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Abstract. We propose two transformations on term rewrite systems
(TRSs) based on reducing right-hand sides: one related to the transfor-
mation order and a variant of dummy elimination. Under mild conditions
we prove that the transformed system is terminating if and only if the
original one is terminating. Both transformations are very easy to im-
plement, and make it much easier to prove termination of some TRSs
automatically.

Preface

Before introducing the technical contents of this paper first I want to spend
some personal words. Several years ago, around 1990, I was looking for a new re-
search area. At that time I was employed at Utrecht University, and among other
things I was responsible for a seminar in algebraic specification. Only vaguely
I was aware of the area of term rewriting providing a way for implementation
of algebraic specifications. Just before that a nice booklet appeared, in Dutch,
about term rewriting. I liked this booklet, and decided to use it for my seminar.
This booklet appeared to be the course material of a course by Jan Willem Klop
at the Free University in Amsterdam, only 40 kilometers from Utrecht. I heard
that the group around Jan Willem Klop was active in research in term rewrit-
ing, and that they had meetings every two or three weeks around this research,
called TeReSe: term rewriting seminar. Since I liked the topic as I learned it
from the booklet, and still was looking for a new research area, I decided to fol-
low these meetings. There I met Jan Willem Klop and the people of his group:
Aart Middeldorp, Fer-Jan de Vries, Roel de Vrijer, Vincent van Oostrom and
Femke van Raamsdonk. I liked the meetings and the pleasant atmosphere, and
very naturally and smoothly inside this area I found challenges that happened
to grow out to my own research topics.

Now fifteen years have been passed, and I may look back to (co-)authoring
dozens of papers related to this area. Although I have never been a member of
Jan Willem’s group, I realize that in the way sketched above Jan Willem and
his group have played a crucial role in my development as a scientist. I am very
grateful for this. To mark one issue, on several places in the present paper the
underlying theory is based on completions of diagrams as you may see from the
pictures if you browse through the paper. For sure this way of completion of
diagrams, preferably in the setting of abstract reduction systems, is inspired by
the way Jan Willem propagated to do so in these TeReSe meetings long ago.

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 173–197, 2005.
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1 Introduction

Developing techniques for proving termination of TRSs is a challenging research
area already for a long time. In recent years the emphasis in this area has shifted
towards implementation: for new techniques to prove termination it is no longer
sufficient that they can be used to prove termination of particular TRSs in theory,
but also tools should be able to use these techniques to prove termination fully
automatically. Several tools have been developed for this goal, and there is a
yearly competition in which all of these tools are applied to an extensive set of
examples (TPDB [20], the termination problem data base), and compared, see

http://www.lri.fr/~marche/termination-competition/.

In this paper we present two transformations on TRSs for which termination
of the original TRS can be concluded from termination of the transformed TRS.
Since these transformations are very easy to implement and proving termination
of the transformed TRS by standard techniques is often much simpler than
proving termination of the original TRS, they are very suitable to be used as
preprocessing steps before using any of the tools.

Both transformations do not change left-hand sides, and reduce right-hand
sides. In the first transformation, related to the transformation ordering [3] this
is done by rewriting right hand sides using the same TRS. So here it is assumed
that at least one right-hand side of a rule is not in normal form. In the second
transformation, a variant of dummy elimination [8], the right-hand sides are
decomposed with respect to a special symbol (a dummy symbol) that occurs in
a right-hand side but in no left-hand side.

The technique of rewriting right-hand sides was considered before in [12], but
there it was required that the whole TRS is non-overlapping (or a mild weakening
of it), while our approach does not have such global restrictions. Our approach
is based on the transformation ordering from [3] presented in a more abstract
setting in [24]. The first approach to implement this was described in [17]. In
order to use this technique for rewriting right-hand sides we had to adjust the
underlying theory. In this paper all required theory is included.

For our present variant of dummy elimination the main theorem states that
the original TRS is terminating if the transformed TRS is terminating, just as
in [8]. However, in case of left-linearity we also have the converse, as we prove
in this paper. Therefore the new variant is called complete dummy elimination,
and is often stronger than the earlier version from [8].

For string rewriting the techniques described in this paper have been im-
plemented in TORPA: Termination of Rewriting Proved Automatically [21], a
tool developed by the author, which was the winner in the above mentioned
competition in the category of string rewriting, both in 2004 and 2005.

For term rewriting the techniques described in this paper have been imple-
mented in the tool TPA: Termination Proved Automatically, written by Adam
Koprowski, [15]. In the above mentioned termination competition in 2005 this
tool was third among 6 participants in the category of term rewriting, after
AProVE [6] and TTT [13].
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The organization of this paper is as follows. First in Section 2 the preliminaries
are given, both for abstract rewriting and term rewriting. Then in Section 3
the theory and implementation of the technique of rewriting right-hand sides
is presented. Next, Section 4 treats complete dummy elimination, first for term
rewriting and then for string rewriting. To derive the result for string rewriting
from the result for term rewriting in Subsection 4.2 we apply a general theorem.
A TRS having no symbols of arity greater than one is transformed to an SRS
simply by ignoring all parentheses and variable symbols. The theorem states
that the TRS is terminating if and only if the SRS is terminating. Finally, in
Section 5 we give some conclusions.

2 Preliminaries

2.1 Abstract Rewriting

In the following R, S and T are arbitrary binary relations on a fixed set. In
the applications they will correspond to rewrite relations of TRSs. We write a
dot symbol for relational composition, i.e., one has t(R · S)t′ if and only if there
exists a t′′ such that tRt′′ and t′′St′. We write R+ for the transitive closure of
R and R∗ for the reflexive transitive closure of R, and we write R−1 for the
inverse of R. Further we write R ⊆ S if tRt′ implies tSt′. Clearly, if R ⊆ S then
R · T ⊆ S · T and T · R ⊆ T · S.

Using these notations confluence of a relation R, written as CR(R), can be
expressed shortly as (R−1)∗ · R∗ ⊆ R∗ · (R−1)∗. Similarly, local confluence of a
relation R, written as WCR(R), can be expressed as R−1 · R ⊆ R∗ · (R−1)∗.

We write ∞(t, R) if there exists an infinite sequence tRt1Rt2Rt3R · · ·. Such an
infinite sequence is called an infinite R-reduction. A relation R is called terminat-
ing on t, written as SN(t, R), if not ∞(t, R). A relation R is called terminating,
written as SN(R), if it is terminating on every t, i.e., no infinite R-reduction
exists at all.

For a terminating relation R we can apply induction on R, i.e. if for all
elements t we can prove

(∀t′ : (tRt′ ⇒ P (t′))) ⇒ P (t)

then we may conclude that the property P (t) holds for all t. The assumption
∀t′ : (tRt′ ⇒ P (t′)) is called the induction hypothesis.

