). For any point p ∈ P , let px and py denote its x- and y-coordinates.
Following Felsner and Wernisch[12], for two points p, q ∈ P, the dominance order
is given by the relation p ≺ q(say q dominates p) if px < qx and py < qy. The
shadow [12] of a point p is defined as the area of all points (u, v) dominating
p, i.e. with u > px and v > py. A chain C ⊆ P is an ordered points list of
the dominance order on P , i.e. C = 〈p1, p2, . . . , pt〉 is a chain if and only if
pj ≺ pj+1 for 1 ≤ j < t. For instance, the chain 〈p4, p5, p6, p9〉 is a longest chain
in Fig. 2.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

p1=HEAD(1)

p3

p2=HEAD(2)

p4

p5=TAIL(2)

p6=HEAD(3)

p7=TAIL(1)

p8=TAIL(3)

p9=HEAD(4)

=TAIL(4)

L(1) L(2) L(3) L(4)

Fig. 2. The canonical antichain partition of 6, 9, 8, 2, 3, 5, 1, 4, 7, and a longest chain:
〈(4, 2), (5, 3), (6, 5), (9, 7)〉

The height of a point p ∈ P , denoted h(p), is the length of a longest chain
with p as maximal point. Hence, given a point pi = (i, πi), the height h(pi)
is also the length of the longest increasing subsequence with πi as the maxi-
mal element[12]. In addition, the points with the same height are not compa-
rable by dominance order. Thus, all points with the same height in the same
set yield a partition of P into antichains, the canonical antichain partition.
All points with the same height h in P form an antichain Lh. Theorem 1 is
a well-known result about antichains[12], which is a key issue in designing our
algorithm.

1156 E. Chen, H. Yuan, and L. Yang

Theorem 1. All points with the same height h in P form an antichain Lh.
Points in an antichain Lh are sorted in increasing order by x-coordinate and in
non-increasing order by y-coordinate.

Since all the points with height h are stored in linked list Lh, we define HEAD(h)
and TAIL(h) to be the first and last point inLh respectively. Obviously, HEAD(h)
is the point with the smallest x-coordinate in antichain Lh, and TAIL(h) is the
point with the largest x-coordinate in antichain Lh. Given a point p ∈ Lh, the
point following p in Lh is denoted by NEXT(p). By definition, NEXT(TAIL(h)) =
∅ for any h. A point q is said to be a preceding point of p, if h(q) = h(p) − 1 and
q ≺ p. In order to return a chain with p as the maximal point, the rightmost
preceding point of p, denoted PRED(p), is defined to be the one with the largest
x-coordinate among all p’s preceding points. By definition, if h(p) = 1, then we
have PRED(p) = ∅.

5 Sweep Algorithm

In order to output the longest increasing subsequence in a window, we have
to design a data structure to maintain structural information about all LIS’s
in a window. Our data structure needs to support the following operations:
remove the first element of the sequence, insert an element to the end of the
sequence, output a longest increasing subsequence with constraints. Formally, if
W = π〈l, r〉 is a subsequence, our data structure needs to support:

1. remove πl from W ;
2. insert πr+1 to W ;
3. output a longest increasing subsequence σ = πi1πi2 . . . πiT in W satisfying

iT ≤ XQRY for a fixed XQRY between l and r.

Instead of dealing subsequences directly, our data structure maintains a canon-
ical antichain partition in a window, for there is a mapping between a sequence
and a point set in the plane. Let P= [p0, p1, . . . , pr−l+1] be the ordered points set
that represents W , i.e. pi = (l + i, πl+i), for 0 ≤ i ≤ r − l, and ω(P) = ω(W)
is the number of antichains in the canonical antichain partition. We design three
operations on the point set P corresponding to the three operations on the sub-
sequence W :

1. DELETE: remove from P a point pDEL with the smallest x-coordinate
2. INSERT: insert into P a new point pINS with a larger x-coordinate than that

of any point in P
3. QUERY(XQRY): output a longest chain σ satisfying that the largest x-coordin

ate of points in σ is equal to or less than XQRY

For any h, let L′
h be the new antichain with height h after an operation, and

for any p ∈ P , the point PRED′(p) is the new rightmost preceding point of p
after an operation. In the following, we will provide the details and complexity
analysis for each operation.

LIS in Windows Based on Canonical Antichain Partition 1157

DELETE operation. The DELETE operation is to delete the point pDEL with
the smallest x-coordinate in P . After deleting p, the height of some points may
decrease. For any p ∈ P , the new height h′(p) is defined to be the height of
p after deleting pDEL. Let Di = {p|h(p) = i and h′(p) = h(p) − 1}, so we have
D1 = {pDEL} and Dω(W)+1 = ∅. Since Di is a set of consecutive points with lower
x-coordinate in Li, we have Di = {HEAD(i),NEXT(HEAD(i)), . . . ,PMAX(i)},
(PMAX(i) is defined to be the point with the largest x-coordinate in Di). Since
the height of each point may decrease at most by one, our method is simple: for
each Li, first delete Di from Li, then insert Di+1 to head part of Li.

Algorithm 1 Algorithm for DELETE operation
initialize PMAX(1)← pDEL, D1 ← {pDEL}, and Di ← ∅ for i > 1
for i = 2 to ω(P) do

PMAX(i)← max {px|¬(NEXT(PMAX(i− 1)) ≺ p)}
if PMAX(i) = ∅ then

EXIT LOOP
end if
Di = {p|p ∈ Li and px ≤ PMAX(i)x}

end for
PRED′(p) = ∅ for p ∈ D2

for i = 1 to ω(P) do
if PMAX(i) = ∅ then

EXIT LOOP
end if
L′

i ← Di+1 + (Li \Di)
end for

We will illustrate our method based on the example in Fig. 3 and 4. By
definition, PMAX(1) = p1 and D1 ={p1}. The point p2 is the point with the
largest x-coordinate that does not dominate NEXT(PMAX(1)) = p3. In Fig. 3,
the points in the shadow area dominate D1 but not any point in L1 \ D1, so
D2 = {p2}. The point p5 is the point with the largest x-coordinate that does not
dominate NEXT(PMAX(2)) = p6, so PMAX(3) = p5 and D3 ={p4, p5}. Next
step is computing L′

i. L
′
1 = D2 + (L1 \ D1) = {p2, p3}, L′

2 = {p4, p5, p6, p7},
and L′

3 = {p8}. In Fig. 4, the dashed line represents removing the Di, and the
broad-brush line represents the concatenation of Di+1 and Li \Di.

Lemma 1. For any i > 1, the height of a point in Di decreases if and only if it
does not dominate any point in Li−1 \Di−1.

Lemma 2. The x-coordinate of any point in Di+1 is smaller than that of any
point in Li \Di.

Proof. Suppose ∃p ∈ Di+1, q ∈ Li \Di for a particular i, and px > qx. Because
h(p) decreases, the point p does not dominate q, that means py ≤ qy. Before
delete pDEL, there exits v ∈ Li that p dominates v, i.e. px > vx and py > vy.

1158 E. Chen, H. Yuan, and L. Yang

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

p1 = pdel

p3

p2

p4

p5

p6

p7

p8

L(1) L(2) L(3)

Fig. 3. Before DELETE operation

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

p1 = pdel

p3

p2

p4

p5

p6

p7

p8

L(1) L(2) L(3)

Fig. 4. After DELETE operation

Since v precedes q in Li, we will have vx < qx, vy ≥ qy according to Theorem 1.
Therefore, py > vy ≥ qy which contradicts with the inequity py ≤ qy. Thus, no
such p, q exists. ��

By lemma 1, to compute PMAX(i)(i > 1), we scan Li from the head until the
first point which is dominating NEXT(PMAX(i−1)). By lemma 2, for a fixed i,
we can move Di+1 to the head part of Li \Di in O(1) time without destroying
the relative orders of the points in Di+1 and Li \Di. Let D be the union of Di,
i.e. D =

⋃ω(W)
i=1 Di. Thus, the time complexity of maintaining the data structure

after deleting pDEL is O(|D |).

Theorem 2. The cost of one DELETE operation equals the total number of
points whose height decreases, i.e. O(|D |).

INSERT operation. The INSERT operation is to insert a new point pINS with
a larger x-coordinate than that of any point in P . The main problem of INSERT
operation is to find an antichain which pINS belongs to. There are two cases:

1. if h(pINS) = i(1 ≤ i ≤ ω(W)), then insert pINS to the end of Li, i.e L′
i =

Li ∪ {pINS}.
2. if h(pINS) = ω(W) + 1, then create a new antichain L′

ω(W)+1 = {pINS}.

By Theorem 1, if 〈a1, a2, . . . , at, pINS〉 is a longest chains, there always be another
longest chain by replacing at by TAIL(h(at)). As in Fig. 5, we can always replace
the solid line 〈p1, p2, p5, pINS〉 by the dashed line 〈p1, p2, p8, pINS〉.

Therefore, to compute h(pINS) is to check TAIL(k) for k = 1, 2, . . . , ω(P), until
we find the highest TAIL(k) that pINS dominates. If k = 0, PRED′(pINS) = ∅,
otherwise PRED′(pINS) = TAIL(k). If k = ω(W), we create a new antichain
L′

ω(W)+1 with only a point pINS. Since finding the antichain which pINS belongs to
requires h(pINS)+1 steps, the time complexity of INSERT opreation is O(h(pINS)).

Theorem 3. The cost of INSERT operation equals O(h(pINS)).

LIS in Windows Based on Canonical Antichain Partition 1159

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

p1=HEAD(1)

p3=TAIL(1)

p2=HEAD(2)

p4=HEAD(3)

p5

p6

p7=TAIL(2)

p8=TAIL(3)

pINS

L(1) L(2) L(3)

Fig. 5. INSERT operation

QUERY operation. Suppose σ = 〈p1, p2, . . . , pt〉 is a longest chain in P that
σ satisfies the x-coordinate of pt is equal to or less than XQRY. Let P ′ be the
set of points in P whose x-coordinate is equal to or less than XQRY, i.e. P ′ ={
p
∣∣ p ∈ P and px ≤ XQRY

}
. Let H be the length of a longest chain in P ′, which

is the size of QUERY(XQRY)’s output.
By Theorem 1, since x-coordinate of HEAD(H) is the smallest among that of

all points in LH , if a longest chain in P ′ with any point p ∈ LH as the maximal
point, there always be another longest chain in P ′ with HEAD(H) as the maxi-
mal point. Therefore, to compute H is to check HEAD(i) for i = 1, 2, . . . , ω(P),
until we find the highest HEAD(i) that the x-coordinate of HEAD(i) is equal
to or less than XQRY, i.e. H = max

{
i
∣∣ HEAD(i)x ≤ XQRY

}
. We can find a

longest chain C in P ′ satisfying that C = 〈c1, c2, . . . , cH〉, cH = HEAD(H) and
ci = PRED(ci+1) for i = 1, 2, . . . , H − 1. By careful analysis, computing H re-
quires H + 1 steps of searching, and outputting the sequence requires H steps.
In short, the total time complexity of QUERY(XQRY) is O(H).

Theorem 4. The cost of outputting a longest chain σ satisfying that the largest
x-coordinate of points in σ is equal to or less than XQRY, is the length of σ i.e.
O(|σ|).

5.1 Algorithm

Our algorithm is based on the data structure proposed above. Firstly, windows
are sorted in increasing order, and then we slide the window W from left to
right to output the LIS in each window. In order to make sure that points are
inserted in to W only once, the windows are ordered by their left endpoints
(if two windows share the same left endpoint, the longer window comes first),
i.e. i < j if and only if li < lj or (li = lj and ri > rj). Since the endpoints are
drawn from {1, 2, . . . , n}, the preprocessing sorting can be completed in O(n+m)
time.

1160 E. Chen, H. Yuan, and L. Yang

Two distinct windows Wa and Wb intersect if there exists a number c that
l(a) ≤ c ≤ r(a) and l(b) ≤ c ≤ r(b); Wa and Wb are disjointed if they do not
intersect ; Wa contains Wb if l(a) ≤ l(b) ≤ r(b) ≤ r(a); Wa and Wb overlap, if
Wa intersects Wb but neither one of them contains the other.

