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Jan Willem Klop



Preface

This Festschrift is dedicated to Jan Willem Klop on the occasion of his 60th
birthday on December 19, 2005. Its focus is on the lambda calculus, term rewrit-
ing and process algebra, the fields where Jan Willem has made fundamental
contributions. Without attempting to give a balanced account of Jan Willem’s
scientific achievements, we recall three accomplishments from the early years of
his career that especially stand out.

The first is his counterexample showing that the extension of the lambda
calculus with surjective pairing lacks the Church–Rosser property, or, in modern
terminology, is not confluent [7, 9]. This settled a famous open problem, which
had challenged several researchers in the lambda calculus community for years.

The second is his pioneering work in term rewriting. In his PhD thesis [9], Jan
Willem gave a systematic study of orthogonal rewriting in the general setting of
combinatory reduction systems (CRSs), thereby putting the areas of higher-order
rewriting and orthogonality firmly on the map. Some of the ideas in the thesis
trace back to the famous Blue Preprint [2], from the period that Jan Willem
and some other students were graduating in mathematics and logic, under the
supervision of Dirk van Dalen and Henk Barendregt.

The third feat is the creation, together with Jan Bergstra [23], of the algebra
of communicating processes (ACP).

With his early work, Jan Willem provided inspiration for many years of fruit-
ful research, continuing to this day. For decades he has been a creative and
stimulating force in the areas of term rewriting and process algebra. Some of
his recent interests are infinitary rewriting, graph rewriting and the geometry of
processes.

Jan Willem’s scientific world is inhabited by objects like processes, streams,
terms, cycles and many other puzzling and intriguing phenomena, and in this
world he paves the way, guided by his extraordinary intuition and his great care
in visualizing that intuition. To his colleagues, Jan Willem’s adventures and the
way he talks about them are a never-ending source of inspiration.

This Festschrift contains scientific papers by close friends and colleagues of
Jan Willem, written specifically for this book. The papers are different in nature:
some report on new research, others have the character of a survey, and again
others are mainly expository. Every contribution has been thoroughly refereed
at least twice. In many cases the first round of referee reports led to significant
revision of the original paper, which was again reviewed. This introduction in-
cludes a list of Jan Willem Klop’s publications, for reference, and as an overview
of the development of his scientific interests and achievements over the years.
Although this bibliography is quite extensive, we do not claim it to be complete.

We thank all authors for their contribution to the Festschrift for Jan Willem
Klop and we are grateful to the referees for their constructive cooperation. We
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also wish to thank Springer for publishing this book in their LNCS Festschrift
series, and for the smooth publishing process.

The Festschrift was presented to Jan Willem on his 60th birthday, during
a one-day symposium with the same title as this book: Processes, terms and
cycles: steps on the road to infinity. The symposium not only celebrated Jan
Willem’s 60th birthday, but also the 25th anniversary of his connection with the
CWI in Amsterdam. His first working day as a post-doc at the Mathematical
Centre (MC), the predecessor of the CWI, was December 15, 1980.

We invited Zena Ariola (University of Oregon, USA), Arvind (MIT, USA),
Henk Barendregt (Radboud University, The Netherlands), Jan Bergstra (Uni-
versity of Amsterdam and Utrecht University, The Netherlands), Nachum Der-
showitz (Tel Aviv University, Israel), Mariangiola Dezani (University of Torino,
Italy), Roger Hindley (Swansea University, UK), Jean-Jacques Lévy (INRIA,
France), and Ronan Sleep (University of East Anglia, UK) to give a talk at the
symposium. We are very pleased that they kindly accepted. All speakers are
leading researchers in the fields of term rewriting, lambda calculus and process
algebra, and their friendship with Jan Willem dates back many years.

The symposium was organized at and together with the CWI. The collab-
oration with Susanne van Dam and Jaco van de Pol from the CWI has been
a pleasure. We wish to thank them, and more generally the CWI, for all their
assistance. We also gratefully acknowledge the generous financial support for
the symposium from the Vrije Universiteit, CWI, NWO, and the Radboud
University.

Also on behalf of Susanne and Jaco, we would like to conclude by stating that
it has been an honour and a pleasure to work on the preparation of this book and
the symposium. It gave us the opportunity to experience how much Jan Willem
is valued by colleagues all over the world. The willingness to contribute and par-
ticipate and make the best of the book and symposium has been enormous. For
this we are thankful of course, but more importantly, the manifestation of this
enthusiasm reflects the esteem that Jan Willem has in the scientific community.
Congratulations, Jan Willem! We wish you and all of us a fruitful continuation
of our cooperation and sharing of interests for many years to come.

October 2005 Aart Middeldorp
Vincent van Oostrom

Femke van Raamsdonk
Roel de Vrijer
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B. Möller, editors, Proc. of the 2nd International Workshop on Higher-Order Al-
gebra, Logic, and Term Rewriting (HOA’95), volume 1074 of Lecture Notes in
Computer Science, pages 1–16. Springer, 1996.

85. Z.M. Ariola and J.W. Klop. Lambda calculus with explicit recursion. Information
and Computation, 139(2):154–233, 1997.

86. Z.M. Ariola, J.W. Klop, and D. Plump. Confluent rewriting of bisimilar term
graphs. Electronic Notes in Theoretical Computer Science, 7, 1997.

87. J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997. Extended version of
[77].

88. M. Bezem, J.W. Klop, and V. van Oostrom. Diagram techniques for confluence.
Information and Computation, 141(2):172–204, 1998.

89. I. Bethke, J.W. Klop, and R.C. de Vrijer. Extending partial combinatory algebras.
Mathematical Structures in Computer Science, 9(4):483–505, 1999.

90. Z.M. Ariola, J.W. Klop, and D. Plump. Bisimilarity in term graph rewriting.
Information and Computation, 156:2–24, 2000.

91. I. Bethke, J.W. Klop, and R.C. de Vrijer. Descendants and origins in term rewrit-
ing. Information and Computation, 159:59–124, 2000.

92. J.W. Klop, V. van Oostrom, and R.C. de Vrijer. A geometric proof of confluence
by decreasing diagrams. Journal of Logic and Computation, 10(3):437–460, 2000.

93. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

94. J. Ketema, J.W. Klop, and V. van Oostrom. Vicious circles in orthogonal term
rewriting systems. In S. Antoy and Y. Toyama, editors, Proc. of the 4th In-
ternational Workshop on Reduction Strategies in Rewriting and Programming
(WRS’04), volume 124(2) of Electronic Notes in Theoretical Computer Science,
pages 65–77. Elsevier Science, 2005.



Table of Contents

The Spectra of Words
Robin Milner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

On the Undecidability of Coherent Logic
Marc Bezem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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The Spectra of Words

Robin Milner

Cambridge University, Cambridge, UK

Abstract. The k-spectrum of a word is the multiset of its non-
contiguous subwords of length k. For given k, how small can n be for
a pair of different words of length n to exist, with equal k- spectra?
From the Thue-Morse word we find that n is at most 2k. The construc-
tion of this paper decreases this upper bound to θk, where θ � 1.6 is
the golden ratio; the construction was found, though not published, over
thirty years ago. Recently the bound has been further reduced, but re-
mains considerably greater than the greatest known lower bound.

Jan Willem Klop is renowned for his contributions to process algebra, term
rewriting, and graphical models of computation; also for his exquisite diagram-
matic presentations. Alongside these interests he finds delight in phenomena in-
volving complex illustrations and counterexamples; for example, a single lambda
term that takes several pages. He enjoys long words.

One long – indeed infinite – word is the Thue-Morse word. This word, and its
finite prefixes of length 2k, have a rich variety of properties. This paper is about
one property that they almost, but not quite, enjoy. There is a sense in which
these finite prefixes are not optimal, but appear to be nearly so.

I discovered this phenomenon in 1972, together with a counterexample to
the optimality, but did not to publish it. In the last decade or so, the results
have been repeated and indeed improved; in my concluding remarks I give a
brief survey of some of this more recent work, enough for interested readers to
discover the current state of this special problem area. But this festschrift for
Jan Willem gives an opportunity to publish the phenomenon as it first appeared
to me, in a form which I hope is readily digestible by many who, like me, are
not expert in combinatorics.

We are concerned with words a over an alphabet A; for simplicity, we hence-
forth assume A = {0, 1}. A word s is a subword of a if the members of s occur
in a in the correct sequence, not necessarily contiguously. A subword may occur
often; for example, 01 occurs once in 010 but five times in 01011. (It is worth
noting that there is not universal agreement of terminology; some authors use
‘subword’ to mean a contiguous occurrence, and in that case 01 appears only
twice in 01011.) Denote by #(s, a) the number of non-contiguous occurrences
of s in (i.e. as a subword of) a. Remarkably, the quantities #(s, a) share many
properties with the binomial coefficients; indeed, the latter correspond to the
case in which the alphabet A is a singleton. An elegant theory of these quanti-
ties #(s, a) is presented by Sakarovitch and Simon [8]. What little we need of
that theory is included here, to make the paper self-contained.

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 1–5, 2005.
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For any natural number k, the k-spectrum of a word a is a function giving,
for each word s of length k, the value of #(s, a). For example, the 2-spectrum
of 0110 is

s #(s, 0110)
00 1
01 2
10 2
11 1

We ask the question: if we know the k-spectrum of a, does this fix a? Certainly
not, if a has length at least 2k. The finite prefixes of the Thue-Morse word
provide a counterexample. The prefix ak of length 2k is given by

a0, b0
def= 0, 1

ak+1, bk+1
def= ak bk, bk ak .

For example a3, b3 = 01101001, 10010110. An easy inductive proof shows that
ak and bk have the same k-spectrum.

One way of presenting this proof depends on a Lemma that will come in useful
later. It involves the notion of a rewriting rule u → v, which may be used to
replace a (contiguous) occurrence of u by v in a larger string. When the rule is
understood we shall write a → b, or sometimes b ← a, to mean that a single use
of the rule can transform a into b.

Lemma. Let u, v have the same k-spectrum. Suppose a can be rewritten into
b by applying the rewrite rule u → v once and then applying v → u once, i.e.
a = cuc′, cvc′ = dvd′ and dud′ = b. Then a, b have the same k+1-spectrum.

To see that this provides an inductive proof that the Thue-Morse pair ak, bk have
the same k-spectrum, assume the property for k, and consider ak+1, bk+1. In the
Lemma take a, b to be this pair, and u, v to be ak, bk; then the result follows by
taking c = d′ = ε (the empty word) and c′ = d = bk.

Let us look more closely at this when k = 3. The rewriting rule is 0110 → 1001,
so if we underline the occurrences to be rewritten we have

a3 = 01101001 → 10011001→ 10010110 = b3 .

Note that the two rewrites are non-overlapping. Now, consider a sequence of
pairs ak, bk of unequal strings of equal length �k, where �k grow more slowly
than 2k; a similar inductive proof that ak and bk have the same k-spectrum
would require that ak+1 can be transformed into bk+1 by an application of
ak → bk followed by an application of bk → ak in which the second rewrite
overlaps the first ! It seemed unlikely that such pairs ak, bk could be defined.
And it is not easy to think of constructing a sequence of unequal pairs with
equal k-spectra other than inductively, applying something like the Lemma to
yield the proof.

Therefore it was reasonable to hope to prove that each Thue-Morse pair ak, bk

is optimal, in the sense that no shorter unequal pair has equal k-spectra.
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But this claim is false; we now give a counter-example. Considering the re-
currence relation for the Thue-Morse pairs, we naturally attempt to define pairs
based instead on a Fibonacci sequence, whose length will grow asymptotically
as θk, where θ = (1 +

√
5)/2 � 1.6 is the golden ratio. The details require care.

By analogy with the Thue-Morse pairs, given two initial pairs a0, c0 and a1, c1
we define for k ≥ 0:

ak+2, ck+2
def=
{

ck ak+1, ak+1 ck (k even)
ak+1 ck, ck ak+1 (k odd).

Then, for all k ≥ 0 define

bk+2
def=
{

ak+1 ak (k even)
ak ak+1 (k odd).

Now let us choose a0, c0 = 010, 100 and a1, c1 = 01, 10 (we discuss this choice
later). Then the following table shows the first few pairs ak, bk:

k ak bk ck �k

0 010 − 100 3
1 01 − 10 2
2 10001 01010 01100 5
3 1000110 0110001 1010001 7
4 011001000110 100011010001 100011001100 12
5 0110010001101010001 1000110011001000110 · · · 19

Theorem 1. Choose a0, c0 = 010, 100 and a1, c1 = 01, 10 and define ak, bk, ck

(k ≥ 2) as above. Then for all k ≥ 2 the strings ak, bk are unequal, with equal
lengths and equal k-spectra. Also the lengths �k of the members of the pairs form
a Fibonacci sequence, and �k < 2θk for all k ≥ 2.

Proof. It is obvious that the strings ak, bk have equal length. To show that they
differ, one can prove by induction that (i) their first letters always differ, and
(ii) the first letters of bk and ck differ iff k is odd.

Now, a simple calculation yields that for k ≥ 0

bk+2 =
{

ak ck+1 (k even)
ck+1 ak (k odd).

Using this, we give an inductive proof that, for k ≥ 2, the strings ak, bk have
equal k-spectra. For k = 2, i.e. for the pair 10001 and 01010, this is easily
checked. For the inductive step, we assume the property for k and prove it for
k + 1. Let us use → for a rewrite by ak → bk, and ← for the inverse rewrite.
Then for odd k ≥ 2 we have

ak+1 = ck−1 ak by the recurrence
→ ck−1 bk by the rewrite
= ck−1 ak−2 ak−1 by definition
= bk ak−1 by the above expression
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← ak ak−1 by the inverse rewrite
= bk+1 by definition

and similarly for even k. But by assumption the strings ak, bk have equal k-
spectra; thus, by the Lemma, ak+1, bk+1 have equal k+1-spectra. This completes
the inductive proof.

Finally, the lengths �k form the (non-standard) Fibonacci sequence 3, 2, 5, 7,
12, 19, . . . , and using �k+2 = �k+1 + �k and θ2 = θ + 1 we obtain �k < 2θk for
all k ≥ 2 by a simple induction. �

The first two pairs ak, bk (k = 2, 3) in our sequence are an oddity. They appear
to be the shortest that initiate the recurrence correctly so that the Lemma can
be applied. Readers may like to see if they can throw any light on this matter; at
present it appears that we have stumbled by accident on a sequence that works!

Now, define a pair a, b to be k-spectral if a and b are unequal, but of equal
length and with equal k-spectra; call the pair k-optimal if it is k-spectral and
there is no shorter k-spectral pair.

In our sequence the pair ak, bk is not always k-optimal. For example, the pair
10001, 01010 is not 2-optimal; the Thue-Morse pair 1001, 0110 is 2-optimal. Our
pairs for k = 3, 4 are optimal, and already shorter than the corresponding Thue-
Morse pairs – which are therefore non-optimal. Our pair for k = 5, with �5 = 19,
is not 5-optimal; there is a 5-spectral pair of length 16:

0110000011100001 , 1000011100000110 .

This suggests that later pairs in the sequence will also be not k-optimal.
To summarise, let us define the function

opt(k) def= the length of a k-optimal pair.

Theorem 1 implies an exponential upper bound to opt(k). When I discussed this
problem with David Klarner [3]1 he quickly provided a lower bound; he proved
that if a and b have equal length less than 2k and equal k-spectra then a = b.
We can summarise these results by the following:

Theorem 2. 2k ≤ opt(k) < 2θk .

This is a wide gap; to narrow it significantly appears non-trivial. However, recent
work has made some progress in this direction.

Recent work. As indicated above, these results have been confirmed and
improved in recent years. Apparently the problem of reconstructing a word from
subwords was first introduced in the literature by Kalashnik (1973) [4]. The fact
that the 2k prefix of the Thue-Morse word and its complement are k-spectral goes
1 David Klarner was a specialist in combinatorics. He and I did not meet again after

1972. In May 2000, having found his website, I tried to contact him to see if he had
done further work on subwords. Sadly he had died two months before, in March
2000, so I had no answer.
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back at least to to Manvel et al (1991) [7]. The standard reference for a uniform
construction of shorter k-spectral pairs, with length determined by a Fibonacci
sequence, is by Choffrut and Karhumäki (1997) [1]; see also Manuch (1999) [6].
At about the same time Krasikov and Roditty (1997) [5] increased the linear
lower bound of 2k to a quadratic lower bound. Finally, Dud́ık and Schulman
(2003) [2] have found a smaller upper bound of the form exp(Ω(log2 k)). Thus
the gap between the known lower and upper bounds on opt(k) is decreasing, but
remains wide.

I would like to thank the referees for helping me to improve this paper, and
especially for help with the bibliography.
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Abstract. Through a reduction of the halting problem for register ma-
chines we prove that it is undecidable whether or not a coherent formula
is a logical consequence of a coherent theory. We include a simple com-
pleteness proof for coherent logic. Although not published in the present
form, these results seem to be folklore. Therefore we do not claim original-
ity. Given the undecidability of the halting problem for register machines
the presentation is self-contained.

1 Introduction

As far as we know, Skolem [12] was the first who used coherent logic (avant la
lettre) to solve a decision problem in lattice theory and to prove the indepen-
dence of Desargues’ Axiom from the other axioms of projective plane geometry.
Modern coherent logic, also called finitary geometric logic or even simply geo-
metric logic, arose in algebraic geometry, see for example [5–Sect. 16.4], and is
actually a fragment of higher-order logic. In this note we define coherent logic
(abbreviated by CL) as the fragment of first-order logic (FOL) consisting of
implicitly universally quantified implications of the following form:

A1 ∧ · · · ∧An → E1 ∨ · · · ∨Em

Here the Ai are first-order atoms. In contrast to resolution logic [9], where the
Ej must also be atoms, they may here be existentially quantified conjunctions
of atoms. Thus the general format of a coherent formula reads:

A1 ∧ · · · ∧An → ∃x1.C1 ∨ · · · ∨ ∃xm.Cm (1)

where the Cj are conjunctions of atoms. The special cases n = 0, m = 0 and
no existential quantification, in all possible combinations, are understood to be
included. (If the premiss is empty we leave out the→ as well, an empty conclusion
is denoted by ⊥, falsum.) A coherent theory is a set of coherent formulas. Closed
atoms will also be called facts.

The fact that first-order logic is semidecidable certainly constitutes an upper
bound for the coherent fragment as well. Resolution logic with only constants is
decidable, since quantification over finite Herbrand domains can be reduced to
propositional logic. Horn clause logic [6] is the format (1) with m ≤ 1 and E1
atomic. In the presence of one constant and one unary function symbol, Horn

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 6–13, 2005.
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clause logic is undecidable [11]. This provides the clue for the undecidability
of CL without function symbols, since a unary function f(x) can be replaced
by a binary predicate F (x, y) plus coherent axioms ∃y.F (x, y) and F (x, y) ∧
F (x, z) → E(y, z) as well as congruence axioms for E, which are also coherent.
Hence the undecidability result in itself is not surprising, but we show that
one can do without all axioms in which E occurs. One can even do away with
the constant by using an extra unary predicate. Undecidability of CL can be
obtained in many other ways, for example, as an immediate corollary of the
linear translation of FOL to CL given in [1]. The current exposition offers an
insightful correspondence between computations and proofs.

There are several reasons why coherent/geometric logic is interesting. See
[3] for the relevance to computer science. Reasoning in CL is constructive and
can be used for, e.g., the constructivization of classical abstract algebra, see [4].
A substantial number of reasoning problems (e.g., in confluence theory, lattice
theory and projective geometry) can be formulated directly in CL without any
clausification or skolemization. This gives some additional benefits in terms of
guiding an automated theorem prover and using the proof objects in other logical
frameworks. The automation of CL has been studied in [1], inspired by the
system SATCHMO [7] for resolution logic.

2 Proof System

CL has a natural proof system which is based on forward ground reasoning with
case distinction. Existential quantifiers are eliminated by introducing witnesses.
A witness is a new constant witnessing the truth of an existential statement.
Witnesses play a similar role as eigenvariables in systems of natural deduction
and should be chosen completely fresh, not introduced earlier in the proof, not
occurring in the theory, nor in the formula to be proven.

In order to elaborate the proof system a bit more, let T be a coherent theory.
Assume we have a set I of witnesses and initial constants. The latter constants
are the constants occurring in T and in the goal G, the formula to be proven.
A goal is a closed formula of the same form as a conclusion in a coherent for-
mula. We first explain how to prove a goal and then generalize this to arbitrary
coherent formulas. Let X be a set of facts in which only constants from I occur.
Together I and X form a so-called (reasoning) state. A conjunction of facts is
true in this state if all these facts occur in X . A closed formula of the form ∃x.C,
with C a conjunction of atoms, is true in this state if there exist witnesses w ∈ I
such that C[x:=w] is true in the state. A goal is true in a state if at least one of
its disjuncts is true in that state. A reasoning step in the state (I,X) consists in
picking a closed I-instance C → D of an axiom from T that is invalid in the state.
This means that the premiss C is true in the state, but the conclusion D is not.

As an example, consider a state with I = {0}, X = {Nat(0)} and an axiom

Nat(x) → ∃y.(Nat(y) ∧ S(x, y)) (2)

Assume we would like to prove G = ∃xy.(S(0, x) ∧ S(x, y)). The instance of (2)
with x:=0 is invalid in the current state, since the premiss is true but the conclu-
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sion is not. The reasoning step now so to say remedies this failure by making the
conclusion of the instance true by adding a witness to I, suggestively denoted
as 1, and adding the facts Nat(1) and S(0, 1) to X . The reasoning process then
continues in the state with I ′ = {0, 1} and X ′ = {Nat(0),Nat(1), S(0, 1)}. In
the new state we pick the instance with x:=1 of the same axiom (2) to arrive
at a state with constants I ′′ = {0, 1, 2} and facts X ′′ = {Nat(0),Nat(1), S(0, 1),
Nat(2), S(1, 2)}. Now we can stop since the goal G is true in this state: just take
x:=1 and y:=2 and observe that S(0, 1), S(1, 2) ∈ X ′′. Note that the suggestive
names 1 and 2 for the witnesses are inessential.

In the case of a disjunctive conclusion the reasoning process branches and the
goal has to be proved in all the branches corresponding to the disjuncts in the
conclusion. In the special case of an empty disjunction there are no branches
and we are done. This special case corresponds to the Ex Falso rule. Disjunctive
conclusions give rise to a tree of states in which branches are closed in leaf states
in which the goal is true or in which an empty disjunction can be derived. If
all branches are closed we have a proof. If in some branch the procedure breaks
down with all axioms true but the goal still false, then the state in question
constitutes a counter model. It is also possible that the reasoning process goes
on forever, something which reflects the undecidability to be proved in Section 4.

The above procedure actually allows us to prove the coherent formula

Nat(0) → ∃yz.(S(0, y) ∧ S(y, z))

from axiom (2) by assuming the premiss (the state (I,X) above) and then prov-
ing the conclusion (the goal G). We can further generalize to a proof of

Nat(x) → ∃yz.(S(x, y) ∧ S(y, z)) (3)

from axiom (2) in the empty state, since the constant 0 is fresh with respect to
(2) and (3) and the empty state. In this way, by taking a fresh closed instance,
assuming the premiss and then proving the conclusion as a goal, the procedure
easily generalizes to proving arbitrary coherent formulas. The resulting proof
system is sound and complete with respect to Tarskian truth. (We include models
with empty domains.) In the next section we sketch a completeness proof.

3 Completeness

Without loss of generality we can restrict completeness to finding a proof of a
true fact F in a finite coherent theory T . The idea of the proof is to use the
procedure of the previous section to build a (possibly infinite) tree of states
by applying in a systematic way all axioms from T with F as goal. If this
doesn’t yield a proof of F , then a model of T in which F is not true can be read
off the tree.

Soundness and completeness can be stated as follows. For all states (I,X),
a fact F can be proved in T from X if and only if F is true in all models
of X,T (we assume the signature of T to be extended by the witnesses in I).
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The only-if part is soundness, and this is obvious (but relies essentially on the
freshness of the witnesses). For the if-part, assume F is true in all models of
X,T . Since both the state and the theory are finite, there exist at most finitely
many closed I-instances of axioms from T that are invalid in X . List these by
C1 → D1, . . . , Cn → Dn. If there are no such instances, then X can be viewed as
a model of T and F is by assumption true in X , so F ∈ X and we have a proof
of length zero. If F �∈ X , take a reasoning step in state (I,X) using C1 → D1.
This leads to zero or more new states, depending on the length of the disjunction
D1 (if this length is zero we are done by Ex Falso). A crucial observation here is
that C1 → D1 is valid in any of the new states. In each of these not containing
F , if C2 → D2 is still invalid, take a reasoning step using C2 → D2. In this way
we work through the whole list, observing that every Ci → Di (1 ≤ i ≤ n) is
valid in any of the resulting states. After having processed the whole list, not all
branches have to be closed by Ex Falso or by containing F . Such open branches
may end in states in which new instances of axioms from T have become invalid.
In each such state we have to list again all invalid closed instances of axioms
from T and work through this list as above. Will this yield a proof of F? A finite
tree with all branches closed is a proof of F . What if the procedure goes on
forever and the tree becomes infinite? We shall show that this conflicts with F
being true in all models of X,T . In order to see this, assume the tree is infinite.
Observe that the tree is finitely branching. By König’s Lemma there exists an
infinite branch, say β. Along β we find a strictly increasing sequence of states
(I,X) = β0, β1, . . .. We can collect all the witnesses and all the facts along β and
view them as a Herbrand universe U and a Herbrand model M , respectively. (A
non-empty domain is guaranteed if there is at least one initial constant.) Now we
obtain a contradiction by the following three observations. First, F is not in M
since β is infinite. Second, X is included in M since X is at the root. Third, M
is a model of T . In order to see the latter we remark first that all constants from
the signature of T are understood to be included in U . Now take an arbitrary
closed U -instance C → D of an axiom from T such that C is true in M . For
some k ≥ 0, all constants occurring in C → D as well as all facts in C occur in
βk. In this state βk some finite list of closed instances of axioms from T is being
worked through. If D has not become true in βl (l ≥ k) when this list is finished,
then C → D will be on the next list, and hence D will be true in some later state
βm (m > l). In both cases D is true in M . Since an infinite tree conflicts with
F being true in all models of X,T , the tree must be finite and hence a proof of
F . This completes the completeness proof.

Completeness for arbitrary coherent formulas follows easily from completeness
for facts using the generalized proof procedure given at the end of Section 2.

4 Undecidability

Crucial for the undecidability of CL without function symbols is the existential
quantification, which allowed us to formulate the axiom (2) in Section 2. Axiom
(2) generates representatives of the natural numbers, with the binary predicate
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S expressing the successor relation. Of course one needs a starting point for
applying (2). In the example this was the fact Nat(0).

Given a representation of the natural numbers, there are a number of Turing
complete models of computation available for proving undecidability. One of the
most convenient ones is the so-called register machine [10], also called counter
machine. This machine model, and in particular the unsolvability of its halting
problem already for two registers, goes back to [8].

A register machine is a device with registers x1, . . . , xm, each capable of stor-
ing an arbitrarily large natural number, together with a program. A register
machine program is a finite enumeration of instructions from the following in-
struction set: inc(xi), dec(xi), jpz(xi, l, l

′). These instructions lead to the fol-
lowing respective actions: increment register xi, decrement register xi, jump to
instruction l if xi is zero and to l′ otherwise. Decrementing a register which
has value 0 is not allowed and can be prevented by using conditional jumps
preceeding any decrement instruction.

The execution model for register machines uses one additional register, the
so-called program counter, which addresses the current instruction. Execution of
the program starts at the first instruction. The program counter is incremented
after each instruction inc(xi), dec(xi), its value is changed to either l or l′ in case
of a conditional jump. Execution terminates when the program counter gets a
value not corresponding to an instruction of the program. The registers used
by a register machine are by default x1, . . . , xm with m the highest index of a
register occurring in the program.

As an example consider the following program ADD:

0 jpz(x2, 4, 1)
1 dec(x2)
2 inc(x1)
3 jpz(x1, 0, 0)

This program obviously adds the contents of x2 to x1 and terminates by jumping
to 4, beyond the last instruction. Instruction 3 exhibits an unconditional jump.
(The program would also work correctly with instructions 3 jpz(x13, 0, 0) or
3 jpz(x2, 13, 1) instead of 3 jpz(x1, 0, 0).)

It is undecidable whether or not a given register machine will terminate when
started with all registers initialised with 0. We will reduce the latter problem to
provability in CL, thereby showing that provability in CL is undecidable.

In order to illustrate the reduction we translate the example program ADD
into the following coherent theory.

P0(x1, 0) → Phalt (x1, 0) and P0(x1, x2) ∧ S(y, x2) → P1(x1, x2)
P1(x1, x2) ∧ S(y, x2) → P2(x1, y)
P2(x1, x2) ∧ S(x1, y) → P3(y, x2)
P3(x1, x2) → P0(x1, x2)

This translation can be applied to any register machine M operating on regis-
ters x1, . . . , xm, where the registers are the arguments of atoms Pl(x1, . . . , xm)
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and the instructions of M ’s program lead to coherent formulas as in the above
example. The conditional jump is the only instruction leading to two coherent
formulas, but their closed instances do not overlap, since there is no y such that
S(y, 0). An unconditional jump can do with only one formula. Any jump out the
program is translated into a coherent formula · · · → Phalt (. . .).

Starting with registers initialised with 0 is represented by adding P0(0, . . . , 0)
to the initial state. Finally, adding axiom (2) generating the natural numbers
completes the coherent theory TM corresponding to the register machine M . The
reduction of the halting problem for register machines to provability in coherent
logic can now be made precise in the following theorem.

Theorem 1. For every register machine M operating on registers x1, . . . , xm,
when started with all registers initially 0, we have that the execution of M ter-
minates if and only if ∃x1 . . . xm.Phalt (x1, . . . , xm) is provable in TM from an
initial state with I0 = {0} and X0 = {Nat(0), P0(0, . . . , 0)}.

Proof. For convenience, we identify reasoning states with sets of facts, the set of
constants in any state consisting of all the constants occurring in the facts of that
state. Again we use suggestive names 1, . . . , n+1 for the constants introduced by
axiom (2). Assume M as above is terminating. For every step in the execution
of M , take the following two reasoning steps:

1. Xn � Xn ∪ {Nat(n+1), S(n, n+1)} = Yn+1 by axiom (2) instantiated with
x:=n.

2. Yn+1 � Yn+1 ∪ {Pl(n1, . . . , nm)} = Xn+1 by the axiom corresponding to
the instruction executed in step n+1 of the computation, instantiated with
the register values just before the step. Here we assume that step n+1 of
the computation leads to a state in which the program counter is l and the
contents of the registers are n1, . . . , nm, respectively.

Note that there are always enough natural numbers to instantiate the right in-
stance of the formula corresponding to each instruction, and that its premiss
is true. Also, its conclusion must be false, since Yn+1 = Xn+1 would mean
that Pl(n1, . . . , nm) has been inferred already, so that the program is actually
looping, contradicting termination. There is no branching, which reflects the
fact that the computation is deterministic. When the execution of M termi-
nates, that is, jumps out the program, we have l = halt and we have proved
∃x1 . . . xm.Phalt (x1, . . . , xm).

For the converse, assume ∃x1 . . . xm.Phalt (x1, . . . , xm) is provable in TM from
the initial state. In any state of this proof exactly one instance of axiom (2)
is invalid. Moreover at most one instance of the axioms corresponding to the
instructions of M is invalid: in some cases axiom (2) has to generate a new
natural number before an increment can take place. It is quite possible that
too many natural numbers are generated, but this does no harm. The proof
necessarily follows the execution of M , interleaved with (possibly too many)
applications of axiom (2). The terminating execution is easily read off.
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The above argument still uses the constant 0. We can eliminate the use of
0 by introducing a unary predicate Z. The initial state is then replaced by the
axiom

∃x.Z(x) ∧Nat(x) ∧ P0(x, . . . , x)

The constant 0 has also to be eliminated from the axioms corresponding to jpz
instructions. For example, in the translation of the program ADD, the first axiom
should be replaced by P0(x1, x2)∧Z(x2) → Phalt (x1, x2). In this way we obtain
a coherent theory T ′

M corresponding to the register machine M . Theorem 1 can
be proved with T ′

M instead of TM and an empty initial state by almost the same
argument as above. In order to shift from ‘provable’ to ‘logical consequence’
using only the restricted completeness theorem from Section 3, one should add
the axiom Phalt (x1, . . . , xm) → halt to T ′

M . Thus we obtain:

Corollary 1. The consequence relation of coherent logic without function sym-
bols is undecidable.

We finish by discussing some closely related results. The key idea is beyond
any doubt the Horn clause representation of register machines from [11]. This
idea has also been exploited to get undecidablity results in typed lambda cal-
culus [2] and term rewriting systems [14–Section 5.3.2]. The latter two systems
allow the use of function symbols. In [13–Ch. First-order logic] the undecid-
ability of the ∀,→,⊥-fragment of intuitionistic predicate logic is based on the
same idea. In this fragment Horn clauses are expressible by iterating → and
(∀y.(S(x, y) → ⊥)) → ⊥ replaces ∃y.S(x, y). The latter weakening of existen-
tial quantification is still sufficient to obtain undecidability without the use of
function symbols. All these approaches have in common that register machine
computations correspond to some kind of normalized proofs.
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Abstract. In this paper, we prove that Löb’s Logic is a retract of the
modal μ-calculus in a suitable category of interpretations. We show that
various salient properties like decidability and uniform interpolation are
preserved over retractions. We prove a generalization of the de Jongh-
Sambin theorem.

1 Introduction

Fixed points are a central subject of metamathematics. Two flavours are of
interest to us here: fixed points of operators that are in some sense guarded
and fixed points of monotonic operators. We will study such fixed points in the
context of propositional modal logic. The simplicity of propositional modal logic
helps us to gain control and overview.

There are two prominent modal logics of fixed points. One is Löb’s Logic, aka
GL. Löb’s Logic is a logic of guarded fixed points. It is an important tool in the
study of arithmetical self-reference. Löb’s Logic has been extensively studied.
See the expository papers and books [1], [2], [3], [4], [5].

The other prominent logic is the modal μ-calculus. This logic is a logic for
minimal and maximal fixed points of monotonic operators. It was designed for
applications in Computer Science. This logic was introduced in [6]. See also the
survey paper [7].

Both logics are very beautiful and have many desirable properties such as
decidability and uniform interpolation.

Johan van Benthem, in his paper [8], showed that Löb’s Logic can be faithfully
interpreted in the μ-calculus. Moreover, he proved that Löb’s Logic has definable
fixed points for operators defined by formulas in which the designated variable
p occurs only positively. Thus, the μ-calculus can be interpreted in Löb’s Logic.
Our paper is a commentary on, and an extension of van Benthem’s paper. We
describe more fully the relationship between both logics: Löb’s Logic is a retract
of the μ-calculus in a suitable category of interpretations. From this, it follows
that properties like decidability and uniform interpolation can be transferred
from the μ-calculus to Löb’s Logic1.
1 Of course, these facts were known already for Löb’s Logic. But at least they do

receive markedly different proofs via our results.
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Along a different line, van Benthem’s arguments are semantical in nature. It
is always satisfactory to see semantical arguments replaced by syntactical ones.
In this paper we work entirely with syntactical arguments, which are often very
simple.

In Section 4, we do a bit more than needed for the rest of the paper. We prove
the appropriate generalization of both the de Jongh-Sambin fixed point theorem
and van Benthem’s theorem that GL has definable minimal fixed points.

1.1 Löb’s Logic

Löb’s Logic is the logic K4 plus Löb’s principle.

LP � �(�φ → φ) → �φ.

This logic is the logic of upwards well-founded transitive frames.
An occurrence of a variable p in φ is modalized or boxed iff it is in the scope

of a necessity operator. Consider a formula φpq in which all occurrences of p are
boxed. We assume all variables of φ are among p, q. The de Jongh-Sambin fixed
point theorem tells us that there is a formula ψq, with only variables among
q, such that GL � ψq ↔ φ(ψq)q. Moreover, by the Bernardi-de Jongh-Sambin
uniqueness theorem this ψ is unique modulo provable equivalence.

For more information see [1], [2], [3], [4], [5].

1.2 The μ-Calculus

The modal μ-calculus was introduced in [6]. See also the survey paper [7].
For our purposes, the language of the μ-calculus will be the uni-modal lan-

guage extended with the variable binding operator μp2. The formation of μp · φ
is allowed precisely if all occurrences of p in φ are positive. The μ-calculus is
axiomatized by the axioms and rules of K plus the following principle and rule,
for φ in which all occurrences of p are positive.

min1 � μp · φp ↔ φ(μp · φp).
min2 � φα → α ⇒ � μp · φp → α.

Frames for the μ-calculus are the usual frames for uni-modal logic. The semantics
of μp·φp is as follows. It gives us the minimal fixed point of the operator naturally
associated with the formula φp and the designated variable p.

We can define a maximal fixed point operator as follows:

νp · φp := ¬μp · ¬φ¬ p.

We can easily verify that ν satisfies the following principle and rule.

max1 � νp · φp ↔ φ(νp · φp).
max2 � α → φα ⇒ � α → νp · φp.

We will write ‘μ � φ’ for: φ is derivable in the μ-calculus.
2 Usually, the μ-calculus is formulated for a multi-modal language. However, for our

present purposes, the extra modalities would do no work.
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2 Interpretations

We need a modest framework of interpretations to implement our comparison
of GL with the μ-calculus. Consider modal propositional logics U and V . The
languages of U and V are allowed to be different. Specifically, we allow variable
binding operators like the μ-operator. A b-interpretation3 K of U in V is given
as a triple 〈U, τ, V 〉, where τ is a translation-mapping from the formulas of U to
the formulas of V . We demand the following of K.

1. The mapping τ commutes with propositional variables and the connectives
of propositional logic.

2. The free variables of τφ are among the free variables of φ.
3. We have: U � φ ⇒ V � τφ.

Par abus de langage, we will also call the translation-mapping: ‘K’. We write K :
U →b V for: K is a b-interpretation of U in V . We count two b-interpretations
K,M : U →b V as equal iff V � Kφ ↔ Mφ for all φ. It is easy to see that
b-interpretations modulo equality give us a category.

For most of our present purposes, it is sufficient to consider b-interpretations.
However, we may wish to consider interpretations that commute with substitu-
tions in an appropriate sense. Such interpretations are intuitively more satisfying.
Moreover, we have two results, Theorem 2 and Theorem 3, that essentially use
interpretations that commute with substitutions.

A substitution is a mapping from a finite set of propositional variables to for-
mulas of the modal language under consideration. We treat substitutions as the
identity mapping outside their domain. Consider a substitution σ for the language
of U . We write σ for the canonical extension of σ to the full language. We employ
an implicit mechanism of α-conversion to avoid that variables get bound in subsi-
tution (if our language contains variable-binding operators). We say that K is an
f-interpretation4 iff it is a b-interpretation and, for all substitutions σ, we have:

V � (K ◦ σ)(φ) ↔ ((K ◦ σ) ◦K)(φ).

It is easy to see that f-interpretations form a sub-category of the category of
b-interpretations. We employ similar conventions for f-interpretations as we do
for b-interpretations5.
3 Here ‘b’ stands for boole. Our b-interpretations are in fact Boolean morphisms with

the extra property of reverse preservation of propositional variables.
4 Here ‘f’ stands for full.
5 There is a temptation to either call b-interpretations or f-interpretations simply

‘interpretations’. However, I have a doubt. On the one hand, both kinds may be
too restrictive: we also would want to allow interpretations that do not preserve
propositional variables —that is certainly suggested by what is usually called ‘inter-
pretations’ in the study of predicate logic. On the other hand, b-interpretations only
have a thin claim on being interpretations at all. There is just too little uniformity
in the way they treat the modal operators. They are rather Boolean morphisms
that reversely preserve propositional variables. Probably, all f-interpretations are
interpretations, but even here I feel some hesitation. Did we collect all reasonable
properties? More experimentation is needed!
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We need the notion of uniform interpolation. Uniform interpolation was intro-
duced and studied independently in [9] (for Intuitionistic Propositional Logic)
and in [10] (for Löb’s Logic). The subject was developed further in [11], [12]. See
[13] for an exposition (and a lot of new material). Uniform interpolation for the
modal μ-calculus was proved in [14].

Consider a logic Λ, a formula φ and a finite set of propositional variables p.
A formula ψ is a (uniform) post-interpolant of φ w.r.t. p in Λ iff ψ contains only
propositional variables from the intersection of the set of free variables of φ with
p and, for all χ with only free variables in p, we have:

Λ � φ → χ ⇔ Λ � ψ → χ.

It is immediate that post-interpolants are unique modulo provable equivalence.
We will write ∃p φ for the post-interpolant of φ w.r.t. p.

Similarly, a formula ψ is a (uniform) pre-interpolant of φ w.r.t. p in Λ iff
ψ contains only propositional variables from the intersection of the set of free
variables of φ with p and, for all χ with only free variables in p, we have:

Λ � χ → φ ⇔ Λ � χ → ψ.

We will write ∀p φ for the pre-interpolant of φ w.r.t. p.
A logic has uniform interpolation iff, for all φ and p, we have post-interpolants

and pre-interpolants. As long as we are in classical logic, it is easy to see that
the existence of post-interpolants implies the existence of pre-interpolants and
vice versa.

Consider the following situation (in any category). We have two morphisms
K : U → V and M : V → U . Suppose M ◦ K = id : U → U . In this case
we say that K is a split monomorphism or co-retraction and that M is a split
epimorphism or retraction. U will be a retract of V .

Theorem 1. We have, in the category of b-interpretations:

1. Split monomorphisms are faithful, that is: U � φ ⇔ V � Kφ. Hence, re-
tractions preserve decidability, if their corresponding coretractions are com-
putable.

2. Retractions preserve interpolation.
3. Retractions preserve uniform interpolation.

Proof. Ad (1). Suppose V � Kφ. Then, U � (M ◦K)(φ), so U � φ.

Ad (2). Suppose that V has interpolation. Suppose further that U � φ → ψ. Say,
the shared variables of φ and ψ are p. It follows that V � Kφ → Kψ. Since, K
preserves variables, we find that the shared variables of Kφ and Kψ are among
p. So, we can find a ι with variables among p, such that V � Kφ → ι and
V � ι → Kψ. It follows that U � (M ◦K)(φ) → Mι and U � Mι → (M ◦K)(ψ).
Hence, U � φ → Mι and U � Mι → ψ. Moreover, the free variables of Mι are
among p. So, Mι is the desired interpolant.
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Ad (3). Suppose V has uniform interpolation. Consider a formula φ in the
language of U and a set of variables p. Let ∃pKφ be the uniform post-interpolant
w.r.t. p of Kφ in V . We claim that M(∃pKφ) is the uniform post-interpolant
w.r.t. p of φ in U . Since V � Kφ → ∃pKφ, it follows that U � (M ◦K)(φ) →
M(∃pKφ) and, hence, U � φ → M(∃pKφ). Using this last result, we find, for
any ψ not containing variables from p,

U � φ → ψ ⇒ V � Kφ → Kψ (1)
⇒ V � ∃pKφ → Kψ (2)
⇒ U � M(∃pKφ) → (M ◦K)(ψ) (3)
⇒ U � M(∃pKφ) → ψ (4)
⇒ U � φ → ψ (5)

So, M(∃pKφ) is the uniform post-interpolant of φ in U w.r.t. p.
A similar argument works for uniform pre-interpolation. Alternatively, we

can define the pre-interpolant from the post-interpolant as ¬∃p¬. Note that we
proved in passing: M ◦ ∃p ◦K ≡ ∃p. ��

Note that the above result is preserved to the subcategory of f-interpretations on
trivial grounds. The next result uses f-interpretations essentially. We say that a
rule (φ/ψ) is admissible for a logic Λ iff, for all substitutions σ, Λ � σφ ⇒ Λ � σψ.

Theorem 2. Suppose U and V are logics. Suppose K : U →f V is a faithful
f-morphism. Then, (φ/ψ) is admissible in U if (Kφ/Kψ) is admissible in V . It
follows that admissible rules are preserved by f-isomorphisms.

Proof. Suppose (Kφ/Kψ) is admissible in V . We have:

U � σφ ⇒ V � Kσφ (6)
⇒ V � (K ◦ σ)Kφ (7)
⇒ V � (K ◦ σ)Kψ (8)
⇒ V � Kσψ (9)
⇒ U � σψ (10)

��

The following result, which is closely related to the previous one, was suggested
by one of the referees. Consider a logic U . A formula φ is projective with pro-
jective substitution σ, if we have: U � σφ and U � φ → (p ↔ σp). Projective
formulas were introduced by Silvio Ghilardi in [15]. They play an important role
both in the study of unification in logics and in the study of admissible rules.

Theorem 3. Suppose U and V are logics and K : U →f V . Suppose φ is a
projective formula in U with projective substitution σ. Then, Kφ is a projective
formula in V with projective substitution K ◦ σ.
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Proof. Suppose φ is projective in U with projective substitution σ. Since, we
have U � σφ, it follows that V � Kσφ, and, hence, V � (K ◦ σ)Kφ. From
U � φ → (p ↔ σp), we may infer V � Kφ → (p ↔ Kσp). ��

Remark 1. We may wish to consider theories in the propositional language
rather than propositional logics (which are closed under substitution). Let’s
relax our framework, for the moment, by also allowing theories. We have the
following. Suppose U →f V , where V is a logic and U is a theory. It is easy to
see that, if K is faithful, then U will also be a logic.

3 Interpreting Löb’s Logic in the μ-Calculus

In this section we define our interpretation gm of GL in the μ-calculus. Our
interpretation is not quite the same as van Benthem’s in [8]. The reason for the
divergence is that van Benthem’s interpretation does not quite fit our framework.
We define the following special fixed points in the μ-calculus.

– H := μp ·�p6.
– ��φ := μp · (�p ∨�φ)7.

We can easily verify that ��φ is νp · (�p ∧ �φ). Thus we have:

μ � ��φ ↔ (���φ ∧ �φ) (11)

and
μ � α → (�α ∧�φ) ⇒ μ � α → ��φ (12)

We can now derive the K4 axioms and rules for �� in the usual way. Moreover,
we have:

μ � ��φ → φ ⇒ μ � �(��φ ∧ φ) → (��φ ∧ φ) (13)
⇒ μ � H → (��φ ∧ φ) (14)

We define �hφ := ��(H → φ). It is easy to check the K4 axioms and rules for
�h. We show that �h satisfies Löb’s rule over the μ-calculus.

μ � �hφ → φ ⇒ μ � ��φ → φ (15)
⇒ μ � H → φ (16)
⇒ μ � �hφ (17)
⇒ μ � φ (18)

As is well known, Löb’s theorem follows from K4 plus Löb’s rule.

6 ‘H’ stands for Henkin, since H is a Henkin fixed point in the tradition of provability
logic.

7 We use the superscript � to signal the transitive closure. It is not to be confused with
the superscript ∗ which is usually employed to mean the transitive reflexive closure.
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The interpretation gm is the interpretation generated by the following clause:

gm(�φ) := �h gm(φ).

It is immediate that gm is a b-interpretation of GL in the μ-calculus.
To see that gm is an f-interpretation, it is sufficient to note that �h commutes,

μ-provably, with substitutions.
Using semantical arguments similar to those employed by van Benthem in [8],

we can easily show that gm is faithful. This fact will also follow by syntactical
arguments from Theorem 1 in combination with the result of Section 6.

4 Fixed Points in Löb’s Logic

Johan van Benthem shows in his paper [8] that in Löb’s Logic we can give explicit
definitions of minimal fixed points of the monotonic operators corresponding to
formulas φp in which the designated variable p occurs only positively. In this
section we prove a strenghening of that result. The strengthening is such that
restriction to formulas in which the designated variable p occurs only boxed gives
us precisely the de Jongh-Sambin theorem and restriction to formulas in which
p occurs only positivily gives us precisely van Benthem’s theorem.

For our interpretation of the μ-calculus in GL, we only need van Benthem’s
result. However, it is nice to see the more general result, which involves not much
more effort to prove.

We will say that a formula φp is semi-positive in p if all non-modalized oc-
currences of p are positive, or, equivalently, if all negative occurrences of p are
modalized. We will show that any formula φp that is semi-positive in p has an
explicit fixed point that is locally minimal.

– The formula χ is a locally minimal fixed point of ψp w.r.t. p iff GL � χ ↔ ψχ
and GL � (�(r ↔ χ) ∧ (r ↔ ψr)) → (χ → r).

Here r is supposed to be fresh. It is easy to see that all locally minimal fixed
points of ψp (if any) are provably equivalent in GL. The notion of local minimality
replaces minimality. As we will see, formulas that are semi-positive in p do not
generally have minimal fixed points.

Let φ̃ps be such that (i) all occurrences of p are unboxed and positive, (ii) all
occurrences of s are boxed and (iii) φ̃pp = φp. Now note that, by propositional
logic, we have:

GL � φ̃⊥s ↔ φ̃(φ̃⊥s)s (19)

Since, all occurrences of s in φ̃⊥s are boxed, by the de Jongh-Sambin Theorem,
we may find a χ such that:

GL � χ ↔ φ̃⊥χ (20)
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Putting things together, it follows that χ is a fixed point of φ:

GL � χ ↔ φ̃⊥χ (21)

↔ φ̃(φ̃⊥χ)χ (22)

↔ φ̃χχ (23)
↔ φχ (24)

To see that χ is locally minimal, we reason as follows.

GL � (�(r ↔ χ) ∧ (r ↔ φr)) → (r ↔ φ̃rr) (25)

→ (r ↔ φ̃rχ) (26)

→ (φ̃⊥χ → r) (27)
→ (χ → r) (28)

Example 1. Here is an example that there need not be a minimal fixed point.
Consider the Kripke model on the ordinal 2. Take:

φp := ((�⊥ ∧ p) ∨ (¬�⊥ ∧ ¬�p)).

In the top-node 1 we have two choices for our fixed point: to make it true or
to make it false. The minimal choice is to make it false. In 0, we do not have
a choice. If p is true in 1, then p is false in 0, and if p is false in 1, then p is
true in 0. Thus, there are only two fixed points of φp on this model, to wit {0}
and {1}. These fixed points are incomparable. The locally minimal one is {0},
corresponding to the minimal choice in 1. �
Finally, we prove that if all occurrences of p in φp are positive, then χ is the
minimal fixed point of φp. We write �θ for: θ ∧ �θ. We have:

GL � (�(r ↔ φr) ∧ �(χ → r)) → (φ̃rχ → φ̃rr) (29)

→ (φ̃rχ → r) (30)

→ (φ̃⊥χ → r) (31)
→ (χ → r) (32)

The desired result is now immediate by the strengthened Löb’s Rule.

Question 1. Can we also prove the above result more abstractly, i.e. directly
from local minimality instead of by using the already obtained characterization
of the locally minimal fixed point? �

We end this section with a theorem saying that the fixed point construction
commutes with substitution.

Theorem 4. Suppose φ is semi-positive in p. Let τ be any substitution such
that (i) τ only substitutes for variables other than p and (ii) p does not occur in
the formulas in the range of τ . Suppose, in GL, α represents the locally minimal
fixed point of φ w.r.t. p and β represents the locally minimal fixed point of τφ
w.r.t. p. Then, we have GL � β ↔ τα.
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Proof. Suppose first that p occurs only modalized in φ. The fixed point property
of α tells us that GL � α ↔ [p := α]φ, and, hence,

GL � τα ↔ τ [p := α]φ (33)
↔ [p := τα]τφ (34)

So, τα is a fixed point of τφ. By the Bernardi-de Jongh-Sambin uniqueness
theorem, τα must be provably equivalent to β.

We turn to the case that all non-modalized occurrences of p are positive. Suppose
that p′ is not in φ and not in the domain and not in the range of τ . We construct
φ̃p′p in such a way that φ̃pp = φp, all occurrences of p′ are non-modalized and
positive and all occurrences of p are boxed. By our preceding results α is, modulo
provable equivalence, the fixed point of φ̃⊥p.

Consider τφ̃p′p. It is easy to see that [p′ := p]τφ̃p′p = τφ̃pp = τφp. Moreover,
all occurrences of p′ in τφ̃p′p are positive and all ocurrences of p are boxed. So,
β is, modulo provable equivalence, the fixed point of [p′ := ⊥]τφ̃p′p = τφ̃⊥p.

We may now apply our preceding result for guarded formulas to φ̃⊥p. ��

Remark 2. We have shown that, for any φp that is semi-positive in p, we can
construct an explicit fixed point in GL. Did we capture all possible formulas φp
that have a fixed point in this way (modulo provable equivalence)? The answer
is no. E.g., (¬p ∨ �p) has the (unique) fixed point �. But, by a simple Kripke-
model argument, this formula is not GL-provably equivalent to a formula that is
semi-positive in p.

We do have the following. Consider φp. Let φ′′p be the result of replacing
all non-modalized occurrences of p by �. Let φ′p be (p ∧ φ′′p). Then, φ′p is
semi-positive in p. Moreover,

GL � (p ↔ φp) → (φp ↔ φ′p).

Hence, GL � �(p ↔ φp) → �(φp ↔ φ′p). �

Question 2. Is there a syntactical characterization of all formulas (modulo GL-
provable equivalence) that have a definable fixed point in GL? �

5 Interpreting the μ-Calculus in Löb’s Logic

In this section we introduce the interpretation mg. To make the definition work
we need a lemma.

Lemma 1. Consider a formula φpq and suppose that p occurs only positively
and q occurs only positively (negatively). Then, there is a formula ψq in which
q occurs only positively (negatively) such that ψq defines the minimal fixed point
of φpq, w.r.t. p, in GL.
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As we have seen in the previous section, we may find a minimal fixed point of φ by
applying the de Jongh-Sambin theorem to a modified formula. The proof of the
lemma is by careful inspection of one of the standard fixed point constructions
verifying the de Jongh-Sambin theorem. The one I used is the very simple version
due to Per Linström. See [3]. We could prove a nicer lemma by showing that the
polarity of any occurrence of an atom q is preserved to its descendants in the
fixed point construction, assuming that the designated variable p occurs only
positively. However, this would require the detour of defining what it is to be a
descendant in the fixed point construction.

We will use the lemma to ensure that if p occurs only positively (negatively)
in φ, then p occurs only positively (negatively) in mg(φ). The interpretation mg
is generated by the following clauses.

– mg(�φ) := � mg(φ).
– mg(μp ·φ) is a minimal fixed point formula of mg(φ) that is chosen in such a

way that, for any q, if q occures only positively (negatively) in mg(φ), then
q occurs only positively (negatively) in mg(μp · φ).

Using the lemma and induction on φ, we can see that our definition works. We
can now easily verify that mg is indeed a b-interpretation of the μ-calculus in GL.

Theorem 5. mg is an f-interpretation.

Proof. The proof is by induction on μ-formulas φ. We treat the induction step
for the case of μ. Consider the formula ψp in which p occurs only positively. Let
σ be a substitution for variables other than p. Moreover, we assume that the
formulas in the range of σ do not contain p. We want to show that:

GL � mg(σ(μp · ψp)) ↔ (mg ◦ σ)(mg(μp · ψp)).

Note that σ(μp ·ψp) = μp ·σψp. So mg(σ(μp ·ψp)) is the minimal fixed point of
mg(σψp). Moreover, by the Induction Hypothesis, modulo provable equivalence,
mg(σψp) is (mg ◦ σ)(mg(ψp)). Thus, we need that the minimal fixed point of
(mg ◦ σ)(mg(ψp)) is mg ◦ σ applied to the minimal fixed point of mg(ψp). But
this is precisely what Theorem 4 tells us with mg(ψp) in the role of φ and mg ◦ σ
in the role of τ . ��
Note that mg is far from faithful, since it yields Löb’s logic for the μ-free
fragment.

Question 3. Is there a faithful b-interpretation of the μ-calculus in GL? If so,
is there is a faithful f-interpretation of the μ-calculus in GL? In the light of the
well-known result that between any two countable Boole algebras without atoms
there is a Boolean isomorphism, it seems to be very well possible that the answer
to our first question is yes. I conjecture no, for the second question. �

6 Habemus Retractionem

We show that gm is a split monomorphism or co-retraction, and hence faithful,
and that mg is the corresponding split epimorphism or retraction. What we
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have to show is that mg ◦ gm = idGL. We show, by induction on φ, that GL �
(mg ◦ gm)(φ) ↔ φ. The only non-trivial step is the case that φ = �ψ.

Note that we have, for any χ in the language of the μ-calculus,

μ � ��χ ↔ (�χ ∧ ���χ) (35)

So, it follows that,

GL � mg(��χ) ↔ (� mg(χ) ∧ � mg(��χ)) (36)

So, mg(��χ) is a modalised fixed point of � mg(χ) ∧ �p, and hence unique.
Since � mg(χ) is a solution of the equation, we find that mg(��χ) is GL-provably
equivalent to � mg(χ).

We also have: μ � H ↔ �H. Hence, GL � mg(H) ↔ � mg(H). So, by Löb’s
Theorem, GL � mg(H).

Thus, we have, using the Induction Hypothesis for ψ,

GL � (mg ◦ gm)(�ψ) ↔ mg(��(H → gm(ψ))) (37)
↔ �(mg(H) → (mg ◦ gm)(ψ)) (38)
↔ �ψ (39)

By Theorem 1, we may conclude that gm is faithful and that, thus, the decid-
ablility of the μ-calculus implies the decidability of GL. Moreover, mg preserves
uniform interpolation. Thus, uniform interpolation for the μ-calculus, proved by
d’Agostino and Hollenberg in their [14] proves uniform interpolation for Löb’s
Logic, which was first proved by Shavrukov in his [10]. By Theorem 2, we see
that if (gm(φ)/gm(ψ)) is admissible in the μ-calculus, then (φ/ψ) is admissible
in GL.

The rule (�p/p) is admissible in GL. However, the rule (gm(�p)/gm(p)), i.e.
(��(H → p)/p) is not admissible in the μ-calculus. So, the converse of the above
insight does not hold8.
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Abstract. This paper shows that weak bisimulation congruence can
be characterised as rooted weak bisimulation equivalence, even without
making assumptions on the cardinality of the sets of states or actions of
the processes under consideration.

Introduction

Weak bisimulation equivalence, also known as observation equivalence [7], is a
fundamental semantic equivalence used in system verification, and one of the
first proposed in the literature. It upgrades strong bisimulation equivalence by
featuring abstraction from internal actions.

In order to allow compositional system verification, semantic equivalence rela-
tions need to be congruences for the operators under consideration, meaning that
the equivalence class of an n-ary operator f applied to arguments p1, . . . , pn is
completely determined by the equivalence classes of these arguments. Although
strong bisimulation equivalence is a congruence for the operators of CCS, ACPτ

and many other languages found in the literature, weak bisimulation equivalence
fails to be a congruence for the choice or alternative composition operator + of
CCS, as well as for the left-merge ‖− of ACPτ . To bypass this problem, one
uses the coarsest congruence relation for + that is finer than weak bisimulation
equivalence, called weak bisimulation congruence, and characterised as rooted
weak bisimulation equivalence in [2]. This equivalence turns out to be a minor
variant of weak bisimulation equivalence, and a congruence for all of CCS, ACPτ

and many other languages.
Classical proof sketches arguing that rooted weak bisimulation equivalence is

indeed weak bisimulation congruence typically make some cardinally assump-
tions, such as that there is an infinite alphabet of actions of which each process
uses only a finite subset. The current contribution establishes the validity of this
characterisation without making such assumptions. It also argues that the root
condition that turns weak bisimulation into rooted weak bisimulation embodies
two properties, one of which is needed to obtain a congruence for the +, and one
to obtain a congruence for the left-merge.
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1 Process Graphs

Definition 1 ([3]). A process graph over an alphabet of actions Act is a rooted,
directed graph whose edges are labelled by elements of Act. Formally, a process
graph g is a triple (nodes(g),root(g), edges(g)), where

– nodes(g) is a set, of which the elements are called the nodes or states of g,
– root(g) ∈ nodes(g) is a special node: the root or initial state of g,
– and edges(g) ⊆ nodes(g)×Act× nodes(g) is a set of triples (s, a, t) with

s, t ∈ nodes(g) and a ∈ Act: the edges or transitions of g.

Normally, one is not interested in the names of the nodes in a process graph.
For this reason, process graphs are considered up to isomorphism.

Definition 2. Let g and h be process graphs. A graph isomorphism between g
and h is a bijective function f : nodes(g) → nodes(h) satisfying

– f(root(g)) = root(h) and
– (s, a, t) ∈ edges(g) ⇔ (f(s), a, f(t)) ∈ edges(h).

Graphs g and h are isomorphic, notation g ∼= h, if there exists a graph isomor-
phism between them.

If g ∼= h then g and h differ only in the identity of their nodes. Graph isomorphism
is an equivalence relation on the class of process graphs.

Further on, process graphs are pictured by using open dots (◦) to denote
nodes, and labelled arrows to denote edges. The root is represented by an incom-
ing arrow, not originating from another node. These drawings present process
graphs only up to isomorphism.

Let |G(Act) be the class of process graphs over the alphabet of actions Act
up to isomorphism. This means that I am satisfied with a level of precision in
describing elements of |G(Act) that fails to distinguish isomorphic process graphs.
In the digression below I will indicate how to raise the precision of my definitions
to a fully formal level; the digression should also make clear that it is not really
worthwhile to maintain this level throughout the paper.

Next I define the most basic process algebraic operations on |G(Act): a con-
stant 0 for inaction, a binary infix written operator + for alternative composition
or choice, and unary operators a. for action prefixing for each a ∈ Act. For the
sake of convenience, in the definition below I will only consider root-acyclic pro-
cess graphs. In Sect. 3 I will extend the definition to arbitrary process graphs.

Definition 3 ([3]). A process graph is root-acyclic if it has no incoming edges
at the root. Let |Gρ(Act) be the class of root-acyclic process graphs over Act
up to isomorphism. The constant 0 and the operators a. and +ρ are defined
on |Gρ(Act) as follows. (The subscript ρ serves to distinguish this alternative
composition from the more general one that will be defined in Sect. 3.)

– 0 is interpreted as the trivial graph, having one node (the root) and no edges;
– a.g is obtained from g by adding a new node, which will be the root of a.g,

and a new a-labelled edge from the root of a.g to the root of g;
– g +ρ h is obtained by identifying the root nodes of disjoint copies of g and h.
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Digression: Distinguishing Isomorphic Process Graphs

In Def. 3 I have not bothered to tell which node exactly will be the only node
of the process graph 0 and which new node will be added in the construction
of a.g. Moreover, in taking the disjoint union of g and h, no explicit solution is
offered for what to do when g and h have nodes in common. Here I provide two
possible answers. As it doesn’t matter at all which one is chosen, the reader may
pick himself, or make up a third.

Making arbitrary choices to resolve ambiguity.

The definitions of 0 and a.g could for instance be given as follows:

– nodes(0) = {∗},
– root(0) = ∗,
– edges(0) = ∅.

– nodes(a.g) = {∗} ∪ {s′ | s ∈ nodes(g)},
– root(a.g) = ∗,
– edges(a.g) = {(∗, a,root(g)′)} ∪ {(s′, a, t′) | (s, a, t) ∈ edges(g)}.

Here the nodes of g are renamed from s into s′, so as to make sure that none of
them happens to be the symbol ∗ that is used to name the new root node.

Working modulo isomorphism.

In this approach |G(Act) is the class of process graph modulo isomorphism, mean-
ing that the elements of |G(Act) are isomorphism classes of process graphs.

Now 0 ∈ |Gρ(Act) is defined as the isomorphism class of all trivial process
graphs, after observing that all trivial graphs are isomorphic. To obtain the
isomorphism class a.G, for G an isomorphism class of process graphs, I first pick
a representative g∈G and a fresh object r �∈ nodes(g). Then a.g is defined by

– nodes(a.g) = nodes(g) ∪ {r},
– root(a.g) = r and
– edges(a.g) = edges(g) ∪ {(r, a,root(g))}.

Finally, a.G is defined to be the isomorphism class containing a.g, and the
exercise is concluded by showing that the result is independent of the choice
of g ∈ G. Likewise, G +ρ H , for G,H ∈ |Gρ(Act), is obtained as the isomor-
phism class of g +ρ h, where g ∈ G and h ∈ H are chosen in such a way that
nodes(g) ∩ nodes(h) = root(g) = root(h), and g +ρ h is defined by

– nodes(g +ρ h) = nodes(g) ∪ nodes(h),
– root(g +ρ h) = root(g) = root(h) and
– edges(g +ρ h) = edges(g) ∪ edges(h).

Again, it must be shown that the result is independent of the choice of g and h.
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2 Bisimulation Semantics

To make process graphs into a useful semantic model of calculi that enable
system verification, a semantic equivalence coarser than isomorphism needs to be
defined. The most popular choices are strong and weak bisimulation equivalence,
and some of their variants. Such an equivalence can be used fruitfully when it is a
congruence for the process algebraic operators that are considered in a particular
application. These almost always include the operators 0, a. and +. A semantic
equivalence ∼ is a congruence for these operators if g ∼ h implies a.g ∼ a.h and
g1 ∼ h1 ∧ g2 ∼ h2 implies g1 + g2 ∼ h1 + h2.

2.1 Strong Bisimulation

Definition 4. Let g, h ∈ |G(Act). The graphs g and h are (strong) bisimula-
tion equivalent, notation g↔ h, if there exists a binary relation R ⊆ nodes(g)×
nodes(h), called a bisimulation between g and h, satisfying, for all
a∈Act:

– root(g) R root(h).
– If sRt and (s, a, s′) ∈ edges(g), then ∃(t, a, t′) ∈ edges(h) such that s′Rt′.
– If sRt and (t, a, t′) ∈ edges(h), then ∃(s, a, s′) ∈ edges(g) such that s′Rt′.

It is well-known and easy to check that ↔ is an equivalence relation indeed.
I will now show that it is a congruence relation for a. and +ρ. Because these
operators have so-far not been defined outside |Gρ(Act), for now this result will
pertain to root-acyclic process graphs only.

Definition 5. A relation between the nodes of two root-acyclic process graphs
is called rooted if it relates root nodes with root nodes only.

Lemma 1. Let g, h ∈ |Gρ(Act). If g↔ h then there exist a rooted bisimulation
between g and h.

Proof. Let R be a bisimulation between g and h. A rooted bisimulation is
obtained from R by omitting all liaisons between root nodes and non-root
nodes.

Proposition 1. On |Gρ(Act), bisimulation equivalence is a congruence for a.
and +ρ.

Proof. Suppose R is a bisimulation between g and h. Then

R ∪ {(root(a.g),root(a.h))}

is a bisimulation between a.g and a.h. Moreover, invoking Lemma 1, let Ri be
a rooted bisimulation between gi and hi for gi, hi ∈ |Gρ(Act) and i = 1, 2 then
R1 ∪R2 is a bisimulation between g1 +ρ g2 and h1 +ρ h2. ��
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2.2 Weak Bisimulation

Let τ ∈ Act be the invisible action or silent step. Henceforth, write s
a−→g s′ for

(s, a, s′) ∈ edges(g) and s ==⇒g s′ when there are s0, . . . , sn in nodes(g) such
that s = s0

τ−→g s1
τ−→g · · · τ−→g sn = s′. Moreover, s a

==⇒g s′ denotes that there
are nodes s1 and s2 in g such that s ==⇒g s1

a−→g s2 ==⇒g s′ and s
(a)

==⇒g s′ is a
shorthand for s ==⇒g s′ when a = τ , and s a

==⇒g s′ when a �= τ . Thus, s
(τ )

==⇒g s′

says that in g one can travel from s to s′ by performing a sequence of zero or
more τ -steps, whereas s

τ
==⇒g s′ requires at least one τ -step. For a �= τ there is

no difference between (a)
==⇒g and a

==⇒g .

Definition 6. Let g, h ∈ |G(Act). The graphs g and h are weak bisimulation
equivalent, notation g ↔w h, if there exists a binary relation R ⊆ nodes(g) ×
nodes(h), called a weak bisimulation between g and h, satisfying, for all a∈Act:

– root(g) R root(h).
– If sRt and s

a−→g s′, then there is a t′ such that t
(a)

==⇒h t′ and s′Rt′.
– If sRt and t

a−→g t′, then there is an s′ such that s
(a)

==⇒h s′ and s′Rt′.

It is well-known and easy to check that ↔w is an equivalence relation indeed.
However, ↔w fails to be a congruence for the +. Namely, τ.a.0 ↔w a.0 but
τ.a.0 +ρ b.0 �↔w a.0 +ρ b.0. The proof of Prop. 1 does not generalise to ↔w

because Lemma 1 does not hold for ↔w : there is no rooted weak bisimulation
between τ.a.0 and a.0.

2.3 Rooted Weak Bisimulation

Although weak bisimulation equivalence captures the invisible nature of the
silent step rather well, in order to obtain a congruence, a finer equivalence re-
lation is needed. Such an equivalence was proposed by Bergstra & Klop in [2].
In fact it is the obvious “fix” in the definition of weak bisimulation equivalence
needed to inherit the proof of Prop. 1.

Definition 7 ([2]). Two graphs g, h ∈ |Gρ(Act) are rooted weak bisimulation
equivalent, notation g↔rw h, if there exists a rooted weak bisimulation between
them (recall Def. 5).

Again, it is easy to check that ↔rw is an equivalence relation. By definition
it is finer than ↔w . It is strictly finer because τ.0↔w 0 but τ.0 �↔rw 0 (and
likewise τ.a.0↔w a.0 but τ.a.0 �↔rw a.0). Moreover, Lemma 1 implies that ↔rw

is coarser than ↔ . It is strictly coarser because τ.τ.0↔rw τ.0 but τ.τ.0 �↔ τ.0.

Proposition 2. On |Gρ(Act), rooted weak bisimulation equivalence is a congru-
ence for a. and +ρ.

Proof. Suppose R is a rooted weak bisimulation between g and h. Then

R ∪ {(root(a.g),root(a.h))}
is a rooted weak bisimulation between a.g and a.h. Moreover, let Ri be a rooted
weak bisimulation between gi and hi for gi, hi ∈ |Gρ(Act) and i = 1, 2 then
R1 ∪R2 is a rooted weak bisimulation between g1 +ρ g2 and h1 +ρ h2. ��
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3 Root Unwinding

In this section I will generalise the definitions and results of Sections 1 and 2
from root-acyclic to general process graphs.

3.1 The Definition of Alternative Composition

The definition of 0 and a. on |G(Act) is exactly as on |Gρ(Act) (see Def. 3).
However, defining the + on |G(Act) as in Def. 3 would yield counterintuitive
results. Namely we would have g + h = m, as in the top row of Fig. 1. However,
m is able to first do a number of a-actions from g and then a b from h; this
is inconsistent with the idea that g + h should from the initial state onwards
behave either as g or as h. In fact, strong bisimulation equivalence would fail to
be a congruence for this definition of +, for g↔ gρ, yet m �↔ k.

a

g

+

h
b �=

a

m
b

a

a

gρ

+

h
b =

a

a

k
b

Fig. 1. Alternative composition of process graphs

For most applications we are interested in process graphs only up to strong
bisimulation equivalence. Up to strong bisimilarity, the definition of the + on
|G(Act) is completely determined by its definition on |Gρ(Act), because every pro-
cess graph is strongly bisimilar with a root-acyclic process graph. The following
construction is used to establish this.

Definition 8 ([3]). Root unwinding is the operator ρ on |G(Act) given by

– nodes(ρ(g)) = nodes(g)
.
∪ {∗},

– root(ρ(g)) = {∗} and
– edges(ρ(g)) = edges(g) ∪ {(∗, a, s) | (root(g), a, s) ∈ edges(g)}.

Note that ρ(g) ∈ |Gρ(Act) for all g ∈ |G(Act).

Proposition 3 ([3]). g↔ ρ(g) for every process graph g ∈ |G(Act).

Proof. The relation {(s, s) | s ∈ nodes(g)} ∪ {(root(g), ∗)} is a bisimulation
between g and ρ(g). ��
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Definition 9 ([3]). The definition of the + is extended from |Gρ(Act) to |G(Act)
by g + h := ρ(g) +ρ ρ(h), where +ρ is given by Def. 3.

This construction automatically entails that ↔ is a congruence for the +.

Proposition 4. On |G(Act), ↔ is a congruence for a. and +.

Proof. The case of a. goes exactly as in Prop. 1. Let g↔ g′ and h↔ h′.
Then ρ(g)↔ g↔ g′↔ ρ(g′) and likewise ρ(h)↔ ρ(h′).
Hence g + h = ρ(g) +ρ ρ(h)↔ ρ(g′) +ρ ρ(h′) = g′ + h′ by Prop. 1. ��

On |Gρ(Act) it is in general not the case that g + h ∼= g +ρ h. However, up to
strong bisimilarity, both versions of the + agree.

Proposition 5. Let g, h ∈ |Gρ(Act). Then g + h↔ g +ρ h.

Proof. g + h = ρ(g) +ρ ρ(h)↔ g +ρ h, using Propositions 3 and 1. ��

It is also possible to merge the definitions of +, +ρ and root unwinding:

Definition 10. Let g, h ∈ |Gρ(Act). Then g + h can alternatively be defined by

– nodes(g + h) = nodes(g)
.
∪ nodes(h)

.
∪ {∗},

– root(g + h) = {∗} and
– edges(g + h) = edges(g) ∪ edges(h) ∪
{(∗, a, s) | (root(g), a, s) ∈ nodes(g) ∨ (root(h), a, s) ∈ nodes(h)}.

It is trivial to check that up to isomorphism this definition yields the same
alternative composition operator as Def. 9.

3.2 Rooted Weak Bisimulation

Postulating that rooted weak bisimulation has to be a coarser equivalence than
strong bisimulation, Prop. 3 implies that there is a unique extension of ↔rw

from |Gρ(Act) to |G(Act).

Definition 11. Let g, h ∈ |G(Act). Then g↔rw h iff ρ(g)↔rw ρ(h) as per Def. 7.

Proposition 6. On |G(Act), ↔rw is a congruence for a. and +.

Proof. The case of a. goes exactly as in Prop. 2. Let g↔rw g′ and h↔rw h′.
Then ρ(g)↔ g↔rw g′↔ ρ(g′), so ρ(g)↔rw ρ(g′), and likewise ρ(h)↔rw ρ(h′).
Hence g + h = ρ(g) +ρ ρ(h)↔rw ρ(g′) +ρ ρ(h′) = g′ + h′ by Prop. 2. ��

The following characterisation of rooted weak bisimulation equivalence was taken
as definition in [7]. Let, for g ∈ |G(Act) and s ∈ nodes(g), gs denote the process
graph obtained from g by appointing s as its root.
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Proposition 7. Let g, h ∈ |G(Act). Then g↔rw h iff

– if root(g) a−→g s then there is a t such that root(h) a
==⇒h t and gs↔w ht;

– if root(h) a−→h t then there is an s such thatroot(g) a
==⇒g sand gs↔w ht.

Proof. “If”: Let B = {(s, t) ∈ nodes(g)× nodes(h) | gs↔w ht} and

Bρ = B
.
∪ {(root(ρ(g)),root(ρ(h)))} ⊆ nodes(ρ(g)) × nodes(ρ(h)),

recalling that nodes(ρ(g)) = nodes(g)
.
∪ {root(ρ(g))}, and likewise for ρ(h).

Assume that both clause above hold. It suffices to show that Bρ is a rooted weak
bisimulation between ρ(g) and ρ(h), for by Def. 11 this implies g ↔rw h. The
relation Bρ is rooted by construction. So I need to show it is a weak bisimulation.

Let sBρt and s
a−→ρ(g) s′. It suffices to show that there is a t′ such that

t
(a)

==⇒ρ(h) t
′ and s′Bρt′. The other requirement then follows by symmetry.

First assume sBt. In that case, s
a−→g s′ and gs ↔w ht, so there is a weak

bisimulation R between gs and hs. Thus sRt, and there must be a t′ such that
t

(a)
==⇒h t′ and s′Rt′. Hence gs′ ↔w ht′ , s′Bt′ and s′Bρt′. Def. 8 yields t

(a)
==⇒ρ(h) t

′.
Now assume s = root(ρ(g)) and t = root(ρ(h)), so root(ρ(g)) a−→ρ(g) s′.

Then, by Def. 8, root(g) a−→g s′, so by the first clause of Prop. 7 there is a t′

such that root(h) a
==⇒h t′ and gs′ ↔w ht′ . Hence s′Bt′ and s′Bρt′. Def. 8 yields

root(ρ(h)) a
==⇒ρ(h) t

′, hence t = root(ρ(h)) (a)
==⇒ρ(h) t

′.
“Only if”: Let R be a rooted weak bisimulation between ρ(g) and ρ(h). Sup-

pose root(g) a−→g s. Def. 8 yields root(ρ(g)) a−→ρ(g) s, so there must be a t

such that root(ρ(h)) (a)
==⇒ρ(h) t and sRt. As R is rooted, the case that a = τ and

t = root(ρ(h)) cannot apply, so root(ρ(h)) a
==⇒ρ(h) t, hence root(h) a

==⇒h t
by Def. 8. Furthermore, sRt implies gs ↔w ht. The other clause follows by
symmetry.

4 Weak Bisimulation Congruence

A different modification of weak bisimulation equivalence into a congruence for
the + was proposed in [6].

Proposition 8. For every equivalence relation ∼ on |G(Act) and every set L of
operators on |G there is a coarsest congruence relation ∼c that is finer than ∼.

Proof. Let a semantic context C[·] be an expression build from process graphs
g ∈ |G(Act) and the hole [·] through application of operators from L, and in
which the hole occurs exactly once. If C[·] is a semantic context and g ∈ |G(Act),
then C[g] denotes the process graph obtained by evaluating the expression C[·]
in which g is substituted for the hole [·].

Alternatively, a semantic context can be regarded as a unary operator on
process graphs: a primitive context is obtained from an operator in L by instan-
tiating all but one of its arguments by process graphs; and a general semantic
context is the composition of any number (possibly 0) of primitive contexts.
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An equivalence relation ≈ on |G(Act) is a congruence for L iff for every n-ary
operator f in L one has g1 ≈ h1∧· · ·∧gn ≈ hn ⇒ f(g1, . . . , gn) ≈ f(h1, . . . , hn).
This is the case iff for every semantic context C[·] one has g ≈ h ⇒ C[g] ≈ C[h].

Given an equivalence relation ∼ on |G(Act), define ∼c by

g ∼c h iff C[g] ∼ C[h] for every semantic context C[·].

By construction, ∼c is a congruence on |G(Act). For if g ∼c h and D[·] is a
semantic context, then for every semantic context C[·] also C[D[·]] is a semantic
context, so ∀C[·](C[D[g]] ∼ C[D[h]]) and hence D[g] ∼c D[h].

The trivial context guarantees that g ∼c h ⇒ g ∼ h, so ∼c is finer than ∼.
Finally, ∼c is the coarsest congruence finer than ∼, because if ≈ is any con-

gruence finer than ∼, then

g ≈ h ⇒ ∀C[·](C[g] ≈ C[h]) ⇒ ∀C[·](C[g] ∼ C[h]) ⇒ g ∼c h. ��

Definition 12. The coarsest congruence w.r.t. the + that is finer than weak
bisimulation equivalence is called weak bisimulation congruence, notation ↔c

w .

Here I address the question whether both approaches coincide, i.e. whether
↔rw = ↔c

w . Prop. 6 immediately yields ↔rw ⊆ ↔c
w . The following proof

sketch, due to Jan Willem Klop [personal communication], is a first attempt to
establish the reverse.