We write R/S for S∗ · R · S∗. For instance, (R/S)+ describes a sequence of
R ∪ S-steps containing at least one R-step, so

(R/S)+ = S∗ · R · (R ∪ S)∗ = (R ∪ S)∗ · R · S∗.

2.2 Term Rewriting

Write Var(t) for the set of variables in a term t. A rewrite rule is a pair of terms
(�, r), written as � → r, such that � is not a variable and Var(r) ⊆ Var(�). The
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terms �, r are called the left-hand side (lhs) and the right-hand side (rhs) of the
rule � → r, respectively. A rule � → r is called left-linear if every variable occurs
at most once in �. A rule � → r is called non-erasing if Var(r) = Var(�).

A term rewrite system (TRS) is defined to be a set of rewrite rules. A TRS
is called left-linear if all its rules are left-linear. A TRS is called non-erasing if
all its rules are non-erasing.

A term t rewrites to a term u w.r.t. a TRS R, notation t →R u, if there
is a rule � → r in R, a context C and a substitution σ such that t = C[�σ]
and u = C[rσ]. A TRS R is said to be terminating, confluent or locally con-
fluent (notation: SN(R), CR(R), WCR(R)) if the corresponding property holds
for the binary relation →R on terms. Basic techniques to prove termination of
TRSs include recursive path order [5] and polynomial interpretations [4]. More
involved techniques in which TRSs are first transformed before basic techniques
are applied include semantic labelling [23] and dependency pairs [1, 14, 11]. For
an overview of techniques for proving termination of TRSs see [24]. For a general
introduction to rewriting see [2, 18].

The TRS Emb is defined to consist of all rules of the shape f(x1, . . . , xn) → xi.
A rule � → r is called self-embedding if r →∗

Emb �. A TRS R is called simply
terminating if R ∪ Emb is terminating. It is obvious that a TRS containing a
self-embedding rule is not simply terminating. It is well-known ([22, 24]) that
termination of a TRS can not be proved by recursive path order or polynomial
interpretations if the TRS is not simply terminating.

Two non-variable terms t, u are said to have an overlap if there are substitu-
tions σ, τ such that either t′σ = uτ for a non-variable subterm t′ of t, or tσ = u′τ
for a non-variable subterm u′ of u. Two rules �1 → r1 and �2 → r2 are said to
have a non-trivial overlap if either the rules are distinct and �1 and �2 have an
overlap, or the rules are equal and there are substitutions σ, τ such that t′σ = �1τ
for a non-variable proper subterm t′ of �1. Here properness is essential to exclude
the trivial overlap caused by �1σ = �1τ for σ = τ . It is well-known that WCR(R)
holds if no two (possibly equal) rules of R have a non-trivial overlap.

3 Rewriting Right-Hand Sides

3.1 The Theory

Our theory of rewriting right-hand sides is based on a modification of a commu-
tation property that was the basis of the transformation ordering, [3].

Lemma 1. Let S, T be binary relations satisfying

1. S ∪ T is terminating,
2. T is locally confluent, and
3. T−1 · S ⊆ (S/T )+ · (T−1)∗.

Then (T−1)∗ · (S/T )+ ⊆ (S/T )+ · (T−1)∗.

Proof. We prove by induction on S ∪ T that for every t the following holds:
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Let t′(T−1)∗t(S/T )+w. Then there exists w′ satisfying t′(S/T )+w′ (T−1)∗w.

First observe that (S/T )+ = T ∗ · S · (S ∪ T )∗. Since (S ∪ T )∗ = T ∗ ∪ (S/T )+,
we obtain u, v satisfying tT ∗uSv(T ∗ ∪ (S/T )+)w. Since T is terminating by 1
and locally confluent by 2, we have CR(T ) by Newman’s Lemma: T is conflu-
ent. Since tT ∗t′, tT ∗u and CR(T ) we obtain u′ satisfying t′T ∗u′ and uT ∗u′. If
u′ = u then we may choose w′ = w indeed satisfying t′(S/T )+w′(T−1)∗w and
we are done. In the remaining case we have u′′ satisfying uTu′′T ∗u′. Apply-
ing condition 3 to u′′T−1uSv yields v′′ satisfying u′′(S/T )+v′′(T−1)∗v. Since
tT ∗uTu′′ we may apply the induction hypothesis to u′′, yielding v′ satisfying
u′(S/T )+v′(T−1)∗v′′. Now we have vT ∗v′ and either vT ∗w or v(S/T )+w. In the
first case CR(T ) yields w′ satisfying v′T ∗w′(T−1)∗w, in the second case the in-
duction hypothesis applied to v yields w′ satisfying v′(S/T )+w′(T−1)∗w. In all
cases we have t′T ∗u′(S/T )+v′(T ∗ ∪ (S/T )+)w′, so t′(S/T )+w′, and wT ∗w′, and
we are done. Summarized in a picture:
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u

u′′

u′

CR(T )

v

v′′

v′

cond. 3

I. H.

w
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T ∗

T

S

(S/T )+
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T ∗

T ∗

T ∗

T ∗ ∪ (S/T )+

T ∗ ∪ (S/T )+

��
Theorem 2. Let R, S, T be binary relations satisfying

1. S ∪ T is terminating,
2. T is locally confluent,
3. T−1 · S ⊆ (S/T )+ · (T−1)∗, and
4. R ⊆ ((S/T )+ · (T−1)∗) ∪ T .

Then R is terminating.

Proof. Assume R is not terminating. So there is an infinite R-reduction, i.e.,
a sequence t1, t2, t3, . . . such that tiRti+1 for all i = 1, 2, 3, . . .. Write R′ =
(S/T )+ · (T−1)∗. Let u1 = t1, and define ui for i = 2, 3, 4, . . . satisfying tiT

∗ui

in the following way:

– If ti−1T ti then choose ui such that tiT
∗ui and ui−1T

∗ui. This can be done
since T is confluent, following from Newman’s Lemma and conditions 1, 2.

– Otherwise, by condition 4 we have ti−1R
′ti, i.e., there exists vi satis-

fying ti−1(S/T )+vi(T−1)∗ti. By Lemma 1 we may choose ui such that
ui−1(S/T )+ui and viT

∗ui, by which we obtain tiT
∗ui.
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A typical initial part of this construction is sketched in the following picture:

t1 t2 t3 t4 t5 t6 t7

u1 u2 u3 u4 u5 u6 u7

v2 v4 v5 v7

R′ T R′ R′ T R′

(S/T )+ T ∗ (S/T )+ (S/T )+ T ∗ (S/T )+

T ∗

T ∗

T ∗

(S/T )+

T ∗

T ∗

T ∗

(S/T )+
T ∗

T ∗

(S/T )+

T ∗

T ∗

T ∗

(S/T )+

Since T is terminating by condition 1, the second case ti−1R
′ti occurs infinitely

often. So we have ui−1(S/T )+ui for infinitely many values of i, while for the other
values of i we have ui−1T

∗ui. Hence u1 → u2 → u3 → · · · is an infinite S ∪ T -
reduction, contradicting condition 1, concluding the proof. ��

Theorem 2 is closely related to the underlying theory in the transformation
ordering, [3]. A generalization of this underlying theory is expressed in Theorem
6.5.16 in [24]. In fact this Theorem 6.5.16 coincides with the present Theorem 2
where conditions 3, 4 are replaced by

3’. T−1 · S ⊆ T ∗ · S · (S ∪ T ∪ T−1)∗,
4’. R ⊆ (S/(T ∪ T−1))+,

respectively. Condition 3’ is a strict weakening of condition 3. However, con-
ditions 4’ and 4 are incomparable, since in condition 4 it is allowed that some
R-step is only a single T -step and in condition 4’ it is not. In our application this
is essential, therefore this new Theorem 2 was developed rather than applying
the earlier result. Later on, it was pointed out by Vincent van Oostrom that
by applying Theorem 6.5.16 to R \ T rather than R then a simple argument
shows that not only SN(R \ T ) can be concluded, but also SN(R). In this way
a variant of Theorem 6.5.16 is obtained in which condition 4’ is weakened to
R ⊆ T ∪ (S/(T ∪ T−1))+. Now our new Theorem 2 can be obtained as a
corollary of this variant of Theorem 6.5.16. For being self-contained we kept the
direct proof of Theorem 2; moreover this proof is slightly simpler than the proof
of Theorem 6.5.16.

Next we apply Theorem 2 to term rewriting. In order to do so we first give
a lemma analyzing how applications of non-overlapping rewrite rules commute,
similar to the well-known critical pair lemma.

Lemma 3. Let �i → ri be rewrite rules for i = 1, 2 for which �1 and �2 do not
have an overlap, and having rewrite relations →1, →2, respectively. Let C be a
context and σ, τ be substitutions such that C[�1σ] = �2τ . Then �2 = C2[x] for
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some context C2 and some variable x, for which the two reducts C[r1σ] and r2τ
of C[�1σ] = �2τ satisfy

C[r1σ] →n−1
1 · →2 · ←k

1 r2τ,

where n, k are the numbers of occurrences of x in �2, r2, respectively.

Proof. Since there is no overlap between �1 and �2 we can write C = C2[D] where
�2 = C2[x] for contexts C2, D and some variable x for which xτ = D[�1σ]. Define
τ ′ by xτ ′ = D[r1σ], and yτ ′ = yτ for y 
= x. By applying the reduction xτ →1 xτ ′

to the occurrences of xτ corresponding to the other n − 1 occurrences of x in
�2 = C2[x], we obtain C[r1σ] →n−1

1 �2τ
′. Conversely we obtain r2τ →k

1 r2τ
′ since

x occurs k times in r2. Combining these observations yields

C[r1σ] →n−1
1 �2τ

′ →2 r2τ
′ ←k

1 r2τ,

proving the lemma. ��

To sketch a typical example of how Lemma 3 applies, consider �1 → r1 to be
the rule a → b and �2 → r2 to be the rule f(x, x) → g(x, x, x). Let C = f(�, a)
and xτ = a; since �1 does not contain variables, σ plays no role. Indeed we have
C[�1σ] = f(a, a) = �2τ , and

C[r1σ] = f(b, a) →1 f(b, b) →2 g(b, b, b) ←3
1 g(a, a, a) = r2τ.

Now we are ready to give the main theorem.

Theorem 4. Let R be a TRS for which a rhs is not in normal form, i.e., R
contains a rule � → r and a rule of the shape �′ → C[�σ]. Assume that

– � → r is left-linear,
– � → r is non-erasing,
– WCR({� → r}), and
– there is no overlap between � and the lhs of any rule of R \ {� → r}.

Let R′ be obtained from R by replacing the rule �′ → C[�σ] by �′ → C[rσ]. Then
R is terminating if and only if R′ is terminating.

Proof. The ‘only if’-part is immediate from the observation that every R′-step
can be mimicked by one or two R-steps: an R′-step applying the rule �′ → C[rσ]
is mimicked by first applying the R-rule �′ → C[�σ] and then the R-rule � → r,
all other R′-steps are R-steps themselves. It remains to prove the ‘if’-part.

First note that the rules � → r and �′ → C[�σ] are distinct, since otherwise
the rule � → C[C[�σ]σ] contained in R′ is not terminating.

We apply Theorem 2 for the binary relations

– T being the rewrite relation of the single rule � → r,
– S being the rewrite relation of R′ \ {� → r}, and
– R being the rewrite relation of the TRS R.
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Termination of the TRS R is proved by checking all four conditions of Theorem 2.
Condition 1 holds since S ∪ T is the rewrite relation of R′ and R′ is assumed

to be terminating.
Condition 2 holds by assumption.
For proving condition 3 assume that uT−1tSv, i.e., a term t rewrites by T to

u and by S to v. We distinguish three cases:

– The T -redex is in parallel with the S-redex. Then we have

(u, v) ∈ S · T−1 ⊆ (S/T )+ · (T−1)∗.

– The T -redex is above the S-redex. Then we apply Lemma 3 for �2 → r2
being � → r, so →2 = T , and →1 ⊆ S. This yields

v = C[r1σ] →n−1
1 · →2 · ←k

1 r2τ = u,

where n, k are the numbers of occurrences of x in �, r, respectively. Since
� → r is left-linear and non-erasing, we have k > 0 and n = 1. So

(v, u) ∈ →2 · ←+
1 ,

hence (u, v) ∈ →+
1 · ←2 ⊆ S+ · T−1 ⊆ (S/T )+ · (T−1)∗.

– The S-redex is above the T -redex. Then we apply Lemma 3 for �1 → r1
being � → r, so →1 = T , and →2 ⊆ S. This yields

u = C[r1σ] →∗
1 · →2 · ←∗

1 r2τ = v,

so (u, v) ∈ →∗
1 · →2 · ←∗

1 ⊆ T ∗ · S · (T−1)∗ ⊆ (S/T )+ · (T−1)∗.

In all cases we proved (u, v) ∈ (S/T )+ · (T−1)∗, concluding condition 3.
Condition 4 is verified by considering all three possibilities for an R-rewrite

step t → u.

– If t → u is an application of the rule � → r then tTu.
– If t → u is an application of the rule �′ → C[�σ] then tS · T−1u where the

S-step is an application of the rule �′ → C[rσ].
– If t → u is an application of another rule, then this rule is in R′ \ {� → r},

so tSu.

In all three cases we conclude (t, u) ∈ (S ·(T−1)∗)∪T ⊆ ((S/T )+ ·(T−1)∗) ∪ T ,
concluding condition 4. ��

In the dependency pair framework [1, 14, 11] it often occurs that proving inner-
most termination is simpler than proving termination, and therefore conditions
have been investigated for which termination can be concluded from innermost
termination. In a similar way Theorem 4 can be seen as a theorem stating that
full termination can be concluded from termination with respect to a particular
strategy: R′-rewriting can be seen as R-rewriting following the strategy that the
application of a rule for which the rhs is not in normal form is always followed
by reduction of this rhs.
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One may wonder whether all conditions of Theorem 4 are essential. Indeed
they are, as is shown by the following four examples.