Algorithm 2 Algorithm for Lisset Problem
initialize W ← ∅
INSERT into W the elements in π〈l1, r1〉 separately
QUERY(r1) to output the LIS in W
for j = 1 to m− 1 do

slide the window from Wj to Wj+1, let Wa = Wj , and Wb = Wj+1

if (lb > ra) then {DISJOINT}
reset W ← ∅
INSERT into W the elements in π〈lb, rb〉 separately

else if (lb ≤ ra and rb > ra) then {OVERLAP}
DELETE from W the elements in π〈la, lb − 1〉 separately
INSERT into W the elements in π〈ra + 1, rb〉 separately

else if (la ≤ lb and rb ≤ ra) then {CONTAIN}
if (lb = la) then {SAME LEFT ENDPOINT}

NO OPERATIONS
else if lb > la then {DIFFERENT LEFT ENDPOINTS}

DELETE from W the elements in π〈la, lb − 1〉 separately
end if

end if
QUERY(rb) to output a LIS σ = πi1πi2 . . . πiT in W satisfying iT ≤ rb

end for

Before analyzing the algorithm, depthi is defined to be the largest height that πi

achieved in the m windows. In other words, among all increasing subsequences in
mwindows, depthi is the length of the longest one with πi as the maximal element.

Theorem 5 (LISSET Problem). The algorithm described above computes the
m longest increasing subsequences, one for each window, in total time O(n +
output +

∑n
i=1 depthi).

Proof. Most of the time required comes from three operations : INSERT,
DELETE, QUERY. By Theorem 4, the cost of QUERY operation equals the to-
tal length of the LIS’s in all m windows, so TQUERY = O(output). By Theo-
rem 3, the cost of inserting πi is equal to the length of the longest LIS with πi

as the maximal element in the m windows, i.e. TINS = O(
∑n

i=1 depthi). For
DELETE operations, it is difficult to analyse the cost of each DELETE oper-
ation, but we can calculate the overall cost of DELETE operations. By Theo-
rem 2, the cost equals to the sum of the number of points which decrease af-
ter each operation, and a point p = (i, πi) may decrease at most depthi times.
Therefore, TDEL = O(

∑n
i=1 depthi). Thus, T = TQUERY + TINS + TDEL =

O(n+ output +
∑n

i=1 depthi). ��

LIS in Windows Based on Canonical Antichain Partition 1161

Theorem 6 (LISW Problem). Our algorithm finds the longest increasing sub-
sequence in a sliding window over a sequence of n elements in O(output) time.

Proof. By Theorem 5, the time complexity is O(n+output+
∑n

j=1 depthj). By
definition, for 1 ≤ i < w, depthi is equal to or less than the length of the LIS in
the window π〈1, i〉. For w ≤ i ≤ n, depthi is equal to or less than the length of the
LIS in the window π〈i − w + 1, i〉. Therefore ,

∑n
i=1 depthi= O(

∑m
i=1 ω(Wi)) =

O(output). In short, our time complexity is O(n + output +
∑n

j=1 depthj) =
O(n+ output) = O(output). ��

Lisset problem has a straight forward approach, which is to find all LIS’s for
each window separately. In the worst case that all m windows are disjointed, our
algorithm does not give any asymptotic improvement over the straight forward
method. However, similar to the analysis of Albert et al., our algorithm gives a
better performance in average cases.

If average window size is O(w), the optimal algorithm finds LIS in a single win-
dow in time O(min {w logw,w log logn}), so the time complex of finding LIS’s in
m windows is O(min {mw logw,mw log logn}). On the other hand, it was shown
in[3] that average length of LIS of a permutation of length n is asymptotically
2
√
n. Suppose the permutation π is randomly chosen from n! different permuta-

tions, so the relative ordering of the elements in each window is also randomly
chosen. Thus, the expected length of LIS in any window is asymptotically 2

√
w.

By Theorem 2, we can prove that depthi = O(
√
w). Thus, our time complexity is

O(n + output +
∑n

i=1 depthi)= O(n + output + n
√
w) = O((n + m)

√
w). If

m = O(n), then our algorithm would certainly perform better than the straight
forward approach.

6 Conclusions Remarks

We investigate the problem of finding the longest increasing subsequences in a set
of variable-size sliding windows over a given sequence. By maintaining a canoni-
cal antichain partition, we propose an approach that solve the problems in time
O(n+output+

∑n
i=1 depthi) form windows over a sequence of n elements. This

algorithm is able to solve the problem significantly better than straight forward
methods. In addition, we show that Lisw problem is a subcase of Lisset problem.
Our algorithm solve Lisw in time O(output), while the time complexity of the
best solution for Lisw previously achieved is O(output + n log logn).

Some problems related to Lisset problem are still open problems. Firstly, the
time complexity of finding global maximal LIS among all LIS’s in all windows is
particularly interesting. Because our algorithm only finds the global maximal LIS
after computing all LIS’s in all m window individually, it is expected to design an
algorithm to find global maximal LIS directly in the future. The second problem
is to design a space-efficient online algorithm to output the LIS in a window with
size w in linear time O(w). Our algorithm requires O(n2) time and O(n2) space
for preprocessing to solve this problem.

1162 E. Chen, H. Yuan, and L. Yang

Acknowledgements

Thanks to Hong Zhu, Binhai Zhu and the reviewers for their helpful comments.
Thanks to Prof. Yong Yu1 for his support on this work.

References

1. Michael H. Albert, Alexander Golynski, Angèle M. Hamel, Alejandro López-Ortiz,
S. Srinivasa Rao, and Mohammad Ali Safari. Longest increasing subsequences in
sliding windows. Theor. Comput. Sci., 321(2-3):405–414, 2004.

2. C. Schensted. Longest increasing and decreasing subsequences. Canadian Journal
of Mathematics, 1961.

3. Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subse-
quences and patience sorting. Inf. Process. Lett., 76(1-2):7–11, 2000.

4. Alberto Apostolico, Mikhail J. Atallah, and Susanne E. Hambrusch. New clique
and independent set algorithms for circle graphs (discrete applied mathematics 36
(1992) 1-24). Discrete Applied Mathematics, 41(2):179–180, 1993.

5. D. E. Knuth. The Art of Computer Programming. Vol 3, Sorting and Searching.
Second Edition. Addison-Wesley, 1998.

6. M. L. Fredman. On computing the length of longest increasing subsequences. Dis-
crete Mathematics, 11:29–35, 1975.

7. Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett., 6(3):80–82, 1977.

8. Erik Vee David Liben-Nowell and An Zhu. Finding longest increasing and common
subsequences in streaming data. Technical Report MIT-LCS-931, Cambridge, MA
02139, November 2003.

9. P. Raghavan M. R. Henzinger and S. Rajagopalon. Computing on data streams.
Technical Report 1998-011, Digital Equipment Corporation,Systems Research Cen-
ter, May 1998.

10. T.F. Smith and M.S. Waterman. Comparison of biosequences. Adv. in Appl. Math.,
2:482–489, 1981.

11. Hongyu Zhang. Alignment of blast high-scoring segment pairs based on the longest
increasing subsequence algorithm. Bioinformatics, 19(11):1391–1396, 2003.

12. Stefan Felsner and Lorenz Wernisch. Maximum k-chains in planar point sets: Com-
binatorial structure and algorithms. SIAM J. Comput., 28(1):192–209, 1998.

1 The advisor of the undergraduate program in Department of Computer Science and
Engineering, Shanghai Jiao Tong University.

Pareto Optimality in House Allocation
Problems�

David J. Abraham1,��, Kataŕına Cechlárová2,
David F. Manlove3,� � �, and Kurt Mehlhorn4

1 Computer Science Department, Carnegie-Mellon University, 5000 Forbes Ave,
Pittsburgh PA 15213-3890, USA

dabraham@cs.cmu.edu
2 Institute of Mathematics, P.J. Šafárik University in Košice, Faculty of Science,

Jesenná 5, 040 01 Košice, Slovakia
cechlarova@science.upjs.sk

3 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
davidm@dcs.gla.ac.uk

4 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany
mehlhorn@mpi-sb.mpg.de

Abstract. We study Pareto optimal matchings in the context of house
allocation problems. We present an O(

√
nm) algorithm, based on Gale’s

Top Trading Cycles Method, for finding a maximum cardinality Pareto
optimal matching, where n is the number of agents and m is the total
length of the preference lists. By contrast, we show that the problem
of finding a minimum cardinality Pareto optimal matching is NP-hard,
though approximable within a factor of 2. We then show that there exist
Pareto optimal matchings of all sizes between a minimum and maximum
cardinality Pareto optimal matching. Finally, we introduce the concept
of a signature, which allows us to give a characterization, checkable in
linear time, of instances that admit a unique Pareto optimal matching.

1 Introduction

We study the problem of allocating a set H of heterogeneous indivisible goods
among a set A of agents [14,8,3,4]. We assume that each agent a ∈ A ranks in
order of preference a subset of H (the acceptable goods for a) and that mon-
etary compensations are not possible. In the literature the situation in which
each agent initially owns one good is known as a housing market [14,12,11].

� Due to mistakes during data conversion, this paper was originally published in
LNCS 3341 (ISAAC 2004) with several special characters missing in text and
figures.

�� Work done whilst at Department of Computing Science, University of Glasgow,
and Max-Planck-Institut für Informatik.

� � � Supported by grant GR/R84597/01 from the Engineering and Physical Sciences
Research Council and RSE/Scottish Executive Personal Research Fellowship.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1163–1175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1164 D.J. Abraham et al.

When there are no initial property rights, we obtain the house allocation prob-
lem [8,16,1]. A mixed model, in which a subset of agents initially owns a good
has also been studied [2]. Yuan [15] describes a large-scale application of these
problems in the allocation of families to government-subsidized housing in China.

Following convention we refer to the elements of H as houses, though the
class of problems under consideration could equally be formulated in terms of
allocating graduates to trainee positions, professors to offices, clients to servers,
etc. For ease of exposition we begin by assuming that there are no initial property
rights, though we later show how to take account of such a situation.

Given such a problem instance, the task is to construct a matching, i.e. a
subset M of A×H such that (a, h) ∈M implies that a finds h acceptable, each
agent is assigned to at most one house and vice versa. Furthermore one seeks
a matching that is optimal in a precise sense, taking into account the agents’
preferences. Various notions of optimality have been considered in the literature,
but a criterion that has received much attention, particularly from economists, is
Pareto optimality. A matching M is Pareto optimal if there is no other matching
M ′ such that no agent is worse off in M ′ than in M , whilst some agent is better
off in M ′ than in M . For example, a matching M is not Pareto optimal if two
agents could improve by swapping the houses that they are assigned to in M .

There is a straightforward greedy algorithm, which we denote by Greedy-
POM, for finding a Pareto optimal matching [1]: consider each agent a in turn,
giving a his/her most-preferred vacant house (assuming such a house exists).
This algorithm is also known as a serial dictatorship mechanism [1]. Roth and
Sotomayor [13, Example 4.3] remark that a similar mechanism is used by the
United States Naval Academy in order to match graduating students to their
first posts as Naval Officers (in this context however, the algorithm considers
each student in non-decreasing order of graduation results). However one may
construct an example instance (see Section 2 for further details) in which Pareto
optimal matchings may have different cardinalities and Greedy-POM could fail
to produce a Pareto optimal matching of maximum size. Yet in many applica-
tions, one wishes to match as many agents as possible.

Stronger notions of optimality have been considered in the literature. For ex-
ample a matching M is rank-maximal [10] if, in M , the maximum number of
agents are matched to their first-choice house, and subject to this condition, the
maximum number of agents are matched to their second-choice house, and so on.
Irving et al. [10] describe two algorithms for finding a rank-maximal matching,
with complexities O(min{n + C,C

√
n}m) and O(Cnm), where n = |A| + |H |,

m is the total length of the preference lists and C is the maximum k such that
some agent is assigned to his/her kth-choice house in the constructed matching.
Clearly a rank-maximal matching is Pareto optimal, however a rank-maximal
matching need not be a maximum cardinality Pareto optimal matching (hence-
forth a maximum Pareto optimal matching). Alternatively, one may consider
a maximum cardinality maximum utility matching M , in which we maximise∑

(a,h)∈M ua,h over all maximum cardinality matchings, where ua,h indicates the
utility of house h being allocated to agent a. If one defines ua,h = l − ranka,h,

Pareto Optimality in House Allocation Problems 1165

where ranka,h is the rank of house h in agent a’s preference list and l is the
maximum length of an agent’s list, then a maximum cardinality maximum util-
ity matching is in turn a maximum Pareto optimal matching. Since all utilities
are integral, a maximum cardinality maximum utility matching may be found
in O(

√
nm logn) time [5]. However if one only requires to find a maximum car-

dinality matching that satisfies the weaker condition of being Pareto optimal, it
is of interest to consider whether faster algorithms exist.