Proof Sketch. It suffices to restrict attention to the graphs in |Gρ(Act), for when
g ↔c

w h ⇒ g ↔rw h for g, h ∈ |Gρ(Act), then by Prop. 3 the same holds for
g, h ∈ |G(Act). [Namely g ↔c

w h ⇒ ρ(g) ↔ g ↔c
w h↔ ρ(h) ⇒ ρ(g) ↔c

w ρ(h) ⇒
ρ(g)↔rw ρ(h) ⇒ g↔ ρ(g)↔rw ρ(h)↔ h ⇒ g↔rw h.]

So let g, h ∈ |Gρ(Act) and assume g↔c
w h. Let a �= τ be an action that does

not occur in either g or h. Then g +a.0↔w h+a.0 by the definition of ↔c
w . Let

R be a weak bisimulation between g + a.0 and h + a.0.

Claim. R must be rooted.

Proof of Claim. root(g + a.0) a−→g+a.0 root(0), so if root(g + a.0)Rt then
t

a
==⇒h+a.0 t′ for some t′ ∈ nodes(h+a.0) with root(0)Rt′. This is only possible

if t = root(h + a.0). By symmetry, sRroot(h + a.0) is only possible if s =
root(g + a.0).

Application of Claim. The restriction of R to the nodes of g and h is a rooted
weak bisimulation between g and h, showing that g↔rw h. ��

The only weak point in this proof sketch is in the choice of an action a �= τ that
does not occur in g or h. What if such an action does not exists? Below I present
two solutions to this problem.

4.1 The Fresh Atom Principle

The Fresh Atom Principle (FAP) allows us to use fresh actions in proofs. It was
invented and named by Jan Willem Klop [personal communication]. In order
to justify the use of FAP, one needs to realise that for any choice of a set of
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actions Act containing τ there exists a class |G(Act) of process graphs over Act.
Likewise a parametrised semantic equivalence ∼ has an incarnation in each of
these classes, and I write ∼Act to denote the equivalence ∼ as it exists in |G(Act).
Obviously, |G(A) ⊆ |G(B) for sets of actions A ⊆ B. Now say that a parametrised
equivalence ∼ satisfies FAP, if, whenever A ⊆ B, ∼A is the restriction of ∼B to
|G(A), i.e. if for g, h ∈ |G(A) ⊆ |G(B) one has g ∼A h ⇔ g ∼B h. It is immediate
from their definitions that ↔ , ↔w , ↔rw and most other semantic equivalences
defined in the literature satisfy FAP. In fact, satisfying FAP looks like a good
sanity check for any meaningful equivalence.

In this spirit, one may want to use, instead of ↔c
w , the coarsest congruence

finer than ↔w that satisfies FAP, notation ↔fc
w . This congruence is obtained

by allowing, in the proof of Prop. 8, contexts C that may involve fresh actions.

Theorem 1. ↔fc
w coincides with ↔rw .

Proof. The proof sketch above applies here. After assuming g↔fc
w h in |G(Act),

apply FAP to obtain g↔fc
w h in |G(Act

.
∪ {a}). As in the proof sketch, conclude

that g↔rw h in |G(Act
.
∪ {a}). Since ↔rw satisfies FAP this implies that g↔rw h

in |G(Act). ��

4.2 Arbitrary Many Non-bisimilar Processes

Even though we now know that ↔rw coincides with ↔fc
w and thus is the

coarsest sane equivalence contained in ↔w that is a congruence for the +, the
question still remains if also ↔c

w coincides with ↔rw . In case Act = {τ}, this is
not the case. For in that case ↔w , and hence also ↔c

w , is the universal relation,
but τ.0 �↔rw 0. However, as I will show in the following, in all other cases we
have in fact that ↔c

w = ↔rw .

Proposition 9 (Jan Willem Klop). Provided that there is at least one action
a ∈ Act − {τ}, for each infinite cardinal κ there are at least κ bisimulation
equivalence classes of τ-free process graphs in |G(Act) with less than κ nodes.

Proof. For each ordinal λ define gλ ∈ |G(Act) as follows.

– g0 := 0,
– gλ+1 := gλ + a.gλ and
– for λ a limit ordinal, gλ :=

∑
μ<λ gμ, meaning that gλ is constructed from

all graphs gμ for μ < λ by identifying their root.

Claim 1. root(gλ) a−→gλ
s ⇔ s = root(gμ) for some μ < λ.

Proof of Claim 1. A straightforward transfinite induction on λ.

Claim 2. If μ < λ then gλ �↔ gμ.

Proof of Claim 2, by transfinite induction on λ: Let μ < λ. By Claim 1 we
have root(gλ) a−→gλ

root(gμ). However, when root(gμ) a−→gμ s we have s =
root(gρ) for some ρ < μ, and by induction gμ �↔ gρ. Thus gλ �↔ gμ.
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Claim 3. For infinite λ, |nodes(gλ)| = |λ|.

Proof of Claim 3. A straightforward transfinite induction on λ, using that the
cardinality of a disjoint union of |λ| sets of cardinality 0 < κ ≤ |λ| is |λ|.
Application of the claims. For each infinite cardinal κ there are κ ordinals λ
smaller than κ. Now the proposition follows from Claims 2 and 3. ��

Theorem 2. Provided that there is an a ∈ Act− {τ}, on |G(Act) weak bisimu-
lation congruence coincides with rooted weak bisimulation equivalence.

Proof. Following the idea from the earlier proof sketch, let g↔c
w h with g, h ∈

|Gρ(Act). Let κ be the smallest infinite cardinal, such that g and h have less
than κ nodes. So there are less than κ process graphs gs with s ∈ nodes(g)
and ht with t ∈ nodes(h). Hence by Prop. 9 there is a τ -free process graph k
with |nodes(k)| < κ, such that k �↔ gs and k �↔ ht for any such gs and ht.
Now g + a.k↔w h + a.k by the definition of ↔c

w . Let R be a weak bisimulation
between g + a.k and h + a.k.

Claim 1. The restriction of R to nodes(g)× nodes(h) must be rooted.

Proof of Claim 1. root(g + a.k) a−→g+a.k root(k), so if root(g + a.k)R t for
some t ∈ nodes(h) − {root(h)}, then t a

==⇒h+a.k t′ for some t′ ∈ nodes(h)
with root(k)R t′ and hence k↔w ht′ . By the definition of k this is impossible.
Likewise, it is impossible that sRroot(h+a.k) for s ∈ nodes(g)−{root(g)}.
Claim 2. The restriction of R to nodes(g)× nodes(h) is a weak bisimulation.

Proof of Claim 2. Let root(g) b−→g s. Then root(g + a.k) b−→g+a.k s, so there
must be a t ∈ nodes(h + a.k) such that root(h + a.k) (b)

==⇒h+a.k t and sR t.
The possibility that b = a and t = root(k) can not occur, for this would
imply gs ↔w k. The possibility that b = τ and t = root(h + a.k) can not
occur by Claim 1. Therefore t ∈ nodes(h) − {root(h)} and root(h) b

==⇒h t.
Likewise, root(h) b−→h t implies that there is an s ∈ nodes(g) − {root(g)}
with root(g) b

==⇒g s and sR t. It follows that the restriction of R to nodes(g)×
nodes(h) is a rooted weak bisimulation between g and h. Hence g↔rw h. ��

Rather than working with arbitrary process graphs, some people prefer to set
a bound on the number of nodes. This happens for instance when one insists
that |G(Act) should be set rather than a proper class. That can be achieved by
first fixing a set N of potential nodes, and then allowing only process graphs
g with nodes(g) ⊆ N . For any infinite cardinal κ let |Gκ(Act) be the class of
process graphs over Act with less than κ nodes. In particular |Gℵ0(Act) is the
class of regular, or finite-state, process graphs. Theorem 2 transfers smoothly
from |G(Act) to |Gκ(Act).

Theorem 3. Provided that there is an a ∈ Act− {τ}, on |Gκ(Act) weak bisim-
ulation congruence coincides with rooted weak bisimulation equivalence.

Proof. The proof above goes through because the process k fits in |Gκ(Act). ��
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Another cardinality restriction that is sometimes imposed, is the requirement
that each node should have less than κ outgoing edges. In case κ > ℵ0, this
class of κ-branching process graphs is not essentially different from |Gκ(Act),
and the same proof applies. More interesting is the case κ = ℵ0. Up to strong
bisimulation equivalence, the finitely branching process graphs form a proper
superclass of |Gℵ0(Act), the finite-state process graphs, and a proper subclass
of |Gℵ1(Act), the countable state process graphs. However, as shown in [1], any
countable state process graph is weakly bisimilar to a finitely branching process
graph. Using this, the proof of Theorem 2 can be adapted to apply to the class
of finitely branching process graphs as well.

5 The Left-Merge and Rooted Weak Simulations

In [2] is has been shown that ↔rw is a congruence for all operators of ACPτ .
Just as for the +, the root condition comes to the rescue in the congruence proof
for the left-merge ‖−. One has τ.a.0‖−b.0 �↔w a.0‖−b.0, because only the former
process can do a b before an a, so ↔w fails to be a congruence for this operator.
The reason that the root condition (Def. 5) helps here, is that in g‖−h steps
from h can happen in any state of g except the initial one; thus only a weak
bisimulation between g1 and g2 that does not relate roots with non-roots can be
modified into a weak bisimulation between g1‖−h and g2‖−h.

There is a directional difference in the way the root condition solves the
congruence problems for + and ‖−. This can be seen by applying it to weak
simulation.

Definition 13. Let g, h ∈ |Gρ(Act). The graph g is weakly simulated by the
graph h if there exists a binary relation R ⊆ nodes(g) × nodes(h), called a
weak simulation from g to h, satisfying, for all a∈Act:

– root(g) R root(h).
– If sRt and s

a−→g s′, then there is a t′ such that t
(a)

==⇒h t′ and s′Rt′.

A weak simulation from g to h is source rooted if sRroot(h) ⇒ s = root(g).
It is target rooted if root(g)R t ⇒ t = root(h).

The relation of “being weakly simulation by” is a preorder (transitive and reflex-
ive), called the weak simulation preorder. Likewise one obtains the source rooted
weak simulation preorder and the target rooted weak simulation preorder.

Proposition 10. The target rooted weak simulation preorder is a precongruence
for the +. This means that if there are target rooted weak simulations from g1 to
h1 and from g2 to h2, then there is a target rooted weak simulation from g1 + g2
to h1 + h2.

Proof. Suppose that Ri is a target rooted weak simulation from gi to hi for
gi, hi ∈ |Gρ(Act) and i = 1, 2 then R1 ∪ R2 is a target rooted weak simulation
from g1 +ρ g2 to h1 +ρ h2. ��
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Lemma 2. If there is a weak simulation from g to h then there is a target rooted
weak simulation from g to h.

Proof. Omit all liaisons of the form root(g)R t with t �= root(h). ��

Corollary 1. The weak simulation preorder is a precongruence for the +, as
well as for action prefixing, even without upgrading it with root conditions.

A complete axiomatisation of this preorder is given by the usual axioms for
strong bisimulation, together with the axioms x # x+ y and τ.x = x, where the
latter is a shorthand for τ.x # x ∧ x # τ.x.

Proposition 11. The source rooted simulation preorder is a precongruence for
the ‖−.

Proof Idea. Suppose that R is a weak simulation from g to h for g, h ∈ |Gρ(Act).
When adapting R to a weak simulation from g‖−k to h‖−k, one needs to make
sure that when g‖−k can do a step from k, then so can h‖−k. The only way this
can fail is when a non-root state from g is related to the root of h. In that case
g‖−k can do a step from k, but h‖−k cannot. ��

The weak simulation preorder fails to be a precongruence for the ‖−, for τ.a.0 is
weakly simulated by a.0, but τ.a.0‖−b.0 is not weakly simulated by a.0‖−b.0. This
is because the weak simulation from τ.a.0 to a.0 is not source rooted. It follows
that the source rooted weak simulation preorder is strictly finer than the (target
rooted) weak simulation preorder.

It is possible to upgrade the notion of weak simulation by various conditions,
such as the following stability requirement [4].

Definition 14. A weak simulation R from g to h is stability respecting if

– if sRt and s �τ−→g then there is a t′ such that t ==⇒h t′ �τ−→h and sRt′.

Again, target rootedness is needed to make the induced preorder into a precon-
gruence for the +, and source rootedness to make it into a precongruence for
the ‖−. This time the two rooted variants are incomparable, because there is a
target rooted, but not source rooted, stability respecting weak simulation from
τ.a.0 to a.0, and a source rooted, but not target rooted, stability respecting weak
simulation from a.0 to τ.a.0.

6 Concluding Remark

The method to turn simulation or bisimulation based equivalences into con-
gruences by insisting on root conditions generalises smoothly to other notions
of (bi-)simulation. In the case of branching, delay and η-bisimulation, this is
elaborated in [5]. Interestingly, the alternative characterisation of rooted weak
bisimulation presented in Prop. 7 takes a rather different shape when applied
to rooted branching bisimulation. However, the characterisation with the root
condition of Def. 5 remains the same.
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Abstract. In this note we work with untyped lambda terms under
β-conversion and consider the possibility of extending Böhm’s theorem
to infinite RE (recursively enumerable) sets. Böhm’s theorem fails in gen-
eral for such sets V even if it holds for all finite subsets of it. It turns out
that generalizing Böhm’s theorem to infinite sets involves three other su-
perficially unrelated notions; namely, Church’s delta, numeral systems,
and Ershov morphisms. Our principal result is that Böhm’s theorem
holds for an infinite RE set V closed under beta conversion iff V can
be endowed with the structure of a numeral system with predecessor iff
there is a Church delta (conditional) for V iff every Ershov morphism
with domain V can be represented by a lambda term.

1 Introduction

We suppose the reader knows some lambda calculus, as e.g. in [1], Chapters 6,
7, 8 and 10.

Definition 1.1. (i) The set of untyped closed lambda terms is denoted by Λø.
A combinator is an element of Λø.

(ii) We denote congruence under beta conversion by =.
(iii) We write := for “equal by definition”.
(iv) We define the following combinators.

cn := λfx.fnx, the Church numerals.
Un

k := λx1 . . . xn.xk, for 1 ≤ k ≤ n, the projections.
Ω := (λx.xx)(λx.xx).

(v) For lambda terms P = P1, . . . ,Pn we write

〈P1, . . . ,Pn〉 := λz.zP1 . . . Pn.

Note that

〈P1, . . . ,Pn〉 = 〈Q1, . . . ,Qn〉 ⇔ P1 = Q1 & . . . & Pn = Qn.

The classical theorem of Böhm states the following.
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Theorem 1.2 ([3]). For all combinators M1 and M2 having a β-nf (normal
form) the following are equivalent.

(i) For all combinators N1, N2 there exist combinators P such that

M1P = N1 & M2P = N2.

(ii) There exists a combinator F such that

FM1 = λxy.x & FM2 = λxy.y.

(iii) M1 = M2 is inconsistent with λβ.
(iv) M1 = M2 is inconsistent with λβη.
(v) M1 and M2 have distinct βη-nfs (normal forms).

Proof. (i)⇒(ii) Let Ni := λx1x2.xi, for 1 ≤ i ≤ 2. By (i) there are P such that
MiP = Ni. Take F := λm.mP .

(ii)⇒(iii) From the equation M1 = M2 one can by (ii) derive λxy.x = λxy.y,
from which one can derive any equation; all derivations using just λβ.

(iii)⇒(iv) Trivial.
(iv)⇒(v) By the hypothesis that M1,M2 have β-nf and [1], Corollary 15.1.5,

it follows that M1,M2 have βη-nfs. If these were equal, then M1 =βη M2 and
hence M1 = M2 would be consistent.

(v)⇒(i) This is the core of Böhm’s theorem. A proof can be found in [1],
Theorem 10.4.2. ��

The equivalences do not hold for arbitrary terms M1,M2, not in β-nf.

Remark 1.3. Referring to Theorem 1.2 one has the following.

1. In the list of equivalences on could add (iva) M �=βη N . Indeed, (iv) ⇒
(iva) ⇒ (v).

2. The implications (i)⇒(ii), (ii)⇒(iii), (iii)⇒(iv) and (v)⇒(iv) hold trivially
for all M1,M2. Also (v)⇒(i) holds (but not trivially), as the condition of
normalizability holds by assumption.

3. In general (iv)�⇒(v). One has Ω = I is consistent with λβη, as follows by the
technique of [8], but Ω does not have a βη-nf.

4. Similarly (iv)�⇒(iii). For example the set of equations

{ΩI = U2
1,Ωc1 = U2

2}

is consistent with λβ, see [1], Corollaries 15.3.6 and 15.3.7. But the set is
inconsistent with λβη, as I =βη c1. Hence 〈ΩI,Ωc1〉 = 〈U2

1, U2
2〉 is consistent

with λβ, but not with λβη.
5. As to (iii)�⇒(ii), the equation Ω3 = I, with Ω3 ≡ (λx.xxx)(λx.xxx), is in-

consistent as shown in [8]. But if FΩ3 = λxy.x and F I = λxy.y for some F ,
then by [1], Proposition 14.3.24, it follows that either Ω3 is solvable, which
it isn’t, or ∀M.FM = λxy.x, which contradicts the second equation.
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6. (i)�⇒(v) Let M1 = 〈λxy.x,Ω〉,M2 = 〈λxy.y,Ω〉. Taking P := U2
1, N1, N2 one

has M1P = N1 & M2P = N2, but Mi has no β-nf.
7. We believe that (ii)⇒(i) also holds in general.

Let F = {M1, . . . ,Mn} be a finite set of combinators.

Definition 1.4. F is called separable iff there exists a combinator F such that

FM1 = Un
1 & . . . & FMn = Un

n.

This notion of separability has a different but equivalent definition.

Lemma 1.5. Let F = {M1, . . . ,Mn} be a finite set of arbitrary combinators.
Then the following are equivalent.

(i) There exists an F ∈Λø such that

FM1 = Un
1 & . . . & FMn = Un

n.

(ii) There exists an F ∈Λø such that

FM1 = c1 & . . . & FMn = cn.

Proof. (i)⇒(ii) Given F , take F ′ := λm.Fmc1 . . . cn.
(ii)⇒(i) Assume (ii) for some F . By induction on n one can show that for

some Gn one has
1 ≤ k ≤ n ⇒ Gnck = Un

k (∗)
For n = 0 there is nothing to prove and for n = 1 we can take G1 = KU1

1.
Suppose that Gn has been defined and satisfies (∗). Define

Gn+1 := λc. If (Zero? c) then Un+1
1 else (Gn(P−c)Un+1

2 . . . Un+1
n+1)

:= λc.(Zero? c)Un+1
1 (Gn(P−c)Un+1

2 . . . Un+1
n+1),

where (If B then P else Q)≡ BPQ, Zero? ≡ λn.n(λx.U2
2)U

2
1 so that

Zero?c0 = U2
1, Zero?ck+1 = U2

2

and P− ∈Λø is a representation of the predecessor function for the Church nu-
merals. Then Gn+1 works. Now we can take F ′ := λm.Gn(Fm). ��

For infinite sets the two ways of defining the notions of separability are no
longer equivalent. Separability for possibly infinite sets has to be defined as the
existence of a definable 1-1 map (modulo β-conversion) to the Church numerals.

Definition 1.6. V is said to be separable if for some combinator D one has

(i) ∀M ∈V∃n∈N.DM = cn.
(ii) ∀M,N ∈V .[DM = DN ⇔ M = N ].
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For such F one has the following generalizaton of Theorem 1.2.

Theorem 1.7 ([4]). For all F = M1, . . . ,Mn, where each Mi has a β-nf, the
following are equivalent.

(i) For all combinators N1, . . . , Nn there exist combinators P such that

M1P = N1 & . . . & MnP = Nn.

(ii) F is separable.
(iii) Mp = Mq is inconsistent with λβ, for 1 ≤ p, q ≤ n with p �= q.
(iv) Mp = Mq is inconsistent with λβη, for 1 ≤ p, q ≤ n with p �= q.
(v) The M1, . . . ,Mn have pairwise distinct βη-nfs.

Proof. Again, the only non-trivial implication is (v)⇒(i) and is proved in [4],
see [1], Corollary 10.4.14. ��

In trying to generalize Theorem 1.7 by dropping the requirement that F is
finite or that its elements have a nf, several problems arise.

Remark 1.8. (i) For finite sets F of combinators having a β-nf the property of
consisting of pairwise βη-inconvertible terms is equivalent to separability. Indeed,
the Church-Rosser Theorem implies that

M �=βη N ⇔ M,N have distinct βη-nfs,

hence Theorem 1.7 applies. If we drop the requirement that the elements of F
have a β-nf, then this is no longer true. For example this is the case with

F = {Ωc1, . . . ,Ωcn}.

This set consists of pairwise β-inconvertible terms, but is not separable, as follows
from the Genericity Lemma in [1], Proposition 14.3.24.

(ii) For infinite sets F of terms having pairwise distinct βη-nf separability
does not necessarily hold either. An example is the collection of projections

F = {Un
k | n∈N & 1 ≤ k ≤ n}.

The set clearly consists of pairwise distinct βη-nfs. This F is such that each finite
subset of it is separable but not the whole set itself. That F is not separable can
be seen as follows. Suppose that F is a combinator which maps the set of projec-
tions into the Church numerals injectively. Let U range over the projections. FU
is βη-convertible to a Chruch numeral which is a λI-term for all U , except possi-
bly one (that is mapped to c1). Then for those U it follows, by η-postponement,
see [1], Corollary 15.1.6, and the obvious fact that η-conversion does not change
the status of being a λI-term, that FU =β N for some λI-term N in nf. Consider
a standard reduction FU →→β N . Then Fx →→β N ′, with x∈FV(N ′) (as F is
not a constant map) and to the left of the leftmost occurrence of x in N ′ there
is no expression of the form (λy.P ). But then for almost all U one has that
FU = N ′[x := U ] is not convertible to a λI-term, a contradiction.



44 R. Statman and H. Barendregt

A characterization of separability for finite F , possibly containing terms with-
out normal form is due to [5] and can be found also in [1], Theorem 10.4.13. To
give a flavor of that theorem we give some of its consequences, rather than
repeating its precise formulation.

1. The set
{

λx.xc0Ω,
λx.xc1Ω

}
is separable.

2.
{

λx.x(λy.yΩ),
λx.x(λy.yc0)

}
is not separable.

3.

⎧⎨⎩λx.x(λy.yc0Ω(λz.zΩ),
λx.x(λy.yc1Ω(λz.zc1),
λx.x(λy.yc1Ω(λz.zc2)

⎫⎬⎭ is separable.

4.

⎧⎨⎩λx.xc0c0Ω,
λx.xc1Ωc1,
λx.xΩc2c2

⎫⎬⎭ is not separable, although each proper subset is.

Definition 1.9. A set X ⊆ Λø is called an adequate numeral system iff for
some combinators O,S, Z?, P one has

(i) X = {SnO | n∈N}.
(ii) P (Sn+1O) = SnO.
(iii) Z?O = U2

1 & Z?(Sn+1O) = U2
2.

Then all partial computable functions can be represented on X , see [1] Proposi-
tion 6.4.3 and the remark following.

Definition 1.10. Let V be a set of combinators.

(i) V is called RE (recursively enumerable) if the set #V = {#M | M ∈V}
is an RE set of natural numbers.

(ii) V is closed under β-conversion iff ∀M,N.(M ∈V & M =β N) ⇒ N ∈V.
(iii) Vβ = {N | ∃M ∈V .M =β N}, the β-closure of V.
(iv) V is a V-set iff V is RE and closed under β-conversion. These sets are

the closed sets in the Visser topology, see [12] or [1], Definition 17.1.12.

Lemma 1.11. V ⊆ Λø be non-empty . Then V is a V-set iff for some F ∈Λø

one has V = {Fcn | n∈N}β.

Proof. (⇒) By assumption #V is non-empty and RE. Then #V =
{g(n) | n∈N} for some total computable function g. Then

V = {Ecn | n∈#V}β.

Let G∈Λø lambda define g. Then

V = {Ecg(n) | n∈N}β,

= {E(Gcn) | n∈N}β ,

= {Fcn | n∈N}β, with F = E ◦G.

(⇐) M ∈{Fcn | n∈N}β iff ∃n.N =β Fcn, which is RE. Clearly this set is closed
under β-conversion. ��
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In the present paper the following will be proved. See 2.1(iv) for the definition
of morphisms. Some of these results have been proved in [9] under stronger
hypotheses: (i) ⇔ (iii), (v) ⇒ (i).

Theorem 1.12. Suppose that V is an infinite RE set (after coding) of combi-
nators closed under β-conversion. Then the following are equivalent.

(i) V is an adequate numeral system.
(ii) For every morphism Φ with dom(Φ) ⊆ V there is an F ∈Λø such that

∀M ∈V .Φ(M) = FM.

(iii) There exists a combinator Δ such that for all M,N ∈V

ΔMN = U2
1, if M = N ;

= U2
2, else.

(iv) There is a morphism Φ with dom(Φ) ⊆ V such that for all M,N ∈V

Φ(M)N = U2
1, if M = N ,

= U2
2, else.

(v) V is separable.

One way to think of Böhm’s theorem is that it says that separating morphisms
can be realized by terms.

2 Preliminaries

Definition 2.1. (i) Let # : Λø→N be an effective surjective Gödel numbering
of combinators. We write M for c#M .

(ii) There is an inverse E, called Kleene’s enumerator, such that E M = M ,
for all combinators M , see [1] Theorem 8.1.6.

(iii) For m,n∈N we write m ∼ n ⇔ Ecm = Ecn.
(iv) A (partial Ershov) morphism Φ : Λø/ = →Λø/ = is a partial map such

that for some partial computable function ϕ : N→N and all combinators M

Φ(M) ∼= E(cϕ(#M)),

where P ∼= Q means that if one of the two expressions P,Q is defined, then so
is the other and P = Q. This is implied by #Φ(M) % ϕ(#M), with a similar
meaning for %: for expressions e1, e2 involving partial functions we define

e1 % e2 ⇔ [e1↓ ⇔ e2↓] & [e1↓ ⇒ e1 ∼ e2].

See the last section for a discussion about the origin of Ershov morphisms.
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(v) The notion of morphism generalizes naturally to binary maps.
Φ : (Λø)2→Λø is a morphism if for some binary partial computable ϕ one has

Φ(M,N) ∼= Ecϕ(#M,#N).

(vi) We write Φ(M)↓, ϕ(m)↓ for convergence of the partial functions (being
defined); similarly Φ(M)↑, ϕ(m)↑ for divergence (being undefined).

Lemma 2.2. A partial morphism Φ is completely determined by a partial com-
putable ϕ such that

Φ(M) ∼= Ecϕ(#M);
n ∼ m ⇒ ϕ(n) % ϕ(m).

In this case Φ is called the morphism corresponding to ϕ.

Proof. This is the defining property for morphisms. We emphasize here that if
M =β N and Φ(M)↓, then Φ(M) = Φ(N), hence ϕ(#M) ∼ ϕ(#N). ��

Although there are partial recursive functions that cannot be made total, this
is not the case for partial morphisms, as shown in [10].

Theorem 2.3 (Morphism extension). Suppose that Φ is a partial morphism.
Then there exists a total morphism F extending Φ.

Proof. Let Φ correspond to the partial computable function ϕ. Construct a com-
binator P such that

Px M =β

⎧⎪⎪⎨⎪⎪⎩
Ex N if N =β M & #N < #M &

N is the first such found in some enumeration
of the beta converts of M ;

Ecϕ(#M) if ϕ(#M) converges before such N is found.

[If ϕ(#M)↑ and ¬∃N =β M.(#N < #M), then the search continues forever; in
that case Px M will be unspecified and can be arranged to be unsolvable.] By
the second fixed-point theorem, see [1], Theorem 6.5.9, there is a combinator Q
such that P Q = Q. Then

Q M =β

⎧⎪⎪⎨⎪⎪⎩
Q N if N =β M & #N < #M &

N is the first such found in some enumeration
of the beta converts of M ;

Ecϕ(#M) if ϕ(#M) converges before such N is found.

If ϕ(M)↓, then, using Lemma 2.2, it can be seen that a typical computation for
Q M is the following

Q M = Q M1 = . . . = Q Mk = Ec#ϕ(Mk) =
= Φ(Mk) = . . . = Φ(M1) = Φ(M),
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with
#M > #M1 > . . . > #Mk,

M =β M1 =β . . . =β Mk,
#M ∼ #M1 ∼ . . . ∼ #Mk,

ϕ(#M) ∼ ϕ(#M1) ∼ . . . ∼ ϕ(#Mk),
Φ(M) = Φ(M1) = . . . = Φ(Mk).

Therefore one has

Q M =β

{
Φ(N) if Φ(M)↓;
Q M0 else,

where M0 =β M with the smallest Gödel number and Q M0 is unsolvable.
Finally let f be defined by f(#M) = #(Q M ). Then it is easy to see that

1. f is a total computable function;
2. if M =β N , then Q M =β Q N , hence f(#M) ∼ f(#N);
3. if ϕ(#M)↓, then ϕ(#M) ∼ f(#M).

Thus there is a total morphism F determined by f . Moreover F extends Φ:
FM = Q M = Φ(M), if the latter is defined. ��

Definition 2.4. Let V ⊆ Λø. Then V is a V -set if it is RE and closed under
β-conversion.

Definition 2.5. Let V be a V -set.

(i) A V-morphism is a partial Ershov morphism whose domain includes V
(ii) A V-morphism f is V-representable if there exists an F ∈Λø such that

∀M ∈V .FM = f(M).

A similar definition holds for binary morphisms.
(iii) Δ is a Church discriminator (or Church delta) for V if for all M,N ∈V

one has

ΔMN = U2
1, if M = N ;

ΔMN = U2
2, if M �= N .

(iv) Let M ∈V and Φ = ΦM be a V-morphism. Then Φ is a V-equality test
for M if for all N ∈V

Φ(N) = U2
1, if M = N ,

Φ(N) = U2
2, if M �= N .

Lemma 2.6. Let V be a V -set. If every unary morphism on V is V-
representable, then the same is true for binary morphisms.
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Proof. Given a binary morphism Φ, define

Ψ(M) := Φ(M U2
1,M U2

2).

Let Ψ be V-representable by ψ. Construct a binary partial computable function
ϕ such that ϕ(#M,#N) = ψ(#〈M,N〉). Then Φ is represented by ϕ:

Φ(M,N) = Ψ(〈M,N〉)
= Ecψ(#〈M,N〉)

= Ecϕ(#M,#N). ��

Fact 2.7. The following statements are equivalent for a V -set V .

(i) There is a V-morphism Φ such that

∀M,N ∈V .[Φ(M) = Φ(N) ⇒ M = N ] &

∀M ∈V∃n∈N.Φ(M) = cn.

(ii) {〈M,N〉 | M,N ∈V & M �= N} is RE.
Hence if V is a separable V -set, then {〈M,N〉 | M,N ∈V & M �= N} is RE.

3 Böhm’s Theorem for V -Sets

Theorem 3.1. For V an infinite V -set the following are equivalent.

(i) V is an adequate numeral system.
(ii) Every V-morphism is V-representable.
(iii) There is a Church discriminator for V.
(iv) There is a V-morphism Φ such that

∀M ∈V .Φ(M) is a V-equality test for M .

(v) V is separable.

Proof. We shall prove (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i).
(i) ⇒ (ii). Write vn := SnO. By [1] Lemma 6.4.5 there exists an H such that

H(vn) = cn. (1)

The function q(n) = #vn (reminiscent of quoting) is total computable, so by [1]
Theorem 6.4.3, it is lambda definable w.r.t. (V, S, P,O, Z?) by, say, Q, i.e.

Qvn = vq(n) = v#vn . (2)

Now suppose Φ is a partial morphism whose domain contains the set V . By
definition there is a partial computable function ϕ, such that

Φ(M) = Ecϕ(#M). (3)



Böhm’s Theorem, Church’s Delta, Numeral Systems, and Ershov Morphisms 49

This f is lambda definable on (V, S, P,O, Z?) by, say, F . This means that

Fvn = vϕ(n). (4)

Let E be Kleene’s enumerator and set J := λx.E(H(F (Qx))). Then

J(vn) = E(H(F (Q(vn))))
= E(H(F (v#vn))), by (2),
= E(H(vϕ(#vn)))), by (4),
= Ecϕ(#vn), by (1),
= Φ(vn), by (3).

Thus Φ is V-represented by J .
(ii) ⇒ (iii). Let M,N ∈V with M �= N . Define a partial morphism Φ by

L = M ⇒ Φ(L) = U2
1

L = N ⇒ Φ(L) = U2
2.

Then this partial morphism extends to a total morphism by Theorem 2.3, which
is a fortiori a V-morphism. By hypothesis this morphism is V-representable and
thus for some F one has

FM = U2
1 & FN = U2

2.

Hence, in particular, the set {(M,N)∈V2 | M �= N} is RE. Thus the partial
function Φ on V2 such that

Φ(M,N) = U2
1, if M = N ,

Φ(M,N) = U2
2, if M �= N ,

is a V-morphism, which by hypothesis and Lemma 2.6 is representable. In con-
clusion, there is a Church discriminator for V .

(iii) ⇒ (iv). Immediate, taking Φ(N) := ΔN .
(iv) ⇒ (v). Let Φ be as in (iv) correspond to the partial computable ϕ which

is λ-defined by F . Let G be an enumeration of V , i.e. V = {Gcn | n∈N}, possible
by the definition of V -set. We want to define D such that

DM = cμy.[Gcy=M ] (5)
= cμy.[Φ((Gcy))M=U2

1]

= cμy.[E(F (Gcy))M=U2
2].

Now the right-hand-side can be defined as HMc0 if

HM = λy.E(F (Gy))My(HM(S+y)),

where S+is the successor for the Church numerals. This is the case if we take

H := Y(λhmy.E(F (Gy))my(hm(S+y)),
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where Y is the Fixed-point combinator. Then (v) via D := λm.Hmc0, by (5).
(v) ⇒ (i). Let V = {Fce | e∈N} and let d : V→N be an injection definable

by lambda term D . Then the set {(M,N)∈V2 | M �= N} is (after coding) RE.
Define

O := Fc0

S := λx.F (μy.[∀z ≤ (μn.[Fcn = x]).Fy �= Fz])
P := λx.F (μz.[S(Fz) = x])
Z? := Eq (DO)(Dx),

where Eq is the test for equality on the Church numerals. Then

V = {SnO | n∈N}, P (Sn+1O) = SnO, Z?O = U2
1 and Z?(Sn+1O) = U2

2. ��

Corollary 3.2. Not every total Ershov morphism on Λø is representable.

Proof. Indeed, by Theorem 3.1 it would follow that there is a Church discrimi-
nator Δ for Λø, but then λx.ΔxU2

2 has no fixed-point, contradiction. ��

We end with some examples showing that there are various ways in which one
can have equality tests.

Proposition 3.3. (i) Let V be a V -set with a V-equality test for each member
of V (but not uniformly so). This means that for all M ∈V there exists a V-
morphism ΦM such that for all N ∈V

ΦM (N) = U2
1, if M = N ;

= U2
2, else.

Then it does not follow that there is a Church’s discriminator for V.
(ii) Let V be a V -set with a V-equality test for each member of V that is V-

representable. This means that for all M ∈V there exists an FM ∈Λø such that
for all N ∈V

FMN = U2
1, if M = N ;

= U2
2, else.

Suppose moreover that {〈M,N〉 | M,N ∈V & M �= N} is RE. Even then V does
not necessarily have a Church discriminator.

Proof. (i) We will construct V with {〈M,N〉 | M,N ∈V & M �= N} is not RE.
This suffices by Fact 2.7. Define the following partial computable function

ψ(e, x) = x, if {e}(0) converges in exactly x steps,
= 1 + ψ(e, x + 1), else.

Here {e}(x) is the result of the partial computable function with code (program)
e and input x. By Kleene’s theorem ψ is represented by a lambda term G and
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set F := λn.Gnc0. Thus Fce has finite Böhm tree BT(cn) if {e}(0) converges
in n steps and it can be arranged that otherwise Fce has the infinite Böhm
tree

∞ := λxy. x

x

x

. . .

For each e there are many e∗ such that {e∗} = {e}. In case e(0)↑ for such e, e∗,
one has

e �= e∗ ⇒ Fce �= Fce∗ , (1)

even if BT(Fce) = BT(Fce∗) (the difference is ‘pushed to infinity’, hence the
trees are equal). Take V = {Fce | e∈N}/ =β . We show that this V -set works.
For each fixed combinator M ∈V , say M = Fce, we have to decide whether for
a given combinator N one has N = M .

Case 1. {e}(0)↓ in n steps. Then M = cn. Given N ∈V we develop its Böhm
tree, which will be one of {BT(c0),BT(c1), . . . ;∞}. If BT(N) = ck with k < n,
then N �= M and the output should be (the Gödel number of ) U2

2. If BT(N) =
cn, then the output should be U2

1. Finally, if BT(N) keeps growing beyond
BT(cn), then the output is again U2

2.
Case 2. {e}(0)↑. Then for N ∈V one can check N = M as follows. Find an e′

such that N = Fce′ . Then N = M ⇔ Fce �= Fce∗ ⇔ e′ = e, by (1).

(ii) We will construct such a V . First let T be Kleene’s T predicate, i.e.
T (e, x, y) iff y is the code of a terminating computation for {e}(x), the result of
the partial computable function with program e on input x. Define the following
total computable function.

f(e, n) = 0, if n ≤ e & ¬∃k ≤ n.T (e, 0, k);
= 1, if n ≤ e & ∃k ≤ n.T (e, 0, k);
= f(e, e), else.

Write en := cf(e,n). Define the following lambda terms for n∈N:

n∞ = Y(λp.〈cn, p〉).
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Then n∞ = 〈cn, n∞〉 and e.g. 0∞ has as Böhm-tree

λx. x

��
��
��
��

��
��

��
��

c0 λx. x

��
��
��
��

��
��

��
��

c0 λx. x

��
��
��
��

��
��

��
��

. . . . . .

It is not hard to construct terms Me such that

Me := Hcec0;
Hcecn := If (n ≤ e & ¬T (e, 0, n)) then 〈c0, Hcecn+1〉

else [If (n ≤ e & T (e, 0, n)) then 1∞ else 0∞].

having as Böhm-Trees

λx. x

��
��
��
��

��
��

��
��

e0 λx. x

��
��
��
��

��
��

��
��

e1 λx. x

��
��
��
��
�

��
��

��
��

. . . λx. x

		
		
		
		















ee BT(f(e, e)∞x)

This tree has as its short left branches the trees of c0, c0, . . . ad infinitum, unless
a computation of {e}(0) converges and this happens in k ≤ e steps, in which
case the k + p-th branches become c1 for all p. Let

V = {Me | e∈N}.

One has the following.
(1) ∀k.f(e, k) = f(e′, k) ⇔ ∀k ≤ max{e, e′}.f(e, k) = f(e′, k)

⇔ Me =β Me′ .

(2) {(e, e′) | Me �=β Me′} is RE.
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(3) ∀M ∈V∃DM ∈Λø∀N ∈V . DMN = U2
1, if M = N ,

DMN = U2
2, else.

Given M one can determine the e such that M := Me. Then M = N , for N ∈V ,
iff up to level e one has BT(M) = BT(N).

(4) ¬∃Δ∈Λø∀M,N ∈V .ΔMN = U2
1, if M = N ,

ΔMN = U2
2, else.

If such a Δ would exist, then by the continuity of application with respect to the
tree topology, see [1], Theorem 14.3.22, the value of ΔMN is determined by a
fixed finite approximation of the Böhm-trees of M,N ∈V . But there are always
terms in V that start to be different at deeper levels. ��

4 Discussion

1. In [6], see also [12], the notion of numbered set is intyroduced. This is a pair
(S, γ) with γ : N→S a surjection. An n such that γ(n) = s is called a code of
s. A (Ershove) morphism between numbered sets (S1, γ1), (S2, γ2) is a map
μ : S1→S2 such that for some total computable function f : N→N one has

∀n∈N.μ(γ1(n)) = γ2(f(n)).

That is, a morphism is determined by a computable map on the codes.
Given a numbered set (S, γ) one defines an equivalence relation on N by
n ∼ m ⇔ γ(n) = γ(m). This numbered set is called pre-complete iff every
partial computable function on N can be made total modulo ∼:

∀ψ partial computable∃f total computable∀n∈N.ψ(n)↓ ⇒ ψ(n) ∼ f(n).

One of the first results in the the theory of numbered sets is that each
morphism from a pre-complete numbered set to itself has a fixed point. An
example of a pre-complete numbered set is (Λø, γE), with γE(n) = Ecn.

2. There are numeral systems on which all partial computable functions can
be represented, without there being a test for zero Z?, see [7] or [2]. Such
numeral systems are not separable.

3. In [1] one uses the notation M = #M , for M a lambda term. Here one
uses a different system of numerals, denoted by n , for n∈N. This does
not matter, as the cn and the n are equivalent in the sense that for some
combinators G,H one has Gcn = n & H n = cn.
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Abstract. We discuss here constraint programming (CP) by using a
proof-theoretic perspective. To this end we identify three levels of ab-
straction. Each level sheds light on the essence of CP.

In particular, the highest level allows us to bring CP closer to the
computation as deduction paradigm. At the middle level we can explain
various constraint propagation algorithms. Finally, at the lowest level we
can address the issue of automatic generation and optimization of the
constraint propagation algorithms.

1 Introduction

Constraint programming is an alternative approach to programming which con-
sists of modelling the problem as a set of requirements (constraints) that are
subsequently solved by means of general and domain specific methods.

Historically, constraint programming is an outcome of a long process that
has started in the seventies, when the seminal works of Waltz and others on
computer vision (see, e.g.,[30]) led to identification of constraint satisfaction
problems as an area of Artificial Intelligence. In this area several fundamental
techniques, including constraint propagation and enhanced forms of search have
been developed.

In the eighties, starting with the seminal works of Colmerauer (see, e.g.,
[16]) and Jaffar and Lassez (see [21]) the area constraint logic programming
was founded. In the nineties a number of alternative approaches to constraint
programming were realized, in particular in ILOG solver, see e.g., [20], that is
based on modeling the constraint satisfaction problems in C++ using classes.
Another, recent, example is the Koalog Constraint Solver, see [23], realized as a
Java library.

This way constraint programming eventually emerged as a distinctive ap-
proach to programming. In this paper we try to clarify this programming style
and to assess it using a proof-theoretic perspective considered at various levels of
abstraction. We believe that this presentation of constraint programming allows
us to more easily compare it with other programming styles and to isolate its
salient features.

2 Preliminaries

Let us start by introducing the already mentioned concept of a constraint satis-
faction problem. Consider a sequence X = x1, . . ., xm of variables with respective

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 55–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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domains D1, . . ., Dn. By a constraint on X we mean a subset of D1× . . .×Dm.
A constraint satisfaction problem (CSP) consists of a finite sequence of
variables x1, . . ., xn with respective domains D1, . . ., Dn and a finite set C of
constraints, each on a subsequence of X . We write such a CSP as

〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.

A solution to a CSP is an assignment of values to its variables from their
domains that satisfies all constraints. We say that a CSP is consistent if it
has a solution, solved if each assignment is a solution, and failed if either a
variable domain is empty or a constraint is empty. Intuitively, a failed CSP is
one that obviously does not have any solution. In contrast, it is not obvious at
all to verify whether a CSP is solved. So we introduce an imprecise concept of
a ‘manifestly solved ’ CSP which means that it is computationally straight-
forward to verify that the CSP is solved. So this notion depends on what we
assume as ‘computationally straightforward’.

In practice the constraints are written in a first-order language. They are then
atomic formulas or simple combinations of atomic formulas. One identifies then
a constraint with its syntactic description. In what follows we study CSPs with
finite domains.

3 High Level

At the highest level of abstraction constraint programming can be seen as a
task of formulating specifications as a CSP and of solving it. The most common
approach to solving a CSP is based on a top-down search combined with
constraint propagation .

The top-down search is determined by a splitting strategy that controls the
splitting of a given CSP into two or more CSPs, the ‘union’ of which (defined
in the natural sense) is equivalent to (i.e, has the same solutions as) the initial
CSP. In the most common form of splitting a variable is selected and its domain
is partitioned into two or more parts. The splitting strategy then determines
which variable is to be selected and how its domain is to be split.

In turn, constraint propagation transforms a given CSP into one that is equiv-
alent but simpler, i.e, easier to solve. Each form of constraint propagation de-
termines a notion of local consistency that in a loose sense approximates the
notion of consistency and is computationally efficient to achieve. This process
leads to a search tree in which constraint propagation is alternated with splitting,
see Figure 1.

So the nodes in the tree are CSPs with the root (level 0) being the original
CSP. At the even levels the constraint propagation is applied to the current CSP.
This yields exactly one direct descendant. At the odd levels splitting is applied
to the current CSP. This yields more than one descendant. The leaves of the
tree are CSPs that are either failed or manifestly solved. So from the leaves of
the trees it is straightforward to collect all the solutions to the original CSP.

The process of tree generation can be expressed by means of proof rules that
are used to express transformations of CSPs. In general we have two types of
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constraint propagation

constraint propagation

splitting

constraint propagation

splitting

Fig. 1. A search tree for a CSP

rules. The deterministic rules transform a given CSP into another one. We
write such a rule as:

φ

ψ

where φ and ψ are CSPs.
In turn, the splitting rules transform a given CSP into a sequence of CSPs.

We write such a rule as:

φ

ψ1 | . . . | ψn

where φ and ψ1, . . ., ψn are CSPs.
It is now easy to define the notion of anapplicationofaproof rule to aCSP. In

the case of a deterministic rule we just replace (after an appropriate renaming) the
part thatmatches the premise of the rule by the conclusion. In the case of a splitting
rule we replace (again after an appropriate renaming) the part that matches the
premise of the rule by one of the CSPs ψi from the rule conclusion.

We now say that a deterministic rule

φ

ψ

is equivalence preserving if φ and ψ are equivalent and that a splitting rule

φ

ψ1 | . . . | ψn

is equivalence preserving if the union of ψi’s is equivalent to φ.
In what follows all considered rules will be equivalence preserving. In general,

the deterministic rules are more ‘fine grained’ than the constraint propagation
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step that is modeled as a single ‘step’ in the search tree. In fact, our intention is
to model constraint propagation as a repeated application of deterministic rules.
In the next section we shall discuss how to schedule these rule applications
efficiently.

The search for solutions can now be described by means of derivations, just
like in logic programming. In logic programming we have in general two types
of finite derivations: successful and failed. In the case of proof rules as defined
above a new type of derivations naturally arises.

Definition 1. Assume a finite set of proof rules.

– By a derivation we mean a sequence of CSPs such that each of them is
obtained from the previous one by an application of a proof rule.

– A finite derivation is called
• successful if its last element is a first manifestly solved CSP in this

derivation,
• failed if its last element is a first failed CSP in this derivation,
• stabilizing if its last element is a first CSP in this derivation that is

closed under the applications of the considered proof rules. �

The search for a solution to a CSP can now be described as a search for a
successful derivation, much like in the case of logic programming. A new element
is the presence of stabilizing derivations.

One of the main problems constraint programming needs to deal with is how
to limit the size of a search tree. At the high level of abstraction this matter
can be addressed by focusing on the derivations in which the applications of
splitting rules are postponed as long as possible. This bring us to a consideration
of stabilizing derivations that involve only deterministic rules. In practice such
derivations are used to model the process of constraint propagation. They do
not lead to a manifestly solved CSP but only to a CSP that is closed under
the considered deterministic rules. So solving the resulting CSP requires first an
application of a splitting rule. (The resulting CSP can be solved but to determine
it may be computationally expensive.)

This discussion shows that at a high level of abstraction constraint pro-
gramming can be viewed as a realization of the computation as deduction
paradigm according to which the computation process is identified with a con-
structive proof of a formula from a set of axioms. In the case of constraint
programming such a constructive proof is a successful derivation. Each such
derivation yields at least one solution to the initial CSP.

Because so far no specific rules are considered not much more can be said at
this level. However, this high level of abstraction allows us to set the stage for
more specific considerations that belong to the middle level.

4 Middle Level

The middle level is concerned with the form of derivations that involve only
deterministic rules. It allows us to explain the constraint propagation algo-
rithms which are used to enforce constraint propagation. In our framework these
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algorithms are simply efficient schedulers of appropriate deterministic rules. To
clarify this point we now introduce examples of specific classes of determinis-
tic rules. In each case we discuss a scheduler that can be used to schedule the
considered rules.

Example 1: Domain Reduction Rules

These are rules of the following form:

〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉
〈C′ ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where D′
i ⊆Di for all i ∈ [1..n] and C′ is the result of restricting each constraint

in C to D′
1, . . ., D

′
n.

We say that such a rule is monotonic if, when viewed as a function f from
the original domains D1, . . ., Dn to the reduced domains D′

1, . . ., D
′
n, i.e.,

f(D1, . . ., Dn) := (D′
1, . . ., D

′
n),

it is monotonic:

Di ⊆ Ei for all i ∈ [1..n] implies f(D1, . . ., Dn)⊆ f(E1, . . ., En).

That is, smaller variable domains yield smaller reduced domains.
Now, the following useful result shows that a large number of domain reduc-

tion rules are monotonic.

Theorem 1. ([10]) Suppose each D′
i is obtained from Di using a combination

of
– union and intersection operations,
– transposition and composition operations applied to binary relations,
– join operation �,
– projection functions, and
– removal of an element.

Then the domain reduction rule is monotonic.

This repertoire of operations is sufficient to describe typical domain reduction
rules considered in various constraint solvers used in constraint programming sys-
tems, including solvers for Boolean constraints, linear constraints over integers,
and arithmetic constraints over reals, see, e.g., [10].

Monotonic domain reduction rules are useful for two reasons. First, we have
the following observation.

Note 1. Assume a finite set of monotonic domain reduction rules and an initial
CSP P . Every stabilizing derivation starting in P yields the same outcome.

Second, monotonic domain reduction rules can be scheduled more efficiently
than by means of a naive round-robin strategy. This is achieved by using a



60 K.R. Apt

generic iteration algorithm which in its most general form computes the
least common fixpoint of a set of functions F in an appropriate partial ordering.
This has been observed in varying forms of generality in the works of [12], [28],
[17] and [7]. This algorithm has the following form. We assume here a finite set of
functions F , each operating on a given partial ordering with the least element ⊥.

Generic Iteration algorithm

d := ⊥;
G := F ;
WHILE G �= ∅ DO

choose g ∈ G;
IF d �= g(d) THEN

G := G ∪ update(G, g, d);
d := g(d)

ELSE
G := G− {g}

END
END

where for all G, g, d

A {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G, g, d).

The intuition behind the assumption A is that update(G, g, d) contains at
least all the functions from F −G for which d is a fixpoint but g(d) is not. So at
each loop iteration if d �= g(d), such functions are added to the set G. Otherwise
the function g is removed from G.

An obvious way to satisfy assumption A is by using the following update
function:

update(G, g, d) := {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)}.

The problem with this choice of update is that it is expensive to compute because
for each function f inF−G we would have to compute the values f(g(d)) and f(d).
So in practice, we are interested in some approximations from above of this update
function that are easy to compute. We shall return to this matter in a moment.

First let us clarify the status of the above algorithm. Recall that a function f
on a partial ordering (D, # ) is called monotonic if x # y implies f(x) # f(y)
for all x, y and inflationary if x # f(x) for all x.

Theorem 2. ([7]) Suppose that (D, # ) is a finite partial ordering with the
least element ⊥. Let F be a finite set of monotonic and inflationary functions
on D. Then every execution of the Generic Iteration algorithm terminates
and computes in d the least common fixpoint of the functions from F .

In the applications we study the iterations carried out on a partial ordering
that is a Cartesian product of the component partial orderings. More precisely,
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given n partial orderings (Di, # i), each with the least element ⊥i, we assume
that each considered function g is defined on a ‘partial’ Cartesian product Di1 ×
. . . ×Dil

. Here i1, . . ., il is a subsequence of 1, . . ., n that we call the scheme of
g. Given d ∈ D1 × · · · ×Dn, where d := d1, . . ., dn, and a scheme s := i1, . . ., il
we denote by d[s] the sequence di1 , . . ., dil

.
The corresponding instance of the above Generic Iteration algorithm then

takes the following form.

Generic Iteration for Compound Domains algorithm

d := (⊥1, . . .,⊥n);
d′ := d;
G := F ;
WHILE G �= ∅ DO

choose g ∈ G;
d′[s] := g(d[s]), where s is the scheme of g;
IF d′[s] �= d[s] THEN

G := G ∪ {f ∈ F | scheme of f includes i such that d[i] �= d′[i]};
d[s] := d′[s]

ELSE
G := G− {g}

END
END

So this algorithm uses an update function that is straightforward to compute.
It simply checks which components of d are modified and selects the functions
that depend on these components. It is a standard scheduling algorithm used in
most constraint programming systems.

Example 2: Arc Consistency

Arc consistency , introduced in [24], is the most popular notion of local con-
sistency considered in constraint programming. Let us recall the definition.

Definition 2.
– Consider a binary constraint C on the variables x, y with the domains Dx

and Dy, that is C ⊆Dx ×Dy. We call C arc consistent if
• ∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C,
• ∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C.

– We call a CSP arc consistent if all its binary constraints are arc consistent.

So a binary constraint is arc consistent if every value in each domain has a
support in the other domain, where we call b a support for a if the pair (a, b)
(or, depending on the ordering of the variables, (b, a)) belongs to the constraint.

In the literature several arc consistency algorithms have been proposed. Their
purpose is to transform a given CSP into one that is arc consistent without los-
ing any solution. We shall now illustrate how the most popular arc consistency
algorithm, AC-3, due to[24], can be explained as a specific scheduling of the
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appropriate domain reduction rules. First, let us define the notion of arc consis-
tency in terms of such rules.

Assume a binary constraint C on the variables x, y. We introduce the following
two rules.

ARC CONSISTENCY 1

〈C ; x ∈ Dx, y ∈ Dy〉
〈C ; x ∈ D′

x, y ∈ Dy〉
where D′

x := {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C}.

ARC CONSISTENCY 2

〈C ; x ∈ Dx, y ∈ Dy〉
〈C ; x ∈ Dx, y ∈ D′

y〉

where D′
y := {b ∈ Dy | ∃ a ∈ Dx (a, b) ∈ C}.

So in each rule a selected variable domain is reduced by retaining only the
supported values. The following observation characterizes the notion of arc con-
sistency in terms of the above two rules.

Note 2 (Arc Consistency). A CSP is arc consistent iff it is closed under the
applications of the ARC CONSISTENCY rules 1 and 2.

So to transform a given CSP into an equivalent one that is arc consistent it
suffices to repeatedly apply the above two rules for all present binary constraints.
Since these rules are monotonic, we can schedule them using the Generic Iter-
ation for Compound Domains algorithm. However, in the case of the above
rules an improved generic iteration algorithm can be employed that takes into
account commutativity and idempotence of the considered functions, see [8].

Recall that given two functions f and g on a partial ordering we say that
f is idempotent if f(f(x)) = f(x) for all x and say that f and g commute
if f(g(x)) = g(f(x)) for all x. The relevant observation concerning these two
properties is the following.

Note 3. Suppose that all functions in F are idempotent and that for each func-
tion g we have a set of functions Comm(g) from F such that each element of
Comm(g) commutes with g. If update(G, g, d) satisfies the assumption A, then
so does the function update(G, g, d)− Comm(g).

In practice it means that in each iteration of the generic iteration algorithm less
functions need to be added to the set G. This yields a more efficient algorithm.

In the case of arc consistency for each binary constraint C the functions cor-
responding to the ARC CONSISTENCY rules 1 and 2 referring to C commute.
Also, given two binary constraints that share the first (resp. second) variable, the
corresponding ARC CONSISTENCY rules 1 (resp. 2) for these two constraints
commute, as well. Further, all such functions are idempotent. So, thanks to the
above Note, we can use an appropriately ‘tighter’ update function. The resulting
algorithm is equivalent to the AC-3 algorithm.
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Example 3: Constructive Disjunction

One of the main reasons for combinatorial explosion in search for solutions to a
CSP are disjunctive constraints. A typical example is the following constraint
used in scheduling problems:

Start[task1] + Duration[task1] ≤ Start[task2] ∨
Start[task2] + Duration[task2] ≤ Start[task1]

stating that either task1 is scheduled before task2 or vice versa. To deal with
a disjunctive constraint we can apply the following splitting rule (we omit here
the information about the variable domains):

C1 ∨ C2

C1 | C2

which amounts to a case analysis.
However, as already explained in Section 3 it is in general preferable to post-

pone an application of a splitting rule and try to reduce the domains first. Con-
structive disjunction , see [29], is a technique that occasionally allows us to
do this. It can be expressed in our rule-based framework as a domain reduction
rule that uses some auxiliary derivations as side conditions:

CONSTRUCTIVE DISJUNCTION

〈C1 ∨ C2 ; x1 ∈ D1, . . ., xn ∈ Dn〉
〈C′

1 ∨ C′
2 ; x1 ∈ D′

1 ∪D′′
1 , . . ., xn ∈ D′

n ∪D′′
n〉

where der1, der2

with

der1 := 〈C1 ; x1 ∈ D1, . . ., xn ∈ Dn〉 � 〈C′
1 ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉,

der2 := 〈C2 ; x1 ∈ D1, . . ., xn ∈ Dn〉 � 〈C′
2 ; x1 ∈ D′′

1 , . . ., xn ∈ D′′
n〉,

and where C′
1 is the result of restricting the constraint in C1 to D′

1, . . ., D
′
n and

similarly for C′
2.

In words: assuming we reduced the domains of each disjunct separately, we
can reduce the domains of the disjunctive constraint to the respective unions of
the reduced domains. As an example consider the constraint

〈|x− y| = 1 ; x ∈ [4..10], y ∈ [2..7]〉.

We can view |x− y| = 1 as the disjunctive constraint (x− y = 1) ∨ (y− x = 1).
In the presence of the ARC CONSISTENCY rules 1 and 2 rules we have then

〈x− y = 1 ; x ∈ [4..10], y ∈ [2..7]〉 � 〈x− y = 1 ; x ∈ [4..8], y ∈ [3..7]〉

and

〈y − x = 1 ; x ∈ [4..10], y ∈ [2..7]〉 � 〈y − x = 1 ; x ∈ [4..6], y ∈ [5..7]〉.
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So using the CONSTRUCTIVE DISJUNCTION rule we obtain

〈|x− y| = 1 ; x ∈ [4..8], y ∈ [3..7]〉.

If each disjunct of a disjunctive constraint is a conjunction of constraints, the
auxiliary derivations in the side conditions can be longer than just one step. Once
the rules used in these derivations are of an appropriate format, their applications
can be scheduled using one of the discussed generic iteration algorithms. Then
the single application of the CONSTRUCTIVE DISJUNCTION rule consists in
fact of two applications of the appropriate iteration algorithm.

It is straightforward to check that if the auxiliary derivations involve only
monotonic domain reduction rules, then the CONSTRUCTIVE DISJUNCTION
rule is itself monotonic. So the Generic Iteration for Compound Domains
algorithm can be applied both within the side conditions of this rule and for
scheduling this rule together with other monotonic domain reduction rules that
are used to deal with other, non-disjunctive, constraints.

In this framework it is straightforward to formulate some strengthenings of
the constructive disjunction that lead to other modification of the constraints
C1 and C2 than C′

1 and C′
2.

Example 4: Propagation Rules

These are rules that allow us to add new constraints. Assuming a given set A of
‘allowed’ constraints we write such rules as

B
C

where B, C ⊆ A.
This rule states that in presence of all constraints in B the constraints in C

can be added, and is a shorthand for a deterministic rule of the following form:

〈B ; x1 ∈ D1, . . ., xn ∈ Dn〉
〈B, C ; x1 ∈ D1, . . ., xn ∈ Dn〉

An example of such a rule is the transitivity rule:

x < y, y < z

x < z

that refers to a linear ordering < on the underlying domain (for example natural
numbers).

In what follows we focus on another example of propagation rules, member-
ship rules. They have the following form:

y1 ∈ S1, . . ., yk ∈ Sk

z1 �= a1, . . ., zm �= am

where yi ∈ Si and zj �= aj are unary constraints with the obvious meaning.
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Below we write such a rule as:

y1 ∈ S1, . . ., yk ∈ Sk → z1 �= a1, . . ., zm �= am.

The intuitive meaning of this rule is: if for all i ∈ [1..k] the domain of each yi is
a subset of Si, then for all j ∈ [1..m] remove the element aj from the domain of
zj.

The membership rules allow us to reason about constraints given explicitly
in a form of a table. As an example consider the three valued logic of Kleene.
Let us focus on the conjunction constraint and3(x, y, z) defined by the following
table:

t f u
t t f u
f f f f
u u f u

That is, and3 consists of 9 triples. Then the membership rule y ∈ {u, f}→ z �= t,
or more precisely the rule

〈and3(x, y, z), y ∈ {u, f} ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈and3(x, y, z), y ∈ {u, f}, z �= t ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

is equivalence preserving. This rule states that if y is either u or f , then t can
be removed from the domain of z.

We call a membership rule is minimal if it is equivalence preserving and its
conclusions cannot be established by either removing from its premise a variable
or by expanding a variable range. For example, the above rule y ∈ {u, f}→ z �= t
is minimal, while neither x ∈ {u}, y ∈ {u, f}→ z �= t nor y ∈ {u}→ z �= t is. In
the case of the and3 constraint there are 18 minimal membership rules.

To clarify the nature of the membership rules let us mention that, as shown
in [9], in the case of two-valued logic the corresponding set of minimal mem-
bership rules entails a form of constraint propagation that is equivalent to the
unit propagation, a well-known form of resolution for propositional logic. So the
membership rules can be seen as a generalization of the unit propagation to the
explicitly given constraints, in particular to the case of many valued logics.

Membership rules can be alternatively viewed as a special class of monotonic
domain reductions rules in which the domain of each zi variable is modified
by removing ai from it. So we can schedule these rules using the Generic
Iteration for Compound Domains algorithm.

However, the propagation rules, so in particular the membership rules, satisfy
an important property that allows us to schedule them using a more efficient,
fine-tuned, scheduler. We call this property stability . It states that in each
derivation the rule needs to be applied at most once: if it is applied, then it does
not need to be applied again. So during the computation the applied rules that
are stable can be permanently removed from the initial rule set. The resulting
scheduler for the membership rules and its further optimizations are discussed
in [14].
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5 Low Level

The low level allows us to focus on matters that go beyond the issue of rule
scheduling. At this level we can address matters concerned with further opti-
mization of the constraint propagation algorithms. Various improvements of the
AC-3 algorithm that are concerned with specific choices of the data structures
used belong here but cannot be explained by focusing the discussion on the
corresponding ARC CONSISTENCY 1 and 2 rules.

On the other hand some other optimization issues can be explained in proof-
theoretic terms. In what follows we focus on the membership rules for which we
worked out the details. These rules allow us to implement constraint propagation
for explicitly given constraints. We explained above that they can be scheduled
using a fine-tuned scheduler. However, even when an explicitly given constraint
is small, the number of minimal membership rules can be large and it is not easy
to find them all.

So a need arises to generate such rules automatically. This is what we did in
[11]. We also proved there that the resulting form of constraint propagation is
equivalent to hyper-arc consistency , a natural generalization of arc consis-
tency to n-ary constraints introduced in [25].

A further improvement can be achieved by removing some rules before
scheduling them. This idea was pursued in [14]. Given a set of monotonic domain
reduction rules R we say that a rule r is redundant if for each initial CSP P the
unique outcome of a stabilizing derivation (guaranteed by Note 1) is the same
with r removed from R. In general, the iterated removal of redundant rules does
not yield a unique outcome but in the case of the membership rules some useful
heuristics can be used to appropriately schedule the candidate rules for removal.

We can summarize the improvements concerned with the membership rules
as follows:

– For explicitly given constraints all minimal membership rules can be auto-
matically generated.

– Subsequently redundant rules can be removed.
– A fine-tuned scheduler can be used to schedule the remaining rules.
– This scheduler allows us to remove permanently some rules which is useful

during the top-down search.

To illustrate these matters consider the 11-valued and11 constraint used in
the automatic test pattern generation (ATPG) systems. There are in total 4656
minimal membership rules. After removing the redundant rules only 393 remain.
This leads to substantial gains in computing. To give an idea of the scale of the
improvement here are the computation times in seconds for three schedulers used
to find all solutions to a CSP consisting of the and11 constraint and solved using
a random variable selection, domain ordering and domain splitting:

Fine-tuned Generic CHR
all rules 1874 3321 7615
non-redundant rules 157 316 543
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CHR stands for the standard CHR scheduler normally used to schedule such rules.
(CHR is a high-level language extension of logic programming used to write user-
defined constraints, for an overview see [18].) So using this approach a 50 fold
improvement in computation time was achieved. In general, we noted that the
larger the constraint the larger the gain in computing achieved by the above
approach.

6 Conclusions

In this paper we assessed the crucial features of constraint programming (CP)
by means of a proof-theoretic perspective. To this end we identified three levels
of abstraction. At each level proof rules and derivations played a crucial role.
At the highest level they allowed us to clarify the relation between CP and the
computation as deduction paradigm. At the middle level we discussed efficient
schedulers for specific classes of rules. Finally, at the lowest level we explained
how specific rules can be automatically generated, optimized and scheduled in a
customized way.

This presentation of CP suggests that it has close links with the rule-based
programming. And indeed, several realizations of constraint programming
through some form of rule-based programming exist. For example, constraint
logic programs are sets of rules, so constraint logic programming can be natu-
rally seen as an instance of rule-based programming. Further, the already men-
tioned CHR language is a rule-based language, though it does not have the full
capabilities of constraint programming. In practise, CHR is available as a library
of a constraint programming system, for example ECLiPSe (see [1]) or SICStus
Prolog (see [3]). In turn, ELAN, see [2], is a rule-based programming language
that can be naturally used to explain various aspects of constraint programming,
see for example [22] and [15].

In our presentation we abstracted from specific constraint programming lan-
guages and their realizations and analyzed instead the principles of the corre-
sponding programming style. This allowed us to isolate the essential features of
constraint programming by focusing on proof rules, derivations and schedulers.
This account of constraint programming draws on our work on the subject car-
ried out in the past seven years. In particular, the high level view was introduced
in [6]. In turn, the middle level summarizes our work reported in [7, 8]. Both lev-
els are discussed in more detail in [10]. Finally, the account of propagation rules
and of low level draws on [11, 14].

This work was pursued by others. Here are some representative references.
Concerning the middle level, [26] showed that the framework of Section 4 allows
us to parallelize constraint propagation algorithms in a simple and uniform way,
while [13] showed how to use it to derive constraint propagation algorithms
for soft constraints. In turn, [19] explained other arc consistency algorithms by
slightly extending this framework.

Concerning the lowest level, [27] considered rules in which parameters (i.e.,
unspecified constants) are allowed. This led to a decrease in the number of gen-



68 K.R. Apt

erated rules. In turn, [4] presented an algorithm that generates more general and
more expressive rules, for example with variable equalities in the conclusion. Fi-
nally, [5] considered the problem of generating the rules for constraints defined
intensionally over infinite domains.
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INRIA - Rocquencourt
{Tomasz.Blanc, Luc.Maranget, Jean-Jacques.Levy}@inria.fr

http://moscova.inria.fr/∼{tblanc, levy, maranget}

Abstract. Despite decades of research in the λ-calculus, the syntactic
properties of the weak λ-calculus did not receive great attention. How-
ever, this theory is more relevant for the implementation of programming
languages than the usual theory of the strong λ-calculus. In fact, the
frameworks of weak explicit substitutions, or computational monads, or
λ-calculus with a let statement, or super-combinators, were developed
for adhoc purposes related to programming language implementation. In
this paper, we concentrate on sharing of subterms in a confluent variant
of the weak λ-calculus. We introduce a labeling of this calculus that ex-
presses a confluent theory of reductions with sharing, independent of the
reduction strategy. We finally state that Wadsworth’s evaluation tech-
nique with sharing of subterms corresponds to our formal setting.

1 Introduction

In the terminology of the λ-calculus, a strong calculus validates the following
ξ-rule

(ξ)
M → N

λx.M → λx.N

A weak calculus does not validate this rule. One easily shows that the weak
λ-calculus is not confluent. In [18], an extension of the weak λ-calculus was
introduced. It is strongly inspired from the one of Çağman and Hindley [6] for
Combinatory Logic. In this calculus, a restricted version of the ξ-rule is valid;
this new ξ′-rule is intuitively defined by

(ξ′)
M

R→ N x �∈ R

λx.M
R→ λx.N

meaning that the ξ-rule is valid when the bound variable x is not free in the
redex R contracted between M and N (This rule will be presented in Section 2
in a form slightly different from — but equivalent to — the σ-rule used in [18]).
The resulting new weak λ-calculus is confluent as shown in [18].

The theory of optimal reductions in the λ-calculus [5] has been extensively
studied by Abadi, Asperti, Coppola, Gonthier, Guerrini, Lamping, Lawall, Lévy,
Mairson, Martini et al [3, 4, 9, 13, 15, 17]. These authors represent λ-terms as
graphs with shared subcontexts. For instance, in (λx.xa(xb))(λy.Iy) where
I = λx.x, it is necessary to share the redex Iy independently of the value

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 70–87, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of y. Therefore the subcontext I[ ] has to be shared. But after reduction of the
external redex, we get (λy.Iy)a((λy.Iy)b) and further Ia((λy.Iy)b), where the
shared subcontext I[ ] is instantiated with two different terms. Technically, in
these graphs, a shared subcontext can be referenced through a fan-in node to
multiplex incoming arcs from terms using it; and context holes are filled through
fan-out nodes to demultiplex outgoing arcs pointing to terms filling these holes.
For instance, Lamping’s graphs [13] operate on fans and brackets, which can
be decomposed into more elementary fans, brackets and croissants obeying to
reduction rules directed by the context semantics defined in [9].

In the weak λ-calculus, reductions are not performed under λ-abstractions.
In the above example, the subterm Iy in (λx.xa(xb))(λy.Iy) cannot be reduced
since inside the abstraction λy.Iy. Thus the subcontext I[ ] needs not be shared.
The λ-terms with sharing can be represented by directed acyclic graphs (dags)
instead of the (cyclic) Lamping’s graph structures required to implement shared
subcontexts. In this paper, we present a weak labeled λ-calculus that expresses
a confluent theory of sharing within the weak λ-calculus corresponding to the
shared evaluation strategy by Wadsworth [25] defined with dags in 1971!

The weak λ-calculus corresponds to runtime systems in functional languages,
since runtimes just pass arguments to functions and never compute function
bodies, i.e. under λ-abstractions. At compile-time, inlining or partial evaluation
are feasible; but the weak λ-calculus just corresponds to the execution phase.
However a runtime of a functional language usually implements a particular
reduction strategy such as call-by-name, call-by-need or call-by-value. We pre-
fer to model these runtimes by a confluent calculus which allows to consider
mixed strategies alternating call-by-need and call-by-value. Moreover, a conflu-
ent calculus makes independent sharing and reduction strategy, which are two
independent concepts. In runtimes of lazy functional languages (Haskell, LML,
G-machine) [20, 22], the call-by-need strategy will correspond to a (weak) left-
most outermost reduction with some amount of sharing.

In most functional runtime systems (See e.g. [16]), functions are implemented
by closures (See e.g. [16]), i.e. a pairs of a λ-abstraction (program) and a sub-
stitution (environment). The theory of explicit substitutions is related to the
notion of closure but does not restrict reduction strategies [1]. This theory is
not simple. It uses de Bruijn indices and is not confluent for open terms: Klop’s
counterexample [11] for surjective pairing can be adapted to the calculus of ex-
plicit substitutions [1]. However, confluence (on open terms) can be recovered at
the price of either considering a much more complex calculus of explicit substi-
tutions [7], or a theory of weak explicit substitutions as in [8, 18]. In the latter
case, a theory of sharing was sketched, through the definition of a weak labeled
calculus of explicit substitutions.

Closures and explicit substitutions are not necessary to express sharing of
λ-terms. For instance, call-by-need strategies by Launchbury, Odersky or Ariola
et al. [14, 19, 2] use a λ-calculus with a new let construct. However, these calculi
have often critical pairs (in the sense of term rewriting) and extra rules to handle
the let construct. Term rewriting systems (TRS) can also be used by lifting free
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variables and transforming each λ-abstraction into the application of several of
its free variables to a (super)combinator. In this paper we want to stay with the
classical set of λ-terms and subtheories of the classical λ-calculus.

In Section 2, we recall the definitions and basic properties of the weak λ-
calculus introduced in [18]. In Section 3, we consider the weak labeled λ-calculus
and prove its confluence. In Section 4, we relate labels and sharing. In Section 5,
we discuss several differences between the weak labeled λ-calculus and dag im-
plementations. In Section 6, we comment on the relation between TRSs and our
formal setting. We conclude in Section 7.

2 The Weak λ-Calculus

The weak λ-calculus is defined in [18]. As usual, the set of λ-terms is defined by

M,N ::= x | MN | λx.M
and β-reduction is

(β) (λx.M)N → M [[x\N ]]

where M [[x\N ]] is recursively defined by

x[[x\P ]] = P
y[[x\P ]] = y (x �= y)

(MN)[[x\P ]] = M [[x\P ]] N [[x\P ]]
(λy.M)[[x\P ]] = λy.M [[x\P ]] (x �= y, y not free in P )

In the last case, the substitution must not bind free variables in P . We keep
α-conversion implicit, and freely use renaming of bound variables. Equality on
terms is defined up to the renaming of bound variables (α-conversion). In the
(strong) λ-calculus, every context is active, since any subterm may be reduced
at any time. By contrast, in the λ-calculus without the ξ-rule, no reduction
inside a λ-abstraction occurs. As a consequence, the Church-Rosser property
(confluence) does not hold: when N → N ′ we have

(λx.λy.M)N ��

��

(λx.λy.M)N ′

��

(λy.M [[x\N ]]) (λy.M [[x\N ′]])

The term (λy.M [[x\N ]]) is in normal form and cannot be reduced, and the
previous diagram does not commute. The problem has been known for a long
time in combinatory logic [10], although often kept as a “folk theorem”. In [6],
it is specifically stated, and shown as being relevant when translating the λ-
calculus into combinatory logic. In [18], it is proved that confluence is recovered
by adding the new inference rule
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(σ)
N → N ′

M [[x\N ]] → M [[x\N ′]]
(M linear in x)

where the free variable M is linear in x if x has exactly one occurrence in M . The
use of substitution aims at reflecting the fact that N does not contain variables
bound outside N . Intuitively, it means that N does not depend on an enclosing
λ-abstraction or its argument. Therefore N may be reduced in such a context.
The linearity condition avoids to consider parallel reduction steps.

Here, instead of the σ-rule, we use a related, more direct approach to recover
confluence in the weak λ-calculus. Let us write x �∈ M , when x is not a free
variable in M . Formally:

x �∈ y
(x �= y)

x �∈ M
x �∈ λy.M

x �∈ M x �∈ N
x �∈ MN

Then our alternative presentation of the weak λ-calculus adds a new ξ′-rule to
the classical μ and ν-rules.

(β) R = (λx.M)N R→ M [[x\N ]] (ν)
M

R→ M ′

MN
R→ M ′N

(w)
M

R→ N
M → N

(ξ′)
M

R→ M ′ x �∈ R

λx.M
R→ λx.M ′

(μ)
N

R→ N ′

MN
R→ MN ′

The reduction step relation R→ is annotated with the contracted redex R. A λ-
abstraction to the left of the reduction step relation cannot bind a variable in R.
Therefore α-conversion does not change the redex annotating the reduction step
relation. Like the σ-rule, the ξ′-rule allows the reduction of a subterm located
under a λ-abstraction if the contracted redex does not contain a variable bound
by the λ-abstraction. As usual, we write→→ for the transitive and reflexive closure
of →. So M →→ N iff M can reduce in several steps (maybe none) to N .

Lemma 1. In the weak λ-calculus, one has

(i) N → N ′ ⇒ M [[x\N ]] →→ M [[x\N ′]]
(ii) M → M ′ ⇒ M [[x\N ]] → M ′[[x\N ]]
(iii) M [[x\N ]][[y\N ′]] = M [[y\N ′]][[x\N [[y\N ′]]]] (x �∈ N ′)

Theorem 1. The weak λ-calculus is confluent.

Proof: Straightforward application of previous lemma. �

In comparison with the strong λ-calculus, there is an additional way of cre-
ating a redex. After contracting M = (λx.Ix)y, we obtain a redex Iy which is
neither a residual of a redex of M nor a created redex of the strong λ-calculus.
In fact, although the subterm Ix in M is a redex for the strong λ-calculus, it is
not a redex for the weak λ-calculus: it is frozen in M by the occurrence of x.
The contraction of the enclosing λ-abstraction activates Iy.
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The weak λ-calculus enjoys syntactic properties simpler than the strong λ-
calculus. In the weak λ-calculus, the finite developments theorem [5] is easy
to prove, since residuals of disjoint redexes cannot be nested. In the strong λ-
calculus, residuals of two disjoint redexes may be nested. The typical example
is: M = (λx.Ix)(Jy) with I = J = λx.x. Then, the two disjoint Ix and Jy re-
dexes have nested residuals:

(λx.Ix)(Jy) → I(Jy)

But in the weak λ-calculus this case does not occur since the subterm Ix in
M contains the bound variable x and is not considered as a redex of the weak
λ-calculus. In this calculus, residuals of disjoint redexes are disjoint redexes.

This proposition allows now to state another interesting theorem of the weak
λ-calculus, namely Curry’s standardization theorem. A standard reduction is
usually defined as a reduction contracting redexes in an outside-in and left-to-
right way. Precisely a reduction of the form

M = M0 → M1 → . . .Mn = N (n ≥ 0)

is standard when for all i and j such that 0 ≤ i < j < n, the Rj-redex contracted
at step j in Mj−1 is not a residual of a redex external to or to the left of the
Ri-redex contracted at step i in Mi−1. We write M

st
�� �� N for the existence of a

standard reduction from M to N . Notice that the leftmost outermost reduction
is a standard reduction (in the usual λ-calculus), but standard reductions may
be more general.

Theorem 2. If M →→ M ′, then M
st
�� �� M ′.

Proof: One follows the proof scheme in [11] or checks the axioms of [21]. The
basic step of the proof follows from the observation that when M

R→ M ′ and S′

is a residual of S (in the usual sense of the strong λ-calculus) in M not inside
R, then S is a redex of the weak λ-calculus. Then assume that M → M ′ → N ′

by contracting R in M and S′ in M ′. Suppose R and S′ are not in the standard
ordering. Then S′ is residual of a redex S in M to the left of or outside R. Thus,
we know that S is a redex of the weak λ-calculus and we may contract it getting
N . By confluence (actually by finite developments), we converge to N ′ (by a
finite development of the residuals of R in N). �

A normal form is a term without redex. For instance I = λx.x or λy.Iy are
normal forms. Let norm

�� �� be the reduction contracting, at each step, the leftmost
outermost redex.

Theorem 3. If M →→ N and N is a normal form, then M norm
�� �� N .

Proof: By persistence of the leftmost outermost redex and the use of the previous
theorem. �
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3 The Weak Labeled λ-Calculus

In this section, a calculus for sharing in the weak λ-calculus is developed with the
help of a confluent, labeled calculus. Labels are used to name subterms; subterms
which are copies along reductions keep their labels, but new subterms must have
new labels. We want the weak labeled λ-calculus to be confluent, as sharing and
reduction strategy are independent concepts. Therefore an adequate naming
scheme should be invariant through reductions equivalent by permutations of
reduction steps. The labeled calculus is different from the one used in the labeled
calculus of weak explicit substitutions [18], since we have no longer closures and
explicit substitutions, and we have to take care of variable binders.

We base our labeling scheme on the labeling of the strong λ-calculus [17].