In the first example ([12], Example 5) let R consist of the two rules

f(x) → a, b → f(b).

Let � → r be the first rule, applicable to the rhs of the second rule. Then R′

consisting of the rules f(x) → a, b → a is terminating, while R is not, and all
conditions of Theorem 4 hold except for non-erasingness of � → r.

In the second example let R consist of the two rules

a → b, a → a.

Let � → r be the first rule, applicable to the rhs of the second rule. Then R′

consisting of two copies of the rule a → b is terminating, while R is not, and all
conditions of Theorem 4 hold except for the non-overlappingness condition.

In the third example let R consist of the three rules

f(f(x)) → g(x), h(x) → f(f(x)), g(f(a)) → h(h(a)).

Let � → r be the first rule, applicable to the rhs of the second rule. Then R′

consisting of the three rules

f(f(x)) → g(x), h(x) → g(x), g(f(a)) → h(h(a))

is terminating by recursive path order using the precedence f > h > g. However,
R is not terminating due to the reduction

h(h(a)) → h(f(f(a))) → f(f(f(f(a)))) → f(g(f(a))) → f(h(h(a))).

All conditions of Theorem 4 hold except for WCR({� → r}).
In the last example let R consist of the four rules

f(x, x) → g(x), a → b, a → c, f(b, c) → f(a, a).

Let � → r be the first rule, applicable to the rhs of the last rule. Then R′ is
terminating, while R is not due to the reduction f(b, c) → f(a, a) → f(a, c) →
f(b, c). All conditions of Theorem 4 hold except for left-linearity of � → r.

A possible generalization of Theorem 4 would be in weakening the restriction
of non-overlap to a restriction of critical pairs having a particular kind of common
reduct. Moreover, even in case this critical pair condition does not hold one can
think of extending T by the normalized versions of the corresponding critical
pairs, introducing a kind of completion as in [3, 17]. However, in this paper we
want to concentrate on very simple criteria not involving branching choices as
is introduced in searching for common reducts of critical pairs in typically non-
confluent TRSs.

A variant of Theorem 4 was given by Gramlich in [12]:
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Theorem 5. Let R be a non-overlapping TRS for which a rhs is not in normal
form, i.e., R contains a rule � → r and a rule of the shape �′ → C[�σ]. Assume
that � → r is non-erasing. Let R′ be obtained from R by replacing the rule
�′ → C[�σ] by �′ → C[rσ]. Then R is terminating if and only if R′ is terminating.

So here we do not have a left-linearity requirement for � → r any more, but
the full TRS R is required to be non-overlapping, while our Theorem 4 only
requires non-overlappingness involving the rule � → r. In typical applications
to TRSs describing arithmetic and having a rule p(s(x)) → x to be applied to
some rhs, Theorem 5 is only applicable if the TRS is non-overlapping. So this
approach fails as soon as overlapping combinations of usual rules like

x − 0 → x, s(x) − s(y) → x − y, x − x → 0

occur. In fact, in Gramlich’s paper the requirement of non-overlappingness is
slightly weakened, but not overcoming these drawbacks. Our Theorem 4 still
applies directly if the TRS contains rules of this shape. Therefore we think that
in practice our Theorem 4 is more powerful than Theorem 5.

3.2 Implementation

We propose to use Theorem 4 as a pre-processing phase for any tool for proving
termination of TRSs as follows. Let R be any finite TRS for which termination
has to be proved.

Basic procedure:
Check if R can be written as

R = R0 ∪ {� → r, �′ → C[�σ]}

where � → r is left-linear and non-erasing, and has no non-trivial overlap with
any rule of R.

If so, then replace R by R0 ∪ {� → r, �′ → C[rσ]}, and start again.

Applying this basic procedure is straightforward. From Theorem 4 it follows
that for every step the replaced TRS is terminating if and only if the original
TRS is terminating; note that local confluence of the single rule � → r follows
from the property that � → r has no non-trivial overlap with itself. So for any
number of steps the resulting TRS is terminating if and only if the original TRS
is terminating.

In case R is terminating, then the basic procedure is terminating too. This
can be seen as follows. Assume that the procedure goes on forever, respectively
yielding TRSs R1 = R, R2, R3, R4, . . .. Since every Ri+1-step can be mimicked
by one or two Ri-steps, as we saw in the ‘only if’-part of the proof of Theorem
4, we conclude that →Ri⊆→+

R for every i = 1, 2, 3, . . .. Since Ri+1 is obtained
from Ri by applying →Ri to a rhs of Ri, we can also obtain Ri+1 from Ri by
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applying →+
R to one of the rhs’s. Since there are only finitely many rules, but

infinitely many steps from Ri to Ri+1, there is some rhs of the original TRS R
on which →+

R is applied infinitely often, contradicting termination of R.

Unfortunately, in case R is not terminating then it can be the case that
the basic procedure does not terminate. For instance, if R consists of the two
rules a → a, b → a then the basic procedure can be applied again yielding R
after one step. This process may go on forever. More general, if R is of the shape
R0∪{� → r} in which r admits an infinite R0-reduction, then the basic procedure
applied to R may go on forever. A simple way to get a robust implementation of
the basic procedure that terminates on every TRS is to put some upper bound
on the total number of steps of the basic procedure.

String rewriting can be seen as a particular case of term rewriting in which all
symbols have arity 1. Since in this case variables and parentheses are redundant,
they are usually omitted.

A tool for automatically proving termination of string rewriting is called
TORPA: Termination of Rewriting Proved Automatically [21]. This tool has
been developed by the author. After having ideas in mind for years the actual
implementation started in July 2003. Earlier versions of TORPA have been de-
scribed in [25] (version 1.1), in [26] (version 1.2) and in [27] (version 1.3). The
extensive paper [27] also contains a full treatment of all the underlying theory.

Our basic procedure for rewriting right-hand sides was implemented for string
rewriting in the newest version of TORPA, version 1.4. This version of the
TORPA tool participated in the termination competition in 2005, and was the
winner among the eight participants in the string rewriting category, see

http://www.lri.fr/~marche/termination-competition/2005/.