The next two sections of this paper work towards answering this question. In
Section 2 we give a formal definition of the problem model, and present neces-
sary and sufficient conditions for a matching to be Pareto optimal. In Section
3 we use these conditions as the basis for an O(

√
nm) algorithm for finding a

maximum Pareto optimal matching. This algorithm extends the Top Trading
Cycles Method due to Gale [14], which has been the focus of much attention,
particularly in the game theory and economics literature [14,12,11,15,2]. We then
show that any improvement to the complexity of our algorithm would imply an
improved algorithm for finding a maximum matching in a bipartite graph. We
also demonstrate how to modify our algorithm in order to take account of initial
property rights, guaranteeing that those who own a good initially will end up
with a good that is either the same or better.

In the remainder of the paper, we prove several related results. In Section 4
we consider the problem of finding a minimum Pareto optimal matching, show-
ing that this problem is NP-hard, though approximable within a factor of 2. In
Section 5 we prove an interpolation result, showing that there exist Pareto op-
timal matchings of all sizes between a minimum and maximum Pareto optimal
matching. Finally, in Section 6 we give a characterization, checkable in linear
time, of instances that admit a unique Pareto optimal matching.

2 Preliminaries

We begin with a formal definition of the problem model under consideration.
An instance I of the pareto optimal matching problem (POM) comprises a
bipartite graph G = (A,H,E), where A = {a1, a2, . . . , ar} is the set of agents
and H = {h1, h2, . . . , hs} is the set of houses. For each ai ∈ A, we denote by
Ai ⊆ H the vertices adjacent to ai – these are referred to as the acceptable houses
for ai. Moreover ai has a linear order over Ai. We let n = r + s and m = |E|.
Henceforth we assume that G contains no isolated vertices.

An assignment M is a subset of A×H such that (ai, hj) ∈M only if ai finds
hj acceptable (i.e. hj ∈ Ai). If (ai, hj) ∈M , we say that ai and hj are assigned
to one another. For each q ∈ A ∪H , let M(q) denote the assignees of q in M .
A matching is an assignment M such that |M(q)| ≤ 1 for each q ∈ A ∪ H . If
M(q) = ∅, we say that q is unmatched in M , otherwise q is matched in M .

Let M be a matching in I. M is maximal if there is no (agent,house) pair
(ai, hj) such that ai and hj are both unmatched in M and hj ∈ Ai. Also M is
trade-in-free if there is no (agent,house) pair (ai, hj) such that ai is matched in
M , hj is unmatched in M , and ai prefers hj to M(ai). Finally M is coalition-

1166 D.J. Abraham et al.

free if M admits no coalition, which is a sequence of matched agents C =
〈a0, a1, . . . , ak−1〉, for some k ≥ 2, such that ai prefers M(ai+1) to M(ai)
(0 ≤ i ≤ k − 1) (here, and in the remainder of this paper, all subscripts are
taken modulo k when reasoning about coalitions). The matching

M ′ = (M\{(ai,M(ai)) : 0 ≤ i ≤ k − 1}) ∪ {(ai,M(ai+1)) : 0 ≤ i ≤ k − 1}

is defined to be the matching obtained from M by satisfying C.
The preferences of an agent extend to matchings as follows. Given two match-

ingsM andM ′, we say that an agent ai prefers M ′ to M if either (i) ai is matched
in M ′ and unmatched in M , or (ii) ai is matched in both M and M ′ and prefers
M ′(ai) to M(ai). Given this definition, we may define a relation ≺ on the set of
all matchings as follows: M ′ ≺ M if and only if no agent prefers M to M ′, and
some agent prefers M ′ to M . It is straightforward to then prove the following.

Proposition 1. Given an instance I of POM, the relation ≺ forms a strict
partial order over the set of matchings in I.

A matching is defined to be Pareto optimal if and only if it is ≺-minimal. In-
tuitively a matching is Pareto optimal if no agent ai can be better off without
requiring another agent aj to be worse off. The following proposition gives nec-
essary and sufficient conditions for a matching to be Pareto optimal.

Proposition 2. Let M be a matching in a given instance of POM. Then M is
Pareto optimal if and only if M is maximal, trade-in-free and coalition-free.

Proof. Let M be a Pareto optimal matching. If M is not maximal, then there
exists an agent ai and a house hj , both unmatched in M , such that hj ∈ Ai.
Let M ′ = M ∪ {(ai, hj)}. If M is not trade-in-free, then there exist an agent
ai and a house hj , such that ai is matched in M , hj is unmatched in M , and
ai prefers hj to M(ai). Let M ′ = (M\{(ai,M(ai))}) ∪ {(ai, hj)}. Finally if M
admits some coalition C, let M ′ be the matching obtained by satisfying C. In
all three cases, M ′ ≺M , a contradiction.

Conversely let M be a matching that is maximal, trade-in-free and coalition-
free, and suppose for a contradiction that M is not Pareto optimal. Then there
exists some matching M ′ such that M ′ ≺M . Let a0 be any agent matched in M
who prefers M ′ to M . Note that such an agent must exist, since M is maximal
and at least one agent prefers M ′ to M .

It follows that M ′(a0) is matched in M , say to a1, for otherwise M is not
trade-in-free. Therefore, M ′(a1) �= M(a1), and so a1 must also prefer M ′ to
M . Using this same argument, M ′(a1) is matched in M , say to a2. We can
continue in this manner finding a sequence of agents 〈a0, a1, a2, . . .〉, where ai

prefers M(ai+1) to M(ai). Since the number of agents is finite, this sequence
must cycle, thereby contradicting the assumption that M is coalition-free. ��

Henceforth we will establish the Pareto optimality of a given matching by show-
ing that the conditions of the above proposition are satisfied. For a given match-
ing M , we can trivially check whether M satisfies the maximality and trade-in-
free properties in O(m) time. To check for the absence of coalitions, we construct

Pareto Optimality in House Allocation Problems 1167

the envy graph of M . This is a directed graph, denoted by G(M), consisting of
one vertex for each agent, with an edge from ai to aj whenever aj is matched in
M and either (i) ai is unmatched in M and finds M(aj) acceptable, or (ii) ai is
matched in M and prefers M(aj) to M(ai). It is clear that M is coalition-free if
and only if G(M) is acyclic. So we can perform this last check in O(m) time by
using a cycle-detection algorithm on G(M). Putting these observations together,
we have the following result.

Proposition 3. Let M be a matching in a given instance of POM. Then we
may check whether M is Pareto optimal in O(m) time.

It is easy to construct an instance of POM in which the Pareto optimal match-
ings are of different sizes. For example let A = {a1, a2} and let H = {h1, h2}.
Suppose that a1 prefers h1 to h2, whilst a2 finds only h1 acceptable. Then both
M1 = {(a1, h1)} and M2 = {(a1, h2), (a2, h1)} are Pareto optimal. Given this
observation it is natural to consider the complexity of each of the problems of
finding a maximum and minimum Pareto optimal matching. (Note that Greedy-
POM produces M1 given the agent ordering 〈a1, a2〉, and produces M2 given the
agent ordering 〈a2, a1〉.)

3 Maximum Pareto Optimal Matchings

In this section, we describe a three-phase algorithm for finding a maximum
Pareto optimal matching, mirroring the three necessary and sufficient conditions
in Proposition 2. We let I be an instance of POM, and we assume the notation
and terminology introduced in Section 2. Phase 1 involves using the Hopcroft-
Karp algorithm [7] to compute a maximum matching M in G. This phase, which
guarantees that M is maximal, takes O(

√
nm) time and dominates the runtime.

The final two phases transformM into a trade-in-free and coalition-free matching
respectively. We describe these phases in more detail below.

3.1 Phase 2 of the Algorithm

In this phase, we transform M into a trade-in-free matching by repeatedly iden-
tifying and promoting agents that prefer an unmatched house to their existing
assignment. Each promotion breaks the existing assignment, thereby freeing a
house, which itself may be a preferred assignment for a different agent. With the
aid of suitable data structures, we can ensure that the next agent and house can
be identified efficiently.

For each house h, we maintain a linked list Lh of pairs (a, r), where a is a
matched agent who finds h acceptable, and r is the rank of h in a’s preference
list. Initially the pairs in Lh involve only those matched agents a who prefer h
to M(a), though subsequently the pairs in Lh may contain agents a who prefer
M(a) to h. The initialization of these lists can be carried out using one traversal
of the agent preference lists, which we assume are represented as doubly linked
lists or arrays, in O(m) time.

1168 D.J. Abraham et al.

For each matched agent a, we also use this traversal to initialize a variable,
denoted by curra, which stores the rank of M(a) in a’s preference list. This
variable is maintained during the execution of the algorithm. We also assume
that, for each matched agent a we store M(a). One final initialization remains:
construct a stack S of all unmatched houses h where Lh is non-empty. We now
enter the loop described in Figure 1.

while S �= ∅
h := S.pop();
(a, r) := Lh.removeHead();
if r < curra

// h is unmatched in M , a is matched in M and prefers h to M(a)
h′ := M(a);
M := (M\{(a, h′)}) ∪ {(a, h)};
curra := r;
h := h′;

if Lh �= ∅
S.push(h);

Fig. 1. Phase 2 loop

During each loop iteration we pop an unmatched house h from S and remove
the first pair (a, r) from the list Lh (which must be non-empty). If a prefers h
to M(a) (i.e. r < curra) then a is promoted from h′ = M(a) to h, also M and
curra are updated, and finally h′, which is now unmatched, is pushed onto S if
Lh′ is non-empty. Otherwise h is pushed back onto S if Lh is non-empty.

Each iteration of the loop removes a pair from a list Lh. Since agent preference
lists are finite and no new pair is added to a list Lh during a loop iteration, the
while loop must eventually terminate with S empty. At this point no matched
agent a would trade M(a) for an unmatched house, and so M is trade-in-free.
Additionally, M remains a maximum matching, since any agent matched at the
end of Phase 1 is also matched at the end of Phase 2. Finally, it is clear that
this phase runs in O(m) time given the data structures described above.

3.2 Phase 3 of the Algorithm

In this phase, we transform M into a coalition-free matching. Recall that coali-
tions in M correspond to cycles in the envy graph G(M). So a natural algorithm
involves repeatedly finding and satisfying coalitions in G(M) until no more coali-
tions remain. This algorithm has a runtime of O(m2), since there are O(m)
coalitions, and cycle-detection takes O(m) time.

A better starting point for an efficient algorithm is Gale’s Top Trading Cy-
cles Method [14]. This method is also based on repeatedly finding and satisfying
coalitions, however the number of iterations is reduced by the following observa-
tion: no agent assigned to his/her first choice can be in a coalition. We remove
such agents from consideration, and since the houses assigned to them are no

Pareto Optimality in House Allocation Problems 1169

for each matched agent a such that p(a) �= M(a)
P := {a}; // P is a stack of agents
c(a) := 1; // counters record the number of times an agent is in P
while P �= ∅

a′ := P.pop();
p(a′) := most-preferred unlabelled house on preference list of a′;
if c(a′) = 2

C := coalition in P containing a′;
satisfy C;
for each a′′ ∈ C

label M(a′′);
c(a′′) := 0;
P.pop();

else if p(a′) = M(a′)
label M(a′);
c(a′) := 0;

else
P.push(a′);
a′′ := M(p(a′));
c(a′′) := c(a′′) + 1;
P.push(a′′);

Fig. 2. Phase 3 loop

longer exchangeable, they can be deleted from the preference lists of the re-
maining agents. This observation can now be recursively applied to the reduced
preference lists. At some point, either no agents remain, in which case the match-
ing is coalition-free, or no agent is assigned to his/her reduced first choice (i.e.
the first choice on his/her reduced preference list).

In this last case, it turns out that there must be a coalition C in M , which
can be found in O(r) time by searching the envy graph restricted to reduced
first-choice edges. After satisfying C, each agent in C is assigned to his/her
reduced first choice. Therefore, no agent is in more than one coalition, giving
O(r) coalitions overall. The runtime of this preliminary implementation then is
Ω(m+ r2). We now present a linear-time extension of Yuan’s description of the
Top Trading Cycles Method [15].