U, V ::= α :X labeled term
X,Y ::= S | U clipped or labeled term
S, T ::= x | UV | λx.U clipped term
α, β ::= a | )α′* | +α′, | [α′, β] | 〈α′, β〉 labels

α′, β′ ::= α1α2 · · ·αn (n > 0) compound labels

The labeled term α : X is said to have label α. Labels can be stacked as in
α1 : α2 : · · ·αn : X . Compound labels, used in the definition of the �-reduction,
are sequences of labels. An (atomic) label can be a simple letter, or formed by
overlining )α′*, or underlining +α′,; it can also be a pair [α′, β] or 〈α′, β〉 of
compound label α′ and label β. In the pair with square brackets, we say that α′

tags β; for angle brackets, then α′ marks β.
The labeled reduction �-rule is defined as

(�) R = (α′ · λx.U)V R→ )α′* : (α′©x U)[[x \ +α′, :V ]]

where
α1α2 · · ·αn · S = α1 :α2 : · · ·αn :S

λx

U

x x

α′

V

→

�α′�

U

V V

�α′	 �α′	

Fig. 1. A reduction step in the weak labeled λ-calculus (dotted lines represent paths
from the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates)
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The name of R is α′; we write name(R) = α′. We assume that substitution
has a higher precedence than labeling. Hence )α′* : U [[x\V ]] is read as )α′* :
(U [[x\V ]]). As in the strong labeled λ-calculus, we sandwich the body of the
function part of the redex with its name overlined and underlined as shown in
Fig 1. The diffusion α′©x U creates new labels along paths from the root of U
to free occurrences of x, as illustrated in Fig 1. Therefore new labels appeared
for every subterm of U containing a free occurrence of x. Formally substitution
and diffusion are defined as follows:

x[[x\W ]] = W
y[[x\W ]] = y

(UV )[[x\W ]] = U [[x\W ]]V [[x\W ]]
(λy.U)[[x\W ]] = λy.U [[x\W ]]
(β :X)[[x\W ]] = β :X [[x\W ]]

α′©x X = X if x �∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V ) if x ∈ U
α′©x UV = (〈α′, U〉 α′©x V ) if x �∈ U and x ∈ V

α′©x λy.U = λy. α′©x U if x ∈ λy.U
α′©x β :X = [α′, β] :α′©x X if x ∈ X

〈α′, β : X〉 = 〈α′, β〉 : X

An example of reduction is illustrated in Fig 2.
During diffusion, we mark the left subterm of an application when it does not

contain the bound variable x, since the application may become a redex of which
we want to keep the history. Take for instance, the unlabeled (λx.Ix)y, where
I = λu.u. Then Ix is not a redex in (λx.Ix)y since its argument contains x, but
it becomes the redex Iy after contracting the enclosing redex. We want to mark
the name of redex Iy with the name of the enclosing redex that activated it. In
the weak labeled λ-calculus, this example becomes:

a : (b : (λx. c : (d :λu. e :u) f :x) g :y)
→ a :)b* : [b, c] : (〈b, d〉 : (λu.e :u) [b, f ] :+b, :g :y)

where the name 〈b, d〉 of Iy contains the name b of (λx.Ix)y, whereas if the
diffusion did not mark the left part I of the application Ix, the name d of Iy
would not have contained the name b of the redex contracted to create Iy.

As for the theory of the strong labeled λ-calculus, the label of a labeled
subterm reflects its history. A simple letter stands for a labeled term existing
in the initial term (empty history). Overlining )α′*, underlining +α′,, marks
〈α′, β〉 and tags [α′, β] indicate past contraction of a redex of name α′. Overlined
and underlined labels are kept to relate the weak labeled λ-calculus with the
strong case.
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U1 = a

b

λu

c

d

u

e

f

u

g

m

λy

n

y

o

v

h

λz

i

j

λx

k

x

�

z

U2 = a

�b�
[b, c]

[b, d]

�b	
h

λz

i

j

λx

k

x

�

z

[b, e]

[b, f ]

�b	
h

λz

i

j

λx

k

x

�

z

g

m

λy

n

y

o

v

U3 = a

�b�
[b, c]

�α′�
[α′, i]

〈α′, j〉
λx

k

x

[α′, �]

�α′	

[b, e]

X

where X =

[b, f ]

�b	
h

λz

i

j

λx

k

x

�

z

g

m

λy

n

y

o

v

Fig. 2. An example of reduction in the weak labeled λ-calculus where U1 → U2 → U3

and α′ = [b, d]�b	h. (The redex (λy.y)v could also be contracted in U1, U2 and U3;
however (λx.x)z with name j is not a redex in U1 and U2; but its “residual” in U3 is
a created redex in U3, therefore its name is marked by the name α′ of the contracted
redex.)
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Free variables are defined as in the unlabeled λ-calculus. The context rules
are defined as follows for labeled reduction:

(ν)
U

R→ U ′

UV
R→ U ′V

(λ)
X

R→ X ′

α :X R→ α :X ′
(w)

X
R→ X ′

X → X ′

(μ) V
R→ V ′

UV
R→ UV ′

(ξ′) U
R→ U ′ x �∈ R

λx.U
R→ λx.U ′

We also write →→ for the transitive and reflexive closure of →.

Lemma 2. If X
R→ X ′ and x �∈ R, then α′©x X → α′©x X ′

Proof: We first remark that as x �∈ R and X
R→ X ′, we have x ∈ X if and

only if x ∈ X ′. Clearly, x �∈ X implies x �∈ X ′ since the set of free variables
of the contractum of a redex is a subset of the free variables of the contracted
redex. Conversely, a free variable disappears in the contractum iff the redex has
all occurrences of this free variable in its argument and the redex erases its
argument. But as x �∈ R, this case is not possible.

Now we proceed by cases on the definition of diffusion and by induction on
the size of X :

1. If x �∈ X , then x �∈ X ′ and the lemma is obvious, since α′©x X = X and
α′©x X ′ = X ′.

2. If x ∈ X , we have again several cases.
(a) Let R be in U and X = UV → U ′V = X ′.

i. If we have x ∈ U , one gets by induction α′©x U → α′©x U ′. Then
the first remark yields x ∈ U ′. And, by the definition of diffusion, we
have α′©x X = (α′©x U α′©x V ) and α′©x X ′ = (α′©x U ′ α′©x V ). By
the ν-rule, we obtain α′©x X → α′©x X ′.

ii. If we have x �∈ U , the first remark yields x �∈ U ′. Then, we have
α′©x X = (〈α′, U〉 α′©x V ) and α′©x X ′ = (〈α′, U ′〉 α′©x V ). By the
λ-rule for context, we get 〈α′, U〉 → 〈α′, U ′〉, and therefore, by the
ν-rule α′©x X → α′©x X ′.

(b) If R is in V , we have a simpler but similar argument.
(c) The other cases when X = λy.U and X = β :Y are similar.

�

Lemma 3. If U → U ′ and X → X ′, then X [[x\U ]] →→ X [[x\U ′]] and X [[x\U ]] →
X ′[[x\U ]].

Proof: Straightforward by induction on the size of X . �

Theorem 4. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [5]. The only interesting cases are
the two commuting diagrams, when x �∈ R, and U

R→ U ′, V → V ′:
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(α′ · λx.U)V R ��

��

(α′ · λx.U ′)V

��

)α′* : (α′©x U)[[x\+α′, :V ]] �� )α′* : (α′©x U ′)[[x\+α′, :V ]]

(α′ · λx.U)V ��

��

(α′ · λx.U)V ′

��

)α′* : (α′©x U)[[x\+α′, :V ]] �� �� )α′* : (α′©x U)[[x\+α′, :V ′]]

which can be proved with the help of previous lemmas. �

4 Sharing of Subterms

In the labeled λ-calculus, the name of a redex records its history. Namely if a
redex S is the residual of a redex R, their names are equal; and if a redex S is
created by the contraction of a redex R, the name of R is contained in the name
of S. We formalize this central property of the weak labeled λ-calculus with the
following ≺ relation. We say that α′ is strictly smaller than β′, we write α′ ≺ β′,
for the following cases:

α′ ≺ )α′* α′ ≺ +α′, α′ ≺ [α′, β] α′ ≺ 〈α′, β〉

α′ ≺ βi ⇒ α′ ≺ β1 · · ·βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

Hence the name α′ of a redex is smaller than any label where it is overlined or
underlined. It is also smaller than a pair of which it is the first component. If it is
smaller than some βi, it is smaller than a word for which βi is a subcomponent.
Moreover we close this relation by transitivity. This relation is clearly a strict
ordering. This relation expresses the intuitive interpretation of labels we gave
when defining labels: α′ ≺ β′ if the contraction of a redex of name α′ participates
to the “creation” of β′. We recall that a reduction X →→ Y creates redex S in Y
if S is not a residual (along this reduction) of a redex R in X .

Lemma 4. If X
R→ Y and redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. �

The goal of this section is to prove that two subterms with the same label
are equal in the weak labeled λ-calculus, provided that we start reductions from
a term with distinct letters on its subterms. This will mean that two subterms
labeled with the same label can be shared in a dag representation of terms.
To prove this property, we first show that several invariants are preserved by
reductions.

Invariant 1. Q(W ) holds iff we have α′ �≺ β for every redex R with name α′

and any subterm β :X in W .
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A complete labeled reduction step U
α′

=⇒ V is the finite development of all
redexes with name α in U . We first prove that invariant Q is preserved by
complete labeled reduction steps. Intuitively, invariant Q means that the names
of redexes are maximal. It guarantees that when performing complete labeled
reduction steps, the names of the contracted redexes are all distinct.

Lemma 5. If Q(W ) and W
γ′

=⇒ W ′, then Q(W ′).

Proof: Let R with name α′ be a redex in W ′. Let β :U be a subterm of W ′ such
that α′ ≺ β.

1. R is a residual of a redex R′ of W . Then name(R) = name(R′) = α′.
(a) β is a label in W . Impossible since Q(W ).
(b) β is created by the reduction from W to W ′.

By cases on the label’s creation:
i. β = )γ′*. Then α′ ≺ )γ′*. There are again two cases:

A. α′ = γ′. Impossible by definition of
γ′

=⇒.
B. α′ ≺ γ′. If γ′ = γ1 . . . γn, there exists γi such that α′ ≺ γi.

Therefore there is a subterm γi : V in W with α′ ≺ γi. This
contradicts Q(W ).

ii. β = +γ′, or β = [γ′, β1] or β = 〈γ′, β1〉. These cases are similar to
the previous one.

2. R is created by the reduction from W to W ′. Then γ′ ≺ α′ ≺ β.
(a) β is a label in W . We have γ′ ≺ β. Impossible by Q(W ).
(b) β is created by the reduction from W to W ′.

By case on the label’s creation:
i. β = )γ′*. Thus γ′ ≺ β As α′ ≺ )γ′*, we have α′ / γ′ and therefore

α′ ≺ α′, since γ′ ≺ α′. Contradiction.
ii. β = +γ′, or β = [γ′, β1] or β = 〈γ′, β1〉. These cases are similar to

the previous one.

�

To limit the number of cases to inspect, we consider a simple technical invariant
on left subterms of application nodes and show that they cannot be labeled by
an overlined or an underlined label.

Invariant 2. R(W ) holds iff for any clipped subterm UV in W , we have either
U = a :X, or U = [α′, β] :X, or U = 〈α′, β〉 :X.

Lemma 6. If R(W ) and W → W ′, then R(W ′).

Proof: Let U ′V ′ be a clipped subterm in W ′. This application node comes from
an application node T = UV in W . Let R = (α′ · λx.A)B be the contracted
redex.

1. If R is inside T , the only interesting case is when U contains R. Then we
have U = β :X , with R inside X . Therefore β is unchanged by the reduction
step, and R(W ) gives the form a, [γ′, β1], or 〈γ′, β1〉 of β.
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2. If R contains T in its argument B. Then U ′ = U and they have same labels.
3. Otherwise U ′ comes from an U in the function body part A of R. Then, if

x �∈ U ′V ′, then U ′ = U and this case is again straightforward. Otherwise,
there can be a diffusion inside U ′, but then the label of U ′ is a tagged or
marked pair. In all cases, R(W ′) holds.

�

Marked labels of the form 〈α′, β〉 record histories of reductions. A subterm
with a marked label indicates that the application node just above has been
activated by a redex with name α′. Although marked labels are necessary for
recording histories of reduction (see lemma 5), these labels have no impact on
the definition of sharing. The following sharing relation % means that two labels
are equal by erasing marks (in marked labels). It is defined inductively by:

a % a )α′* % )α′* +α′, % +α′,
β % γ ⇒ [α′, β] % [α′, γ] β % γ ⇒ 〈α′, β〉 % 〈α′, γ〉
β % γ ⇒ β % 〈α′, γ〉 β % γ ⇒ 〈α′, β〉 % γ

Thus, if α % β, the labeled terms α :X and β : Y are shared. This is expressed
by the following invariant.

Invariant 3. P(W ) holds iff, for any pair of subterms α :X and β :Y such that
α % β, we have X = Y .

To prove this invariant, we need two extra invariants. The first one states that
labels of free and bound variables cannot be equal up to the sharing relation.

Invariant 4. S(W ) holds iff, for any pair of subterms α :x and β : y such that
α % β, we have x free in W iff y free in W .

Lemma 7. If S(W ) and W → W ′, then S(W ′).

Proof: Firstly, a free (resp. bound) variable x in W ′ can only come from a free
(resp. bound) variable x in W . Secondly, a labeled subterm α :x in W ′ can only
come from a labeled subterm α1 : x in W where α % α1. Combining these two
remarks gives the full proof. �

In the weak labeled λ-calculus, the name of a redex is the compound label
found on the left part of an application towards the corresponding abstraction.
In a dag representation of terms, we only share subterms. Hence both applica-
tion and abstraction nodes of a shared redex are shared. This means that for a
given redex name α′, there must be sharing of the application subterm making
the redex. In the terminology of the weak labeled λ-calculus, it means that we
share the atomic label of the application node. To be more precise, we state the
following invariant.

Invariant 5. T (W ) holds iff, for any application subterms β : (α : X)U and
γ : (α :Y )V , we have β % γ.
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Lemma 8. If P(W ) ∧ Q(W ) ∧R(W ) ∧ T (W ) and W
γ′

=⇒ W ′, then T (W ′).

Proof: Take β : (α :X ′)U ′ and γ : (α :Y ′)V ′ in W ′.

1. α exists in W . Then γ′ �≺ α since Q(W ). Therefore, there are two labeled
terms U1 = β1 : (α : X)U and V1 = γ1 : (α : Y )V in W , with a possible
diffusion marking U1 and/or V1. Therefore, β1 % β and γ1 % γ. By T (W ),
we have β1 % γ1. Thus β % γ.

2. α = [γ′, α1]. Then β = [γ′, β1]. Then γ = [γ′, γ1], since both applications
received a single diffusion, since all γ′ redexes are disjoint by P(W ). In W ,
the corresponding applications are β1 : (α1 : XU) and γ1 : (α1 : Y V ). By
T (W ), we get β1 % γ1. Thus β % γ.

3. α = 〈γ′, α1〉. Case similar to previous one.
4. Other cases, impossible since R(W ).

�

Lemma 9. If P(W ) ∧ Q(W ) ∧ R(W ) ∧ S(W ) ∧ T (W ) and W
γ′

=⇒ W ′, then
P(W ′).

Proof: By T (W ), the labels of all redexes with name γ′ have the same value γ
modulo %. Therefore, by P(W ), all redexes with name γ′ are the same R =
(γ′ ·λx.A)B, and their contractums are identical R′ = )γ′* : (γ′©x A)[[x\+γ′, :B]].
As these redexes are identical, they are all disjoint. Conversely, every subterm
R is a redex by S(W ) if at least one R is a redex in W .

Let U ′ = α :X ′ and V ′ = β :Y ′ two subterms of W ′ such that α % β.

1. Both U ′ and V ′ come from subterms U = α : X and V = β : Y in W , with
same label as U ′ and V ′. By P(W ), we know that X = Y . There are two
cases.
(a) U ′ contains a contractum. Then either U contains x replaced by +γ′, :B.

Either U contains R. The first alternative is impossible since then R
would contain R in its argument. Since every R in X and Y is a redex

in W , then X = Y , X
γ′

=⇒ X ′ and Y
γ′

=⇒ Y ′. Thus X ′ = Y ′.
(b) U ′ does not contain a contractum of R.

i. U ′ is disjoint from the contractums. Thus U is a subterm of W
disjoint from redexes R. Then U = U ′.

ii. U ′ is in the argument part of a contractum. Thus, U is a subterm of
W in the argument part of a redex R.

iii. U ′ is in the body part of the contractum. Thus, U is a subterm of
W in the function body part of a redex R, but U does not contain
the variable x bound in R, since otherwise its label α would not be
equal to the one of U ′.

In any of these cases, U ′ = α : X ′ = U = α : X . Therefore X ′ = X .
Moreover, as X = Y , then V = β :X cannot contain R (since X would
do) or an occurrence of the bound variable of the function part in R,
which means that Y = Y ′. Thus X ′ = Y ′.

2. Both labels α and β are new in W ′. Thus γ′ ≺ α and γ′ ≺ β.
(a) α = [γ′, α1]. As α % β, we have β = [γ′, β1] and α1 % β1.

In W , there exist two labeled subterms α1 :X1 and β1 :Y1 such that



Sharing in the Weak Lambda-Calculus 83

α :X ′ = (γ′©x α1 :X1)[[x\+γ′, :B]] and β :Y ′ = (γ′©x β1 :Y1)[[x\+γ′, :B]].
By P(W ), we have X1 = Y1 which implies X ′ = Y ′.

(b) α = )γ′*. By Q(W ), this label is absent from W . It is created at the top
of contractums of γ′-redexes, which are all equal by P(W ).

(c) α = +γ′,. By Q(W ), this label is absent from W . It is created at the
top of copies of arguments of R in the contractums. These copies are all
equal.

(d) α = 〈γ′, α1〉. As α % β and β is new, we can only have β = 〈γ′, β1〉 and
α1 % β1. Both U ′ and V ′ come from U and V to the left of an application
after a diffusion, when x �∈ U and x �∈ V . So U = α1 :X and V = β1 :Y .
Moreover X = X ′ and Y = Y ′, since x �∈ X and x �∈ Y . By P(W ), we
get X = Y . Hence X ′ = Y ′.

3. α is created, but β already exists in W . By Q(W ), we know that γ′ �≺ β. As
α % β, we can only have α = 〈γ′, α1〉 and α1 % β. Therefore, there is a term
U = α1 : X to the left of an application subterm in W , with x �∈ X , and
U ′ = 〈γ′, α1〉 :X ′, with X = X ′. As V ′ = β : Y ′ comes from β : Y in W , we
know by P(W ) that X = Y . If Y is modified from W to W ′, this can only
be because Y contains a γ′-redex, which is impossible since X is contained
in a γ′-redex; or because it has been substituted after a diffusion, but then it
is unchanged since x �∈ X = Y . Therefore Y = Y ′, and X ′ = X = Y = Y ′.

4. α exists in W , but β is created. Analogous to previous case.
�

We can now state our sharing theorem, characterizing a dag implementation
for evaluating terms in the weak λ-calculus. We need to have a notation for
terms without sharing.

Notation 1. Let Init(U) holds when every subterm of U is labeled with a dis-
tinct letter.

Theorem 5. Let Init(U) and U =⇒=⇒ V , then P(V ).

Proof: We first notice that, if Init(U), then P(U)∧Q(U)∧R(U)∧S(U)∧T (U).
Thanks to previous lemmas, this invariant remains valid along reduction steps
=⇒. �

5 Dag Implementation

The weak labeled λ-calculus provides a formal setting for a dag implementation
of the weak λ-calculus. If we start from a term labeled with distinct letters,
each label identifies the address of a shared subterm in the dag implementation.
There is a subtlety: first components of marked labels must be skipped, because
they are only relevant for storing the history of redexes. The goal of our labeled
calculus is to coincide with the dag implementation in Wadsworth [25].

Wadsworth has two implementations with sharing. The first one shares the
argument of the contracted redex at each reduction step. When there are n
occurrences of x in A, instead of having n copies of the argument B in the
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contractum of (λx.A)B, Wadsworth proposes to replace x by a reference to a
single subterm B. However his method demands to copy the function part λx.A
of the contracted redex if the reference counter of λx.A is strictly greater than 1.
This disallows the substitution of x in other subterms using A. In his second dag
implementation, Wadsworth notices that it is unnecessary to copy subterms in
A that do not contain occurrences of the free variable x. This variant of the dag
implementation avoids unnecessary copies.

However finding if a term does not contain an occurrence of the x variable is
a global operation. The occurrences of x in a redex (λx.A)B cannot disappear in
the weak λ-calculus, since there cannot be redexes containing x inside A. There-
fore, one may compile any abstraction λx.A in the initial term to mark each
subterm of A with free variables bound outside λx.A. This approach is taken
by supercombinators and λ-lifting [22], where each abstraction is λ-lifted into a
combinator to which are applied the free variables contained in this abstraction.
In this context of the calculus of supercombinator, which is is not a subcalculus
of the λ-calculus, Peyton-Jones and Hughes introduced the idea of full lazy-
ness which we believe to be related to our diffusion operator. More precisely
they create combinators by abstracting over maximal free subterms. It would be
interesting to connect our sharing theory and their compilation scheme.

Recently, Shivers and Wand [23] provide a realistic implementation of weak
reduction with sharing where, in the abstract tree corresponding to any abstrac-
tion λx.A, the top node points to the list of occurrences of the variable x bound
in this abstraction. In their representation of terms, any subterm points to the
subterm directly containing it. Thus, terms are represented by graphs with a
double-linked connection between vertices (i.e. nodes of the abstract trees). This
representation facilitates access to terms and subterms in the usual top-down
way, but makes also possible bottom-up traversals of terms from binders of ab-
stractions through the bound occurrences of variables towards the root of an
abstraction, or the root of a term. Therefore during a reduction step contracting
redex (λx.A)B, one first duplicates the paths from top of A to x in a bottom-up
traversal from every occurrence of x towards the top node of A. We thus copy
nodes corresponding to subterms containing x by performing local operations.
However, as on the path from an occurrence of x to the top node of A, one
may encounter an other binder, it is also necessary to make a recursive call
to duplicate paths to its bound variable. This technique is an efficient way of
implementing the second method in Wadsworth [25].

A closer look at our labeled λ-calculus demonstrates several differences be-
tween Shivers and Wand’s method and our calculus. The creation of nodes along
paths to occurrences of the bound variable x corresponds to the new tagged la-
bels created by diffusion. But we can meet other binders λy on these paths.
Then we do not copy the paths from such a λy to the free variable y during
diffusion. Therefore we can have several binders for the same occurrence of the
bound variable y. However no confusion occurs in our calculus, since sharing is
virtual and is only represented through labels. But this situation in an actual
shared implementation is unsafe, since it would hardly respect alpha renaming.
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Extending the diffusion of our calculus could address this problem but it remains
to prove that the calculus is still confluent, which looks feasible. Such a modifi-
cation of the weak λ-calculus would be one way of providing a formal theory to
the implementation in [23].

There are other subtle differences between our labeled λ-calculus and standard
dag implementations. One is the introduction of new nodes, since, in a reduction
step, we create new nodes, with )α* : U and +α, : U . These nodes guarantee
that we do not lose the history of the creation of redexes along a reduction.
However, they do not seem necessary with respect to sharing. Similarly, it is
quite debatable to have a label on a bound variable. We have labeled variables
since the structure looks then more regular. But a calculus without these labels
seems also feasible, without destroying sharing.

We can notice that the weak labeled λ-calculus makes a confluent theory of
dag implementation. Usually, confluence proofs with graphs are rather delicate
unless strong restrictions as in interaction nets [12]. But in the latter case, the
theory only considers =⇒ reduction steps. Here we can reason about terms with
induction as in the classical λ-calculus. This is what we gain with labeled calculi,
since we have a textual representation of dags by handling the node address, the
atomic label, and the λ-term.

Finally, the call-by-need strategies norm
�� �� of the labeled calculus of weak ex-

plicit substitutions correspond to complete labeled reduction steps in the weak
labeled λ-calculus. If Init(U) holds in the initial labeled term, one can show that
the number of steps to get a normal form with this reduction is always minimal.
The proof technique follows the one for the classical λ-calculus [17].

6 Relation with Term Rewriting Systems

One referee pointed out that the weak λ-calculus could be considered as a first-
order term rewriting system (TRS) [24]. He mentioned that, for instance, the
pattern of the weak β-redex (λx.Ix(λy.Ixy))S is (λx.Z1x(λy.Z2xZ3))X giving
rise to the first-order rule (λx.Z1x(λy.Z2xZ3))X → Z1X(λy.Z2XZ3), where
any terms can be substituted for the meta variables Z1, Z2, Z3 and X . One
could then substitute I for both Z1 and Z2, y for Z3 and S for X to yield the
step (λx.Ix(λy.Ixy))S → IS(λy.ISy). With this remark, most of the properties
of residuals hold for TRSs and thus might look more natural. However, the
corresponding labeled TRS (see [24, 20]) differs from our weak labeled λ-calculus.
As mentioned in the introduction, we think that our calculus has the advantage
of staying in a subtheory of the classical λ-calculus.

7 Conclusion

In this paper, we recalled the definitions and basic properties of the weak
λ-calculus introduced in [18]. This calculus follows the standard presentations of
the λ-calculus, since the classical (strong) λ-calculus is an extension of it.
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We presented a weak labeled λ-calculus which is a confluent theory of sharing
for the weak λ-calculus. We stated that it corresponds to the representation of
terms in Wadsworth’s dag implementations but a very precise connection has
still to be formalized.

The correspondence between the labeled λ-calculus and the calculus of shar-
ing with explicit substitutions could also be studied as in [18]. This would make
a bridge with the call-by-need strategies used in the evaluation of functional
programs. One can also relate supercombinators and the shared structures for
evaluating them in lazy languages to our calculus. A similar approach with re-
spect to frameworks with a let statement could also be studied, although these
research directions are not focused on basic syntactic properties such as conflu-
ence. (Notice that our calculus has no critical pairs.)

The theory of optimal reductions inside the weak λ-calculus is missing in
this article, although one might easily guess it following the one of the classical
λ-calculus. It remains to achieve it.

Finally, many of the results of this paper were considered as folk theorems,
rather easy to prove. We hope to have shown that some of the proofs deserve
attention. In fact, some of them are not easy at all. This paper also showed that
the theory of the weak λ-calculus still needs more research.
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Term rewriting is in the intersection of our interests and physical distance has
never been large. Nonetheless we seem to be living at opposite ends of the term
rewriting galaxy. Here is a story from the other side of that galaxy.

Abstract. We explore the connection between term rewriting systems
(TRS) and aspect-oriented programming (AOP). Term rewriting is a
paradigm that is used in fields such as program transformation and theo-
rem proving. AOP is a method for decomposing software, complementary
to the usual separation into programs, classes, functions, etc. An aspect
represents code that is scattered across the components of an otherwise
orderly decomposed system. Using AOP, such code can be modularized
into aspects and then automatically weaved into a system.

Aspect weavers are available for only a handful of languages. Term
rewriting can offer a method for the rapid prototyping of weavers for
more languages. We explore this claim by presenting a simple weaver
implemented as a TRS.

We also observe that TRS can benefit from AOP. For example, their
flexibility can be enhanced by factoring out hardwired code for trac-
ing and logging rewrite rules. We explore methods for enhancing TRS
with aspects and present one application: automatically connecting an
interactive debugger to a language specification.

1 Introduction

Software engineering is about conquering the complexity of real life software
systems. Can large systems be organized such that they remain manageable?
Many solutions have been tried from structured programming to abstract data
types, modules, objects, components and agents. In specific areas some of these
approaches have been successful but the problem of structuring and organizing
software remains mostly open for research. In more recent years, aspects, concerns
or dimensions of software systems have been investigated [19]. These approaches
aim at encapsulating functionality that cuts across boundaries of conventional
modularization. In this way, software would become composable along different
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axes and the desired flexibility and composability could be achieved. While pro-
viding potential solutions to the software composition problem, they pose new
problems as well: how can such new methods of modularization be combined
with existing languages and how can they be supported by tools?

Term rewriting [29] is a well-known paradigm used in program transformation,
and thus a natural candidate for developing language-oriented tool support. We
first give quick introductions to aspect-oriented programming (Sect. 1.1) and
applications of term rewriting (Sect. 1.2) and then we explain why it is interesting
to explore connections between these two fields and how they can benefit from
each other (Sect. 1.3).

The contributions of the paper can be summarized as follows:

– It raises the awareness that term rewriting techniques can be relevant for
the implementation of aspect-oriented programming (Sect. 2).

– It explores the application of aspect-oriented techniques to term rewriting
systems themselves (Sect. 3 & 4).

– It formulates research questions in the field of term rewriting that are brought
forward by the previous two points (Sect. 5).

1.1 Aspect-Oriented Programming

One of the most important principles in software engineering is the principle of
separation of concerns. Separating concerns in modules (e.g., functions, classes
etc.) promotes maintainability and reuse, because the dependencies between
modules are loose and explicit.

There are, however, concerns that cannot be adequately modularized using
conventional mechanisms. Typical examples of these so-called crosscutting con-
cerns are profiling, tracing, debugging, error handling, origin tracking, caching,
and transaction management. In all these cases, the code to implement these
concerns occurs in many modules since all these modules are affected by the
concern in question. This situation is referred to as code scattering.

Aspect-Oriented Programming (AOP) [19] is an approach to ameliorate this
situation by introducing a new modularization concept: aspects. An important
characteristic of AOP is quantification [11]. For example, “whenever condition
C arises in program P , do X” is a quantified statement over program P . The
scattering of code for crosscutting concerns is avoided by automatically weaving
the aspect code X in places where condition C holds.

In many AOP implementations, quantification over a program is achieved by
specifying pointcuts. A pointcut is an addressing mechanism for the static or
dynamic identification of execution points in the base program. These execution
points are called joinpoints since at these points in the source code, the aspect
code is joined with the base code.

To illustrate the notion of a pointcut, consider the example in the upper
left part of Fig. 1 expressed in AspectJ [18], the aspect language for Java. The
pointcut creatingFoo captures all calls to constructors of class Foo, disregarding
the argument signature.
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Advice specifications describe how the aspect code should be weaved at the
joinpoints captured by a certain pointcut. There are three kinds of advice: before,
after or around. Figure 1 contains an example of around advice. The directive
proceed() is used to continue the delayed execution of the joinpoint, in this
case constructing a new Foo-object. Figure 1 also shows on the left an example
program and on the right the result of applying the given pointcut and advice
to it.

Pointcut specification
pointcut creatingFoo():

call (Foo.new(..))

Advice code
around (): creatingFoo {
if (flag)

proceed ();
else

throw
new Exception("No flag!");

}

Initial Program
import foo.*;
public class Bar {
private boolean flag;
public void doBar() {
Foo foo = new Foo();

}
}

Result of aspect weaving
import foo.*;
public class Bar {
private boolean flag;
public void doBar() {
Foo foo;
if (flag) {

foo = new Foo();
} else {

throw new
Exception("No flag!");

}
}

}

Fig. 1. Pointcut and advice are used to weave code into a small program

1.2 Applications of Term Rewriting

In this paper we consider term rewriting to be a programming paradigm. The
concept of term rewriting systems is used in many application areas, such as
functional programming, program transformation, theorem proving, and lan-
guage semantics [14,29]. From the viewpoint of these application areas term
rewriting systems are programs [21].

To cater for different kinds of applications, most rewriting implementations
extend basic rewrite rules with additional features. Such features include, for
instance, concrete (mixfix) syntax [22], conditional rewrite rules [4], ordered
rules [2], list matching and AC matching [10], traversal functions [30], strate-
gies [6] and more. For this paper, the conditional rewrite rules are essential,
while concrete syntax and traversal functions are practical utilities for the ap-
plication we present.

A conditional rewrite rule is a normal rewrite rule, extended with a list of
predicates. Now a redex must also satisfy all such predicates, before it can be
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contracted. Different kinds of predicates are allowed. For example, in our system
we only allow (in)equality between two terms that are first normalized, or an
(un)successful match between a normalized term and an open term.

A full account of the theoretical foundations of term rewriting and of systems
implementing it is given in [29]. We will give examples using the notation found
in the Asf+Sdf Meta-Environment [7,22].

1.3 Connections Between the Two Fields

Why is it interesting to explore the connections between AOP and term
rewriting?

Aspect-Oriented Programming Can Profit from Term Rewriting. The ideas for
AOP contribute to software composition and maintenance and have been ap-
plied to mainstream programming languages (Java [18], C/C++ [28], C# [20],
SmallTalk [15], Cobol [24]). In all these cases language-specific tool support has
been developed. It is worthwhile to wonder whether AOP is applicable in the
context of other languages, such as Perl, PHP, legacy languages, or even domain
specific languages. The question, then, is how to develop tool support to evaluate
such hypotheses. Term rewriting is used in other kinds of program transforma-
tion, so it would be natural to apply it to aspect weaving as well. In Sect. 2 we
will investigate whether term rewriting is a good choice for rapidly implementing
aspect weavers for new languages.

Term Rewriting Can Profit from Aspect-Oriented Programming. In many appli-
cations the side-effects of term rewriting systems are important. However, such
side-effects are usually hardwired into a particular term rewriting engine. For
example, each engine typically implements one kind of reduction tracing or de-
bugging. We propose to separate these hard-wired aspects from the engine, and
promote them to programmable aspects on the term rewrite system level. The
result is that the application of existing engines can be made much more flexi-
ble and reusable. In Sect. 3 we explore a way to add reusable side-effects to an
Asf+Sdf term rewriting system, by employing aspect-oriented programming.

2 Aspect Weaving Implemented by Term Rewriting
Systems

Since term rewriting is well equipped to deal with program transformation, as-
pect weaving is also a natural application area. This section provides an example
of how to use term rewriting to implement aspect weavers.

The view that aspect weaving is a kind of program transformation is not new.
For example, in [12] a case is made for a term rewriting approach to weaving
aspects. Using special pattern-matching operators the authors are able to suc-
cinctly specify how aspects should be weaved. Graph writing for aspect weaving
is discussed in [1]. It is argued that graph rewriting is more suitable than term
rewriting because the base language consists of class graphs. Semantic infor-
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mation can be stored naturally in graphs, so more complex pointcuts may be
expressible.

In most approaches that use rewriting for aspect weaving, rewrite rules di-
rectly function as the aspect weaving language. In [13] the authors present an
aspect-oriented programming language for ObjectPascal which is implemented
on top of DMS [3]. DMS contains a term rewriting component that forms the
basis of their weaving algorithm, but this fact is hidden from the user. The strong
motivation for using term rewriting is rapid development of aspect weavers for
legacy languages.

In this section we adopt the latter approach, and demonstrate the implemen-
tation of a simple aspect-oriented programming language called μAspectJ. It
consists of a very simple weaver written in Asf+Sdf. It is able to weave advice
similar to the example of Fig. 1. After this example, we will evaluate the fitness
of term rewriting in this application area.

2.1 Implementing a Weaver for μ AspectJ

The expected behavior of μAspectJ on the example from the introduction is
displayed in Fig. 2. The function weave is applied to two arguments: a Java
compilation unit and an advice specification (shown on the left). The result is
a new Java compilation unit that is the result from weaving the advice in the
original Java code (shown on the right).

This weaver can be defined in one module of Asf+Sdf code, which we present
here. Asf+Sdf modules consist of two parts. The syntactic part defines the

Input term
weave(
import foo.*;
public class Bar {
private boolean flag;
public void doBar() {
Foo foo = new Foo();

}
},
around(): Foo.new(..) {
if (flag) {
proceed();

} else {
throw new

Exception("No flag!");
}

}
)

Output term
import foo.*;
public class Bar {
private boolean flag;
public void doBar() {
Foo foo;
if (flag) {

foo = new Foo();
} else {

throw new
Exception("No flag!");

}
}

}

Fig. 2. Weaving is rewriting: a μAspectJ program is weaved by reducing the weave
symbol



Term Rewriting Meets Aspect-Oriented Programming 93

module MuAspectJ
imports Java Substitute[Statement Statements]
exports context-free syntax

AdviceKind "(" ")" PointCut ":" Block → Advice
"before" | "after" | "around" → AdviceKind
"call" "(" Signature ")" → PointCut
Class "." "new" "(" ".." ")" → Signature

Fig. 3. μAspectJ: syntax of pointcuts and advices

weave(CompilationUnit, Advice) → CompilationUnit {traversal}

Fig. 4. μAspectJ: signature of the weave traversal function

equations
[1] weave(S*1 Type Id = new Class(Param*); S*2,

before() : call(Class.new(..)) { S* }) =
S*1 S* Type Id = new Class(Param*); S*2

[2] weave(S*1 Type Id = new Class(Param*); S*2,
after() : call(Class.new(..)) { S* }) =
S*1 Type Id = new Class(Param*); S* S*2

[3] S*’ := substitute(proceed();, Id = new Class(Param*);, S*)
================================================
weave(S*1 Type Id = new Class(Param*); S*2,

around() : call(Class.new(..)) { S* }) =
S*1 Type Id; S*’ S*2

Fig. 5. Equations defining μAspectJ weaving

types of input terms and functions. These types are defined using context-free
syntax productions. The semantic part contains equations between terms ex-
pressed in concrete syntax. These equations are rewrite rules when read from
left to right.

The definition of μAspectJ consists of three parts: the syntax of pointcuts
and advice (Fig. 3), the signature of the weave traversal function (Fig. 4), and
the equations defining this function (Fig. 5). The module MuAspectJ imports
the syntax of Java and a generic parameterized module for substitution. In the
syntax section, the syntax of very simple advices is defined. For the sake of
brevity, we only allow pointcuts that capture arbitrary constructor invocations.
The pointcuts follow the syntax of AspectJ. Advice consists of a kind (before,
after or around), a pointcut and a Java statement block.

The weave function maps a compilation unit together with an advice spec-
ification to a compilation unit with the advice weaved in. To avoid writing a
lot of boiler-plate code for traversing a compilation unit, the weave function is
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defined as traversal function [30]. Weave matches lists of statements containing
a constructor invocation for classes that match the pointcut contained in the
advice. For each kind of advice the associated advice code is weaved in accord-
ingly. In these equations, pattern variables such as S*, Class, and Type are used
to capture lists of statements, class names and type identifiers, respectively.

Consider equation [1] in Fig. 5 which matches Java statements of the form
“Type Id = new Class(Param*)” in the context of a list of statements and
applies a before advice to it. Note that the name of the class (variable Class)
in the statement and the advice should be the same (non-left-linearity).

In the resulting code on the right-hand side of the rewrite rule, the body of
the advice, which is matched by the variable S*, is placed just before the original
statement. The other equations work in a similar fashion.

2.2 The Fitness of Term Rewriting for Aspect Weaving

The example shows some characteristics of aspect weaving. It needs at least com-
plex pattern matching, pattern construction, tree traversal, and non-local infor-
mation (the advice code) at redex positions. The first two features are provided
by basic term rewrite rules, the last two features emerge from using traversal
functions [30]. As an alternative, traversal strategies and dynamic rewrite rules
could be used to implement the same behavior [32]. Matching modulo associa-
tivity (list matching) in Asf+Sdf, makes the weaver deal easily with lists of
statements.

The above example shows how term rewriting provides a large number of
primitive operations that are necessary for implementing aspect weavers. Be-
cause these operations are readily available in term rewriting, we expect to be
able to develop an aspect weaver more rapidly.

The example does not show how to scale up to more advanced pointcut spec-
ifications, such as exist in AspectJ. Such specifications need name space reso-
lution, or even control flow information. Any aspect weaver implemented using
term rewriting will therefore have to be preceded by a static semantic analy-
sis phase to collect additional context information for matching pointcuts, and
take this as an extra argument to the weave function. Note that static semantic
analyses can be implemented as term rewriting systems too. Alternatively, code
could be generated to dynamically resolve semantic issues, but this may have
significant repercussions on run-time efficiency.

We have discussed a method for rapidly creating prototype aspect weavers us-
ing term rewriting. Depending on the requirements, these term rewriting systems
may immediately be used as full implementations of aspect weavers.

3 Aspects in Term Rewriting Systems

We now shift perspective and explore whether aspect-orientation can contribute
to term rewriting. There are at least two directions in which aspect-oriented
term rewriting can be considered:
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– Crosscutting concerns in rewrite rules. Starting from existing pure term
rewriting systems we can identify the crosscutting concerns in large sets
of rewrite rules and factor them out as programmable rewrite rule aspects.

– Side-effects in term rewriting engines. Starting from implementations of term
rewriting engines, we notice that crosscutting concerns already occur natu-
rally in the form of side-effects. Usually the implementation of these side-
effects is hardwired in the rewriting engine that is used.

The first direction is particularly interesting in the field of language defini-
tions. In this field we try to define rewriting based semantics for programming
languages. The combination of aspect orientation and programming language
definitions has received some attention. This has mainly focused on making lan-
guage definitions more modular and extensible.

For example, in [31] the idea of implementing language extensions as aspects
is explored in the context of attribute grammars. A similar strategy is explored
in [23]. In this paper, declarative language definitions (e.g., in SOS) are evolved
by transforming the semantic rules. This allows for the incremental addition
of language facets (e.g., state, input/output, exception handling, etc.) to some
base language. Primitives to achieve this include adding parameters to semantic
functions, adding conditions to conditional rewrite rules, and the like.

The second direction is interesting in many applications of term rewriting.
Figure 6 (Step 1) displays the process of rewriting a term. An engine takes a
TRS and a term, and produces a normal form and some side-effects. Typical
side-effects of the rewriting process include:

– Tracing: an exported trace of a reduction sequence represents a proof. Each
reduction step contained in this trace is an equational deduction step.

– Profiling: measure the execution behavior (frequency, call graph, timings) of
the term rewriting system.

– Debugging: instrument the term rewriting system with debugging informa-
tion and interaction.

For some applications of term rewriting, the side-effects are even more impor-
tant than the normal form. Depending on the domain, or on a specific applica-
tion, in which a term rewriting engine is applied, these side-effects are specialized
in different ways.

For example, a term rewriting engine that is used in concert with a proof as-
sistant (e.g., Elan with Coq [25,16]) generates a trace that communicates with a
specific deduction process. Specializing the rewriting engine to emit such a trace
makes an otherwise generic term rewriting system less applicable in a different
context, let alone in another domain. For example, if we want to connect the
same engine to a different brand of proof assistant, a large part of its implemen-
tation must be adapted. In [25], this problem is also recognized, and attacked
by providing a separate translation scheme from a canonical representation to
the specific proof term syntax of the proof assistant. In this paper, we try to
generalize this separation of concerns, and make it available for other aspects of
term rewriting besides tracing.
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Step 1. Basic rewriting architecture
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Step 2. Introduction of plug-ins
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Step 3. Engine state as plug-in
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Step 4. Use aspect weaving
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Fig. 6. From a rewriting engine with hardwired side-effects, to a completely decoupled
engine with pluggable side-effects

Another problem with hardwired side-effects is the lack of control available
to the user. For example, execution traces can be huge, but the user might
be only interested in a localized section of a term rewriting system. In terms
of space efficiency, such lack of control can lead to a lack of scalability. The
possibilities that open up when the user could specialize side-effects for specific
term rewriting applications are significant. In Sect. 4 we will present how a
language specific debugger is obtained by adding debugging side-effects to a
term rewriting system that implements the operational semantics of a language
(i.e., a language interpreter).

We know of one instance of weaving side-effects into a language definition.
In [33] a debugging aspect is weaved into an ANTLR [27] language definition of
a domain specific language. Our example also shows how to weave in debugging
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support, but we use a dedicated aspect language instead of a general purpose
transformation language (the authors of [33] use DMS). Note that a debugging
feature does not change the semantics of a programming language, so there is
no need to evolve the signatures of semantic functions.

3.1 From Hardwired Side-Effects to Programmable Aspects

Figure 6 depicts how a term rewriting engine can be refactored from an archi-
tecture with hardwired side-effects to a flexible plug-in architecture with pro-
grammable side-effects. We will discuss each step in turn.

Step 1 represents a basic implementation of term rewriting. Side-effects such
as debugging, profiling and tracing are hardwired into the implementation. All
side-effects are initiated by the term rewriting engine itself.

Step 2 represents the case that a TRS can be extended with explicit calls
to library functions that might have side-effects. In line with the convention
in other frameworks, we call these library functions plug-ins and add a plug-in
architecture to the rewrite engine. This is achieved by adding a plug-in API
(Application Programming Interface) to the engine to communicate a large part
of the engine’s state information to a plug-in. The engine will now be able to
communicate with arbitrary plug-ins and achieve arbitrary side-effects. Unlike
the situation in Step 1, side-effects are no longer initiated by the engine, but
explicit calls to plug-ins must be added to the original term rewriting system.

Step 3 deals with the fact that interaction between different plug-ins is largely
determined by the engine state. Therefore, we separate the engine state as a
new plug-in. The engine state can now be queried from a term rewriting system
dynamically. This information can then be used to trigger tracing, debugging or
any other side-effect in a user-defined manner.

Step 4 introduces an aspect language and separates all calls to plug-ins into
separate aspects. Note that the original term rewriting system of Step 1 is back
as a separate input. By weaving in several aspects we automatically obtain the
complete rewriting system of Step 3. From now on, libraries of reusable side-
effects can be provided for the general use-cases of a term rewriting engine,
while at the same time user-defined specializations can be created without much
effort.

We have now separated hardwired functionality, and replaced it by plug-ins
and aspect weaving. By doing this we have gained flexibility and reusability. For
example, the syntax of a reduction trace can be adapted to the input syntax
of a particular proof assistant, and a language semantics can be used with and
without debugging support. In both examples, the original term rewriting system
does not have to be changed, but only aspects have to be weaved in.

3.2 Introducing AspectAsf

The aspect weaver in Fig. 6 has been introduced for a reason. Side-effects of-
ten represent crosscutting concerns: many, if not all, rules of a TRS should be
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modified to include calls to the library of plug-ins. Take for instance the tracing
of a reduction sequence: all firing rewriting rules have to communicate context
information to the tracing plug-in. This would mean adding plug-in calls to all
rules.

It would be advantageous if one could quantify over the set of rules and
thus declaratively specify which rules should be adapted to incorporate the side-
effect in question. For the tracing functionality, one would then say something
like “add a call to trace to every rule”. The actual adaptation of rewrite rules is
subsequently enacted by automatically transforming the TRS.

This section introduces a simple aspect language for aspect-oriented program-
ming in Asf+Sdf. Using this language, the calls to the plug-ins can be specified
separately. Invasive modifications of the TRS are not needed. Moreover, aspects
have the additional advantage that we can now use a TRS with and without
side-effects, or even add side-effects to parts of the TRS.

The next paragraphs will focus on how the declaration of these aspects would
look like in a language called AspectAsf. Firstly we will define pointcut patterns
that are used for identifying sets of equations. Secondly, we show how these
patterns are used in specifying pointcuts and advice.

AspectStratego [17] is another experiment in adding aspects to rewriting.
That language allows much more complex pointcut specifications for inserting
code along a reduction sequence. AspectAsf, however, aims to primarily illus-
trate the viability of combining TRS with aspect-oriented techniques.

Pointcut Patterns. The pointcut pattern language is a pattern matching lan-
guage on the structure of equations1. The examples in Fig. 7 illustrate the ap-
proach. The pattern functions as a placeholder for concrete terms that are not
of interest. The * pattern is a wild-card for quantifying over parts of literals.

[_] _ captures all equations

[_] eval(_,_) ... with outermost symbol eval

[_] eval(_, Env) ... with 2nd arg an Env variable

[int*] _ ... with label like int..

[int*] _ or [real*] _ ... with label like int.. or real..

Fig. 7. A number of example pointcut patterns in AspectASF

For the sake of exposition we only allow pattern matching on labels of equa-
tions and left-hand sides. Patterns are expressed in concrete syntax. They do
not contain any meta-variables. So, in the third example, Env matches with a
regular Asf variable named Env; no binding is taking place at weaving time.

Note that this pointcut pattern language can be made more expressive by
adding, for example, higher order matching, meta-variables, associative match-
ing on conditions,sort assertions etc. For this presentation, we restrict ourselves
1 Pointcut patterns are referred to as signatures in the AspectJ community. We avoid

this term for clarity.
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to first-order matching and simple boolean connectives (and and or) for con-
structing composite patterns.

Pointcuts and Advice. Pointcut patterns are used in the definition of point-
cuts. We identify two kinds of pointcuts in AspectAsf: entering an equation
(after a successful match of the left-hand side), and exiting an equation (just be-
fore returning the right-hand side). In an equation without conditions, entering
and exiting are equivalent. The pointcut

entering [_] eval(_)
captures the points in the reduction sequence where the left-hand side of an
equation with outermost function symbol eval has been matched successfully
against a redex. The exiting pointcut is interpreted similarly.

Pointcuts are used in advice specifications. The kinds of advice that are al-
lowed, exactly correspond to the kinds of pointcuts: after entering an equation,
and before exiting an equation. Note that before entering and after exiting
are meaningless, since such expressions do not correspond to identifiable points
in the code.

As is common in aspect languages, the host language is reused for specifying
advice code. In our case this language is the language of Asf conditions. To
weave conditions after entering means prepending the advice conditions to
the list of conditions of the equation that is matched by the pointcut. Similarly,
advice before exiting corresponds to appending the advice conditions to the
list of conditions of the subject equation.

Advice code can benefit from access to the context of the equation that it is
weaved in. This information is provided in part by the weaver (e.g., the equation
name), in part by calls to the library of plug-ins in the advice conditions itself
(e.g., to obtain the depth of the evaluation stack). In the next section we will
see an example of a call to such a library plug-in.

4 Applying Aspect-Oriented Term Rewriting

In this section we apply aspect-oriented programming to an Asf+Sdf-specifi-
cation of a small programming language. As a small case-study a plug-in for
debugging side-effects was constructed. This plug-in sends and receives messages
from a generic visual debugging tool called Tide [26]. With this plug-in, we can
instrument term rewriting systems such that they stop at certain points in the
execution and allow inspection of the current state. To avoid the pollution of
the term rewriting system with calls to the debugging plug-in, our goal is to
automatically add such calls to the specification.

Starting from a term rewriting system that implements the semantics of the
toy programming language Pico, we can now easily obtain an interactive debug-
ger. We are interested in two functions of this semantics definition: evs(Series,
Env) -> Env (used for evaluating series of statements) and evst(Stat, Env)
-> Env (used for evaluating a single statement). For the sake of brevity we omit
some of the equations that define these functions. The equations are displayed
in Fig. 8.



100 P. Klint, T. van der Storm, and J. Vinju

[1] Env’ := evst(Stat, Env),
Env’’ := evs(Stat*, Env’)
===============================
evs(Stat ; Stat*, Env) = Env’’

[2] eve(Exp, Env) != 0
================================================
evst(if Exp then Series1 else Series2 fi, Env) =

evs(Series1, Env)

[3] eve(Exp, Env) == 0
================================================
evst(if Exp then Series1 else Series2 fi, Env) =

evs(Series2, Env)

Fig. 8. Fragment of the original Pico interpreter

pointcut statementStep: entering [_] evs(Stat ; Stat*, Env)
pointcut conditionStep:

entering [_] evst(if Exp then Series1 else Series2 fi, Env)
or [_] evst(while Exp do Series od, Env)

after: statementStep tide-step(get-location(Stat))
after: conditionStep tide-step(get-location(Exp))

Fig. 9. A debugging aspect for the Pico semantics

Recall that Asf+Sdf allows matching on terms in concrete syntax. So in the
first equation, the string evs(Stat ; Stat*, Env) is the redex pattern. Vari-
ables in these patterns start with an uppercase character (Stat, Stat*, Env, etc.).

Communication with the Tide debugger occurs via one library function, called
tide-step. It receives one argument, which represents the source location of
the active element of the Pico program. The source code location of the active
element is obtained by calling the function get-location. This function is im-
plemented as a separate plug-in. In a similar fashion one could query for other
aspects of the term rewriting engine state.

Setting a breakpoint on a statement or conditional expression (in while- and
if-statements) has the effect of pausing the execution. To obtain this function-
ality for the Pico language, the equation for statement sequencing, as well as
the equations dealing with if and while statements, should include a call to
tide-step.

The aspect declaration in Fig. 9 is used to weave in calls to the debugging side-
effect at the points of interest. The pointcut statementStep captures the points
of entry of the equation for statement sequencing. Pointcut conditionStep
matches the evst equations defining the if- and while-statements. Both point-
cuts are used in advice specifications, which ensure that a tide-step is executed
at the appropriate places. Note how the advice uses some of the variables from
the pointcut definitions.
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[1] tide-step(get-location(Stat)),
Env’ := evst(Stat, Env),
Env’’ := evs(Stat*, Env’)
===============================
evs(Stat ; Stat*, Env) = Env’’

[2] tide-step(get-location(Exp)),
eve(Exp, Env) != 0
================================================
evst(if Exp then Series1 else Series2 fi, Env) =

evs(Series1, Env)

[3] tide-step(get-location(Exp)),
eve(Exp, Env) == 0
================================================
evst(if Exp then Series1 else Series2 fi, Env) =

evs(Series2, Env)

Fig. 10. Pico interpreter fragment with debugging support automatically weaved in

The result of weaving this aspect into the Pico interpreter TRS is shown in
Fig. 10. Each equation is appended with a special (tautological) condition that
communicates with the Tide debugger. Any previously existing condition is eval-
uated after the debugger is informed. A screen-shot of the resulting interactive
debugger is shown in Fig. 11.

We conclude that the original Pico interpreter (Fig. 8) remains completely
separated from the debugging aspect (Fig. 9) and that the Pico interpreter with
debugging support (Fig. 10) can be generated fully automatically. The example
clearly shows the benefits of aspect-oriented programming. Firstly, the concerns
for evaluation (base TRS) and debugging (aspect) are completely separated.
Secondly, the scattering of calls is avoided: two aspects affect five equations. In
larger specifications this ratio (2/5) is expected to be even better.

5 Discussion and Further Research

What can we conclude from these explorations of the connection between term
rewriting and aspect-oriented programming? We have shown that term rewrit-
ing is a natural choice for implementing aspect weavers as has been illustrated
in the μAspectJ case (Sect. 2). This regards primarily the transformations car-
ried out by a weaver. Another source of complexity in weavers is the amount
of type information that is needed for the weaving process, like, for instance
name resolution. Here, term rewriting has no particular advantage over other
techniques.

Another conclusion is that the application of aspect-orientation to term
rewriting itself opens up several new possibilities and research questions as has
been illustrated by the AspectAsf case (Sect. 3).
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Fig. 11. A screen-shot of the generated Pico debugger in action

On the theoretical side, the composition of term rewriting systems has been
studied for the relatively simple case of taking the union of rule sets. Aspect
weaving, however, introduces a composition operation with more computational
power thus decreasing the chances of predicting properties of the weaving result.
Questions are:

– Is it possible to impose restrictions on the weaving TRS such that properties
of the weaving result can be guaranteed? For instance, if the original TRS
has a certain property (e.g. confluence, termination) how should the weaving
TRS be restricted in order to guarantee certain properties of the weaving
result?

– Can AOP be helpful to restructure an existing TRS in such a way that it
becomes easier to prove properties of the AOP version?

On the practical side, other questions abound:

– Is it possible to design a sufficiently flexible aspect language for term rewrit-
ing systems or should one resort to full meta-programming as provided in, for
instance, Maude [8]? Instead of the pointcuts and advices used in this paper,
one can then use the full expressive power of term rewriting by transforming
complete (collections of) rewrite rules.

– What are the implications of static versus dynamic weaving? In the former
case, the initial TRS is changed by the weaver before rewriting. In the latter
case, the weaving is done during rewriting. The meaning and implications of
weaving during rewriting are unexplored.
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– In the examples given in this paper, side-effects play a crucial role in the
definition of the various aspects. Is it the case that AOP is the manner of in-
troducing side-effects in a TRS without completely disturbing the underlying
rewriting semantics, or are there alternatives?

– In most AOP implementations, origin information is lost. That is, if a weaved
program is compiled or executed and there is an error, finding the source of
this error is hard: is it in the base code, the advice code, or the interaction of
the two? Origin tracking for term rewriting is a well-researched subject [9,5]
and provides a solution for this problem. Aspect weaving may, however,
require specialization or extension of that technique.

– Another question is related to origin tracking as well. As the authors of [9]
state, different applications of origin tracking, such as program animation,
error handling and debugging, require different notions of origin tracking.
It would be interesting to investigate whether the code to propagate origins
could be weaved in the TRS using aspect-oriented techniques.

All these questions show that cross-fertilization between the areas of term rewrit-
ing and aspect-oriented programming is possible and desirable.
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23. R. Lämmel. Declarative aspect-oriented programming. In O. Danvy, editor, Pro-
ceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), volume NS-99-1 of BRICS Notes Series,
pages 131–146, San Antonio, Texas, January 1999.
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Observing Reductions in Nominal Calculi
Via a Graphical Encoding of Processes�
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Abstract. The paper introduces a novel approach to the synthesis of
labelled transition systems for calculi with name mobility. The proposal
is based on a graphical encoding: Each process is mapped into a (ranked)
graph, such that the denotation is fully abstract with respect to the usual
structural congruence (i.e., two processes are equivalent exactly when the
corresponding encodings yield the same graph).

Ranked graphs are naturally equipped with a few algebraic operations,
and they are proved to form a suitable (bi)category of cospans. Then,
as proved by Sassone and Sobocinski, the synthesis mechanism based
on relative pushout, originally proposed by Milner and Leifer, can be
applied. The resulting labelled transition system has ranked graphs as
both states and labels, and it induces on (encodings of) processes an
observational equivalence that is reminiscent of early bisimilarity.

Keywords: Nominal calculi, reduction semantics, synthesised labelled
transition systems, relative pushouts, graph transformations.

1 Introduction

The dynamics of many computational devices is often defined in terms of reduc-
tion relations. Let us consider for example the paradigmatic functional language,
the λ-calculus. Its operational semantics is aptly provided by the β-reduction rule
(λx.M)N ⇒ M [N/x] that models the application of a functional process λx.M
to the actual argument N . The reduction relation is then obtained by freely
instantiating and contextualising the rule. This is quite typical in many calculi,
since such a rule represents an internal reduction of a system component.

Moving towards calculi for interaction, let us consider now the reduction rule
a.P | ā ⇒ P for asynchronous CCS-like communication. The metavariable P
actually denotes any possible process, let it be P = b̄, and the rule can be con-
textualised in unary contexts such as C[ ] = b.0 | [ ]. Under those assumptions,
the mechanism yields the rewriting step b.0 | a.b̄ | ā ⇒ b.0 | b̄.

Reduction semantics have the advantage of conveying the semantics of calculi
with relatively few compact rules. Its main drawback is poor compositionality, in
� Partly supported by the EU within the project HPRN-CT-2002-00275 SegraVis

(Syntactic and Semantic Integration of Visual Modelling Techniques); and within
the FETPI Global Computing, project IST-2004-16004 SEnSOria (Software Engi-
neering for Service-Oriented Overlay Computers).

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 106–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the sense that the dynamic behaviour of arbitrary stand alone terms (like a.P in
the example above) can be interpreted only by inserting them in the appropriate
context (i.e., [ ] | ā), where a reduction may take place.

In different terms, reduction semantics is often less suitable whenever specific
behaviours other than confluence (termination, reachability) are of interest. In
fact, simply using the reduction relation for defining equivalences between com-
ponents (e.g. in terms of bisimulation) fails to obtain a compositional framework,
and in order to recover a suitable notion of equivalence it is often necessary to
verify the behaviour of single components under any viable execution context.
This is the way leading from the research on termination-under-context-closure
equivalences for the λ-calculus to barbed and dynamic equivalences for the π-
calculus. In these approaches, though, proofs of equivalence are often tedious as
well as involuted, and they are left to the ingenuity of the researcher.

A standard way out of the empasse, reducing the complexity of such analy-
ses, is to express the behaviour of a computational device by a labelled transition
system (LTS). Should the label associated to a component evolution faithfully ex-
press how that component might interact with the whole of the system, it would
be possible to analyse in vitro the behaviour of a single component, without
considering all contexts. Thus, a “well-behaved” LTS represents a fundamental
step towards a compositional semantics of the computational device.

Milner’s proposal for an alternative semantics for the π-calculus [18] based
on reactive rules modulo a suitable structural congruence, inspired by the cham
paradigm [4], has been the source of an ongoing stream of research focussing
on the investigation of the relationship between the LTS based semantics for
nominal calculi and their more abstract reduction semantics.

Early attempts by Sewell [24] devised a strategy for obtaining an LTS from
a reduction relation by adding contexts as labels on transitions. The technique
was refined by Leifer and Milner [16] who introduced relative pushouts (RPOs)
in order to capture the notion of minimal context activating a reduction. The
generality of this proposal (and its bicategorical formulation due to Sassone and
Sobocinski [22]) allows it to be applied to a large class of formalisms. More im-
portantly, such attempts share the basic property of synthesising a congruent
bisimulation equivalence, thus ensuring that the resulting LTS semantics is com-
positional. However, for the time being there are few case studies which either
involve rich calculi, or succeed in making comparisons with standard behavioural
equivalences. To tackle a full-fledged case study is the main aim of this paper.

Our starting point for the synthesis of an LTS are the graphical techniques
proposed by the authors for modelling the reduction semantics of nominal cal-
culi [11]. There is a long tradition in the use of graphical formalisms for describ-
ing the operational semantics of a computational device. They are often biased
towards an implementation view, ranging from the functional paradigm (culmi-
nating on the works on optimal implementation [17]) to the imperative one (using
term graph rewriting as an efficient technique for equational deduction [2]).

Only recent years have seen proposals concerning the use of graphical tech-
niques for simulating reduction in process calculi, in particular for their mobile
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extensions. Typically, the use of graphs allows for getting rid of the problems
concerning the implementation of reduction over the structural equivalence, such
as e.g. the α-conversion of bound names. Most of these proposals (among them
one of the better known formalisms, Milner’s bigraphs [19]) follow the same pat-
tern: At first, a suitable graphical syntax is introduced, and its operators used for
implementing processes. After that, usually ad-hoc graph rewriting techniques
are developed for simulating the reduction semantics. Most often, the resulting
graphical structures are eminently hierarchical (that is, roughly, each node/edge
is itself a structured entity, and possibly a graph). From a practical point of
view, this is unfortunate, since the restriction to standard graphs would allow
for the reuse of already existing theoretical techniques and practical tools.

In a recent series of papers the authors pursed instead the use of standard tools
from graph transformation theory for modelling a large class of these calculi,
ranging from mobile ambients to fusion [8, 11]. The use of unstructured (that is,
non hierarchical) graphs allows for the reuse of standard graph transformation
theory and tools for simulating the reduction semantics of a calculus, such as
the double-pushout (dpo) approach and the associated concurrent semanticss [1].
The relevant bit here, however, is that these coding techniques can be successfully
employed for the synthesis of suitable LTSs for nominal calculi. This is possible
thanks to general results concerning the presentation of graph transformations
as suitable reductions over so-called cospan categories [9].

Summing up, our paper is then to be considered a combination of the graphical
techniques of encoding proposed by the authors for modelling nominal calculi,
and of the categorical tools used by Sassone and Sobocinski for obtaining suitable
LTS semantics out of graph transformation systems, presented according to the
dpo style [23]. Even if for the sake of presentation the present work focuses on
the finite, deterministic fragment of the π-calculus, it could be easily extended
to recursive processes. We thus believe that it may offer novel insights on the
synthesis of LTSs, as well as offering further evidence of the adequacy of graph-
based formalisms for system design and verification.

The structure of the paper follows. Section 2 presents the finite, deterministic
fragment of the π-calculus, and its reduction semantics. Section 3 recalls some
definitions concerning ranked graphs, whilst Section 4 illustrates their use in an
encoding of π-calculus processes. Finally, Section 5 presents our use of the graph-
ical encoding for providing an alternative labelled transition system semantics
for the π-calculus. The final section outlines future research avenues, while the
Appendix contains most of the categorical notions used in the paper.

2 Synchronous (Finite) π-Calculus

We now introduce the finite, deterministic fragment of synchronous π-calculus.

Definition 1 (processes). Let N be a set of names, ranged over by a, b, c, . . .;
and let Δ = {a(b), ab | a, b ∈ N} be the set of prefix operators, ranged over by
δ. A process P is a term generated by the syntax
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P ::= 0 | (νa)P | P | P | δ.P

We let P,Q,R, . . . range over the set P of processes.

The standard definitions for the sets of free and bound names of a process P , de-
noted by fn(P ) and bn(P ) respectively, are assumed. Similarly for α-conversion
with respect to the restriction operators (νa)P and the input operators b(a).P :
In both cases, the name a is bound in P , and it can be freely α-converted.

Using the definitions above, the behavior of a process P is described as a
relation over abstract processes, i.e., a relation obtained by closing a set of basic
rules under structural congruence.

Definition 2 (structural congruence). The structural congruence for
processes is the relation ≡⊆ P × P, closed under process construction and α-
conversion, inductively generated by the following set of axioms

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P (νa)0 = 0

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a �∈ fn(P )

(νa)δ.P = δ.(νa)P for a �∈ fn(δ) ∪ bn(δ)

Definition 3 (reduction semantics). The reduction relation for processes is
the relation Rπ ⊆ P × P, closed under the structural congruence ≡, inductively
generated by the following set of axioms and inference rules

a(b).P | ac.Q → P{c/b} | Q
P → Q

(νa)P → (νa)Q
P → Q

P | R → Q | R

where P → Q means that (P,Q) ∈ Rπ.

The first rule denotes the communication between two processes: Process ac.Q
is ready to communicate the (possibly global) name c along the channel a; it then
synchronizes with process a(b).P , and the local name b is substituted by c on
the residual process P , denoting the resulting process with P{c/b}. The latter
rules state the closure of the reduction relation with respect to the operators of
restriction and parallel composition.

There are a few differences with respect to the standard syntax and opera-
tional semantics for the π-calculus, as proposed e.g. in the initial chapter of [21]
(see Definition 1.1.1, Table 1.1 and Table 1.3). First of all, the lack of the pre-
fix operator τ.P and of the choice operator P1 + P2. They are both simplifying
assumptions, and see [8] for a graphical encoding of the calculus with these two
operators. Instead, the axioms concerning the distributivity of the restriction
operators with respect to the two prefix operators are not standard, even if they
have been already considered in the literature, see e.g. [7]. These equalities do
not change substantially the reduction semantics, and they indeed hold in all the
observational equivalences we are aware of. Moreover, they allow for a simplified
presentation of the graphical encoding: We refer the reader to [11] for a more
articulate analysis of the resulting structural congruence.
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Example 1. We introduce now a very simple example, the process race, defined
as (νc)ac.cc | a(b).bd, which seems to us well-suited for illustrating the reduction
semantics of the calculus, as well as the graphical encoding of processes in the
next sections. The sub-process on the left is ready to send a bound name c
via a channel a. The sent name will then used by both component processes as
output in their respective continuations. After a scope extension of the restriction
operator, a possible commitment of race thus consists of a synchronization on b:
race → (νc)(cc | cd). The residual process is deadlocked, since the restriction
forbids c to be observed.

3 Graphs and Their Ranked Extension

We recall a few definitions concerning (labeled hyper-)graphs, and their ranked
extension, referring to [5] for a detailed introduction and a comparison with the
standard presentation [20]. In the following we assume a chosen signature (Σ,S),
for Σ a set of operators (edge labels), and S a set of sorts (node labels), such
that the arity of an operator in Σ is a pair (s, ω), for ω ∈ S∗ and s ∈ S.

Definition 4 (graphs). A graph d (over (Σ,S)) is a tuple d = 〈N,E, l, s, t〉,
where N , E are the sets of nodes and edges; l is the pair of labeling functions
le : E → Σ, ln : N → S; s : E → N and t : E → N∗ are the source
and target functions; and such that for each edge e ∈ E, the arity of le(e) is
(ln(s(e)), l∗n(t(e))), i.e., each edge preserves the arity of its label.

Let d, d′ be graphs. A graph morphism f : d → d′ is a pair of functions fn :
N → N ′, fe : E → E′ that preserves the labeling, source and target functions.

With an abuse of notation, in the definition above we let l∗n stand for the
extension of the function ln from nodes to strings of nodes; sometimes, we use
l as a shorthand for ln and le. In the following, we denote the components of a
graph d by Nd, Ed, ld, sd and td, dropping the subscript if clear from the context.

In order to inductively define the encoding for processes, we need operations
over graphs. The first step is to equip them with suitable “handles” for interact-
ing with an environment, built out of other graphs.

Definition 5 (ranked graphs). Let dr, dv be graphs with no edges. A (dr, dv)-
ranked graph (a graph of rank (dr, dv)) is a triple G = 〈r, d, v〉, for d a graph
and r : dr → d, v : dv → d the root and variable morphisms.

Let G, G′ be ranked graphs of the same rank. A ranked graph morphism
f : G → G′ is a graph morphism fd : d → d′ between the underlying graphs that
preserves the root and variable morphisms.

We let dr
r⇒ d

v⇐ dv denote a (dr , dv)-ranked graph. With an abuse of no-
tation, we sometimes refer to the image of the root and variable morphisms as
roots and variables, respectively. More importantly, in the following we will often
refer implicitly to a ranked graph as the representative of its isomorphism class,
still using the same symbols to denote it and its components.
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Definition 6 (two composition operators). Let G = dr
r⇒ d

v⇐ di and

H = di
r′
⇒ d′

v′
⇐ dv be ranked graphs. Then, their sequential composition is the

ranked graph G◦H = dr
r′′
⇒ d′′

v′′
⇐ dv, for d′′ the disjoint union d0d′, modulo the

equivalence on nodes induced by v(x) = r′(x) for all x ∈ Ndi , and r′′ : dr → d′′,
v′′ : dv → d′′ the uniquely induced arrows.

Let G = dr
r⇒ d

v⇐ dv and H = d′r
r′
⇒ d′

v′
⇐ d′v be ranked graphs. Then, their

parallel composition is the ranked graph G ⊗H = (dr ∪ d′r)
r′′
⇒ d′′

v′′
⇐ (dv ∪ d′v),

for d′′ the disjoint union d 0 d′, modulo the equivalence on nodes induced by
r(x) = r′(x) for all x ∈ Ndr ∩Nd′

r
and v(y) = v′(y) for all y ∈ Ndv ∩Nd′

v
, and

r′′ : dr ∪ d′r → d′′, v′′ : dv ∪ d′v → d′′ the uniquely induced arrows.

Intuitively, the sequential composition G◦H is obtained by taking the disjoint
union of the graphs underlying G and H , and glueing the variables of G with the
corresponding roots of H . Similarly, the parallel composition G⊗H is obtained
by taking the disjoint union of the graphs underlying G and H , and glueing the
roots (variables) of G with the corresponding roots (variables) of H . Note that
the two operations are defined on “concrete” graphs. Nevertheless, the result is
clearly independent of the choice of the representative, up-to isomorphism.1
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Fig. 1. Ranked graphs outa,c (left) and �cc� ⊗ id{a,c} (right)
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Fig. 2. Ranked graphs outa,c ◦ (�cc� ⊗ id{a,c}) (left) and �a(b).bd� (right)

Example 2 (sequential and parallel composition). Fig. 1 depicts two ranked
graphs: As we shall see, they are part of the encoding of our running exam-
ple, and with an abuse of notation we denote them by using still to be defined
1 While the sequential operator precisely corresponds to categorical composition, the

parallel operator does not coincide with tensor product of monoidal categories [3].
A more standard definition for the latter operator is e.g. in [5]. Our choice, though,
allows for a compact presentation of the graphical encoding in the following sections.
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Fig. 3. The ranked graph �ac.cc� ⊗ �a(b).bd�

symbols. Their sequential composition is depicted in Fig. 2 (left), while the par-
allel composition of the graphs of Fig. 2 is represented in Fig. 3.

The nodes in the domain of the root (variable) morphism are depicted as
a vertical sequence on the left (right, resp.); the variable and root morphisms
are represented by dotted arrows, directed from right-to-left and left-to-right,
respectively. Edges are represented by a boxed label, from where arrows pointing
to the target nodes leave, and to where the arrow from the source node arrive;
the sequence of target nodes is usually the clockwise order of the start points of
the tentacles, even if sometimes it is indicated by a numbering on the tentacles:
For the edge of the leftmost graph of Fig. 1 the sequence is (v(p), v(a), v(c)).

The leftmost graph of Fig. 1 has rank ({p}, {p, a, c}), four nodes and one edge
labeled by out; the rightmost graph has rank ({p, a, c}, {a, c}), four nodes of
two different sorts (for graphical convenience, in the underlying graph nodes of
different sorts are denoted differently) and one edge labeled by out.

A graph expression is a term over the syntax containing all ranked graphs as
constants, and parallel and sequential composition as binary operators. An ex-
pression is well-formed if all occurrences of the parallel and sequential operators
are defined for the rank of the argument sub-expressions, according to Defini-
tion 6; its rank is computed inductively from the rank of the graphs occurring
in it, and its value is the graph obtained by evaluating all operators in it.

4 From Processes to Graphs

We now present the encoding of π-calculus processes into ranked graphs, inspired
to [8]. It is based on a signature (Σπ, Sπ), and it preserves structural congruence.
The set of sorts Sπ is {sp, sn}: Intuitively, a graph reachable from a node of sort
sp corresponds to a process, while each node of sort sn represents a name. The
set Σπ contains the operators {in, out} of sort (sp, spsnsn), clearly simulating
the input and output prefixes, respectively. There is no operator for simulating
either the restriction operators or the parallel composition of processes.

The second step is the characterization of a class of graphs, such that all
processes can be encoded into an expression containing only those graphs as
constants, and parallel and sequential composition as binary operators. Let p �∈
N : Our choice of graphs as constants is depicted in Fig. 4, for all a, b ∈ N .
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Fig. 4. Ranked graphs opa,b (for op ∈ {in, out}), ida and idp, 0a and 0p
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Fig. 5. The ranked graph �(νc)ac.cc | a(b).bd�

Finally, let us denote idΓ as a shorthand of
⊗

x∈Γ idx, for a set Γ of names
(since the ordering is immaterial). The encoding of processes into ranked graphs,
mapping each finite process into a graph expression, is presented below.

Definition 7 (encoding for processes). Let P be a process. The encoding
�P�, mapping a process P into a ranked graph, is defined by structural induction
according to the following rules

�(νa)P� =
{

�P� if a �∈ fn(P )
�P� ◦ (0a ⊗ idfn(P )\{a}) otherwise

�P | Q� = �P�⊗ �Q�
�0� = 0p

�ab.P� = outa,b ◦ (�P�⊗ id{a,b})
�a(b).P� = ina,b ◦ (�P�⊗ id{a,b}) ◦ (0b ⊗ idfn(P )\{b})

The mapping is well-defined, since the resulting graph expression is well-
formed; moreover, the encoding �P� is a graph of rank ({p}, fn(P )).

Example 3 (mapping a process). In order to give some intuition about the in-
tended meaning of the previous rules, we show the construction of the encoding
for the process ac.cc (a subprocess of our running example) whose graphical
representation is depicted in Fig. 2 (left)

�ac.cc� = outa,c ◦ (�cc�⊗ id{a,c}) = outa,c ◦ ((outc,c ◦ (0p ⊗ idc))⊗ id{a,c})

The denotation of (�cc�⊗ id{a,c}) coincides with (outc,c⊗ id{a,c})◦ (0p⊗ id{a,c}),
and the latter is clearly matched by its graphical representation, see Fig. 1
(right). The graphical representation of �race� is depicted in Fig. 5.
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Fig. 6. A ranked graph with a forbidden name-sharing situation
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Fig. 7. Ranked graph encoding for both (νd)a(b).bd and a(b).(νd)bd

The mapping �·� is not surjective, since there are graphs of rank ({p}, Γ )
that do not belong to the image of any process. As an example, let us consider
the graph in Fig. 6: It represents a name-sharing situation which is not allowed
in the process construction, where a name that is local to the process below the
input prefix is made visible globally.

Nevertheless, let us assume that we restrict our attention to processes veri-
fying a mild syntactical condition, namely, forbidding the occurrences of input
prefixes such as a(a). Then, our encoding is sound and complete, as stated by
the proposition below (adapted from [8]).

Proposition 1. Let P , Q be processes. Then, P ≡ Q if and only if �P� = �Q�.

Note in particular how the lack of restriction operators is dealt with by ma-
nipulating the rank of the interface, even if the price to pay is the presence of
“floating” axioms for prefixes, as shown by Fig. 7.

5 Reductions Via Sequential Composition

A recent series of papers advocated the use of graph transformation for modelling
the reduction semantics of nominal calculi. In particular, the authors proposed
the use of tools and techniques from the double-pushout (dpo) approach for
obtaining an implementable, concurrent semantics for these calculi [8, 11, 12].

This section follows a parallel path. The aim is to obtain an algebraic mech-
anism for specifying graphs, thus presenting their transformation via a suit-
able rewriting system. The technical trick is the recasting of dpo derivations
as cells on a suitable bicategory on cospan categories. The fact has been orig-
inally noted in [9, 10]. It has been further refined in recent work by Sassone
and Sobocinski [23], where the construction has been exploited for obtaining a
labelled transition system using Milner and Leifer’s relative pushouts [16].
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In order to simplify our presentation, we plan to recast most of the categorical
machinery in terms of the set-theoretic definitions used for ranked graphs. The
drawback is that sometimes the statements are going to be loose, and the reason-
ing mostly driven by examplifications. Nevertheless, all the relevant underlying
notions and theorems are provided in the Appendix.

5.1 Completeness of the Specification

Let us consider again the graphs in Fig. 4. Whilst sufficient for encoding
processes, there exists ranked graphs that are not described by a graph ex-
pression containing only those graphs as constants.

Let us then consider the ranked graphs below, which can be used to either
hide roots or performing a renaming on the interfaces.

• p�� ◦ a�� b �� ◦ a��

Fig. 8. Ranked graphs νp, νa and σb,a

There has been in recent years a research thread on the algebraic presentation
of (ranked) graphs, see e.g. [13, 14]. These approaches differ in the choice of
the alternative sets of constants and inference rules for characterizing graph
expressions. Variants of the result below are thus frequent in the literature: The
present statement is adapted from [5–Theorem 9].

Proposition 2. Let G be a graph of rank (I, J), for I, J finite subsets of {p}∪N .
Then, G can be denoted by a graph expression, possibly containing the graphs in
Fig. 4 and Fig. 8 as constants.

5.2 Encoding the Rules

Despite its appealing simplicity, the dpo approach to graph transformation still
lacks suitable proof and analysis techniques, differently from e.g. classical term
rewriting. This state of affairs seems mostly due, as argued in [5], to the lack
of alternative presentations of the formalism based on structural induction. As
pointed out in [9, 10], and confirmed by the recent [23], dpo graph transforma-
tion systems can be recast as suitable rewriting systems, obtaining an inductive
characterization for the formalism by exploiting this presentation. This section
rephrases those results in terms of ranked graphs and their composition.

First of all, though, since we would also like to describe open terms, we con-
sider a set {p}∪V of metavariables, ranged over by U, V, . . ., and we assume the
constants νV , idV , 0V and σU,V , defined as expected; the mapping �V � = σp,V ;
and the encoding �P�V = σV,p ◦ �P�.

Now, exploiting the presentation of reductions as graph rewrites [8], and con-
sidering the encoding of dpo rules as cospans [9], the reduction rule of the cal-
culus, namely a(b).P | ac.Q → P{c/b} | Q, can be simulated as a pair of ranked
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Fig. 9. The encoding Rl of the left-hand side

graphs, with the singleton {p} as unique root for both. The graph denoting the
left-hand side of the rule is presented in Fig. 9.