In the text generated by TORPA our technique is called transformation order.
As an example we consider the string rewriting system consisting of the following
five rules

f0 → s0, d0 → 0, ds → ssdps, fs → dfps, ps → e,

where e represents the empty string. This system describes computation of pow-
ers of 2: think of s being successor, p being predecessor, d being doubling and f
being exponentiation.1 It is easy to observe that fsn0 rewrites to its normal form
s2n

0 for every n = 0, 1, 2, . . .. The normal form of fn0 has super-exponential size
and requires a super-exponential number of steps to be computed. Note that
the system is not simply terminating: both the third and the fourth rule are
self-embedding. TORPA yields the following termination proof:

1 The fact that the constant 0 may be treated here as a unary symbol will be justified
by Theorem 12.
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TORPA 1.4 is applied to the string rewriting system
f 0 -> s 0
d 0 -> 0
d s -> s s d p s
f s -> d f p s
p s -> e
Choose polynomial interpretation f: lambda x.x+1, rest identity
remove: f 0 -> s 0
Remaining rules:

d 0 -> 0
d s -> s s d p s
f s -> d f p s
p s -> e

Transformation order: apply rule 4 on rhs of rule 2, result:
d 0 -> 0
d s -> s s d
f s -> d f p s
p s -> e

Transformation order: apply rule 4 on rhs of rule 3, result:
d 0 -> 0
d s -> s s d
f s -> d f
p s -> e
%

Choose polynomial interpretation p: lambda x.x+1, rest identity
remove: p s -> e
Remaining rules:

d 0 -> 0
d s -> s s d
f s -> d f

Terminating by recursive path order with precedence:
d>s f>d

For term rewriting our basic procedure has been implemented in the tool
TPA, written by Adam Koprowski, [15].

Let R be any TRS and let R′ be the result of applying the basic procedure
to R. From many examples we observe that proving termination of R′ is much
simpler than proving termination of R directly. We should like to have evidence
that it is never the other way around. Since the notion of ‘simpler’ depends on
the unspecified set of techniques to be used, it is hard to make this claim solid.
However, by construction we have →R′ ⊆ →+

R, and the lhs’s of R are equal to
the lhs’s of R′. Under these conditions for all techniques known by us it is very
unlikely that proving termination of R′ may be harder than proving termination
of R. In particular, since →R′∪Emb ⊆ →+

R∪Emb, simple termination of R implies
simple termination of R′.
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Therefore applying our basic procedure as a pre-processing before trying any
other tool for proving termination will often increase the power of the tool, and
probably never decrease it.

One may wonder whether it is natural to have rhs’s that are not in normal
form. Of course this is hard to answer since there is no precise definition of nat-
ural. To our knowledge the most extensive list of termination problems in term
rewriting is TPDB, the Termination Problem Data Base [20]. This database
was used in the above mentioned competition. Restricted to term rewriting (ex-
cluding string rewriting, which is a separate category) it contains 773 TRSs for
which the problem of termination has been posed. They are from a wide scala
of origins and application areas. Therefore we think it makes sense to consider
these TRSs to get an impression of the applicability of our technique. It turns
out that among these 773 TRSs there are 98 TRSs for which not only a rhs is
not in normal form, but also the extra conditions are satisfied. So for these TRSs
our basic procedure is applicable. For several of them, proving termination of
the transformed system is much simpler than proving termination of the original
system. Of course again the meaning of ’simpler’ has not been defined precisely,
but it sounds reasonable to consider a proof only using basic techniques like
recursive path order and linear polynomial interpretations, simpler than a proof
using a combination of dependency pairs, argument filtering and the same basic
techniques.

For instance, consider the classical TRS describing computation of factorials
consisting of the following rules

p(s(x)) → x ∗(0, y) → 0
fact(0) → s(0) ∗(s(x), y) → +(∗(x, y), y)

fact(s(x)) → ∗(s(x), fact(p(s(x)))) +(x, 0) → x
+(x, s(y)) → s(+(x, y)).

This TRS is D33/21.trs in the TRS category of TPDB. In the 2005 competition
only two (AProVE [6] and TTT [13]) of the six participating tools were able to
prove termination of this TRS. Note that the TRS is not simply terminating
since the rule fact(s(x)) → ∗(s(x), fact(p(s(x)))) is self-embedding, so only using
recursive path order and polynomial interpretations will fail. However, by ap-
plying our basic procedure this self-embedding rule is replaced by fact(s(x)) →
∗(s(x), fact(x)), which is replaced again by fact(s(x)) → +(∗(x, fact(x)), fact(x)).
Termination of the resulting TRS is easily concluded by the recursive path order
using the precedence fact > ∗ > + > s. This is exactly the proof as it is found
automatically by the tool TPA within a fraction of a second.

Using our basic procedure, the tool TPA was able to prove termination of 6
more TRSs in TPDB than without it, including this factorial system.

4 Complete Dummy Elimination

In the basic procedure based on Theorem 4 rhs’s are rewritten. So a part of such
an rhs matches with an lhs. In this section we consider the opposite: we consider
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rhs’s containing symbols that do not occur in lhs’s at all. These symbols are
called dummy symbols. Again we keep the lhs’s and reduce the rhs’s, but this
reduction is done completely different than before: the dummy symbol now is
used to split up the rhs into several smaller rhs’s, each generating a rule in the
transformed TRS, with its lhs kept unchanged. This approach was studied before
in [8] and was called dummy elimination. An earlier version already appeared in
[22]. The main theorem states that if the TRS after applying dummy elimination
is terminating, then the original TRS is terminating too. In general the converse
is not true. Here we present a modification of dummy elimination for which the
same property holds, but for which in case of left-linearity also the converse holds
(the transformed TRS is terminating if and only if the original TRS is). Due to
this completeness result our new variant is called complete dummy elimination.
Moreover, complete dummy elimination is more powerful to be used in tools for
automatically proving termination of TRSs or SRSs.

4.1 Complete Dummy Elimination for Term Rewriting

Before giving precise definitions first we give a very simple example sketching
the general idea. Consider the TRS R consisting of the single rule

f(g(x)) → f(a(g(x))).

Here the symbol a is a dummy symbol: it does not occur in any lhs. Intuitively
this means that this dummy symbol does not play an essential role in further
reductions of the term, and further reductions can be localized as either affecting
the part above the dummy symbol or affecting the part below it. This can be
formalized by decomposing the rhs’s into smaller terms in which the dummy acts
as a separator. In this case this means that the term f(h(g(x))) is decomposed
into two terms f() and b(g(x)), where  is a fresh constant and b is a fresh
unary symbol. The lhs’s remain the same. The result is the transformed system
DEa(R), in this example consisting of the two rules

f(g(x)) → f()
f(g(x)) → b(g(x)).

The main result states that DEa(R) is terminating if and only if R is termi-
nating. So termination of R can be proved by proving termination of DEa(R),
which is straightforward by recursive path order choosing the precedence f > b,
g > .

In order to give a precise definition for complete dummy elimination we need
some auxiliary definitions. We fix one dummy symbol a of a TRS R. Let n be
the arity of a. Choose a fresh constant a and a fresh unary symbol ba, i.e., a

and ba do not occur in R. As long as a is fixed, we omit the subscripts, simply
writing b and . For any term t we define inductively a term capa(t) and a set
of terms deca(t):

capa(x) = x for all x ∈ Var,
capa(f(t1, . . . , tk)) = f(capa(t1), . . . , capa(tk)) for all f , f 
= a
capa(a(t1, . . . , tn)) = 
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deca(x) = ∅ for all x ∈ Var,
deca(f(t1, . . . , tk)) =

⋃k
i=1 deca(ti) for all f , f 
= a

deca(a(t1, . . . , tn)) =
⋃n

i=1(deca(ti) ∪ {b(capa(ti))}).