In our implementation, deletions of houses from agents’ preference lists are not
explicitly carried out. Instead, a house that is no longer exchangeable is labelled
(all houses are initially unlabelled). For each agent a we maintain a pointer p(a)
to the first unlabelled house on a’s preference list – this is equivalent to the first
house on a’s reduced preference list. Initially p(a) points to the first house on
a’s preference list, and subsequently p(a) traverses left to right. Also, in order
to identify coalitions, we initialize a counter c(a) to 0 for each agent a. Then, we
enter the main body of the algorithm, as given in Figure 2.

This algorithm repeatedly searches for coalitions, building a path P of agents
(represented by a stack) in the (simulated) envy graph restricted to reduced
first-choice edges. At each iteration of the while loop, we pop an agent a′ from
the stack and move up p(a′) if necessary. If P cycles (i.e. we find that c(a′) = 2),

1170 D.J. Abraham et al.

there is a coalition C – the agents involved in C are removed from consideration
and the houses assigned to these agents are labelled (in practice the agents in C
can be identified and C can be satisfied during the stack popping operations).
Alternatively, if P reaches a dead-end (a′ is already assigned to his/her first
choice), this agent is removed from consideration and his/her assigned house is
labelled. Otherwise, we keep extending the path by following the reduced first-
choice edges.

At the termination of this phase we note that M is coalition-free by the
correctness of the Top Trading Cycles Method [14]. Also M remains a maximum
trade-in-free matching, since each agent and house matched at the end of Phase 2
is also matched at the end of Phase 3. Finally, it is clear this phase runs in O(m)
time given the data structures described above. We summarize the preceding
discussion in the following theorem.

Theorem 1. A maximum Pareto optimal matching can be found in O(
√
nm)

time. Such a matching is also a maximum matching of agents to houses.

We now show that any improvement to the complexity of the above algorithm
would imply an improved algorithm for finding a maximum matching in a bipar-
tite graph. Without loss of generality, let G = (A,H,E) be an arbitrary bipartite
graph with no isolated vertices. Construct an instance I of POM with bipartite
graph G, where each agent a’s preference list in I is an arbitrary permutation
over a’s neighbours in G. By Theorem 1, any maximum Pareto optimal match-
ing in I is also a maximum matching in G. Since I may be constructed from
G in O(m) time, the complexity of finding a maximum matching in a bipartite
graph is bounded above by the complexity of finding a maximum Pareto optimal
matching.

3.3 Initial Property Rights

Suppose that a subset A′ of the agents already own a house. We now describe
an individually rational modification of our algorithm, which ensures that every
agent in A′ ends up with the same house or better.

We begin with a matching M that pre-assigns every agent a ∈ A′ to his/her
existing house h. We then truncate the preference list of each such a by removing
all houses less preferable than M(a). Now, we enter Phase 1, where we use the
Hopcroft-Karp algorithm to exhaustively augment M into some matching M ′.
Members of A′ must still be matched in M ′, and since their preference lists were
truncated, their new assignments must be at least as preferable as those in M .
Note that M ′ may not be a maximum matching of A to H , however M ′ does
have maximum cardinality among all matchings that respect the initial property
rights. The remaining two phases do not move any agent from being matched to
unmatched, and so the result follows immediately.

In the special case that all agents own a house initially (i.e. I is an instance
of a housing market), it is clear that Phases 1 and 2 of the algorithm are not
required. Moreover it is known that Phase 3 produces the unique matching that
belongs to the core of the market [12], a stronger notion than Pareto optimality.

Pareto Optimality in House Allocation Problems 1171

4 Minimum Pareto Optimal Matchings

In this section, we consider the problem of finding a minimum Pareto optimal
matching. Let MIN-POM denote the problem deciding, given an instance I of
POM and an integer K, whether I admits a Pareto optimal matching of size at
most K. We firstly prove that MIN-POM is NP-complete via a reduction from
MMM, which is the problem of deciding, given a graph G and an integer K,
whether G admits a maximal matching of size at most K.

Theorem 2. MIN-POM is NP-complete.

Proof. By Proposition 3, MIN-POM belongs to NP. To show NP-hardness, we
give a reduction from the NP-complete restriction of MMM to subdivision graphs
[6] (given a graph G, the subdivision graph of G is obtained by subdividing
each edge e = {u,w} into two edges {u, ve}, {ve, w}, where ve is a new vertex
corresponding to e).

Let G = (V,E) (a subdivision graph) and K (a positive integer) be given
as an instance of MMM. Then V is a disjoint union of two sets U and W ,
where each edge e ∈ E joins a vertex in U to a vertex in W . Assume that
U = {u1, u2, . . . , ur} and W = {w1, w2, . . . , ws}. Without loss of generality
assume that each vertex ui ∈ U has degree 2, and moreover assume that pi and
qi are two sequences such that pi < qi, {ui, wpi} ∈ E and {ui, wqi} ∈ E.

We create an instance I of MIN-POM as follows. Let A be the set of agents
and let H be the set of houses, where A = A1 ∪ A2, At = {at

1, a
t
2, . . . , a

t
r}

(t = 1, 2), H = W ∪ X and X = {x1, x2, . . . , xr}. For each i (1 ≤ i ≤ r), we
create preference lists for agents a1

i and a2
i as follows:

a1
i : xi wpi wqi a2

i : xi wqi wpi

We claim that G has a maximal matching of size at most K if and only if I has
a Pareto optimal matching of size at most K + r.

For, suppose that M is a maximal matching in G of size at most K. We
construct a set M ′ as follows. For any ui ∈ U that is unmatched in M , add the
pair (a1

i , xi) to M ′. Now suppose that (ui, wj) ∈ M . If j = pi, add the pairs
(a1

i , wj) and (a2
i , xi) to M ′. If j = qi, add the pairs (a1

i , xi) and (a2
i , wj) to M ′.

Clearly M ′ is a matching in I, and |M ′| = |M |+ r ≤ K+ r. It is straightforward
to verify that, by the maximality of M in G, M ′ is Pareto optimal in I.

Conversely suppose that M ′ is a Pareto optimal matching in I of size at most
K+ r. For each i (1 ≤ i ≤ r), either (a1

i , xi) ∈M ′ or (a2
i , xi) ∈M ′, for otherwise

M ′ is not trade-in-free. Hence we may construct a matching M in G as follows.
For each i (1 ≤ i ≤ r), if (at

i, wj) ∈ M ′ for some t (1 ≤ t ≤ 2), add (ui, wj) to
M . Then |M | = |M ′| − r ≤ K. The maximality of M ′ clearly implies that M is
maximal in G. ��

For a given instance I of POM with bipartite graphG, we denote by p−(I) and
p+(I) the sizes of a minimum and maximum Pareto optimal matching in I respec-
tively. Similarly, we denote by β−

1 (G) and β1(G) the sizes of a minimum maximal

1172 D.J. Abraham et al.

and a maximum matching in G respectively. It is known that β−
1 (G) ≥ β1(G)/2

[9]. By Proposition 2, Pareto optimal matchings in I are maximal matchings in
G. Hence, by Theorem 1, we have that β−

1 (G) ≤ p−(I) ≤ p+(I) = β1(G). It is
therefore immediate that, for a given instance I of POM, the problem of finding
a minimum Pareto optimal matching is approximable within a factor of 2.

5 Interpolation of Pareto Optimal Matchings

In this section, we prove that, for a given instance I of POM, there are Pareto
optimal matchings of all sizes between p−(I) and p+(I).

Given a matching M , an augmenting path P for M is an alternating se-
quence of distinct agents and houses 〈a1, h1, a2, . . . , ak, hk〉, where a1 and hk are
unmatched in M , hi ∈ Ai, and M(ai+1) = hi (1 ≤ i ≤ k − 1). We associate
with each such augmenting path a vector rankP , whose ith component contains
the rank of ai for hi. Given two augmenting paths P and Q for M , we say that
P ' Q if (i) both P and Q begin from the same agent, and (ii) rankP is lexico-
graphically less than rankQ. Also for paths P and Q, we define three operations:
PrefixP (v) is the substring of P from a1 to v ∈ P , SuffixP (v) is the substring of
P from v ∈ P to hk, and P ·Q denotes the concatenation of P and Q.

Theorem 3. For a given instance I of POM, there exist Pareto optimal match-
ings of size k, for each k such that p−(I) ≤ k ≤ p+(I).

Proof. Let M be any Pareto optimal matching such that |M | < p+(I), and let
M ′ be the matching that results from augmenting M along some '-minimal
augmenting path P . We will show in turn that M ′ is maximal, trade-in-free and
coalition-free; the result then follows by induction.

If M ′ is not maximal, then clearly we contradict the maximality of M . Now
suppose that M ′ is not trade-in-free. Then there exists an agent a and house
h, where a is matched in M ′, h is unmatched in M ′, and a prefers h to M ′(a).
Since h is also unmatched in M , a must be in P , for otherwise M(a) = M ′(a),
and M is not trade-in-free. But then P ′ = PrefixP (a) ·〈h〉 is an augmenting path
for M , contradicting the '-minimality of P .

Finally suppose for a contradiction that M ′ is not coalition-free. Then there
exists a coalition C = 〈a0, a1, . . . , ak−1〉 with respect to M ′. At least one agent in
P must also be in C, for otherwise M is not coalition-free. Let ai be the first such
agent in P . We establish some properties of M ′(ai+1). Firstly, M ′(ai+1) must
be matched in M , for otherwise M admits the augmenting path PrefixP (ai) ·
〈M ′(ai+1)〉, contradicting the '-minimality of P . Also, M ′(ai+1) cannot appear
before ai in P , for otherwise ai is not the first agent in P to be in C. Lastly,
M ′(ai+1) cannot appear after ai in P , for otherwise M admits the augmenting
path PrefixP (ai)· SuffixP (M ′(ai+1)), contradicting the '-minimality of P . So, it
must be the case that M ′(ai+1) is matched in M and does not appear in P . Let
ai+j be the first agent in C after ai, such that ai+j is in P . Note that ai+j �= ai+1
by the above properties of M ′(ai+1), but since C is a cycle, ai+j = ai is possible.
It follows that the subsequence S = 〈M ′(ai+1), ai+1, . . . ,M

′(ai+j−1), ai+j−1〉 of

Pareto Optimality in House Allocation Problems 1173

C is disjoint from P , and so P ′ = PrefixP (ai) · S· SuffixP (M ′(ai+j)) is a valid
augmenting path of M . But then P ′ contradicts the '-minimality of P , since ai

prefers M ′(ai+1) to M ′(ai). ��

Corollary 1. Given an instance I of POM and a Pareto optimal matching M
in I of size k, we can construct a Pareto optimal matching M ′ of size k + 1, or
determine that no such matching exists, in O(m) time.

Proof. Let G be the bipartite graph in I, with edges in M directed from H
to A, and edges not in M directed from A to H . Also associate with each
non-matching edge (ai, hj) the rank of ai for hj . We search for a '-minimal
augmenting path by performing an ordered depth first search of G starting from
the set of unmatched agents, where for each agent a in the search, we explore
outgoing edges from a in increasing order of rank. In general, ordered depth-first
search is asymptotically slower than depth-first search. However, the O(m) result
holds, since each preference list is already given in increasing order of rank. ��

We remark that the results of this section extend to the case where a subset
of the agents have initial property rights.

6 Uniqueness of Pareto Optimal Matchings

In this section, we give a characterization of instances with no initial property
rights that admit a unique Pareto optimal matching. This is based on the concept
of a signature of a Pareto optimal matching.

If a matching M is Pareto optimal, the envy graph G(M) contains no cycles,
and therefore admits a topological ordering. We say that a reversed topological
ordering of G(M), denoted by σ(M), is a signature of M . The next lemma will
help us establish that the signature of a matching is unique for that matching.
This lemma is similar to [1, Lemma 1], though the proof here, which uses the
concept of a signature, is much simpler.

Lemma 1. Given an instance I of POM, the algorithm Greedy-POM can gen-
erate any Pareto optimal matching in I.

Proof. Let M be an arbitrary Pareto optimal matching in I. We claim that by
processing the agents in order of σ(M), the greedy algorithm returns M .

Suppose for a contradiction that Greedy-POM returns a matching M ′ �= M .
It follows that since M ′ is Pareto optimal, some agent must prefer M ′ to M . Let
a be the first such agent in σ(M).

Now, M ′(a) must be matched in M , say to a′, for otherwise M is not maximal
(if a is unmatched in M), or M is not trade-in-free (if a is matched in M). G(M)
must therefore contain an edge from a to a′, meaning that a′ precedes a in σ(M).
At the time a′ is processed by Greedy-POM, M ′(a) is unmatched (since it is
assigned later to a). So, a′ must prefer M ′(a′) to M(a′) = M ′(a), contradicting
the assumption that a was the first such agent in σ(M). ��

1174 D.J. Abraham et al.

Corollary 2. Given an instance I of POM, every agent permutation is a sig-
nature of exactly one Pareto optimal matching in I.