Informally, note that VP and VQ are the placeholders for the continuation
of the processes to which the rule is applied; similarly, V indicate the pos-
sible context [ ] | R into which the pair of communicating processes can be
inserted.

A similar graph R′
l is actually needed for simulating a(b).P | aa.Q (even if

its graphical depiction is not presented here). This corresponds to considering
only injective matches in the dpo derivations; or, as we shall see, to sequentially
compose (the graphical encoding of) the rule and a graph with injective variable
morphism. As we argued in [12–Section 5.3], this is a reasonable restriction when
dealing with calculi showing a complex name matching.

On the positive side, please note that only one rule is needed. In fact, the three
(different) meta-variables do occur as nodes in the graph, whilst they represent
concrete process instances in the corresponding reduction rule of the π-calculus.
Similarly, there is no need for rules representing the closure of the reduction with
respect to the restriction and parallel operators, since these operators are now
embedded into the graph context in which the rule occurs.

The right-hand side of the rule is depicted in Fig. 10. The three nodes of sort
sp are merged, indicating that the continuations occur now at the top of the
process; similarly, also the nodes for the variables b and c are coalesced.

The following result, an adaptation of [8–Theorem 1], explains how the graph-
ical encoding of the rules may actually simulate a reduction between processes.
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Fig. 10. The encoding Rr of the right-hand side
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Proposition 3 (encoding preserves reductions). Let P , Q be processes. If
P → Q, then there exists a ranked graph G with injective variable morphism
such that �P� coincides with either Rl ◦G or R′

l ◦G and �Q�⊗ νfn(P ) coincides
with Rr ◦G (R′

r ◦G, respectively).

Intuitively, the graph G is built by considering the context into which the
rule has to be mapped, in order to capture the encoding of the process. The key
point is that any such context can be expressed as a suitable graph expression.

In order to exemplify the construction, we round up the section with a more
detailed example. Let us consider again the derivation (νc)(ac.cc | a(b).bd) →
(νc)(cc | cd). The starting process can be simulated by the sequential com-
position of the left-hand side Rl of the rule, depicted in Fig. 9, with the graph
Grace = 0V ⊗GP ⊗GQ, for the graph expressions GP = (�bd�VP ⊗idb)◦(νb⊗idd)
and GQ = (�cc�VQ⊗id{a,c})◦(νc⊗ida) depicted in Fig. 11. Note also that the lat-
ter coincides with the graph on the right of Fig. 1, modulo the obvious renaming
of the root and the hiding of the variable c.
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•
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◦ d��

V Q �� • �� out ��

����

•

c �� ◦

a �� ◦ a��

Fig. 11. Ranked graphs GP (left) and GQ (right)

The ranked graph Rr ◦ Grace, the sequential composition of the right-hand
side Rr of the rule with the “context” Grace, is presented in Fig. 12. It coincides
with the denotation of �(νc)(cc | cd)�⊗ νa.

out ��

����

•

p �� •

��

��

◦

out �� ��

��

• ◦ d��

◦ a��

Fig. 12. The ranked graph �(νc)cc | cd� ⊗ νa

5.3 Observing Reductions

Exploiting the results sketched above, this last section presents a labelled tran-
sition system for the π-calculus, with graphical encodings of processes as states.

The mechanism to be followed for obtaining the labels is suggested by relative
pushouts. Its formal construction is provided in Definition 15. Roughly, its states
are (isomorphic classes of) ranked graphs G, and its labels are those “minimal”
ranked graphs C such that G ◦ C can perform a reduction.
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Later in this section we try to exemplify the minimality of a context, re-
ferring to the Appendix for its categorical construction. In order to provide a
set-theoretic presentation, let us first consider the composition α ◦ R of an iso-
morphism α : G → H between graphs of rank (dr, di) and a graph R of rank
(di, dv) as the uniquely induced isomorphism from G ◦R into H ◦R.

Definition 8 (minimal context). Let us consider a graph G ◦ C, isomorphic
to Rl ◦D for an isomorphim α, of rank ({p}, dv).

Moreover, let us consider a triple 〈C′, D′E〉 of ranked graphs and three iso-
morphisms β : G ◦ C′ → Rl ◦D′, γ : C′ ◦ E → C, and δ : D′ ◦ E →D such that
α coincides with functional composition of C ◦ γ, β ◦ E and Rl ◦D.

Then, the context C is minimal with respect to G and D if whenever the
two conditions above hold, there exists a unique ranked graph L (up-to a unique
isomorphism) and three compatible isomorphisms γ′ : C ◦ L → C′, δ′ : D ◦ L →
D′, and ξ : iddv → L ◦ E (such that e.g. the functional composition of C ◦ ξ,
γ′ ◦ E, and γ coincides with the identity on C).

In the above definition we let iddv denote the ranked graph with the identity
on dv as both the root and the variable morphims.

Note that, by construction, if C is minimal then E must be discrete. In other
terms, the requirement of minimality boils down to ensure that, whenever a
graph G ◦ C is decomposed as Rl ◦D, then the decomposition is unique, up-to
renaming of the variables in the interface.

Definition 9 (labelled transitions for graphical encodings). The labelled
transition system LTS(Cπ) is given by

1. the states of LTS(Cπ) are (isomorphic classes of) graphs of rank ({p}, dv);
2. there exists a transition G C �Rr ◦D iff C is a minimal graph with respect

to G and D.

Hence, a transition G C �Rr ◦D can be performed if the ranked graph G◦C,
obtained by the sequential composition of the initial state of the transition with
the label, can be decomposed as Rl◦D and C is minimal with respect to G and D.
Spelled out, the definition above coincides with the construction in Definition 15,
as generated by the bireactive system Cπ specified in Definition 17.

Example 4. This final part of the section provides some examples of labelled
transitions. First, let us consider the derived encoding �P�p = �P� ⊗ idp, in-
tuitively allowing for a graph to be inserted into a larger context via sequential
composition. Let us consider the term ac, obtained as a sub-process of the left-
hand side of the reduction rule, where the process Q is istantiated to 0. The
graph �ac�p of rank ({p}, {p, a, c}) reduces to �VP � ⊗ νa ⊗ ν̂{b,c} (the latter
being the derived operator νb ◦ (idb ⊗ σb,c)), and the label îna,b ⊗ id{a,c} (the
former being the derived operator ina,b ◦ (�Vp�⊗ id{a,b}) represents the minimal
ranked graph (up-to renaming of the metavariable) allowing for the correspond-
ing process reduction to be performed. The transition is depicted in Fig. 13.
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Fig. 13. Components of transition �ac�p îna,b⊗id{a,c} � �VP � ⊗ νa ⊗ ν̂{b,c}

Even if b is a bound name, it has to appear, possibly modulo a renaming,
among the variables of the label, in order for the latter to be a minimal context.

Let us then elaborate on the previous example.

– Reactions can be applied to open processes. Let us consider the encoding
�ac.VQ�p, for a metavariable VQ �= VP : Its has rank ({p}, {p, VQ, a, c}), and
via the observation îna,b⊗id{VQ,a,c} can be reduced to �VP | VQ�⊗νa⊗ν̂{b,c}.

– Reactions can be applied to restricted processes. Let us consider the encoding
�(νc)ac�p: Its has rank ({p}, {p, a}), and via the observation îna,b⊗ ida can
be reduced to �VP �⊗ ν{a,b}.

Perhaps more interestingly, let us consider the encoding �a(b).VP �p, for a
metavariable VP �= VQ. Now b is bound in the source state, so its identity should
be irrelevant in the computation. In fact, the graph reduces to �VP | VQ�⊗ν{a,d}
with observation �ad.VQ� ⊗ id{VP ,a} for any name d. The resulting labelled
transition is depicted in Fig. 14.
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Fig. 14. Components of transition �a(b).VP �p
�ad.VQ�⊗id{VP ,a}� �VP | VQ� ⊗ ν{a,d}

Finally, consider the deadlocked (νc)(cc | cd). All transitions in LTS(Cπ)
departing from that process must include Rl in their label: In fact, there is no
context such that the node denoting the name c can be linked to an edge labelled
in, since that node is not referred to in the interface of �(νc)(cc | cd)�p.

6 Conclusions and Further Work

The aim of our paper is quite straightforward: To synthesise a labelled transition
system for the π-calculus, out of a graphical encoding of its reduction system.
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We highlight five different contributions with a pivotal role in the development
of our work. We first considered a well-known approach to the synthesis of a
labelled transition system out a of reactive system, namely, Leifer and Milner’s
relative pushouts [16]. We then took into account its generalisation to groupoidal
relative pushouts due to Sassone and Sobocinski [22], and its application on the
category of cospans [23]. We further included our own proposal for encoding the
reduction semantics for nominal calculi using dpo tools [11] (in particular its
application to the π-calculus [8]), and the description of graph transformation
systems as suitable reactive systems on the bicategory of cospans [10].

The present paper thus comes out as a case study in the growing field of syn-
thesised labelled transition systems: An important one, though, since it is one of
the very few examples concerning a rich calculus. We envision a few possible ex-
tensions of this work. First of all, however, we would like to make precise the cor-
respondence between the synthesised bisimulation congruence and a more stan-
dard observational equivalence: Possibly early bisimulation [21–Table 1.5, Sec-
tion 2.2], as the transition depicted in Fig. 14 seems to suggest.
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22. V. Sassone and P. Sobociński. Deriving bisimulation congruences using 2-
categories. Nordic Journal of Computing, 10:163–183, 2003.
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Appendix A: Some Categorical Notions

On Adhesive Categories

We recall here the definition of adhesive categories [15]. We do not provide any
introduction to basic categorical constructions such as products, pullbacks and
pushouts, referring the reader to Sections 5 and 9 of [3].

Definition 10 (adhesive categories). A category is called adhesive if

– it has pushouts along monos;
– it has pullbacks;
– pushouts along monos are Van Kampen (vk) squares.
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Referring to Fig. 15, a vk square is a pushout like (i), such that for each com-
mutative cube like (ii) having (i) as bottom face and the back faces of which are
pullbacks, the front faces are pullbacks if and only if the top face is a pushout.
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Fig. 15. A pushout square (i), left, and a commutative cube (ii), right

There are at least two properties of interest for adhesive categories. The first
is that adhesive categories subsume many properties of hlr categories [6]. This
ensures that several results about parallelism are also valid for dpo rewriting in
adhesive categories, if the rules are given by spans of monos [15].

The second fact is concerned with the associated category of input-linear
cospans (i.e., pairs of arrows with common target, where the first is a mono). As
already suggested in [9], any dpo rule can be represented by a pair of cospans,
and the bicategory freely generated from the rules represents faithfully all the
derivations obtained using monos as matches [10]. Furthermore, the resulting
bicategory has relative pushouts [16], hence it is possible to derive automatically
a well-behaved behavioral equivalence [23], namely, a bisimulation equivalence
which is also a congruence with respect to the closure under (suitable) contexts.

On Bicategories

A bicategory C is described concisely as a category where every homset (the
collections of arrows between any pair of objects a and b) is the class of objects
of some category C(a, b) and, correspondingly, whose composition “functions”
C(a, b)× C(b, c) → C(a, c) are functors.

Definition 11 (bicategories). A bicategory C consists of

1. a class of objects a, b, c, . . .;
2. for each a, b ∈ C a category C(a, b);
3. for each a, b, c ∈ C a functor ∗ : C(a, b)× C(b, c) → C(a, c).

The objects of C(a, b) are called 1-cells, or simply arrows, and denoted by
f : a → b. Its morphisms are called 2-cells, and are written α : f ⇒ g : a → b.
Composition in C(a, b) is denoted by • and referred to as vertical composition.
Identity 2-cells are denoted by 1f : f ⇒ f .
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Actually, a bicategory is also equipped with a family of coherence cells, and
the horizontal composition ∗ must additionally satisfy a weak associative law,
also admitting 1ida as identities. We refer the reader to [10–Section 4], where
the link between bicategories and cospan categories is made explicit.

Definition 12 (2- and groupoidal categories). A 2-category is a bicategory
such that horizontal composition is associative. A groupoidal category (or G-
category) is a 2-category where all 2-cells are invertible.

On Reactive Systems

Reactive systems were proposed by Leifer and Milner as a general framework for
the study of simple formalisms equipped with a reduction semantics [16]. The
setting was extended by Sassone and Sobocinski [22] in order to deal with con-
texts of a formalism that is equipped with a structural congruence relation. For
instance, in examples which contain a parallel composition operator, it is usually
not satisfactory to simply quotient out terms with respect to its commutativity—
intuitively, it is important to know the precise location within the term where
the reaction occurs. This information is expressed as a 2-dimensional structure,
where the 2-cells are isomorphisms which “permute” the structure of the term.

Definition 13 (reactive system). A (bi)reactive system C consists of

1. a bicategory C of contexts;
2. an object ι ∈ C;
3. a composition-reflecting, 2-full sub-bicategory E of evaluation contexts2;
4. a set R ⊆

⋃
a∈E C(ι, a)× C(ι, a) of reaction rules.

Reaction rules are closed with respect to evaluation contexts in order to obtain
the reaction relation on the closed terms (arrows with domain ι) of C.

On Groupoidal Relative Pushouts as Labels

We briefly introduce now groupoidal relative pushouts, a bicategorical version of
pushouts in slice categories. They can be considered as a way for quotienting out
the common context shared between terms, described as arrows in a category.

Definition 14 (GRPOs [23–Definition 3.2]). Let C be a bicategory with iso-
morphic 2-cells. Referring to Fig. 16, a candidate for a cell α : c; a ⇒ d; b like
(i) is a tuple 〈E, e, o, h, β, γ, δ〉 like (ii) such that its cells past up (taking into
account the associativity morphims) to give α.

A GRPO is a candidate which satisfies a universal property, i.e., such that for
any other candidate 〈E′, e′, o′, h′, β′, γ′, δ′〉 there must be a unique (up-to unique
isomorphic cell) arrow l : E → E′ and cells φ : e; l ⇒ e′, φ : o; l ⇒ o′, and
ξ : l;h′ ⇒ h making the two candidate compatible.

Finally, a diagram above on the left is a groupoidal-idem pushout (GIPO) if
its GRPO is the tuple 〈D, g, n, idD, α, 1g, 1n〉.
2 E is full on the two-dimensional structure and e1; e2 ∈ E implies e1 ∈ E and e2 ∈ E .
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Fig. 16. A cell (i), left, and a candidate GRPO (ii), right

Now, GRPOs can be fruitfully used to define a labelled transtition system.
The basic idea, originally due to Sewell [24], is that the labels represent the
smallest contexts which allow a reaction to occur. This is obtained by labelling
a transitions with those arrows precisely arising from GIPOs.

Definition 15 (a labelled transition system). Let C be a bireactive system.
The associated labelled transition system LTS(C) is given by

1. the states of LTS(C) are (isomorphic classes of) arrows [s] : ι → a in C
2. there is a transition [s] [f ] � [r; t] iff there exists 〈l, r〉 ∈ R, t ∈ E and 2-cell

α : s; f ⇒ l; t such that the square below is a GIPO.
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Note that the states and the transitions of the LTS are obtained by quotienting
arrows and cells with respect to isomorphism—in other words, the 2-dimensional
structure is no longer necessary and may be discarded.

One of the main results that holds for such an LTS is that when the underlying
bicategory C has enough (G)RPOs, then bisimilarity is a congruence (i.e., it is
closed with respect to left-composition for each arrow in C).

Proposition 4 (observational congruence). Let C be a bireactive system,
and let f, g ∈ C(ι, a) be arrows of the underlying bicategory. If f and g are
(strong) bisimilar in C, then so are f ;h and g;h for all arrows h ∈ C(a, b).

This was originally shown by Leifer and Milner [16–Theorem 1] and extended
to the bicategorical setting by Sassone and Sobocinski [22–Theorem 1].

On Cospan Categories

We close the Appendix with a result ensuring the relevant properties for ranked
graphs, as stated in Proposition 7 below.

Definition 16 (bicategories of cospans). Let C be a category with chosen
binary pushouts. Then, the bicategory of input-linear cospans is given by the
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triple 〈ObC , CoSpan(C), ∗〉, where ObC is the set of objects of C; the arrows of
CoSpan(C)(a, b) are the triples 〈f, c, g〉 for f : a → c a mono and g : b → c an
arrow in C; the cells l : 〈f, c, g〉 ⇒ 〈h, d, i〉 are those arrows l : c → d in C making
the diagrams commute; the horizontal (i.e., cospan) composition is the family of
functors ∗a,b,c : CoSpan(C)(a, b)× CoSpan(C)(b, c) → CoSpan(C)(a, c), defined
by the chosen pushouts.

We do not explicitly mention here all the relevant isomorhism cells that are
induced by the universal property of pushouts. Note that ranked graphs thus
coincide with the category of cospans over typed graphs, or better, its sub-
bicategory obtained by restricting to those objects which are discrete graphs.

Proposition 5 (cospans and GRPOs). Let C be a adhesive category with
chosen binary pushouts. Then, the associated bicategory of input-linear cospans
and isomorphic cells has GRPOs.

The previous proposition is the main result obtained in [23] (see Theorem 4.1):
It is instantiated to Proposition 7 below, thus allowing for our presentation of a
π-reactive system and its labelled transition system semantics.

Some Results on Graphs as an Adhesive Category

The aim of this section is to present some easy technical lemma, characterizing
the category of ranked graphs as a bicategory of cospans, hence enabling the
previous mechanism to be instantiated to our graphical encoding for processes.

Proposition 6 (on adhesiveness). Graphs and their morphisms (see Defini-
tion 4) form an adhesive category.

The proof is rather straightforward. The category laws clearly hold. Con-
cerning adhesiveness, hyper-graphs form an adhesive category, as proved in [15–
Corollary 3.6]; moreover, labelled (hyper-)graphs clearly correspond to typed
(hyper-)graphs, for the obvious graph associated to a signature (see e.g. Fig. 17
for the graph associated to the π-calculus3), and adhesiveness is closed under
the slice construction, as proved again in [15–Proposition 3.5].

Proposition 7 (on groupoidal relative pushouts). Ranked graphs with in-
jective variable morphism and their isomorphisms (see Definition 5) form a bi-
category with groupoidal relative pushouts.

Note that a ranked graph is just a cospan over the category of typed graphs,
see Definition 16. The latter category can be equipped with a choice of pushouts
which is compatible with the notion of sequential composition we have given for

3 Remember that, for graphical convenience, the nodes are represented either by an
hollow or as a full circle, in order to distinguish those nodes used for names (the
former) from the nodes denoting a (sub-)process in the encoding (the latter); similar
considerations hold for the labels in and out inside the edges.
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Fig. 17. The type graph for π-calculus

ranked graphs. Thus, ranked graphs are just a 2-full sub-bicategory of the cate-
gory of input-linear cospans for typed graphs, as defined e.g. according to [23–
Definition 2.5], restricted to discrete interfaces (i.e., graphs with no edges). The
existence of groupoidal relative pushouts (GRPOs) in the sub-bicategory is con-
firmed by the analysis of the construction of the candidate in [23–Algorithm 4.2].

Definition 17 (π-reactive system). The (bi)reactive system Cπ consists of

1. the bicategory of ranked graphs;
2. the object {p};
3. the π-reaction rule 〈Rl, Rr〉.
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Abstract. Undecidability results in rewriting have usually been proved
by reduction from undecidable problems of Turing machines or, more re-
cently, from Post’s Correspondence Problem. Another natural candidate
for proofs regarding term rewriting is Recursion Theory, a direction we
promote in this contribution.

We present some undecidability results for “primitive” term rewrit-
ing systems, which encode primitive-recursive definitions, in the manner
suggested by Klop. We also reprove some undecidability results for or-
thogonal and non-orthogonal rewriting by applying standard results in
recursion theory.

1 Introduction

Indeed, if general recursive function
is the formal equivalent of effective calculability,

its formulation may play a role
in the history of combinatory mathematics

second only to that of the formulation of natural number.

— Emil Post (1944)

A number of models of computation vie for the rôle of “most basic” mech-
anism for defining effective computations. These include: semi-Thue systems,
Markov’s normal algorithms, Church’s lambda calculus, Schönfinkel’s combina-
tory logic, Turing’s “logical computing” machines, and Gödel’s recursive func-
tions. Although they operate over different domains (strings, terms, numbers),
they are all of equivalent computational power.1

First-order term rewriting makes for a very natural symbolic programming
paradigm based on subterm replacement, without bound variables or built-in
operations. The two most basic properties a rewrite system may possess are
termination (a.k.a. strong normalization) and confluence (the famous Church-
Rosser property). Variations on these include (weak) normalization, unique nor-
mal forms, and ground confluence. For a comprehensive text on rewriting, see
the recent volume by the “Terese” group, based in Amsterdam [38].
� This research was supported by the Israel Science Foundation (grant no. 250/05).
1 See [4, 5] for a discussion of problems pertaining to comparisons of computational

power of models operating over diverse domains.
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It comes as no surprise that rewrite systems have the same computational
power as the other basic models.2 Moreover, rewrite systems may be restricted in
various ways, including left-linearity, orthogonality, and constructor-basedness,
without weakening the model from the point of view of computability.

To quote Klop [31–p. 356]: “As is to be expected, most of the properties of
TRSs [term rewriting systems] are undecidable. Consider only TRSs with fi-
nite signature and finitely many reduction rules. Then it is undecidable whether
confluence holds, and also whether termination holds.” Early undecidability re-
sults in string and term rewriting were proved by reduction from undecidable
problems of Turing machines (e.g. [9, 25]). More recently, Post’s Correspondence
Problem [47] has been used: for string rewriting by Book [6]; for term rewriting
in [28, 36] (see also [14, 15] and [38–Sect. 5.3.3]). The most natural candidate
for proofs regarding term rewriting, however, is recursion theory, a direction we
promote here.

Recursive function theory is a uniquely suitable candidate for demonstrating,
by means of suitable reductions, that various properties of members of classes
of rewrite systems are undecidable. Standard works on recursion theory include
[41, 45, 48, 53]. The encoding of recursive functions as term-rewriting systems is
part of the field’s age-old “folklore”, and is mentioned by Klop as an exercise in
his 1992 survey [32].

This paper present some undecidability results for “primitive” term rewriting
systems, which encode primitive-recursive definitions. Primitive rewriting is de-
fined in Sect. 3. Section 4 shows how to also faithfully encode partial-recursive
functions. Kleene’s computation predicate—which is central to the undecidabil-
ity results—is coded as a primitive rewrite system in the Appendix, and its
properties are discussed in Sect. 5. In Sects. 6 and 7, we reprove (and improve)
some undecidability results for orthogonal and non-orthogonal rewriting (see
[38–Chap. 5]) by applying standard results in recursion theory. The conclud-
ing section lists what we believe to be new by way of sufficient conditions for
undecidability obtained in this way.

2 Background

A total function f over the natural numbers is primitive recursive if it is the
constant λ.0, a projection function λx1, . . . , xk.xi, the successor function λx.x+1,
the composition of other primitive-recursive functions, or else is itself definable
by primitive recursion of the form:

f(n, . . . , xi, . . .) :=
{

g(. . . , xi, . . .) n = 0
h(f(n− 1, . . . , xi, . . .), n− 1, . . . , xi, . . .) otherwise ,

where g and h are already known to be primitive recursive.
A partial function f over the natural numbers is partial recursive if it is

primitive recursive, or if it can be defined by composition or primitive recursion
2 Of course, the classical Church-Turing Thesis asserts that these sets of functions are

exactly what are mechanistically computable. See [3].
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from other partial-recursive functions, or if it can be defined by minimization
(μ-recursion):

f(. . . , xi, . . .) := μn∈N
{q(n, . . . , xi, . . .)} ,

where q is a partial-recursive predicate.3 Recursive functions are computed
leftmost-innermost [48–Sect. 1.2], which is the computation rule that goes into
an infinite loop whenever any computation rule can (see, e.g., [37]). In other
words, the result is always the least-defined partial function possible.4

A partial-recursive function is (general) recursive if it is total (always defined).
It is well-known that the class of general recursive functions coincides with the
Turing-computable (total) functions over (encodings of) the naturals.

Kleene’s Normal-Form Theorem [48–Thm. 1-X] states that there exist prim-
itive recursive functions U and TK such that

λx̄. U(μz.TK(j, x̄, z)) (1)

enumerates all the partial-recursive functions (x̄ is a sequence of variables). The
computation predicate TK(j, ā, z) (“Kleene’s T ”; see [29]), checks whether z ∈ N
is (a numerical encoding of) a list beginning with the term fj(ā), with arguments
ai ∈ N, continuing step-by-step as in a valid computation, and ending with
a natural number for the value of fj(ā); U extracts that number. In modern
parlance, we would say that the partial-recursive function

λj.λx̄. U(μz.TK(j, x̄, z)) (2)

is an “interpreter” for partial recursion, analogous to the Universal Turing Ma-
chine.

Two basic undecidability results in recursion theory (due to Kleene [29]) follow
from the existence of this partial-recursive function:

DEF(f, n). Given a definition of a partial-recursive function f : N ⇀ N
and a natural number n ∈ N, it is undecidable whether f(n) is defined
[48–Thm. 1-VII]. By “definition”, we mean here the index of an enumer-
ation or the Gödel number of a program.

TOT(f). Given a definition of a partial-recursive function f : N ⇀ N, it is
undecidable whether f is recursive [48–Thm. 1-VIII]. The TOT problem,
like its analogue for Turing machines, is not even semi-decidable.

In the appendix, we define an injection  : f 2→ f � from the definition of a
partial-recursive function f (that is, from the sequence of compositions, recur-
sions, and minimizations that define f) into the naturals. The rewrite program

3 By predicate we mean any function, but with 0 interpreted as false and non-zero
(usually 1) signifying truth.

4 For example, with definitions κ(x) := 1 and ω := μ{0}, κ(ω) is undefined.
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TK given there defines a primitive-recursive function T such that (restricting
to one-argument functions):

DEF(f, n) ⇔ ∃y ∈ N. T (f �, n, y) = 1 . (3)

For j ∈ N that do not correspond to any program, T (j, n, y) = 0, for all n and
y. This suffices for our purposes.

3 Primitive Rewriting

In [32–Ex. 2.2.9], Klop mentioned that the primitive-recursive functions can
be directly programmed as a terminating, orthogonal, constructor-based term-
rewriting system, where the two constructors are the constant 0 and the unary
successor function s. There are collapsing rules

πk
i (x1, . . . , xk) → xi ,

for each k and i, 1 ≤ i ≤ k, corresponding to projections. All other functions f
are defined by rules that are either recursion-free compositions of the following
form:

f(. . . , xi, . . .) → g(h1(. . . , xi, . . .), . . . , hk(. . . , xi, . . .)) ,

or else primitive recursions of the form

f(0, . . . , xi, . . .) → g(. . . , xi, . . .)
f(s(n), . . . , xi, . . .) → h(f(n, . . . , xi, . . .), n, . . . , xi, . . .) .

More conveniently, one can allow arbitrary compositions of previously defined
functions on right-hand sides of defining rules. Thus, primitive-recursive func-
tions can be defined either by composition:

f(. . . , xi, . . .) → G[. . . , xi, . . .] ,

or by non-nested recursion over the naturals:
f(0, . . . , xi, . . .) → G[. . . , xi, . . .]

f(s(n), . . . , xi, . . .) → H [f(n, . . . , xi, . . .), n, . . . , xi, . . .] ,

where G and H are “contexts” (terms with holes) built from already-defined
functions, and the recursive call and the arguments n and xi may appear any
number of times in H . (One can also allow the recursive decrease to be in any
one, fixed position.) Such definitions can be easily deconstructed into a sequence
of composed functions, preserving derivability, →+.

Numbers n ∈ N are represented by terms n̂ = sn(0) in standard unary succes-
sor notation. Let N̂ = {n̂ : n ∈ N} be the set of these “tally” numbers. Factorial,
for example, is defined as follows (using standard infix notation):

0 + x → x
s(z) + x → s(z + x)

0× x → 0
s(z)× x → (z × x) + x

0! → s(0)
(s(z))! → s(z)× (z!) .
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Such primitive rewriting systems can be made non-erasing (sometimes called
“regular”), in the sense that all variables on the left of a rule also appear on the
right, and non-collapsing—no right side just a variable, by using the following
primitive functions:

ι(0) → 0
ι(s(n)) → s(ι(n))
ε(0, n) → ι(n)

ε(s(m), n) → ε(m,n) .

Then the right side xi of each projection rule πk
i can be enveloped with calls to

ε for each of the irrelevant variables:

πk
i (x1, . . . , xk) → ε(x1, . . . ε(xi−1, ε(xi+1, . . . , ε(xn, xi) · · ·)) · · ·) .

To reduce the depth of right sides, one can use a sequence of “erasure” rules,
instead:

π1
1(x) → x

πk
1 (x1, . . . , xk) → ε(xk, π

k−1
1 (x1, . . . , xk−1)) k > 1

πk
i (x1, . . . , xk) → ε(x1, π

k−1
i−1 (x2, . . . , xk)) i, k > 1 .

So massaged, every primitive rewrite system possesses the following properties:
1. it is terminating;
2. it is what we will call definitional, that is,

(a) orthogonal—left-linear with no critical pairs, hence
(b) confluent,
(c) constructor-based—all but the outermost symbols on the left are con-

structors (either 0 or s) or variables,
(d) constructor complete—every non-constructor variable-free term is re-

ducible,5

(e) non-erasing, and
(f) non-collapsing;

3. and it is 3-deep (having maximum nesting, on the left and on the right, of 3),
with only variables occuring at depth 3 (that is, below at most 2 symbols).

Plaisted [46] noted that every primitive-recursive function written as a rewrite
system (as above) is provably terminating with his simple path ordering (of order
type ωωN

). Likewise, they can be shown terminating with a lexicographic or
multiset path ordering (see [11]). In the other direction, Hofbauer [23] (taking the

5 Sufficient completeness (the “no junk” condition) means that every ground (variable-
free) term is equal (convertible) to a constructor-only term. In a rewriting con-
text, one normally asks that ground non-constructor terms actually normalize to
constructor-only terms (incorporating a degree of ground confluence). Since we al-
ready have a separate termination property, we only ask that every ground non-
constructor term be rewritable. Combined with termination, this yields the usual
sufficient-completeness property. (I am borrowing the term “constructor complete-
ness” from notes by Heinrich Hußmann.)
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exponential termination functions of Iturriaga [27] a few steps further) showed
that any rewrite system that can be proved terminating using a recursive path
ordering must have primitive-recursive derivation length. For some recent related
results, see [1, 8].

4 Partial Rewriting

Algebraic rewriting does not have bound variables, so to simulate general re-
cursion we employ a trick, namely, separate minimization functions for each
predicate:

μq(z, s(y), . . . , xi, . . .) → z
μq(z, 0, . . . , xi, . . .) → μq(s(z), q(s(z), . . . , xi, . . .), . . . , xi, . . .) ,

where q is a partial-recursive predicate. Better yet, we can let an arbitrary ex-
pression serve as test, with any non-zero value signifying truth:

μQ(z, s(y), . . . , xi, . . .) → z
μQ(z, 0, . . . , xi, . . .) → μQ(s(z), Q[s(z), . . . , xi, . . .], . . . , xi, . . .) .

Then, to compute a function f defined by minimization vis-à-vis Q, we start off
with

f(. . . , xi, . . .) → μq(0, Q[0, . . . , xi, . . .], . . . , xi, . . .) .

To avoid introducing spurious cases of nontermination, q (or Q) must be
monotonic, in the sense that q(k, x̄) > 0 implies q(m, x̄) > 0 for all m >
k. Were we to allow non-monotonic predicates q, then the computation of
μq(N̂ , 0, . . . ,Ki, . . .) might diverge for large N , even as f itself never does, since
q(z, . . . , xi, . . .) may yield false for all but one z.

Luckily, with no loss of generality, any ordinary predicate q′ can be recast
monotonically as

q(n, . . . , xi, . . .) :=
n∑

i=0

q′(i, . . . , xi, . . .) ,

where the sum serves as disjunction, and is primitive recursive when q is. The
minima μq and μq′ satisfying the two tests (when starting from 0) are the same.

By extension, such rewrite systems, built from primitive recursion and mono-
tonic minimization, will be called partial recursive. When they terminate they
are general recursive.

For example, natural-number division (which is actually primitive recursive)
may be defined as follows:

p(0) → 0
p(s(z)) → z
x · 0 → x

x · s(z) → p(x · z)
μ(z, s(v), x, y) → z

μ(z, 0, x, y) → μ(s(z), (y × s(s(z))) · x, x, y)
x÷ y → μ(0, y · x, x, y) .
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primitive-recursive system
∩

general-recursive system
∩

partial-recursive system
∩

definitional system

Fig. 1. Hierarchy of recursive rewriting

Rules for the base case of minimization can be made non-erasing, like we did
for projections. That done, a term reduces to a numeral only if it is a ground
term built from the constructors, 0and s, and from functions defined according
to the above schemata.

Partial-recursive rewrite systems are definitional, and, as such, they are conflu-
ent. General-recursive systems are definitional and terminating. These inclusions
are summarized in Fig. 1.

It is important to take note of the fact that partial-recursive rewrite systems
terminate regardless of strategy (in other words, they are strongly normalizing)
if, and only if, they terminate via innermost rewriting, since partial systems are
orthogonal [42] ([38–Thm. 4.8.7]).6 Furthermore, as they are also non-erasing,
a partial-recursive rewriting system terminates if, and only if, it is (weakly)
normalizing [7] ([38–Thm. 4.8.5]). These observations remain true for questions
regarding specific initial terms, too [38–p. 128].

Our rewriting implementation of primitive and partial recursion is sound:

Proposition 1. For all partial-recursive functions f : Nk ⇀ N, implemented as
described above by a symbol f in rewrite system F ,

f(a1, . . . , ak) = n ⇔ f(â1, . . . , âk) !−→
F

n̂ ,

for all n, a1, . . . , ak ∈ N, where n̂ is the (normal form) term representing the
number n and →! is reduction to normal form—using any arbitrary rewriting
strategy.

Proof. If f(a1, . . . , ak) = n, then leftmost-innermost rewriting with F will mimic
the recursive computation and yield n̂. Since orthogonal systems are confluent,
n̂ is the only normal form. The strategy does not matter, since, as just pointed
out, non-erasing orthogonal systems terminate regardless of strategy for a given
term if they normalize using any strategy.7 ��
6 Left-linearity is inessential [16]; the non-overlapping condition can also be weakened

[21, 13].
7 To explicate: The non-erasing version of κ from footnote 4 would be κ(x) → ε(x, 1̂).

Since the rules for ε would not apply to the term ω or any of its descendants,
all computations of κ(ω) diverge. With the erasing version, on the other hand,
κ(ω) →! 1̂.
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The undecidability of definedness (DEF) for partial-recursive rewriting follows
directly, by a standard diagonalization argument: We have that DEF(F, n), for
rewrite system F and n ∈ N, if ∃m ∈ N̂. f(n̂) →!

F m. Were there a recursive
system defining a recursive function D for deciding DEF, then the following
system X , with the system for D, would be partial recursive (cf. [54]):

¬x → s(0) · x
μ(z, s(y), f) → z

μ(z, 0, f) → μ(s(z),¬D(f, f), f)
X(g) → μ(0,¬D(g, g), g) .

But then

X(X�) !−→
X

0 ⇔ ¬D(X�, X�) !−→
X

s(0) ⇔

D(X�, X�) !−→
X

0 ⇔ ∀m ∈ N̂. X(X�)
!

�−→
X

m ,

a contradiction. The first biconditional derives from the definition of X ; the last,
from the presumption that D decides DEF.

5 Computations

A primitive rewrite system TK for the computation predicate T (implementing
TK), for functions of any arity, is given in the Appendix. Soundness of this
implementation of TK means the following:

Proposition 2. For all partial-recursive functions f : Nk ⇀ N,

f(. . . , ai, . . .) = n ⇔ ∃y ∈ N̂. T (f �, . . . , âi, . . . , y) !−→
TK

1̂ ∧ U(y) !−→
TK

n̂

and
f(. . . , ai, . . .) = ⊥ ⇔ ∀y ∈ N̂. T (f �, . . . , âi, . . . , y) !−→

TK
0 ,

where ⊥ denotes undefined, T is the symbol for the computation predicate TK

in rewrite system TK, U is the symbol for the last-element function, and f � is
the numeral representing the rewrite program for f .

The monotonic version of predicate T is the following:

T ∗(j, . . . , xi, . . . , 0) → T (j, . . . , xi, . . . , 0)
T ∗(j, . . . , xi, . . . , s(y)) → T ∗(j, . . . , xi, . . . , y) + T (j, . . . , xi, . . . , s(y)) .

Then, by the Normal Form Theorem, to compute any partial-recursive function
f , one can use primitive-recursive T ∗ along with the following general-recursive
rules:

μ(z, s(y), . . . , xi, . . .) → z
μ(z, 0, . . . , xi, . . .) → μ(s(z), T ∗(f �, . . . , xi, . . . , s(z)), . . . , xi, . . .)

f(. . . , xi, . . .) → U(μ(0, T ∗(f �, . . . , xi, . . . , 0), . . . , xi, . . .)) .

Call this system (including TK, and made non-erasing) Rf .
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Proposition 3. For all partial-recursive functions f : Nk ⇀ N, implemented by
a symbol f in rewrite system Rf ,

f(a1, . . . , ak) = n ⇔ f(â1, . . . , âk) !−→
Rf

n̂ .

As previously mentioned, it is also undecidable whether a partial-recursive sys-
tem is actually general-recursive. This TOT problem for rewriting can be shown
to be non-semi-decidable by using TK, with no need to rely on results for Turing
machines or recursive functions.

6 Word Problems

In this and the following section, we restrict attention to properties of unary
functions. As a corollary of Proposition 2, we have

Proposition 4.

DEF(f, n) ⇔ ∃y ∈ N̂. T (f �, n̂, y) !−→
TK

1̂ .

Proof. This is due to the fact that TK (see Appendix) is designed so as to reduce
all (ground) terms headed by T to either 0 (for false) or 1̂ (for true). ��

The (rewrite) matching problem, MATCH, is

MATCH(R, t,N) := ∃σ. tσ
!−→
R

N ,

where R is a rewrite system, t is a term containing variables, N is a ground (that
is, variable-free) normal form, and σ is a (ground) substitution.

Theorem 1. Matching of primitive rewriting is undecidable.

The proof of undecidability of matching for terminating confluent systems in
[22–Cor. 3.11] uses a non-erasing, but overlapping system. The simpler proof in
[2], based on the unsolvability of Diophantine equations, uses a system for addi-
tion and multiplication of integers that is overlapping, non-left-linear, collapsing,
erasing, and non-constructor-based. It has recently been shown that matching
(as well as unification) is decidable for confluent systems if no variables on the
right appear below the root [40].

Undecidability can be shown from the older recursion theory results—without
recourse to the difficult resolution of Hilbert’s Tenth Problem, as follows:

Proof. The reduction is from undecidable DEF(f, n) to the instance
MATCH(TK, T (f �, n̂, y), 1̂). We have

DEF(f, n) ⇔ ∃y ∈ G. T (f �, n̂, y) !−→
TK

1̂

⇔ ∃σ. T (f �, n̂, y)σ !−→
TK

1̂

⇔ MATCH(TK, T (f �, n̂, y), 1̂) ,
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where G is the set of ground (variable-free) terms over the vocabulary of TK.
The first equivalence is Proposition 4, except that we need the fact that TK is
constructor complete to ensure that any ground y that satisfies T reduces to a
numeral, since it must be a numeral for TK to reduce the term to normal form.
The second step is simply because y is the sole variable in the initial term. ��

It is similarly undecidable if two terms have the same normal form.
The ground confluence problem GCR (for terminating systems) is

GCR(R) := ∀s, t, u ∈ G. u
!−→
R

s ∧ u
!−→
R

t ⇒ s = t ,

where G is the set of variable-free terms over the vocabulary of R.

Theorem 2. Ground confluence of terminating left-linear constructor-based
non-erasing non-collapsing constructor-complete rewrite systems is undecidable.

Ground confluence of terminating systems was shown undecidable in [28], both
for terminating string systems (which are left- and right-linear, non-erasing, and
non-collapsing) and for terminating left- or right-linear systems with right-side
depth limited to 2. One can’t have orthogonality (absence of critical pairs, in
addition to left-linearity) here, since orthogonal systems are confluent.

Proof. The reduction is

DEF(f, n) ⇔ ¬GCR(TK ∪Kn
f ) ,

where Kn
f contains the (non-erasing, non-collapsing) rule

T (f �, n̂, y) → ε(y, 0) .

Note that this rule overlaps rules of TK. If, and only if, f(n) is defined, is there
a (ground) numeral ŷ ∈ N̂ such that

T (f �, n̂, ŷ) !−→
TK

1̂ ,

making for two normal forms (0, 1̂) for T (f �, n̂, ŷ). ��

The confluence problem CR is

CR(R) := ∀s, t, u. u
∗−→
R

s ∧ u
∗−→
R

t ⇒ ∃v. s
∗−→
R

v ∧ t
∗−→
R

v .

Theorem 3. Confluence of non-overlapping constructor-based non-erasing
non-collapsing rewriting is undecidable.

Undecidability of confluence of nonterminating systems is claimed in [26]: “The
property of confluence is undecidable for arbitrary rewriting systems, since a
confluence test could be used to decide the equivalence, for instance, of recur-
sive program schemes.” Standard proofs (e.g. [38–Thm. 5.2.1]) are based on
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overlapping, but left-linear, constructions. Since orthogonal systems are always
confluent, one can’t have both left-linearity and non-overlappingness.8

Confluence is known to be undecidable (in fact, not even semi-decidable or
co-r.e.) even if the rules are left- and right-linear, constructor-complete, and
constructor-based, and all critical pairs obtained from overlaps resolve (i.e. the
system is locally, or weakly, confluent) [15–Sect. 4]. The terminating case is
decidable, even in the presence of overlapping left sides, by the famous Critical
Pair Lemma of Knuth [33]; see [38–Thm. 2.7.16]. It has also recently been shown
that confluence is decidable for right-linear systems if no variables appear below
depth 1 [18] (extending earlier decidability results [44, 20]).

Proof. We cannot use the same Kn
f as in the previous proof, since its left side

overlaps rules of TK. Instead let Bn
f be

B(1̂, y) → s(B(T (f �, n̂, y), y)) ,

which has the property that

B(1̂, ŷ) !−→ s(B(1̂, ŷ)) ,

for some numeral ŷ, if, and only if, T (f �, n̂, ŷ) →∗ 1̂. Now

DEF(f, n) ⇔ ∃y ∈ N̂. T (f �, n̂, y) !−→
TK

1̂

⇔ ¬CR(TK ∪Bn
f ∪H) ,

where non-linear system H is

H(x, x) → ε(x , a)
H(s(x), x) → ε(x , c) .

The rules for B and H are akin to Huet’s [24] example of non-terminating
non-overlapping non-confluence. So, if f(n) is defined, then H(B(1̂, ŷ),B(1̂, ŷ))
rewrites to a term containing a by the first rule of H and to a term containing
c in two stages, applying Bn

f , followed by the second H rule. Since there is no
other way for a term t to rewrite to s(t), non-confluence is a perfect indication
that f(n) is defined. ��

The modular (shared-constructor) confluence problem CR2 is

CR2(R,S) := CR(R ∪ S) ,

where R and S are confluent systems with only constructors in common.
Since H shares no defined symbols with TK or B:

Corollary 1. Modular confluence of constructor-based rewriting is undecidable.

That constructor-sharing combinations need not preserve confluence was pointed
out in [35] (just consider H together with b → s(b)).
8 Recursive program schemes [38–Def. 3.4.7] are orthogonal, but two schemes together

are not.
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7 Halting Problems

The normalizability problem NORM is

NORM(R, t) := ∃z. t
!−→
R

z .

Theorem 4. Normalizability of definitional rewriting is undecidable.

That normalizability is undecidable for non-constructor-based rewriting is ob-
vious from the rewrite system CL for combinatory logic in Klop’s monograph
[30–Sect. 2.2].

Proof. DEF(f, n) reduces to NORM(F, f(n̂)), where F is the partial recursive
rewrite system for f . This is basically just faithfulness of F , as stated in Proposi-
tion 1. Thus, normalizability for partial-recursive rewriting is undecidable, and,
a fortiori, for arbitrary definitional rewriting. ��

For the (weak) normalization problem WN,

WN(R) := ∀t. NORM(R, t) ,

the situation is the same:

Theorem 5. Normalization of definitional rewriting is not semi-decidable.

Proof. The reduction is

TOT(f) ⇔ WN(Rf ) .

By Proposition 3, f is total if, and only if, Rf normalizes all terms f(â). So, if
f is not total, there is a term that Rf fails to normalize.

For the other direction, when a term (ground or not) is non-terminating for
non-overlapping Rf , there must be—by standard techniques in rewriting [10,
16]—an infinite innermost derivation,

μ(z, 0, a) −→
Rf

μ(s(z), T ∗(f �, a, s(z)), a) +−→
Rf

μ(s(z), 0, a) +−→
Rf

· · · ,

punctuated by instances of the main μ-rule (the only potentially non-terminating
rule), all subterms of which are already in normal-form. Considering how Rf

looks, that means that

T ∗(f �, a, si(z)) +−→
Rf

0 ,

for all i > 0. Since Rf is non-erasing and constructor-based, this can only be if
the culprits z and a reduce to numerals. Since T ∗ is monotonic, we have

T ∗(f �, n̂, y) +−→
Rf

0 ,
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for all y ∈ N̂, where n̂ is the normal form of a. In other words, f(n) admits no
finite computation.

We needed to use Kleene Normal Form here (that is, Rf instead of F ) to
preclude the possibility that f is total, whereas a function g that it uses is not,
in which case some term containing g would never terminate. ��

The (uniform/strong) termination problem SN is

SN(R) := ¬∃t. t−→
R
⊥ ,

where the postfixed notation → ⊥ indicates the existence of a divergent deriva-
tion: t →R ⊥ for system R if there are terms {ti}i such that t →R t0 →R

t1 →R · · ·.

Corollary 2. Termination of definitional rewriting is not semi-decidable.

Proof. As mentioned above, non-erasing orthogonal systems like Rf terminate
(SN) if and only if they are normalizing (WN). ��

Termination (and normalization) of (overlapping) string rewriting was proved
undecidable in a technical report by Huet and Lankford [25], using a Turing-
machine construction for the semi-Thue word problem. (See [38–Sect. 5.3.1]
for a similar proof; such a reduction was given by Davis in [9]; see also [53].)
Lescanne’s proof in [36] is left-linear and constructor-based and can be made
non-overlapping. It has recently been shown that termination is decidable for
right-linear systems if no variables appear on the right below depth 1 [19] (ex-
tending earlier decidability results [25, 10]).

The (disjoint) modular termination problem SN2 is

SN2(R,S) := SN(R ∪ S) ,

where R and S are terminating systems with no common function symbols or
constants at all.

Theorem 6 ([39]). Modular termination of left-linear rewriting is undecidable.

Modular termination of left-linear rewriting was found undecidable in [39, 50].9

Were the systems also locally confluent, their disjoint union would perforce be
terminating [52].

Proof. The reduction is

DEF(f, n) ⇔ ∃y ∈ N̂. T (f �, n̂, y) !−→
TK

1̂

⇔ ¬SN(TK ∪Gn
f ∪ Z)

⇔ ¬SN2(TK ∪Gn
f , Z) ,

9 Middeldorp [39–p. 65] credits the author of this paper with simultaneity.
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where Gn
f is

G(0, x, y) → x

G(1̂, x, y) → y
G(T (f �, n̂, z), x, y) → x ,

and Z (cf. [51]) is
Z(a, b, z) → Z(z, z, z) .

The point here is that Z alone is terminating, but turns nonterminating when
combined with (terminating) rules that rewrite some term to both a and b.
System Gn

f , though not containing those constants, does just that if, but only if,
T (f �, n̂, z) reduces to 1̂, for some computation z. (The first G rule is only there
to keep one of the systems sufficiently complete.) ��

The undecidability of termination for various forms of hierarchically com-
bined systems [12, 34, 43] follows directly from the strictly hierarchical form of
partial-recursive rewriting, whose right-hand sides only refer to previously de-
fined symbols and whose left sides are, by nature, non-overlapping.

8 Conclusion

The relation between the lambda calculus, combinatory logic, and recursion
theory is classical. In 1980, Klop [30] forged the link between combinators and
rewriting. Here, we have tried to flesh out the “missing” connection, bridging
recursive function theory and term rewriting.

As a consequence of this connection, and the tool added to our arsenal, we
have made the following small improvements over well-known undecidability
results in rewriting:

– Matching is undecidable for convergent (that is, confluent and terminating),
left-linear, non-erasing, constructor-based systems, even when they are non-
overlapping and sufficiently complete (Theorem 1).

– Matching is undecidable for convergent, sufficiently-complete systems, even
when they are left-linear, non-overlapping, constructor-based, non-erasing,
and non-collapsing (Theorem 1).

– Confluence is undecidable for non-erasing, non-collapsing, constructor-based
systems, even if they are non-overlapping (Theorem 3).

– Ground confluence is undecidable for terminating, left-linear, non-erasing,
non-collapsing, sufficiently-complete systems, even if they are constructor-
based (Theorem 2).

– Modular (shared-constructor) confluence is undecidable—even for non-
erasing, non-collapsing, constructor-based systems (Corollary 1).

– Normalizability is not decidable for orthogonal, constructor-based systems,
even if they are constructor complete and non-erasing (Theorem 4).

– Termination and (weak) normalization are not semi-decidable for orthogonal,
constructor-based systems, even if they are constructor complete and non-
erasing (Theorem 5; Corollary 2).
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Appendix: The Computation Predicate

Most descriptions of computation predicates are non-algorithmic. (An exception
is [41–Chap. I.7].) To fill this lacuna, we give here a complete primitive rewrite
program TK for TK .10

Lists are encoded as pairs (of pairs) in the customary fashion, due to Gödel:

〈m,n〉 2→ 2m(2n + 1) .

The empty list is 0. Lists 〈x1, . . . , xk〉 are just nested pairs of the form
〈x1, 〈x2, 〈· · ·xk〉 · · ·〉〉, etc. Terms are encoded as lists. With this encoding, it
is easy to show by induction that lg � is an upper bound on the length of a
list � (lg nil = lg 0 = 0), and 1 + lg � on its list-nesting depth.

Table 1 recapitulates definitions of the standard logical and arithmetic oper-
ations, including binary logarithm (lg x := +log2 x,)11 and a conditional if-then-
else that evaluates all three of its arguments.

The primitive-recursive Lisp operations are as follows:

nil → 0
x:y → 2x(2y + 1)

car2(0, y) → nil
car2(s(x), y) → if 2x+1 � y then car2(x, y)

else car2(x, y) + 1
car x → car2(lg x, x)
cdr x → x÷ 2(car x)+1

For readability we use a colon for Lisp’s list constructor, cons. We will need the
fact that, as programmed, car(nil) = cdr(nil) = nil.

Other standard list operations are easy:

cadr x → car(cdr x)
cddr x → cdr(cdr x)

nthcdr(0, y) → y
nthcdr(s(n), y) → cdr(nthcdr(n, y))

nth(n, y) → car(nthcdr(n, y))
length2(0, y) → y

10 The rules are also online at www.cs.tau.ac.il/∼nachum/TK.r, and a faithful coding
in Lisp at www.cs.tau.ac.il/∼nachum/TK.l.

11 The lg notation for log2 was suggested by Ed Reingold and popularized by Don
Knuth.
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Table 1. Basic arithmetic and logic. Primitive rules for predecessor (p), addition (+),
natural subtraction ( · ), and multiplication (× or juxtaposition) were given in Sects. 3
and 4 of the text.

1 → s(0) 2 → s(1)
3 → s(2) 4 → s(3)
5 → s(4)

20 → 1 2s(n) → 2 · 2n

¬x → 1 · x δ(x) → ¬¬x
m > n → δ(m · n) true → 1
x ∨ y → δ(x + y) x ∧ y → xy

m 	= n → (m > n) ∨ (n > m) m = n → ¬(m 	= n)
if x then y else z → (x > 0)y + (x = 0)z

div(0, m, n) → 0
div(s(k), m, n) → if m + 1 > (k + 1)n then k + 1 else div(k, m, n)

m ÷ n → div(m,m, n) m � n → n > (n ÷ m)m
lg 0 → 0

lg s(n) → if 2 � (n + 1) then lg n else 1 + lg n

length2(s(x), y) → if nthcdr(lg y · (x + 1), y) = nil then lg y · (x + 1)
else length2(x, y)

|x| → length2(lg x, x)
append2(0, x, y) → y

append2(s(n), x, y) → nth(|x| · (n + 1), x):append2(n, x, y)
x ∗ y → append2(|x|, x, y)

The function |x| gives the list length of x; we use an asterisk ∗ for the list
append function (as did Gödel [17]).

We will have recourse to a few additional functions for lists and terms:

nthcadr(0, x) → x
nthcadr(s(n), x) → cadr(nthcadr(n, x))

prefix(0, x) → nil
prefix(s(n), x) → prefix(n, x) ∗ (nth(n, x):nil)

pos2(0, p, x) → x
pos2(s(n), p, x) → nth(nth(n, p), pos(n, p, x))

pos(p, x) → pos2(|p|, p, x)
U(z) → nth(|z| · 1, z)

Function nthcadr digs down first arguments; pos returns a subterm at a
given Dewey decimal position; U is the last element in a sequence, used in
Proposition 2.

Primitive programs are enumerated (into the naturals) in the following man-
ner:

– 0 is the constant (function) 0;
– 1 is the unary successor function s;
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– 1:i is the ith projection rule πi for any arity;
– 2:g:h̄ is the composition g(. . . , hi, . . .) of g with hi;
– 3:g:h is primitive recursion, with base case g and recursive case h;
– 4:q is minimization over predicate q;
– 5:q is an auxiliary function for minimization.

A function application f(x1, . . . , xk) is encoded as a list 〈f, x1, . . . , xk〉. Accord-
ingly, the successor of numeral n is the pair 〈1, n〉, while its predecessor is cadr n.
So, normal forms look like 〈1, 〈1, 〈· · · 〈1, 0〉 · · ·〉〉. The auxiliary function, 5:q, is
for minimization starting from some given lower bound. That is, (5:q)(k, c, x̄) is
k when c is true; otherwise, it is the smallest i > k such that q(i, x̄).

To find the next (leftmost innermost) redex, we use a test nf for normal form
(i.e. a numeral) and a function next to find the first non-normal-form in a list:

nf2(0, x) → true
nf2(s(n), x) → (nthcadr(n, x) = 0 ∨ car(nthcadr(n, x)) = 1) ∧ nf2(n, x)

nf(x) → nf2(lg x, x)
next2(0, x) → |x|

next2(s(n), x) → if nf(nth(|x| · (n + 1), x)) then next2(n, x)
else |x| · (n + 1)

next(x) → next2(|x|, x)
redex2(0, x) → nil

redex2(s(n), x) →
if next(cdr(pos(redex2(n, x), x))) = |cdr(pos(redex2(n, x), x))|

then redex2(n, x)
else redex2(n, x) ∗ (1 + next(cdr(pos(redex2(n, x), x))):nil

redex(x) → redex2(1 + lg x, x)

To apply the function definition at that point, we proceed by case analysis on
the different ways of building partial-recursive functions:

succ(x) → 1:x:nil
dist(0, g, x) → nil

dist(s(n), g, x) → (nth(|g| · (n + 1), g):x):dist(n, g, x)
apply(f, x) → if car f = 0 then 0

else if car f = 1 then nth(cdr f, x)
else if car f = 2 then cadr f :dist(|cddr f |, cddr f, x)
else if car f = 3 ∧ car x = 0 then cadr f :cdr x
else if car f = 3 then cddr f :(f :cadr(car x):cdr x):x
else if car f = 4 then (5:cdr f):0:(cdr f :0:x):x
else if car f = 5 ∧ cadr x then car x
else if car f = 5

then f :(cdr f :succ(car x):x):succ(car x):x
else f :x

The helper function dist distributes a list of functions over shared arguments.
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Finally, to check the validity of a computation, we check that the first element
is the function call in question, that each step is an application of one of the
above function applications, and that the final element is a numeral:

change(n, x, y) → prefix(n, x) ∗ (y:nthcdr(n + 1, x))
term(0, p, x) → apply(car x, cdr x)

term(s(n), p, x) → change(nth(|p| · (n + 1), p), x, term(n, p, x))
step(x) → term(|redex(x)|, redex(x), x)

steps(0, z) → true
steps(s(n), z) → step(nth(n, z)) = nth(n + 1, z) ∧ steps(n, z)

T (f, x, y) → (car(y) = f :x) ∧ steps(|y| · 1, y) ∧ nf(U(y))
T ∗(f, x, 0) → T (f, x, 0)

T ∗(f, x, s(y)) → T ∗(f, x, y) + T (f, x, s(y))

The function change(n, x, y) replaces the nth element xn in a sequence x
with y; term substitutes a reduct for redex at a given position; T is Kleene’s
computation predicate; T ∗ is its monotonic counterpart.

With the above definitions, but sans the auxiliary functions, TK boils down to
42 convergent, orthogonal, constructor-based rules. As explained in the text, the
system should be transformed into one that is non-erasing and non-collapsing.

Recursive rules are of nesting depth 3 (with only variables on level three)
on the left and on the right, and compositions also have right-depth 3. Were all
right sides non-nested and linear (they are not), then confluence and termination
would be decidable [49]. In fact, one needs only two rules of left nesting-depth
3 to encode all of partial-recursive rewriting and bring on the undecidability
results of the previous sections. To that end, one would systematically replace
each non-shallow recursive definition f , other than the predecessor function p
(defined in the text), with left-shallow rules

f(z, . . . , xi, . . .) → f ′(t(z), p(z), . . . , xi, . . .)
f ′(F, z, . . . , xi, . . .) → g(. . . , xi, . . .)
f ′(T, z, . . . , xi, . . .) → h(f(z, . . . , xi, . . .), z, . . . , xi, . . .) ,

and then add the following:

t(0) → F
t(s(x)) → T .
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1 Introduction

Rewriting is the repeated transformation of a structured object according to
a set of rules. This simple concept has turned out to have a rich variety of
elaborations, giving rise to many different theoretical frameworks for reasoning
about computation. Aside from its theoretical importance, rewriting has also
been a significant influence on the design and implementation of real program-
ming languages, most notably the functional and logic programming families of
languages. For a theoretical perspective on the place of rewriting in Computer
Science, see for example [14]. For a programming language perspective, see for
example [16].

Much of the interest in rewriting paradigms for programming arises from the
possibility of a dual reading of a rewrite rule. On the one hand, a rule can be
read as a syntactic transformation on a structure. On the other hand, a rule can
be read as an equation. For example, the rule:

fibs = f(0, 1) where f(m,n) = Cons(m, f(n,m + n))

can be read either as an equational definition of a structure which is the infinite
list of Fibonacci numbers, or alternatively as instructions for a rewriting machine
to construct increasingly better approximations to this infinite list. No real ma-
chine can compute the whole of an infinite structure, but by defining suitable
finite selectors, we can write programs for rewriting machines which define finite
structures in terms of infinite ones. Thus giving the command:

print(nth(15,fibs))

to a suitable rewriting machine will result in the printing of the 15th Fibonacci
number. The rewriting machine has to be careful about how it uses the definitions
if it is to achieve a result. From a purely rewriting perspective, the problem is
to find a sequence of reductions which is normalising, for example the famous
normal order reduction for the lambda calculus [4]. Solutions to this problem are
the basis of lazy functional languages. Using implementations of such languages,
it is possible to program by devising a suitable set of equations over infinite data
structures which can be read as syntactic rewrite rules which deliver an effective
means of computing the solution.
� Dedicated in friendship to Jan Willem Klop on the occasion of his 60th birthday.

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 148–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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However, it is rather easy to write down things that look as if they have both
equational and rewrite interpretations, but which do not do what one might
expect. Here is an example:

primesthenfibs = append(primes ,fibs)

where append appends one list to another, and primes and fibs are the infinite
lists of prime and Fibonacci numbers. One can write this program in a lazy
functional language such as Haskell, but the result is just the infinite list of
primes — the Fibonacci numbers disappear. The problem here is that the first
list does not have an end to attach the second list to, so the append function
seeks forever.

It is clear that some styles of building infinite terms can be computationally
useful, whilst others are not. This raises an interesting question for the underlying
theory of term rewriting, which is: what happens to various standard results for
term rewriting if we allow infinite terms and infinite rewriting sequences, and
what should those infinitary concepts be? Do the standard confluence and related
results still hold for orthogonal infinitary systems?

We give an account of a theory of infinitary rewriting, beginning with the
initial work done with and inspired by Jan Willem Klop, and ending with some
recent work on lambda calculus which derives model theoretic notions from
the kind of infinite terms which obstruct some traditional theorems of finitary
rewriting.

2 Infinite Term Rewriting Systems

In this section we will introduce the basic concepts of infinite term and reduction
sequence of transfinite length. We introduce the notion of a strongly convergent
reduction sequences for the more general setting of abstract reduction systems.
Then we will describe some of the basic theorems that hold for infinite extensions
of term rewriting systems. Detailed proofs can be found in [7, 9, 10].

2.1 Infinite Terms

By interpreting finite terms as trees, infinite terms can be defined as trees having
infinite branches as in Figure 1. There is a decision to be made about whether
an infinite path in such a tree may be allowed to have a symbol at its end, which
could then have further descendants, allowing paths from the root of a term to its
leaves to have any ordinal length. We have taken the view that such terms have
no computational meaning. Although we might imagine the limit of a reduction
sequence A → B(A) → B(B(A)) →. . . to be the term B(B(B(...(A)))) with
infinitely many occurrences of B, there is no corresponding infinite process by
which the symbol at the end of such a branch might be brought back up to the
root.

We shall also require trees to be finitely branching, that is, that every op-
erator symbol have finite arity. It is not clear whether allowing infinite arities



150 R. Kennaway et al.

Cons

1

�

Cons

�

2

�

Cons

�

3

� �

Fig. 1. An infinite term

would significantly change the resulting theory, but it would significantly com-
plicate the exposition for little gain, and the restriction is reasonable on intuitive
computational grounds.

Definition 1. Let V be a set of variables and let Σ =
⋃

Σn be a signature, i.e. a
disjoint union of sets Σn of function symbols of arity n ≥ 0. The set T ∞(Σ,V)
(abbreviated as T ∞) of finite and infinite terms is defined by coinduction from
the grammar:

t := x | f(t1, . . . , tn) for x ∈ X and f ∈ Σn

To talk about subterms in a precise way, we introduce the concept of an
address. An address is a finite sequence of positive integers α = i1 . . . in, where
n is called the depth of α. Given a term t, the subterm of t at α (if it exists)
is denoted by t|α and defined as follows. If α is empty then t|α is t. If α = iβ,
t = f(t1, . . . , tm), and i ≤ n, then t|α = ti|β. The result of replacing the subterm
of t at α by a term t′ is denoted by t[α := t′].

A term in T ∞ can equivalently be defined as a function from a set of addresses
to function symbols and variables. The set of addresses must satisfy three condi-
tions: it must be prefix-closed; if αi is in the set, so is αj for j < i; and for each
α there is an upper bound to the i for which αi is in the set. This is Rosen’s
definition of a “tree domain”[18], generalised to infinite terms with finite arities.
Variables may only occur at leaves, i.e. at addresses α for which no αi is in the
set.

Note that addresses are always finite, even for infinite terms. In a term such
as that of Figure 1, there is nothing at the end of the infinite branch, and no
infinite address 222 . . . . However, we do not require any sort of regularity or
computability. Given the symbols Cons , 0, and 1, all infinite lists of 0 and 1
are included in the set of infinite terms, even lists which are not recursively
enumerable.

2.2 Reduction on Infinite Terms

A term rewrite rule is defined as usual, that is, a pair of terms, written t → t′,
such that t is not a variable and contains every free variable of t′. We allow t′ to
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be infinite, but require t to be finite. The rule is called left-linear if no variable
occurs more than once in t.

A single reduction step is defined in the same way as for finitary term rewrit-
ing. A substitution is a function from a set of variables to terms. A substitution
σ is applied to a term t by replacing every occurrence in t of every variable x
in the domain of σ by σ(x). The result is denoted by σ(t). Given a rule p → q
and a term t, if t|α = σ(p) for some substitution σ of terms for variables, then t
can be reduced to t[α := σ(q)]. The concept of an orthogonal set of rules is also
identical to that for finitary term rewriting: all rules must be left-linear, and for
any two rules p → q and r → s, there is no address α such that p|α exists and is
not a variable and r and p|α are unifiable (excluding the trivial case where the
two rules are the same rule and α is the empty address).

On computational grounds we might restrict the sets of function symbols and
of rewrite rules to be finite, but none of our results depend on such a restriction.

2.3 Reduction Sequences of Transfinite Length

To define transfinite rewriting sequences, we must have some notion of the limit
of a sequence of terms. The natural notion is one which arises from the standard
metric on trees. For distinct terms t and t′, define the tree distance d(t, t′) = 2−n,
where n is the length of the shortest address α for which t and t′ have different
symbols at α, or for which α is in the tree domain of one but not the other. For
example, d(x, y) = 1, d(A(B), A(C)) = 1

2 , and d(A(B(C)), A(B)) = 1
4 .

For an infinite rewriting sequence to be considered to converge to a limit, we
might simply require that the sequence of its terms converge in the metric. This
type of convergence (called weak or Cauchy convergence) was first substantially
studied in [6].

Example 2. With the rules A(x, y) → A(y, x) and B → C, the term A(B,B)
reduces to itself infinitely often. If one occurrence of B is reduced to C, the stan-
dard construction of a confluent diagram for finite orthogonal rewriting cannot
be completed, because the bottom row of the diagram does not converge:

A(B,B) → A(B,B) → A(B,B) → A(B,B) → . . . A(B,B)
↓ ↓ ↓ ↓ ↓

A(B,C) → A(C,B) → A(B,C) → A(C,B) → . . . ?

Example 3. With the rule I(x) → x, we can reduce Iω = I(I(I(. . . ))) to itself
infinitely often, reducing at the root of the term each time:

I(I(I(. . . ))) → I(I(I(. . . ))) → I(I(I(. . . ))) → . . . I(I(I(. . . )))

But if we track the identity of the occurrences of I throughout the sequence, we
observe something strange:

I1(I2(I3(. . . ))) → I2(I3(I4(. . . ))) → I3(I4(I5(. . . ))) → . . . I?(I?(I?(. . . )))

Every redex in the original term is reduced, yet we still have infinitely many in
the final term, none of which derive from any part of the initial term.
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Example 4. With the rule A(x) → A(B(x)) we have the following convergent
sequence:

A(C) → A(B(C)) → A(B(B(C))) → . . . A(B(B(. . . )))

If we again track the identities of subterms, we see that an endless stream of Bs
flows down from the root, but none of those occurring in the final term derive
from them:

A1(C) → A2(B1(C)) → A3(B2(B1(C))) → . . . A?(B?(B?(. . . )))

Example 5. (Due to Simonsen [24].) With an infinite set of rules:

A → B

F (Gk(C), x, y) → F (Gk+1(C), y, y) for even k

F (Gk(C), x, y) → F (Gk+1(C), A, y) for odd k

we can construct the following weakly convergent reduction:

F (C,A,A) → F (G(C), A,A) → F (G(G(C)), A,A) → . . . F (Gω, A,A)

We also have F (C,A,A) → F (C,A,B). However, F (C,A,B) and F (Gω, A,A)
have no common reduct. Thus although the system is orthogonal, it is not con-
fluent.

In all of these examples, what goes wrong is that although the terms of the
sequence have larger and larger prefixes in common, rewriting always continues
at the root of the term. In order to be able to relate the structure of the limiting
term to the structures of the terms of the sequence, we require a stronger notion
of convergence, according to which not only must the terms of the sequence
converge, but the depths at which rewrites take place must increase without
bound, so that larger and larger prefixes of the term remain “stable”.

We can capture the essentials of the situation by considering abstract reduc-
tion systems equipped with a measure of the depth of a reduction.

Definition 6. An abstract reduction system is a set A of objects called terms,
and a function from a set L to A × A. We write a

l→ b if l ∈ L is mapped
to (a, b), and call this a reduction step. Note that there can be more than one
reduction step from a to b, of different sizes.

A metric abstract reduction system in addition has a metric on A and a
measure of size s mapping L to positive real numbers.

In such a system, a strongly convergent reduction sequence of length α, for
an ordinal α, consists of:

1. a sequence of terms tβ for all β ≤ α, and
2. for each β < α, a reduction step tβ

sβ→ tβ+1,

such that for every limit ordinal λ ≤ α, the sequence {sβ|β < λ} tends to zero.
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We write t → t′ for a single reduction step, t →→ t′ for a finite sequence
of reductions, and t →→→ t′ for a possibly infinite strongly convergent sequence.
t →α t′ denotes a strongly convergent sequence of length α.

The equality relation generated by the transfinite rewrite relation is the equiv-
alence closure of →→→, that is, (→→→ ∪ ←←←)∗.

A term rewriting system forms a metric abstract reduction system in an ob-
vious way: the size of a reduction step is 2−d where d is the length of the address
of the redex, and the metric is the tree distance.

Metric abstract reduction systems on their own, however, have too little struc-
ture to produce interesting theorems. For that we depend on the term structure.

Example 7. With the rule I(x) → x and the term Iω as in Example 3, we can
reduce every other redex of the initial term, and obtain a limiting term whose
subterms all arise from subterms of terms earlier in the sequence:

I1(I2(I3(I4(. . . )))) → I2(I3(I4(I5(. . . )))) → I2(I4(I5(I6(. . . )))) →

I2(I4(I6(I7(. . . )))) →ω I2(I4(I6(I8(. . . ))))

Example 8. With the rule A → B(A), we can generate an infinite term in a way
similar to Example 4:

A1 → B1(A1) → B1(B2(A1)) →ω B1(B2(B3(. . . )))

However in this case the place where reductions happen moves down the term
instead of staying at the root.

The movement of reductions to deeper and deeper levels is the crucial property
that allows the structure of the limiting term to be related to that of the earlier
terms in the sequence.

Note that when a rewrite system is “top-terminating” (having no reduction
sequences performing infinitely many reductions at the root), a condition intro-
duced by Dershowitz et al. [6], weak convergence and strong convergence are
equivalent. However, many systems of interest are not top-terminating.

2.4 Compression of Transfinite Sequences to Length ω

Once we have the concept of an infinite rewriting sequence that converges to
a limit term, we cannot avoid opening the door to rewriting sequences of any
ordinal length. If the limit term after ω steps contains redexes, we can continue
to rewrite, to generate a reduction sequence of length ω + ω, ω2, or longer.

From Example 3 we can see that a reduction of at least any countable ordinal
length can be constructed. This is in fact the maximum: because arities and
addresses are finite, there are no uncountably long strongly convergent sequences.

Theorem 9. Every strongly convergent sequence has countable length.
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Proof. In a strongly convergent sequence, there can be only finitely many re-
ductions of depth n, for any given finite n. Therefore the total number of steps
must be countable. ��

For left-linear systems we can prove a much stronger result, which helps to
give computational meaning to sequences longer than ω: they are all equivalent
to sequences of length at most ω.

Theorem 10 (Compression Lemma). In a left-linear term rewriting system,
for every strongly convergent sequence t →α t′, there is a reduction from t to t′

of length at most ω.

Proof. This is proved by induction on α.
If α = λ + 1 for a limit ordinal λ, then the redex reduced by the final step

must, by strong convergence and the finiteness of left hand sides, already exist
at some point before λ. One can show that it is possible to reduce it at such an
earlier point, and to carry out the remainder of the original reduction sequence
in no more than λ steps. By repetition, this proves the theorem for λ + n for all
finite n.

If α is a limit ordinal greater than ω, then we proceed by considering the
minimum depth d of any step in the sequence. One can reorder the sequence so
as to perform all of the steps at depth d within some finite initial segment of an
equivalent sequence no longer than α. The remainder of the sequence performs
reductions only at depth at least d + 1. Repeating the argument generates a se-
quence consisting of at most ω finite subsequences, in which the nth subsequence
performs reductions only at depth at least n. This sequence must converge to
the limit of the original sequence. ��

Example 11. The Compression Lemma does not hold for weakly convergent re-
duction in left-linear systems. Consider the rules G(x,B) → G(F (x), B) and
B → C. G(A,B) reduces by weakly convergent reduction to G(Fω , C) in ω + 1
steps but not in any smaller number:

G(A,B) → G(F (A), B) → G(F (F (A)), B) →ω G(Fω, B) → G(Fω, C)

Example 12. The Compression Lemma does not hold for strongly converging
reductions in non-left-linear systems. Consider the rules A → G(A), B → G(B),
and F (x, x) → C. Then F (A,B) →ω F (Gω , Gω) → C, but F (A,B) does not
reduce to C in fewer than ω + 1 steps.

2.5 Confluence

One of the fundamental properties of finite rewriting in orthogonal systems is
confluence. Surprisingly, this turns out to not quite hold for strongly convergent
reductions. A limited version does hold, called the Strip Lemma.

Theorem 13 (Strip Lemma). If t0 → t1 and t0 →→→ t2, then for some t3,
t1 →→→ t3 and t2 →→→ t3.
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Proof. The proof is essentially the same as for finitary term rewriting. We con-
sider the set of residuals of the redex t0 → t1 in each term in the reduction of
t0 to t2. Because the residuals of a subterm are always disjoint from each other
(that is, none of them is a subterm of any other), each of these sets of residuals
has a strongly convergent complete development. It is a straightforward mat-
ter to show that the resulting construction of a tiling diagram can be carried
through, and that its bottom side is strongly convergent. ��

But confluence fails.

Example 14. Consider the rules A(x) → x and B(x) → x. In the term A(B(A(
B(. . . )))), if we reduce all of the A redexes, we obtain B(B(B(. . . ))) but if we
reduce all of the B redexes, we obtain A(A(A(. . . ))). These two terms reduce
only to themselves, and have no common reduct.

Example 15. By adding the rule C → A(B(C)) to the previous example, we
obtain an example in which all the terms in the two sequences except for the
limiting terms are finite.

C → A(B(C)) → A(C) → A(A(B(C))) → A(A(C)) →ω A(A(A(. . . )))

C → A(B(C)) → B(C) → B(A(B(C))) → B(B(C)) →ω B(B(B(. . . )))

However, the situation is not lost. Examples similar to the above are essen-
tially the only way in which an orthogonal transfinite term rewriting system can
fail to be confluent.

Definition 16. A collapsing rule is a rewrite rule whose right hand side is a
variable. A hyper-collapsing term is a term whose every reduct reduces to a redex
of a collapsing rule. A collapsing tower is a term of the form t1[α1 := t2[α2 :=
t3[α3 := . . . ]]], where each term ti[αi := x] is a redex of a collapsing rule t → x
such that t|αi = x.

Theorem 17. Strongly convergent reduction in an orthogonal term rewriting
system is confluent if and only if it contains at most one collapsing rule, and the
left hand side of that rule contains only one variable.

We can also prove restricted versions of confluence for systems not covered
by the above theorem, to the effect that if collapsing towers do not arise in the
construction of a particular tiling diagram, its construction can be completed.
For details we refer to [8].

The types of orthogonal rewriting system that are used to model functional
languages almost always contain multiple collapsing rules, for example, to im-
plement selectors for data structures:

Head(Cons(x, y)) → x Tail(Cons(x, y)) → y

These rules immediately give counterexamples to confluence like that of
Example 14.

Instead of proving exact confluence for restricted situations, we can prove
approximate versions of confluence for all orthogonal systems. Such theorems
can be found by further consideration of the meaning of hyper-collapsing terms.
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2.6 A More General Way of Restoring Confluence

The collapsing towers which obstruct confluence do not have an obvious meaning.
In domain-theoretic terms, a term such as Iω with the rewrite rule I(x) →
x suggests the least fixed point of the identity function, which is undefined.
The same is true of all the hyper-collapsing terms. If we regard these terms
as meaningless, and identify them all with each other, it turns out that the
confluence property is recovered for orthogonal systems.

Definition 18. Given a class of terms U , rewriting is confluent modulo U if,
whenever t0 ←←← t1

U←→ t2 →→→ t3, there exist t4 and t5 such that t0 →→→ t4
U←→

t5 ←←← t3.

Theorem 19. An orthogonal term rewriting system is confluent modulo HC.

The next theorem assures us that the identification of all hyper-collapsing
terms with each other introduces no new equalities, since they are already prov-
ably equal.

Theorem 20. Any two hyper-collapsing terms t and t′ are interconvertible.
Specifically, there exist terms t′′, s, and s′ such that t →→→ s ←←← t′′ →→→ s′ ←←← t′.

Proof. Since t and t′ are hyper-collapsing, they reduce to collapsing towers
C0[C1[C2[. . . ]]] and D0[D1[D2[. . . ]]]. The term C0[D0[C1[D1[C2[D2[. . . ]]] reduces
to each of these towers. ��

2.7 Axiomatic Treatment of Undefinedness

Theorem 19 was proved for orthogonal term rewriting systems in [8], but later
work has shown that it does not depend on the details of this particular set of
terms. Instead, we can state a set of axioms which any set of “undefined” terms
should satisfy, and derive confluence modulo undefinedness from these axioms.
Some preliminary definitions are necessary:

Definition 21. For any set U of terms, define t
U←→ t′ if t′ can be obtained

from t by replacing some (finite or infinite) set of subterms of t in U by terms
in U . The transitive closure of U←→ is denoted by U==.

Let t contain a redex by a rule p → q at address α, and a subterm at address
β. That subterm overlaps the redex if β = αγ for some nonempty γ such that
p|γ exists and is not a variable.

A term t is root-active if every reduct of t can be reduced to a redex. The set
of root-active terms is denoted by RA.

Definition 22. A set U satisfying the following axioms will be called a set of
undefined terms.

1. Closure. For all s →→→ t, s ∈ U if and only if t ∈ U .
2. Overlap. If t is a redex, and some subterm of t overlapping the redex is in
U , then t ∈ U .



Infinitary Rewriting: From Syntax to Semantics 157

3. Activeness. U includes RA.
4. Indiscernability. If t

U←→ t′ then t ∈ U if and only if t′ ∈ U .

These axioms were first stated in [10], except that we have here strengthened
the Closure axiom, which originally required only that U be closed under re-
duction. This extra condition ensures that the Compression Lemma continues
to hold for an extended form of reduction we shall introduce in Section 2.8. In
most cases, the Indiscernability axiom is the only axiom requiring any significant
effort to prove. An equivalent way of stating it is that the U←→ and U== relations
are identical.

In [10, 7] it is proved that for any set U satisfying enough of these axioms,
transfinite reduction is confluent modulo U , and also possesses the following
genericity property:

Definition 23. Call a term totally meaningful if none of its subterms is in U .
U is generic if for every s ∈ U and every term t, if t[x := s] reduces to a totally
meaningful term t′, then for every term r, t[x := r] also reduces to t′.

Theorem 24. In an orthogonal sytem, if U satisfies all the axioms except pos-
sibly Activeness, and includes HC, then reduction is confluent modulo U . If U
satisfies Closure and Overlap, it is generic.

The root-active terms are themselves a class satisfying all the axioms, and the
hyper-collapsing terms satisfy all but the Activeness axiom. In the next section
we will give some other concrete examples.