Roughly speaking we decompose a term t by using the symbol a as a separator,
where occurrences of a are replaced by  and arguments of a are marked by the
symbol b. Now the term capa(t) is the topmost part of this decomposition, while
deca(t) is the set of all other parts in this decomposition. Now we define the
TRS DEa(R) for any TRS R having a as a dummy symbol by

DEa(R) = {� → u | u = capa(r) ∨ u ∈ deca(r) for a rule � → r ∈ R}.

The transformation DEa is called complete dummy elimination. For instance,
applying DEa on a rule of the shape

�
�

�
� 1

����
�
�

�
� 2

�
�

�
� 3

a� →

where the binary dummy symbol a occurs only once in the rhs, yields the three
rules

�
�

�
� 1


� → �

�
�

� 2

b

� → �
�

�
� 3

b

� →

Theorem 6. Let a be a dummy symbol in a TRS R for which DEa(R) is ter-
minating. Then R is terminating too.

Before proving this theorem we give an example slightly more complicated
than the one given above, and we recall the earlier dummy elimination theorem.
Let the TRS R consist of the two rules

f(g(x)) → f(a(g(a(x, f(x))), g(f(x))))
g(f(x)) → g(g(a(f(x), g(g(x))))).

Then DEa(R) consists of the rules

f(g(x)) → f() f(g(x)) → b(g(f(x)))
f(g(x)) → b(g()) g(f(x)) → g(g())
f(g(x)) → b(x) g(f(x)) → b(f(x))
f(g(x)) → b(f(x)) g(f(x)) → b(g(g(x))).

Indeed Theorem 6 is helpful for proving termination of R: termination of
DEa(R) is easily proved by recursive path order, choosing the precedence f >
g > b > .

In the version of dummy elimination from [8] the symbol b was omitted. More
precisely, for a TRS R having a as a dummy symbol the TRS E(R) was defined
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exactly as DEa(R), with the only difference that deca(a(t1, . . . , tn)) was defined
to be

⋃n
i=1(deca(ti)∪{capa(ti)}) rather than

⋃n
i=1(deca(ti)∪{b(capa(ti))}). As a

consequence, the TRS E(R) is obtained from DEa(R) by removing all symbols
b from it. As the main result we recall:

Theorem 7. Let a be a dummy symbol in a TRS R for which E(R) is termi-
nating. Then R is terminating too.

For a proof of Theorem 7 we refer to [8] or [7], where a slightly more general
version has been treated. An alternative proof has been given in [16], where even
the restriction of the dummy not occurring in lhs’s has been weakened slightly.
A generalization of this result to rewriting modulo equations has been given in
[9].

Now we give the proof of Theorem 6.

Proof. Let a be a dummy symbol of arity n in a TRS R for which DEa(R)
is terminating. Assume R is not terminating, so admits an infinite reduc-
tion. We define a transformation Φ on terms and TRSs replacing every a by
a(b(−), . . . , b(−)), more precisely:

Φ(x) = x for all x ∈ Var,
Φ(f(t1, . . . , tk)) = f(Φ(t1), . . . , Φ(tk)) for all f with f 
= a,
Φ(a(t1, . . . , tn)) = a(b(Φ(t1)), . . . , b(Φ(tn))),
Φ(R) = {Φ(�) → Φ(r) | � → r ∈ R}.

From this definition it is straightforwardly proved that if t →R u, then
Φ(t) →Φ(R) Φ(u). So the assumed infinite R reduction transforms by Φ to an
infinite Φ(R) reduction.

On the other hand the symbol a is still a dummy symbol in Φ(R). By con-
struction we have E(Φ(R)) = DEa(R), which was assumed to be terminating.
Hence by Theorem 7 we conclude termination of Φ(R), contradiction. ��

We want to use complete dummy elimination in proving termination auto-
matically is as follows: if termination of R has to be proved, and R has a dummy
symbol a, then apply DEa to R, and proceed with the search for termination
proofs on DEa(R). For this approach to be useful we should also like to have
the converse of Theorem 6: R is terminating only if DEa(R) is terminating. In
other words, apart from soundness Theorem 6, we also want completeness. This
is seen as follows: if R is terminating but DEa(R) is not, then trying to prove
termination of DEa(R) will fail. For instance, let R consist of the two rules

f(g(x)) → g(f(f(x))), g(f(x)) → g(a(g(g(x)))).

Then indeed R is terminating, but trying to prove this by proving termination
of E(R) consisting of the three rules

f(g(x)) → g(f(f(x))), g(f(x)) → g(), g(f(x)) → g(g(x))
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will fail since E(R) is not terminating due to

f(f(g(x))) →E(R) f(g(f(f(x)))) →E(R) f(g(g(f(x)))) →E(R) g(f(f(g
︸ ︷︷ ︸

(f(x))))).

Note that Theorem 4 does not apply here due to an overlap between the rules.
We conclude that dummy elimination E rather than DEa is not complete.

Next we show that in case of left-linearity, the desired completeness, and hence
the ‘if and only if’ property holds for DEa. First we need two lemmas.

Let Bl be the TRS defined to consist of all rules of the shape f(x1, . . . , xn) → ,
for all symbols f of arity n ≥ 0. This TRS is used for blocking reductions.

Lemma 8. Let R be a left-linear TRS in which the constant  and the unary
symbol b do not occur in any lhs.

1. If t →∗
Bl u and ∞(u, R), then ∞(t, R).

2. If ∞(C[b(t)], R) for any context C and any term t, then either ∞(C[], R)
or ∞(t, R).

Proof. Part 1.
Let t, u, v be terms satisfying t →Bl u →R v. Then u is obtained from t by

replacing any subterm by . So the redex of u →R v is either above or parallel
to this occurrence of . Since R is left-linear and  does not occur in the lhs
of the corresponding rule in R, the TRS R could also be applied directly to t
yielding t →R · →∗

Bl v. Hence we conclude →Bl · →R ⊆ →R · →∗
Bl. Using this

property one easily proves →∗
Bl · →R ⊆ →R · →∗

Bl, applying induction on the
number of →Bl-steps. Using this inclusion the infinite R-reduction starting in
u is transformed to an infinite R-reduction starting in t, as is sketched in the
following picture:

u · · · · · · · · · ·

t · · · · · · · · · ·

R R R R

R R R R

Bl∗ Bl∗ Bl∗ Bl∗ Bl∗

Part 2. We prove the more general claim for multiple hole contexts:

Let C be a multi-hole context for which SN(C[, . . . , ], R) and
∞(C[b(t1), . . . , b(tn)], R). Then ∞(ti, R) for some i = 1, . . . , n.