We can now present a necessary and sufficient condition, checkable in linear
time, for a POM instance to admit a unique Pareto optimal matching.

Theorem 4. An instance I of POM admits a unique Pareto optimal matching
M if and only if every agent is matched in M with his/her first choice.

Proof. Let M be the unique Pareto optimal matching in I. Since every agent
permutation is a signature of M , G(M) contains no edges. Then every agent
must be matched to his/her first choice.

Conversely, let M be a matching in I in which every agent is matched with
his/her first choice. Then if M ′ is any matching in I such that M ′ �= M , it
follows that M ≺M ′. Hence M is the unique Pareto optimal matching in I. ��

7 Concluding Remarks

We conclude with an open problem. The basic POM definition given in Section
2 can be generalized by permitting agents to contain ties in their preference
lists (i.e. to rank equally two or more houses). In this context the definition of
the relation ≺ is the same as that given in Section 2, and hence the definition
of Pareto optimality remains unchanged. A maximum Pareto optimal matching
can be found in O(

√
nm logn) time using a similar reduction to the Assignment

problem as described in Section 1 (in this case ranka,h is the number of houses
that a prefers to h). However is the problem of finding a maximum Pareto
optimal matching solvable in O(

√
nm) time?

References

1. A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

2. A. Abdulkadiroǧlu and T. Sönmez. House allocation with existing tenants. Journal
of Economic Theory, 88:233–260, 1999.

3. X. Deng, C. Papadimitriou, and S. Safra. On the complexity of equilibria. Journal
of Computer and System Sciences, 67(2):311–324, 2003.

4. S.P. Fekete, M. Skutella, and G.J. Woeginger. The complexity of economic equi-
libria for house allocation markets. Inf. Proc. Lett., 88:219–223, 2003.

5. H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems.
SIAM Journal on Computing, 18(5):1013–1036, 1989.

6. J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal on
Discrete Mathematics, 6:375–387, 1993.

7. J.E. Hopcroft and R.M. Karp. A n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM Journal on Computing, 2:225–231, 1973.

8. A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314, 1979.

Pareto Optimality in House Allocation Problems 1175

9. B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence
systems. Annals of Discrete Mathematics, 2:65–74, 1978.

10. R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. Proceedings of SODA ’04, pages 68–75. ACM-SIAM, 2004.

11. A.E. Roth. Incentive compatibility in a market with indivisible goods. Economics
Letters, 9:127–132, 1982.

12. A.E. Roth and A. Postlewaite. Weak versus strong domination in a market with
indivisible goods. Journal of Mathematical Economics, 4:131–137, 1977.

13. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis.Cambridge University Press, 1990.

14. L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical
Economics, 1:23–37, 1974.

15. Y. Yuan. Residence exchange wanted: a stable residence exchange problem. Euro-
pean Journal of Operational Research, 90:536–546, 1996.

16. L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal of
Economic Theory, 52(1):123–135, 1990.

Generalized Geometric Approaches for Leaf
Sequencing Problems in Radiation Therapy�,��

Danny Z. Chen1, Xiaobo S. Hu1, Shuang Luan2,� � �, Shahid A. Naqvi3,
Chao Wang1, and Cedric X. Yu3

1 Department of Computer Science and Engineering,
University of Notre Dame,

Notre Dame, IN 46556, USA
{chen, hu, cwang1}@cse.nd.edu

2 Department of Computer Science,
University of New Mexico,

Albuquerque, NM 87131, USA
sluan@unm.edu

3 Department of Radiation Oncology,
University of Maryland School of Medicine,

Baltimore, MD 21201-1595, USA
{snaqv001, cyu002}@umaryland.edu

Abstract. The 3-D static leaf sequencing (SLS) problem arises in radia-
tion therapy for cancer treatments, aiming to deliver a prescribed radia-
tion dose to a target tumor accurately and efficiently. The treatment time
and machine delivery error are two crucial factors of a solution (i.e., a
treatment plan) for the SLS problem. In this paper, we prove that the 3-D
SLS problem is NP-hard, and present the first ever algorithm for the 3-D
SLS problem that can determine a tradeoff between the treatment time
and machine delivery error (also called the “tongue-and-groove” error in
medical literature). Our new 3-D SLS algorithm with error control gives
the users (e.g., physicians) the option of specifying a machine delivery
error bound, and subject to the given error bound, the algorithm com-
putes a treatment plan with the minimum treatment time. We formulate
the SLS problem with error control as computing a k-weight shortest
path in a directed graph and build the graph by computing g-matchings
and minimum cost flows. Further, we extend our 3-D SLS algorithm to
the popular radiotherapy machine models with different constraints. In
our extensions, we model the SLS problems for some of the radiother-
apy systems as computing a minimum g-path cover of a directed acyclic
graph. We implemented our new 3-D SLS algorithm suite and conducted

� Due to mistakes during data conversion, this paper was originally published in
LNCS 3341 (ISAAC 2004) with several special characters missing in text and
figures.

�� This research was supported in part by the National Science Foundation under
Grant CCR-9988468.

� � � Corresponding author. The research of this author was supported in part by a
faculty start-up fund from the Department of Computer Science, University of
New Mexico.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1176–1186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generalized Geometric Approaches for Leaf Sequencing Problems 1177

an extensive comparison study with commercial planning systems and
well-known algorithms in medical literature. Some of our experimental
results based on real medical data are presented.

1 Introduction

In this paper, we study the 3-D static leaf sequencing (SLS) problem in intensity-
modulated radiation therapy (IMRT). IMRT is a modern cancer therapy tech-
nique and aims to deliver a high radiation dose that is as conformal to a tumor
as possible. Performing IMRT is based on the ability to accurately and efficiently
deliver prescribed discrete dose distributions of radiation, called intensity maps
(IMs). An IM is a dose prescription specified by a set of nonnegative integers on
a 2-D grid (see Figure 1(a)). The value in each grid cell indicates the amount
(in units) of radiation to be delivered to the body region corresponding to that
IM cell.

One of the most advanced tools today for delivering intensity maps is the
multileaf collimator (MLC) [11]. An MLC consists of up to 60 pairs of tungsten
leaves (see Figure 1(b)). The leaves can move up and down to form a rectilinear
region, called an MLC-aperture. To reduce radiation leakage, two pairs of backup
metal diaphragms (along the x and y axes) are used to form a “bounding box”
of each rectilinear MLC-aperture.

Currently, there are three popular MLC systems in clinical use. They are
the Elekta, the Siemens, and the Varian MLC systems [11]. Depending on the
specific MLC in use, there are some differences among the geometric shapes of
the “deliverable” MLC-apertures. In this abstract, we will focus on the Elekta
MLC system, and leave the details of Siemens and Varian MLCs to the full paper.
(Section 2 describes the geometric properties of an Elekta MLC-aperture.)

There are several techniques for delivering IMRT [18, 19]. The most popular
one is called the static leaf sequencing (SLS) or the “step-and-shoot” technique
[9, 19, 20]. In the SLS approach, an IM is delivered as follows: Form an MLC-
aperture, turn on the beam source to deliver radiation to the area of the IM
exposed by the MLC-aperture, turn off the beam source, reposition MLC leaves
to form another MLC-aperture, and repeat until the entire IM is done. In this
setting, the boundary of each MLC-aperture does not intersect the interior of
any IM cell. In delivering a beam shaped by an MLC-aperture, all the cells inside
the region of the MLC-aperture receive the same integral amount of radiation
dose (say, one unit), i.e., the numbers in all such cells are decreased by the same
integer value. The IM is done when each cell has a value zero.

A treatment plan for a given IM consists of a set of MLC-apertures for de-
livering the IM. (Each MLC-aperture is associated with an integral value that
represent the amount of radiation prescribed to it.) Two key criteria are used to
evaluate the quality of an IMRT treatment plan:

(1) Treatment time (the efficiency): Minimizing the treatment time is im-
portant because it not only lowers the patients’ costs but also enables more
patients to be treated. Since the overhead associated with turning the beam

1178 D.Z. Chen et al.

0 10
00

0 0

00
0 0

0 0
0

0

0
0

02

1
11

1 1

11
1 1 1 1 1

1
1 1

1

(a) (b)

Fig. 1. (a) An IM. (b) Illustrating the Elekta MLC systems. The shaded rectangles rep-
resent the MLC leaves, and the unshaded rectangles represent the backup diaphragms.

source on/off and repositioning MLC leaves dominates the total treatment time
[9, 20], we like to minimize the number of MLC-apertures used for delivering an
IM.

(2) Machine delivery error (the accuracy): Ideally, an IM is partitioned into
a set of MLC-apertures that delivers the IM perfectly. However, in reality, due to
the special geometric shape of the MLC leaves [21], an MLC-aperture cannot be
delivered as perfectly as its geometry. This gives rise to an error between the pre-
scribed dose and actually delivered dose. We call this error the machine delivery
error, which is also called the “tongue-and-groove” error in medical literature
[17, 20, 21] (Section 2 discusses more on its nature). Minimizing the machine de-
livery error is important because the maximum machine delivery error can be
up to 10% [10], which is well beyond the allowed 3–5% limit. Carefully choosing
MLC-apertures to use can reduce the error.

The 3-D static leaf sequencing (SLS) problem is: Given an IM and an error
bound E , find a set S of MLC-apertures for delivering the IM such that the total
machine delivery error incurred by S is ≤ E , and the size |S| is minimized. Note
that the key to the problem is to find a good tradeoff between the accuracy
(error) and efficiency (treatment time).

The 3-D SLS problem has received a great deal of attention from medical
physics community [4, 5, 6, 9, 17, 20], computational geometry [7, 8, 15], and op-
erations research [1, 3, 13]. An influential paper is by Xia and Verhey [20] for
solving the 3-D SLS problem without error control (i.e., the machine delivery
error is ignored). Their algorithm has been implemented by many researchers
and used as a widely accepted benchmark program for leaf sequencing software.
However, none of the known approaches so far can solve the 3-D SLS problem
with machine delivery error control (i.e., determining a good tradeoff between
the error and time).

The main results of this paper are summarized as follows:

(1) We prove that the 3-D SLS problem is NP-hard under all three popular MLC
models, and with or without machine delivery error control.
(2) We present the first ever modeling of the 3-D SLS problem with a tradeoff
between the error and treatment time and an efficient algorithm for the prob-

Generalized Geometric Approaches for Leaf Sequencing Problems 1179

lem on the Elekta model. In our solution, the 3-D SLS problem is formulated
as a k-weight shortest path problem on a directed graph, in which each edge is
defined by a minimum weight g-cardinality matching. Every such k-weight path
specifies a set S of k MLC-apertures for delivering the given IM, and the cost of
the path indicates the machine delivery error of the set S of MLC-apertures.
(3) We extend our 3-D SLS algorithm to other MLC models, such as Siemens
and Varian. Our extensions are based on computing a minimum g-path cover of
a directed acyclic graph.
(4) We also solve the 2-D case of the 3-D SLS problem in which the given IM
consists of entries of only 1 or 0. Our solution is based on computing a minimum
cost flow in a special graph.
(5) We implemented our algorithm suite and carried out experimental studies
using medical data.

Due to space limit, we will focus on results (2) and (5) in this extended
abstract, and leave the details of results (1), (3) and (4) to the full paper.

2 Preliminaries and Problem Statement

2.1 Constraints of Multileaf Collimators and Their Geometry

The mechanical constraints of an MLC preclude certain aperture shapes from
being used [11]. One such constraint is called the minimum leaf separation, which
requires the distance between the opposite leaves of any MLC leaf pair to be ≥ a
given value δ (say, δ = 1cm). Another constraint is called the no-interleaf motion,
which forbids the tip of each MLC leaf to surpass those of its neighboring leaves
on the opposite leaf bank. These constraints prevent opposite MLC leaves from
colliding into each other and being damaged. The Elekta MLC (i.e., the default
MLC system in this paper) is subject to both the leaf separation and the no-
interleaf motion constraint, hence geometrically, each Elekta MLC-aperture is
a rectilinear x-monotone simple polygon whose minimum vertical “width” is ≥
the minimum separation value δ (see Figure 1(b)).