2.8 Syntactic Domain Models from Sets of Undefined Terms

Another way of looking at the concept of reduction modulo undefinedness is to
identify all undefined terms with each other by introducing a new symbol ⊥.
Terms which may contain ⊥ are called partial terms, and form the set T ∞

⊥ . T ∞
⊥

is partially ordered by the prefix order /, defined as the least partial order for
which ⊥ is the bottom element and all the function symbols are monotonic.
The rewrite relation of the original rewrite system R extends immediately to
partial terms. A set U of undefined terms can be extended to a set U⊥ ⊆ T ∞

⊥ by
defining t ∈ U⊥ if there is a way of replacing all occurrences of ⊥ in t by terms
in U to obtain a term in U . (Note that by the Indiscernability property, if one
such substitution yields a term in U , then every substitution does.) We then add
an additional rule called ⊥U -reduction, which allows any undefined subterm to
be replaced by ⊥. Let R∞

⊥U
denote this extension of the original system R. We

write →R for rewriting by the original rules, →⊥U for rewriting by the new rule,
and →R⊥U for the combination.

For any set U of undefined terms in an orthogonal term rewriting system, the
following statements hold.

1. R∞
⊥U

satisfies the Compression Lemma.
2. R∞

⊥U
is confluent.
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3. ⊥U -reductions can always be postponed after ordinary reductions. That is,
if t →→→R⊥U t′, then for some t′′, t →→→R t′′ →→→⊥ t′. This fact serves to connect
reductions in the augmented system with plain reductions of ordinary terms.

4. Every term t has a unique normal form NF(t) by strongly converging→→→R⊥U

reduction.

This allows the construction of models of a term rewriting system. The normal
forms of R∞

⊥U
are the values, with the semantics given by the mapping NF of

terms to their unique normal forms.
The properties of this interpretation depend on the choice of U . In some patho-

logical cases the normal form function is not monotonic, and the set of normal
forms may not be a complete partial order with respect to the prefix order. As a
somewhat contrived counterexample, consider a term rewriting system with two
unary symbols s and p, and no rewrite rules. Any set of the form {t}, where t is
any term which is not a proper subterm of itself (as infinite terms can be) sat-
isfies all of the axioms of undefinedness. (Closure, Overlap, and Activeness are
trivial when there are no rewrite rules.) Take U = {s(pω)}. Then s(⊥) is a nor-
mal form for →R⊥U , but s(⊥) / s(pω) →⊥U ⊥, and so NF(s(⊥)) �/ NF(s(pω)).
Furthermore, NF is not continuous at limit points, since every finite prefix of
s(pω) is its own normal form.

2.9 Sets of Undefined Terms

There may be many different sets of undefined terms in an orthogonal term
rewriting system. The set of root-active terms is the smallest set of undefined
terms. Trivially, the set of all terms is the largest. We call sets which are smaller
than the set of all terms consistent. The intersection of any set of sets of undefined
terms is a set of undefined terms. This does not necessarily hold for unions:
Closure, Overlap, and Activeness all hold for unions, but Indiscernability may
not.

An interesting set of undefined terms is the opaque terms. A term t is opaque
if no reduct of that term can overlap any redex. This is proved to be a set of
undefined terms in [10] for the axioms used there. Our stronger form of the
Closure axiom can be ensured by extending the set to include every term that
reduces to an opaque term, and we shall use this as our definition of opaqueness
here. Orthogonality immediately implies that all root-active terms are opaque,
but in general there are many others. For example, Head(Nil) is opaque in a
term rewriting system with just the rule Head(Cons(x, y)) → x.

Of more interest is the concrete term rewriting system for calculating Fi-
bonacci numbers in Figure 2. The opaque terms in this TRS are the terms

0 + y → y nth(0, y :z) → y fibs → f(0, s(0))
s(x) + y → s(x + y) nth(s(x), y :z) → nth(x, z) f(x, y) → x :f(y, x + y)

Fig. 2. The orthogonal Fibonacci TRS
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that cannot reduce to any instance of 0, s(x), or x :y. This includes root-active
terms like 0+(0+(. . . )), but also some normal forms such as nth(0, 0). The nor-
mal forms of →→→R⊥opaque reduction are all the terms built from the constructor
symbols, i.e. 0, s, and :, together with ⊥.

3 Infinite Lambda Calculus

The theory of infinitary term rewriting can be extended to lambda calculus in a
straightforward way, allowing us to prove confluence modulo a similar notion of
undefined term, and to derive models from sets of undefined terms. The collection
of all sets of undefined lambda terms turns out to be much richer than our original
collection of three such sets in [9]. We will explain and extend some of the recent
developments in [21, 22, 23].

3.1 Infinite λ-Terms

The concept of an infinite term can be defined for lambda calculus in the same
way as for terms, interpreting application as a binary operator and λx as a unary
operator for each x.

Definition 25. The set of Λ∞
⊥ of finite and infinite λ-terms is defined by coin-

duction from the grammar:

M ::= ⊥ | x | λx.M | MM

The set Λ∞ consists of the terms in Λ∞
⊥ which do not contain ⊥.

We ignore the identity of bound variables and do not distinguish alpha-
equivalent terms, considering (λx.x)(λx.x) and (λy.y)(λz.z) to be the same term.
In particular, the distance between two terms is defined to be the minimum tree
distance between any members of their alpha-equivalence classes.

Definition 26. We will need the following abbreviations of λ-terms:

1. Δ = λx.xx, Ω = ΔΔ, K = λxλy.x, I = λx.x and the fixed point combinator
Y = λf.(λx.f(xx))(λx.f(xx))

2. The normal form of the fixed point YK of K is O = λx1λx2λx3 . . ., also
known as the ogre.1

3.2 Reduction on Infinite λ-Terms

The rule of β-reduction extends in the obvious way to Λ∞
⊥ . The concept of a

strongly convergent reduction sequence in Definition 6 applies to the set Λ∞
⊥ .

Since beta reduction is a collapsing rule, it is not surprising that the confluence
property fails, for the same reason it fails for term rewriting. In fact, even the
1 Because it eats an unlimited number of arguments.
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Strip Lemma fails. This is because in lambda calculus, unlike term rewriting, the
residuals of a redex can be nested within each other, and in the Strip Lemma
diagram, it is possible to find examples in which the set of residuals of the initial
redex by an infinite sequence form a collapsing tower.

Example 27. We show a simple counterexample to the Strip Lemma which can
be found in [2]. Define W = λx.I(xx). Then the term ΔW has a one-step
reduction to Ω = ΔΔ and an infinite reduction to I(I(. . .))), namely

ΔW →β WW →β I(WW ) →β I(I(WW )) →→→β I(I(I(. . .)))

Both ΔΔ and I(I(I(. . .))) reduce only to themselves, and have no common
reduct. Note that both terms are examples of root-active terms in the sense of
Definition 21 applied to lambda calculus.

Despite the counterexample there are several useful restricted forms of Strip
Lemma [7]. For instance:

Theorem 28 ([7]). If M0 →β M1 and M0 →→→β M2 then for some M3, M1 →β

M3 and M2 →→→β M3 provided M0 → M1 is a head β-reduction.

It is interesting to note that although root-active terms may not have common
reducts, they are all interconvertible.

Theorem 29. For every root-active term M , there is a term which reduces to
both M and Iω.

Proof. For any term M , define M I to be the term resulting from replacing every
application PQ in M by I(PQ). Clearly M I →→→ M . We also have (P [x :=
Q])I = P I[x := QI] (which is immediate by considering the introduced copies of
I as labels attached to the applications, and applying the technique of labelled
reduction [17]). Hence also

((λx.P )Q)I = I(λx.P I)QI → I(P I[x := QI]) = I(P [x := Q])I → (P [x := Q])I

This lets us mimic for M I any reduction of M : if M →→→ M ′ then M I →→→ M ′I.
If, however, we modify this construction by omitting the reduction of I when-

ever it occurs at the root, then we instead reduce M I to In(M ′I) when the
reduction of M to M ′ performs n reductions at the root. This transforms a
reduction of M which performs infinitely many such reductions to a strongly
convergent reduction of M I to Iω. ��

Note that the proof of Theorem 20 does not work for lambda calculus, since
a root-active term in lambda calculus (for example, Ω) need not be reducible
to a collapsing tower. This is because in term rewriting, a reduction at the root
cannot create new redexes, whereas in lambda calculus it can.
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3.3 Undefinedness in Lambda Calculus

The remedies for the failure of confluence are the same as for term rewriting: we
can identify a set of terms as undefined and define rewriting modulo this set,2 or
extend reduction with a ⊥ rule reducing undefined terms to ⊥, and prove that
these forms of rewriting are confluent.

The Closure, Activeness, and Indiscernability axioms carry over unchanged.
Note that since the β rule is a collapsing rule, all root-active terms are hyper-
collapsing. The Overlap rule is also unchanged, but can be stated in a simpler
and more explicit form. There is also an additional axiom requiring closure under
substitution. This last axiom was not necessary for term rewriting, because the
variables in a term behave like constant symbols, and are never substituted for
by the process of reduction.

Definition 30. A set U ⊆ Λ∞ will be called a set of undefined terms if it
satisfies the Axioms of Closure, Activeness and Indiscernability of Definition 22
and the following two axioms:

1. Overlap. If (λx.P ) ∈ U then (λx.P )Q ∈ U .
2. Substitution. U is closed under substitution.

Now let U be a set of terms of Λ∞ satisfying the axioms. We add the following
rewrite rule:

M [⊥ := Ω] ∈ U M �= ⊥
(⊥U )

M → ⊥
(Note that by Indiscernability, there is nothing special about the use of the term
Ω — any other member of U could be used.) The infinitary lambda calculus
over Λ∞

⊥ with the β and ⊥U rules is denoted λ∞
β⊥U

, and the combined reduction
relation written simply →. Reductions using only one or other of the rules will
be denoted →β or →⊥U

The ⊥U rule is of course not computable (since U is not recursively enu-
merable unless U = Λ∞), but it provides a mathematically convenient way of
talking about terms modulo undefinedness. The postponement property in the
next theorem serves to connect reductions in λ∞

β⊥U
with plain beta reduction.

Theorem 31. Let U be a set of undefined terms.

1. Strongly converging reduction in λ∞
β⊥U

is confluent.
2. Every term M has a strongly converging reduction to normal form, which by

the first part is unique and will be denoted by NFU (M).
2 Recently Ketema and Simonsen [12, 13] have shown that strongly converging reduc-

tion is confluent modulo HC in fully-extended orthogonal infinitary combinatory
term rewriting systems with rules with finite right hand sides. Since the notions
root-active and hyper-collapsing coincide in lambda calculus (because the beta rule
is hyper-collapsing) their result generalises our results on confluence modulo HC for
orthogonal term rewriting and confluence modulo RA for lambda calculus with the
beta rule.
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3. ⊥-reduction can be postponed after β-reduction. That is, if M →→→ N , then
for some term L, M →→→β L →→→⊥U N .

4. The Compression Lemma holds for strongly converging reduction in λ∞
β⊥U

.

Thus λ∞
β⊥U

is a complete (normalising and confluent) extension of the finite
lambda calculus λβ .

Theorem 32. Let U be a set of undefined terms. For any term M in λ∞
β⊥U

we
have NFU (M) = ⊥ iff M [⊥ := Ω] ∈ U .

Proof. “If”is trivial. “Only if”: suppose that for a term M in Λ∞
⊥ we have that

its normal form in λ∞
β⊥U

is equal to ⊥. Hence there is a reduction M →→→β⊥ ⊥. By
Theorem 31 this factors as M →→→β K →→→⊥ ⊥. Hence M [⊥ := Ω] →→→β K[⊥ :=
Ω] →→→⊥ K →→→⊥ ⊥. By definition of ⊥U -reduction and indiscernability it follows
that K[⊥ := Ω] →→→⊥ ⊥ implies K[⊥ := Ω] →⊥ ⊥. Hence K[⊥ := Ω] ∈ U . Since
U is closed under β expansion we find that M [⊥ := Ω] ∈ U . ��

3.4 Sets of Undefined Lambda Terms

In this section we will study the collection U of all sets of undefined terms. Since
U is closed under intersections (though not under unions), it forms a complete
lattice under set inclusion. The top and bottom elements are Λ∞ and T N , and
the meet operation is intersection. The join of a set of sets of undefined terms is
the intersection of all sets of undefined terms containing their union.

Let us now give some concrete examples of such sets. For a while the following
three sets were the only known sets of undefined lambda terms (cf. [8, 1, 10, 7]).

Definition 33. 1. A term M ∈ Λ∞ is a head normal form if M is of the form
λx1 . . . xn.yP1 . . . Pk. HN is the set of terms without a finite β-reduction to
head normal form.

2. A term M ∈ Λ∞ is a weak head normal form if M is a head normal form
or M = λx.N . WN is the set of terms without a finite β-reduction to weak
head normal form.

3. A term M ∈ Λ∞ is a top normal form if it is either a weak head normal for
or an application (NP ) if there is no Q such that N →→β λx.Q. T N is the
set of terms without a finite β-reduction to top normal form.

Lemma 34. HN , WN and T N satisfy the axioms for undefined terms.

Proof. Apart from closure under expansion all the axioms have been proved
to hold for HN , WN and T N in [10]. We show the expansion property for
HN . Suppose N is a term in Λ∞ without a β-reduction to head normal form.
Suppose also that M1 →→→β N and M1 has a head normal form M2. Without loss
of generality we may assume that there is a finite head reduction from M1 to M2.
Repeated application of the Restricted Strip Lemma 28 then gives us a common
reduct M4 of both N and M2. The term M4 is a head normal form because it is
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a reduct of the head normal form M2. This contradicts the assumption that N
has no head normal form. Hence M1 has no head normal form either. Closure
under expansion for the other two sets can be proved in a similar way. ��

If we now apply the Main Theorem 31 of the previous section to these three
sets we find that λ∞

β⊥HN
, λ∞

β⊥WN
and λ∞

β⊥T N
are confluent and normalising

extensions of finite lambda calculus. The normal form of a term M in λ∞
β⊥HN

(respectively λ∞
β⊥WN

and λ∞
β⊥T N

) corresponds to the Böhm tree (respectively
the Lévy-Longo tree and Berarducci tree) of M . As a useful corollary of the
confluence and normalisation property of λ∞

β⊥T N
we obtain a useful refinement

of the old observation of Wadsworth [4] that finite lambda terms are either of the
form λx1 . . . λxn.yMk . . .M1 or λx1 . . . λxn.(λy.P )QMk . . .M1 where n, k ≥ 0.

Lemma 35 ([23]). A term in Λ∞
⊥ has one of the following five forms:

1. λx1 . . . λxn.yMk . . .M1

2. λx1 . . . λxn.(λy.P )QMk . . .M1

3. λx1 . . . λxn.⊥Mk . . .M1

4. λx1 . . . λxn.(((. . .M3)M2)M1

5. λx1λx2λx3 . . . = O

Of course, the third option does not apply to terms in Λ∞.
Now the key to constructing other sets of undefined terms lies in finding a

definition of these sets in terms of what they include, rather than what they
exclude [22, 23]. For doing so we need some terminology.

Definition 36. 1. A term M ∈ Λ∞
⊥ is root-active (with respect to β) if for all

M →→→β N there exists a redex (λx.P )Q such that N →→β (λx.P )Q.
2. A term M ∈ Λ∞

⊥ is a head active form if M = λx1 . . . xn.RP1 . . . Pk and R
is root-active.

3. A term M ∈ Λ∞
⊥ is a strong active form if M = RP1 . . . Pk and R is root-

active.
4. A term M ∈ Λ∞

⊥ is a strong active form relative to X if M = RP1 . . . Pk and
R is root-active and P1, . . . , Pk ∈ X .

5. A term M ∈ Λ∞
⊥ is an infinite left spine form if M = λx1 . . . xn.((. . .)P2)P1.

6. A term M ∈ Λ∞
⊥ is a strong infinite left spine form if M = ((. . .)P2)P1.

A term M ∈ Λ∞
⊥ is a strong infinite left spine form relative to X if M =

((. . .)P2)P1 and Pi ∈ X for all i.

Example 37. 1. The term Ω is a finite root-active term. The fixed point YI
reduces to the infinite root-active term I(I(I(. . .))).

2. Ωxyz, (YI)xyz and I(I(I(. . .)))xyz are strong active terms.
3. The finite term Ω3 = (λx.xxx)(λx.xxx) reduces to the strong infinite left

spine form ((. . .)ω3)ω3, where ω3 = λx.xxx.

We can now redefine the sets HN , WN and T N .
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Lemma 38. 1. A term M ∈ Λ∞ has no top normal form if and only if M is
root-active.

2. A term M ∈ Λ∞ has no weak head normal form if and only if M reduces to
a strong head active form, or a strong infinite left spine form.

3. A term M ∈ Λ∞ has no head normal form if and only if M reduces to a
head active form, an infinite left spine form, or the ogre.

The reformulation of the set WN reveals that the terms without weak head
normal form in the lambda calculus are precisely the strong zero terms, terms
of which no instance can reduce to an abstraction. Strong zero terms can also
be characterised as those terms no reduct of which can overlap any redex, which
are exactly the terms that we called opaque in Section 2.9.

Before we can define a partition of Λ∞ we need to define some notation.

Definition 39. We define the following subsets of Λ∞.

HA = {M ∈ Λ∞ | M →→β N and N is head active}
IL = {M ∈ Λ∞ | M →→→β N and N is an infinite left spine form}
O = {M ∈ Λ∞ | M →→→β O}
RA = {M ∈ Λ∞ | M is root-active}
SA = {M ∈ Λ∞ | M →→β N and N is strong active}
SIL = {M ∈ Λ∞ | M →→→β N and N is a strong infinite left spine form}

Theorem 40. Λ∞ is the disjoint union of HN , HA, IL and O.

With these components we can make the sets of undefined terms of Figure 3.

Theorem 41 ([23]). All eight sets of Figure 3 are sets of undefined terms.

Proof. The proofs for the three sets defined in Definition 33 can be found in [10].
The proofs for all other sets can be found in [23]. ��

There are many more sets of undefined terms besides the eight depicted in
Figure 3. Although we do not have a complete classification, we can say where
these other sets can be found in relation to those eight sets. In the figure we use
solid arrows X � Y to express that X ⊃ Y and there are NO other sets
of undefined terms in between X and Y . Dashed arrows X � Y indicate
that X ⊃ Y and that there are at least 2c many other sets of undefined terms
in between X and Y , where c is the cardinality of the continuum. To prove the
correctness of these arrows we will first prove a useful lemma.

Lemma 42. Let U be a set of undefined terms.

1. If λx.M ∈ U then M ∈ U .
2. If λx.M ∈ U for some M then HA ⊆ U .
3. If O ∈ U then HA ⊆ U .
4. If λx.M ∈ U and U ⊆ SA ∪ SIL then U ⊆ HA∪ IL.
5. If SIL ⊆ U then SA ⊆ U .
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Λ∞

HN = HA ∪ IL ∪ O
�

HA ∪ IL

�

HA ∪ O
�

WN = SA ∪ SIL
�

HA

�

�

SA
�

�

T N = RA
�

Fig. 3. The eight main sets of undefined terms

6. If IL ⊆ U then HA ⊆ U .
7. If a head normal form is in U then U = Λ∞.

Proof. Proofs as in [23]. These are straightforward deductions from the axioms:
for example, to prove (1), λx.M ∈ U implies (λx.M)x ∈ U by indiscernability,
therefore M ∈ U by Closure. ��

Theorem 43. The set HN is the largest set of undefined terms which is a
proper subset of Λ∞.

Proof. The first statement follows from Lemma 42(7). The second statement
follows directly from the axioms of undefinedness. ��

Definition 44. Let A ⊆ B be two sets of undefined λ-terms. The (open) interval
〈A,B〉 is the set {C | A � C � B and C is a set of undefined λ-terms}.

Theorem 45. 1. The interval 〈SA,HA ∪O〉 contains only the element HA.
2. The interval 〈SA ∪ SIL,HA∪ IL ∪ O〉 contains only the element HA∪IL.

Proof. These follow from Lemma 42, parts (2) and (4) respectively. ��

Theorems 43 and 45 imply that the solid arrows in Figure 3 are correctly
drawn. From Theorem 45(2) it follows also that the collection of sets of undefined
terms is not closed under unions. The union of the sets of undefined terms
SA ∪ SIL and HA is SIL ∪ HA, which is not a set of undefined terms. The
next theorem will imply the correctness of the dashed arrows in Figure 3.
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Definition 46. Let X ⊂ Λ∞.

1. We say that a term M is a strongly head active term relative to X if M
reduces to a term of the form RX1 . . . Xn, where R ∈ RA and X1, . . . , Xn ∈
X. We denote the set of strongly head active terms relative to X by SAX .

2. We say that a term M is a strong infinite left spine term relative to X if M
reduces to a term of the form . . . X3X2X1 where all Xi ∈ X. We denote the
set of strong infinite left spine terms relative to X by SILX .

3. We say that a term M is an almost strong infinite left spine term relative
to X if M reduces to a term of the form . . . X3X2X1Nk . . . N1 where all
Xi ∈ X and the Ni ∈ Λ∞

⊥ . We denote the set of almost strong infinite left
spine terms relative to X by SIL+

X .
4. The set IL+

X of almost infinite left spine terms relative to X is defined
similarly.

Lemma 47. If X is a subset of closed normal forms in Λ∞ then SAX is a set of
undefined terms. Moreover if X does not contain subterms which are infinite left
spine forms. then also SAX∪SILX , SA∪SIL+

X , HA∪IL+
X and HA∪IL+

X ∪O
are sets of undefined terms

Proof. In [23] we have shown that under their respective conditions SAX and
SAX ∪ SILX are sets of undefined terms. The proofs of the similar statements
for the other three sets are similar. ��

Theorem 48. The cardinality of each of the open intervals 〈RA,SA〉,
〈SA,SA ∪ SIL〉, 〈HA,HA∪ IL〉, and 〈HA ∪O,HA∪ IL ∪ O〉 is at least 2c.

Proof. There are at least 2c subsets X of closed normal forms in Λ∞ that do not
contain subterms which are infinite left spine forms. The sets SAX , SA∪SIL+

X ,
HA ∪ IL+

X and HA ∪ IL+
X ∪ O are element of the respective intervals listed in

the theorem. ��

3.5 Normal form Models of the Lambda Calculus

By Theorem 31, each set U of undefined terms gives rise to a complete exten-
sion λ∞

β⊥U
of the finite lambda calculus λβ . From each λ∞

β⊥U
we can construct

a generalised Böhm model MU of the finite lambda calculus as follows. As un-
derlying set we take the set NFU (Λ∞

⊥ ) of normal forms of terms in λ∞
β⊥U

. Let
NFU : Λ∞

⊥ → NFU (Λ∞
⊥ ) be the function that maps each M in Λ∞

⊥ to its normal
form. On NFU(Λ∞

⊥ ) we define application simply by:

NFU (M1) • NFU(M2) = NFU(M1M2)

The applicative structure MU = 〈NFU , •〉 extends readily to a syntactic model
of the finite lambda calculus along the lines of Definition 5.3.2 in [4]. The con-
struction works because of normalisation and confluence properties of λ∞

β⊥U
.

We will call these models normal form models. The three well-known models of
the Böhm trees [3, 4], the Lévy-Longo [15] trees and the Berarducci trees [5, 9] can
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be seen as examples of this construction and correspond respectively to MHN ,
MWN and MT N .3 There are many different sets of undefined terms, and so there
are also many different normal form models. Note that MΛ∞

⊥
degenerates to the

single element ⊥. The construction provides non-trivial models for all other sets
of undefined terms. We will now examine some properties of these models.

Definition 49. Let M,N ∈ Λ∞
⊥ . We say that M is a prefix of N (we write

M / N) if M is obtained from N by replacing some subterms of N by ⊥.

The pair (Λ∞
⊥ ,/) is an algebraic cpo and its compact elements are the finite

λ-terms. As for term rewriting, the pair (NFU(Λ∞
⊥ ),/) may not be a cpo:

Counterexample 50 ([22]). Consider the term (((. . .K)K)I. The set U =
RA ∪ {M ∈ Λ∞ | M →→β ((. . .K)K)I)} is a set of undefined terms. The term
((. . .K)K)I is a redex in λ∞

β⊥U
but none of its prefixes (((⊥K) . . .K)K)I contains

a redex. Let X be the set of prefixes of ((. . .K)K)I. Clearly
⋃

X �= ((. . .K)K)I.
Hence (NFU ,/) is not a cpo.

Notwithstanding such counterexamples it is not hard to show that the eight
main sets of undefined terms give rise to models whose underlying set is a cpo.

Theorem 51. (NFU ,/) is a cpo for any U chosen from the main sets of unde-
fined terms of Figure 3.

Next we consider the properties continuity and monotony.

Definition 52. 1. Let # be a partial order on Λ∞
⊥ . A function F : Λ∞

⊥ → Λ∞
⊥

is called monotone in (Λ∞
⊥ ,#), if F (M) # F (N) for all M,N ∈ Λ∞

⊥ such
that M # N .

2. Let (Λ∞
⊥ ,#) be a cpo. A function F : Λ∞

⊥ → Λ∞
⊥ is called continuous in

(Λ∞
⊥ ,#), if

⋃
i∈I F (Mi) = F (

⋃
i∈I Mi) for any directed set {Mi | i ∈ I} ⊆

Λ∞
⊥ , where a subset X of Λ∞

⊥ is directed if for any two elements M1,M2 ∈ X
there exists an M3 ∈ X such that M1 # M3 and M2 # M3.

The function NFU : Λ∞
⊥ → Λ∞

⊥ is not always continuous, or even monotone:

Counterexample 53. The map NFU : Λ∞
⊥ → Λ∞

⊥ is not continuous in the cpo
(Λ∞

⊥ ,/) in the following cases:

1. Case U = T N : the Berarducci trees are not monotone in (Λ∞
⊥ ,/). Take

M = ⊥y, N = (λx.⊥)y. Then M / N but NFT N (M) �/ NFT N (N).
2. Case U = HA ∪ IL. Now NFHA∪IL is monotone but not continuous. This

can be seen as follows. The infinite sequence of abstractions O = λx1x2 . . .
is in normal form but the truncations On = λx1 . . . xn.⊥ reduce to ⊥ for all
n. Hence

⋃
n∈ω On = O = NF(O) �=

⋃
n∈ω NF(On) = ⊥.

3 The concept of a Berarducci tree also applies to orthogonal term rewriting, since
it is based on the concept of root-active term. Ketema asks in [11] whether the
concepts of Böhm tree and Lévy-Longo tree also apply to term rewriting. Sections 2.9
and 3.4 answer this affirmatively for Lévy-Longo trees, because in lambda calculus,
the opaque terms are exactly the terms without weak head normal form.
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The prefix relation behaves well with respect to continuity only for the cases
of Böhm and Lévy-Longo trees:

Theorem 54 ([22]). NFU : Λ∞
⊥ → Λ∞

⊥ is continuous in (Λ∞
⊥ ,/) if and only if

U = HN or U = WN .

Recall that Barendregt’s proof [4] of the fact that the Böhm trees form a
model for lambda calculus depends heavily on continuity. The previous theorem
implies that this proof technique does not generalise to models other than the
Lévy-Longo model.

Theorem 55 ([23]). NFU : Λ∞
⊥ → Λ∞

⊥ is monotone in (Λ∞
⊥ ,/) for any U

chosen among the following: SA, HA, HA ∪ O, SA ∪ SIL, HA ∪ IL and
HA ∪ IL ∪ O.

3.6 Another Proof of Incompleteness of the Finite Lambda Calculus

In [23] we have shown that there are at least 2c many sets U of undefined terms
such that MU cannot be ordered by a partial order with a least element and
for which application and abstraction are monotone. The idea was to use sets of
undefined terms of the form U = SAX∪{O} for suitable X . Here we will improve
this result and use it to obtain another proof of incompleteness of the finite
lambda calculus.

Definition 56. We say that 〈MU ,#〉 is a po• model if # is a partial order on
NF(Λ∞

⊥ ) with a least element (which may be different from ⊥), and application is
monotone wrt #, i.e. whenever M1 # N1 and M2 # N2 then M1 •M1 # N1 •N2.

Theorem 57. If 〈MU ,#〉 is a po• model then:

1. Either ⊥ is the least element of # and ⊥P →⊥ ⊥ for all P ∈ Λ∞
⊥ , or

2. O is the least element of #.

Proof. Suppose that M ∈ NF(Λ∞
⊥ ) is the least element. Then M # λx.M for

some x free in M . If application is monotone then M • P # (λx.M) • P =NF M
and hence MP =NF M for all P for all P ∈ NF(Λ∞

⊥ ). Now either M = ⊥ in which
case ⊥P →⊥ ⊥ for all P ∈ Λ∞

⊥ . Or M �= ⊥ and then Mx = M for all x. Hence
M is the solution of the recursive equation M = λx.M and so M = O. ��

We can now strengthen Theorem 47 in [23]:

Theorem 58. The interval 〈RA,SA〉 contains at least 2c many sets U of un-
defined terms for which there exist no partial order such that 〈MU ,#〉 is a po•

model.

Proof. Take a non-empty subset X of closed terms in BerT(Λ∞
⊥ ) without ⊥.

Clearly there are 2c many choices for this X . Let U be the set of terms
in Λ∞ with a beta reduction (not necessarily finite) to a term of the form
RN0N0N1N1 . . . NkNk where k ≥ 0, R ∈ RA and all Ni ∈ X .
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Suppose there exists a partial order # on NF(U) such that 〈MU ,#〉 is a po•

model. By Theorem 57 we have that O is the least element of #. Choose M ∈ X
such that O �= M . Then ΩMM ∈ U . Consider also ΩOO. Since O is the least
element wrt to # we have O # M .

On one hand, ⊥OO and ΩMM reduce both to ⊥, as they are elements of
U . On the other hand, ⊥MO does not reduce to ⊥, because ⊥MO �∈ U . But
⊥ = ⊥OO # ⊥MO # ⊥MM = ⊥ implying that ⊥ = ⊥MO. Contradiction.

Hence there is no partial order such that 〈MU ,#〉 is a po• model. ��

For each model MU there is a corresponding lambda theory, namely the col-
lection of pairs of closed finite lambda terms with the same interpretation in the
model. As a corollary we obtain an alternative proof for Salibra’s theorem that
any semantics of lambda calculus given in terms of a partially ordered model
with a bottom element is incomplete.

Corollary 59 (Salibra [19]). There are at least continuum many lambda the-
ories that cannot be ordered with a po• model.

Proof. Restrict in the previous proof the collection X to closed finite normal
forms in Λ. There are continuum many such X . Clearly for any two different
such sets, the corresponding lambda theories are different. ��

Salibra’s proof is different. He considers first the enumerable lambda theory
Π axiomatised by Ωxx = Ω to prove with the help of a nice idea by Plotkin that
any semantics of lambda calculus given in terms of po•-models with a bottom
element is incomplete (cf. [19]). Then he uses a theorem by Visser [26, 4] to obtain
a continuum of distinct unorderable enumerable lambda theories satisfying the
conditions: Ωxx = Ω and Ω(ΩKI)Ω �= Ω. Note that in the proof of Theorem 58
none of the constructed models MU is a model of Salibra’s theory Π , because
they do not validate ΩΩΩ = Ω.

This section demonstrates that infinitary lambda calculus can be a convenient
tool for proving facts about finite lambda calculus.

3.7 Extensional Infinite Lambda Calculus

Far less is known about extensional lambda calculus. The collection of normal
form models of extensional lambda calculus is still waiting to be explored. Our
earlier work [9] on infinite lambda calculus depended heavily on the Compression
property, which does not hold for extensional lambda calculus. An anonymous
referee of this paper suggested us an elegant counterexample, simpler than the
one we gave in [9].

Counterexample 60. Let M be λx.(λy.Kxy(Kxy(. . .)))x. Then neither M
nor its finite β-reducts contain any η-redexes. However, M can β-reduce in ω
steps to λx.(λy.y(y(. . .)))x, which can η-reduce further to (λy.y(y(. . .))). This
reduction clearly cannot be compressed to a shorter one.
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The transfinite tiling diagram used in [7] to prove confluence of λ∞
β⊥U

opens
the way to confluence proofs of λ∞

β⊥U
extended with extensionality for certain

U . In [20, 21] we have shown confluence and normalisation of λ∞
β⊥η and λ∞

β⊥η! for
U = HN . Here η! is a strengthened version of the η rule, defined with the help
of the concept of strongly converging η-expansion:

x �∈ FV (M)
(η)

λx.Mx → M

x �∈ FV (M)
(η−1)

M → λx.Mx

x →→→η−1 N x �∈ FV (M)
(η!)

λx.MN → M

In λ∞
β⊥η and λ∞

β⊥η! we also have that extensionality postpones over both β
reduction and ⊥ reduction. Despite the above counterexample against the Com-
pression lemma, there is still a weaker form of compression: any strongly con-
verging reduction in λ∞

β⊥η and λ∞
β⊥η! can be compressed to a strongly converging

reduction of length at most ω + ω.
We are currently working to extend these results to other sets U and to other

forms of extensionality.

4 Summary and Conclusions

The application of rewriting theory to functional languages leads naturally to
the consideration of infinite rewriting sequences and their limits. Our theory
of transfinite rewriting puts this intuitive concept on a sound footing through
the concept of a strongly convergent rewriting sequence, of which the crucial
property is that not only does the sequence of terms tend to a limit, but the
sequence of redex positions tends to infinite depth.

This notion allows us to demonstrate some classical results for orthogonal sys-
tems. However, it transpires that the most important of these, confluence, fails in
certain cases. These cases can be precisely characterised, and confluence can be
re-established modulo the equality of the set of terms which obstruct exact conflu-
ence. The offending terms are of a form that can reasonably be viewed as represent-
ing infinite computations that produce no result, and in this sense are undefined.

Further consideration of this set of terms reveals that any set which satisfies
certain natural axioms can serve as the class of undefined terms. Not only does
confluence hold relative to any such class, but we can immediately construct
a semantic model of the rewrite system in which the undefined terms are all
mapped to the same element.

For the lambda calculus this has yielded a new uniform characterisation of
several known models, and a construction of several classes of new ones.

References

1. Z. M. Ariola, J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Syntactic
definitions of undefined: On defining the undefined. In M. Hagiya and J. Mitchell,
editors, Proceedings of the 2nd International Symposium on Theoretical Aspects of
Computer Software (TACS ’94), Sendai, volume 789 of Lecture Notes in Computer
Science, pages 543–554. Springer-Verlag, 1994.



Infinitary Rewriting: From Syntax to Semantics 171

2. Z. M. Ariola and J. W. Klop. Cyclic lambda graph rewriting. In Proceedings of
the 8th IEEE Symposium on Logic in Computer Science, pages 416–425, 1994.

3. H. P. Barendregt. The type free lambda calculus. In J. Barwise, editor, Handbook
of Mathematical Logic, pages 1091–1132. North-Holland Publishing Company, Am-
sterdam, 1977.

4. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam, Revised edition, 1984.

5. A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra
(Pontignano, 1994), pages 339–377. Dekker, New York, 1996.

6. N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite. Theoretical Computer Science, 83:71–96, 1991.

7. J. R. Kennaway and F. J. de Vries. Infinitary rewriting. In Terese [25], pages
668–711.

8. J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Transfinite reductions
in orthogonal term rewriting systems. Information and Computation, 119(1):18–38,
1995.

9. J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997.

10. J. R. Kennaway, V. van Oostrom, and F. J. de Vries. Meaningless terms in rewrit-
ing. Journal of Functional and Logic Programming, 1:35 pp, 1999.
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Abstract. We propose two transformations on term rewrite systems
(TRSs) based on reducing right-hand sides: one related to the transfor-
mation order and a variant of dummy elimination. Under mild conditions
we prove that the transformed system is terminating if and only if the
original one is terminating. Both transformations are very easy to im-
plement, and make it much easier to prove termination of some TRSs
automatically.

Preface

Before introducing the technical contents of this paper first I want to spend
some personal words. Several years ago, around 1990, I was looking for a new re-
search area. At that time I was employed at Utrecht University, and among other
things I was responsible for a seminar in algebraic specification. Only vaguely
I was aware of the area of term rewriting providing a way for implementation
of algebraic specifications. Just before that a nice booklet appeared, in Dutch,
about term rewriting. I liked this booklet, and decided to use it for my seminar.
This booklet appeared to be the course material of a course by Jan Willem Klop
at the Free University in Amsterdam, only 40 kilometers from Utrecht. I heard
that the group around Jan Willem Klop was active in research in term rewrit-
ing, and that they had meetings every two or three weeks around this research,
called TeReSe: term rewriting seminar. Since I liked the topic as I learned it
from the booklet, and still was looking for a new research area, I decided to fol-
low these meetings. There I met Jan Willem Klop and the people of his group:
Aart Middeldorp, Fer-Jan de Vries, Roel de Vrijer, Vincent van Oostrom and
Femke van Raamsdonk. I liked the meetings and the pleasant atmosphere, and
very naturally and smoothly inside this area I found challenges that happened
to grow out to my own research topics.

Now fifteen years have been passed, and I may look back to (co-)authoring
dozens of papers related to this area. Although I have never been a member of
Jan Willem’s group, I realize that in the way sketched above Jan Willem and
his group have played a crucial role in my development as a scientist. I am very
grateful for this. To mark one issue, on several places in the present paper the
underlying theory is based on completions of diagrams as you may see from the
pictures if you browse through the paper. For sure this way of completion of
diagrams, preferably in the setting of abstract reduction systems, is inspired by
the way Jan Willem propagated to do so in these TeReSe meetings long ago.

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 173–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1 Introduction

Developing techniques for proving termination of TRSs is a challenging research
area already for a long time. In recent years the emphasis in this area has shifted
towards implementation: for new techniques to prove termination it is no longer
sufficient that they can be used to prove termination of particular TRSs in theory,
but also tools should be able to use these techniques to prove termination fully
automatically. Several tools have been developed for this goal, and there is a
yearly competition in which all of these tools are applied to an extensive set of
examples (TPDB [20], the termination problem data base), and compared, see

http://www.lri.fr/~marche/termination-competition/.

In this paper we present two transformations on TRSs for which termination
of the original TRS can be concluded from termination of the transformed TRS.
Since these transformations are very easy to implement and proving termination
of the transformed TRS by standard techniques is often much simpler than
proving termination of the original TRS, they are very suitable to be used as
preprocessing steps before using any of the tools.

Both transformations do not change left-hand sides, and reduce right-hand
sides. In the first transformation, related to the transformation ordering [3] this
is done by rewriting right hand sides using the same TRS. So here it is assumed
that at least one right-hand side of a rule is not in normal form. In the second
transformation, a variant of dummy elimination [8], the right-hand sides are
decomposed with respect to a special symbol (a dummy symbol) that occurs in
a right-hand side but in no left-hand side.

The technique of rewriting right-hand sides was considered before in [12], but
there it was required that the whole TRS is non-overlapping (or a mild weakening
of it), while our approach does not have such global restrictions. Our approach
is based on the transformation ordering from [3] presented in a more abstract
setting in [24]. The first approach to implement this was described in [17]. In
order to use this technique for rewriting right-hand sides we had to adjust the
underlying theory. In this paper all required theory is included.

For our present variant of dummy elimination the main theorem states that
the original TRS is terminating if the transformed TRS is terminating, just as
in [8]. However, in case of left-linearity we also have the converse, as we prove
in this paper. Therefore the new variant is called complete dummy elimination,
and is often stronger than the earlier version from [8].

For string rewriting the techniques described in this paper have been im-
plemented in TORPA: Termination of Rewriting Proved Automatically [21], a
tool developed by the author, which was the winner in the above mentioned
competition in the category of string rewriting, both in 2004 and 2005.

For term rewriting the techniques described in this paper have been imple-
mented in the tool TPA: Termination Proved Automatically, written by Adam
Koprowski, [15]. In the above mentioned termination competition in 2005 this
tool was third among 6 participants in the category of term rewriting, after
AProVE [6] and TTT [13].
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The organization of this paper is as follows. First in Section 2 the preliminaries
are given, both for abstract rewriting and term rewriting. Then in Section 3
the theory and implementation of the technique of rewriting right-hand sides
is presented. Next, Section 4 treats complete dummy elimination, first for term
rewriting and then for string rewriting. To derive the result for string rewriting
from the result for term rewriting in Subsection 4.2 we apply a general theorem.
A TRS having no symbols of arity greater than one is transformed to an SRS
simply by ignoring all parentheses and variable symbols. The theorem states
that the TRS is terminating if and only if the SRS is terminating. Finally, in
Section 5 we give some conclusions.

2 Preliminaries

2.1 Abstract Rewriting

In the following R, S and T are arbitrary binary relations on a fixed set. In
the applications they will correspond to rewrite relations of TRSs. We write a
dot symbol for relational composition, i.e., one has t(R · S)t′ if and only if there
exists a t′′ such that tRt′′ and t′′St′. We write R+ for the transitive closure of
R and R∗ for the reflexive transitive closure of R, and we write R−1 for the
inverse of R. Further we write R ⊆ S if tRt′ implies tSt′. Clearly, if R ⊆ S then
R · T ⊆ S · T and T ·R ⊆ T · S.

Using these notations confluence of a relation R, written as CR(R), can be
expressed shortly as (R−1)∗ · R∗ ⊆ R∗ · (R−1)∗. Similarly, local confluence of a
relation R, written as WCR(R), can be expressed as R−1 · R ⊆ R∗ · (R−1)∗.

We write ∞(t, R) if there exists an infinite sequence tRt1Rt2Rt3R · · ·. Such an
infinite sequence is called an infinite R-reduction. A relation R is called terminat-
ing on t, written as SN(t, R), if not ∞(t, R). A relation R is called terminating,
written as SN(R), if it is terminating on every t, i.e., no infinite R-reduction
exists at all.

For a terminating relation R we can apply induction on R, i.e. if for all
elements t we can prove

(∀t′ : (tRt′ ⇒ P (t′))) ⇒ P (t)

then we may conclude that the property P (t) holds for all t. The assumption
∀t′ : (tRt′ ⇒ P (t′)) is called the induction hypothesis.

We write R/S for S∗ · R · S∗. For instance, (R/S)+ describes a sequence of
R ∪ S-steps containing at least one R-step, so

(R/S)+ = S∗ · R · (R ∪ S)∗ = (R ∪ S)∗ · R · S∗.

2.2 Term Rewriting

Write Var(t) for the set of variables in a term t. A rewrite rule is a pair of terms
(�, r), written as � → r, such that � is not a variable and Var(r) ⊆ Var(�). The



176 H. Zantema

terms �, r are called the left-hand side (lhs) and the right-hand side (rhs) of the
rule � → r, respectively. A rule � → r is called left-linear if every variable occurs
at most once in �. A rule � → r is called non-erasing if Var(r) = Var(�).

A term rewrite system (TRS) is defined to be a set of rewrite rules. A TRS
is called left-linear if all its rules are left-linear. A TRS is called non-erasing if
all its rules are non-erasing.

A term t rewrites to a term u w.r.t. a TRS R, notation t →R u, if there
is a rule � → r in R, a context C and a substitution σ such that t = C[�σ]
and u = C[rσ]. A TRS R is said to be terminating, confluent or locally con-
fluent (notation: SN(R),CR(R),WCR(R)) if the corresponding property holds
for the binary relation →R on terms. Basic techniques to prove termination of
TRSs include recursive path order [5] and polynomial interpretations [4]. More
involved techniques in which TRSs are first transformed before basic techniques
are applied include semantic labelling [23] and dependency pairs [1, 14, 11]. For
an overview of techniques for proving termination of TRSs see [24]. For a general
introduction to rewriting see [2, 18].

The TRS Emb is defined to consist of all rules of the shape f(x1, . . . , xn) → xi.
A rule � → r is called self-embedding if r →∗

Emb �. A TRS R is called simply
terminating if R ∪ Emb is terminating. It is obvious that a TRS containing a
self-embedding rule is not simply terminating. It is well-known ([22, 24]) that
termination of a TRS can not be proved by recursive path order or polynomial
interpretations if the TRS is not simply terminating.

Two non-variable terms t, u are said to have an overlap if there are substitu-
tions σ, τ such that either t′σ = uτ for a non-variable subterm t′ of t, or tσ = u′τ
for a non-variable subterm u′ of u. Two rules �1 → r1 and �2 → r2 are said to
have a non-trivial overlap if either the rules are distinct and �1 and �2 have an
overlap, or the rules are equal and there are substitutions σ, τ such that t′σ = �1τ
for a non-variable proper subterm t′ of �1. Here properness is essential to exclude
the trivial overlap caused by �1σ = �1τ for σ = τ . It is well-known that WCR(R)
holds if no two (possibly equal) rules of R have a non-trivial overlap.

3 Rewriting Right-Hand Sides

3.1 The Theory

Our theory of rewriting right-hand sides is based on a modification of a commu-
tation property that was the basis of the transformation ordering, [3].

Lemma 1. Let S, T be binary relations satisfying

1. S ∪ T is terminating,
2. T is locally confluent, and
3. T−1 · S ⊆ (S/T )+ · (T−1)∗.

Then (T−1)∗ · (S/T )+ ⊆ (S/T )+ · (T−1)∗.

Proof. We prove by induction on S ∪ T that for every t the following holds:
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Let t′(T−1)∗t(S/T )+w. Then there exists w′ satisfying t′(S/T )+w′ (T−1)∗w.

First observe that (S/T )+ = T ∗ ·S · (S ∪ T )∗. Since (S ∪ T )∗ = T ∗ ∪ (S/T )+,
we obtain u, v satisfying tT ∗uSv(T ∗ ∪ (S/T )+)w. Since T is terminating by 1
and locally confluent by 2, we have CR(T ) by Newman’s Lemma: T is conflu-
ent. Since tT ∗t′, tT ∗u and CR(T ) we obtain u′ satisfying t′T ∗u′ and uT ∗u′. If
u′ = u then we may choose w′ = w indeed satisfying t′(S/T )+w′(T−1)∗w and
we are done. In the remaining case we have u′′ satisfying uTu′′T ∗u′. Apply-
ing condition 3 to u′′T−1uSv yields v′′ satisfying u′′(S/T )+v′′(T−1)∗v. Since
tT ∗uTu′′ we may apply the induction hypothesis to u′′, yielding v′ satisfying
u′(S/T )+v′(T−1)∗v′′. Now we have vT ∗v′ and either vT ∗w or v(S/T )+w. In the
first case CR(T ) yields w′ satisfying v′T ∗w′(T−1)∗w, in the second case the in-
duction hypothesis applied to v yields w′ satisfying v′(S/T )+w′(T−1)∗w. In all
cases we have t′T ∗u′(S/T )+v′(T ∗ ∪ (S/T )+)w′, so t′(S/T )+w′, and wT ∗w′, and
we are done. Summarized in a picture:

t

t′

u

u′′

u′

CR(T )

v

v′′

v′

cond. 3

I. H.

w

w′

I. H. and CR(T )

T ∗

T ∗

T ∗

T ∗

T

S

(S/T )+

(S/T )+

T ∗

T ∗

T ∗

T ∗ ∪ (S/T )+

T ∗ ∪ (S/T )+

��
Theorem 2. Let R,S, T be binary relations satisfying

1. S ∪ T is terminating,
2. T is locally confluent,
3. T−1 · S ⊆ (S/T )+ · (T−1)∗, and
4. R ⊆ ((S/T )+ · (T−1)∗) ∪ T .

Then R is terminating.

Proof. Assume R is not terminating. So there is an infinite R-reduction, i.e.,
a sequence t1, t2, t3, . . . such that tiRti+1 for all i = 1, 2, 3, . . .. Write R′ =
(S/T )+ · (T−1)∗. Let u1 = t1, and define ui for i = 2, 3, 4, . . . satisfying tiT

∗ui

in the following way:

– If ti−1T ti then choose ui such that tiT
∗ui and ui−1T

∗ui. This can be done
since T is confluent, following from Newman’s Lemma and conditions 1, 2.

– Otherwise, by condition 4 we have ti−1R
′ti, i.e., there exists vi satis-

fying ti−1(S/T )+vi(T−1)∗ti. By Lemma 1 we may choose ui such that
ui−1(S/T )+ui and viT

∗ui, by which we obtain tiT
∗ui.
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A typical initial part of this construction is sketched in the following picture:

t1 t2 t3 t4 t5 t6 t7

u1 u2 u3 u4 u5 u6 u7

v2 v4 v5 v7

R′ T R′ R′ T R′

(S/T )+ T ∗ (S/T )+ (S/T )+ T ∗ (S/T )+

T ∗

T ∗

T ∗

(S/T )+

T ∗

T ∗

T ∗

(S/T )+
T ∗

T ∗

(S/T )+

T ∗

T ∗

T ∗

(S/T )+

Since T is terminating by condition 1, the second case ti−1R
′ti occurs infinitely

often. So we have ui−1(S/T )+ui for infinitely many values of i, while for the other
values of i we have ui−1T

∗ui. Hence u1 → u2 → u3 → · · · is an infinite S ∪ T -
reduction, contradicting condition 1, concluding the proof. ��

Theorem 2 is closely related to the underlying theory in the transformation
ordering, [3]. A generalization of this underlying theory is expressed in Theorem
6.5.16 in [24]. In fact this Theorem 6.5.16 coincides with the present Theorem 2
where conditions 3, 4 are replaced by

3’. T−1 · S ⊆ T ∗ · S · (S ∪ T ∪ T−1)∗,
4’. R ⊆ (S/(T ∪ T−1))+,

respectively. Condition 3’ is a strict weakening of condition 3. However, con-
ditions 4’ and 4 are incomparable, since in condition 4 it is allowed that some
R-step is only a single T -step and in condition 4’ it is not. In our application this
is essential, therefore this new Theorem 2 was developed rather than applying
the earlier result. Later on, it was pointed out by Vincent van Oostrom that
by applying Theorem 6.5.16 to R \ T rather than R then a simple argument
shows that not only SN(R \ T ) can be concluded, but also SN(R). In this way
a variant of Theorem 6.5.16 is obtained in which condition 4’ is weakened to
R ⊆ T ∪ (S/(T ∪ T−1))+. Now our new Theorem 2 can be obtained as a
corollary of this variant of Theorem 6.5.16. For being self-contained we kept the
direct proof of Theorem 2; moreover this proof is slightly simpler than the proof
of Theorem 6.5.16.

Next we apply Theorem 2 to term rewriting. In order to do so we first give
a lemma analyzing how applications of non-overlapping rewrite rules commute,
similar to the well-known critical pair lemma.

Lemma 3. Let �i → ri be rewrite rules for i = 1, 2 for which �1 and �2 do not
have an overlap, and having rewrite relations →1,→2, respectively. Let C be a
context and σ, τ be substitutions such that C[�1σ] = �2τ . Then �2 = C2[x] for
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some context C2 and some variable x, for which the two reducts C[r1σ] and r2τ
of C[�1σ] = �2τ satisfy

C[r1σ] →n−1
1 · →2 · ←k

1 r2τ,

where n, k are the numbers of occurrences of x in �2, r2, respectively.

Proof. Since there is no overlap between �1 and �2 we can write C = C2[D] where
�2 = C2[x] for contexts C2, D and some variable x for which xτ = D[�1σ]. Define
τ ′ by xτ ′ = D[r1σ], and yτ ′ = yτ for y �= x. By applying the reduction xτ →1 xτ

′

to the occurrences of xτ corresponding to the other n − 1 occurrences of x in
�2 = C2[x], we obtain C[r1σ] →n−1

1 �2τ
′. Conversely we obtain r2τ →k

1 r2τ
′ since

x occurs k times in r2. Combining these observations yields

C[r1σ] →n−1
1 �2τ

′ →2 r2τ
′ ←k

1 r2τ,

proving the lemma. ��

To sketch a typical example of how Lemma 3 applies, consider �1 → r1 to be
the rule a→ b and �2 → r2 to be the rule f(x, x) → g(x, x, x). Let C = f(�, a)
and xτ = a; since �1 does not contain variables, σ plays no role. Indeed we have
C[�1σ] = f(a, a) = �2τ , and

C[r1σ] = f(b, a) →1 f(b, b) →2 g(b, b, b) ←3
1 g(a, a, a) = r2τ.

Now we are ready to give the main theorem.

Theorem 4. Let R be a TRS for which a rhs is not in normal form, i.e., R
contains a rule �→ r and a rule of the shape �′ → C[�σ]. Assume that

– �→ r is left-linear,
– �→ r is non-erasing,
– WCR({�→ r}), and
– there is no overlap between � and the lhs of any rule of R \ {�→ r}.

Let R′ be obtained from R by replacing the rule �′ → C[�σ] by �′ → C[rσ]. Then
R is terminating if and only if R′ is terminating.

Proof. The ‘only if’-part is immediate from the observation that every R′-step
can be mimicked by one or two R-steps: an R′-step applying the rule �′ → C[rσ]
is mimicked by first applying the R-rule �′ → C[�σ] and then the R-rule �→ r,
all other R′-steps are R-steps themselves. It remains to prove the ‘if’-part.

First note that the rules � → r and �′ → C[�σ] are distinct, since otherwise
the rule �→ C[C[�σ]σ] contained in R′ is not terminating.

We apply Theorem 2 for the binary relations

– T being the rewrite relation of the single rule �→ r,
– S being the rewrite relation of R′ \ {�→ r}, and
– R being the rewrite relation of the TRS R.
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Termination of the TRSR is proved by checking all four conditions of Theorem 2.
Condition 1 holds since S ∪ T is the rewrite relation of R′ and R′ is assumed

to be terminating.
Condition 2 holds by assumption.
For proving condition 3 assume that uT−1tSv, i.e., a term t rewrites by T to

u and by S to v. We distinguish three cases:

– The T -redex is in parallel with the S-redex. Then we have

(u, v) ∈ S · T−1 ⊆ (S/T )+ · (T−1)∗.

– The T -redex is above the S-redex. Then we apply Lemma 3 for �2 → r2
being �→ r, so →2 = T , and →1 ⊆ S. This yields

v = C[r1σ] →n−1
1 · →2 · ←k

1 r2τ = u,

where n, k are the numbers of occurrences of x in �, r, respectively. Since
�→ r is left-linear and non-erasing, we have k > 0 and n = 1. So

(v, u) ∈ →2 · ←+
1 ,

hence (u, v) ∈ →+
1 · ←2 ⊆ S+ · T−1 ⊆ (S/T )+ · (T−1)∗.

– The S-redex is above the T -redex. Then we apply Lemma 3 for �1 → r1
being �→ r, so →1 = T , and →2 ⊆ S. This yields

u = C[r1σ] →∗
1 · →2 · ←∗

1 r2τ = v,

so (u, v) ∈ →∗
1 · →2 · ←∗

1 ⊆ T ∗ · S · (T−1)∗ ⊆ (S/T )+ · (T−1)∗.

In all cases we proved (u, v) ∈ (S/T )+ · (T−1)∗, concluding condition 3.
Condition 4 is verified by considering all three possibilities for an R-rewrite

step t→ u.

– If t→ u is an application of the rule �→ r then tTu.
– If t → u is an application of the rule �′ → C[�σ] then tS · T−1u where the
S-step is an application of the rule �′ → C[rσ].

– If t → u is an application of another rule, then this rule is in R′ \ {�→ r},
so tSu.

In all three cases we conclude (t, u) ∈ (S ·(T−1)∗)∪T ⊆ ((S/T )+ ·(T−1)∗) ∪ T ,
concluding condition 4. ��

In the dependency pair framework [1, 14, 11] it often occurs that proving inner-
most termination is simpler than proving termination, and therefore conditions
have been investigated for which termination can be concluded from innermost
termination. In a similar way Theorem 4 can be seen as a theorem stating that
full termination can be concluded from termination with respect to a particular
strategy: R′-rewriting can be seen as R-rewriting following the strategy that the
application of a rule for which the rhs is not in normal form is always followed
by reduction of this rhs.
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One may wonder whether all conditions of Theorem 4 are essential. Indeed
they are, as is shown by the following four examples.

In the first example ([12], Example 5) let R consist of the two rules

f(x) → a, b→ f(b).

Let � → r be the first rule, applicable to the rhs of the second rule. Then R′

consisting of the rules f(x) → a, b → a is terminating, while R is not, and all
conditions of Theorem 4 hold except for non-erasingness of �→ r.

In the second example let R consist of the two rules

a→ b, a→ a.

Let � → r be the first rule, applicable to the rhs of the second rule. Then R′

consisting of two copies of the rule a→ b is terminating, while R is not, and all
conditions of Theorem 4 hold except for the non-overlappingness condition.

In the third example let R consist of the three rules

f(f(x)) → g(x), h(x) → f(f(x)), g(f(a)) → h(h(a)).

Let � → r be the first rule, applicable to the rhs of the second rule. Then R′

consisting of the three rules

f(f(x)) → g(x), h(x) → g(x), g(f(a)) → h(h(a))

is terminating by recursive path order using the precedence f > h > g. However,
R is not terminating due to the reduction

h(h(a)) → h(f(f(a))) → f(f(f(f(a)))) → f(g(f(a))) → f(h(h(a))).

All conditions of Theorem 4 hold except for WCR({�→ r}).
In the last example let R consist of the four rules

f(x, x) → g(x), a→ b, a→ c, f(b, c) → f(a, a).

Let � → r be the first rule, applicable to the rhs of the last rule. Then R′ is
terminating, while R is not due to the reduction f(b, c) → f(a, a) → f(a, c) →
f(b, c). All conditions of Theorem 4 hold except for left-linearity of �→ r.

A possible generalization of Theorem 4 would be in weakening the restriction
of non-overlap to a restriction of critical pairs having a particular kind of common
reduct. Moreover, even in case this critical pair condition does not hold one can
think of extending T by the normalized versions of the corresponding critical
pairs, introducing a kind of completion as in [3, 17]. However, in this paper we
want to concentrate on very simple criteria not involving branching choices as
is introduced in searching for common reducts of critical pairs in typically non-
confluent TRSs.

A variant of Theorem 4 was given by Gramlich in [12]:
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Theorem 5. Let R be a non-overlapping TRS for which a rhs is not in normal
form, i.e., R contains a rule �→ r and a rule of the shape �′ → C[�σ]. Assume
that � → r is non-erasing. Let R′ be obtained from R by replacing the rule
�′ → C[�σ] by �′ → C[rσ]. Then R is terminating if and only if R′ is terminating.

So here we do not have a left-linearity requirement for � → r any more, but
the full TRS R is required to be non-overlapping, while our Theorem 4 only
requires non-overlappingness involving the rule � → r. In typical applications
to TRSs describing arithmetic and having a rule p(s(x)) → x to be applied to
some rhs, Theorem 5 is only applicable if the TRS is non-overlapping. So this
approach fails as soon as overlapping combinations of usual rules like

x− 0 → x, s(x) − s(y) → x− y, x− x→ 0

occur. In fact, in Gramlich’s paper the requirement of non-overlappingness is
slightly weakened, but not overcoming these drawbacks. Our Theorem 4 still
applies directly if the TRS contains rules of this shape. Therefore we think that
in practice our Theorem 4 is more powerful than Theorem 5.

3.2 Implementation

We propose to use Theorem 4 as a pre-processing phase for any tool for proving
termination of TRSs as follows. Let R be any finite TRS for which termination
has to be proved.

Basic procedure:
Check if R can be written as

R = R0 ∪ {�→ r, �′ → C[�σ]}

where � → r is left-linear and non-erasing, and has no non-trivial overlap with
any rule of R.

If so, then replace R by R0 ∪ {�→ r, �′ → C[rσ]}, and start again.

Applying this basic procedure is straightforward. From Theorem 4 it follows
that for every step the replaced TRS is terminating if and only if the original
TRS is terminating; note that local confluence of the single rule � → r follows
from the property that � → r has no non-trivial overlap with itself. So for any
number of steps the resulting TRS is terminating if and only if the original TRS
is terminating.

In case R is terminating, then the basic procedure is terminating too. This
can be seen as follows. Assume that the procedure goes on forever, respectively
yielding TRSs R1 = R, R2, R3, R4, . . .. Since every Ri+1-step can be mimicked
by one or two Ri-steps, as we saw in the ‘only if’-part of the proof of Theorem
4, we conclude that →Ri⊆→+

R for every i = 1, 2, 3, . . .. Since Ri+1 is obtained
from Ri by applying →Ri to a rhs of Ri, we can also obtain Ri+1 from Ri by
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applying →+
R to one of the rhs’s. Since there are only finitely many rules, but

infinitely many steps from Ri to Ri+1, there is some rhs of the original TRS R
on which →+

R is applied infinitely often, contradicting termination of R.

Unfortunately, in case R is not terminating then it can be the case that
the basic procedure does not terminate. For instance, if R consists of the two
rules a → a, b → a then the basic procedure can be applied again yielding R
after one step. This process may go on forever. More general, if R is of the shape
R0∪{�→ r} in which r admits an infiniteR0-reduction, then the basic procedure
applied to R may go on forever. A simple way to get a robust implementation of
the basic procedure that terminates on every TRS is to put some upper bound
on the total number of steps of the basic procedure.

String rewriting can be seen as a particular case of term rewriting in which all
symbols have arity 1. Since in this case variables and parentheses are redundant,
they are usually omitted.

A tool for automatically proving termination of string rewriting is called
TORPA: Termination of Rewriting Proved Automatically [21]. This tool has
been developed by the author. After having ideas in mind for years the actual
implementation started in July 2003. Earlier versions of TORPA have been de-
scribed in [25] (version 1.1), in [26] (version 1.2) and in [27] (version 1.3). The
extensive paper [27] also contains a full treatment of all the underlying theory.

Our basic procedure for rewriting right-hand sides was implemented for string
rewriting in the newest version of TORPA, version 1.4. This version of the
TORPA tool participated in the termination competition in 2005, and was the
winner among the eight participants in the string rewriting category, see

http://www.lri.fr/~marche/termination-competition/2005/.

In the text generated by TORPA our technique is called transformation order.
As an example we consider the string rewriting system consisting of the following
five rules

f0 → s0, d0 → 0, ds→ ssdps, fs→ dfps, ps→ e,

where e represents the empty string. This system describes computation of pow-
ers of 2: think of s being successor, p being predecessor, d being doubling and f
being exponentiation.1 It is easy to observe that fsn0 rewrites to its normal form
s2

n

0 for every n = 0, 1, 2, . . .. The normal form of fn0 has super-exponential size
and requires a super-exponential number of steps to be computed. Note that
the system is not simply terminating: both the third and the fourth rule are
self-embedding. TORPA yields the following termination proof:

1 The fact that the constant 0 may be treated here as a unary symbol will be justified
by Theorem 12.
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TORPA 1.4 is applied to the string rewriting system
f 0 -> s 0
d 0 -> 0
d s -> s s d p s
f s -> d f p s
p s -> e
Choose polynomial interpretation f: lambda x.x+1, rest identity
remove: f 0 -> s 0
Remaining rules:

d 0 -> 0
d s -> s s d p s
f s -> d f p s
p s -> e

Transformation order: apply rule 4 on rhs of rule 2, result:
d 0 -> 0
d s -> s s d
f s -> d f p s
p s -> e

Transformation order: apply rule 4 on rhs of rule 3, result:
d 0 -> 0
d s -> s s d
f s -> d f
p s -> e
%

Choose polynomial interpretation p: lambda x.x+1, rest identity
remove: p s -> e
Remaining rules:

d 0 -> 0
d s -> s s d
f s -> d f

Terminating by recursive path order with precedence:
d>s f>d

For term rewriting our basic procedure has been implemented in the tool
TPA, written by Adam Koprowski, [15].

Let R be any TRS and let R′ be the result of applying the basic procedure
to R. From many examples we observe that proving termination of R′ is much
simpler than proving termination of R directly. We should like to have evidence
that it is never the other way around. Since the notion of ‘simpler’ depends on
the unspecified set of techniques to be used, it is hard to make this claim solid.
However, by construction we have →R′ ⊆ →+

R, and the lhs’s of R are equal to
the lhs’s of R′. Under these conditions for all techniques known by us it is very
unlikely that proving termination of R′ may be harder than proving termination
of R. In particular, since →R′∪Emb ⊆ →+

R∪Emb, simple termination of R implies
simple termination of R′.
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Therefore applying our basic procedure as a pre-processing before trying any
other tool for proving termination will often increase the power of the tool, and
probably never decrease it.

One may wonder whether it is natural to have rhs’s that are not in normal
form. Of course this is hard to answer since there is no precise definition of nat-
ural. To our knowledge the most extensive list of termination problems in term
rewriting is TPDB, the Termination Problem Data Base [20]. This database
was used in the above mentioned competition. Restricted to term rewriting (ex-
cluding string rewriting, which is a separate category) it contains 773 TRSs for
which the problem of termination has been posed. They are from a wide scala
of origins and application areas. Therefore we think it makes sense to consider
these TRSs to get an impression of the applicability of our technique. It turns
out that among these 773 TRSs there are 98 TRSs for which not only a rhs is
not in normal form, but also the extra conditions are satisfied. So for these TRSs
our basic procedure is applicable. For several of them, proving termination of
the transformed system is much simpler than proving termination of the original
system. Of course again the meaning of ’simpler’ has not been defined precisely,
but it sounds reasonable to consider a proof only using basic techniques like
recursive path order and linear polynomial interpretations, simpler than a proof
using a combination of dependency pairs, argument filtering and the same basic
techniques.

For instance, consider the classical TRS describing computation of factorials
consisting of the following rules

p(s(x)) → x ∗(0, y) → 0
fact(0) → s(0) ∗(s(x), y) → +(∗(x, y), y)

fact(s(x)) → ∗(s(x), fact(p(s(x)))) +(x, 0) → x
+(x, s(y)) → s(+(x, y)).

This TRS is D33/21.trs in the TRS category of TPDB. In the 2005 competition
only two (AProVE [6] and TTT [13]) of the six participating tools were able to
prove termination of this TRS. Note that the TRS is not simply terminating
since the rule fact(s(x)) → ∗(s(x), fact(p(s(x)))) is self-embedding, so only using
recursive path order and polynomial interpretations will fail. However, by ap-
plying our basic procedure this self-embedding rule is replaced by fact(s(x)) →
∗(s(x), fact(x)), which is replaced again by fact(s(x)) → +(∗(x, fact(x)), fact(x)).
Termination of the resulting TRS is easily concluded by the recursive path order
using the precedence fact > ∗ > + > s. This is exactly the proof as it is found
automatically by the tool TPA within a fraction of a second.

Using our basic procedure, the tool TPA was able to prove termination of 6
more TRSs in TPDB than without it, including this factorial system.

4 Complete Dummy Elimination

In the basic procedure based on Theorem 4 rhs’s are rewritten. So a part of such
an rhs matches with an lhs. In this section we consider the opposite: we consider
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rhs’s containing symbols that do not occur in lhs’s at all. These symbols are
called dummy symbols. Again we keep the lhs’s and reduce the rhs’s, but this
reduction is done completely different than before: the dummy symbol now is
used to split up the rhs into several smaller rhs’s, each generating a rule in the
transformed TRS, with its lhs kept unchanged. This approach was studied before
in [8] and was called dummy elimination. An earlier version already appeared in
[22]. The main theorem states that if the TRS after applying dummy elimination
is terminating, then the original TRS is terminating too. In general the converse
is not true. Here we present a modification of dummy elimination for which the
same property holds, but for which in case of left-linearity also the converse holds
(the transformed TRS is terminating if and only if the original TRS is). Due to
this completeness result our new variant is called complete dummy elimination.
Moreover, complete dummy elimination is more powerful to be used in tools for
automatically proving termination of TRSs or SRSs.

4.1 Complete Dummy Elimination for Term Rewriting

Before giving precise definitions first we give a very simple example sketching
the general idea. Consider the TRS R consisting of the single rule

f(g(x)) → f(a(g(x))).

Here the symbol a is a dummy symbol: it does not occur in any lhs. Intuitively
this means that this dummy symbol does not play an essential role in further
reductions of the term, and further reductions can be localized as either affecting
the part above the dummy symbol or affecting the part below it. This can be
formalized by decomposing the rhs’s into smaller terms in which the dummy acts
as a separator. In this case this means that the term f(h(g(x))) is decomposed
into two terms f(5) and b(g(x)), where 5 is a fresh constant and b is a fresh
unary symbol. The lhs’s remain the same. The result is the transformed system
DEa(R), in this example consisting of the two rules

f(g(x)) → f(5)
f(g(x)) → b(g(x)).

The main result states that DEa(R) is terminating if and only if R is termi-
nating. So termination of R can be proved by proving termination of DEa(R),
which is straightforward by recursive path order choosing the precedence f > b,
g > 5.

In order to give a precise definition for complete dummy elimination we need
some auxiliary definitions. We fix one dummy symbol a of a TRS R. Let n be
the arity of a. Choose a fresh constant 5a and a fresh unary symbol ba, i.e., 5a

and ba do not occur in R. As long as a is fixed, we omit the subscripts, simply
writing b and 5. For any term t we define inductively a term capa(t) and a set
of terms deca(t):

capa(x) = x for all x ∈ Var,
capa(f(t1, . . . , tk)) = f(capa(t1), . . . , capa(tk)) for all f , f �= a
capa(a(t1, . . . , tn)) = 5
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deca(x) = ∅ for all x ∈ Var,
deca(f(t1, . . . , tk)) =

⋃k
i=1 deca(ti) for all f , f �= a

deca(a(t1, . . . , tn)) =
⋃n

i=1(deca(ti) ∪ {b(capa(ti))}).
Roughly speaking we decompose a term t by using the symbol a as a separator,

where occurrences of a are replaced by 5 and arguments of a are marked by the
symbol b. Now the term capa(t) is the topmost part of this decomposition, while
deca(t) is the set of all other parts in this decomposition. Now we define the
TRS DEa(R) for any TRS R having a as a dummy symbol by

DEa(R) = {�→ u | u = capa(r) ∨ u ∈ deca(r) for a rule �→ r ∈ R}.

The transformation DEa is called complete dummy elimination. For instance,
applying DEa on a rule of the shape

�
�

�
� 1

����
�
�

�
� 2

�
�

�
� 3

a� →

where the binary dummy symbol a occurs only once in the rhs, yields the three
rules

�
�

�
� 1
5

� → �
�

�
� 2

b

� → �
�

�
� 3

b

� →

Theorem 6. Let a be a dummy symbol in a TRS R for which DEa(R) is ter-
minating. Then R is terminating too.

Before proving this theorem we give an example slightly more complicated
than the one given above, and we recall the earlier dummy elimination theorem.
Let the TRS R consist of the two rules

f(g(x)) → f(a(g(a(x, f(x))), g(f(x))))
g(f(x)) → g(g(a(f(x), g(g(x))))).

Then DEa(R) consists of the rules

f(g(x)) → f(5) f(g(x)) → b(g(f(x)))
f(g(x)) → b(g(5)) g(f(x)) → g(g(5))
f(g(x)) → b(x) g(f(x)) → b(f(x))
f(g(x)) → b(f(x)) g(f(x)) → b(g(g(x))).

Indeed Theorem 6 is helpful for proving termination of R: termination of
DEa(R) is easily proved by recursive path order, choosing the precedence f >
g > b > 5.

In the version of dummy elimination from [8] the symbol b was omitted. More
precisely, for a TRS R having a as a dummy symbol the TRS E(R) was defined
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exactly as DEa(R), with the only difference that deca(a(t1, . . . , tn)) was defined
to be

⋃n
i=1(deca(ti)∪{capa(ti)}) rather than

⋃n
i=1(deca(ti)∪{b(capa(ti))}). As a

consequence, the TRS E(R) is obtained from DEa(R) by removing all symbols
b from it. As the main result we recall:

Theorem 7. Let a be a dummy symbol in a TRS R for which E(R) is termi-
nating. Then R is terminating too.

For a proof of Theorem 7 we refer to [8] or [7], where a slightly more general
version has been treated. An alternative proof has been given in [16], where even
the restriction of the dummy not occurring in lhs’s has been weakened slightly.
A generalization of this result to rewriting modulo equations has been given in
[9].

Now we give the proof of Theorem 6.

Proof. Let a be a dummy symbol of arity n in a TRS R for which DEa(R)
is terminating. Assume R is not terminating, so admits an infinite reduc-
tion. We define a transformation Φ on terms and TRSs replacing every a by
a(b(−), . . . , b(−)), more precisely:

Φ(x) = x for all x ∈ Var,
Φ(f(t1, . . . , tk)) = f(Φ(t1), . . . , Φ(tk)) for all f with f �= a,
Φ(a(t1, . . . , tn)) = a(b(Φ(t1)), . . . , b(Φ(tn))),
Φ(R) = {Φ(�) → Φ(r) | �→ r ∈ R}.

From this definition it is straightforwardly proved that if t →R u, then
Φ(t) →Φ(R) Φ(u). So the assumed infinite R reduction transforms by Φ to an
infinite Φ(R) reduction.

On the other hand the symbol a is still a dummy symbol in Φ(R). By con-
struction we have E(Φ(R)) = DEa(R), which was assumed to be terminating.
Hence by Theorem 7 we conclude termination of Φ(R), contradiction. ��

We want to use complete dummy elimination in proving termination auto-
matically is as follows: if termination of R has to be proved, and R has a dummy
symbol a, then apply DEa to R, and proceed with the search for termination
proofs on DEa(R). For this approach to be useful we should also like to have
the converse of Theorem 6: R is terminating only if DEa(R) is terminating. In
other words, apart from soundness Theorem 6, we also want completeness. This
is seen as follows: if R is terminating but DEa(R) is not, then trying to prove
termination of DEa(R) will fail. For instance, let R consist of the two rules

f(g(x)) → g(f(f(x))), g(f(x)) → g(a(g(g(x)))).

Then indeedR is terminating, but trying to prove this by proving termination
of E(R) consisting of the three rules

f(g(x)) → g(f(f(x))), g(f(x)) → g(5), g(f(x)) → g(g(x))
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will fail since E(R) is not terminating due to

f(f(g(x))) →E(R) f(g(f(f(x)))) →E(R) f(g(g(f(x)))) →E(R) g(f(f(g︸ ︷︷ ︸(f(x))))).

Note that Theorem 4 does not apply here due to an overlap between the rules.
We conclude that dummy elimination E rather than DEa is not complete.

Next we show that in case of left-linearity, the desired completeness, and hence
the ‘if and only if’ property holds for DEa. First we need two lemmas.

Let Bl be the TRS defined to consist of all rules of the shape f(x1, . . . , xn) → 5,
for all symbols f of arity n ≥ 0. This TRS is used for blocking reductions.

Lemma 8. Let R be a left-linear TRS in which the constant 5 and the unary
symbol b do not occur in any lhs.

1. If t→∗
Bl u and ∞(u,R), then ∞(t,R).

2. If ∞(C[b(t)],R) for any context C and any term t, then either ∞(C[5],R)
or ∞(t,R).

Proof. Part 1.
Let t, u, v be terms satisfying t →Bl u →R v. Then u is obtained from t by

replacing any subterm by 5. So the redex of u →R v is either above or parallel
to this occurrence of 5. Since R is left-linear and 5 does not occur in the lhs
of the corresponding rule in R, the TRS R could also be applied directly to t
yielding t →R · →∗

Bl v. Hence we conclude →Bl · →R ⊆ →R · →∗
Bl. Using this

property one easily proves →∗
Bl · →R ⊆ →R · →∗

Bl, applying induction on the
number of →Bl-steps. Using this inclusion the infinite R-reduction starting in
u is transformed to an infinite R-reduction starting in t, as is sketched in the
following picture:

u · · · · · · · · · ·

t · · · · · · · · · ·

R R R R

R R R R

Bl∗ Bl∗ Bl∗ Bl∗ Bl∗

Part 2. We prove the more general claim for multiple hole contexts:

Let C be a multi-hole context for which SN(C[5, . . . , 5],R) and
∞(C[b(t1), . . . , b(tn)],R). Then ∞(ti,R) for some i = 1, . . . , n.

We prove this for all contexts C satisfying SN(C[5, . . . , 5],R), by induction on
→R restricted to reducts of C[5, . . . , 5]. Consider the infinite R-reduction start-
ing in C[b(t1), . . . , b(tn)]. If all redex positions are below C then every step is
in one of the n displayed subterms b(t1), . . . , b(tn) of C[b(t1), . . . , b(tn)], so at
least one of the b(ti) is rewritten infinitely often. Since b does not occur in any
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lhs, the same holds for ti and we are done. In the remaining case the infinite
R-reduction is of the shape

C[b(t1), . . . , b(tn)] →∗
R C[b(u1), . . . , b(un)] →R D[b(v1), . . . , b(vk)] →∗

R · · · ,

where ti →∗
R ui for every i, and for every j, 1 ≤ j ≤ k, there exists i such

that vj = ui. Since R is left-linear and b’s do not occur in lhs’s, we conclude
C[5, . . . , 5] →R D[5, . . . , 5]. Left-linearity is essential here, for instance for R
consisting of f(x, x) → a, a→ a both this claim and the lemma do not hold for
n = 1, t1 = c, C = f(b(c),�). Since C[5, . . . , 5] →R D[5, . . . , 5] we may apply the
induction hypothesis to D[b(v1), . . . , b(vk)], yielding j satisfying ∞(vj ,R). Since
there exists i such that vj = ui we obtain ti →∗

R ui = vj →∞
R , so ∞(ti,R). ��

Lemma 9. Let t be any term and a any symbol. Then

1. t→∗
Bl capa(t), and

2. for every v ∈ deca(t) the terms t, v can be written as t = C[t′] and v = b(v′),
where t′ →∗

Bl v
′.

Proof. By induction on the structure of t, straightforward from the definitions
of capa and deca. ��

Theorem 10. Let R be a left-linear terminating TRS having a dummy symbol
a. Then DEa(R) is terminating.

Proof. We prove that SN(t,DEa(R)) for every term t, by induction on R. So
the induction hypothesis states that SN(w,DEa(R)) for every term w satisfying
t→+

R w.
Assume that t admits an infinite DEa(R)-reduction

t →DEa(R) u →DEa(R) · →DEa(R) · · · .

For the step t →DEa(R) u we distinguish two cases, implied by the definition
of DEa(R).

– t = C[�σ] and u = C[capa(r)σ] for some context C, some substitution σ and
some rule �→ r in R. Let v = C[rσ]. By part 1 of Lemma 9 we conclude that
r →∗

Bl capa(r), so v = C[rσ] →∗
Bl C[capa(r)σ] = u. Since ∞(u,DEa(R)) and

DEa(R) is left-linear and has no 5 or b symbols in lhs’s, we may apply part 1
of Lemma 8, yielding ∞(v,DEa(R)), contradicting the induction hypothesis.

– t = C[�σ] and u = C[vσ] for some context C, some substitution σ, v ∈
deca(r), and some rule �→ r inR. By part 2 of Lemma 9 we obtain r = C′[r′]
and v = b(v′), where r′ →∗

Bl v
′. By part 2 of Lemma 8 we may distinguish

two cases based on the infinite DEa(R)-reduction of u = C[vσ] = C[b(v′σ)]:
• ∞(C[5], DEa(R)). Since C[rσ] →Bl C[5] we conclude
∞(C[rσ], DEa(R)) from part 1 of Lemma 8.

• ∞(v′σ,DEa(R)). Since r′ →∗
Bl v

′ we may apply part 1 of Lemma 8,
yielding ∞(r′σ,DEa(R)). Since C[rσ] = C[C′σ[r′σ]] we obtain
∞(C[rσ], DEa(R)).
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In both cases we obtain ∞(w,DEa(R)) for w = C[rσ] satisfying
t = C[�σ] →R C[rσ] = w, contradicting the induction hypothesis.

��

Left-linearity is essential in Theorem 10 as is shown by the following example.
Let R consist of the single rule

f(x, x) → f(a(c), a(d)).

Then R is terminating, but DEa(R) is not since it contains the non-terminating
rule f(x, x) → f(5, 5).