We prove this for all contexts C satisfying SN(C[, . . . , ], R), by induction on
→R restricted to reducts of C[, . . . , ]. Consider the infinite R-reduction start-
ing in C[b(t1), . . . , b(tn)]. If all redex positions are below C then every step is
in one of the n displayed subterms b(t1), . . . , b(tn) of C[b(t1), . . . , b(tn)], so at
least one of the b(ti) is rewritten infinitely often. Since b does not occur in any
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lhs, the same holds for ti and we are done. In the remaining case the infinite
R-reduction is of the shape

C[b(t1), . . . , b(tn)] →∗
R C[b(u1), . . . , b(un)] →R D[b(v1), . . . , b(vk)] →∗

R · · · ,

where ti →∗
R ui for every i, and for every j, 1 ≤ j ≤ k, there exists i such

that vj = ui. Since R is left-linear and b’s do not occur in lhs’s, we conclude
C[, . . . , ] →R D[, . . . , ]. Left-linearity is essential here, for instance for R
consisting of f(x, x) → a, a → a both this claim and the lemma do not hold for
n = 1, t1 = c, C = f(b(c), �). Since C[, . . . , ] →R D[, . . . , ] we may apply the
induction hypothesis to D[b(v1), . . . , b(vk)], yielding j satisfying ∞(vj , R). Since
there exists i such that vj = ui we obtain ti →∗

R ui = vj →∞
R , so ∞(ti, R). ��

Lemma 9. Let t be any term and a any symbol. Then

1. t →∗
Bl capa(t), and

2. for every v ∈ deca(t) the terms t, v can be written as t = C[t′] and v = b(v′),
where t′ →∗

Bl v′.

Proof. By induction on the structure of t, straightforward from the definitions
of capa and deca. ��

Theorem 10. Let R be a left-linear terminating TRS having a dummy symbol
a. Then DEa(R) is terminating.

Proof. We prove that SN(t, DEa(R)) for every term t, by induction on R. So
the induction hypothesis states that SN(w, DEa(R)) for every term w satisfying
t →+

R w.
Assume that t admits an infinite DEa(R)-reduction

t →DEa(R) u →DEa(R) · →DEa(R) · · · .

For the step t →DEa(R) u we distinguish two cases, implied by the definition
of DEa(R).

– t = C[�σ] and u = C[capa(r)σ] for some context C, some substitution σ and
some rule � → r in R. Let v = C[rσ]. By part 1 of Lemma 9 we conclude that
r →∗

Bl capa(r), so v = C[rσ] →∗
Bl C[capa(r)σ] = u. Since ∞(u, DEa(R)) and

DEa(R) is left-linear and has no  or b symbols in lhs’s, we may apply part 1
of Lemma 8, yielding ∞(v, DEa(R)), contradicting the induction hypothesis.

– t = C[�σ] and u = C[vσ] for some context C, some substitution σ, v ∈
deca(r), and some rule � → r in R. By part 2 of Lemma 9 we obtain r = C′[r′]
and v = b(v′), where r′ →∗

Bl v′. By part 2 of Lemma 8 we may distinguish
two cases based on the infinite DEa(R)-reduction of u = C[vσ] = C[b(v′σ)]:

• ∞(C[], DEa(R)). Since C[rσ] →Bl C[] we conclude
∞(C[rσ], DEa(R)) from part 1 of Lemma 8.

• ∞(v′σ, DEa(R)). Since r′ →∗
Bl v′ we may apply part 1 of Lemma 8,

yielding ∞(r′σ, DEa(R)). Since C[rσ] = C[C′σ[r′σ]] we obtain
∞(C[rσ], DEa(R)).
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In both cases we obtain ∞(w, DEa(R)) for w = C[rσ] satisfying
t = C[�σ] →R C[rσ] = w, contradicting the induction hypothesis.

��

Left-linearity is essential in Theorem 10 as is shown by the following example.
Let R consist of the single rule

f(x, x) → f(a(c), a(d)).

Then R is terminating, but DEa(R) is not since it contains the non-terminating
rule f(x, x) → f(, ).

For proving termination of a TRS R containing a dummy symbol automat-
ically we propose always to try proving termination of DEa(R) first. For non-
left-linear TRSs this may fail even if R is terminating as was shown by the
above example. However, even then it may be a good strategy first to search for
some time for a termination proof of DEa(R), since often termination proofs for
DEa(R) are substantially simpler than direct termination proofs for R.

Just like we did for the technique of rewriting right-hand sides we investigated
on how many problems in the termination problem data base TPDB [20] the
technique of complete dummy elimination is directly applicable. It turns out
that among the 773 TRSs there are 65 TRSs for which it is. Apart from these
65 it may occur that after some transformation complete dummy elimination is
applicable, but this latter figure of course depends on details of the tool.

In case a TRS contains more than one dummy symbol it is a natural ques-
tion how to proceed. It turns out that just like in earlier versions of dummy
elimination the order of applying the corresponding DE operations does not
influence the result, e.g., if both a1 and a2 are dummy symbols in R, then
DEa1(DEa2(R)) = DEa2(DEa1(R)). In constructing this combined dummy
elimination we can apply it for all dummy symbols in one run, introducing a
fresh constant a and a fresh unary symbol ba for every dummy symbol a. So
in case a TRS contains more than one dummy symbol we propose always to
proceed by this simultaneous dummy elimination.

The best tool at the moment for proving TRS termination is AProVE [6].
We give two examples now showing that our DE-strategy is able to enhance the
2005 version of AProVE. The first TRS consists of two rules

f(f(g(g(x)))) → g(g(g(f(f(f(x)))))), f(x) → a(x, x).

AProVE fails to prove termination of this TRS. However, after applying DEa

the resulting TRS consisting of the rules

f(f(g(g(x)))) → g(g(g(f(f(f(x)))))), f(x) → , f(x) → b(x)

is proved to be terminating by AProVE in a fraction of a second.
As the second example consider the TRS consisting of the rules

f(g(x)) → f(h(h(a(h(h(g(f(x)))))))) f(g(x)) → g(g(f(h(x))))
f(h(x)) → h(g(f(x))) g(h(x)) → h(g(x))
h(f(x)) → g(g(h(h(a(f(x)))))) f(x) → g(g(h(x))).
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Again AProVE fails to prove termination of this TRS, but by applying DEa

the two rules containing a in their rhs’s are replaced by

f(g(x)) → f(h(h())), f(g(x)) → b(h(h(g(f(x))))),

h(f(x)) → g(g(h(h()))), h(f(x)) → b(f(x)),

resulting in a TRS for which termination is proved easily, e.g., by recursive path
order choosing the precedence f > g > h > b > . In the tool TPA complete
dummy elimination has been implemented, and indeed for this TRS TPA finds
the proof just sketched in a fraction of a second.