2.2 Machine Delivery Errors

On most current MLCs, the sides of the leaves are designed to have a “tongue-
and-groove” (TG) feature (see Figure 2(a)). This design reduces the radiation
leakage through the gap between two neighboring MLC leaves [21]. But, it also
causes an unwanted underdose and leakage situation when an MLC leaf is used
for blocking radiation (see Figures 2(b) and 2(c)). Geometrically, the underdose
and leakage error caused by the tongue-and-groove feature associating with an
MLC-aperture is a set of 3-D axis-parallel boxes w · li · h, where w is the (fixed)
width of the tongue or groove side of an MLC leaf, li is the length of the portion
of the i-th leaf that is actually involved in blocking radiation, and h = α ·r is the
amount of radiation leakage with α being the (fixed) leakage ratio and r being
the amount of radiation delivered by that MLC-aperture. Figure 2(b) illustrates

1180 D.Z. Chen et al.

C

B

Z

X
Y

A

Tongue

Groove

Y

Y

Z

Dose
Actual

Ideal
Dose

Dose

Dose

Y

B

Radiation

A
Area
Underdose
Machine

Machine

Areas
Underdose

MLC leaves

CBA

(a) (b) (c)

Fig. 2. (a) Illustrating the tongue-and-groove (TG) interlock feature of the MLC in
3-D, where leaf B is used for blocking radiation. (b) When leaf B is used for blocking
radiation, there is an underdose and leakage in the tongue or groove area. (c) The
underdose and leakage areas of an MLC-aperture region.

CBCBA

(a) (b) (c)

T and G
Error

(d)

Dose
X

X
Dose

B

X

Z

X
Dose

C

X

Z

Final Dose

Fig. 3. Illustrating the tongue-and-groove error. (a) and (b): Two MLC-apertures (the
shaded rectangles represent MLC leaves). (c) When delivering the two MLC-apertures
in (a) and (b) (one by one), the groove side of leaf B and tongue side of leaf C are both
used for blocking radiation, causing a tongue-and-groove error in the area between the
leaves B and C. (d) Illustrating a dose “dip” in the final dose distribution where a
tongue-and-groove error occurs.

the height of the underdose and leakage error, and Figure 2(c) illustrates the
width and length of the underdose and leakage error.

We distinguish two types of errors caused by the tongue-and-groove feature
of MLC leaves:

Tongue-or-groove error: The tongue-or-groove error of an MLC-aperture is
defined as the amount of underdose and leakage error occurred whenever the
tongue side or groove side of an MLC leaf is used for blocking radiation. The
tongue-or-groove error of an IMRT plan (i.e., a set of MLC-apertures) is the sum
of the errors of all its MLC-apertures.

Tongue-and-groove error: Unlike the tongue-or-groove error which is defined
on each individual MLC-aperture, the tongue-and-groove error is defined by the

Generalized Geometric Approaches for Leaf Sequencing Problems 1181

relations between different MLC-apertures. The tongue-and-groove error occurs
whenever the tongue side of an MLC leaf and the corresponding groove side of
its neighboring leaf are both used for blocking radiation in any two different
MLC-apertures of an IMRT plan (see Figure 3). Clearly, the tongue-and-groove
error is a subset of the tongue-or-groove error. Note that minimizing the tongue-
and-groove error is also important because it usually occurs in the middle of
the delivered intensity maps [20], and is actually the most damaging part of the
tongue-or-groove error.

Geometrically, for a set of MLC-apertures, the errors caused by using the
tongue sides of the MLC leaves for blocking radiation are a set of 3-D axis-
parallel boxes, denoted by VT . Similarly, the errors by using the groove sides
of the leaves for blocking radiation are another set of 3-D axis-parallel boxes,
denoted by VG. Then the tongue-or-groove error for the MLC-aperture set is the
sum of the volume values of these two sets (i.e., |VT | + |VG|), and the tongue-
and-groove error is equal to twice the volume value of the intersection between
VT and VG (i.e., 2 · |VT ∩VG|). We can also view the given IM as a 3-D rectilinear
terrain (mountain), denoted by V ∗. Then the magnitude of the tongue-or-groove
(resp., tongue-and-groove) error can be quantified by the percentage |VT |+|VG|

|V ∗|

(resp., |VT ∩VG|
|V ∗|).

If we view each MLC-aperture as a rectilinear polygonal region on the xy-
plane, then the tongue-or-groove error occurs along every vertical boundary edge
of this region, except its leftmost and rightmost vertical edges. The leftmost and
rightmost vertical edges are excluded (i.e., no error on them) since they are
defined by the backup diaphragms along the x-axis, not by the MLC leaves.

2.3 The Static Leaf Sequencing Problem

The 3-D static leaf sequencing (SLS) problem is: Given an IM and an error
bound E , find a set S of MLC-apertures for delivering the IM, such that the
machine delivery error (i.e., either the tongue-or-groove error or the tongue-and-
groove error) is ≤ E and the size |S| is minimized.

Interchangeably, we also call such MLC-apertures the B-segments[7] (for block-
segments). Each B-segment is of a rectilinear x-monotone polygonal shape of a
uniform height h ≥ 1 (h is the number of dose units delivered by the MLC-
aperture).

A key special case of the 3-D SLS problem is the basic 3-D SLS problem
[4, 5, 6]. This case is similar to the general 3-D SLS problem, except that the
height of each of its B-segments must be one. Note that in the general 3-D SLS
problem, the uniform height of each B-segment can be any integer ≥ 1. Studying
the basic case is important because the maximum heights of the majority of IMs
used in the current clinical treatments are around 5, and an optimal solution for
the basic case on such an IM is often very close to an optimal solution for the
general case.

1182 D.Z. Chen et al.

3 3-D SLS Algorithms with Error Control

This section presents our SLS algorithms with error control. Due to space limit,
we will use our basic 3-D SLS algorithms with error control for the Elekta model
to illustrate some of the key ideas of our approach, and leave the details of our
complete SLS algorithm suite to the full paper.

3.1 Algorithm for Basic 3-D SLS Problem with Tongue-or-Groove
Error Control

Let S be a solution for the basic 3-D SLS problem with tongue-or-groove error
control (S = {Si | i ∈ I} is a set of B-segments of height 1 for the given IM,
where I is an index set). Consider a B-segment Si ∈ S. Observe that since each
B-segment Si has a unit height and an x-monotone rectilinear simple polygonal
shape, Si actually builds a continuous block of a unit height on every IM column
Cj that intersects the projection of Si on the IM grid [7]. We denote such a
continuous block by an interval Bi,j on the column Cj . (Interchangeably, we
also call Bi,j a block). Note that when delivering a B-segment Si, each of its
blocks Bi,j is delivered by the pair of MLC leaves that is aligned with Cj .

Let B(Si) = {Bi,j | Bi,j = Si ∩ Cj , j = ei, ei + 1, . . . , ki} be the set of blocks
that form Si, where Si “runs” consecutively from the IM columns Cei to Cki .
As discussed in Section 2.2, the tongue-or-groove error of Si occurs along every
vertical boundary edge of the polygonal region of Si, except its leftmost and
rightmost vertical edges. Let |Bi,j ⊕Bi,j+1| denote the length of the symmetric
difference between the two intervals of Bi,j and Bi,j+1, j = ei, ei + 1, . . . , ki − 1.
Thus, the total tongue-or-groove error TorG(Si) of Si is the sum of a set of 3-D
error volumes, TorG(Si) =

∑ki−1
j=ei

w · li,j ·hi, where w is the (fixed) width of the
tongue or groove side of an MLC leaf, li,j = |Bi,j ⊕ Bi,j+1| is the length of the
leaf portion that is actually used for blocking radiation between blocks Bi,j and
Bi,j+1, and hi = α ·ri is the amount of radiation leakage associated with Si with
ri being the “height” of Si. Since in the basic 3-D SLS problem, the B-segments
are all of a height one (i.e., ri = 1, ∀i ∈ I), the tongue-or-groove error of S is
TorG(S) = w · α ·

∑
i∈I

∑ki−1
j=ei

li,j . Observe that
∑ki−1

j=ei
li,j is the sum of the

lengths of all non-extreme vertical edges of the B-segment Si (e.g., see Figure
2(c)).

Thus, we have the following geometric version of the basic 3-D SLS problem
with tongue-or-groove error control: Given an IM and an error bound E∗, find
a set S = {Si | i ∈ I} of B-segments of height one, such that the value C(S) =∑

i∈I

∑ki−1
j=ei

li,j ≤ E∗ and the size |S| is minimized. Note that here, E∗ = E/(w·α)
for the error bound E in the definition of the SLS problems in Section 2.3.

For each B-segment Si ∈ S, now let B(Si) = {Bi,j | j = 1, 2, . . . , n}, such that
n is the number of columns of the given IM and some intervalsBi,j may be empty.
Then we have C(S) =

∑
i∈I

∑ki−1
j=ei
|Bi,j ⊕Bi,j+1| =

∑n−1
j=1

∑
i∈I |Bi,j ⊕Bi,j+1|.

Note that for each j = 1, 2, . . . , n−1, the value
∑

i∈I |Bi,j⊕Bi,j+1| is actually the
tongue-or-groove error for “stitching” the two block-sets BS(Cj) and BS(Cj+1)

Generalized Geometric Approaches for Leaf Sequencing Problems 1183

for the IM columns Cj and Cj+1 to form the B-segments as defined by S. Suppose
g pairs of blocks are stitched together by S between BS(Cj) and BS(Cj+1). To
minimize the error of S, the error incurred for such a stitching configuration
(i.e.,

∑
i∈I |Bi,j ⊕ Bi,j+1|) must be the smallest among all possible stitching

configurations with exactly g stitched block pairs betweenBS(Cj) andBS(Cj+1)
defined by S.

Now we can relate the tongue-or-groove error to the number of B-segments,
by associating an error to each stitching configuration between the block-sets
for any two consecutive IM columns. Specifically, for any two block-sets BS(Cj)
and BS(Cj+1) for columns Cj and Cj+1 and each g = 1, 2, . . . , |Mj |, where Mj

is a maximum size matching between BS(Cj) and BS(Cj+1), we stitch together
exactly g pairs of blocks with the minimum total error. Note that every stitching
configuration of exactly g block pairs between BS(Cj) and BS(Cj+1) with the
minimum error corresponds to a matching of exactly g pairs of intervals with the
minimum total weight between the two interval sets of BS(Cj) and BS(Cj+1).
We call such a bipartite matching of intervals (subject to the MLC constraints)
an optimal g-matching. Hence, an optimal solution for the basic 3-D SLS problem
with error control is specified by a list of block-sets (one for each IM column)
and an optimal gj-matching between two such block-sets BS(Cj) and BS(Cj+1)
for any consecutive columns Cj and Cj+1 (for some value gj).

To find the sought block-sets and gj-matchings, we construct the following di-
rected acyclic graph G∗: (1) Generate all distinct block-sets for each IM column,
and let every vertex of G∗ correspond to exactly one such block-set. (2) For any
two vertices ofG∗ corresponding to two block-sets BS(Cj) and BS(Cj+1) for two
consecutive IM columns Cj and Cj+1, compute a minimum weight g-matching
for each g = 1, 2, . . . , |Mj |, where Mj is a maximum size matching between
BS(Cj) and BS(Cj+1). For each such g-matching, put a left-to-right edge be-
tween the two vertices in G∗, and assign the edge a weight of (|BS(Cj+1)| − g)
and a cost equal to the minimum weight of the g-matching. (3) Add a source
vertex s to G∗ and connect s to all block-sets for the first IM column; add a sink
t and connect all block-sets for the last IM column to t (all edges added here
have weight zero and cost zero).

Lemma 1. An s-to-t path in the graph G∗ with a weight k and a cost C specifies
a set of k B-segments of a unit height for the given IM whose total tongue-or-
groove error is C.

Lemma 1 implies that for the basic 3-D SLS problem with a given error bound
E∗, we can obtain a minimum B-segment set for the given IM subject to this
error bound, by finding a minimum weight s-to-t path in G∗ with a total cost
≤ E∗. This is called the constrained shortest path problem [12].

To compute such a set of B-segments, several issues must be resolved: (1)
How to generate all distinct block-sets for each IM mountain slice? (2) How
to compute an optimal g-matching between two block-sets? (3) How to find a
minimum weight s-to-t path in G∗ with a total cost ≤ E∗?

To generate all distinct block-sets for an IM column, we use the algorithm in
[14], whose running time is linear in terms of the number of output block-sets.