For proving termination of a TRS R containing a dummy symbol automat-
ically we propose always to try proving termination of DEa(R) first. For non-
left-linear TRSs this may fail even if R is terminating as was shown by the
above example. However, even then it may be a good strategy first to search for
some time for a termination proof of DEa(R), since often termination proofs for
DEa(R) are substantially simpler than direct termination proofs for R.

Just like we did for the technique of rewriting right-hand sides we investigated
on how many problems in the termination problem data base TPDB [20] the
technique of complete dummy elimination is directly applicable. It turns out
that among the 773 TRSs there are 65 TRSs for which it is. Apart from these
65 it may occur that after some transformation complete dummy elimination is
applicable, but this latter figure of course depends on details of the tool.

In case a TRS contains more than one dummy symbol it is a natural ques-
tion how to proceed. It turns out that just like in earlier versions of dummy
elimination the order of applying the corresponding DE operations does not
influence the result, e.g., if both a1 and a2 are dummy symbols in R, then
DEa1(DEa2(R)) = DEa2(DEa1(R)). In constructing this combined dummy
elimination we can apply it for all dummy symbols in one run, introducing a
fresh constant 5a and a fresh unary symbol ba for every dummy symbol a. So
in case a TRS contains more than one dummy symbol we propose always to
proceed by this simultaneous dummy elimination.

The best tool at the moment for proving TRS termination is AProVE [6].
We give two examples now showing that our DE-strategy is able to enhance the
2005 version of AProVE. The first TRS consists of two rules

f(f(g(g(x)))) → g(g(g(f(f(f(x)))))), f(x) → a(x, x).

AProVE fails to prove termination of this TRS. However, after applying DEa

the resulting TRS consisting of the rules

f(f(g(g(x)))) → g(g(g(f(f(f(x)))))), f(x) → 5, f(x) → b(x)

is proved to be terminating by AProVE in a fraction of a second.
As the second example consider the TRS consisting of the rules

f(g(x)) → f(h(h(a(h(h(g(f(x)))))))) f(g(x)) → g(g(f(h(x))))
f(h(x)) → h(g(f(x))) g(h(x)) → h(g(x))
h(f(x)) → g(g(h(h(a(f(x)))))) f(x) → g(g(h(x))).
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Again AProVE fails to prove termination of this TRS, but by applying DEa

the two rules containing a in their rhs’s are replaced by

f(g(x)) → f(h(h(5))), f(g(x)) → b(h(h(g(f(x))))),

h(f(x)) → g(g(h(h(5)))), h(f(x)) → b(f(x)),

resulting in a TRS for which termination is proved easily, e.g., by recursive path
order choosing the precedence f > g > h > b > 5. In the tool TPA complete
dummy elimination has been implemented, and indeed for this TRS TPA finds
the proof just sketched in a fraction of a second.

In particular this last example is of interest with respect to the following. In
[10] it was proved that if E(R) is DP simply terminating thenR is DP simply ter-
minating too. Here roughly speaking DP simple termination means that termi-
nation can be proved by the dependency pair technique using argument filtering
and a simplification order. As a theorem this is correct, but in [10] it is literally
claimed that it implies that using dummy elimination as a preprocessing step to
the dependency pair technique does not have any advantage. However, our latter
example convincingly shows the converse with respect to the present AProVE
implementation: here no dependency pair transformation was required, but if
the dependency pair transformation had been applied to the resulting system,
a straightforward termination proof only using recursive path order would have
been found easily too. The difference between E(R) and DEa(R) is only in the
symbol b, and does not play any role: if it is omitted then the same proof holds.

4.2 Complete Dummy Elimination for String Rewriting

For term rewriting we believe that the operation DEa is the most natural and
most powerful variant of dummy elimination, due to the combination of Theorem
6 and Theorem 10. However, for string rewriting there is a drawback: due to the
introduction of the constant 5a for a string rewriting system (SRS) R, being a
TRS over a signature only containing unary symbols, the transformed system
DEa(R) is not an SRS any more.

This can be solved by defining a variantDE′
a ofDEa, where the only difference

is that 5a is a unary symbol rather than a constant. In this way a symmetry
between 5a and ba is introduced. To express this symmetry in the notation, we
will write a$ instead of 5a, and $a instead of ba. As usual, we will identify a
term a1(a2(· · · (an(x)) · · ·)) with the string a1a2 · · · an, by simply ignoring all
parentheses and the variable symbol. So the single variable x in term notation
is written as the empty string λ in string notation. Now for a dummy symbol a
in an SRS R we define

DE′
a(R) = {�→ u | u = cap′a(r) ∨ u ∈ dec′a(r) for a rule �→ r ∈ R},

where

cap′a(λ) = λ
cap′a(fs) = fcap′a(s) for all symbols f with f �= a and all strings s
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cap′a(as) = a$
dec′a(λ) = ∅
dec′a(fs) = dec′a(s) for all symbols f with f �= a and all strings s
dec′a(as) = dec′a(s) ∪ {$a(cap′a(s)}.

Applied on string rewriting, the transformationDE′
a is called complete dummy

elimination, just as DEa applied on term rewriting.
First we show how DE′

a acts on a well-known simple standard example. Let
the SRS R consist of the single self-embedding rule bb → bab. Termination of
DE′

a(R) consisting of the two rules

b b → b a$, b b → $a b,

is trivial by counting the number of b-symbols.
The main theorem about DE′

a is the following.

Theorem 11. Let R be an SRS having a dummy symbol a. Then R is termi-
nating if and only if DE′

a(R) is terminating.

In order to prove Theorem 11 we need a general theorem relating termination
of TRSs over constants and unary symbols, and SRSs.

The function φ is defined on terms over constants and unary symbols, yielding
strings, is defined as follows:

φ(x) = λ, φ(c) = c, φ(f(t)) = fφ(t)

for all variables x, all constants c and all unary symbols f . A TRS R over
constants and unary symbols is mapped to an SRS φ(R) as follows:

φ(R) = { φ(�) → φ(r) | �→ r ∈ R }.

Theorem 12. Let R be a TRS over constants and unary symbols. Then R is
terminating if and only if φ(R) is terminating.

For the proof of this theorem we refer to [19].
The impact of Theorem 12 goes far beyond dummy elimination. In fact The-

orem 12 states that proving termination of string rewriting is equivalent to ter-
mination of term rewriting as long as no symbols of arity higher than one occur.

Now we are ready to prove Theorem 11.

Proof. (of Theorem 11)
Since an SRS is left-linear, by Theorem 6 and Theorem 10 we conclude that

R is terminating if and only if DEa(R) is terminating. By Theorem 12 this
holds if and only if φ(DEa(R)) is terminating. By construction φ(DEa(R)) and
DE′

a(R) coincide, up to renaming of 5a to a$ and ba to $a. ��

The transformation DE′
a for string rewriting has been implemented in

TORPA, version 1.4. As an example, we give the result of TORPA on the same
example we considered before:
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f g -> f h h a h h g f
f h -> h g f
h f -> g g h h a f
f g -> g g f h
g h -> h g
f -> g g h

Apply dummy elimination, result:
f g -> f h h a$
f g -> $a h h g f
f h -> h g f
h f -> g g h h a$
h f -> $a f
f g -> g g f h
g h -> h g
f -> g g h

Choose polynomial interpretation f: lambda x.x+1, rest identity
remove: h f -> g g h h a$
remove: f -> g g h
Choose polynomial interpretation
f: lambda x.4x
g: lambda x.x+5
h: lambda x.x+2
a$: lambda x.x+1
$a: lambda x.x+1
remove: f g -> $a h h g f
remove: f h -> h g f
remove: h f -> $a f
remove: f g -> g g f h
Choose polynomial interpretation g: lambda x.x+1, rest identity
remove: f g -> f h h a$
Choose polynomial interpretation:
g: lambda x.10x, rest lambda x.x+1
remove: g h -> h g
Terminating since no rules remain.

5 Conclusions

We described two techniques to transform a given TRS to another one, in such
a way that termination of the given TRS can be concluded from termination of
the transformed one, and proving termination of the transformed TRS is often
easier than proving termination of the given TRS directly.

Both techniques are easy to implement, and have the nice property that no
choice has to be made, so never an explosion of the search space will be caused,
and no heuristics have to be developed. On the other hand both techniques have
a drawback: they are only applicable for a restricted class of TRSs. For rewriting
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right-hand sides a rhs is required not to be in normal form, and for complete
dummy elimination a dummy symbol is required, i.e., a symbol occurring in a
rhs but in no lhs. However, both our techniques may be applied not only as a
preprocessor, but also in proofs consisting of several transformations of TRSs. If
in a proof search the remaining proof obligation is finding a termination proof
for some TRS, then both our techniques may be applied, even if they are not
applicable to the original TRS.

One may wonder when to apply these techniques. Our proposal is: when-
ever you can. For rewriting right-hand sides we proved that the original TRS
is terminating if and only if the transformed TRS is terminating, and we are
not aware of TRSs for which termination of the transformed TRS is harder to
prove than termination of the original TRS, while the converse often occurs. For
left-linear TRSs the same can be said for complete dummy elimination. So the
only situation where the effect may be negative is for complete dummy elimina-
tion for non-left-linear TRSs. Indeed for the single rule f(x, x) → f(a(c), a(d))
we saw that complete dummy elimination should not be applied, since then the
transformed TRS is not terminating while the original one is.

Also combinations of both techniques described in this paper make sense: one
easily constructs artificial examples on which both rewriting right-hand sides and
complete dummy elimination are applicable, and then they can be applied both.
We believe that it does not make sense to investigate which order of application
of these techniques is preferred, since examples where this makes a difference are
really artificial.
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Abstract. Huet and Lévy (1979) showed that needed reduction is a
normalizing strategy for orthogonal (i.e., left-linear and non-overlapping)
term rewriting systems. In order to obtain a decidable needed reduction
strategy, they proposed the notion of strongly sequential approximation.
Extending their seminal work, several better decidable approximations of
left-linear term rewriting systems, for example, NV approximation, shal-
low approximation, growing approximation, etc., have been investigated
in the literature. In all of these works, orthogonality is required to guar-
antee approximated decidable needed reductions are actually normaliz-
ing strategies. This paper extends these decidable normalizing strategies
to left-linear overlapping term rewriting systems. The key idea is the
balanced weak Church-Rosser property. We prove that approximated
external reduction is a computable normalizing strategy for the class
of left-linear term rewriting systems in which every critical pair can be
joined with root balanced reductions. This class includes all weakly or-
thogonal left-normal systems, for example, combinatory logic CL with
the overlapping rules pred · (succ · x) → x and succ · (pred · x) → x,
for which leftmost-outermost reduction is a computable normalizing
strategy.

1 Introduction

Normalizing reduction strategies of reduction systems, such as leftmost-
outermost evaluation of lambda calculus [2, 11], combinatory logic [7, 11], or-
dinal recursive program schemata [25] and left-normal term rewriting sys-
tems [8, 17, 22] guarantee a safe evaluation which reduces a given expression to
its normal form whenever it exists. Hence, normalizing reduction strategies play
an important role in the implementation of functional programming languages
based on reduction systems.

Strong sequentiality formalized by Huet and Lévy [8] is a well-known practi-
cal criterion guaranteeing an efficiently computable normalizing reduction strat-
egy for orthogonal (i.e., left-linear and non-overlapping) term rewriting systems.
They showed that for every strongly sequential orthogonal term rewriting sys-
tem R, strongly needed reduction is a computable normalizing strategy, that is,
� A part of this paper was published as preliminary version in [24].
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by rewriting a redex called a strongly needed redex at each step, every reduction
starting with a term having a normal form eventually terminates at the normal
from. Here, the strongly needed redex is defined as a needed redex concerning
an approximation of R which is obtained by analyzing the left-hand sides only
of the rewrite rules of R. Moreover, Huet and Lévy [8] proved the decidability
of strong sequentiality. A simpler proof by Klop and Middeldorp can be found
in [12] and a proof based on second order monadic logic and tree automata by
Comon in [3].

Inspired by the seminal work by Huet and Lévy [8], several better decidable
approximations of left-linear term rewriting systems, for example, NV approxi-
mation [21], shallow approximation [3], growing approximation [9, 15], etc., have
been investigated in the literature. Moreover, Durand and Middeldorp [6] pre-
sented a simple uniform framework for normalizing reduction strategies based
on decidable approximations. In all of these works [6, 9, 10, 15], however, the
non-overlapping restriction is still required to guarantee that approximated de-
cidable needed reductions are actually normalizing strategies; hence, they cannot
be applied to term rewriting systems with overlapping rules such as{

pred(succ(x)) → x
succ(pred(x)) → x.

Though it is known [6, 9, 10, 15] that only the left-linearity restriction is necessary
for considering decidability issues, the question whether there exists an approx-
imated decidable normalizing strategy for left-linear overlapping term rewriting
systems has received quite a bit of attention.

The main purpose of this paper develops decidable normalizing reduction
strategies for left-linear overlapping term rewriting systems. The notion of se-
quentiality defined by Huet and Lévy [8] is naturally adapted to that of external-
ity. An external term rewriting system R guarantees that every reducible term
contains an outer needed redex, called an external redex, which remains at an
outer position until it is rewritten. Under this new framework, we show that
external reduction is normalizing for the class of external root balanced joinable
term rewriting systems. A root balanced joinable term rewriting system is defined
as a term rewriting system in which every critical pair can be joined with root
balanced reductions. We also show that for weakly orthogonal left-normal sys-
tems, the leftmost-outermost reduction strategy is normalizing. For example, the
leftmost-outermost reduction strategy is normalizing for combinatory logic CL
∪ {pred·(succ·x) → x, succ·(pred·x) → x}. Here, combinatory logic CL [2, 7, 11]
is the orthogonal term rewriting system having the following rewrite rules:

CL
{

((S · x) · y) · z → (x · z) · (y · z)
(K · x) · y → x.

Moreover, our result can be applied to term rewriting systems not having the
Church-Rosser property too. For example, the leftmost-outermost reduction
strategy is again normalizing for CL ∪
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(K · A) · y → (K · B) · y
(K · B) · y → (K · A) · y
A→ A
B → B,

though the system is not Church-Rosser since (K · A) · y can be reduced into
two constants A and B which cannot be joined.

The approach presented here is more accessible than that based on sequen-
tiality of orthogonal term rewriting systems by Huet and Lévy [8]. The key
idea is the balanced weak Church-Rosser property, which was first considered by
Toyama [24] for analyzing normalizing reduction strategies of strongly sequen-
tial left-linear overlapping term rewriting systems. We first explain this idea in
an abstract framework. Section 2 introduces preliminary concepts of abstract
reduction systems. In Section 3, we introduce the balanced weak Church-Rosser
property of abstract reduction systems and explain how this property is related to
a normalizing reduction strategy. Our results are carefully partitioned between
abstract properties depending solely on the reduction relation and properties de-
pending on term structure. In Section 4 we present preliminary concepts for term
rewriting systems and in the next section we introduce the notion of external-
ity of (possibly) overlapping term rewriting systems. In Section 6, by using the
balanced weak Church-Rosser property of external reduction, we prove that ex-
ternal reduction of root balanced joinable term rewriting systems is normalizing.
Section 7 extends external reduction to quasi-external reduction. In Section 8,
we present computable normalizing strategies based on decidable approximations.
Finally, Section 9 discusses a syntactic characterization of external overlapping
term rewriting systems.

2 Reduction Systems

Assuming that the reader is familiar with the basic concepts and notations con-
cerning reduction systems in [1, 18, 22], we briefly present notations and defini-
tions.

A reduction system (or an abstract reduction system) is a structure A =
〈D,→〉 consisting of some set D and some binary relation → on D (i.e.,
→ ⊆ D ×D), called a reduction relation. A reduction (starting with x0) in
A is a finite or infinite sequence x0 → x1 → x2 → · · · . The identity of elements
x, y of D is denoted by x ≡ y. →≡ is the reflexive closure of →, ↔ is the
symmetric closure of →, →+ is the transitive closure of →, →∗ is the transitive
reflexive closure of →, and = is the equivalence relation generated by → (i.e.,
the transitive reflexive symmetric closure of →). x→my denotes a reduction of
m (m ≥ 0) steps from x to y. x↔my denotes a chain x↔∗y of length m, i.e.,
there exists a sequence x = x0 ↔ x1 ↔ · · · ↔ xm = y of m steps.

If x ∈ D is minimal with respect to →, i.e., ¬∃y ∈ D, [x → y], then we say
that x is a normal form; let NF be the set of all normal forms. If x→∗y and
y ∈ NF then we say x has a normal form y and y is a normal form of x. We say
x is reducible if x �∈ NF .
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A reduction system A = 〈D,→〉 (→ for short) is strongly normalizing (or
terminating) if every reduction in A terminates, i.e., there is no infinite se-
quence x0 → x1 → x2 → · · · . A is Church-Rosser (or confluent) if ∀x, y, z ∈
D, [x→∗y ∧ x→∗z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. A is weakly Church-Rosser (or
locally confluent) if ∀x, y, z ∈ D, [x→y ∧ x→z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. A is
complete if A is Church-Rosser (confluent) and strongly normalizing. A has the
normal form property if ∀x ∈ D, ∀y ∈ NF , [x = y ⇒ x→∗y]. A has the unique
normal form property if ∀x, y ∈ NF , [x = y ⇒ x ≡ y]. Note that the normal
form property implies the unique normal form property.

The notions of confluent, strongly normalizing, complete on systems are re-
lated to the notions on elements. An element x ∈ D is confluent if ∀y, z ∈
D, [x→∗y ∧ x→∗z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. x is strongly normalizing if every
reduction starting with x terminates. x is complete if x is confluent and strongly
normalizing.

Definition 1 (Reduction Strategy). Let A = 〈D,→〉 and let →s be a sub-
relation of →+ (i.e., if x→sy then x→+y) such that a normal form concerning
→s is also a normal form concerning → (i.e., the two binary relations →s and
→ have the same domain). Then, we say that →s is a reduction strategy for A
(or for →). If →s is a sub-relation of → then we call it a one step reduction
strategy; otherwise →s is called a many step reduction strategy.

Definition 2 (Normalizing Strategy). A reduction strategy →s is normal-
izing iff for each x having a normal form concerning →, there exists no infinite
sequence x ≡ x0→sx1→sx2→s · · · (i.e., every →s reduction starting with x must
eventually terminate at a normal form of x).

3 Balanced Weak Church-Rosser Property

This section introduces the balanced weak Church-Rosser property. Though in
later sections this concept will play an important role for analyzing normalizing
strategies of term rewriting systems, our results concerning the balanced weak
Church-Rosser property can be presented in an abstract framework depending
solely on the reduction relation.

Let A = 〈D,→〉 be an abstract reduction system.

Definition 3. A = 〈D,→〉 (or →) is balanced weakly Church-Rosser (BWCR)
iff ∀x, y, z ∈ D, [x → y ∧ x → z ⇒ ∃w ∈ D, ∃k ≥ 0, y→kw ∧ z→kw]
(Figure 1).

Lemma 1 (BWCR Lemma). Let A = 〈D,→〉 be BWCR. Let x = y and
y ∈ NF. Then,

(1) x is complete,
(2) all the reductions from x to y have the same length (i.e., the same number

of reduction steps).
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Proof. We first prove the following claim: if x→ny and y ∈ NF then x satisfies
the properties (1) and (2).

Proof of the claim. We show the claim by induction on n. The case n = 0 is
trivial. Let x → x′→n−1y ∈ NF . Take any one step reduction x → z starting
with x. By the balanced weak Church-Rosser property, there exists some w and
k such that z→kw and x′→kw. By the induction hypothesis, the properties (1)
and (2) hold at x′; hence x′→kw→∗y must have n − 1 steps in length. Thus,
w→n−1−ky; see Figure 2. Since z→kw, we obtain z→n−1y. By the induction
hypothesis, z satisfies the properties (1) and (2). Therefore, the claim follows.

�

� �

��

x x′
y ∈ NF

z w

n− 1

n− 1− k

k

kBWCR
I.H.

Fig. 2.

We next show that if x ↔n y and y ∈ NF then x→∗y. The proof is by
induction on n. The case n = 0 is trivial. Let x ↔ x′↔n−1y. By the induction
hypothesis, we have x′→∗y. The case x→ x′ is trivial. Let x← x′. By applying
the claim to x′→∗y ∈ NF , it is obtained that x′ is complete. Thus, x→∗y.

Therefore, from the claim it follows that if x = y and y ∈ NF then x satisfies
the properties (1) and (2). �

Lemma 1 (BWCR Lemma) is a generalization to Theorem 2 and Corollary
2.1 of Newman [16], which requires the following property instead of BWCR:
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∀x, y, z ∈ D, [x→ y ∧ x→ z ∧ y �≡ z ⇒ ∃w ∈ D, y→w ∧ z→w]. An extension of
BWCR is discussed in Van Oostrom [20].

Corollary 1. If an abstract reduction system A is BWCR then A has the normal
form property.

Proof. From the BWCR Lemma, it is trivial. �

Next we will explain how the balanced weak Church-Rosser property is related
to a normalizing reduction strategy. Let d(x) denote the length of a reduction
from x to a normal form if it exists. Note that if → is balanced weakly Church-
Rosser and x has a normal form then d(x) is well-defined according to the BWCR
Lemma. We write x←my if y→mx.

Lemma 2. Let → be balanced weakly Church-Rosser. Let x−→m1 ·←−n1 · −→m2 ·
←−n2 · · · −→mp · ←−npy for some p, m1, · · · , mp, n1, · · · , np ≥ 0 and let x
have a normal form. Then y has a normal form and d(x)−d(y) =

∑
mi−

∑
ni.

Proof. By the BWCR Lemma it is clear that y has a normal form. We prove
d(x) − d(y) =

∑
mi −

∑
ni by induction on p. The case p = 0 is trivial.

Let x−→m1 · ←−n1 · −→m2 · ←−n2 · · ·−→mp−1 · ←−np−1y′−→mpz←−npy. By
the BWCR Lemma, d(y′) and d(z) are well-defined and d(y′) − mp = d(z) =
d(y)−np. Thus, we have d(y′)−d(y) = mp−np. From the induction hypothesis,
d(x) − d(y′) =

∑p−1
i=1 mi −

∑p−1
i=1 ni. Therefore, d(x) − d(y) =

∑
mi −

∑
ni. �

We write x←→→ y if there exists a connection x−→m1 · ←−n1 · −→m2 · ←−n2 · · ·
−→mp · ←−npy such that

∑
mi >

∑
ni. We sometimes write x←→← y instead of

y←→→ x.

Lemma 3. Let → be balanced weakly Church-Rosser. Let x←→→ y and let x have
a normal form. Then y has a normal form and d(x) > d(y).

Proof. It is trivial from Lemma 2. �

The following lemma and corollary explain how the BWCR Lemma implies the
normalizing property of a reduction strategy →s for → (i.e., →s ⊆ → and the
two reduction relations →s and → have the same set of normal forms.)

Lemma 4. Let →s be a reduction strategy for → such that:

(1) →s is balanced weakly Church-Rosser,
(2) if x→ y then;

(i) x=sy or,
(ii) x←→→ s · ↔ · ←→← sy.

If x = y and y ∈ NF then we have x→∗
sy.



204 Y. Toyama

Proof. We first show the claim: if x↔·→m
s y and y ∈ NF , then we have x=sy. The

proof is by induction on m. For the base step we let m = 0. Then x↔y ∈ NF .
Suppose that it satisfies the condition (ii), i.e., x←→→ sx

′↔y′←→← sy holds for
some x′ and y′. Then by Lemma 3 and y ∈ NF we have d(y′) < d(y) = 0; it
contradicts d(y′) ≥ 0. Thus x↔y must satisfy the condition (i). Induction Step:
Let x ↔ z→m

s y ∈ NF (m > 0). Then x ↔ z must satisfy (i) or (ii) as each
condition is symmetric. If x=sz then x=sy is trivial. Assume that x←→→ sx

′ ↔
z′←→← sz. By applying Lemma 3 to z←→→ sz

′, we have z′→m′

s y with m′ < m; see
Figure 3. Applying the induction hypothesis of the claim to x′, we have x′=sy;
thus, x=sy because of x←→→ sx

′=sy.

��

	
�� �

�� ��

	

x z
y ∈ NF

x′ z′

m

s

s

m′s s

Fig. 3.

We next prove that if x↔ny and y ∈ NF , then x→∗
sy. The proof is by in-

duction on n. The case n = 0 is trivial. Let x ↔ x′↔n−1y ∈ NF . From the
induction hypothesis, we have x′→∗

sy. Thus, from the claim, x=sy. From the
BWCR Lemma, it follows that x→∗

sy. �

Corollary 2. Let →s be a reduction strategy for → such that:

(1) →s is balanced weakly Church-Rosser,
(2) if x→ y then;

(i) x=sy or,
(ii) x←→→ s · ↔ · ←→← sy.

Then → has the normal form property and →s is a normalizing strategy.

Proof. It is trivial from the BWCR Lemma and Lemma 4. ��

In Lemma 4 and Corollary 2 we cannot relax the condition (ii) x←→→ s · ↔
· ←→← s y to x←→→ s · ↔+ · ←→← sy. Consider the abstract reduction system A
with the reduction relation → and the reduction strategy →s for → presented in
Figure 4. Then A does not have the normal form property. Note that c→b satisfies
c←→→ s ·↔+ · ←→← sb as c→sc→ b→a←sb, and c→d satisfies c←→→ s ·↔+ · ←→← sd
as c→sc→ d→e←sd.
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In Corollary 2 if we need only to show that →s is a normalizing strategy for
→, we may replace the symmetric condition (ii) x←→→ s · ↔ · ←→← sy with an
asymmetric weaker condition as follows.

Corollary 3. Let →s be a reduction strategy for → such that:

(1) →s is balanced weakly Church-Rosser,
(2) if x→ y then;

(i) x=sy or,
(ii) x=s · → · ←→← sy.

Then →s is a normalizing strategy.

Proof. Similarly to the proof of Lemma 4, we can show the claim: if x→∗y ∈ NF
then x→∗

sy. Thus from the BWCR Lemma the corollary holds. ��

In Corollary 3 the normal form property of → need not hold. Consider the
abstract reduction system A with the reduction relation → and the reduction
strategy →s for → presented in Figure 5. Then A does not have the normal form
property though →s is a normalizing strategy for →. Note that b→c satisfies
b=s · → · ←→← sc as b→c→sc, and d→c satisfies d=s · → · ←→← sc as d→c→sc.

� � � �
�
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4 Term Rewriting Systems

We assume familiarity with the basis of term rewriting systems [1, 18, 22]. Let
F be a set of function symbols denoted by f, g, h, · · · , and let V be a countably
infinite set of variable symbols denoted by x, y, z, · · · where F ∩ V = ∅. By
T (F ,V), we denote the set of all terms constructed from F and V . Terms not
containing variables are called ground terms. The set of all ground terms built
from F is denoted by T (F). A term t is linear if every variable in t occurs only
once.

Consider an extra constant � called a hole and the set T (F ∪ {�},V). Then
C ∈ T (F ∪ {�},V) is called a context over F . We use the notation C[ , . . . , ]
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for the context containing n holes (n ≥ 0), and if t1, . . . , tn ∈ T (F ,V), then
C[t1, . . . , tn] denotes the result of placing t1, . . . , tn in the holes of C[ , . . . , ]
from left to right. In particular, C[ ] denotes a context containing precisely one
hole. A term s is called a subterm of t if t ≡ C[s], denoted by s� t. A subterm
s of t is proper, denoted by s� t, if s �≡ t. If a term t has an occurrence of some
(function or variable) symbol e, we write e ∈ t.

A substitution θ is a mapping from V to T (F ,V). Substitutions are extended
into homomorphisms from T (F ,V) into T (F ,V). We write tθ instead of θ(t). We
write s / t if sθ ≡ t for some substitution θ.

A rewrite rule over F is a pair 〈l, r〉 of terms in T (F ,V) such that l /∈ V and
any variable in r also occurs in l. We write l→ r for 〈l, r〉. A redex is a term lθ,
where l→ r.

A term rewriting system (TRS for short) R over F is a set of rewrite rules
over F . (We often simply write R when F can be inferred from the context.) A
TRS R over F is finite if both R and F are finite. The rewrite rules of R over
F define a reduction relation →R on T (F ,V) as follows: t→Rs iff t ≡ C[lθ] and
s ≡ C[rθ] for some l → r ∈ R, C[ ] and θ. When we want to specify the redex
occurrence Δ ≡ lθ of t in this reduction, we write t→Δ

Rs. All the notions defined
in the previous sections for abstract reduction systems carry over to TRSs by
associating a reduction system 〈T (F ,V),→R〉 with R. We will simply write →
instead of →R when no confusion arises.

Let l → r and l′ → r′ be two rules in R. We assume that they are renamed
to have no common variables. Suppose that s /∈ V is a subterm occurrence in l,
i.e., l ≡ C[s], such that s and l′ are unifiable with a most general unifier θ. Then
we say that l → r and l′ → r′ are overlapping, and that the pair 〈C[r′]θ, rθ〉 of
terms is critical in R [22]. We may choose l → r and l′ → r′ to be the same rule,
but in this case we shall not consider the case s ≡ l.

If R has a critical pair, then we say that R is overlapping; otherwise, non-
overlapping. We say that R is left-linear if for any l → r ∈ R, l is linear. R is
orthogonal if R is left-linear and non-overlapping. R is weakly orthogonal if R is
left-linear and every critical pair 〈s, t〉 of R is trivial (i.e., s ≡ t).

From here on we assume that R is a finite left-linear TRS over F which may
have overlapping rules. Furthermore, we view R as a TRS over F ∪ {�} when
we consider a reduction relation on T (F ∪ {�},V).

5 Externality

The fundamental concept of neededness for orthogonal TRSs was introduced
by Huet and Lévy [8]. In an orthogonal TRS, every reducible term contains a
needed redex and needed reduction (i.e., call-by-need evaluation) is a normalizing
strategy [8]. This section presents a similar framework of externality for left-linear
overlapping TRSs. An external TRS R guarantees that every reducible term
contains an outer needed redex, called an external redex, which remains at an
outer position until R rewrites it. In the next section we shall show that external
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reduction works as a normalizing strategy for a class of left-linear overlapping
TRSs, like needed reduction for orthogonal TRSs.

Consider a left-linear TRS R over F .

Definition 4 (Outer redex). A context C[ ] is outer if C[ ] has no redex
occurrence Δ′ such that � ∈ Δ′. A redex occurrence Δ of C[Δ] is called outer
if C[ ] is outer. The set of all outer contexts with respect to R is denoted by
OUT (R). An outer redex Δ of a term t is outermost if there exists no redex Δ′

of t such that Δ�Δ′.

Definition 5 (External context). An outer context C[ ] is external with re-
spect to R if any s obtained by C[ ]→∗

Rs is an outer context. The set of all
external contexts with respect to R is denoted by EXT (R).

If the hole in C[ ] is deleted or duplicated through a reduction then C[ ] is
not external, since some non-outer context must arise previous to deletion or
duplication of the hole.

Definition 6 (External redex). Let Δ be a redex occurrence in C[Δ] such
that C[ ] is external. Then the redex occurrence Δ is called external. If Δ is an
external redex of C[Δ] then we write C[ΔE ]; otherwise C[ΔNE ].

The notion of externality for orthogonal TRSs originates with Huet and Lévy [8].
Externality for non-orthogonal TRSs is presented in Van Oostrom and De
Vrier [19], which defines externality as a reduction step from a term whose residu-
als are not nested by other redexes. The definition in Van Oostrom and De Vrier
is slightly more abstract than ours, but the two notions are externally same (see
9.2.3 in [19]). The following example is given in [19].

Example 1. Let R = {f(x, b)→x, a→b}. Then the context f(a,�) is external
but f(�, a) is not, since f(�, a)→f(�, b) �∈ OUT (R). Thus, in the term f(a, a)
the rightmost redex occurrence a is external but the leftmost occurrence a is
not, i.e., f(aNE , aE).

From the definition of external redex it is obvious that in orthogonal TRSs any
two external redex occurrences in a term must be disjoint. On the other hand,
if a left-linear TRS is overlapping then two external redexes may be overlapping
as follows.

Example 2. Let R = {p(s(x))→x, s(p(x))→x}. Then we have the overlapping
external redexes f(s(p(s(x))E)E) since f(�) and f(s(�)) are external. Thus,
external redexes need not be outermost [19].

One might think that overlapping redex occurrences always make overlapping
external redexes if one of them is external, but this is not the case from the
following example.

Example 3. Let R = {b→c, f(b)→c, g(f(x), c)→x}. Then we have
g(f(bNE )E , bE). Note that two redex occurrences f(b) and b are overlap-
ping but the redex b occurring in f(b) is not external since the context
g(f(�), b) is not external.
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In a left-linear overlapping TRS, external redexes need not exist; for example,
in R = {a→b, f(b, x)→c, f(x, b)→c} the reducible term f(a, a) has no external
redexes [19].

Definition 7 (External TRS). A reduction t→Δs is external if Δ is an ex-
ternal redex of t. We write t→Es if there exists an external reduction t→Δs for
some external redex Δ; otherwise t→NEs. We say that R is external if for each
term t �∈ NF, t has an external redex.

We shortly mention the relationship between neededness and externality of left-
linear TRSs. For details of neededness and externality not treated here we refer
to Van Oostrom and De Vrier [19]. The following definition of neededness is due
to [6].

Definition 8 (Needed redex). A context C[ ] is needed with respect to R if
any s obtained by C[ ]→∗

Rs is not a normal form in T (F ,V). A redex occurrence
Δ in a term C[Δ] is called needed if C[ ] is needed. A reduction t→Δs is needed
if Δ is a needed redex of t.

As external contexts have no normal forms in T (F ,V), external redexes are
(outermost) needed redexes; however, the revers need not hold. In Example 1,
the leftmost redex occurrence a of the term f(a, a) is (outermost) needed but not
external [19]. For orthogonal TRSs we have the following properties of externality
(neededness) [19].

– Any reducible term contains an external redex (a needed redex).
– External (needed) reduction is a normalizing strategy.
– Externality (neededness) of a redex is undecidable.

For a left-linear external TRS R, external reduction is a reduction strategy
as every reducible term has an external redex. However, external reduction need
not be a normalizing strategy if R is non-orthogonal. (See 9.2.4 in [19] too).

Example 4. Consider R = {a→b, f(x)→f(x), f(b)→b}. Clearly, R is external. In
the term f(a) the outermost redex occurrence f(a) is external but the innermost
redex occurrence a not. Then, external reduction starting with f(a) produces an
infinite sequence f(a)→Ef(a)→Ef(a)→E · · · . For normalizing f(a)→f(b)→b,
we need a non-external reduction step f(a)→NEf(b).

Externality of arbitrary left-linear TRSs is not decidable and external reduction
is not computable in general. Hence, in order to obtain computable external
reduction, we need to strengthen the notion of externality by decidable approx-
imations. We address this problem in Section 8.

6 Normalization of External Reduction

We will now explain how to prove the normalizing property of external reduction
for overlapping TRSs by using the BWCR Lemma. We first define root balanced
joinable TRSs.



Reduction Strategies for Left-Linear Term Rewriting Systems 209

Root reduction t→rs is defined as a reduction t→s contracted at the root
position of t (i.e., t→Δs and Δ ≡ t).

Lemma 5. Let C[ΔE ] for some Δ and let t→rs. Then C[t]→EC[s].

Proof. It is trivial from the definition of the root reduction. �

Definition 9. A critical pair 〈s, t〉 is root balanced joinable if s→k
r t

′ and t→k
r t

′

for some t′ and k ≥ 0. A TRS R is root balanced joinable if every critical pair
is root balanced joinable.

In general it is undecidable whether a critical pair is root balanced joinable. The
following example illustrates this problem.

Example 5. Consider a TRS R containing a constant b in normal forms and a
ground term s such that reachability of root reduction s→∗

rb is undecidable.
(Such a TRS R and a ground term s exist due to universal computation capabil-
ity of TRSs; for example, see an encoding of Turing machine to a TRS in [22]).
Let R′ be R ∪ {a→s, a→b, b→b} where a is a fresh constant. Then, the critical
pair 〈s, b〉 of R′ is root balanced joinable iff s→∗

rb; this is undecidable.

Note that every weakly orthogonal TRS is trivially root balanced joinable since
every critical pair is root balanced joinable with k = 0. We show that the root
balanced joinability is sufficient to guarantee the balanced weak Church-Rosser
property of left-linear TRSs.

Definition 10. Let Δ and Δ′ be two redex occurrences in a term t, and let
Δ ≡ C[x1θ, · · · , xmθ] where C[x1, · · · , xm] is the left-hand side of a rewrite
rule and no variables occur in C[ , · · · , ]. Then Δ and Δ′ (or Δ′ and Δ) are
overlapping if Δ′ �Δ and Δ′�/ xiθ for any subterm occurrence xiθ.

Lemma 6. Let R be left-linear root balanced joinable. Let t→Δ
E t

′ and t→Δ′
t′′,

where Δ′ �Δ and Δ and Δ′ are overlapping. Then, we have t′→k
Es and t′′→k

Es
for some s and k ≥ 0.

Proof. Let t ≡ C[Δ] ≡ C[C′[Δ′]], t′ ≡ C[p], t′′ ≡ C[q]. From the root balanced
joinability of the critical pair concerning Δ and Δ′, we have p→k

rs
′ and q→k

rs
′

for some s′ and k ≥ 0, similarly to the Critical Pair Lemma [1, 18, 22]. Thus,
from C[ΔE ] and Lemma 5, it follows that C[p]→k

EC[s′] and C[q]→k
EC[s′]. �

Lemma 7. Let C[ΔE , s]. Then C[ΔE , t] for any s→∗t.

Proof. Since C[�, s] is external and C[�, s]→∗C[�, t], C[�, t] is external. Thus
we have C[ΔE , t]. �

Lemma 8. Let R be left-linear root balanced joinable. Then external reduction
→E has the balanced weak Church-Rosser property.
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Proof. Let t→Δ
E t

′, t→Δ′

E t′′. We shall show that t′→k
Es and t′′→k

Es for some s
and k ≥ 0 (Figure 6). If Δ and Δ′ are disjoint, then from Lemma 7 the theorem
clearly holds with k = 1. Assume that Δ and Δ′ are not disjoint, say Δ′ � Δ.
Then, Δ and Δ′ must be overlapping as they both are external. Apply Lemma 6.

��

We next consider the relation between external reduction →E and arbitrary
reduction. Since external reduction →E is balanced weakly Church-Rosser, the
normalization of external reduction is obtained if we can apply Corollary 2 by
taking →E as →s. However, this is impossible as (ii) in the corollary is not
satisfied because of duplication of redexes through reduction by a non-right-
linear rewrite rule. To overcome this problem, we use parallel reduction of disjoint
redexes.

Parallel reduction t−→++ s is defined by t ≡ C[Δ1, · · · , Δn]→Δ1 · · ·→Δns for
some disjoint redexes Δ1, · · · , Δn (n ≥ 0). A parallel reduction t−→++ s is proper
if n > 0, and we write t−→++ ′s. Since → and −→++ ′ have the same set of normal
forms and →E ⊆ −→++ ′, it is obvious that →E is a reduction strategy for → iff it
is a reduction strategy for −→++ ′. In the following lemmas we use −→++ instead of
−→++ ′ because of technical convenience.

Lemma 9. Let R be left-linear root balanced joinable and external, and let
t−→++ s. Then t=Es or t←→→ E · −→++ · ←→← Es.

Proof. Let t−→++ Δ1···Δns (n ≥ 0). The proof is by induction on n. The case n = 0
is trivial as t′ ≡ t ≡ s ∈ NF . Induction Step:

Case 1: Some Δi, say without loss of generality Δ1, is external. We have
t→Δ1

E t′−→++ Δ2···Δns. By applying the induction hypothesis to t′−→++ Δ2···Δns, we
obtain the lemma.

Case 2: NoΔi is external. From externality there must exist an external redex,
say Δ, in t. Let t→Δ

E t
′′ and consider the following two cases.

Case 2-1: Δ and Δi (i = 1 · · ·n) are non-overlapping. By using left-linearity
of R, we can easily show that t′′−→++ s′ and s→Es

′ for some s′ (Figure 7).
Case 2-2: Δ and some Δi, say without loss of generality Δ1, are overlapping.

Let t→Δ1
NE t

′−→++ Δ2···Δns. Note that Δ1 � Δ. From Lemma 6, it follows that
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t′′→k
Es

′ and t′→k
Es

′ for some s′ and k ≥ 0 (Figure 8). Thus, we can obtain
t←→→ Et

′. Apply the induction hypothesis to t′−→++ Δ2···Δns. �

�

� �

��

t t′
s

t′′ s′

Δ2, · · · , Δn

‖
NE

Δ1

E

k

Δ E k E

Fig. 8.

Theorem 1. Let a TRS R be left-linear root balanced joinable and external.
Then, R has the normal form property, and external reduction →E is a normal-
izing strategy.

Proof. Note that by externality, we have NF = NFE (NFE denotes the set of
the normal forms concerning →E). Thus, →E is a reduction strategy for →, and
also for −→++ ′. From Lemma 8 →E is BWCR. From Lemma 9 it follows that if
t−→++ ′s then t=Es or t←→→ E · −→++ ′ · ←→← Es. Taking →E as →s and −→++ ′ as →
respectively, we can apply Corollary 2. Thus, −→++ ′ has the normal form property
and →E is a normalizing strategy for −→++ ′. From →+ = −→++ ′+, the theorem
follows. �

We remark that in Definition 9 root reduction imposed for balanced joinability of
critical pairs can be relaxed to stably external reduction. The notion of stable ex-
ternality was considered first as stable index by Nagaya, Sakai and Toyama [14].
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An external context C[ ] in EXT (R) is stable if C′[C[ ]θ] is in EXT (R) for any
C′[ ] in EXT (R) and substitution θ. A redex occurrence Δ in C[Δ] is called sta-
bly external if C[ ] is stably external. A reduction t→Δs is stably external if Δ is
a stably external redex of t. (Note that root reduction is clearly stably external
as the hole � is a stably external context; thus, root redaction can be viewed
as a special case of stably external reduction.) By replacing root reduction in
Definition 9 with stably external reduction, we define stable balanced joinabil-
ity. Then, all the proofs relied on root balanced joinability work also for stable
balanced joinability. For example, Theorem 1 is improved by replacing “root bal-
anced joinable” with “stable balanced joinable”. Unfortunately, stably external
redexes are not decidable; thus, appropriate decidable approximations of them
are necessary for computable normalizing strategy. For decidable approximations
of stable index reduction, we refer to [14].

7 Normalization of Quasi-External Reduction

This section improves the result of Theorem 1 by extending external reduction
to quasi-external reduction; that is, there exist no infinite reduction sequences
starting with a term having a normal form in which infinitely many external re-
dexes are contracted. Quasi-external reduction (or hyper-external reduction [19])
is defined as →∗

NE · →E · →∗
NE [22]. We first prove the next lemma.

Lemma 10. Let R be left-linear root balanced joinable and external. Let t→n
Es ∈

NF for some n ≥ 0 and t→∗t′. Then, we have t′→m
E s for some m ≤ n (Figure 9).

�

�

t
s ∈ NF

t′

n

E

E

m∗

Fig. 9.

Proof. The proof is by induction on n. The case n = 0 is trivial as t ≡ s ∈ NF .
Induction Step: We first prove the following claim: if t→n

Es ∈ NF and t→t′ then
t′→m

E s for some m ≤ n (Figure 10).

Proof of the claim. Let t→Δ
E t

′′→n−1
E s ∈ NF and t→Δ′

t′ (Figure 11).

Case 1: Δ and Δ′ are non-overlapping. By left-linearity of R, we can easily
show that t′→Es

′ and t′′→∗s′ for some s′. From the induction hypothesis, it
follows that s′→m′

E s for some m′ ≤ n− 1. Thus, we obtain t′→m′+1
E s.
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Case 2: Δ and Δ′ are overlapping. By using Lemma 6, we have t′→i
Es

′ and
t′′→i

Es
′ for some s′ and i ≥ 0. Applying the BWCR Lemma to t′′, we have

s′→n−1−i
E s. Thus, it holds that t′→n−1

E s. Therefore, the claim follows.

We next prove that if t→n
Es ∈ NF and t→kt′ then t′→m

E s for some m ≤ n.
The proof is by induction on k. The case k = 0 is trivial. Induction Step: Let
t→t̂→k−1t′. From the claim we have t̂→n′

E s for some n′ ≤ n. Thus, from the
induction hypothesis with respect to k in case n′ = n or with respect to n in
case n′ < n, it follows that t′→m

E s for some m ≤ n. �

Theorem 2. Let a TRS R be left-linear root balanced joinable and external.
Then quasi-external reduction →∗

NE · →E · →∗
NE is a normalizing strategy.

Proof. Let t have a normal form s. Then by Theorem 1 we have t→n
Es for some

n. By using induction on n we prove that every quasi-external reduction starting
with t is normalizing. The case n = 0 is trivial as t ≡ s. Let t→n

Es (n > 0). Take
any one-step quasi-external reduction starting with t, say t→∗

NE t
′→Et

′′→∗
NE t̂.

From Lemma 10 we have t′→n′

E s for some n′ ≤ n. Thus, by applying the BWCR
Lemma to t′ we obtain t′′→n′′

E s for some n′′ < n as n′′ + 1 = n′. Again from
Lemma 10 it holds that t̂→m

E s for some m ≤ n′′. From m < n and the induc-
tion hypothesis it follows that every quasi-external reduction starting with t̂ is
normalizing. Therefore the theorem holds. �

8 Decidable Approximations of Externality

In this section we address the problem to find decidable approximations of ex-
ternal reduction. Durand and Middeldorp [6] presented a simple framework of
decidable approximations to show normalizing strategies of orthogonal TRSs.
We adapt this framework to left-linear overlapping (i.e., non-orthogonal) TRSs,
based on the notions of balanced weak Church-Rosser property and externality.
The framework of decidable approximations presented in [6] heavily relies on
tree automata techniques. We first recall the basic notions concerning tree au-
tomata [4].

�

�

t
s ∈ NF

t′

n

E

E

m

Fig. 10.
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A tree automaton is a tuple A = (F , Q,Qf , Π) where F is a finite set of
function symbols, Q is a finite set of states, Qf ⊆ Q is a set of final states and Π
is a set of ground rewrite rules of the form f(q1, . . . , qn)→q or q→q′ where f ∈ F ,
q1, . . . , qn, q, q

′ ∈ Q. We use →A for the reduction relation →Π on T (F ∪Q). A
term t ∈ T (F) is accepted by A if t→∗

Aq for some q ∈ Qf . The tree language
L(A) recognized by A is the set of all terms accepted by A. A set L is regular if
there exists a tree automaton A such that L = L(A). The following properties
of tree automata are well-known [4]:

– The class of regular languages is effectively closed under union, intersection,
difference, and complementation.

– The membership and the emptiness problems for regular languages are de-
cidable.

Consider a TRS R over F . We denote the set of all normal forms of R in
T (F ,V) by NF (R) and the set of all redexes of R in T (F ,V) by RED(R). We
introduce a fresh constant ◦ �∈ F and let F◦ = F ∪ {◦}. We view R as a TRS
over F◦ when a reduction relation on T (F◦) is considered. Note that NF (R)
and RED(R) have no terms containing ◦ since they are defined as subsets of
T (F ,V).

Let t◦ denote the term in T (F◦) obtained from a term t ∈ T (F ,V) by replac-
ing each variable in t with the constant ◦. We write T ◦ = {t◦ | t ∈ T } for a set
T ⊆ T (F ,V). We say a term set T ⊆ T (F ,V) is variable insensitive if, for all
t ∈ T (F ,V), t ∈ T iff t◦ ∈ T ◦. These notions are naturally extended to contexts
over F . Note that if T is a variable insensitive set of terms (or contexts) over F
and T ◦ is regular then T is decidable.

Lemma 11. Let R be a left-linear TRS. Then, RED(R), NF (R) and OUT (R)
are variable insensitive. Moreover, NF (R)◦, RED(R)◦ and OUT (R)◦ are
regular.

Proof. From left-linearity of R it holds that s is a redex iff s◦ is a redex for any
s ∈ T (F ,V). Thus, RED(R) is variable insensitive. Similarly we can show that
NF (R) and OUT (R) are variable insensitive. From [4] it is clear that NF (R)◦,
RED(R)◦ and OUT (R)◦ are regular. �
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Definition 11 (Externality approximation mapping). An externality ap-
proximation mapping α is a function mapping from a TRS R to a set of contexts
such that α(R) ⊆ EXT (R). We say that α is decidable if α(R) is decidable for
all R, and α is regular if, for all R, (i) α(R)◦ is regular and (ii) α(R) is variable
insensitive.

Note that if an externality approximation mapping α is regular then it is decid-
able.

Definition 12 (α-external TRS). We say a context C[ ] is α-external with
respect to R if C[ ] ∈ α(R). A redex occurrence Δ in C[Δ] is called α-external
if C[ ] is α-external. A reduction t→Δs is α-external if Δ is an α-external
redex of t. We say that a TRS R is α-external if each term t ∈ T (F ,V) −
NF (R) has an α-external redex (i.e., an α-external reduction of R is a reduction
strategy).

As an α-external redex occurrence Δ is an external redex and an α-external TRS
R is external, we have the following theorem.

Theorem 3. Let α be an externality approximation mapping (resp. an exter-
nality regular approximation mapping), and let a TRS R be left-linear root
balanced joinable and α-external. Then, R has the normal form property, and
α-external reduction is a normalizing strategy (resp. a computable normalizing
strategy).

Proof. From Theorem 1 it is trivial. �

The following theorem shows that the class of α-external TRSs is decidable if α
is regular.

Theorem 4. Let α be an externality regular approximation mapping. Then it
is decidable whether a left-linear TRS R is α-external.

Proof. Let R be a left-linear TRS over F . Let L = { C[Δ] | Δ ∈
RED(R) and C[ ] ∈ α(R)}. Since RED(R) and α(R) are variable insensible, L is
variable insensible and we can write L◦ = { C′[Δ′] | Δ′ ∈ RED(R)◦ and C′[ ] ∈
α(R)◦}. Since RED(R)◦ and α(R)◦ are regular, there exist two tree automata
Ared = (F◦, Qred, Q

f
red, Πred) and Aα = (F◦ ∪ {�}, Qα, Q

f
α, Πα), where

Qred ∩ Qα = ∅, which recognize RED(R)◦ and α(R)◦ respectively. Without
loss of generality we may suppose Qf

red = {qred} and Qf
α = {qα} [4]. Let

A = (F◦, Qred ∪ Qα, {qα}, ΠL) where ΠL = Πred ∪ (Πα − {�→p | �→p ∈
Πα}) ∪ {qred→p | �→p ∈ Πα}. Then it can be shown that L◦ = L(A); thus
L◦ is regular. From the definition of α-externality, the TRS R is α-external iff
(T (F ,V) − NF (R)) − L = ∅. Since T (F ,V), NF (R) and L are variable in-
sensitive, we have that (T (F ,V) − NF (R)) − L is variable insensitive. Thus, it
holds that (T (F ,V)− NF (R))− L = ∅ iff (T (F◦)− NF (R)◦) − L◦ = ∅. Since
(T (F◦)−NF (R)◦)− L◦ is regular, the emptiness of (T (F◦)−NF (R)◦)− L◦ is
decidable. �
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We next consider decidable approximations of TRSs to find an externality regular
approximation mapping α. An extended TRS (eTRS for short)R over F is a finite
set of extended rewrite rules l→r in which the right-hand side r may have extra
variables not occurring in the left-hand side l. Similarly to TRSs, we can view
R as an eTRS over F◦ ∪ {�} when a reduction relation on T (F◦ ∪ {�}) is
considered, imposing the restriction that when an extended rewrite rule l → r
is applied, the extra variables in r are instantiated by arbitrary terms in T (F◦);
thus, a reduction does not generate new holes.

Following Durand and Middeldorp [6], we say that an eTRS R over F is
regularity preserving if (R−1)∗(L) = { t | ∃s ∈ L t→∗

Rs } is regular for every
regular tree language L over F (resp. F◦ ∪ {�}), where →R is the reduction
relation on T (F) (resp. T (F◦ ∪ {�}) ) defined by R.

An eTRS Ra over F is an approximation of a TRS R over F if →∗
R ⊆ →∗

Ra
.

Note that the definition of approximation is slightly different from that in [6]
which imposes the extra condition NF (R) = NF (Ra). The following definition
is due to [6].

Definition 13 (Regularity preserving approximation mapping). A reg-
ularity preserving approximation mapping τ is a function mapping from a left-
linear TRS R to a left-linear eTRS τ(R) such that (i) τ(R) is an approximation
of R and (ii) τ(R) is regularity preserving.

Definition 14 (τ-external context). Let τ be a regularity preserving approx-
imation mapping. An outer context C[ ] is τ-external with respect to R if any s
obtained by C[ ]→∗

τ(R)s is in OUT (R). The set of all τ-external contexts with
respect to R is denoted by ατ (R).

Lemma 12. Let τ be a regularity preserving approximation mapping and R a
left-linear TRS over F . Let s ∈ T (F ∪{�},V) and s◦→∗

τ(R)u. Then there exists
some t ∈ T (F ∪ {�},V) such that s→∗

τ(R)t and t◦ ≡ u.

Proof. Let s◦→k
τ(R)u. We prove the claim by induction on k. The case k = 0 is

trivial. Induction Step: Let s◦→τ(R)p→k−1
τ(R)u. From left-linearity of τ(R), there

exists some q ∈ T (F ∪ {�},V) such that s→τ(R)q and q◦ ≡ p. Thus, form
q◦→k−1

τ(R)u and the induction hypothesis, we have t ∈ T (F ∪ {�},V) such that
q→∗

τ(R)t and t◦ ≡ u. �

Lemma 13. Let τ be a regularity preserving approximation mapping and R a
left-linear TRS over F . Then ατ (R) is variable insensitive.

Proof. We show that C[ ] ∈ ατ (R) iff C[ ]◦ ∈ ατ (R)◦. If-part: Let C[ ]◦ ∈ ατ (R)◦

and C[ ]→∗
τ(R)s. Then we have C[ ]◦→∗

τ(R)s
◦. Since C[ ]◦ ∈ ατ (R)◦, it holds

that s◦ ∈ OUT (R)◦. As OUT (R) is variable insensitive, s ∈ OUT (R). Thus,
C[ ] ∈ ατ (R). Only-if-part: Let C[ ] ∈ ατ (R) and C[ ]◦→∗

τ(R)u. By Lemma 12
there exists some t such that C[ ]→∗

τ(R)t and t◦ ≡ u. Since C[ ] ∈ ατ (R), it holds
that t ∈ OUT(R). As OUT (R) is variable insensitive, u ∈ OUT (R)◦. Thus,
C[ ]◦ ∈ ατ (R)◦. �
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Lemma 14. Let τ be a regularity preserving approximation mapping. Then ατ

is an externality regular approximation mapping. Hence, ατ (R) is a computable
approximation of EXT (R).

Proof. Since →∗
R ⊆ →∗

τ(R), it is trivial that ατ (R) ⊆ EXT (R). By Lemma 13,
ατ (R) is variable insensitive. Hence, we shall show that ατ (R)◦ is regular. Let
CONT be the set of all contexts over F containing precisely one hole and
let NOUT(R) = CONT − OUT (R). Then we have NOUT(R)◦ = CONT ◦ −
OUT (R)◦. Since CONT ◦ and OUT (R)◦ are regular, NOUT (R)◦ is regular. Let
Lτ = {s ∈ T (F∪{�},V) | ∃C[ ] ∈ NOUT (R), s→∗

τ(R)C[ ]}. Then, by Lemma 12
it is easily shown that s→∗

τ(R)C[ ] for some C[ ] ∈ NOUT (R) iff s◦→∗
τ(R)C

′[ ]
for some C′[ ] ∈ NOUT(R)◦. Thus, we have L◦

τ = {s′ ∈ T (F◦ ∪ {�}) | ∃C′[ ] ∈
NOUT(R)◦, s′→∗

τ(R)C
′[ ]}. Since τ(R) is regularity preserving, we have L◦

τ =
(τ(R)−1)∗(NOUT(R)◦); thus, L◦

τ is regular. From ατ (R)◦ = CONT ◦ − L◦
τ , it

follows that ατ (R)◦ is regular. �

Definition 15 (τ-external TRS). We say C[ ] is τ-external with respect to
R if C[ ] ∈ ατ (R). A redex occurrence Δ in C[Δ] is called τ-external if C[ ]
is τ-external. A reduction t→Δs is τ-external if Δ is a τ-external redex of t.
We say that a TRS R is τ-external if each term t ∈ T (F ,V) − NF (R) has a
τ-external redex.

Theorem 5. Let τ be a regularity preserving approximation mapping and let a
TRS R be left-linear root balanced joinable and τ-external. Then, R has the
normal form property, and τ-external reduction is a computable normalizing
strategy.

Proof. From Theorem 3 and Lemma 14 it is clear. �

The following theorem shows that the class of τ -external TRSs is decidable.

Theorem 6. Let τ be a regularity preserving approximation mapping. Then it
is decidable whether a left-linear TRS R is τ-external.

Proof. From Theorem 4 and Lemma 14 it is clear. �

The first idea of regularity preserving approximations was proposed by Huet and
Lévy [8] as the strong approximation of orthogonal TRSs, which is obtained by
replacing the right-hand side of every rewrite rule with a fresh variable not oc-
curring in the left-hand side. Oyamaguchi [21] gave a better approximation, the
NV approximation, which is obtained by replacing all variables in the right-hand
side of every rewrite rule with distinct fresh variables. Jacquemard [9], Nagaya
and Toyama [15] introduced the growing approximation, which is obtained by
replacing all variables in the left-hand sides of every rewrite rule that occur
at a depth greater than 1 with distinct fresh variables [15]. In these approxi-
mations, the regularity preserving property depends only on left-linearity, but
not on orthogonality [9, 15, 6]. Thus, we can use them as regularity preserving
approximations for arbitrary left-linear TRSs.
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An approximation mapping τ is strong (resp. NV, growing) if τ(R) is a strong
(resp. NV, growing) approximation of R for every TRS R. Then, from Theo-
rems 5 and 6, the following corollaries hold.

Corollary 4. Let a TRS R be left-linear root balanced joinable and strong-
external (resp. NV-external, growing-external). Then, R has the normal form
property, and strong-external (resp. NV-external, growing-external) reduction is
a computable normalizing strategy.

Corollary 5. It is decidable whether a left-linear TRS R is strong-external
(resp. NV-external, growing-external).

Example 6. Let R be combinatory logic CL ∪⎧⎪⎪⎨⎪⎪⎩
f(g(x,K),K) → (K · ((K · x) · x)) · x
f(g(x,K),K) → ((S ·K) · x) · x
f(g(K, y), S) → g(y, y)
g(S, S) → S.

As R has overlapping redexes at the root of f(g(x,K),K), we obtain the critical
pair 〈(K ·((K ·x)·x))·x, ((S ·K)·x)·x〉. The critical pair meets by root reductions
(K · ((K · x) · x)) · x→r(K · x) · x→rx and ((S ·K) · x) · x→r(K · x) · (x · x)→rx.
Thus R is root balanced joinable. Let the strong approximation of combinatory
logic CL be τ(CL): {

((S · x) · y) · z → w
(K · x) · y → z.

Then the strong approximation τ(R) of R is τ(CL)∪⎧⎪⎪⎨⎪⎪⎩
f(g(x,K),K) → z
f(g(x,K),K) → z
f(g(K, y), S) → z
g(S, S) → z.

Since R is transitive [14, 23] (forward-branching [5]), it is strong-external. Thus,
from Corollary 4, R has the normal form property, and strong-external re-
duction is a computable normalizing strategy. Consider a term of the form
f(g(Δ1, Δ2), Δ3) in R, whereΔi (i = 1, 2, 3) are redex occurrences. Then neither
Δ1 nor Δ2 is a strong-external redex, as f(g(�, Δ2), Δ3) →τ(R) f(g(�,K), Δ3)
→τ(R) f(g(�,K),K) �∈ OUT (R) and f(g(Δ1,�), Δ3) →τ(R) f(g(K,�), Δ3)
→τ(R) f(g(K,�), S) �∈ OUT (R) respectively. The rightmost redex occurrence
Δ3 is strong-external since one can easily check f(g(Δ1, Δ2),�) →∗

τ(R) s

∈ OUT (R) for any term s.

Example 7. Let R be combinatory logic CL ∪⎧⎨⎩f(x, S) → x · S
f(S, y) → S · y
f(x, y) → x · y.
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Since R is weakly orthogonal, it is trivially root balanced joinable. Let the strong
approximation τ(R) of R be τ(CL)∪⎧⎨⎩f(x, S) → z

f(S, y) → z
f(x, y) → z.

Since a term of the form f(s, t) in R certainly gives a redex independent on s
and t, one can easily check strong-externality of R, ignoring the first two rules
f(x, S) → z and f(S, y) → z. Thus, from Corollary 4, R has the normal form
property, and strong-external reduction is a computable normalizing strategy.
Note that if the third rule f(x, y) → z does not exist, then R is not strong-
external as f(Δ1, Δ2) has no strong-external redexes.

9 Left-Normal Systems

In this section we discuss a syntactic characterization of external overlapping
TRSs. Such a syntactical characterization was found by O’Donnell [17] for or-
thogonal TRSs. He proved that if an orthogonal TRS R is left-normal then
leftmost-outermost reduction is normalizing. We show that his result can be nat-
urally extended to root balanced joinable TRSs.

Definition 16. The set TL(F ,V) of the left-normal terms constructed from F
and V is inductively defined as follows:

1. x ∈ TL(F ,V) if x ∈ V,
2. f(t1, · · · , tp−1, sp, xp+1 · · · , xn) ∈ TL(F ,V) (0 ≤ p ≤ n)

if f ∈ F , t1, · · · , tp−1 ∈ T (F), sp ∈ TL(F ,V), xp+1, · · · , xn ∈ V,
and f(t1, · · · , tp−1, sp, xp+1 · · · , xn) is linear.

A TRS R over F is left-normal [8, 17, 22] if for any rule l → r in R, l is a left-
normal term in TL(F ,V). From the definition of left-normal terms, a left-normal
TRS R is left-linear, and it may be overlapping.

Definition 17 (Left-outer context). A context C[ ] is left-outer if every redex
Δ′ of C[ ] occurs right of � (i.e., C[ ] ≡ C′[�, Δ′] for some C′[ , ]) whenever it
exists.

Definition 18 (Left-outer redex). A redex occurrence Δ of C[Δ] is called
left-outer if C[ ] is left-outer. A reduction t→Δs is left-outer if Δ is a left-outer
redex of t.

Let αL(R) be the set of all left-outer contexts with respect to a TRS R. Then
the decidability of αL(R) is trivial. We shall show that αL(R) is a decidable
approximation of EXT (R) if R is left-normal.

Lemma 15. Let a TRS R be left-normal. If C[ ] is left-outer and C[ ]→∗s, then:

(1) s is a left-outer context,
(2) for any t ∈ TL(F ,V), if t / s then t / C[ ].



220 Y. Toyama

Proof. By induction on the size of C[ ], we will prove (1) and (2) simultaneously.

Basic step: C[ ] ≡ �. Then (1) and (2) are trivial.
Induction step: Since C[ ] �≡ �, we can write C[ ] ≡ f(t1, · · · , tp−1, Cp[ ], tp+1,

· · · , tn), where t1, · · · , tp−1 are normal forms and Cp[ ] is left-outer.
(1) Suppose that s is not left-outer. As C[ ] is a left-outer context, there

exists some non-left-outer context C̃[ ] ≡ f(t1, · · · , tp−1, C̃p[ ], t̃p+1, · · · , t̃n) such
that C[ ]→∗C̃[ ]→∗s where Cp[ ]→∗C̃p[ ] and tp+1→∗t̃p+1, · · · , tn→∗t̃n. From
the induction hypothesis with respect to (1) and Cp[ ]→∗C̃p[ ], C̃p[ ] is left-
outer. Since C̃[ ] is not left-outer, there exists a redex Δ such that � ∈ Δ �
C̃[ ]. As C̃p[ ] is left-outer, Δ�/ C̃p[ ]. Thus, we have Δ ≡ C̃[ ]. Hence, l /
C̃[ ] ≡ f(t1, · · · , tp−1, C̃p[ ], t̃p+1, · · · , t̃n) for some l→r ∈ R such that l ≡
f(t1, · · · , tq−1, sq, xq+1, · · · , xn) ∈ TL(F ,V). Since C[ ] is left-outer, it holds that
l �/C[ ]; thus, q ≥ p. Since ti �/C̃p[ ] for any ground term ti, q ≤ p holds. So we
have p = q. From the induction hypothesis with respect to (2) and sp / C̃p[ ], we
have sp / Cp[ ]. Thus, f(t1, · · · , tp−1, sp, xp+1, · · · , xn) / f(t1, · · · , tp−1, Cp[ ],
tp+1, · · · , tn) ≡ C[ ]; it contradicts to the fact that C[ ] is left-outer. Hence, s
must be left-outer.

(2) From (1) it follows that every s′ must be left-outer for C[ ]→∗s′→∗s;
thus, we can write s ≡ f(t1, · · · , tp−1, C

′
p[ ], t′p+1, · · · , t′n) where Cp[ ]→∗C′

p[ ]
and tp+1→∗t′p+1, · · · , tn→∗t′n. Let t / s for some t ≡ f(t1, · · · , tq−1, sq, xq+1,
· · · , xn) ∈ TL(F ,V). If q < p then it is clear that t / C[ ]. If q = p then sq ≡ sp

/ C′
p[ ]. From the induction hypothesis with respect to (2) we have sp / Cp[ ].

Thus, t / C[ ]. �

Lemma 16. Let a TRS R be left-normal. Then αL(R) ⊆ EXT (R).

Proof. Note that the left-outer contexts are outer. Thus from Lemma 15 (1) the
left-outer contexts are external. �

Thus, αL is an externality decidable approximation mapping for the class of
left-normal TRSs.

Lemma 17. Let a TRS R be left-normal. Then R is αL-external (i.e., every
reducible term has a left-outer redex).

Proof. Trivial. �

Theorem 7. Let a TRS R be root balanced joinable and left-normal. Then, R
has the normal form property, and left-outer reduction is a computable normal-
izing strategy.

Proof. It follows from Theorem 1, Lemmas 16 and 17. �

Definition 19 (Leftmost-outermost redex). A redex occurrence Δ of t is
called leftmost-outermost if Δ is the leftmost of the outermost redexes of t. A
reduction t→Δs is leftmost-outermost if Δ is a leftmost-outermost redex of t.
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As leftmost-outermost redexes are clearly left-outer redexes, we have the following
corollary.

Corollary 6. Let a TRS R be root balanced joinable and left-normal. Then, R
has the normal form property, and leftmost-outermost reduction is a computable
normalizing strategy.

Note that every weakly orthogonal left-normal TRS is root balanced joinable.
Thus the following corollary holds.

Corollary 7. Let a TRS R be weakly orthogonal and left-normal. Then, R has
the normal form property, and leftmost-outermost reduction is a computable nor-
malizing strategy.

Example 8. Let R be combinatory logic CL ∪{
pred · (succ · x) → x
succ · (pred · x) → x.

It is clear that R is weakly orthogonal and left-normal. Thus, from Corollary 7, R
has the normal form property, and leftmost-outermost reduction is a computable
normalizing strategy.

Example 9. Let R be combinatory logic CL ∪{
(A · x) · y → ((x ·K) · x) · y
(A · S) → (S ·K) ·A.

Clearly, R is left-normal and it has overlapping redexes in (A · S) · y. Thus, we
have the critical pair 〈((S ·K) ·A) · y, ((S ·K) ·S) · y〉. Since the critical pair can
join by root reductions of two steps ((S ·K) · A) · y→r(K · y) · (A · y)→ry and
((S ·K) · S) · y→r(K · y) · (S · y)→ry, R is root balanced joinable. Thus, from
Corollary 6, R has the normal form property, and leftmost-outermost reduction
is a computable normalizing strategy.

Example 10. Let R be combinatory logic CL ∪⎧⎪⎪⎨⎪⎪⎩
(K · A) · y → (K · B) · y
(K · B) · y → (K · A) · y
A→ A
B → B.

It is clear that R is left-normal and it has the two critical pairs 〈(K · A) · y,
(K · B) · y〉 and 〈(K · B) · y, (K · A) · y〉. We have root reduction (K · A) · y
→r (K · B) · y →rB and (K · B) · y→rB→rB for the critical pair 〈(K · A) · y,
(K · B) · y〉, and (K · B) · y→r(K · A) · y→rA and (K · A) · y→rA→rA for the
critical pair 〈(K ·B)·y, (K ·A)·y〉 respectively. Thus, R is root balanced joinable.
Therefore, from Corollary 6, R has the normal form property, and leftmost-
outermost reduction is a computable normalizing strategy. Note that though R
has the unique normal form property due to the normal form property, R is not
Church-Rosser as (K · A) · y can be reduced into two constants A and B which
cannot be joined.
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10 Conclusion

In this paper we have investigated normalizing strategies for left-linear overlap-
ping TRSs. We have introduced the concept of the balanced weak Church-Rosser
(BWCR) property and related it to a normalizing strategy based on the BWCR
Lemma, which is presented in an abstract framework depending solely on the re-
duction relation. Applying this abstract framework to TRSs, we have shown that
external reduction is a normalizing strategy for the class of left-linear TRSs in
which every critical pair can be joined with root balanced reductions and every
reducible term has an external redex. Further, we have presented computable
normalizing strategies based on decidable approximations of external redexes.

An interesting direction for further research is application to higher-order
rewriting systems, like Klop’s combinatory reduction system [11]. We believe
the BWCR lemma can provide an accessible means of developing computable
normalizing strategies uniformly for various higher-order rewriting systems. An-
other interesting issue is root-external reduction for non-orthogonal TRSs, which
is very parallel to root-needed reduction for orthogonal TRSs developed by Mid-
deldorp [13]. As root-normalizing strategy is more fundamental and complicated
than normalizing strategy, we need to generalize the theoretical framework for
dealing with approximated decidable reduction based on root-externality.
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1 Introduction

Equations are ubiquitous in mathematics and in computer science as well. This
first sentence of a survey on first-order rewriting borrowed again and again char-
acterizes best the fundamental reason why rewriting, as a technology for pro-
cessing equations, is so important in our discipline [10]. Here, we consider higher-
order rewriting, that is, rewriting higher-order functional expressions at higher-
types. Higher-order rewriting is a useful generalization of first-order rewriting:
by rewriting higher-order functional expressions, one can process abstract syn-
tax as done for example in program verification with the prover Isabelle [27];
by rewriting expressions at higher-types, one can implement complex recursion
schemas in proof assistants like Coq [12].

In our view, the role of higher-order rewriting is to design a type-theoretic
framework in which computation and deduction are integrated by means of
higher-order rewrite rules, while preserving decidability of typing and coherence
of the underlying logic. The latter itself reduces to type preservation, confluence
and strong normalization.

It is important to understand why there have been very different proposals
for higher-order rewriting, starting with Klop’s combinatory reduction systems
in 1980, Nipkow’s higher-order rewriting in 1991 and Jouannaud and Okada’s
executable higher-order algebraic specifications in 1991 as well: these three ap-
proaches tackle the same problem, in different contexts, with different goals
requiring different assumptions.

Jan Willem Klop was mostly interested in generalizing the theory of lambda
calculus, and more precisely the confluence and finite developments theorems.
Klop does not assume any type structure. As a consequence, the most primitive
operation of rewriting, searching for a redex, is already a problem. Because
he wanted to encode pure lambda calculus and other calculi as combinatory
reduction systems, he could not stick to a pure syntactic search based on first-
order pattern matching. He therefore chose to search via finite developments,
the only way to base a finite search on beta-reduction in the absence of typing
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assumptions. And because of his interest in simulating pure lambda calculi,
he had no real need for termination, hence concentrated on confluence results.
Therefore, his theory in its various incarnations is strongly influenced by the
theory of residuals initially developed for the pure lambda calculus.

Nipkow was mainly interested in investigating the meta-theory of Isabelle and
in proving properties of functional programs by rewriting, goals which are ac-
tually rather close to the previous one. Functional programs are typed lambda
terms, hence he needed a typed structure. He chose searching via higher-order
pattern matching, because plain pattern matching is too poor for expressing in-
teresting transformations over programs with finitely many rules. This choice of
higher-order pattern matching instead of finite developments is of course very
natural in a typed framework. He assumes termination for which proof meth-
ods were still lacking at that time. His (local) confluence results rely on the
computation of higher-order critical pairs -because higher-order pattern match-
ing is used for searching redexes- via higher-order unification. Nipkow restricted
lefthand sides of rewrite rules to be patterns in the sense of Miller [25]. The
main reason for this restriction is that higher-order pattern matching and unifi-
cation are tractable in this case which, by chance, fits well with most intended
applications.

Jouannaud and Okada were aiming at developping a theory of typed rewrite
rules that would generalize the notion of recursor in the calculus of inductive con-
structions, itself generalizing Gödel’s system T. This explains their use of plain
pattern matching for searching a redex: there is no reason for a more sophisti-
cated search with recursors. In this context, the need for strongly terminating
calculi has two origins: ensuring consistency of the underlying logic, that is, the
absence of a proof for falsity on the one hand, and decidability of the type system
in the presence of dependent types on the other hand. Confluence is needed as
well, of course, as is type preservation. The latter is easy to ensure while the for-
mer is based on the computation of first-order critical pairs -because first-order
pattern matching is used for searching redexes. This explains the emphasis on
termination criteria in this work and its subsequent developments.

Our goal in this paper is to present a unified framework borrowed from Jouan-
naud, Rubio and van Raamsdonk [22] for the most part, in which redexes can
be searched for by using either plain or higher-order rewriting, confluence can
be proved by computing plain or higher-order critical pairs, and termination can
be proved by using the higher-order recursive path ordering of Jouannaud and
Rubio [19].

We first present examples showing the need for both search mechanisms based
on plain and higher-order pattern matching on the one hand, and for a rich type
structure on the other hand. These examples show the need for rules of higher
type, therefore contradicting a common belief that application makes rules of
higher type unnecessary. They also recall that Klop’s idea of variables with
arities is very handy. Then, we present our framework in more detail, before we
address confluence issues, and finally termination criteria. Missing notations and
terminology used in rewriting or type theory can be found in [10, 2].



226 J.-P. Jouannaud

2 Examples

We present here by means of examples the essential features of the three afore-
mentioned approaches to higher-order rewriting. Rather than comparing their
respective expressivity [29], we use our unified framework to show why they are
important and how they can be smoothly integrated. Framework and syntax are
explained in detail in Section 3, but the necessary information is already pro-
vided here to make this section self-contained to anybody who is familiar with
typed lambda calculi.

Language. It is our assumption that our examples extend a typed lambda
calculus, in which abstraction and application (always written explicitly) are
written λx : σ.u and @(u, v) respectively where u, v are terms, x is a variable
and σ a type. We sometimes drop types in abstractions, and write λxy.u for
λx.(λy.u), assuming that the scope of an abstraction extends as far to the right
as possible. A variable not in the scope of an abstraction is said to be free,
otherwise it is bound. An expression is ground if it has no free variable. The
(right-associative) type constructor → for functional types is our main type
constructor, apart from user-defined ones. We will also need a weak notion of
polymorphism, requiring the use of a special (untypable) constant ∗ denoting an
arbitrary type. We do not have product types, unless introduced by the user.
Recall that lambda calculus is a formal model in which functional computations
are described by three (higher-order) rewrite rules, beta-reduction, eta-reduction
and alpha-conversion:

beta @(λx.u, v) −→β u{x 2→ v}
eta λx.@(u, x) −→η u where x is not a free variable of u
alpha λy.u −→α λx.u{y 2→ x} where x is not a free variable of u

In these rules, u, v stand for arbitrary terms, making them rule schemas rather
than true rewrite rules. The notation u{x 2→ v} stands for substitution of x
by v in u. Variable capture, that is, a free variable of v becoming bound after
substitution, is disallowed which may force renaming bound variables via alpha-
conversion before instantiation can take place. The second rule can also be used
from right-to-left, in which case it is called an expansion. These rules define an
equivalence over terms, the higher-order equality =βη, which can be decided by
computing normal forms: by using beta and eta both as reductions yielding the
beta-eta-normal form; or by using beta as a reduction and eta as an expansion
(for terms which are not the left argument of an application, see Section 3 for
details) yielding the eta-long beta-normal form. Given two terms u and v, first-
order pattern matching (resp. unification) computes a substitution σ such that
u = vσ. (resp. uσ = vσ). Plain and syntactic are also used instead of first-order,
for qualifying pattern matching, unification or rewriting. Higher-order pattern
matching (resp. unification) computes a substitution σ such that u =βη vσ (resp.
uσ =βη vσ). Of course, such substitutions may not exist. First-order pattern
matching and unification are decidable in linear time. Higher-order unification
is undecidable, while the exact status of higher-order matching is unknown at
orders 5 and up [11].
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Our examples come in two parts, a signature for the constants and variables,
and a set of higher-order rewrite rules added to the rules of the underlying
typed lambda calculus. We use a syntax à la OBJ, with keywords introducing
successively type constants (Typ), type variables (Tva), term variables (Var),
constructors (Con), defined function symbols (Ope), and rewrite rules (Prr and
Hor). Defined function symbols occur as head operators in lefthand sides of rules,
while constructors may not. With some exceptions, we use small letters for con-
stants, greek letters for type variables, capital latin letters for free term variables,
and small latin letters for bound term variables. Due to the hierarchical struc-
ture of our specifications, and the fact that a type declaration binds whatever
comes after, the polymorphism generated by the type variables is weak, as in
Isabelle: there is no need for explicit quantifiers which are all external.

Finally, our framework is typed with arities: besides having a type, constants
also have an arity which is indicated by writing a double arrow ⇒ instead of
a single arrow → to separate input types from the output type in the typing
declarations. The double arrow does not appear when there are no input types.
We write f(u1, . . . , un) when f has arity n > 0 and simply f when n = 0. In
general, the use of arities facilitates the reading. Just like constants, variables
also will have arities.

Gödel’s System T. We give a polymorphic version of Gödel’s system T, a
simply typed lambda calculus in which natural numbers are represented in Peano
notation. This example has an historical significance: it is the very first higher-
order rewrite system added to a typed lambda calculus, introduced by Gödel to
study the logic of (a fragment of) arithmetic; it plaid a fundamental role in the
understanding of the Curry-Howard isomorphism which led to the definition of
System F by Girard.

Example 1. Recursor for natural numbers

Tva α : ∗
Typ IN : ∗
Con 0 : IN
Con s : IN ⇒ IN
Ope rec : IN → α→ (IN → α→ α) ⇒ α
Var X : IN
Var U : α
Var Y : IN → α→ α

Prr rec(0,U,Y) → U
Prr rec(s(X),U,Y) → @(Y,X, rec(X,U,Y))

In this example IN is the only type constant and α the only type variable. The
constants 0 and s are the two constructors for the type IN of natural numbers,
as it can be observed from their output type. All variables have arity zero. The
rec operator provides us with higher-order primitive recursion. It can be used to
define new functions, such as addition, multiplication, exponentiation or even the
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Ackermann function by choosing appropriate instantiations for the higher-order
variables U and X in the rules given in Example 1. For example,

Var M,N : IN
Prr plus(N,M) → rec(N,M, λz1z2.s(z2))
Prr mul(N,M) → rec(N, 0, λz1z2.plus(M, z2))

The precise understanding of the recursor requires some familiarity with the
so-called Curry-Howard isomorphism, in which types are propositions in some
fragment of intuitionistic logic (here, a quantified propositional fragment), terms
of a given type are proofs of the corresponding proposition, and higher-order rules
describe proof transformations. In system T, rec can be intuitively interpreted as
carrying the proof of a proposition α (the output type of rec) done by induction
over the natural numbers. Assuming that α has the form ∀n.P (n) (beware that
this proposition is not a type here, we would need a type system à la Coq for
that), the variable U is then a proof of P (0), while Y is a function which takes
a natural number n and a proof of P (n) as inputs and yields a proof of P (s(n))
as output. It is now easy to see that the first rule equates two proofs of P (0).
Further, since rec(X,U,Y) in the righthand side of the second rule is a proof of
P (X), that rule equates two proofs of P (s(X)).