In particular this last example is of interest with respect to the following. In
[10] it was proved that if E(R) is DP simply terminating then R is DP simply ter-
minating too. Here roughly speaking DP simple termination means that termi-
nation can be proved by the dependency pair technique using argument filtering
and a simplification order. As a theorem this is correct, but in [10] it is literally
claimed that it implies that using dummy elimination as a preprocessing step to
the dependency pair technique does not have any advantage. However, our latter
example convincingly shows the converse with respect to the present AProVE
implementation: here no dependency pair transformation was required, but if
the dependency pair transformation had been applied to the resulting system,
a straightforward termination proof only using recursive path order would have
been found easily too. The difference between E(R) and DEa(R) is only in the
symbol b, and does not play any role: if it is omitted then the same proof holds.

4.2 Complete Dummy Elimination for String Rewriting

For term rewriting we believe that the operation DEa is the most natural and
most powerful variant of dummy elimination, due to the combination of Theorem
6 and Theorem 10. However, for string rewriting there is a drawback: due to the
introduction of the constant a for a string rewriting system (SRS) R, being a
TRS over a signature only containing unary symbols, the transformed system
DEa(R) is not an SRS any more.

This can be solved by defining a variant DE′
a of DEa, where the only difference

is that a is a unary symbol rather than a constant. In this way a symmetry
between a and ba is introduced. To express this symmetry in the notation, we
will write a$ instead of a, and $a instead of ba. As usual, we will identify a
term a1(a2(· · · (an(x)) · · ·)) with the string a1a2 · · · an, by simply ignoring all
parentheses and the variable symbol. So the single variable x in term notation
is written as the empty string λ in string notation. Now for a dummy symbol a
in an SRS R we define

DE′
a(R) = {� → u | u = cap′a(r) ∨ u ∈ dec′a(r) for a rule � → r ∈ R},

where

cap′a(λ) = λ
cap′a(fs) = fcap′a(s) for all symbols f with f 
= a and all strings s
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cap′a(as) = a$
dec′a(λ) = ∅
dec′a(fs) = dec′a(s) for all symbols f with f 
= a and all strings s
dec′a(as) = dec′a(s) ∪ {$a(cap′a(s)}.

Applied on string rewriting, the transformation DE′
a is called complete dummy

elimination, just as DEa applied on term rewriting.
First we show how DE′

a acts on a well-known simple standard example. Let
the SRS R consist of the single self-embedding rule bb → bab. Termination of
DE′

a(R) consisting of the two rules

b b → b a$, b b → $a b,

is trivial by counting the number of b-symbols.
The main theorem about DE′

a is the following.

Theorem 11. Let R be an SRS having a dummy symbol a. Then R is termi-
nating if and only if DE′

a(R) is terminating.

In order to prove Theorem 11 we need a general theorem relating termination
of TRSs over constants and unary symbols, and SRSs.

The function φ is defined on terms over constants and unary symbols, yielding
strings, is defined as follows:

φ(x) = λ, φ(c) = c, φ(f(t)) = fφ(t)

for all variables x, all constants c and all unary symbols f . A TRS R over
constants and unary symbols is mapped to an SRS φ(R) as follows:

φ(R) = { φ(�) → φ(r) | � → r ∈ R }.

Theorem 12. Let R be a TRS over constants and unary symbols. Then R is
terminating if and only if φ(R) is terminating.

For the proof of this theorem we refer to [19].
The impact of Theorem 12 goes far beyond dummy elimination. In fact The-

orem 12 states that proving termination of string rewriting is equivalent to ter-
mination of term rewriting as long as no symbols of arity higher than one occur.

Now we are ready to prove Theorem 11.

Proof. (of Theorem 11)
Since an SRS is left-linear, by Theorem 6 and Theorem 10 we conclude that

R is terminating if and only if DEa(R) is terminating. By Theorem 12 this
holds if and only if φ(DEa(R)) is terminating. By construction φ(DEa(R)) and
DE′

a(R) coincide, up to renaming of a to a$ and ba to $a. ��

The transformation DE′
a for string rewriting has been implemented in

TORPA, version 1.4. As an example, we give the result of TORPA on the same
example we considered before:
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f g -> f h h a h h g f
f h -> h g f
h f -> g g h h a f
f g -> g g f h
g h -> h g
f -> g g h

Apply dummy elimination, result:
f g -> f h h a$
f g -> $a h h g f
f h -> h g f
h f -> g g h h a$
h f -> $a f
f g -> g g f h
g h -> h g
f -> g g h

Choose polynomial interpretation f: lambda x.x+1, rest identity
remove: h f -> g g h h a$
remove: f -> g g h
Choose polynomial interpretation
f: lambda x.4x
g: lambda x.x+5
h: lambda x.x+2
a$: lambda x.x+1
$a: lambda x.x+1
remove: f g -> $a h h g f
remove: f h -> h g f
remove: h f -> $a f
remove: f g -> g g f h
Choose polynomial interpretation g: lambda x.x+1, rest identity
remove: f g -> f h h a$
Choose polynomial interpretation:
g: lambda x.10x, rest lambda x.x+1
remove: g h -> h g
Terminating since no rules remain.

5 Conclusions

We described two techniques to transform a given TRS to another one, in such
a way that termination of the given TRS can be concluded from termination of
the transformed one, and proving termination of the transformed TRS is often
easier than proving termination of the given TRS directly.

Both techniques are easy to implement, and have the nice property that no
choice has to be made, so never an explosion of the search space will be caused,
and no heuristics have to be developed. On the other hand both techniques have
a drawback: they are only applicable for a restricted class of TRSs. For rewriting
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right-hand sides a rhs is required not to be in normal form, and for complete
dummy elimination a dummy symbol is required, i.e., a symbol occurring in a
rhs but in no lhs. However, both our techniques may be applied not only as a
preprocessor, but also in proofs consisting of several transformations of TRSs. If
in a proof search the remaining proof obligation is finding a termination proof
for some TRS, then both our techniques may be applied, even if they are not
applicable to the original TRS.

One may wonder when to apply these techniques. Our proposal is: when-
ever you can. For rewriting right-hand sides we proved that the original TRS
is terminating if and only if the transformed TRS is terminating, and we are
not aware of TRSs for which termination of the transformed TRS is harder to
prove than termination of the original TRS, while the converse often occurs. For
left-linear TRSs the same can be said for complete dummy elimination. So the
only situation where the effect may be negative is for complete dummy elimina-
tion for non-left-linear TRSs. Indeed for the single rule f(x, x) → f(a(c), a(d))
we saw that complete dummy elimination should not be applied, since then the
transformed TRS is not terminating while the original one is.

Also combinations of both techniques described in this paper make sense: one
easily constructs artificial examples on which both rewriting right-hand sides and
complete dummy elimination are applicable, and then they can be applied both.
We believe that it does not make sense to investigate which order of application
of these techniques is preferred, since examples where this makes a difference are
really artificial.
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