1184 D.Z. Chen et al.

To find a desired k-weight shortest s-to-t path in G∗, we use Lawler’s dynamic
programming algorithm for constrained shortest paths [12]. The sought path
can be easily obtained from the dynamic programming table once it becomes
available.

Now we show how to compute the optimal g-matchings. Given two block-sets
BSr andBSb for any two consecutive IM columns, we construct a bipartite graph
G = (R∪B,E) as follows: Each block in BSr (resp., BSb) corresponds to a red
(resp., blue) vertex in G, and every stitchable block pair corresponds to an edge
between the corresponding red and blue vertices. Here, a red block and a blue
block are stitchable if they satisfy the (machine model specific) MLC constraints.
For each edge e(u, v) in G, let their corresponding intervals be Iu = [lu, ru] and
Iv = [lv, rv]; then the cost of e(u, v) is assigned as |lu − lv| + |ru − rv|, i.e., the
length of the symmetric difference between Iu and Iv.

To compute an optimal g-matching in the bipartite graph G for each g =
1, 2, . . . , |M |, where M is the maximum size matching of G, we transform G into
a unit-capacity flow network and formulate the task as a minimum cost flow
problem with a flow value g. The |M | optimal g-matchings can be computed
efficiently by the successive shortest path algorithm [2], i.e., at the end of the g-th
stage of the algorithm (1 ≤ g ≤ |M |), a desired optimal g-matching is produced.
Since the single source shortest paths in G at each stage can be computed in
O(m+n log n) time, the total time for computing all the |M | optimal g-matchings
(1 ≤ g ≤ |M |) is O(|M |(m+ n logn)), where m = |E| and n = |R ∪B|.
Theorem 1. The basic 3-D SLS problem with tongue-or-groove error control is
solvable in O(

∑n−1
j=1 Πj ·Πj+1 ·Γ +K) time, where n is the number of columns of

the input IM, Πj is the number of block-sets used for column Cj, Γ is the time
for computing all optimal g-matchings between two block-sets, and K is the time
for computing the minimum cost k-weight s-to-t paths in G∗.

3.2 3-D Basic SLS Algorithms with Tongue-and-Groove Error
Control

As discussed in Section 2.2, the tongue-and-groove error for an IMRT plan is
the intersection |VT ∩ VG|, where VT (resp., VG) is the error set (i.e., a set of
3-D axis-parallel boxes) caused by the tongue sides (resp., groove sides) of the
MLC leaves. At first sight, due to the nonlinearity, it might appear that the
tongue-and-groove error is much harder to handle than the tongue-or-groove
error. Interestingly, we are able to show that handling the tongue-and-groove
error is in fact equivalent to handling the tongue-or-groove error. The key to our
solution is the next lemma which implies that our SLS algorithms for tongue-or-
groove error control are also applicable to the case of tongue-and-groove error
control.

Lemma 2. Let M be the input IM and S be a B-segment set that builds the
IMM. Then the difference between the values of the tongue-or-groove error and
tongue-and-groove error of S is merely a value F(M) that depends only on the
input IM M.

Generalized Geometric Approaches for Leaf Sequencing Problems 1185

4 Implementation and Experiments

To further examine the clinical feasibility of our new 3-D SLS algorithms, we
implemented them using C on the Linux systems and conducted extensive exper-
imental studies using real medical data. We performed Monte Carlo simulations
[16] on the treatment plans computed by our software, which proved the correct-
ness of our algorithms/software. We also compared our new 3-D SLS algorithms
with the current most popular commercial planning system CORVUS (version
5.0), which showed significant improvements. E.g., on a head and neck cancer
case consisting of 7 IMs, to eliminate tongue-and-groove error, CORVUS would
need 262 B-segments, in contrast to the 142 B-segments computed by our new
SLS program.

References

1. R.K. Ahuja and H.W. Hamacher. Minimizing Beam-on Time in Radiation Therapy
Treatment Planning Using Network Flows. submitted to Networks.

2. R.K. Ahuja, T.L. Magnanti, and J.B. Orlinr. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Inc., 1993.

3. N. Boland, H.W. Hamacher, and F. Lenzen. Minimizing Beam-on Time in Cancer
Radiation Treatment Using Multileaf Collimators. Report, Department of Mathe-
matics, University Kaiserslautern, 2002.

4. T.R. Bortfeld, A.L. Boyer, W. Schlegel, D.L. Kahler, and T.L. Waldron. Realization
and Verification of Three-Dimensional Conformal Radiotherapy with Modulated
Fields. Int. J. Radiat. Oncol. Biol. Phys., 30:899–908, 1994.

5. T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer. X-ray Field Compen-
sation with Multileaf Collimators. Int. J. Radiat. Oncol. Biol. Phys., 28:723–730,
1994.

6. A.L. Boyer. Use of MLC for Intensity Modulation. Med. Phys., 21:1007, 1994.
7. D.Z. Chen, X.S. Hu, S. Luan, C. Wang, and X. Wu. Geometric Algorithms for

Static Leaf Sequencing Problems in Radiation Therapy. In Proc. of 19th ACM
Symposium on Computational Geometry (SoCG’03), pages 88–97, 2003.

8. D.Z. Chen, X.S. Hu, S. Luan, X. Wu, and C.X. Yu. Optimal Terrain Construc-
tion Problems and Applications in Intensity-Modulated Radiation Therapy. In
Lecture Notes in Computer Science, Springer-Verlag, Proc. 10th Annual European
Symposium on Algorithms (ESA’02), volume 2461, pages 270–283, 2002.

9. J. Dai and Y. Zhu. Minimizing the Number of Segments in a Delivery Sequence
for Intensity-Modulated Radiation Therapy with Multileaf Collimator. Med. Phys.,
28(10):2113–2120, 2001.

10. J. Deng, T. Pawlicki, Y. Chen, J. Li, S.B. Jiang, and C.-M. Ma. The MLC Tongue-
and-Groove Effect on IMRT Dose Distribution. Physics in Medicine and Biology,
46:1039–1060, 2001.

11. T.J. Jordan and P.C. Williams. The Design and Performance Characteristics of a
Multileaf Collimator. Phys. Med. Biol., 39:231–251, 1994.

12. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

13. F. Lenzen. An Integer Programming Approach to the Multileaf Collimator Prob-
lem. Master’s thesis, University of Kaiserslautern, June 2000.

1186 D.Z. Chen et al.

14. S. Luan, D.Z. Chen, L. Zhang, X. Wu, and C.X. Yu. An Optimal Algorithm for
Computing Configuration Options of One-dimensional Intensity Modulated Beams.
Phys. Med. Biol., 48(15):2321–2338, 2003.

15. S. Luan, C. Wang, S.A. Naqvi, D.Z. Chen, X.S. Hu, C.L. Lee, and C.X. Yu. A New
MLC Segmentation Algorithm/Software for Step and Shoot IMRT. Med. Phys.,
31(4):695–707, 2004.

16. S.A. Naqvi, M. Earl, and D. Shepard. Convolution/Superposition Using the Monte
Carlo Method. Phys. Med. Biol., 48(14):2101–2121, 2003.

17. R.A.C. Siochi. Minimizing Static Intensity Modulation Delivery Time Using an
Intensity Solid Paradigm. Int J. Radiat. Oncol. Biol. Phys., 43(3):671–680, 1999.

18. S. Webb. The Physics of Three-Dimensional Radiation Therapy. Bristol, Institute
of Physics Publishing, 1993.

19. S. Webb. The Physics of Conformal Radiotherapy — Advances in Technology.
Bristol, Institute of Physics Publishing, 1997.

20. P. Xia and L.J. Verhey. MLC Leaf Sequencing Algorithm for Intensity Modulated
Beams with Multiple Static Segments. Med. Phys., 25:1424–1434, 1998.

21. C.X. Yu. Design Considerations of the Sides of the Multileaf Collimator. Phys.
Med. Biol., 43(5):1335–1342, 1998.

Author Index

Abraham, David J. 1163
Ackermann, Heiner 675
Agarwal, Pankaj K. 349
Ahn, Hee-Kap 40, 882
Aissi, Hassene 789
Alaei, Saeed 298
Àlvarez, Carme 634
Arge, Lars 328
Arimura, Hiroki 724
Aronov, Boris 50
Arroyuelo, Diego 1143

Bachmaier, Christian 1110
Bae, Sang Won 40, 1007
Bazgan, Cristina 624, 789
Bazzaro, Fabrice 1122
Ben-Moshe, Boaz 693
Bergkvist, Anders 714
Bhattacharya, Binay 693
Bodirsky, Manuel 593
Bonizzoni, Paola 226
Borgelt, Christian 984
Boros, Endre 156
Borys, Konrad 156
Brandes, Ulrik 1110
Burmester, Mike 277

Cai, Jin-Yi 767
Cai, Qingbo 974
Caragiannis, Ioannis 533, 809
Cardinal, Jean 819
Cechlárová, Kataŕına 1163
Chan, Wun-Tat 665
Chao, Kun-Mao 799
Chen, Danny Z. 17, 1176
Chen, Erdong 412, 1153
Chen, Kuan-Yu 799
Chen, Xi 370
Chen, Xujin 126
Chen, Zhixiang 216
Cheng, Chih-Huai 799
Cheng, Siu-Wing 40
Cheng, T.C.E. 925
Cheong, Otfried 50, 882

Chou, Ting-Yu 944
Chwa, Kyung-Yong 40, 1007
Cui, Yun 392

Dahllöf, Vilhelm 829
Damaschke, Peter 714
de Berg, Mark 50
Della Croce, Federico 685
Demange, Marc 433
Desmedt, Yvo 277
Ding, Guoli 126
Dondi, Riccardo 226
Dragan, Feodor F. 583
Dvořák, Zdeněk 196

Ebbers-Baumann, Annette 5
Eckhardt, Stefan 1100
Elbassioni, Khaled 106, 156
Elkind, Edith 206
Estivill-Castro, Vlad 869
Etessami, Kousha 2

Fan, Jianxi 1090
Fenwick, Joel 869
Fiorini, Samuel 819
Fishkin, Aleksei V. 1039
Flammini, Michele 915
Fomin, Fedor V. 573
Fragopoulou, Paraskevi 1080
Fu, Bin 216, 995
Fujishige, Satoru 71
Fujita, Satoshi 563
Fung, Stanley P.Y. 665

Gabarró, Joaquim 634
Galdi, Clemente 533, 809
Ganguly, Sumit 505
Gavoille, Cyril 1071, 1122
Gerber, Olga 1039
Ghodsi, Mohammad 298
Giesen, Joachim 473
Goddyn, Luis 116

1188 Author Index

Grandoni, Fabrizio 573
Grantson, Magdalene 984
Gröpl, Clemens 593
Grüne, Ansgar 5
Gudmundsson, Joachim 50
Gupta, Prosenjit 892
Gurvich, Vladimir 156

Habib, Michel 146
Har-Peled, Sariel 28
Haverkort, Herman 50, 60
He, Yong 422
Høyer, Peter 308
Hsieh, Sun-Yuan 944
Hu, Xiaobo S. 1176
Hu, Xiaodong 126
Huang, Li-Sha 463

Ishii, Toshimasa 176
Iwama, Kazuo 902
Iwata, Kengo 176

Jansen, Klaus 236, 1039
Jeĺınek, Vı́t 196
Jia, Xiaohua 1090
Jiang, Tao 226, 370
Jiang, Yiwei 422
Joret, Gwenaël 819

Kaklamanis, Christos 533, 809
Kameda, Tsunehiko 116
Kang, L.Y. 925
Kang, Mihyun 593
Kao, Ming-Yang 136
Kaporis, Alexis 318
Karpinski, Marek 5, 624
Katriel, Irit 106
Kennedy, William 738
Khachiyan, Leonid 156
Klasing, Ralf 757
Klein, Oliver 1019
Klein, Rolf 5, 849
Knauer, Christian 5, 604, 849
Koltun, Vladlen 28
Kontogiannis, Spyros 839
Kosowski, Adrian 614
Kosub, Sven 1100

Kouakou, Bernard 433
Kutz, Martin 106

Lai, Kin Keung 443
Lai, Ying Kit 360
Lam, Tak-Wah 339
Lau, Rynson W.H. 1090
Lee, D.T. 515
Levcopoulos, Christos 984
Li, Kang 17
Li, Xiang-Yang 136
Liberatore, Vincenzo 974
Lim, Andrew 1061
Lin, Guohui 738
Lin, Mingen 82
Lin, Tien-Ching 515
Lin, Xiaola 1090
Lin, Zhiyong 82
Lingas, Andrzej 5
Lipmaa, Helger 206
Liu, Lan 370
Liu, Wei 553
Lotker, Zvi 757
Lu, Enyue 954
Lu, Pinyan 767
Luan, Shuang 1176
Ly, Olivier 1071