This simple example is already quite interesting in our view.
First, it is based on the use of plain pattern matching. This is always so with

recursors for inductive types and is indicated here by using the keyword Prr.
This comes from the fact that a ground expression of an inductive type (like IN)
which is in normal form must be headed by a constructor (0 or s for IN). Now,
pattern matching an expression in normal form (like 0 or s(u) for some normal
form u) with respect to the terms 0 and s(X) (in the case of rec) or with respect
to the variable N (in the case of plus,mul) does not need higher-order pattern
matching since beta- and eta-reductions can only occur inside variables (X or N).

Second, there is no way to define recursors by a finite number of higher-order
rules in the absence of polymorphism. A description saying that U is a variable
of an arbitrary ground type amounts to have one rule for each ground type,
which does not fit our purpose: to give a finite specification for system T.

Finally, observe that rewriting expressions for which subexpressions of type IN
are ground results in a normal form in which the recursor does not appear any-
more. In the OBJ jargon, the operator rec is sufficiently defined. The fact that all
defined operators are sufficiently defined is crucial for encoding recursion by rec.

Polymorphic Lists.

Example 2. Recursors for lists

Typ list : ∗ ⇒ ∗
Tva α, β : ∗
Con nil : list(α)
Con cons : α→ list(α) ⇒ list(α)
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Ope map : list(α) → (α→ β) ⇒ list(β)
Var H : α
Var T : list(α)
Var F : α→ β

Prr map(nil,F) → nil
Prr map(cons(H,T),F) → cons(@(F,H),map(T,F))

This example familiar to Lisp programmers shows that the above final remark
applies to any inductive type, such as polymorphic lists. Here, list is a type
operator of arity one, therefore taking an arbitrary type as input. map returns
the list of applications of the function F given as second argument to the elements
of the list given as first argument.

Example 3 extends Example 2 with a parametric version of insertion sort
(called sort), which takes a list as input, sorts the tail and then inserts the
head at the right place by using a function insert, whose second argument is
therefore a sorted list. The additional parameters X,Y in both sort and insert
stand for functions selecting one of their two arguments with respect to some
ordering. Instantiating them yields particular sorting algorithms, as for example
ascending− sort. The additional signature declarations are omitted, as well as
the keyword Prr.

Example 3. Parametric insertion sort

max(0,X) → X max(X, 0) → X
max(s(X), s(Y)) → s(max(X,Y))

min(0,X) → 0 min(X, 0) → 0
min(s(X), s(Y)) → s(min(X,Y))

insert(N, nil,X,Y) → cons(N, nil)
insert(N, cons(M,T),X,Y) → cons(@(X,N,M), insert(@(Y,N,M),T,X,Y))

sort(nil,X,Y) → nil
sort(cons(N,T),X,Y) → insert(N, sort(T,X,Y),X,Y)

ascending− sort(L) → sort(L, λxy.min(x, y), λxy.max(x, y))
descending− sort(L) → sort(L, λxy.max(x, y), λxy.min(x, y))

As this example shows, many programs can be defined by first-order pattern
matching, a well-known fact exploited by most modern functional programming
languages, such as those of the ML family. Again, we could (and should) prove
that these new defined operators are sufficiently defined, but the argument is
actually the same as before.

Differentiation. We now move to a series of examples showing the need for
higher-order pattern matching, which will be indicated by using the second key-
word Hor for rules. First, we need some more explanations about the typed
lambda calculus. IN and list(IN) are called data types, while IN → IN, which is
headed by →, is a functional type. Constant data types like IN are also called
basic types. In Nipkow’s work, the lefthand and righthand side of higher-order
rules must have the same basic type, a condition which is usually enforced when
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needed by applying a term of a functional type to a sequence of variables of the
appropriate types. All terms must be in eta-long beta-normal form, forcing us to
write λx.@(F, x) instead of simply F. Lefthand sides of rules must be patterns [25],
an assumption frequently met in practice which makes both higher-order pattern
matching and unification decidable in linear time. Finally, there is no notion of
constructor and defined symbol, and no recursors coming along with. We choose
arbitrarily to have all symbols as defined. We give only one rule, the others
should be easily guessed by the reader.

Example 4. Differentiation 1

Typ IR : ∗
Ope sin, cos : IR → IR
Ope mul : IR → IR → IR
Ope diff : (IR → IR) → IR → IR
Var y : IR
Var F : IR → IR

Hor @(diff, λx : IR.@(sin,@(F, x)), y) →
@(mul,@(cos,@(F, y)),@(diff, λx : IR.@(F, x), y))

Note that all function symbols and variables have arity zero, since there is no
arity in our sense in Nipkow’s framework. Both sides of the rule have type IR:
diff computes the differential of its first argument at the point given as second
argument. Unlike the previous examples, these rules use higher-order pattern
matching, and this is necessary here to compute the derivative of the function
sin itself. Clearly, @(diff, λx.@(sin, x)) does not match the lefthand side of rule.
Let us instantiate the variable F of the lefthand side of rule by the identity
function λx.x, resulting in the expression @(diff, λx.@(sin,@(λx.x, x)), y) which
beta-reduces to the expected result @(diff,@(sin, x)), y). This shows that the lat-
ter expression higher-order matches the lefthand side of rule. Using plain pattern
matching would require infinitely many rules, one for each possible instantiation
of F requiring a beta-reduction. Incorporating beta-reduction into the matching
process allows one to have a single rule for all cases.

Using rules of higher-order type as well as function symbols and variables
of non-zero arity is possible thanks to a generalisation of Nipkow’s work [22],
resulting in the following new version of the same example:

Example 5. Differentiation 2

Typ IR : ∗
Ope sin, cos : IR ⇒ IR
Ope mul : (IR → IR) → (IR → IR) ⇒ (IR → IR)
Ope diff : (IR → IR) ⇒ (IR → IR)
Var F : IR ⇒ IR

Hor diff(λx : IR. sin(F(x)) → mul(λx : IR. cos(F(x)), diff(λx : IR.F(x)))

Here, the rule has the higher-order type IR ⇒ IR, making diff the true differential
of the function given as argument. In this format, eta-expansion is controlled by
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the systematic use of arities. This use of arities for replacing applications by
parentheses should be considered here as a matter of style: one can argue that
arities are not really needed for that purpose, since, traditionally, the application
operator is not explicitly written in the lambda calculus: some write (M N) for
@(M,N) while others favour M(N) instead. But this is a convention. In both
cases, the conventional expression is transformed by the parser into the one with
explicit application. Here, the syntax forces us to write @(M,N) when M is not
a variable or is a variable with arity zero, and M(N) when M is a variable with
arity 1. More convincing advantages are discussed later.

To get the best of our format, we can declare F as a function symbol of arity
zero and use the beta-eta-normal form instead of the eta-long beta-normal form.
With this last change, the rule becomes:

Var F : IR → IR
Hor diff(sin(F)) → mul(cos(F), diff(F))

Simply Typed Lambda Calculus. We end up this list with Klop’s favorite
example, showing the need for arities of variables in order to encode the lambda
calculus. The challenge here is to have true rewrite rules for beta-reduction and
eta-reduction: the usual side condition for the eta-rule must be eliminated. This
is made possible by allowing us to control which variables can or cannot be
captured through substitution when replacing a variable with arity: a substitute
for a variable of arity n must be an abstraction of n different bound variables.
For example, a variable of arity one depends upon a single variable, like X
which must be written X(x) for some variable x bound above, and replaced by
an abstraction λx.u for some term u. The instance of X(x) will then become
@(λx.u, x) and beta-reduce to u. This idea due to Klop is indeed very much
related to Miller’s notion of pattern: in a pattern, every occurrence of X must
be of the form X(x) with x bound above if X has arity one, and it becomes then
natural to define u as the substitute for X(x) rather than λx.u as a substitute
for X which does not exist as a syntactic term. We will later see that this
relationship is stronger than anticipated.

Example 6. Simply typed lambda calculus

Typ α, β : ∗
Ope app : (α→ β) → α⇒ β
Ope abs : (α→ β) ⇒ (α→ β)
Var U : α⇒ β
Var V : α
Var X : α→ β

Hor app(abs(λx : α.U(x)),V) → U(V)
Hor abs(λx : α.app(X, x)) → X

The beta-rule shows the use of a variable of arity one in order to internalize the
notion of substitution, while the eta-rule shows the use of a variable of arity zero
in order to eliminate the condition that x does not occur free in an instance of X:
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since X has arity zero, it cannot have an abstraction for substitute. And because
variable capture is forbidden by the definition of substitution, x cannot occur in
the substitute. The use of arity 1 for U is not essential here, since we could also
choose the arity zero to the price of replacing the first rule by the variant

Hor app(abs(U),V) → @(U,V).

The example is a variation of Klop’s, since we actually model a lambda calculus
with simple types. It also shows the need of a rich enough type structure for
specifying an example even as simple as this one.

3 Polymorphic Higher-Order Algebras

This section introduces the framework of polymorphic algebras [20, 22]. The use
of polymorphic operators requires a rather heavy apparatus.

3.1 Types

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n ⇒ ∗, and a set
S∀ of type variables, the set TS∀ of polymorphic types is generated from these
sets by the constructor → for functional types:

TS∀ := α | s(T n
S∀) | (TS∀ → TS∀)

for α ∈ S∀ and s : ∗n ⇒ ∗ ∈ S

where s(T n
S∀) denotes an expression of the form s(t1, . . . , tn) with ti ∈ TS∀ for all

i ∈ [1..n]. We use Var(σ) for the set of (type) variables of the type σ ∈ TS∀ . When
Var(σ) �= ∅, the type σ is said to be polymorphic and monomorphic otherwise.
A type σ is functional when headed by the → symbol, a data type when headed
by a sort symbol (basic when the sort symbol is a constant). → associates to the
right.

A type substitution is a mapping from S∀ to TS∀ extended to an endomorphism
of TS∀ . We write σξ for the application of the type substitution ξ to the type
σ. We denote by Dom(σ) = {α ∈ S∀ | ασ �= α} the domain of σ ∈ TS∀ , by σ|V
its restriction to the domain Dom(σ) ∩ V , by Ran(σ) =

⋃
α∈Dom(σ) Var(ασ) its

range. By a renaming of the type σ apart from V ⊂ X , we mean a type σξ where
ξ is a type renaming such that Dom(ξ) = Ran(σ) and Ran(ξ) ∩ V = ∅.

We shall use α, β for type variables, σ, τ, ρ, θ for arbitrary types, and ξ, ζ to
denote type substitutions.

3.2 Signatures

We are given a set of function symbols denoted by the letters f, g, h, which are
meant to be algebraic operators equiped with a fixed number n of arguments
(called the arity) of respective types σ1 ∈ TS∀ , . . . , σn ∈ TS∀ , and an output
type σ ∈ TS∀ such that Var(σ) ⊆

⋃
i Var(σi) if n > 0. We call aritype the
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expression σ1 → . . . → σn ⇒ σ when n > 0 and σ when n = 0, which can
be seen as a notation for the pair made of a type and an arity. The condition
Var(σ) ⊆

⋃
i Var(σi) if n > 0 ensures that aritypes encode a logical proposition

universally quantified outside, making our type system to come both rich and
simple enough. Let F be the set of all function symbols:

F =
⊎

σ1,...,σn,σ

Fσ1→...→σn⇒σ

The membership of a given function symbol f to the set Fσ1→...→σn⇒σ is called
a type declaration and written f : σ1 → . . . → σn ⇒ σ. A type declaration
is first-order if it uses only sorts, and higher-order otherwise. It is polymorphic
if it uses some polymorphic type, otherwise, it is monomorphic. Polymorphic
type declarations are implicitly universally quantified: they can be renamed ar-
bitrarily. Note that type instantiation does not change the arity of a function
symbol.

Alike function symbols, variables have an aritype. A variable declaration will
therefore take the same form as a function declaration.

3.3 Terms

The set T (F ,X ) of (raw) terms is generated from the signature F and a denu-
merable set X of arityped variables according to the grammar:

T := (λX : TS∀ .T ) | @(T , T ) | X (T , . . . , T ) | F(T , . . . , T ).

s will ambiguously denote a list, a set or a multiset of terms s1, . . . , sn. Terms
of the form λx : σ.u are called abstractions, the type σ being possibly omitted.
Because a type is a particular aritype, bound variables have arity zero. @(u, v)
denotes the application of u to v. Parentheses are omitted for function or variable
symbols of arity zero. The term @(v) is called a (partial) left-flattening of s =
@((. . .@(v1, v2)) . . . vn), v1 being possibly an application itself. Var(t) is the set
of free term variables of t.

Terms are identified with finite labeled trees by considering λx : σ. , for each
variable x and type σ, as a unary function symbol taking a term u as argument
to construct the term λx : σ.u. Positions are strings of positive integers. Λ and
· denote respectively the empty string (root position) and string concatenation.
Pos(t) is the set of positions in t. t|p denotes the subterm of t at position p.
Replacing t|p at position p in t by u is written t[u]p. The notation t[]p stands for
a context waiting for a term to fill its hole.

3.4 Typing Rules

Definition 1. An environment Γ is a finite set of pairs written as {x1 : σ1,
. . . , xn : σn}, where xi is a variable, σi is an aritype, and xi �= xj for i �= j.
Var(Γ ) = {x1, . . . , xn} is the set of variables of Γ . The size |Γ | of the environ-
ment Γ is the sum of the sizes of its constituents. Given two environments Γ and
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Γ ′, their composition is the environment Γ ·Γ ′ = Γ ′∪{x : σ ∈ Γ | x �∈ Var(Γ ′)}.
Two environments Γ and Γ ′ are compatible if Γ · Γ ′ = Γ ∪ Γ ′.

Our typing judgments are written as Γ �F s : σ. A term s has type σ in
the environment Γ if and only if the judgment Γ �F s : σ is provable in the
inference system of Figure 1. Given an environment Γ , a term s is typable if
there exists a type σ such that Γ �F s : σ.

Functions:
f : σ1 → . . . → σn ⇒ σ ∈ F
ξ some type substitution

Γ �F t1 : σ1ξ . . . Γ �F tn : σnξ

Γ �F f(t1, . . . , tn) : σξ

Variables:
X : σ1 → . . . → σn ⇒ σ ∈ Γ

Γ �F t1 : σ1 . . . Γ �F tn : σn

Γ �F X(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} �F t : τ

Γ �F (λx : σ.t) : σ → τ

Application:
Γ �F s : σ → τ Γ �F t : σ

Γ �F @(s, t) : τ

Fig. 1. The type system for polymorphic higher-order algebras with arities

Remember our convention that function and variable symbols having arity
zero come without parentheses. When writing a judgement Γ �F s : σ, we must
make sure that σ is a type in the environment defined by the signature. Types
are indeed unisorted first-order terms (of sort ∗). Since there is only one sort, and
type symbols have a fixed arity, verifying that an expression is a type amounts
to check that all symbols occurring in the expression are sort symbols or type
variables, and that all sort symbols in the expression have the right number of
types as inputs, an easily decidable property usually called well-formedness.

This typing system enjoys the unique typing property: given an environment
Γ and a typable term u, it can be easily shown by induction on u that there
exists a unique type σ such that Γ �F u : σ.

Note that type substitutions apply to types in terms: xξ = x, (λx : σ.s)ξ =
λx : σξ.sξ, @(u, v)ξ = @(uξ, vξ), and f(u)ξ = f(uξ).

3.5 Substitutions

Definition 2. A (term) substitution γ = {(x1 : σ1) 2→ (Γ1, t1), . . . , (xn : σn) 2→
(Γn, tn)}, is a finite set of quadruples made of a variable symbol, an aritype, an
environment and a term, such that
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(i) Let σi = τi1 → . . . → τip ⇒ τi. Then ti = λyi1 : τi1 . . . yip : τip .ui for
distinct variables yi1 , . . . , yip and term ui �= xi such that Γi �F ti : σi.

(ii) ∀i �= j ∈ [1..n], xi �= xj , and
(iii) ∀i �= j ∈ [1..n], Γi and Γj are compatible environments.

We may omit the aritype σi and environment Γi in (xi : σi) 2→ (Γi, ti).
The set of (input) variables of the substitution γ is Var(γ) = {x1, . . . , xn},

its domain is the environment Dom(γ) = {x1 : σ1, . . . , xn : σn} while its range
is the environment (by assumption (iii)) Ran(γ) =

⋃
i∈[1..n] Γi.

Definition 3. A substitution γ is compatible with an environment Γ if
(i) Dom(γ) is compatible with Γ ,
(ii) Ran(γ) is compatible with Γ \ Dom(γ).

We will also say that γ is compatible with the judgement Γ �F s : σ.

Definition 4. A substitution γ compatible with a judgement Σ �F s : σ operates
as an endomorphism on s and yields the instance sγ defined as:

If s = @(u, v) then sγ = @(uγ, vγ)

If s = λx : τ.u then
sγ = λz : τ.(u{x 2→ z})γ
with z fresh.

If s = f(u1, . . . , un) then sγ = f(u1γ, . . . , unγ)
If s = X(u1, . . . , un) and X �∈ Var(γ) then sγ = X(u1γ, . . . , unγ)

If
s = X(u1, . . . , un) and

(X : σ) 2→ (Γ, λy1 :τ1 . . . yn :τn.u) ∈ γ
then sγ =

@(λy1 :τ1 . . . yn :τn.u,
u1γ, . . . , unγ)

In the last case, we could also perform the introduced beta-reductions there-
fore hiding the application operator. Writing sγ assumes Dom(γ) compatible
with Γ �F s : σ and it follows that (Γ \ Dom(γ)) ∪ Ran(γ) �F sγ : σ. Given
γ, the composition or instance ({(xi : σi) 2→ (Γi, ti)}i)γ is the substitution
{(xi : σi) 2→ ((Γi \ Dom(γ)) ∪Ran(γ), tiγ)}i.

3.6 Higher-Order Rewriting Relations

We now introduce the different variants of higher-order rewriting, categorized
by their use of pattern matching. Allowing for variables with arities should be
considered as a cosmetic variation of the traditional frameworks, since this is
the case for the pattern matching and unification algorithms, as well as for the
definition of patterns.

Plain Higher-Order Rewriting.

Definition 5. A plain higher-order rewrite system is a set of higher-order
rewrite rules {Γi � li → ri : σi}i such that

(i) Γi �F li : σi and Γi �F ri : σi,
(ii) Var(r) ⊆ Var(l).
Plain higher-order rewriting is based on plain pattern matching:

Σ � u
p−→

Γ  l→r
v if Σ �F u : τ for some type τ, u|p = lσ and v = u[rσ]p.
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Note the need for an environment Σ in which u is typable. Then, it is easy to
see that Σ �F v : τ , a property called type preservation, which allows us to
actually drop the environment Σ so as to make our notations more readable. We
also often take the liberty to drop the type of a rule.

A higher-order equation is a pair of higher-order rewrite rules {Γ � l → r :
σ, Γ � r → l : σ}. We abbreviate such a pair by Γ � l = r : σ, and write
Σ � u←→∗

R v or Σ � u =R v if R is a set of equations.

Conversion Rules. Conversion rules in the typed lambda calculus are a par-
ticular example of higher-order equations:

{V : τ} � λx : σ.V =α λy : σ.V {x 2→ y}
{U : σ, V : τ} � @(λx : σ.V, U) =β V {x 2→ U}
{U : σ → τ} � λx : σ.@(U, x) =η U

Traditionally, these equations are schemas, in which U and V stand for arbi-
trary terms, with x �∈ Var(U) for the eta-rule and y �∈ (Var(V ) \ {x}) for the
alpha-rule. Here, these conditions are ensured by our definition of substitution,
hence these equations are indeed true higher-order equations.

Orienting the last two equalities from left to right yields the beta-reduction
(resp. eta-reduction) rule. Orienting the third equation from right to left yields
the eta-expansion rule. Since this rule may not terminate, its use is restricted
by spelling out in which context it is allowed:

{u : σ1 → . . .→ σn → σ} �
s[u]p −→p

η s[λx1 : σ1, . . . , xn : σn.@(u, x1, . . . , xn)]p

if
{
σ is a data type, x1, . . . , xn �∈ Var(u),
u is not an abstraction and s|q is not an application in case p = q · 1

The last condition means that the first argument of an application cannot be
recursively expanded on top. A variant requires in addition that p �= Λ.

Typed lambda-calculi are confluent modulo alpha-conversion, and terminat-
ing with respect to beta-reductions and either eta-expansion or eta-reduction,
therefore defining normal forms up to the equivalence generated by alpha-
conversion. Our notations for normal forms use down arrows for reductions: u↓β

and u↓βη; up arrows for expansions: u↑η; and their combined version for eta-long
beta-normal forms: u6η

β. We use u↓ for a normal form of some unspecified kind.
We can now introduce most general substitutions. Given Γ �F s, t : σ, a

solution (resp. higher-order solution) of the equation s = t is a substitution
γ such that sγ = t (resp. sγ =βη t) for a plain (resp. higher-order) pattern-
matching problem, and sγ = tγ (resp. sγ =βη tγ) for a plain (resp. higher-order)
unification problem. Solutions are called plain/higher-order matches/unifiers,
depending on which case is considered. A unifier γ is most general if any unifier
θ satisfies θ = γϕ (resp. θ =βη γϕ) for some substitution ϕ.

Normal Higher-Order Rewriting. Normal higher-order rewriting is based
upon higher-order pattern matching, rules must be normalized, and their left-
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hand sides must be patterns. Our definition of patterns specializes to Nip-
kow’s [24] when variables have arity zero:

Definition 6. A higher-order term u is a pattern if for every variable occurrence
of some variable X : σ1 → . . . σm ⇒ τ1 → . . . τn ∈ Var(u) with n > 1 and τn a
data type, there exists a position p ∈ Pos(u) such that

(i) u|p = @(X(x1, . . . , xm), xm+1, . . . , xm+n),
(ii) ∀i, j ∈ [1..m+ n], xi �= xj or i=j,
(iii) ∀i ∈ [1..m + n], there exists a position q < p in Pos(u) and a term v

such that u|q = λxi.v.

Assuming X : α ⇒ β → γ, λxy.@(X(x), y) is a pattern while λx.X(x),
λx.@(X(x), x) and λxy.Y (@(X(x), y) are not.

Computing the normal form of a pattern instance is done by normalizing
first the pattern u then the substitution γ, before to reduce every subexpression
@(Xγ(x1, . . . , xm), xm+1, . . . , xm+n). This simple schema in which the third step
is a development shows that Nipkow’s and Klop’s notions of rewriting coincide
when lefthand sides of rules are patterns. We believe that this is the very reason
why higher-order pattern matching and higher-order unification are decidable
for patterns, suggesting a more general notion of pattern. A related observation
is made in [13].

Definition 7. A normal higher-order rewrite system is a set of rules {Γi � li
→ ri : σi}i such that conditions (i) and (ii) of Definition 5 are satisfied, (iii) li
and ri are in normal form and li is a pattern.

Normal higher-order rewriting operates on terms in normal form:

Σ � u
p−→

Γ  l→r
v if u = u↓, u|p ∗←→

βη
lσ and v = u[rσ]p↓

There are several variants of normal higher-order rewriting, which use different
kinds of normal forms.

In [26] and [24], eta-long beta-normal forms are used. The higher-order rewrite
rules must satisfy the following additional condition:

(iv) type constructors are constants, there are no type variables, function
symbols and variables have arity 0, and rules are of basic type.

In [21], the framework is generalized, and condition (iv) becomes:
(v) type constructors may have a non-zero arity, type variables are allowed,

function symbols have aritypes, variables have arity 0, terms are assumed to be
in eta-long beta-normal form except at the top (eta-expansion is not applied
at the top of rules, but beta-normalization is), rules can be of any (possibly
polymorphic) type.

In [22], beta-eta-normal forms are used, and condition (iv) becomes:
(vi) type constructors have arities, type variables are allowed, constants and

variables have aritypes, lefthand sides of rules are of the form f(l1, . . . , ln) for
some function symbol f , and rules are of any type.
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The use of beta-eta-normal forms allows us to restrict the lefthand sides of
rules by assuming they are headed by a function symbol. Were eta-long beta-
normal forms used instead, this assumption would imply Nipkow’s restriction
that rules are of basic type. We will see some advantage of beta-eta-normal
forms for proving confluence and termination.

Mixed Higher-Order Rewriting. There is no reason to restrict ourselves to
a single kind of higher-order rules. It is indeed possible to use both, by pairing
each rule with the pattern-matching algorithm it uses, as done with the keywords
Prr,Hor used in the examples of Section 2. Of course, we need to have all lefthand
sides of both kinds of rules to be patterns, and need using the same kind of normal
form when rewriting terms. The choice of beta-eta-normal forms is dictated by
its advantages.

One can wonder whether there is a real need for two different keywords for
higher-order rules. As we have seen, higher-order pattern matching is needed if
and only if beta-redexes can be created by instantiation at non-variable positions
of the lefthand sides (eta-redexes cannot). This requires a subterm F (u1, . . . , um)
in the lefthand side of the rule, where F is a free variable of aritype σ1 →
. . . σm ⇒ σ with m > 0, an easily decidable property.

Mixed higher-order rewriting has not yet been studied in the literature al-
though it is explicitly alluded to in [22]. However, all known results can be easily
lifted to the mixed case. In the sections to come, we will present the results known
for both plain and higher-order rewriting, and formulate their generalization as
a conjecture when appropriate.

4 Confluence

In this section, we restrict our attention to terminating relations. Confluence will
therefore be checked via critical pairs, whose kind is imposed by the mechanism
for searching redexes.

Definition 8. Given two rules l → r and g → d, a non-variable position p ∈
Pos(l) and a most general unifier (resp. most general higher-order unifier) σ
of the equation l|p = g, the pair (rσ, l[dσ]p) is called a critical pair (resp., a
higher-order critical pair) of g → d on l→ r at position p.

A critical pair (s, t) is joinable if there exists v such that s−→∗
R v and t−→∗

R v.
It is higher-order joinable ( joinable when clear from the context) if there exist
v, w such that s−→∗

R v, t−→∗
R w and v←→∗

βη w.

Plain Higher-Order Rewriting. Using plain pattern matching leads to plain
critical pairs computed with plain unification. The following result follows easily
from Newman’s Lemma [15]:

Theorem 1. [7]. Given a set R of higher-order rules such that
(a) R ∪ {beta, eta} is terminating;
(a) all critical pairs in R ∪ {beta, eta} are joinable;

then plain higher-order rewriting with R ∪ {beta, eta} is confluent.
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It can easily be checked that Examples 1, 2 and 3 are confluent because they
do not admit any critical pair.

Higher-Order Rewriting. Replacing joinability by higher-order joinability
does not allow us to get a similar result for higher-order rewriting [24]. It is
indeed well-known, in the first-order case, that the natural generalization of
confluence of a set of rules R in presence of a set of equations E:

∀s, t, u in normal form such that u−→∗
R s and u−→∗

R t
∃v, w such that s−→∗

R v, t−→∗
R w and v←→∗

E w

is not enough for ensuring the Church-Rosser property:

∀s, t such that s←→∗
R∪E t

∃v, w such that s−→∗
R v, t−→∗

R w and v←→∗
E w

when searching for a redex uses E-matching. An additional coherence property
is needed:

∀s, t, u such that u−→∗
R s and u←→∗

E t
∃v and w such that s−→∗

R v, t−→∗
R w and v←→∗

E w.

Coherence can be ensured for an arbitrary equational theory E by using so-called
Stickel’s extension rules [30, 16]. In the case of higher-order rewriting, E is made
of alpha, beta and eta. Then, rules headed by an abstraction operator on the
left, that is, of the form

λx.l → r need as beta-extension the rule l→ @(r, x)↓

obtained by putting both sides of λx.l → r inside @([], x), the minimal context
generating a beta redex on top of its lefthand side. Normalizing the result yields
the extension. Note that a single extension is generated.

For example, the rule λx.a → λx.b, where a, b are constants has a → b
as extension. Indeed, a←−Λ

β @(λx.a, x)−→1
λx.a→λx.b @(λx.b, x)−→Λ

β b. However,
a �=βη λx.a since a and λx.a have different types. Therefore, a and b are differ-
ent terms in normal-form, although they are equal in the theory generated by
eta, beta, and the equation λx.a = λx.b. Adding the extension a→ b solves the
problem.

This explains Nipkow’s restriction that rules must be of basic type: in this
case, no lefthand side of rule can be an abstraction. Generalizing Nipkow’s frame-
work when this assumption is not met is not hard: it suffices to close the set of
rules with finitely many beta-extensions for those rules whose lefthand side is an
abstraction. This covers rules of arbitrary polymorphic functional type. Notice
also that no beta-extension is needed for rules whose lefthand side is headed by a
function symbol. Finally, because of the pattern condition, it is easy to see that
no extension is needed for the eta-rule. We therefore have the following result:

Theorem 2. [22] Given a set R of higher-order rules satisfying assumptions
(i,ii,iii) and (v) such that
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(a) R ∪ {beta, eta−1} is terminating;
(b) R is closed under the computation of beta-extensions;
(c) irreducible higher-order critical pairs of R are joinable;

then, higher-order rewriting with R is Church-Rosser.

Nipkow’s result stating confluence of higher-order rewriting when assumption
(iv) is met appears then as a corollary. The fact that it is a corollary is not
straightforward, since the termination assumption is different: Nipkow assumes
termination of higher-order rewriting with R. The fact that this coincides with
assumption (i) is however true under assumptions (i,ii,iii,iv) [22]. We can easily
see that Examples 4 and 5 (first version) do not admit higher-order critical pairs,
hence are Church-Rosser. Adding the other rules for differentiation would clearly
not change this situation.

Adding beta-extensions is not such a burden, but we can even dispense with
by using the variant of eta-long beta-normal forms in which eta-expansion does
not apply at the top of terms. Then, we can assume that the lefthand side
of a higher-order rule is headed by an application or by a function symbol
of non-zero arity if they are allowed, and no beta-extension is needed any-
more.

We now turn to the second kind of normal form:
Theorem 3. [22] Given a set R of higher-order rules satisfying assumptions
(i,ii,iii) and (vi) such that

(a) R ∪ {beta, eta} is terminating;
(b) irreducible higher-order critical pairs of R are joinable;

then, higher-order rewriting with R is Church-Rosser.

Example 5, as modified at the end of its paragraph, has no higher-order critical
pairs, hence is Church-Rosser.

Altogether, the framework based on βη-normal forms appears a little bit more
appealing.

Mixed Higher-Order Rewriting. We end up with the general case of a set of
higher-order rules R split into disjoint subsets R1 using plain pattern matching,
and R2 using higher-order pattern matching for terms in beta-eta-normal form.
We assume that R satisfies assumptions (i,ii), that lefthand sides of rules in R1
are headed by a function symbol, and that R2 satisfies assumption (iii,vi). When
these assumptions are met, we say that R is a mixed set of higher-order rules.
Rewriting then searches for R1-redexes with plain pattern-matching, and uses
beta-eta-normalization before to search for R2-redexes with higher-order pattern
matching.

Our conjecture follows a similar analysis made for the first-order case, with
left-linear rules using plain pattern matching, and non-left-linear ones using pat-
tern matching modulo some first-order theory E [16]:

Conjecture. Given a mixed set R = R1 0R2 of higher-order rules such that
(i) R ∪ {βη} is terminating;
(ii) irreducible plain critical pairs of R1 are joinable;
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(iii) irreducible higher-order critical pairs of R2 are joinable;
(iv) irreducible higher-order critical pairs of R2 with R1 are joinable;

then, mixed higher-order rewriting with R is Church-Rosser.

5 Termination of Plain Higher-Order Rewriting

Given a rewrite system R, a term t is strongly normalizing if there is no infi-
nite sequence of rewrites with R issuing from t. R is strongly normalizing or
terminating if every term is strongly normalizing.

Termination of typed lambda calculi is notoriously difficult. Termination of
the various incarnations of higher-order rewriting turns out to be even more
difficult. There has been little success in coming up with general methods. The
most general results have been obtained by Blanqui [5, 6], as a generalization of
a long line of work initiated by Jouannaud and Okada [18, 17, 1, 4, 7]. We will not
describe these results here, but base our presentation on the more recent work
of Jouannaud and Rubio [19, 20] which is strictly more general in the absence of
dependent types. The case of dependent types is investigated in [33], but requires
more work.

Higher-Order Reduction Orderings. The purpose of this section is to define
the kind of ordering needed for plain higher-order rewriting. To a quasi-ordering
7, we associate its strict part 8 and equivalence %. Typing environments are
usually omitted to keep notations simple.

Definition 9. [20] A higher-order reduction ordering is a quasi-ordering 7
of the set of higher-order terms, which (i) well-founded, (ii) monotonic (i.e.,
s 8 t implies u[s] 8 u[t] for all contexts u[]), (iii) stable (i.e., s 8 t implies
sγ 8 tγ for all compatible substitutions γ) and (iv) includes alpha-conversion
(i.e. =α ⊆ %) and beta-eta-reductions (i.e., −→βη ⊂ 8). It is polymorphic
if s 8 t implies sξ 8 tξ for any type instantiation ξ.

Note that the above definition includes the eta-rule, and not only the beta-rule
as originally. This extension does not raise difficulties.

Theorem 4. [20] Assume that 7 is a higher-order reduction ordering, and let
R = {Γi � li → ri}i∈I be a plain higher-order rewrite system such that li 8 ri
for every i ∈ I. Assume in addition that 7 is polymorphic if so is R. Then the
relation −→R ∪−→βη is terminating.

The proof of the previous result is not difficult: it is based on lifting the
property li 8 ri to a rewrite step u−→p

li→ri
v by using the properties of the

ordering. A simple induction allows then to conclude.

Higher-Order Recursive Path Ordering. We give here a generalization of
Derhowitz’s recursive path ordering to higher-order terms. Although the ob-
tained relation is transitive in many particular cases, it is not in general, hence
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is not an ordering. We will nevertheless call it the higher order recursive path
ordering, keeping Dershowitz’s name for the generalization. We feel free to do
so because the obtained relation is well-founded, hence its transitive closure is
a well-founded ordering with the same equivalence, taken here equal to alpha-
conversion for simplicity. We are given:

1. a partition Mul 0 Lex of F ∪ S;
2. a quasi ordering ≥FS on F ∪ S, the precedence, such that

(a) >F is well-founded (F ∪ S is not assumed to be finite);
(b) if f =FS g, then f ∈ Lex iff g ∈ Lex;
(c) >FS is extended to F ∪ X ∪ S by adding all pairs x ≥FS x for x ∈ X

(free variables are only comparable to themselves);
3. a set of terms CC(s) called the computability closure of s: in the coming

definition, CC(f(s)) = s, but will become a richer set later on.

The definition compares types and terms in the same recursive manner, using
the additional proposition (assuming that s and f(t) are terms)

A = ∀v ∈ t s 8
horpo

v or u 7
horpo

v for some u ∈ CC(s)

Definition 10.

s : σ 8
horpo

t : τ iff (σ = τ = ∗ or σ 7
horpo

τ) and

1. s = f(s) with f ∈ F ∪ S, and u 7
horpo

t for some u ∈ CC(s)

2. s = f(s) and t = g(t) with f >FS g, and A (see definition below)
3. s = f(s) and t = g(t) with f =FS g ∈Mul and s( 8

horpo
)mult

4. s = f(s) and t = g(t) with f =FS g ∈ Lex and s( 8
horpo

)lext, and A

5. s = @(s1, s2) and u 7
horpo

t for some u ∈ {s1, s2}

6. s = λx : σ.u, x �∈ Var(t) and u 7
horpo

t

7. s = f(s), @(t) a left-flattening of t, and A
8. s = f(s) with f ∈ F , t = λx : α.v with x �∈ Var(v) and s 7

horpo
v

9. s = @(s1, s2), @(t) a left-flattening of t and {s1, s2}( 8
horpo

)mult

10. s = λx : α.u, t = λx : β.v, α %
horpo

β and u 8
horpo

v

11. s = @(λx.u, v) and u{x 2→ v} 7
horpo

t

11bis. s = λx.@(u, x) with x �∈ Var(u) and u 7
horpo

t

12. s = α→ β, and β 7
horpo

t

13. s = α→ β, t = α′ → β′, α %
horpo

α′ and β 8
horpo

β′

14. s = X(s) and t = X(t) and s(8horpo)mult
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We assume known how to extend a relation on a set to n-tuples of elements
of the set (monotonic extension -comparing terms one by one with at least one
strict comparison-, or lexicographic extension -comparing terms one by one until
a strict comparison is found) or to multisets of elements of the set (multiset
extension).

The computability closure was called computational closure in [19].
Case 14 does not exist as such in [20], but follows easily from Case 9. Neither

does Case 11bis, used for proving the eta-rule. An immediate subterm u of s is
type-decreasing if the type of u is smaller or equal to the type of s. Condition
A differs from its first-order version ∀v ∈ t s8horpov, but reduces to it when all
immediate subterms of s are type-decreasing, because 8horpo enjoys the subterm
property for these subterms. Indeed, the restriction of the ordering to subterm-
closed sets of terms whose all immediate subterms are type-decreasing, as are
types, is transitive.

A more abstract description of the higher-order recursive path ordering is
given in [20], in which the relation on terms and the ordering on types are
separated, the latter being specified by properties to be satisfied. The version
given here, also taken from [20], shows that the same mechanism can apply to
terms and types, a good start for a generalization to dependent type structures.

Theorem 5. (8horpo)∗ is a polymorphic higher-order reduction ordering.

The proof is based on Tait and Girard’s computability predicate technique (Gi-
rard’s candidates are not needed for weak polymorphism) [20].

We go on checking the examples of Section 2, making appropriate choices
when using property A.

The Higher-Order Recursive Path Ordering at Work.

Example 1. Let us first recall the rules for rec:

rec(0,U,Y) → U
rec(s(X),U,Y) → @(Y,X, rec(X,U,Y))

We assume a multiset status for rec.
Since both sides of the first equation have the same (polymorphic) type α, the

comparison rec(0,U,Y)8horpo U proceeds by Case 1 and succeeds easily since Y
belongs to the computability closure of rec(0,U,Y) as one of its subterms.

As it can be expected, both sides of the second equation have again the same
type. The comparison rec(s(X),U,Y)8horpo @(Y,X, rec(X,U,Y)) proceeds this
time by Case 7, generating three subgoals (we use here property A, choosing a
subterm when possible). The first subgoal Y7horpo Y is solved readily since Y
is a subterm of the lefthand side. The second subgoal s(X)7horpo X is solved by
Case 1. The third subgoal, namely rec(s(X),U,Y)8horpo rec(X,U,Y) is solved by
Case 3, which generates the three easy comparisons s(X)8horpo X, U7horpo U
and Y7horpo Y.
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Example 2. Let us recall the rules:

map(nil,F) → nil
map(cons(H,T),F) → cons(@(F,H),map(T,F))

We assume the precedence map >FS cons and membership of map to Mul. The
first rule being easy, let us consider the second. Our goal is
(i) map(cons(H,T),F)8horpo cons(@(H,F),map(T,F))
which first checks types and then reduces to two new goals by Case 2:
(ii) map(cons(H,T),F)8horpo @(F,H)
(iii) map(cons(H,T),F)8horpo map(T,F)
Goal (ii) reduces by Case 7 to three new goals
(iv) list(β)8horpo β
(v) F7horpo F, which disappears
(vi) cons(H,T)7horpo H
Goal (iv) is taken care of by Case 1 while Goal (vi) reduces by Case 1 to
(vii) list(α)8horpo α
(viii) H8horpo H, which disappears.
Goal (vii) is taken care of by Case 2. We are left with goal (iii) which reduces
by Case 3 to
(iv) {cons(H,T),F}(8horpo)mul{T,F}
which yields one (last) goal by definition of (8horpo)mul:
(x) cons(H,T)8horpo T, which is taken care of by Case 1.

Example 3. The example of parametric insertion sort raises a difficulty. Let us
recall the rules:

max(0,X) → X max(X, 0) → X
max(s(X), s(Y)) → s(max(X,Y))

min(0,X) → 0 min(X, 0) → 0
min(s(X), s(Y)) → s(min(X,Y))

insert(N, nil,X,Y) → cons(N, nil)
insert(N, cons(M,T),X,Y) → cons(@(X,N,M), insert(@(Y,N,M),T,X,Y))

sort(nil,X,Y) → nil
sort(cons(N,T),X,Y) → insert(N, sort(T,X,Y),X,Y)

ascending sort(L) → sort(L, λxy.min(x, y), λxy.max(x, y))
descending sort(L) → sort(L, λxy.max(x, y), λxy.min(x, y))

The reader can check that all comparisons succeed with appropriate precedence
and statuses, but the last two:

ascending sort(L) 8horpo sort(L, λxy.min(x, y), λxy.max(x, y))
descending sort(L) 8horpo sort(L, λxy.max(x, y), λxy.min(x, y))

This is because the subterm λxy.min(x, y) occurring in the righthand side has
type α→ α→ α, which is not comparable to any lefthand side type.
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Computability Closure. Our definition of 8horpo is parameterized by the
definition of the computability closure. In order for Theorem 5 to hold, it suf-
fices to make sure that the closure is made of terms which are all computable
in the sense of Tait and Girard’s computability predicate (termed reducibility
candidate by Girard). Computability is guaranteed for the immediate subterms
of a term by an induction argument in the strong normalization proof, and we
can then enlarge the set of computable terms by using computability preserving
operations.

Definition 11. Given a term t = f(t) of type σ, we define its computable closure
CC(t) as CC(t, ∅), where CC(t,V), with V ∩Var(t) = ∅, is the smallest set of well-
typed terms containing all variables in V, all terms in t, and closed under the
following operations:

1. subterm of minimal data-type: let s ∈ CC(t,V) with f ∈ F , and u : σ be a
subterm of s such that σ is a data-type minimal in the type ordering and
Var(u) ⊆ Var(t); then u ∈ CC(t,V);

2. precedence: let g such that f >FS g, and s ∈ CC(t,V); then g(s) ∈ CC(t,V);
3. recursive call: let s be a sequence of terms in CC(t,V) such that the term
f(s) is well typed and t(8horpo ∪��)statf

s; then f(s) ∈ CC(t,V);
4. application: let s : σ1 → . . .→ σn → σ ∈ CC(t,V) and ui : σi ∈ CC(t,V) for

every i ∈ [1..n]; then @(s, u1, . . . , un) ∈ CC(t,V);
5. abstraction: let x /∈ Var(t) ∪ V and s ∈ CC(t,V ∪ {x}); then λx.s ∈ CC(t,V);
6. reduction: let u ∈ CC(t,V), and u7horpo v; then v ∈ CC(t,V);
7. weakening: let x �∈ Var(u, t) ∪ V. Then, u ∈ CC(t,V ∪ {x}) iff u ∈ CC(t,V).

(Case 11bis can be removed since it now follows from Case 1)
The new definition of the computability closure uses the relation8horpo, while

the new relation is denoted by 8chorpo. Whether this notational difference in-
troduced in [19] is necessary is doubtful, but allows to define the ordering in a
hierarchical way rather than as a fixpoint. The proofs would otherwise be surely
harder than they already are. Note that Case 11bis can now be removed since it
now follows from Case 1.

We can now show termination of the two remaining rules of Example 3:
(i) ascending sort(L)8chorpo sort(L, λxy.min(x, y), λxy.max(x, y))
(ii) descending sort(L)8chorpo sort(L, λxy.max(x, y), λxy.min(x, y))

Since both proofs are almost identical, we only consider goal (i). We assume
the precedence ascending sort >FS sort,min,max. First, note that using rule 2
does not work, since we would generate the goal
ascending sort(L)8chorpo λxy.max(x, y)
which fails for typing reason. Instead, we immediately proceed with Case 1 of
the ordering definition, showing that the whole righthand side is in the com-
putability closure of the lefthand one:
(iii) sort(L, λxy.max(x, y), λxy.min(x, y)) ∈ CC(ascending sort(L), ∅)
By precedence Case 2 of the computability closure, we get three goals:
(iv) L ∈ CC(ascending sort(L), ∅)
(v) λxy.max(x, y) ∈ CC(ascending sort(L), ∅)
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(vi) λxy.min(x, y)) ∈ CC(ascending sort(L), ∅)
Goal (iv) is easily done by the basic case of the inductive definition of the com-
putability closure. Goal (v) is similar to goal (vi), which we do now. By weakening
Case 7 applied twice, we get the new goal:
(vii) min(x, y)) ∈ CC(ascending sort(L), {x, y})
Applying now precedence Case 2 of the closure, we get the new goals
(viii) x ∈ CC(ascending sort(L), {x, y})
(ix) y ∈ CC(ascending sort(L), {x, y})
which are both solved by basic case of the inductive definition.

6 Termination of Normal Higher-Order Rewriting

The situation with normal higher-order rewriting is a little bit more delicate
because of the definition in which rewritten terms are normalized. Lifting a
comparison from a rule l 8 r to an instance lσ↓ 8 rσ↓ may not be possible
for a given higher-order reduction ordering, but may be for some appropriate
subrelation.

Definition 12. A subrelation 8β of 8 is said to be ↓-stable if s 8β t implies
sγ ↓β 8 tγ ↓β for all normalized terms s, t and normalized substitution γ.

Theorem 6. [20] Assume that 8 is a higher-order reduction ordering and that
8β is a ↓-stable subrelation of 8. Let R = {Γi � li → ri}i∈I be a normal higher-
order rewrite system such that li 8β ri for every i ∈ I. Assume in addition that 7
is polymorphic if so is R. Then normal higher-order rewriting with R is strongly
normalizing.

The proof of this result is quite similar to that of Theorem 4. Let us remark
that 8horpo is not ↓-stable. The following example shows the kind of problematic
term:

Example 8. @(X, f(a))8horpo @(X, a)8horpo a, while instantiating these com-
parisons with the substitution γ = {X 2→ λy.a} yields X(f(a))γ↓ = X(a)γ↓
= a, contradicting ↓-stability. �

It turns out that only the beta rule may cause a problem for the higher-
order recursive path ordering, hence our notation 8β , by turning a greater than
comparison into an greater than or equal to comparison. As a consequence, the
coming discussion applies to all kinds of normal higher-order rewriting, using
eta either as a reduction or as an expansion, and with or without arities.

Definition 13. The relation (8horpo)β , called normal higher-order recursive
path ordering is defined as the relation 8horpo, but restricting Cases 5 and 9 as
follows:

5. . . . if s1 is not an abstraction nor a variable, and u = s2 otherwise.
9. . . . if s1 is not an abstraction nor a variable, and {s2}((8horpo)β )mult

otherwise.
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Although the main argument of the proof is that this definition yields a (well-
founded) subrelation of the higher-order recursive path ordering, showing that
it is beta-stable happens to be a painful technical task, especially when using
eta-expansions. Note that we could think adding two new cases, by incorporating
the cases removed from (8horpo)β in the equivalence part of the new relation:

14. @(X(s), u)(7horpo)β @(X(t), v) if s u((7horpo)β )montv

The study of this variant should be quite easy.
It is unfortunately not enough to modify the ordering as done here in presence

of a computational closure which is not reduced to the set of subterms: the
definition of the closure itself needs cosmetic modifications to ensure that the
ordering is stable. Since they do not impact the example to come, we simply refer
to the original article for its precise definition [21]. Let us denote the obtained
relation by (8chorpo)β .

Theorem 7. ((8horpo)β )∗ and ((8chorpo)β )∗ are polymorphic ↓-stable higher-
order reduction orderings.

We now test the ordering (8chorpo)β against our remaining examples. We
shall refer to Definition 10 for the cases of Definition 13 that did not change,
and to the modifications for the changed ones.

Example 4. Differentiation 1. Let us recall the goal, writing all applications
on left, and flattening them all on the right:
(i) @(@(diff, λx.@(sin, (@(F, x)))), y) (8chorpo)β

@(mul,@(cos,@(F, y)),@(diff, λx.@(F, x), y))
We take D >F {mul, sin, cos} for precedence and assume that the function

symbols are in Mul. By Case 9 applied to the goal (i), we get
(ii) {@(diff, λx.@(sin, (@(F, x)))), y}((8chorpo)β )mul

{mul,@(cos,@(F, y)),@(diff, λx.@(F, x), y)}
Because y occurs free in the term @(cos,@(F, y)) taken from the multiset on the
right and because y is the only term in the left multiset in which y occurs free,
there is no possibility to solve the previous goal and the whole comparison fails.
There might be a way out by using the closure mechanism for applications, but
this variant has not been studied yet.

Example 5. Differentiation 2. Let us recall this applications-free goal:
(i) diff(λx. sin(F(x)))(8chorpo)β mul(λx. cos(F(x)), diff(λx.F(x)))
We take the precedence diff >FS mul >FS sin =FS cos and assume that all
function symbols are in Mul. By Case 2 applied to goal (i), we get:
(ii) λx. sin(F(x))(7chorpo)β λx. cos(F(x))
(iii) diff(λx. sin(F(x)))(8chorpo)β diff(λx.F(x))
Goal (ii) reduces successively to
(iv) sin(F(x))(7chorpo)β cos(F(x)) by Case 10
(v) F(x)(7chorpo)β F(x) by Case 3, which disappears.
We proceed with goal (iii) which reduces successively to
(vi) λx. sin(F(x))(8chorpo)β λx.F(x) by Case 3
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(viii) sin(F(x))(8chorpo)β F(x) by Case 10
(ix) F(x) ∈ CC(sin(F(x))) by Case 1,
which disappears by base case of the closure definition.

With the same precedence, the reader can now try the modified version of Ex-
ample 5: the computation goes as if using Dershowitz’s recursive path ordering.
We observe the influence of seemingly equivalent definitions on the computation,
suggesting that some work is still necessary to improve the higher-order recursive
path ordering in the normalized case.

7 Termination of Mixed Higher-Order Rewriting

Conjecture. Given a mixed set R = R10R2 of higher-order rules, a polymorphic
higher-order ordering 8 and a ↓βη-stable subrelation 8βη of 8 such that l 8 r
for any rule l → r ∈ R1 and l 8βη r for any rule l → r ∈ R2, then mixed
rewriting with R is terminating.

The proof follows from the fact 8 decreases along beta-eta-reductions.

8 Conclusion

We have shown here how the various versions of higher-order rewriting relate
to each other, and can be enriched so as to yield a new framework in which
they coexist. We have also shown how the classical properties of rewriting can
be checked with the help of powerful tools, like higher-order critical pairs, beta-
extensions, the higher-order recursive path ordering, and the computing closure.
We left out sufficient completeness, which has been only recently addressed in
the case of plain rewriting [8].
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Abstract. There have been several timed extensions of ACP-style pro-
cess algebras with successful termination. None of them, to our knowl-
edge, are equationally conservative (ground-)extensions of ACP with suc-
cessful termination. Here, we point out some design decisions which were
the possible causes of this misfortune and by taking different decisions,
we propose a spectrum of timed process algebras ordered by equational
conservativity ordering.

1 The Untimed Past

The term “process algebra” was coined by Jan Bergstra and Jan Willem Klop in
[8] to denote an algebraic approach to concurrency theory. Their process algebra
had uniform atomic actions ai for i ∈ I (with I some index set), sequential
composition · , choice (alternative composition) + and left merge ‖ as the
basic composition operators.1

Much of the core theory of [8] remained intact in the course of more than
20 years of developments in the ACP-school (for Algebra of Communicating
Processes) of process algebra. Their theory has however been subject to a number
of, rather important, extensions and improvements. Next, we list some of the
developments that are most relevant to the subject matter of this paper.

1. A major improvement over the process algebra of [8] was combining the con-
cepts of communication and concurrency in the Algebra of Communicating
Processes (ACP) which was proposed by Bergstra and Klop in [9, 10]. In the
process algebra of [8], parallel composition x || y was a shorthand as defined
below.

x || y .= (x‖ y)+(y‖ x)
There was no possibility for the parallel components to communicate or
synchronize. The situation was improved in [9, 10] by introducing a (total)
communication function, defining a communication merge operator | and
raising the parallel composition operator || to a basic composition operator
in the algebra, rather than a defined term.

1 Sequential composition was called “concatenation” and choice was called “union”
in [8].
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2. Another major improvement has been the addition of identity elements.
Bergstra and Klop in [8] did study the addition of a constant 0 which is
an identity element for both nondeterministic choice and sequential compo-
sition but then they ruled out this option by observing that the addition of
0 leads to the following counter-intuitive equality:

x · y = (x+ 0) · y = (x · y)+(0 · y) = (x · y)+ y

The above equality states that the sequential composition may forget about
its first argument which is indeed pathological. A couple of years had to pass
to reveal that, as in ordinary rings, two process constants ε and δ can be used
to give · and + their identity elements, respectively [16, 22]. (Note that
unlike in rings, left-distributivity of choice over sequential composition is
still prohibited in the extended process algebra.) Hence, the process algebra
PAε

δ of [22] had two extra constants ε and δ. A different proposal for the
interplay of ε and parallel composition was formulated in [4, 7]. There, a new
unary function symbol

√
( ) is added to the signature in order to capture

the possibility of termination for complex terms. ACP of [9, 10] had δ as
an identity element for choice but lacked ε. In both [16, 22], ε is added to
ACP resulting in ACP ε. The constant ε denotes termination, whereas the
action constant encompasses both the action execution and the termination
afterwards.

3. The third improvement concerning the subject matter of this paper was
the addition of quantitative time. Baeten and Bergstra, in [2], proposed a
real-time-stamped extension of ACP . In [3], they extend ACP with discrete
time using prefix operators σrel. and σabs. for relative and absolute timing,
respectively.

Vereijken tried to extend the result of the first and second improvements with
the third aspect in Chapter 6 of his Ph.D. thesis [20]. There, he introduced
ACPdrt ,ε − ID as a discrete time extension of ACP ε (here, −ID denotes the
absence of an immediate deadlock constant). However, as it turns out, the above
three extensions do not match perfectly: while the extensions in each direction
can be interpreted as a conservative one, there is no conservativity result for the
extension of ACPε with timing. In the next section, we review design decisions on
the way to timing untimed process algebras. Among the design decisions, we try
to find possible cause(s) for this misfortune and will try to improve the situation
by redesigning the extensions. This way, we may deviate from the commonly
accepted principles of ACP , as we see appropriate. The result will be a lattice
of process theories ordered by equational conservativity ordering.

2 Timing the Untimed

The following design decisions have to be taken in order to extend an untimed
process algebra with timing information:

1. Delayable vs. urgent actions: When extending an untimed process algebra
with timing, a natural question is how to deal with the timing behavior
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of untimed basic actions. One choice is to regard them as urgent actions
without any timing behavior. Another choice is to allow for an arbitrary
timing behavior and introduce new urgent actions. The same decision has
to be taken for deadlock and successful termination constants. We believe
that taking the untimed actions (deadlock, termination) to be delayable
is the more natural choice. The fact that no timing information is given
should allow for an arbitrary timing of the implementation, rather than
only allowing for the case of the urgent process. Further elaboration of the
arguments can be found in [1].

2. Time stamped actions vs. separation of actions and time: Timing can be
added to actions in terms of time stamps or alternatively, in terms of a
separate delay operator. We choose the second option, as does most of the
literature [17, 19, 15].

3. Time (non)determinism: Time determinism means that passage of time can-
not make a choice. Usually, in timed extensions of ACP a weaker version of
time determinism is used by forcing that time cannot make a choice unless
one of the options prevents time to pass. In the latter case, a time transition
shall resolve the choice in favor of options that allow for it. This is called
weak time-determinism, and allows for a simple description of a time-out
mechanism.

4. Time domain: Several decisions can be taken for the appropriate time do-
main. Existence or absence of a least element, discreteness or denseness of
the time domain and having a partial (branching) or full (linear) ordering
on the elements of the time domain often lead to different timed theories.
Here, we choose for a discrete time domain with a total linear ordering. This
choice leads to the simplest theory, and is also the choice taken most often
in the literature [17, 19, 15] (see [20] for an overview).

5. Relative vs. absolute time: The timing information may be taken relative to
the successful termination of causally preceding actions or alternatively, to
a fixed starting point. Here, we take the relative timing approach which is
simpler to deal with. Our discussions carry over to the setting with absolute
timing. We refer to [5] for more information on relative and absolute timing.

Let us take the above design decisions, and let us consider the timed extension
of a simple process algebra, BPAε

δ, the theory BPA of [8] extended with constants
δ and ε (see [20, 1] for an overview of the above design decisions). Operational
rules for this theory are given in Table 1.

We fix the notation used for transition system specifications (TSS) in this
paper, as follows. The table containing the TSS is labelled with TSS (Name)
where Name is the name of the process theory for which we are defining a TSS.
For example in Table 1, we define a TSS for BPAε

δ and hence the table is labelled
by it. Then, we name the TSS which we include in the definition, i.e., the TSS
being extended. In an extension, we include the signature, transition relations,
predicates and deduction rules from the original TSS and hence do not re-state
them in the extended TSS. Table 1 does not extend any previous theory and
hence the extension line is empty. Subsequently, we give the signature of the
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Table 1. Transition system specification for BPAε
δ(A)

TSS(BPAε
δ(A))

constant: δ, ε, (a)a∈A; binary: · , + ;

↓; ( a→ )a∈A;
x, x′, y, y′;

ε↓ a
a→ ε

x
a→ x′

x · y a→ x′ · y
x↓ y

a→ y′

x · y a→ y′
x↓ y↓
x · y↓

x↓
x + y↓

y↓
x + y↓

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

theory in terms of function symbols and their arities. In Table 1, the signature
consists of constants δ, ε and actions a ∈ A, as well as binary function symbols
. and + for sequential composition and choice, respectively. The transition

relations and predicates being defined by the TSS follow afterwards. In the TSS
of Table 1, → is the transition relation labelled by a ∈ A and ↓ is the termination
predicate. Finally, the set of deduction rules is presented. Most of the deduction
rules given in Table 1 are quite standard and self-explanatory.

Before we continue with the extension of the basic process algebra to the
timed setting, we fix the semantics of TSS’s in terms of their induced transition
relations and predicates. We write TSS (A) 	 p l→ q and TSS (A) 	 P (p), where
p and q are closed terms from the signature of TSS (A), and l→ is a transition
relation and P is a predicate, and by that we mean formulae p l→ q and P (p) are
provable in TSS (A). Due to the presence of negative premises (in the TSS’s that
are yet to be presented in this paper), it is not clear what is a proof for negative
premises and several different interpretations exist in the literature (see [13] for
an overview). However, for the purpose of TSS’s presented in this paper all the
existing interpretations coincide (since they are all strictly stratified, see [14, 11]
for the definition and details) and hence, it does not matter which interpretation
we choose. Next, we define the notion of stable model as an intuitive semantics
for TSSs with negative premises.

Definition 1 (Stable Model). We say a positive closed formula φ is provable
from a set of positive formulae T and a TSS tss, denoted by (T, tss) � φ when
there is a well-founded upwardly branching tree with nodes labelled by closed
formulae such that:

– the root node is labelled by φ, and
– if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}

is the set of labels of the nodes directly above q, then there is a deduction rule
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{χi | i ∈ I}
χ

in tss (N.B. χi can be a positive or a negative formula) and a

substitution σ such that σ(χ) = ψ and for all i ∈ I, σ(χi) = ψi;
– if the label of a node q, denoted by p l

� , is a negative formula then there
exists no p′ such that p l→ p′ ∈ T (or similarly, if it is of the form ¬p↓ then
p /∈ ↓).

A stable model defined by tss is a set of formulae T such that for all closed
positive formulae φ, φ ∈ T if and only if (T, tss) � φ.

Using the notion of stable model, we can associate a transition system to
each closed term in the signature. To define an equality on transition systems
and turn them into model for process algebras, we need a notion of behavioral
equivalence. Strong bisimilarity is one such notion of behavioral equivalence
which can be efficiently checked in practice and usually leads to elegant theories.

Definition 2 (Bisimilarity). A symmetric relation R on closed terms is called
a (strong) bisimulation relation with respect to a transition relations → and a
predicates P , when for all (p, q) ∈ R, and for all labels l and closed terms p′,

– if p l→ p′ then there exists a q′ such that q l→ q′ and (p′, q′) ∈ R, and
– if p↓ then q↓.

We write TSS (A) 	 p ↔ p′ for closed terms p and p′ when they are (strongly)
bisimilar with respect to the stable model of TSS (A).

To extend BPAε
δ with timing, we add the unit time transitions 2→ (which can

be considered as an acronym for 1→ where 1 is a fresh label dedicated to time
transitions). At the same time, we add additional constants ε (termination in
the current time slice), δ (deadlock in the current time slice), a (action execution
in the current time slice, for a ∈ A) and σ (unit delay). The resulting extension
is called BPAε

drt,δ; see Table 2.
The first three deduction rules of Table 2 specify the delayable nature of

δ, ε and a whereas the next three rules specify the undelayable nature of δ, ε
and a. Let’s next focus on the last three deduction rules: they specify the time-
deterministic behavior of choice, i.e., time transitions cannot decide about a
choice unless one of the two arguments of choice prohibits time from progressing.
The remaining deduction rules specify the behavior of sequential composition.
These are rather involved since they have to maintain time-determinism. If a
delay can take place in two forms, i.e., by delaying the first argument and by
delaying the second argument after the termination of the first, then both options
are kept open (the first rule). Otherwise, if exactly one of these two forms is
possible then there remains no choice and only possible delay takes place (the
second and the third rule).

While this theory can be worked out in full, and indeed has an elegant axiom-
atization, it does lead to complications. These complications have to do with the
fact that the action constants involve both action execution and termination. In
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Table 2. Transition system specification for BPAε
drt,δ(A).

TSS(BPAε
drt,δ(A))

TSS(BPAε
δ(A))

constant: δ, ε, (a)a∈A, σ;

�→ ;

x, x′, y, y′;

δ �→ δ ε �→ ε a �→ a ε↓ a
a→ ε σ �→ ε

x �→ x′ x↓ y �→ y′

x · y �→ x′ · y + y′
x �→ x′ x 	↓
x · y �→ x′ · y

x �→ x′ y 	�→
x · y �→ x′ · y

x 	�→ x↓ y �→ y′

x · y �→ y′

x �→ x′ y �→ y′

x + y �→ x′ + y′
x �→ x′ y 	�→
x + y �→ x′

x 	�→ y �→ y′

x + y �→ y′

the timed extension, the immediate and delayable options for action execution
and termination lead to four different combinations:

– Action execution after an arbitrary delay, followed by termination after an
arbitrary delay (a);

– Immediate action execution followed by immediate termination (a);
– Action execution after an arbitrary delay, followed by immediate termination

(ε · a);
– Immediate action execution, followed by termination after an arbitrary delay

(a · ε).

In the extension of BPAε
δ with timing, we are forced to take the first option.

The problem is that this does not match with timed extensions of process algebra
without the ε constant. In BPAδ [7, 9], the operational rule for action constants
is a a→ √

, where
√

is not a process expression but a special symbol denoting
termination. Extending with time, time transitions can be added before action
execution, but not afterwards, so we are forced to take the third option.

In [20], the author follows this, so he interprets untimed actions following the
third choice. When extending with ε he gets a = ε · a. As a result, the extension
is not conservative, as the ground equation a · ε = a does not hold any longer in
the timed extension.

To combat this mismatch, in [1] it is proposed to separate action execution
and termination: by replacing action constants by action prefixing, termination
becomes explicit. As we will show further on, separating action execution and
termination by abandoning the idea of basic actions as constructors in the sig-
nature resolves many of the difficulties.
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This involves a deviation of a basic design decision in the untimed process
algebra: action prefixing is taken as the basic composition operator instead of
sequential composition, and sequential composition is added later on. However,
both in [1] and in [6] conservativity is not maintained for the operators‖ and |
that are used to define parallel composition. This inadequacy is solved in the
present paper.

Thus, we choose a departure point for the extension of process algebra with
termination and timing that has action prefixing instead of action constants.
Following [1, 6], we choose a basic theory called MPT (for Minimal Process The-
ory) with deadlock, action prefixing and choice. Then, we extend this theory with
successful termination which results in the theory BSP. Sequential and paral-
lel composition are subsequently added to BSP, resulting in the theories TSP
and TCP, respectively. Observe that ACP cannot be considered a conservative
(ground-)extension of TCP since the signature of TCP is not contained in the
signature of ACP and vice versa TCP is not a conservative (ground-)extension
of ACP since the signature of ACP is not contained in the signature of TCP.
However, it is possible to embed ACP into TCP by mapping the action constants
a ∈ A on the TCP-terms a.ε.

As our goal is to have equationally conservative ground-extensions of process
algebras, we extend our theory with timing at each level and establish the con-
servativity of the extension. In order to make the transition to timed settings
smoother, in addition to the time delay operator σ. , we add an arbitrary time de-
lay operator σ∗. which is very helpful in the axiomatization of complex theories
such as TSP and TCP. The result of the extension of theory X with undelayable
action prefix, undelayable termination and deadlock, (discrete) time delay and
arbitrary delay operators is denoted by Xdrt∗. The lattice of process theories
that we present in this paper (ordered by equational (ground-)conservativity re-
lation) is depicted in Figure 1. Each arrow is labelled by the function symbols
introduced in the target of the extension.

To give a formal meaning to the arrows presented in Figure 1, we define a few
concepts regarding conservativity. The first definition concerns the traditional
notion of operational conservativity.

Definition 3 (Operational Conservativity [12]). Consider TSS’s TSS (A)
and TSS (B) defined on signatures ΣA and ΣB such that TSS (B) includes
TSS (A) in its definition. Also, let C(Σx) denote the set of closed terms built
upon Σx. The TSS TSS (B) is an operationally conservative extension of TSS (A)
when ∀p∈C(ΣA) TSS (A) 	 p↓ ⇔ TSS (B) 	 p↓, and ∀p∈C(ΣA) ∀l∈LB ∀p′∈C(ΣB)

TSS (A) 	 p l→ p′ ⇔ TSS (B) 	 p l→ p′.

In the above definition, implicitly it is not allowed to have old relations from
old terms (C(ΣP )) to a new term (C(ΣB)). Note that the transition relations and
predicates in the above definition are taken from the extended TSS, i.e., TSS (B)
and hence an operationally conservative extension denies any new transition or
predicate from the terms from the old syntax, i.e., from C(ΣA). This turns out
to be too restrictive for time extensions since we decided to interpret untimed
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TCP TCPdrt∗

TSP TSPdrt∗

BSP BSPdrt∗

MPT MPTdrt MPTdrt∗

a. , ε, δ, σ. , σ∗.

||, ‖ , |

a. , ε, δ, σ. , σ∗.

||, ‖ , |

a. , ε, δ, σ. , σ∗.

. .

ε

a. , δ, σ. σ∗.

ε, ε

Fig. 1. The Lattice of Process Theories and Their Timed Extensions

basic actions as delayable and hence we have to add timing behavior to them.
This has been noted in [18] where the following alternative and more relaxed
notion of orthogonality was proposed.

Definition 4 (Orthogonality [18]). Consider TSS’s TSS (A) and TSS (B)
defined on signatures ΣA and ΣB such that TSS (B) includes TSS (A) in its
definition. The TSS TSS (B) is an orthogonal extension of TSS (A) when

1. ∀p∈C(ΣA) TSS (A) 	 p↓ ⇔ TSS (B) 	 p↓ and

∀p,p′∈C(ΣA) ∀l∈LA TSS (A) 	 p l→ p′ ⇔ TSS (B) 	 p l→ p′ and
2. ∀p,p′∈C(ΣA) TSS (A) 	 p ↔ p′ ⇔ TSS (B) 	 p ↔ p′.

Note that it follows from Definitions 3 and 4 that an operationally conservative
extension is orthogonal [18]. Both operational conservativity and orthogonality
are useful means to obtain equational conservativity as defined below.

Definition 5 (Equational Conservativity [18]). An equational theory B on
signature ΣB is an equationally conservative ground-extension of equational the-
ory A on ΣA if and only if ΣA ⊆ ΣB and for all p, p′ ∈ C(ΣA), A � p = p′ ⇔
B � p = p′.

If the axioms of equational theory A are (syntactically) included among the
axioms of equational theory B and B is an equationally conservative ground-
extension of A, then B is an equationally conservative extension of A.

In the above definition X � p = p′ means that p = p′ is derivable from the
equations in X . In our settings, this means that = is the congruence relation
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induced by the equations in X . We drop the prefixes equational and equation-
ally and simply write conservativity and conservative (ground)-extension in the
remainder.

In the outline presented in Figure 1, normal arrows denote equationally con-
servative extensions and dashed arrows denote equationally conservative ground-
extensions. Operational conservativity and orthogonality are mostly used as a
means to prove conservative extensions and conservative ground-extensions, re-
spectively. In the present paper, we focus on the process theories and on their
interrelationships using the previously mentioned notions of conservativity. We
present soundness and ground-completeness theorems for all theories, but omit
their proofs altogether.

3 Minimal Process Theory

3.1 MPT

The equational theory Minimal Process Theory (MPT) is specified in Table 3.

Table 3. MPT(A)

MPT(A)

constant: δ; unary: (a. )a∈A; binary: + ;
x, y, z;

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
x + δ = x A6

The transition system specification associated to the terms of MPT is given
in Table 4.

It is straightforward to check that the equational theory of MPT is a sound
and ground-complete axiomatization for its transition system semantics modulo
strong bisimulation.

Theorem 1 (Soundness). Let p and q be two closed MPT(A)-terms. If
MPT(A) � p = q, then TSS (MPT(A)) 	 p ↔ q.

Theorem 2 (Ground-completeness). Let p and q be arbitrary closed
MPT(A)-terms. If TSS (MPT(A)) 	 p ↔ q, then MPT(A) � p = q.

3.2 MPTdrt

The equational theory of MPT with discrete relative timing (MPTdrt) [1] is spec-
ified in Table 5. It adds undelayable action prefixing a. , undelayable deadlock
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Table 4. Transition system specification for MPT(A)

TSS(MPT(A))

constant: δ; unary: (a. )a∈A; binary: + ;

( a→ )a∈A

x, x′, y, y′;

a.x
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

Table 5. MPTdrt(A)

MPTdrt(A)

constant: δ, δ; unary: (a. )a∈A, (a. )a∈A, σ. ; binary: + ;
x, y, z;

x + y = y + x A1 δ = σ.δ DD1
x + (y + z) = (x + y) + z A2 a.x = a.x + σ.a.x DA1
x + x = x A3 a.x + δ = a.x A6DD
x + δ = x A6DRT σ.x + σ.y = σ.(x + y) DRTF

δ plus a time delay operator σ. to the signature of MPT and uses no auxil-
iary operators for the axiomatization. Prefixing is binds stronger than the other
operators.

This equational theory is not a conservative extension of MPT since the axiom
x+δ = x of MPT does not hold anymore. The role of deadlock δ (now called de-
layable deadlock) as a unit element for alternative composition is taken over by
undelayable deadlock δ, see Axiom A6DRT. The behavior of delayable deadlock
and action prefix is defined recursively by means of the axioms DD1 (Delayable
Deadlock) and DA1 (Delayable Action). Axiom A6DD expresses that delayable
deadlock is still a unit element for alternative composition of delayable processes.
Finally, axiom DRTF (Discrete Relative Time Factorization) expresses that pas-
sage of time by itself cannot determine a choice. Hence, this axiom implements
the time-determinism discussed in the previous section.

The transition system specification of MPTdrt is given in Table 6. It consists
of the deduction rules of MPT (Table 4) as well as new deduction rules defining
the time transitions 2→ for MPT terms as well as action and time transitions for
the newly introduced terms.

Theorem 3 (Soundness). Let p and q be two closed MPTdrt(A)-terms. If
MPTdrt(A) � p = q, then TSS (MPTdrt(A)) 	 p ↔ q.
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Table 6. Transition system specification for MPTdrt(A).

TSS(MPTdrt(A))
TSS(MPT(A))

constant: δ; unary: (a. )a∈A, σ. ;

�→ ;
x, x′, y, y′;

δ �→ δ a.x �→ a.x
x �→ x′ y �→ y′

x + y �→ x′ + y′

x �→ x′ y ��→
x + y �→ x′

x ��→ y �→ y′

x + y �→ y′

a.x
a→ x σ.x �→ x

Theorem 4 (Ground-completeness). Let p and q be arbitrary closed
MPTdrt(A)-terms. If TSS (MPTdrt(A)) 	 p ↔ q, then MPTdrt(A) � p = q.

As explained before, MPTdrt cannot be a conservative extension of MPT
due to the omission of Axiom A6 (x + δ = x) from MPTdrt. It is a conserva-
tive ground-extension, nevertheless, since for closed MPT-terms x, this axiom is
derivable from the axioms of MPTdrt.

Theorem 5 (Conservative ground-extension). MPTdrt is a conservative
ground-extension of MPT.

Proof. We apply the meta-theorems from [18]. The transition system specifi-
cation that consists of the deduction rules in the first row of Table 6 is source-
preserving and strictly stratified using the number of symbols of terms as a mea-
sure, and the sources of the conclusions cover the syntax of MPT (see [18] for def-
initions of notions used here). Furthermore, the deduction rules in the second row
of Table 6 have source-dependent negative time transitions as a premise. Hence
TSS (MPT(A)) with deduction rules of the first and the second row of Table 6 is
a granting extension of TSS (MPT(A)) and hence an orthogonal extension. The
extension of the resulting transition system specification with deduction rules
of the third row is conservative, hence also orthogonal. Since orthogonality is a
preorder, TSS (MPTdrt(A)) is an orthogonal extension of TSS (MPT(A)). Com-
bined with the facts that both MPT and MPTdrt are sound and complete, we
have that MPTdrt is an equationally conservative ground-extension of MPT.

3.3 MPTdrt∗

A further discrete relative time extension of MPT, called MPTdrt∗ makes use
of an auxiliary operator σ∗ to axiomatize this extension: σ∗p denotes that the
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execution of p can be started in any time slice (present or future). Note that
the intuitions of δ and a. are in line with the “any-time-slice” interpretation of
the untimed constants and action prefix operators. This time iteration operator
comes very handy in the axiomatization of delayable actions, particularly in
the more involved theories that we encounter in the rest of this paper. The
axiomatization of MPTdrt∗ is given in Table 7.

Table 7. MPTdrt∗
(A)

MPTdrt∗
(A)

constant: δ, δ; unary: (a. )a∈A, (a. )a∈A, σ. , σ∗ ; binary: + ;
x, y, z;

x + y = y + x A1 δ = σ.δ DD1
x + (y + z) = (x + y) + z A2 a.x = a.x + σ.a.x DA1
x + x = x A3 δ = σ∗δ DD2

a.x = σ∗a.x DA2
x + δ = x A6DRT σ.x + σ.y = σ.(x + y) DRTF
σ∗x = x + σ.σ∗x ATS σ∗x + σ∗y = σ∗(x + y) DRTIF
σ∗σ.x = σ.σ∗x DRTA σ∗σ∗x = σ∗x TITI

In this equational theory the any time slice constant and action prefix op-
erators are defined in terms of their current time slice counterparts and time
iteration by axioms DD2 and DA2. Axiom ATS (Any Time Slice) recursively
defines time iteration. Axiom DRTIF (Discrete Relative Time Iteration Factor-
ization) expresses that time factorization also applies to time iteration. Axiom
DRTA (Discrete Relative Time Axiom) explains that consecutive occurrences
of time iteration and time delay can be switched. It is in line with the obser-
vation that both σ.σ∗p and σ∗σ.p are solutions to the recursive specification
X = σ.p + σ.X . Axiom TITI (Time Iteration Time Iteration) says that two
consecutive time iterations are equivalent to only one time iteration. As a conse-
quence, any number of consecutive time iterations is considered to be equivalent
to a single one. Note that axioms DD1 and DA1 are derivable from the other
axioms (e.g., δ = σ∗δ = δ + σσ∗δ = σδ).

It is not the case that the newly introduced operators can all be eliminated.
Nevertheless, the newly introduced syntax has some redundancy in the sense
that either the time iteration operator or the delayable deadlock and delayable
action prefixes can be eliminated from closed terms.

The transition system specification associated to the terms of MPTdrt∗ is
given in Table 8. It adds deduction rules defining the behavior of time iteration.

Theorem 6 (Soundness). Let p and q be two closed MPTdrt∗(A)-terms. If
MPTdrt∗(A) � p = q, then TSS (MPTdrt∗(A)) 	 p ↔ q.
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Table 8. Transition system specification for MPTdrt∗
(A)

TSS(MPTdrt∗
(A))

TSS(MPTdrt(A))

unary: σ∗ ;

x, x′;

x
a→ x′

σ∗x
a→ x′

x �→ x′

σ∗x �→ σ∗x + x′
x ��→

σ∗x �→ σ∗x

Theorem 7 (Ground-completeness). Let p and q be arbitrary closed
MPTdrt∗(A)-terms. If TSS (MPTdrt∗(A)) 	 p ↔ q, then MPTdrt∗(A) � p = q.

Theorem 8 (Conservative extension). MPTdrt∗ is a conservative extension
of MPTdrt.

Proof. The sources of the conclusions of all deduction rules from Table 8 mention
a new operator. Therefore, the extension of TSS (MPTdrt(A)) with these deduc-
tion rules is conservative. Hence, TSS (MPTdrt∗(A)) is an orthogonal extension
of TSS (MPTdrt(A)). Since both theories are sound and complete and the axioms
of MPTdrt(A) are included in MPTdrt∗(A), it follows from the meta-results of
[18] that MPTdrt∗ is an equationally conservative extension of MPTdrt.

4 Successful Termination: Basic Sequential Processes

In this section, we discuss the extension of the theories MPT and MPTdrt∗ from
the previous section, with a constant denoting successful termination.

4.1 BSP

The process theory MPT is a minimal theory; not much can be expressed in it.
One aspect that cannot be addressed is successful termination. The distinction
between successful and unsuccessful termination turns out to be essential when
sequential composition is introduced. In order to express successful termination,
the new constant ε, referred to as the empty process or the termination constant,
is introduced. The extension of the process theory MPT with the empty process
ε results in process theory BSP, the theory of Basic Sequential Processes. This
section gives the equational theory as well as its term model.

Table 9 defines process theory BSP. The only difference between the signature
of MPT and the signature of BSP is the constant ε. The axioms of BSP, see Table
9, are exactly the axioms of MPT, given in Table 3.
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Table 9. BSP(A)

BSP(A)
MPT(A)

constant: ε;

Table 10. Transition system specification for BSP(A)

TSS(BSP(A))
TSS(MPT(A))

constant: ε;

↓;
x, y;

ε↓ x↓
x + y↓

y↓
x + y↓

The transition system specification associated to the terms of BSP is given in
Table 10. It adds deduction rules defining the termination behavior of the new
constant ε and of the syntax of MPT.

Theorem 9 (Soundness). Let p and q be two closed BSP(A)-terms. If BSP(A)
� p = q, then TSS (BSP(A)) 	 p ↔ q.

Theorem 10 (Ground-completeness). Let p and q be arbitrary closed BSP
(A)-terms. If TSS (BSP(A)) 	 p ↔ q, then BSP(A) � p = q.

Theorem 11 (Conservative extension). BSP is a conservative extension of
MPT.