Maaß, Moritz G. 1100
Mahajan, Meena 106
Makino, Kazuhisa 71, 156
Makris, Christos 318
Ma�lafiejski, Micha�l 614
Manlove, David F. 1163
Manthey, Bodo 483
Mavritsakis, George 318
Mavronicolas, Marios 288
Mehlhorn, Kurt 1163
Mitsche, Dieter 473
Miyazaki, Shuichi 902
Monnot, Jérôme 934
Moscardelli, Luca 915
Müller–Hannemann, Matthias 256

Nagamochi, Hiroshi 176
Naqvi, Shahid A. 1176
Narasimhan, Giri 849
Navarra, Alfredo 757

Author Index 1189

Navarro, Gonzalo 1143
Nehéz, Martin 524
Newman, Alantha 675
Ng, C.T. 925
Nguyen, Cam Thach 402
Nguyen, Nguyen Bao 402
Nikolopoulos, Stavros D. 1080
Nishizeki, Takao 166
Nunkesser, Robin 1132

Olejár, Daniel 524
Oprisan, Sorinel A 995

Palios, Leonidas 1080
Papadopoulou, Vicky 288
Paschos, Vangelis Th. 685
Paul, Christophe 146
Peng, Zeshan 704
Perennes, Stephane 757
Pettie, Seth 964
Philippou, Anna 288
Poon, Chung Keung 360, 767
Porschen, Stefan 654
Pyatkin, Artem V. 573

Rajasekaran, Sanguthevar 543, 1029
Raptopoulos, Christoforos 493
Reischuk, Rüdiger 483
Röglin, Heiko 675

Sakashita, Mariko 71
Schlieper, Barbara 1110
Schramm, Étienne 604
Schulze, Anna 256
Seibert, Sebastian 246
Sen, Sandeep 543
Serna, Maria 634
Shalom, Mordechai 915
Shi, Benyun 360
Shi, Qiaosheng 693
Sioutas, Spyros 318
Smid, Michiel 849
Song, Mingjun 1029
Sonka, Milan 17
Soutif, Éric 433
Spillner, Andreas 604
Spirakis, Paul 288, 493, 839
Stepanov, Alexey A. 573
Sun, Yi 116

Sung, Wing-Kin 339, 402
Suzuki, Akiko 266

Tănase, Mirela 60
Täubig, Hanjo 1100
Terlaky, Tamás 1051
Thulasiraman, Krishnaiyan 92
Tian, Baoyu 553
Tien, Wen-Chin 799
Tokuyama, Takeshi 266
Toma, Laura 328
Toossi, Mohammad 298
Tsakalidis, Athanasios 318
Tsichlas, Kostas 318

Uehara, Ryuhei 186
Ueno, Kenya 748
Unger, Walter 246
Uno, Takeaki 724
Uno, Yushi 186

Vanderpooten, Daniel 789
Vannelli, Anthony 1051
Vedova, Gianluca Della 226
Veltkamp, Remco C. 60, 1019
Vigneron, Antoine 50
Vöcking, Berthold 675

Wang, Chao 1176
Wang, Deqiang 553
Wang, Fan 1061
Wang, Lusheng 380, 392
Wang, Shouyang 443
Wang, WeiZhao 136
Wang, Yan 553
Wang, Yongge 277
Wernicke, Sebastian 1100
Woelfel, Philipp 1132
Wolff, Alexander 604
Wong, Swee-Seong 339
Woods, Damien 777
Worman, Chris 859
Wu, Xiaodong 17

Xiao, Jing 370
Xiao, Ying 92
Xie, Junyi 349
Xu, Jinhui 82
Xu, Lizhe 995

1190 Author Index

Xu, Zhou 1061
Xuan, Binh-Minh Bui 146
Xue, Guoliang 92

Yamamoto, Masaki 644
Yamauchi, Naoya 902
Yan, Chenyu 583
Yang, Bing 954
Yang, Boting 859
Yang, Jun 349
Yang, Lei 453
Yang, Linji 412, 1153
Yannakakis, Mihalis 2
Yao, Frances F. 1
Ye, Deshi 665
Yu, Cedric X. 1176
Yu, Hai 349

Yu, Lean 443
Yuan, Hao 412, 1153

Zaks, Shmuel 915
Zang, Wenan 126
Zaroliagis, Christos 318
Zhang, Hu 236, 1051
Zhang, Jialin 767
Zhang, Kaizhong 380
Zhang, Yong 665
Zhao, M. 925
Zheng, S.Q. 954
Zhou, Xiao 166
Zhu, Daming 392
Zhu, Hong 665
Żyliński, Pawe�l 614

	Frontmatter
	Algorithmic Problems in Wireless Ad Hoc Networks
	Probability and Recursion
	Embedding Point Sets into Plane Graphs of Small Dilation
	The Layered Net Surface Problems in Discrete Geometry and Medical Image Segmentation
	Separability with Outliers
	Casting an Object with a Core
	Sparse Geometric Graphs with Small Dilation
	Multiple Polyline to Polygon Matching
	Minimizing a Monotone Concave Function with Laminar Covering Constraints
	Almost Optimal Solutions for Bin Coloring Problems
	GEN-LARAC: A Generalized Approach to the Constrained Shortest Path Problem Under Multiple Additive Constraints
	Simultaneous Matchings
	An Optimization Problem Related to VoD Broadcasting
	A Min-Max Relation on Packing Feedback Vertex Sets
	Average Case Analysis for Tree Labelling Schemes
	Revisiting T.~Uno and M.~Yagiura's Algorithm
	Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs
	Orthogonal Drawings of Series-Parallel Graphs with Minimum Bends
	Bisecting a Four-Connected Graph with Three Resource Sets
	Laminar Structure of Ptolemaic Graphs and Its Applications
	On the Complexity of the {\itshape G}-Reconstruction Problem
	Hybrid Voting Protocols and Hardness of Manipulation
	On the Complexity of Rocchio's Similarity-Based Relevance Feedback Algorithm
	Correlation Clustering and Consensus Clustering
	An Approximation Algorithm for Scheduling Malleable Tasks Under General Precedence Constraints
	A 1.5-Approximation of the Minimal Manhattan Network Problem
	Hardness and Approximation of Octilinear Steiner Trees
	Dense Subgraph Problems with Output-Density Conditions
	A Complete Characterization of Tolerable Adversary Structures for Secure Point-to-Point Transmissions Without Feedback
	Network Game with Attacker and Protector Entities
	SkipTree: A Scalable Range-Queryable Distributed Data Structure for Multidimensional Data
	The Phase Matrix
	ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour
	External Data Structures for Shortest Path Queries on Planar Digraphs
	Improved Approximate String Matching Using Compressed Suffix Data Structures
	Monitoring Continuous Band-Join Queries over Dynamic Data
	Approximate Colored Range Queries
	Complexity and Approximation of the Minimum Recombination Haplotype Configuration Problem
	Space Efficient Algorithms for Ordered Tree Comparison
	A 1.75-Approximation Algorithm for Unsigned Translocation Distance
	Fast Algorithms for Computing the Tripartition-Based Distance Between Phylogenetic Networks
	Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem
	Preemptive Semi-online Scheduling on Parallel Machines with Inexact Partial Information
	On-Line Computation and Maximum-Weighted Hereditary Subgraph Problems
	A Novel Adaptive Learning Algorithm for Stock Market Prediction
	Uniformization of Discrete Data
	A Practical Algorithm for the Computation of Market Equilibrium with Logarithmic Utility Functions
	Boosting Spectral Partitioning by Sampling and Iteration
	Smoothed Analysis of Binary Search Trees
	Simple and Efficient Greedy Algorithms for Hamilton Cycles in Random Intersection Graphs
	Counting Distinct Items over Update Streams
	Randomized Algorithm for the Sum Selection Problem
	An Improved Interval Routing Scheme for Almost All Networks Based on Dominating Cliques
	Basic Computations in Wireless Networks
	A Simple Optimal Randomized Algorithm for Sorting on the PDM
	Efficient Parallel Algorithms for Constructing a {\itshape k}-Tree Center and a {\itshape k}-Tree Core of a Tree Network
	A Tight Bound on the Number of Mobile Servers to Guarantee the Mutual Transferability Among Dominating Configurations
	Bounding the Number of Minimal Dominating Sets: A Measure and Conquer Approach
	Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width
	Sampling Unlabeled Biconnected Planar Graphs
	Configurations with Few Crossings in Topological Graphs
	On Bounded Load Routings for Modeling {\itshape k}-Regular Connection Topologies
	On the Complexity of Global Constraint Satisfaction
	Polynomial Space Suffices for Deciding Nash Equilibria Properties for Extensive Games with Large Trees,
	An Improved $\tilde{\mathcal{O}}(1.234^{m})$-Time Deterministic Algorithm for SAT
	Solving Minimum Weight Exact Satisfiability in Time {\itshape O}(2<Superscript>0.2441{\itshape n}</Superscript>)
	Efficient Algorithms for Finding a Longest Common Increasing Subsequence
	Decision Making Based on Approximate and Smoothed Pareto Curves
	Computing Optimal Solutions for the {\sc min 3-set covering} Problem
	Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph
	Algorithms for Local Forest Similarity
	Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities
	A Polynomial Space and Polynomial Delay Algorithm for Enumeration of Maximal Motifs in a Sequence
	5-th Phylogenetic Root Construction for Strictly Chordal Graphs
	Recursion Theoretic Operators for Function Complexity Classes
	From Balls and Bins to Points and Vertices
	Simulating Undirected {\itshape st}-Connectivity Algorithms on Uniform JAGs and NNJAGs
	Upper Bounds on the Computational Power of an Optical Model of Computation
	Complexity of the Min-Max (Regret) Versions of Cut Problems
	Improved Algorithms for the {\itshape k} Maximum-Sums Problems
	Network Load Games
	Minimum Entropy Coloring
	Algorithms for Max Hamming Exact Satisfiability
	Counting Stable Strategies in Random Evolutionary Games
	Exact and Approximation Algorithms for Computing the Dilation Spectrum of Paths, Trees, and Cycles
	On the Computation of Colored Domino Tilings of Simple and Non-simple Orthogonal Polygons
	Optimal Paths for Mutually Visible Agents
	Stacking and Bundling Two Convex Polygons
	Algorithms for Range-Aggregate Query Problems Involving Geometric Aggregation Operations
	A ($2 - c{{1} \over {\sqrt{N}}}$)--Approximation Algorithm for the Stable Marriage Problem
	Approximating the Traffic Grooming Problem
	Scheduling to Minimize Makespan with Time-Dependent Processing Times
	On Complexity and Approximability of the Labeled Maximum/Perfect Matching Problems
	Finding a Weight-Constrained Maximum-Density Subtree in a Tree
	Finding Two Disjoint Paths in a Network with Normalized α<Superscript> + </Superscript>-MIN-SUM Objective Function
	Sensitivity Analysis of Minimum Spanning Trees in Sub-inverse-Ackermann Time
	Approximation Algorithms for Layered Multicast Scheduling
	Minimum Weight Triangulation by Cutting Out Triangles
	Multi-directional Width-Bounded Geometric Separator and Protein Folding
	Shortest Paths and Voronoi Diagrams with Transportation Networks Under General Distances
	Approximation Algorithms for Computing the Earth Mover's Distance Under Transformations
	Fast k-Means Algorithms with Constant Approximation
	On Efficient Weighted Rectangle Packing with Large Resources
	On Routing in VLSI Design and Communication Networks
	The Capacitated Traveling Salesman Problem with Pickups and Deliveries on a Tree
	Distance Labeling in Hyperbolic Graphs
	Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics
	Edge-Pancyclicity of Twisted Cubes
	Combinatorial Network Abstraction by Trees and Distances
	Drawing Phylogenetic Trees
	Localized and Compact Data-Structure for Comparability Graphs
	Representation of Graphs by OBDDs
	Space-Efficient Construction of LZ-Index
	Longest Increasing Subsequences in Windows Based on Canonical Antichain Partition
	Errata from ISAAC 2004 (LNCS 3341)
	Pareto Optimality in House Allocation Problems
	Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy,

	Backmatter