Proof. Both MPT and BSP are sound and ground-complete equational theories
for TSS (MPT(A)) and TSS (BSP(A)). Also, following [12], TSS (BSP(A)) is an
operationally conservative (orthogonal) extension of TSS (MPT(A)). Further-
more, axioms of MPT(A) are all included in BSP(A). Thus, we conclude that
BSP(A) is an equationally conservative extension of MPT(A).

4.2 BSPdrt∗

In this section, the timed process algebra MPTdrt∗ from the previous section is
extended with the constants any time slice termination ε and current time slice
termination ε. The axioms of the process theory BSPdrt∗ are given in Table 11.
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The axiom DT (Delayable Termination) defines the any time slice constant in
terms of its current time slice counterpart and time iteration. Note that ε = ε+σε
is derivable from the axioms of Table 11.

Table 11. BSPdrt∗(A)

BSPdrt∗
(A)

MPTdrt∗
(A)

constant: ε, ε;

ε = σ∗ε DT

Table 12. Transition system specification for BSPdrt∗
(A)

TSS(BSPdrt∗
(A))

TSS(BSP(A)), TSS(MPTdrt∗(A))

constant: ε;

x;

ε↓ ε �→ ε
x↓

σ∗x↓

The transition system specification associated to the terms of BSPdrt∗ is given
in Table 12. It adds deduction rules defining the termination behavior of the new
constant ε and the time iteration σ∗ and the time behavior of ε.

Theorem 12 (Soundness). Let p and q be two closed BSPdrt∗(A)-terms. If
BSPdrt∗(A) � p = q, then TSS (BSPdrt∗(A)) 	 p ↔ q.

Theorem 13 (Ground-completeness). Let p and q be two arbitrary closed
BSPdrt∗(A)-terms. If TSS (BSPdrt∗(A)) 	 p ↔ q, then BSPdrt∗(A) � p = q.

Theorem 14 (Conservative ground-extension). BSPdrt∗ is a conservative
ground-extension of BSP.

Proof. This proof is similar to the proof that MPTdrt∗ is a conservative ground-
extension of MPT. Add the second deduction rule of 12 to the granting part
and the first and third deduction rules of Table 12 to the conservative part.Note
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that the deduction rules for σ∗ that are added to TSS (MPTdrt(A)) to obtain
TSS (MPTdrt∗(A)) should be added to the conservative part as well.

Theorem 15 (Conservative extension). BSPdrt∗ is a conservative extension
of MPTdrt∗.

Proof. Both MPTdrt∗ and BSPdrt∗ are sound and ground-complete equational
theories for TSS (MPTdrt∗(A)) and TSS (BSPdrt∗(A)). Also, using the meta-
theory from [12], TSS (BSPdrt∗(A)) is an operationally conservative (orthogo-
nal) extension of TSS (MPTdrt∗(A)). Thus, we conclude that BSPdrt∗(A) is an
equationally conservative extension of MPTdrt∗(A).

5 Sequential Composition

5.1 TSP

This section treats the extension with a sequential composition operator. Given
two process terms p and q, the term p · q denotes the sequential composition of p
and q. The intuition of this operation is that upon the successful termination of
process p, process q is started. If process p ends in a deadlock, also the sequential
composition p·q deadlocks. Thus, a pre-requisite for a meaningful introduction of
a sequential composition operator is that successful and unsuccessful termination
can be distinguished. As already explained in Section 4, this is not possible in the
theory MPT as all processes end in deadlock. Thus, as a starting point the theory
BSP of the previous section is used. This theory is extended with sequential
composition to obtain the Theory of Sequential Processes TSP. It turns out that
the empty process is a neutral element for sequential composition: x·ε = ε·x = x.

To obtain the axioms of the process theory TSP, the axioms from Table 13 are
added to the axioms of the process theory BSP from Table 9. Axiom A5 states
that sequential composition is associative. As mentioned before, and now for-
mally captured in the axioms A8 and A9, the empty process is a neutral element
with respect to sequential composition. Axiom A7 states that after a deadlock

Table 13. The process theory TSP(A)

TSP(A)
BSP(A)

binary: · ;
x, y, z : P ;

(x + y) · z = x · z + y · z A4 δ · x = δ A7
(x · y) · z = x · (y · z) A5 x · ε = x A8
a.x · y = a.(x · y) A10 ε · x = x A9
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has been reached no continuation is possible. Axiom A4 describes the distribu-
tion of sequential composition over alternative composition from the right. Recall
that the other distributivity property is not desired as it does not respect the
moment of choice. Finally, Axiom A10 describes the relation between sequential
composition and action prefixes.

Theorem 16 (Elimination). For any closed TSP(A)-term p, there exists a
closed BSP(A)-term q such that TSP(A) � p = q.

Proof. The property is proven by providing a term rewriting system with the
same signature as TSP(A) such that

1. each rewrite step transforms a process term into a process term that is
derivably equal,

2. the term rewriting system is strongly normalizing, and
3. no closed normal form of the term rewriting system contains a sequential

composition operator.

Consider the term rewriting system consisting of the following rewrite rules; for
any a ∈ A, and TSP(A)-terms x, y, z:

(x+ y) · z → x · z + y · z δ · x→ δ
(x · y) · z → x · (y · z) ε · x→ x
a.x · y → a.(x · y)

Each of the rewrite rules is obtained directly from an axiom of TSP by replacing
= by →. As a consequence, each rewrite step transforms a process term in a
process term that is derivably equal.

The second step of the proof, the strong normalization of the given term
rewriting system, is standard.

The last part of the proof is to show that no closed normal form of the above
term rewriting system contains a sequential composition operator. Thereto, let
u be a normal form of the above term rewriting system. Suppose that u contains
at least one sequential composition operator. Then, u must contain a subterm of
the form v ·w for some closed TSP(A)-terms u and v. This subterm can always be
chosen in such a way that v is a closed BSP(A)-term. It follows immediately from
the structure of closed BSP(A)-terms that one of the above rewrite rules can be
applied to v · w. As a consequence, u is not a normal form. This contradiction
implies that u must be a closed BSP(A)-term.

The transition system specification associated to the terms of TSP is given
in Table 14. It adds deduction rules defining action transitions and termination
behavior of sequential composition.

Theorem 17 (Soundness). Let p and q be two closed TSP(A)-terms. If TSP
(A) � p = q, then TSS (TSP(A)) 	 p ↔ q.

Theorem 18 (Ground-completeness). Let p and q be arbitrary closed TSP
(A)-terms. If TSS (TSP(A)) 	 p ↔ q, then TSP(A) � p = q.
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Table 14. Transition system specification for TSP(A)

TSS(TSP(A))
TSS(BSP(A))

binary: · ;

x, y, x′, y′;

x
a→ x′

x · y
a→ x′ · y

x↓ y
a→ y′

x · y
a→ y′

x↓ y↓
x · y↓

Theorem 19 (Conservative extension). TSP is a conservative extension of
BSP.

Proof. Both BSP and TSP are sound and ground-complete equational theo-
ries for TSS (BSP(A)) and TSS (TSP(A)). Also, following [12], TSS (TSP(A)) is
an operationally conservative (orthogonal) extension of TSS (BSP(A)). Further-
more, all axioms of BSP are among the axioms of TSP. Thus, we conclude that
TSP is an equationally conservative extension of BSP.

Now that the process theories have been extended with sequential composi-
tion, the relationship with the process theory BPAε

δ can be considered. Syntac-
tically, there is still a mismatch between BPAε

δ and TSP since the former has
constants a ∈ A and the latter does not have those. There are two (equivalent)
ways to overcome this difference. First, we can extend TSP with such constants,
using axiom

a = a.ε,

or second, we can use the notion of embedding to find that the process theory
BPAε

δ can be embedded into TSP taking a as a.ε.

5.2 TSPdrt∗

In this section, the process theory BSPdrt∗ is extended to the process theory
TSPdrt∗. This extension is obtained by extending the signature of BSPdrt∗ with
the sequential composition operator · . The axioms of the process theory are
given in Table 15.

Sequential composition is as before, but here the role of unit that was played
by ε in the untimed theory, is taken over by the current time slice termination
constant ε (see Axioms A8DR and A9DR). In this setting it can be derived
that ε · x = σ∗x instead. The sequential composition operator has two left-zero
elements: both undelayable deadlock (see Axiom A7DR) and delayable deadlock
act as such. The axioms δ · x = δ and a.x · y = a.(x · y) from the untimed theory
have disappeared since they are derivable from the remaining axioms2. Axioms
2 If these axiom were the only axioms of TSP that disappear, then one could con-

sider keeping them, since it would allow for conservativity instead of ground-
conservativity.
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Table 15. The process theory TSPdrt∗
(A)

TSPdrt∗
(A)

BSPdrt∗
(A);

binary: · ;
x, y, z : P ;

(x + y) · z = x · z + y · z A4 δ · x = δ A7DR
(x · y) · z = x · (y · z) A5 x · ε = x A8DR
a.x · y = a.(x · y) A10DRa ε · x = x A9DR
(σ.x) · y = σ.(x · y) A10DRb
σ∗x · y = σ∗(x · y) A10DRc

Table 16. Transition system specification for TSPdrt∗
(A)

TSS(TSPdrt∗
(A))

TSS(TSP(A)),TSS(BSPdrt∗
(A))

x,′ x′, y, y′;

x �→ x′ x↓ y �→ y′

x · y �→ x′ · y + y′
x �→ x′ x �↓
x · y �→ x′ · y

x �→ x′ y ��→
x · y �→ x′ · y

x ��→ x↓ y �→ y′

x · y �→ y′

A10DRb and A10DRc express that the passage of time is measured relative to
the previous action and thus has no consequences for the future actions: the
timing of y is relative to the last action of x, regardless the time prefix or time
iteration operator.

Theorem 20 (Elimination). For any closed TSPdrt∗(A)-term p, there exists
a closed BSPdrt∗(A)-term q such that TSPdrt∗(A) � p = q.

The transition system specification associated to the terms of TSPdrt∗ is given
in Table 16. It adds deduction rules defining time transitions of sequential com-
position.

Theorem 21 (Soundness). Let p and q be two closed TSPdrt∗(A)-terms. If
TSPdrt∗(A) � p = q, then TSS (TSPdrt∗(A)) 	 p ↔ q.

Theorem 22 (Ground-completeness). Let p and q be arbitrary closed
TSPdrt∗(A)-terms. If TSS (TSPdrt∗(A)) 	 p ↔ q, then TSPdrt∗(A) � p = q.
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The process theory TSPdrt∗ is not a conservative extension of TSP as was the
case for all extensions from untimed to timed process algebra. Besides the un-
timed identity x+δ = x that does not hold in the timed setting, also the untimed
identity x · ε = x does not hold in the timed extension: ε · ε �= ε.

Theorem 23 (Conservative ground-extension). TSPdrt∗ is a conservative
ground-extension of TSP.

Proof. We show that for all p and p′ in the syntax of TSP,

1. TSS (TSP(A)) 	 p a→ p′ ⇔ TSS (TSPdrt∗(A)) 	 p
a→ p′,

2. TSS (TSP(A)) 	 p↓ ⇔ TSS (TSPdrt∗(A)) 	 p↓,
3. there exists a closed TSP(A)-term q such that TSS (TSPdrt∗(A)) 	 p 2→ q,

and
4. for all closed TSPdrt∗(A)-terms q such that TSS (TSPdrt∗(A)) 	 p 2→ q then

TSS (TSP(A)) 	 p ↔ q and TSS (TSPdrt∗(A)) 	 p ↔ q.

If we show the above list of items to be true, it follows that TSS (TSPdrt∗(A)) is
an orthogonal extension of TSS (TSP(A)): The first condition of orthogonality
is item 1 in the above list. So, it only remains to show that TSS (TSPdrt∗(A)) 	
p ↔ p′ ⇔ TSS (TSP(A)) 	 p ↔ p′, which follows immediately from the above
items.

To check the first and the second item, one should note that first, a proof in
TSPdrt∗ for an a-transition a→ with a source term from TSP or a termination
predicate ↓ on a TSP-term only involves deduction rules from TSP. Such deduc-
tion rules do not have negative premises and are source-dependent [18]. Hence,
all such transition and predicate formulae are included in the stable model of
TSP. Second, for the inclusion in the other direction, all proofs in TSP remain
valid in TSPdrt∗ and since deduction rules of TSP do not have negative premises,
all the proven transitions and predicates of TSP are included in the stable model
of TSPdrt∗.

We prove the last two items in one go. To that end, we use a structural
induction on closed TSP(A)-term p.

If p is a constant, i.e., δ or ε, then it can make a self time transition using one
of the following deduction rules (from Table 6 and Table 12 respectively) and
these are the only matching rules for such constants to make a time transition.

δ 2→ δ ε 2→ ε

Bisimilarity (w.r.t. both TSS’s) is reflexive and hence self-transitions satisfy the
criteria of item 4.

If p is of the form a.p′ (for some closed TSP(A)-term p′) then it can make a
self time transition due to the following deduction rule (from Table 6) and this
is the only matching deduction rule for p to make a time transition.

a.x 2→ a.x
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If p is of the form p′+q′, then by the induction hypothesis, p′ and q′ can make
time transitions and all their time transitions are to bisimilar terms (w.r.t. both
TSS’s). Then p′ + q′ can make time transitions using the following deduction
rule (from Table 6).

x 2→ x′ y 2→ y′

x+ y 2→ x′ + y′

and since bisimilarity is a congruence for both TSS (TSP(A)) and
TSS (TSPdrt∗(A)) (both TSS’s are in the PANTH format of [21]), time transi-
tions of p′ + q′ that are due to this rule are to bisimilar terms w.r.t. both TSS’s.
Furthermore, p′+q′ cannot make a time transition using the other two deduction
rules for choice in Table 6 since both of them have negative premises denying
a time transition from p′ or q′. Thus, all transitions of p′ + q′ are to bisimilar
terms w.r.t. both TSS’s.

If p is of the form p′ ·q′, then either TSS (TSP(A)) 	 p′↓ (hence, following item
2, TSS (TSPdrt∗(A)) 	 p′↓) or ¬TSS (TSP(A)) 	 p′↓ (hence, TSS (TSPdrt∗(A)) �	
p′↓). Then, by induction hypothesis, p′ ·q′ can make a time transition due to the
first or second deduction rule of Table 16 given below, respectively,

x 2→ x′ x↓ y 2→ y′

x · y 2→ x′ · y + y′
x 2→ x′ x�↓
x · y 2→ x′ · y

and these are the only possibilities for p to make time transitions as the other
two deduction rules of Table 16 deny time transitions of p′ or q′. Suppose that
p′ 2→ p′′, q′ 2→ q′′ and p′ ↔ p′′ and q′ ↔ q′′ w.r.t. both TSS’s. If p′↓ and
the time transition of p is due the left-hand-side deduction rule, then it is easy
to check that p′ ↔ p′ + ε w.r.t. both TSS’s. Hence, p′.q′ ↔ (p′ + ε).q′ ↔
p′.q′ + ε.q′ ↔ p′.q′ + q′ ↔ p′′.q′′ + q′′ (following the axioms of both TSPdrt∗

and TSP, Theorems 17 and 21 and congruence of bisimilarity for both TSS’s).
Hence, in this case pmakes a time transition to bisimilar terms w.r.t. both TSS’s.
If p′ �↓ and the transition is due to the right-hand-side rule, then p′.q′ ↔ p′′.q′

and again the transition of p is to a bisimilar term w.r.t. both TSS’s.

Theorem 24 (Conservative extension). TSPdrt∗ is a conservative extension
of BSPdrt∗.

Proof. Both BSPdrt∗ and TSPdrt∗ are sound and ground-complete equational
theories for both TSS (BSPdrt∗(A)) and TSS (TSPdrt∗(A)). Also, following [12],
TSS(TSPdrt∗(A)) is an operationally conservative (orthogonal) extension of
TSS(BSPdrt∗(A)). Thus, we conclude that TSPdrt∗ is an equationally conserva-
tive extension of BSPdrt∗.

6 Parallel Composition

6.1 TCP

The formal definition of process theory TCP, the Theory of Communicating
Processes, is given in Table 17. The theory includes the encapsulation operator,
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as this operator is essential to enforce communication between processes. As
before, it has as a parameter the set of actions A. Besides this, it has as a
second parameter a commutative and associative partial communication function
γ : A × A → A. The signature of process theory TCP extends the signature of
the process theory TSP with the merge operator‖, the left merge operator‖ , the
synchronization merge operator | and the encapsulation operator ∂H . The four
new operators bind stronger than choice but weaker than action prefix.

Following the, by now, standard practice of [9], parallel composition is broken
up into three alternatives: the part where the first step comes from x, the part
where the first step comes from y and the part where x and y execute together.

x‖y = x‖ y + y‖ x+ x | y

To tackle the axiomatization of the left merge operator, the following axioms
are used [8].

a.x‖ y = a.(x‖y) (x + y)‖ z = x‖ z + y‖ z.

Finally, what remains is the behavior of parallel composition with respect to
the termination constants δ and ε. As the termination behavior of parallel com-
position is coded into the communication merge operator, this is of no concern
here, and the following laws can be put forward.

δ‖ x = δ ε‖ x = δ

Next, the standard axioms of communication merge operator are introduced [9].

(x + y) | z = x | z + y | z x | (y + z) = x | y + x | z
δ | x = δ x | δ = δ
a.x | b.y = c.(x‖y) if γ(a, b) = c
a.x | b.y = δ if γ(a, b) not defined.

What remains are the cases where ε appears as an argument of the communica-
tion merge operator.

ε | ε = ε
a.x | ε = δ ε | a.x = δ.

The axiom system presented in Table 17 contains an axiom stipulating the com-
mutativity of the communication merge. This allows to save on the number of
axioms required for the communication merge operator.

Theorem 25 (Elimination). For any closed TCP(A, γ)-term p, there exists a
closed TSP(A)-term q such that TCP(A, γ) � p = q.

The transition system specification associated to the terms of TCP is given
in Table 18. It adds deduction rules defining action transitions and termination
behavior of encapsulation and the parallel composition operators.

Theorem 26 (Soundness). Let p and q be two closed TCP(A, γ)-terms. If
TCP(A, γ) � p = q, then TSS (TCP(A, γ)) 	 p ↔ q.
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Table 17. The process theory TCP(A,γ)

TCP(A,γ)
TSP(A);

unary: (∂H)H⊆A; binary: ‖ , ‖ , | ;
x, y, z : P ;

∂H(ε) = ε D1
∂H(δ) = δ D2
∂H(a.x) = δ if a ∈ H D3
∂H(a.x) = a.∂H(x) otherwise D4
∂H(x + y) = ∂H(x) + ∂H(y) D5

x‖y = x‖ y + y‖ x + x | y M x | y = y | x SC1
δ‖ x = δ LM1
ε‖ x = δ LM2 x‖ε = x SC2
a.x‖ y = a.(x‖y) LM3 ε | x + ε = ε SC3
(x + y)‖ z = x‖ z + y‖ z LM4
δ | x = δ CM1 (x‖y)‖z = x‖(y‖z) SC4
(x + y) | z = x | z + y | z CM2 (x | y) | z = x | (y | z) SC5
ε | ε = ε CM3 (x‖ y)‖ z = x‖ (y‖z) SC6
a.x | ε = δ CM4 (x | y)‖ z = x | (y‖ z) SC7
a.x | b.y = c.(x‖y) if γ(a, b) = c CM5
a.x | b.y = δ if γ(a, b) not defined CM6 x‖ δ = x · δ SC8

Table 18. Transition system specification for TCP(A, γ)

TSS(TCP(A, γ))
TSS(TSP(A));

unary: (∂H)H⊆A; binary: ‖ , ‖ , | ;

x, y, x′, y′;

x ↓ y ↓
x‖y ↓

x ↓ y ↓
x | y ↓

x↓
∂H(x)↓

x
a→ x′ a �∈ H

∂H(x) a→ ∂H(x′)

x
a→ x′

x‖y
a→ x′‖y

y
a→ y′

x‖y
a→ x‖y′

x
a→ x′

x‖ y
a→ x′‖y

x
a→ x′ y

b→ y′ γ(a, b) = c

x‖y
c→ x′‖y′

x
a→ x′ y

b→ y′ γ(a, b) = c

x | y
c→ x′‖y′

Theorem 27 (Ground-completeness). Let p and q be arbitrary closed
TCP(A, γ)-terms. If TSS (TCP(A, γ)) 	 p ↔ q, then TCP(A, γ) � p = q.
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Theorem 28 (Conservative extension). TCP is a conservative extension of
TSP.

Proof. Both TSP and TCP are sound and ground-complete equational theories
for TSS (TSP(A)) and TSS (TCP(A, γ)). Also, following [12], TSS (TCP(A, γ))
is an operationally conservative (orthogonal) extension of TSS (TSP(A)). Thus,
we conclude that TCP is an equationally conservative extension of TSP.

The relationship between the theories ACP ε and TCP is similar to the rela-
tionship between BPAε

δ and TSP. One can either extend TCP with the constants
a ∈ A using axioms a = a.ε or one can embed ACP ε into TCP by mapping a
onto a.ε.

6.2 TCPdrt∗

In this section, the process theory TSPdrt∗ is extended to the process theory
TCPdrt∗. This extension is obtained by extending the signature of TSPdrt∗ with
the current time slice timeout operator ν, the encapsulation operators ∂H (for
H ⊆ A), and the parallel composition operators ‖ , ‖ , and | .

The axioms of the process theory are given in Table 19.
The current time slice time out operator disallows all initial passage of time.

It extracts the part of the behavior that executes an action or performs termi-
nation in the current time slice. The encapsulation operator is as defined before:
encapsulation disallows the actions that occur in the set H and allows all other
behavior including passage of time.

The axioms for parallel composition and the auxiliary operators are such
that parallel processes have to synchronize the passage of time until one of the
processes can terminate, and within each time slice interleave their actions or
communicate. To stay as closely as possible to the interpretation of the axioms in
the untimed setting, it is necessary for both left merge and communication merge
to synchronize the passage of time as well (axioms LM6DR and CM10DR).

Theorem 29 (Elimination). For any closed TCPdrt∗(A, γ)-term p, there ex-
ists a closed TSPdrt∗(A)-term q such that TCPdrt∗(A, γ) � p = q.

The transition system specification associated to the terms of TCPdrt∗ is given
in Table 20. It adds deduction rules defining the behavior of the “now” operator
and it adds deduction rules defining time transitions of encapsulation and the
parallel composition operators.

Theorem 30 (Soundness). Let p and q be two closed TCPdrt∗(A, γ)-terms. If
TCPdrt∗(A, γ) � p = q, then TSS (TCPdrt∗(A, γ)) 	 p ↔ q.

Theorem 31 (Ground-completeness). Let p and q be arbitrary closed
TCPdrt∗(A, γ)-terms. If TSS (TCPdrt∗(A, γ)) 	 p ↔ q, then TCPdrt∗(A, γ) �
p = q.
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Table 19. The process theory TCPdrt∗(A,γ)

TCPdrt∗(A, γ)
TSPdrt∗(A);

unary: ν, (∂H)H⊆A; binary: ‖ , ‖ , | ;
x, y, z : P ;

∂H(ε) = ε D1DR ν(ε) = ε RTO1
∂H(δ) = δ D2DR ν(δ) = δ RTO2
∂H(a.x) = δ if a ∈ H D3DR ν(a.x) = a.x RTO3
∂H(a.x) = a.∂H(x) otherwise D4DR
∂H(x + y) = ∂H(x) + ∂H(y) D5 ν(x + y) = ν(x) + ν(y) RTO4
∂H(σ.x) = σ.∂H(x) D6DR ν(σ.x) = δ RTO5
∂H(σ∗x) = σ∗∂H(x) D7DR ν(σ∗x) = ν(x) RTO6

x | y = y | x SC1 (x | y) | z = x | (y | z) SC5
x‖ε = x SC2DR (x‖ y)‖ z = x‖ (y‖z) SC6
ε | x + ε = ε SC3DR (x | y)‖ z = x | (y‖ z) SC7
(x‖y)‖z = x‖(y‖z) SC4 x‖ δ = x.δ SC8DR

x‖y = x‖ y + y‖ x + x | y M

δ‖ x = δ LM1DR δ | x = δ CM1DR
ε‖ δ = δ LM2DR (x + y) | z = x | z + y | z CM2
a.x‖ y = a.(x‖y) LM3DR ε | ε = ε CM3DR
(x + y)‖ z = x‖ z + y‖ z LM4 a.x | ε = δ CM4DR
σ.x‖ δ = δ LM5DR a.x | b.y = c.(x‖y) if γ(a, b) = c CM5DR
σ.x‖ ε = σ.x LM6DR a.x | b.y = δ if γ(a, b) not defined CM6DR
σ.x‖ (a.y + z) = σ.x‖ z LM7DR σ.x | ν(y) = δ CM7DR
σ.x‖ (ν(y) + σ.z) = σ.(x‖ z) LM8DR σ.x | σ.y = σ.(x | y) CM8DR
σ∗x‖ σ∗ν(y) = σ∗(x‖ σ∗ν(y)) LM9DR σ∗x | σ∗y = σ∗(x | σ∗y + σ∗x | y) CM9DR

Theorem 32 (Conservative ground-extension). TCPdrt∗ is a conservative
ground-extension of TCP.

Proof. Similar to the proof of Theorem 23. We show that for all p and p′ in the
syntax of TCP,

1. TSS (TCP(A, γ)) 	 p
a→ p′ ⇔ TSS (TCPdrt∗(A, γ)) 	 p a→ p′,

2. TSS (TCP(A, γ)) 	 p↓ ⇔ TSS (TCPdrt∗(A, γ)) 	 p↓,
3. there exists a closed TCP(A)-term q such that TSS (TCPdrt∗(A, γ)) 	 p 2→ q,

and
4. for all closed TCPdrt∗(A, γ)-terms q such that TSS (TCPdrt∗(A, γ)) 	 p 2→ q

then TSS (TCP(A, γ)) 	 p ↔ q and TSS (TCPdrt∗(A, γ)) 	 p ↔ q.

From these, it follows that TSS (TCPdrt∗(A, γ)) is an orthogonal extension of
TSS (TCP(A, γ)).

The first and second items in the above list hold trivially since a proof in
TCPdrt∗ for an a-transition a→ with a source term from TCP or a termination
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Table 20. Transition system specification for TCPdrt∗(A, γ)

TSS(TCPdrt∗(A, γ))
TSS(TCP(A, γ)),TSS(TSPdrt∗

(A));

unary: ν( );
x, x′, y, y′;

x ↓
ν(x) ↓

x
a→ x′

ν(x) a→ x′
x �→ x′

∂H(x) �→ ∂H(x′)

x �→ x′ y �→ y′

x‖y �→ x′‖y′
x �→ x′ y �→ y′

x‖ y �→ x′‖ y′
x �→ x′ y �→ y′

x | y �→ x′ | y′

x �→ x′ y ��→ y ↓
x‖y �→ x′

x ��→ y �→ y′ x ↓
x‖y �→ y′

x �→ x′ y ��→ y ↓
x‖ y �→ x′

predicate ↓ on a TCP-term only involves deduction rules from TCP. Such deduc-
tion rules do not have negative premises and are source-dependent [18]. Hence,
all such transition and predicate formulae are included in the stable model of
TCP. For the inclusion in the other direction, all proofs in TCP remain valid
in TCPdrt∗ and since deduction rules of TCP do not have negative premises, all
the proven transitions and predicates of TCP are included in the stable model
of TCPdrt∗.

For the last two items, we use a structural induction on closed TCP-term p.
For function symbols in the signature of TSP, the arguments given in Theorem
23 remain valid. Hence, it only remains to check that for terms of the form
∂H(p′), p′‖q′, p′‖ q′ and p′ | q′ the last two items hold, assuming that these items
hold for p′ and q′ (if applicable).

If p is of the form ∂H(p′), then it can make a time transition due to the
following rule:

x 2→ x′

∂H(x) 2→ ∂H(x′)

Using the above deduction rule, one can only prove self time transitions and
bisimilarity (w.r.t. both TSS’s) is reflexive. Furthermore, the above rule is the
only rule using which ∂H(p′), hence p, can make a time transition.

If p is of the form p′‖q′, it can make a time transition due to the following
rule:

x 2→ x′ y 2→ y′

x‖y 2→ x′‖y′

and given that the time transitions of p′ and q′ are only to bisimilar terms (w.r.t.
both TSS’s) and bisimilarity is a congruence (since both TSS (TCP(A, γ)) and
TSS (TCPdrt∗(A, γ)) are in the PANTH format of [21]), the transition of p′‖q′
or p is also to a bisimilar term (w.r.t. both TSS’s). Furthermore, p cannot make
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a time transition due to any of the other two rules for time transitions of merge
since both of them have negative premises denying time transitions from p′ or q′.

If p is of the form p′‖ q′, it can make a time transition due to the following
rule:

x 2→ x′ y 2→ y′

x‖ y 2→ x′‖ y′

and given that the time transitions of p′ and q′ are only to bisimilar terms (w.r.t.
both TSS’s) and bisimilarity is a congruence, the transition of p′‖ q′ or p is also
to a bisimilar term (w.r.t. both TSS’s). Furthermore, p cannot make a time
transition due to the other rule for time transitions of left merge since it has a
negative premise denying time transitions from q′.

If p is of the form p′ | q′, it can make a time transition due to the following
rule:

x 2→ x′ y 2→ y′

x | y 2→ x′ | y′

and given that the time transitions of p′ and q′ are only to bisimilar terms (w.r.t.
both TSS’s) and bisimilarity is a congruence, the transition of p′ | q′ or p is also
to a bisimilar term (w.r.t. both TSS’s). There is no other deduction rule using
which p can make a time transition and this concludes the proof of the last two
items.

Theorem 33 (Conservative extension). TCPdrt∗ is a conservative exten-
sion of TSPdrt∗.

Proof. Both TSPdrt∗ and TCPdrt∗ are sound and ground-complete equational
theories for TSS (TSPdrt∗(A)) and TSS (TCPdrt∗(A, γ)). Also, following [12],
TSS (TCPdrt∗(A, γ)) is an operationally conservative (orthogonal) extension of
TSS (TSPdrt∗(A)). Thus, we conclude that TCPdrt∗ is an equationally conserva-
tive extension of TSPdrt∗.

7 Concluding Remarks

When we extend untimed process algebra with timing, this extension is usually
not a conservative extension, as some axioms of untimed process algebra hold
for untimed processes only. However, what can be achieved is a conservative
ground-extension, a notion that is introduced here. In this paper, we present
timed extensions of an incremental presentation of process algebras, involving
termination constants, alternative composition, sequential composition and par-
allel composition with communication, where in each case it is shown we have
a conservative ground-extension. In previous papers, conservativity was always
violated in some way.

For the realization of these timed extensions, it was necessary to change a
basic design principle of ACP-style process algebra: action constants, involving
both action execution and termination, are replaced by action prefixing.



278 J.C.M. Baeten, M.R. Mousavi, and M.A. Reniers

References

1. J. C. M. Baeten. Embedding untimed into timed process algebra: the case
for explicit termination. Mathematical Structures in Computer Science (MSCS),
13(4):589–618, 2003.

2. J. C. M. Baeten and J. A. Bergstra. Real Time Process Algebra. Formal Aspects
of Computing, 3:142–188, 1991.

3. J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8(2):188–208, 1996.

4. J. C. M. Baeten and R. J. van Glabbeek. Merge and termination in process algebra.
In K. V. Nori, editor, Proceeding of the Seventh Conference on Foundations of
Software Technology and Theoretical Computer Science (FST&TCS’87), volume
287 of Lecture Notes in Computer Science, pages 153–172. Springer-Verlag, Berlin,
Germany, 1987.

5. J. C. M. Baeten and C. A. Middelburg. Process Algebra with Timing. EATCS
Monographs. Springer-Verlag, Berlin, Germany, 2002.

6. J. C. M. Baeten and M. A. Reniers. Timed process algebra (with a focus on
explicit termination and relative-timing). In M. A. Bernardo and F. Corradini,
editors, Proceedings of the International School on Formal Methods for the Design
of Real-Time Systems (SFM-RT’04), volume 3185 of Lecture Notes in Computer
Science, pages 59–97. Springer-Verlag, Berlin, Germany, 2004.

7. J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambrdige University Press, 1990.

8. J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebra. Technical
Report IW 206/82, Mathematical Center, Amsterdam, The Netherlands, 1982.

9. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984.

10. J. A. Bergstra and J. W. Klop. Algebra of communicating processes. In J. W.
de Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proceedings of the CWI Sym-
posium Mathematics and Computer Science, pages 89–138. North-Holland, Ams-
terdam, The Netherlands, 1986.

11. R. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM (JACM), 43(5):863–914, Sept. 1996.

12. W. J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. Information and Computation (I&C), 146(1):24–54, 1998.

13. R. J. van Glabbeek. The meaning of negative premises in transition system speci-
fications II. Journal of Logic and Algebraic Programming (JLAP), 60-61:229–258,
2004.

14. J. F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science (TCS), 118(2):263–299, 1993.

15. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117(2):221–239, 1995.

16. C. P. J. Koymans and J. L. M. Vrancken. Extending process algebra with the
empty process. Technical Report 1, Logic Group Preprint Series, Department of
Philosophy, Utrecht University, Utrecht, The Netherlands, 1985. Extended and
enhanced version appeared as [22].

17. F. Moller and C. M. N. Tofts. A temporal calculus of communicating systems.
volume 458 of Lecture Notes in Computer Science, pages 401–415.



Timing the Untimed: Terminating Successfully While Being Conservative 279

18. M. Mousavi and M. A. Reniers. Orthogonal extensions in structural operational
semantics. In Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP’05), volume 3580 of Lecture Notes in Computer
Science, pages 1214–1225. Springer-Verlag, Berlin, Germany, 2005.

19. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: theory and appli-
cation. Information and Computation (I&C), 114(1):131–178, Oct. 1994.

20. J. J. Vereijken. Discrete Time Process Algebra. PhD thesis, Department of Math-
ematics and Computer Science, Eindhoven University of Technology, Eindhoven,
The Netherlands, 1997.

21. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

22. J. L. M. Vrancken. The algebra of communicating processes with empty process.
Theoretical Computer Science, 177(2):287–328, 1997.



Confluence of Graph Transformation Revisited

Detlef Plump

Department of Computer Science, The University of York,
York YO10 5DD, United Kingdom

det@cs.york.ac.uk

Abstract. It is shown that it is undecidable in general whether a ter-
minating graph rewriting system is confluent or not—in contrast to the
situation for term and string rewriting systems. Critical pairs are intro-
duced to hypergraph rewriting, a generalisation of graph rewriting, where
it turns out that the mere existence of common reducts for all critical
pairs of a graph rewriting system does not imply local confluence. A
Critical Pair Lemma for hypergraph rewriting is then established which
guarantees local confluence if each critical pair of a system has joining
derivations that are compatible in that they map certain nodes to the
same nodes in the common reduct.

1 Introduction

To compute efficiently with graph transformation rules requires some way of
cutting down the nondeterminism in the derivation spaces of graphs. A common
solution to this problem in rule-based formalisms is to rely on confluent sets
of rules so that all terminating derivations from an initial state will yield the
same result, making backtracking unnecessary. For example, confluence proper-
ties are important for efficiently recognizing graph classes and executing graph
algorithms by graph reduction [2, 5, 7], for parsing graph languages by using the
inverse rules of graph grammars [16, 31], and for verifying the deterministic be-
haviour of programs in graph rewriting languages such as PROGRES [34], AGG
[15] and GP [29].

In the setting of term rewriting systems, Knuth and Bendix [22] showed that
confluence is decidable for terminating sets of rules. It suffices to compute all
critical pairs t ← s → u of rewrite steps in which s is the superposition of the
left-hand sides of two rules, and to check whether t and u reduce to a common
term. This procedure is justified by the Critical Pair Lemma [20]—stating that
a term rewriting system is locally confluent if and only if all its critical pairs
have common reducts—and by Newman’s Lemma which asserts the equivalence
of confluence and local confluence in the presence of termination.

In contrast to the situation for term and string rewriting, Theorem 5 below
will show that confluence is undecidable for terminating graph rewriting sys-
tems. Roughly, the reason is that the embedding of derivations into context is
more complicated for graphs than for terms and strings, meaning that the exis-
tence of common reducts for all critical pairs need not imply local confluence of
the system.
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The second major result of this paper is a Critical Pair Lemma for hypergraph
rewriting which provides a sufficient condition for local confluence and hence for
confluence of terminating systems (Theorem 7). The result requires each critical
pair T ⇐ S ⇒ U to be joinable by two derivations T ⇒∗ W1 ∼= W2 ⇐∗ U such
that an isomorphism W1 → W2 is compatible with the joining derivations, in
that each node in S that is preserved by both S ⇒ T and S ⇒ U is mapped to
the same node in W2 by S ⇒∗ W2 and S ⇒∗ W1 followed by W1 → W2.

The next section recalls some properties of binary relations and defines la-
belled and directed hypergraphs. Section 3 reviews the double-pushout approach
to graph transformation, adapted to the setting of hypergraphs. Subsections 3.2
and 3.3 provide results about the restriction, extension and independence of
derivations which will be needed to prove the Critical Pair Lemma. Section 4
starts by arguing, in Subsection 4.1, that confluence modulo isomorphism rather
than confluence is the right notion to consider in graph transformation. Subsec-
tion 4.2 then presents a reduction of the Post Correspondence Problem showing
that confluence is undecidable for terminating graph rewriting systems. Subsec-
tion 4.3 introduces critical pairs to hypergraph rewriting and proves the Critical
Pair Lemma. Section 5 concludes by mentioning related work and topics for
future work. Finally, the Appendix summarises some properties of hypergraph
pushouts that are needed in proofs.

The confluence results of this paper were established in [27], but the unde-
cidability of confluence was only shown for hypergraph rewriting; the current
result also covers graph rewriting. In addition, the undecidability proof has been
simplified so that the number of rule schemata in the reduction of the Post Cor-
respondence Problem decreased from 21 to 12. Moreover, this paper is rigorous
with respect to the role of confluence modulo isomorphism.

2 Preliminaries

This section fixes some terminology for binary relations (see also [3, 4]) and
introduces hypergraphs and their morphisms.

2.1 Relations

Let → be a binary relation on a set A. The inverse relation of → is denoted by
←. The identity on A is the relation →0 = {〈a, a〉 | a ∈ A}. The reflexive closure
of → is →= = → ∪ →0. The compositon of two binary relations →1 and →2
on A is →1 ◦ →2 = {〈a, c〉 | a→1 b and b→2 c for some b}. For every n > 0,
the n-fold composition of → is →n = → ◦ →n−1. The transitive closure of → is
→+ = ∪n>0 →n, and the transitive-reflexive closure of → is →∗ = →+ ∪ →0.
Two elements a and b have a common reduct if a →∗ c ←∗ b for some c. If
a→∗ c and there is no d such that c→ d, then d is a normal form of a.
Definition 1 (Termination and confluence). The relation → is

(1) terminating if there is no infinite sequence of the form a1 → a2 → a3 → . . . ,
(2) confluent if for all a, b and c with b ←∗ a →∗ c, elements b and c have a

common reduct (see Figure 1(a)),
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• ∼ •

• •

∗ ∗

• ∼ •

∗ ∗

•

• •

• ∼ •

∗ ∗

(d) confluence modulo ∼ (e) local confluence modulo ∼

Fig. 1. Confluence properties

(3) locally confluent if for all a, b and c with b← a→ c, elements b and c have
a common reduct (see Figure 1(b)),

(4) subcommutative if for all a, b and c with b ← a → c there is some d such
that b→= d←= c (see Figure 1(c)),

(5) confluent modulo ∼, where ∼ is an equivalence relation on A, if for all a, a′,
b and c with b←∗ a ∼ a′ →∗ c there are d and d′ such that b→∗ d ∼ d′ ←∗ c
(see Figure 1(d)),

(6) locally confluent modulo ∼ if for all a, b and c with b ← a → c there are d
and d′ such that b→∗ d ∼ d′ ←∗ c (see Figure 1(e)).

By the following well-known result [25], local confluence and confluence are
equivalent in the presence of termination.

Lemma 1 (Newman’s Lemma). A terminating relation is confluent if and
only if it is locally confluent.

2.2 Hypergraphs

This paper deals with directed hypergraphs in which nodes and hyperedges carry
labels and where the label of a hyperedge can restrict both the number of incident
nodes and their possible labels. A signature Σ = 〈ΣV, ΣE〉 is a pair of sets of node
labels and hyperedge labels such that each l ∈ ΣE comes with a set Type(l) ⊆ Σ∗

V.
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(Note the similarity to signatures of many-sorted algebras [17]: sorts correspond
to node labels and operation symbols correspond to hyperedge labels.)

Definition 2 (Hypergraph). A hypergraph over a signature Σ is a system
G = 〈VG,EG,markG, labG, attG〉 consisting of two finite sets VG and EG of
nodes (or vertices) and hyperedges, two labelling functions markG : VG → ΣV
and labG : EG → ΣE, and an attachment function attG : EG → V∗

G such that
mark∗G(attG(e)) ∈ Type(labG(e)) for each hyperedge e.1

Hyperedges are said to be incident to their attachment nodes. In pictures,
nodes and hyperedges are drawn as circles and boxes, respectively, with labels
inside. Lines represent the attachment of hyperedges to nodes. If a hyperedge
is attached to more than two nodes, the lines are numbered according to the
left-to-right order in the attachment string. For hyperedges with just two at-
tachment nodes—ordinary edges—, an arrowhead points to the second node; in
this case the box may be omitted and the label written next to the arrow. As an
example, Figure 2 shows a hypergraph borrowed from [17]. Here Type(PUSH),
for instance, contains the string data stack stack.

A hypergraph G is a graph if each hyperedge e is an ordinary edge, that is, if
the attachment sequence attG(e) has length two.

data stack bool

E

F

TOP

PUSH
1

2

3

Λ

POP

EMPTY?

TRUE

FALSE

Fig. 2. A hypergraph

Definition 3 (Hypergraph morphism). Given two hypergraphs G and H
over Σ, a hypergraph morphism f : G→ H consists of two functions fV : VG →
VH and fE : EG → EH that preserve labels and attachment to nodes, that is,
markH ◦ fV = markG, labH ◦ fE = labG and attH ◦ fE = f∗V ◦ attG.

A hypergraph morphism incl : G → H is an inclusion if inclV(v) = v and
inclE(e) = e for all v ∈ VG and e ∈ EG. In this case G is a subhypergraph
of H which is denoted by G ⊆ H . Every hypergraph morphism f : G → H

1 The extension f∗ : A∗ → B∗ of a function f : A → B maps the empty string to itself
and a1 . . . an to f(a1) . . . f(an).
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induces a subhypergraph of H , denoted by f(G), which has nodes fV(VG) and
hyperedges fE(EG). The composition of f : G→ H with a morphism g : H →M
is the hypergraph morphism g ◦f : G→M consisting of the composed functions
gV ◦ fV and gE ◦ fE. The composition is also written as G→ H →M if f and g
are clear from the context.

The morphism f is injective (surjective) if fV and fE are injective (surjective).
Injectivity of f may be indicated by writing f : G ↪→ H . If f is both injective
and surjective, then it is an isomorphism. In this case G and H are isomorphic,
which is denoted by G ∼= H .

3 Graph Transformation

This section reviews the double-pushout approach to graph transformation, where
the approach presented in the overviews [9, 6] is generalized in three ways: hy-
pergraphs rather than graphs are considered and rules are matched injectively
and can have non-injective right-hand morphisms. Both injective matching and
non-injective right-hand morphisms add expressiveness to the double-pushout
approach [18].

3.1 Rules and Derivations

From now on an arbitrary but fixed signature is assumed over which all hyper-
graphs are labelled, unless signatures are explicitly mentioned.

Definition 4 (Rule). A rule r : 〈L ←↩ K →b R〉 consists of three hypergraphs
and two hypergraph morphisms, where K ↪→ L is an inclusion. The hypergraphs
L and R are the left- and right-hand side of r, and K is the interface. The rule
r is injective if b : K → R is injective.

Figure 3 shows a rule which removes two hyperedges and a node, merges two
nodes, and creates a hyperedge. The letters x,y,z are node names; they are used
to represent the hypergraph morphisms between the interface and the left- and
right-hand side. The name x=y indicates that the right-hand morphism identifies
node x with node y. The lower half of Figure 3 shows the same rule in a shorthand
notation. In this format, only the left- and right-hand sides are depicted while
the interface is implicitly given by all the named nodes of the left-hand side.

Definition 5 (Direct derivation). Let G and H be hypergraphs, r : 〈L ←↩
K →b R〉 a rule and f : L ↪→ G an injective hypergraph morphism. Then G
directly derives H by r and f , denoted by G⇒r,f H , if there exist two pushouts2

of the following form:

2 See the Appendix for the definition and construction of hypergraph pushouts.
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x

a

b y

z x

y

z

x=y z
c

x

a

b y

z

⇒
x=y z

c

Fig. 3. A rule and its shorthand notation

L K R

G D H

f

b

(1)

Intuitively, the left pushout corresponds to the replacement of L with K
(equivalently, to the removal of L up to K) and the right to the replacement of
K with R. As an example, Figure 4 shows an application of the rule of Figure 3.

a

b

c

d

e ⇒ c

d

e

c

Fig. 4. An application of the rule of Figure 3

A double-pushout as in diagram (1) is called a direct derivation from G to H
and may be denoted (by abuse of notation) by G ⇒r,f H or just by G ⇒r H
or G ⇒ H . A derivation from G to H is a sequence of direct derivations G =
G0 ⇒ . . .⇒ Gn = H for some n ≥ 0 and may be denoted by G⇒∗ H .

Definition 6 (Dangling condition). Given a rule r : 〈L ←↩ K → R〉 and a
hypergraphG, a hypergraph morphism f : L→ G satisfies the dangling condition
if no hyperedge in EG − fE(EL) is incident to a node in fV(VL)− fV(VK).

In other words, the dangling condition guarantees that each attachment node
of a hyperedge in EG − fE(EL) belongs to either VG − fV(VL) or fV(VK).
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With this condition the existence of a direct derivation can be characterized
operationally.

Theorem 1 (Constructing a direct derivation [28]). Let G and H be hy-
pergraphs, r : 〈L ←↩ K →b R〉 a rule and f : L ↪→ G an injective hypergraph
morphism. Then G⇒r,f H if and only if f satisfies the dangling condition and
H is isomorphic to the hypergraph M constructed as follows:

– VM = (VG − fV(VL)) + VR and EM = (EG − fE(EL)) + ER,3

– markM (v) = if v ∈ VR then markR(v) else markG(v),
– labM (e) = if e ∈ ER then labR(e) else labG(e), and
– attM (e) = if e ∈ ER then attR(e) else t∗(attG(e)),

where the auxiliary function t : (VG − fV(VL)) ∪ fV(VK) → VM is defined by
t(v) = if v = fV(v′) for some v′ ∈ VK then bV(v′) else v.

With every derivation Δ : G0 ⇒∗ Gn a partial hypergraph morphism4 can be
associated that “follows” the items of G0 through the derivation: this morphism
is undefined for all items in G0 that are removed by Δ, and maps all other items
to the corresponding items in Gn.

Definition 7 (Track morphism). Given a direct derivation G ⇒ H as in
diagram (1), the track morphism trG⇒H : G → H is the partial hypergraph
morphism defined by

trG⇒H(x) =
{
c′(c−1(x)) if x ∈ c(D),
undefined otherwise.

Here c : D ↪→ G and c′ : D → H are the morphisms in the lower row of (1) and
c−1 : c(D) ↪→ D maps each item c(x) to x.

The track morphism of a derivation Δ : G0 ⇒∗ Gn is defined by trΔ = idG0

if n = 0 and trΔ = trG1⇒∗Gn ◦ trG0⇒G1 otherwise, where idG0 is the identity
morphism on G0.

Definition 8 (Hypergraph rewriting system). A hypergraph rewriting sys-
tem 〈Σ,R〉 consists of a signatureΣ and a setR of rules overΣ. Such a system is
finite if ΣV, ΣE and R are finite, and it is injective if all rules in R are injective.

The system 〈Σ,R〉 is denoted by R if Σ is irrelevant or clear from the context.
Given hypergraphs G and H over Σ such that there is a direct derivation G⇒r

H with r ∈ R, this is written G⇒R H . The system 〈Σ,R〉 is a graph rewriting
system if for each label l in ΣE, Type(l) contains only strings of length two.

Example 1. Figure 5 shows a hypergraph rewriting system defining a class of
control-flow graphs. A hypergraph belongs to the class if and only if the rules can
3 “+” denotes the disjoint union of sets.
4 A partial hypergraph morphism f : G → H is a hypergraph morphism from a subhy-

pergraph of G to H .
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seq:

x

y

⇒
y

x

dec1:

y

x

⇒
y

x

while: y

x

⇒
y

x

dec2: y

z

x

⇒
y z

x

ddec:

x

y z

⇒
y z

x

Fig. 5. Hypergraph rewriting system for flow-graph reduction

reduce it to the smallest flow graph, which is the hypergraph on the right-hand
side of the rule seq. The underlying signature contains a single node label and
two hyperedge labels which are graphically represented by hyperedges formed
as squares and rhombs, where the order among the links of a rhomb is “top-
left-right”. The flow graphs defined in this way correspond to a subset of the
so-called semi-structured flow graphs of Farrow, Kennedy and Zucconi [16]. This
example will be continued as Example 3 where it is shown that the rewriting
system is confluent. ��
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Since rules are matched injectively, one sometimes wants to include in a hy-
pergraph rewriting system some or all of the homomorphic images of a rule.

Definition 9 (Quotient rule). A rule r′ : 〈L′ ←↩ K ′ → R′〉 is a quotient of a
rule r : 〈L←↩ K → R〉 if there are two pushouts of the form

L K R

L′ K ′ R′

(2)

where the vertical hypergraph morphisms are surjective.

For example, Figure 6 shows a rule and its only proper quotient. A rule has—
up to isomorphism—only finitely many quotients and hence the double-pushout
approach with unrestricted matching morphisms can be simulated in the present
setting by replacing each rule with its quotients. However, injective matching
allows to select a subset of the quotients and this feature provides additional
expressiveness [18].

x y

⇒
x y x = y

⇒
x = y

Fig. 6. A rule and its quotient

3.2 Clipping and Embedding

For proving confluence of graph transformation via critical pairs in Section 4,
it will be necessary both to restrict derivations by clipping off context and to
extend derivations with context. The technical machinery for these operations
is presented next.

Definition 10 (Instance of a derivation). Let the derivation Δ : G0 ⇒∗ Gn

be given by the pushouts (1),(1′),. . . ,(n),(n′) of Figure 7 and suppose there are
pushouts (1),(1′),. . . ,(n),(n′) whose vertical morphisms are injective. Then the
derivationΔ′ : G′

0 ⇒∗ G′
n consisting of the composed pushouts (1)+(1),. . . ,(n′)+

(n′)5 is an instance ofΔ based on the morphism G0 ↪→ G′
0. If moreoverG0 ↪→ G′

0
is an isomorphism, then Δ and Δ′ are isomorphic derivations.6

The Clipping Theorem below will show that given a derivation Δ′ : G′
0 ⇒∗

G′
n and an injective morphism G0 ↪→ G′

0, Δ′ can be restricted to a derivation
Δ : G0 ⇒∗ Gn if all items in G′

0 that at some stage are used by a rule application
in Δ′, belong to the image of G0 in G′

0.
In what follows, given a direct derivation G ⇒ H as in diagram (1), the

subhypergraph f(L) of G is denoted by Match(G⇒ H).
5 See Lemma 14 in the Appendix for the composition of pushouts.
6 In this case all the morphisms Gi ↪→ G′

i and Di ↪→ D′
i are isomorphisms.
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L1 K1 R1 L2 K2 R2 Ln Kn Rn

G0 D1 G1 D2 G2 DnGn−1 Gn

G′
0 D′

1 G′
1 D′

2 G′
2 G′

n−1 D′
n G′

n

(1) (1′) (2) (2′) . . . (n) (n′)

(1) (1′) (2) (2′) . . . (n) (n′)

Fig. 7. Derivations Δ : G0 ⇒∗ Gn and Δ′ : G′
0 ⇒∗ G′

n

Definition 11 (UseΔ). Given a derivation Δ : G0 ⇒∗ Gn, the subhypergraph
UseΔ of G0 consists of all items x such that there is some i ≥ 0 with trG0⇒∗Gi(x)
∈ Match(Gi ⇒ Gi+1).

Thus, UseΔ contains those items of G0 that at some point will occur in the
image of the left-hand side of a rule. It is easily seen that these items constitute
a subhypergraph of G0. The following theorem was first proved in [23], in the
setting of injective graph rewriting systems with unrestricted matching.

Theorem 2 (Clipping [28]). Given a derivation Δ′ : G′ ⇒∗ H ′ and an injec-
tive hypergraph morphism h : G ↪→ G′ such that UseΔ′ ⊆ h(G), there exists a
derivation Δ : G⇒∗ H such that Δ′ is an instance of Δ based on h.

Next an embedding operation for derivations is considered which is inverse
to the clipping operation. The associated theorem will refer to the “persistent”
part of the start hypergraph of a derivation.

Definition 12 (PersistΔ). Given a derivation Δ : G ⇒∗ H , PersistΔ is the
subhypergraph of G consisting of all items x such that trG⇒∗H(x) is defined.

In other words, PersistΔ is the domain of definition of trG⇒∗H . The Embed-
ding Theorem given next allows to extend a derivation with context provided
that context edges are not attached to non-persistent nodes. The result was
originally established in [8, 23], for injective graph rewriting systems with unre-
stricted matching.

Theorem 3 (Embedding [28]). Let Δ : G⇒∗ H be a derivation, h : G ↪→ G′

an injective hypergraph morphism and Boundary be the discrete subhypergraph of
G consisting of all nodes x such that h(x) is incident to a hyperedge in G′−h(G).
If Boundary ⊆ PersistΔ, then there exists a derivation Δ′ : G′ ⇒∗ H ′ such that
Δ′ is an instance of Δ based on h. Moreover, there exists a pushout

Boundary H

Context H ′

t

h′
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where Context is the subhypergraph (G′ − h(G)) ∪ h(Boundary) of G′, h′ is the
restriction of h to Boundary and Context, and t is the restriction of trG⇒∗H

to Boundary.

3.3 Independence

Next a basic commutation result is presented showing that independent steps
H1 ⇐r1 G ⇒r2 H2 give rise to steps of the form H1 ⇒r2 H ⇐r1 H2. Roughly
speaking, the given steps are independent if the intersection of the left-hand sides
of r1 and r2 in G consists of common interface items. If one of the rules is not
injective, however, an additional injectivity condition is needed. In the following
let ri denote a rule 〈Li ←↩ Ki → Ri〉, for i = 1, 2.

Definition 13 (Independence). Direct derivations H1 ⇐r1 G ⇒r2 H2 as in
Figure 8 are independent if there are hypergraph morphisms L1 → D2 and
L2 → D1 such that the following holds:

Commutativity: L1 → D2 ↪→ G = L1 ↪→ G and L2 → D1 ↪→ G = L2 ↪→ G.
Injectivity: L1 → D2 → H2 and L2 → D1 → H1 are injective.

R1 K1 L1 L2 K2 R2

H1 D1 GG D2 H2

Fig. 8. Independence

If r1 and r2 are injective, the direct derivations of Figure 8 are independent
if and only if the intersection of the two left-hand sides coincides with the inter-
section of the two interfaces.

Lemma 2 (Independence for injective rules). Let r1 and r2 be injective
rules. Then direct derivations H1 ⇐r1, g1 G ⇒r2, g2 H2 are independent if and
only if g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).

Lemma 2 does not hold for non-injective rules as the injectivity condition of
Definition 13 may be violated [18]. The following result was first proved in [11],
for graph rewriting systems with unrestricted matching.

Theorem 4 (Commutativity [28]). If H1 ⇐r1 G ⇒r2 H2 are independent
direct derivations, then there exists an H such that H1 ⇒r2 H ⇐r1 H2.

4 Confluence

4.1 Rewriting Modulo Isomorphism

In graph transformation, the structure and labelling of (hyper-)graphs matters
rather than the identities of nodes and edges. Hence isomorphic hypergraphs are
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usually considered as equal. This, however, causes a subtle problem as conflu-
ence is defined via the reflexive-transitive closure ⇒∗ which need not contain
isomorphism. For example, consider the rule

r : a ⇒ b

and two rewrite steps R⇐r L⇒r R
′, where L is the left-hand side of r. Then R

and R′ are isomorphic but not necessarily equal, so the relation⇒r is not conflu-
ent in the sense of Definition 1(2). On the other hand,⇒r becomes confluent—in
fact subcommutative—if it is considered as a relation on isomorphism classes
of hypergraphs. A rigorous treatment of confluence requires either to consider
the transformation of isomorphism classes of hypergraphs or—equivalently—to
replace confluence with confluence modulo isomorphism. In what follows, [G]
denotes the isomorphism class {G′ | G′ ∼= G} of a hypergraph G.

Definition 14 (Rewriting modulo isomorphism). Given a hypergraph re-
writing system 〈Σ,R〉, the relation⇒R,∼= on isomorphism classes of hypergraphs
over Σ is defined by: [G] ⇒R,∼= [H ] if there are hypergraphs G′ and H ′ such that
G ∼= G′ ⇒R H ′ ∼= H . The relation ⇒R,∼= is referred to as hypergraph rewriting
modulo isomorphism.

By the uniqueness of pushouts up to isomorphism (Lemma 13.3), it is clear
that [G] ⇒R,∼= [H ] if and only if G ⇒R H . But [G] ⇒∗

R,∼= [H ] need not imply
G⇒∗

R H since G and H may be distinct in the case [G] = [H ].

Definition 15 (Confluence of hypergraph rewriting systems). A hyper-
graph rewriting system 〈Σ,R〉 is confluent (locally confluent, subcommutative)
if the relation ⇒R,∼= is confluent (locally confluent, subcommutative).

A drawback of hypergraph rewriting modulo isomorphism is that one loses
access to nodes and hyperedges. Fortunately, confluence of ⇒R,∼= can be char-
acterized as confluence of ⇒R modulo isomorphism. (See Definition 1 for (local)
confluence modulo isomorphism.)

Lemma 3. Let 〈Σ,R〉 be a hypergraph rewriting system.

(1) The following are equivalent:
– 〈Σ,R〉 is confluent.
– The relation ⇒R is confluent modulo isomorphism.
– For all hypergraphs G, G1 and G2 over Σ, G1 ⇐∗

R G⇒∗
R G2 implies that

there are hypergraphs H1 and H2 such that G1 ⇒∗
R H1 ∼= H2 ⇐∗

R G2.
(2) 〈Σ,R〉 is locally confluent if and only if ⇒R is locally confluent modulo

isomorphism.

Proof. By Lemma 13.3, G ∼= G′ ⇒R H ′ ∼= H implies G ⇒R H . The above
characterizations are easy consequences of this fact. ��
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Note that—different from confluence—the relation ⇒R,∼= is terminating if
and only if ⇒R is terminating, as [G] ⇒R,∼= [H ] if and only if G ⇒R H . A
hypergraph rewriting system 〈Σ,R〉 is said to be terminating if the relation
⇒R,∼= (equivalently, ⇒R) is terminating. The following lemma follows directly
from Newman’s Lemma (Lemma 1).

Lemma 4. A terminating hypergraph rewriting system is confluent if and only
if it is locally confluent.

4.2 The Decision Problem

This section presents a reduction of the Post Correspondence Problem showing
that confluence is undecidable for terminating graph rewriting systems. The
precise result is as follows.

Theorem 5. The following problem is undecidable in general:

Instance: A finite, injective and terminating graph rewriting system 〈Σ,R〉 where
ΣV is a singleton.
Question: Is 〈Σ,R〉 confluent?

The rest of this section is used to prove Theorem 5, with a summary of the
proof given at the end of the section. The plan is to encode every instance I of
the Post Correspondence Problem (PCP) as a (finite, injective and) terminating
graph rewriting system 〈Σ(I),R(I)〉 that is confluent if and only if I does not
have a solution.

Recall that the PCP is the problem to decide, given a nonempty list

I = 〈(α1, β1), . . . , (αn, βn)〉

of pairs of words over some finite alphabet Γ , whether there exists a nonempty
sequence i1, . . . , ik of indices such that αi1 . . . αik

= βi1 . . . βik
. The list I is

an instance of the PCP, and a sequence i1, . . . , ik with the above property is
a solution of this instance. It is well-known that it is undecidable in general
whether an instance of the PCP has a solution, see for example [33].

The following encoding of the PCP represents strings a1 . . . am as graphs
consisting of m consecutive edges labelled with a1, . . . , am, depicted as

a1 a2 . . . am

which includes the case m = 0 where the graph consists of a single node.
Consider now an arbitrary instance I = 〈(α1, β1), . . . , (αn, βn)〉. Let Σ(I)V =

{•} and Σ(I)E = Γ ∪{1, . . . , n}∪{�,A,B} where it is assumed, without loss of
generality, that the three latter sets are pairwise disjoint. The rule set R(I) is
partitioned into subsets R1(I) to R4(I) which are presented by rule schemata
in Figure 9 to Figure 12.

The rule schemata s1 and s2 of R1 enable divergent steps T ⇐s1 S ⇒s2 U
which represent the choice to create a loop labelled with � or to check a possible
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s1 :
x

i ⇒
x

�

i = 1, . . . , n

s2 :
x

i ⇒
b1

. . .
bq

a1 . . .
ap

xB

A
i = 1, . . . , n

where αi = a1 . . . ap and βi = b1 . . . bq

Fig. 9. R1(I)

s3 :
y

z

A

B x

i ⇒
z

b1

. . .
bq

y
a1 . . .

ap

xB

A
i = 1, . . . , n

where αi = a1 . . . ap and βi = b1 . . . bq

s4 :
z

a

y
a

B

A
⇒

z

y

B

A
a ∈ Γ

s5 :
z

b

y
a

B

A
⇒

y �

z
a, b ∈ Γ with a �= b

s6 :
y

a

B

A
⇒

y �
a ∈ Γ

s7 :
z

a B

A
⇒

z �
a ∈ Γ

Fig. 10. R2(I)

solution of I. The rules of R2 check whether a sequence of indices is a solution
of I, R3 detects ill-shaped graphs, and R4 performs “garbage collection” in the
presence of a �-labelled loop.

We proceed by showing that 〈Σ(I),R(I)〉 is terminating, and that it is con-
fluent if and only if I does not have a solution.

Lemma 5. The system 〈Σ(I),R(I)〉 is terminating.

Proof. Suppose that R(I) admits an infinite derivation G1 ⇒ G2 ⇒ . . . Since
no application of a rule in R(I) increases the number of edges with label in
{1, . . . , n}, there is some t ≥ 1 such that the number of these edges is the same



294 D. Plump

s8 :
y

z x

A

B w

l ⇒
y �

z x w
l ∈ Γ ∪ {�, A,B}

s9 :
y

z x

A

B w

l ⇒
y �

z x w
l ∈ Σ(I)E

including the quotient obtained by merging x and w

s10 :
x

y

z

i

j
⇒

x
�

y

z
i, j ∈ {1, . . . , n}

including the quotient obtained by merging y and z

Fig. 11. R3(I)

s11 :
x

�

y z

l ⇒
x

�

y z
l ∈ Σ(I)E

including all quotients

s12 :
x

�

⇒
x

�

Fig. 12. R4(I)

in all Gi with i ≥ t. It follows that the rule schemata s1 to s3 are not applied in
Gt ⇒ Gt+1 ⇒ . . . But all other rule schemata in R(I) decrease the sum of the
numbers of nodes and edges, hence Gt ⇒ Gt+1 ⇒ . . . cannot be infinite. ��

The next four lemmata will show that the instance I has a solution if and
only if 〈Σ(I),R(I)〉 is not confluent. The “only if”-direction follows from the
observation that every solution of I—represented as a chain of edges—can be
reduced to two non-isomorphic normal forms. Define graphs Join and Success as
follows:

Join:
�

Success:
B

A

Lemma 6. Every graph over Σ(I) containing a �-labelled loop reduces to Join.

Proof. Apply the rules in R4(I) as long as possible. ��

Lemma 7. If I has a solution, then 〈Σ(I),R(I)〉 is not confluent.
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Proof. Let i1, . . . , ik be a solution of I. Then the graph

i1 i2 . . . ik

can be reduced to Join by first applying rule schema s1 and then as long as
possible the rules in R4(I). On the other hand, by first applying rule schema s2
and then as long as possible the rule schemata s3 and s4, the graph will reduce to
Success. Since Join and Success are normal forms, 〈Σ(I),R(I)〉 is not confluent.

��

To complete the proof of Theorem 5, it remains to be shown that 〈Σ(I),R(I)〉
is confluent if I does not have a solution. The next lemma provides a crucial
argument for this proof.

Lemma 8. If I does not have a solution, then for every graph G over Σ(I),
G⇒s2 H implies H ⇒∗

R(I) Join.

Proof. Let G⇒s2 H . Call a subgraph C of H an index chain of length k, k ≥ 1,
if C has the form

i1 i2 . . . ik

with i1, . . . , ik ∈ {1, . . . , n}, where only the rightmost node may be incident to
edges not belonging to C.

Let now C be the longest index chain in G such that the leftmost edge of C
is replaced by the step G⇒s2 H . Let e1, . . . , ek be the edges of C in left-to-right
order and labC(ej) = ij for j = 1, . . . , k. Then H ⇒k−1

s3 H ′ for some graph H ′

such that the jth step in G ⇒s2 H ⇒k−1
s3 H ′ replaces ej by two sequences of

edges representing the strings αij and βij . Let v be the destination of edge ek

in C. In H ′, v is the source of two edges labelled with A and B which were
created in the kth step. If v is incident to any other edges, then H ′ ⇒R3(I) H ′′

for some H ′′ and hence H ′′ ⇒∗ Join by Lemma 6. Assume that v is incident to
no other edges than the two edges labelled with A and B. The generated strings
αi1 . . . αik

and βi1 . . . βik
are distinct as otherwise i1, . . . , ik would be a solution

of I. Let H ′ ⇒∗ H ′′ be a derivation in which the rule schemata s4, s5, s6 and
s7 are applied as long as possible. This derivation must include an application
of s5, s6 or s7 because otherwise αi1 . . . αik

= βi1 . . . βik
. Thus H ′′ contains a

�-edge and, by Lemma 6, reduces to Join. ��

By Lemma 3 and Lemma 4, showing that 〈Σ(I),R(I)〉 is confluent if I has
no solution amounts to proving that ⇒R(I) is locally confluent modulo isomor-
phism. It will turn out that in every situation H1 ⇐R(I) G⇒R(I) H2 where H1
and H2 are not isomorphic, either the steps are independent and hence can be
commuted or H1 and H2 reduce to the graph Join.

Lemma 9. If I does not have a solution, then R(I) is confluent.
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Proof. By Lemma 3 and Lemma 4, it suffices to show that ⇒R(I) is locally
confluent modulo isomorphism since R(I) is terminating. Consider two direct
derivations H1 ⇐r1,g1 G ⇒r2,g2 H2 by rules ri : 〈Li ←↩ Ki → Ri〉 ∈ R(I),
for i = 1, 2, such that H1 �∼= H2. Moreover, assume that the two steps are
not independent as otherwise they can be commuted by Theorem 4. By the
injectivity of r1 and r2 and Lemma 2,

g1(L1) ∩ g2(L2) �⊆ g1(K1) ∩ g2(K2). (3)

There are four cases.

Case 1: r1, r2 ∈ R3(I) ∪R4(I). Then both H1 and H2 contain a �-loop and
hence, by Lemma 6, reduce to the graph Join.

Case 2: r1 ∈ R1(I) ∪ R2(I), r2 ∈ R3(I) ∪ R4(I). Then H2 reduces to Join.
If r1 is an instance of rule schema s1, s5, s6 or s7, then H1 contains a �-loop
and reduces to Join, too. Let therefore r1 be an instance of rule schema s2, s3
or s4. By (3) and the dangling condition (Definition 6), four subcases remain. In
each of these cases there will be a step H1 ⇒R3(I) H ′

1 and hence a derivation
H1 ⇒R3(I) H ′

1 ⇒∗
R4(I) Join.

Case 2.1: r1 is an instance of s2 and r2 is an instance of s9. Then H1 contains
a node with two outgoing A-edges and two outgoing B-edges, so s8 is applicable
to H1.

Case 2.2: r1 is an instance of s2 and r2 is an instance of s11. Then H1 contains
a �-loop and hence s11 is applicable to H1.

Case 2.3: r1 is an instance of s3 and r2 is an instance of s9. Again H1 contains
a node with two outgoing A-edges and two outgoing B-edges, so s8 is applicable
to H1.

Case 2.4: r1 is an instance of s3 and r2 is an instance of s11. Then H1 contains
a �-loop so that s11 is applicable to H1.

Case 3: r1 ∈ R3(I) ∪ R4(I), r2 ∈ R1(I) ∪R2(I). This case is symmetric to
Case 2.

Case 4: r1, r2 ∈ R1(I) ∪R2(I). Then one of the rules, say r1, is an instance
of s1 and r2 is an instance of s2. By Lemma 6 and Lemma 8, both H1 and H2
reduce to Join. ��

Proof of Theorem 5. For every instance I of the PCP, the system 〈Σ(I),R(I)〉
is finite and injective and contains only one node label. Moreover, R(I) is ter-
minating by Lemma 5. By Lemma 7 and Lemma 9, 〈Σ(I),R(I)〉 is confluent if
and only if I does not have a solution. This concludes the proof of Theorem 5
as the PCP is known to be undecidable [33]. ��

4.3 Critical Pairs

The concept of a critical pair was introduced by Knuth and Bendix [22] who
showed that confluence of a terminating term rewriting system can be tested
by checking for each critical pair whether both terms have a common reduct.
This subsection explores to what extent this idea can be adopted for the setting



Confluence of Graph Transformation Revisited 297

of hypergraph rewriting. The motivation is to ensure that arbitrary divergent
steps H1 ⇐r1 G⇒r2 H2 have a common reduct if this is the case for those steps
where G represents a “critical overlap” of the left-hand sides of r1 and r2. By
Theorem 4 (commutativity), such an overlap is critical only if the two steps are
not independent. This suggests the following definition of a critical pair.

Definition 16 (Critical pair). Let ri : 〈Li ←↩ Ki → Ri〉 be rules, for i = 1, 2.
A pair of direct derivations U1 ⇐r1,g1 S ⇒r2,g2 U2 is a critical pair if

(1) S = g1(L1) ∪ g2(L2) and
(2) the steps are not independent.

Moreover, g1 �= g2 has to hold if r1 = r2.

Two critical pairs U1 ⇐ S ⇒ U2 and U ′
1 ⇐ S′ ⇒ U ′

2 are isomorphic if there
is an isomorphism f : S → S′ such that for i = 1, 2, S′ ⇒ U ′

i is an instance of
S ⇒ Ui based on f . In the sequel, isomorphic critical pairs will be equated so
that condition (1) guarantees that a finite set of rules has only a finite number
of critical pairs.

By Theorem 4, hypergraph rewriting systems without critical pairs enjoy a
strong commutation property which implies subcommutativity and hence con-
fluence. This is fundamentally different from the situation for term rewriting
systems where the absence of critical pairs guarantees only local confluence [20].

Theorem 6. If 〈Σ,R〉 is a hypergraph rewriting system without critical pairs,
then H1 ⇐R G ⇒R H2 implies H1 ∼= H2 or that there is a hypergraph H such
that H1 ⇒R H ⇐R H2.

Proof. Let H1 ⇐r1,g1 G ⇒r2,g2 H2. If the two steps are independent, then by
Theorem 4 there are two steps of the form H1 ⇒r2 H ⇐r1 H2. Assume therefore
that the given steps are not independent. By Theorem 2 (clipping), there are
two restricted steps of the form

U1 ⇐r1 g1(L1) ∪ g2(L2) ⇒r2 U2

such that the given steps are instances of the restricted steps. It is not difficult
to show that the latter steps are not independent either. Hence, as there are no
critical pairs, r1 = r2 and g1 = g2 must hold. It follows H1 ∼= H2 since the result
of a rewrite step is determined uniquely up to isomorphism. ��

By the proof of the corollary below it follows that in the absence of critical
pairs, [H1] ⇐R,∼= [G] ⇒R,∼= [H2] with [H1] �= [H2] implies that there is a hyper-
graph H with [H1] ⇒R,∼= [H ] ⇐R,∼= [H2]. In [4] this property is denoted by CR1

(for arbitrary binary relations).

Corollary 1. Hypergraph rewriting systems without critical pairs are subcom-
mutative.
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Proof. Let 〈Σ,R〉 be a hypergraph rewriting system without critical pairs and
consider two steps [H1] ⇐R,∼= [G] ⇒R,∼= [H2]. Then there are hypergraphs G′,
G′′, H ′

1 and H ′
2 such that H1 ∼= H ′

1 ⇐R G′ ∼= G ∼= G′′ ⇒R H ′
2
∼= H2. Hence

H1 ⇐R G⇒R H2 by Lemma 13.3. Thus, by Theorem 6, [H1] = [H2] or there is
a hypergraph H such that [H1] ⇒R,∼= [H ] ⇐R,∼= [H2]. So, in particular, ⇒R,∼=
is subcommutative. ��

It follows that hypergraph rewriting systems without critical pairs are con-
fluent, since subcommutative relations are confluent [20]. The next definition
adapts the notion of a joinable critical pair from the setting of term rewriting
to hypergraph rewriting.

Definition 17 (Joinability). A critical pair U1 ⇐ S ⇒ U2 is joinable if there
exist hypergraphs W1 and W2 such that U1 ⇒∗ W1 ∼= W2 ⇐∗ U2.

It turns out that the joinability of all critical pairs of a hypergraph rewriting
system does not guarantee local confluence. This problem may occur if the track
morphisms of the derivations S ⇒ U1 ⇒∗ W1 and S ⇒ U2 ⇒∗ W2 send some
node in S to nodes in W1 and W2 that are not related by the isomorphism
between W1 and W2.

Example 2. Let 〈Σ,R〉 be a graph rewriting system consisting of the following
two rules:

r1 :
x y

a ⇒
x y

b

r2 :
x y

a ⇒
x y

b

There is only one critical pair, which is clearly joinable:

b ⇐
r1

a
⇒
r2

b

However, 〈Σ,R〉 is not locally confluent:

b
b

⇐
r1

a

b
⇒
r2

b
b

The outer hypergraphs are non-isomorphic normal forms and hence there are no
joining derivations. The problem is that the embedding of the critical pair into
context destroys the isomorphism between the outer hypergraphs. This is possi-
ble because the two steps of the critical pair—although resulting in isomorphic
hypergraphs—have incompatible track morphisms.
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One could try to overcome this problem by adding the rule

r3 : b ⇒ ∅

which reduces the outer hypergraphs of the critical pair to the empty hyper-
graph. Adding r3 does not create new critical pairs, so the only critical pair is
“joinable by derivations with identical track morphisms”. Still, this is not suffi-
cient for local confluence modulo isomorphism: r3 cannot be applied to the outer
hypergraphs of the latter derivation pair because of the dangling condition for
direct derivations. In other words, the joining derivations cannot be embedded
into context as r3 removes the nodes to which the context edge is attached. ��

This example suggests that the joining derivations of a critical pair need to
preserve certain nodes and possess track morphisms that are compatible with
the isomorphism between the resulting hypergraphs.

Definition 18 (Strong joinability). Given a critical pair Γ : U1 ⇐ S ⇒ U2,
let PersistΓ = PersistS⇒U1 ∩ PersistS⇒U2 . Then Γ is strongly joinable if there
are derivations U1 ⇒∗ W1, U2 ⇒∗ W2 and an isomorphism f : W1 → W2 such
that for each node v in PersistΓ ,

(1) trS⇒U1⇒∗W1(v) and trS⇒U2⇒∗W2(v) are defined and
(2) fV(trS⇒U1⇒∗W1(v)) = trS⇒U2⇒∗W2(v).

So each node that is preserved by both S ⇒ U1 and S ⇒ U2 has to be
preserved by U1 ⇒∗ W1 and U2 ⇒∗ W2 as well, and its descendants in W1 and
W2 have to be related by the isomorphism f .

Lemma 10 (Critical Pair Lemma). A hypergraph rewriting system is locally
confluent if all its critical pairs are strongly joinable.

Proof. Let 〈Σ,R〉 be a hypergraph rewriting system such that all its critical
pairs are strongly joinable. By Lemma 3 it suffices to show that ⇒R is locally
confluent modulo isomorphism. Consider two steps H1 ⇐r1,g1 G ⇒r2,g2 H2 by
rules ri : 〈Li ←↩ Ki → Ri〉, for i = 1, 2. If the two steps are independent, then
Theorem 4 guarantees that there are two steps of the form H1 ⇒r2 H ⇐r1 H2.
Assume therefore that the given steps are not independent. Assume further that
r1 �= r2 or g1 �= g2 as otherwise H1 ∼= H2. Let now S = g1(L1) ∪ g2(L2). Then,
for i = 1, 2, UseG⇒Hi ⊆ S and hence, by Theorem 2 (clipping), there are direct
derivations U1 ⇐r1,g′

1
S ⇒r2,g′

2
U2 such that for i = 1, 2, G⇒ Hi is an instance

of S ⇒ Ui based on the inclusion S ↪→ G. It is not difficult to check that since the
steps H1 ⇐ G ⇒ H2 are not independent, U1 ⇐ S ⇒ U2 are not independent
either and hence constitute a critical pair Γ . Thus, by assumption, there are
derivations U1 ⇒∗ W1, U2 ⇒∗ W2 and an isomorphism f : W1 → W2 such that
for each node v in PersistΓ , fV(trS⇒U1⇒∗W1(v)) and trS⇒U2⇒∗W2(v) are defined
and equal.
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Let Boundary be the subhypergraph of S consisting of all nodes that are
incident to a hyperedge in G−S. Then Boundary ⊆ PersistG⇒H1 ∩PersistG⇒H2

since G⇒ H1 and G⇒ H2 satisfy the dangling condition. Hence

Boundary ⊆ (PersistG⇒H1 ∩ PersistG⇒H2) ∩ S = PersistΓ .

Thus trS⇒U1⇒∗W1 and trS⇒U2⇒∗W2 are defined for all nodes in Boundary . So
Boundary ⊆ PersistS⇒Ui⇒∗Wi for i = 1, 2 and hence, by Theorem 3 (embed-
ding), there are derivations G⇒r1,g′′

1
H ′

1 ⇒∗ M1 and G⇒r2,g′′
2

H ′
2 ⇒∗ M2 that

are instances of S ⇒r1,g′
1
U1 ⇒∗ W1 and S ⇒r2,g′

2
U2 ⇒∗ W2, respectively. Since

both instances are based on the inclusion S ↪→ G, g′′i is the extension of g′i to
G and hence g′′i = gi, for i = 1, 2. It follows H ′

1
∼= H1 and H ′

2
∼= H2; thus for

i = 1, 2, Hi ⇒∗ Mi or Hi
∼= Mi. So it remains to show M1 ∼= M2 for ⇒R to

be locally confluent modulo isomorphism. By Theorem 3, for i = 1, 2 there is a
pushout

Boundary Wi

Context Mi

Pi

ti

where Context = (G − S) ∪ Boundary , Boundary ↪→ Context is the inclusion
of Boundary in Context , and ti is the restriction of trS⇒Ui⇒∗Wi to Boundary .
By assumption, f ◦ t1 = t2. So Boundary ↪→ Context → M2 = Boundary →t2

W2 ↪→ M2 = Boundary →t1 W1 →f W2 ↪→ M2. Hence there is a unique
morphism M1 → M2 such that the diagram in Figure 13 commutes, where the

Boundary W2

Context M2

t2

W1t1 f

M1

P1 (∗)

Fig. 13. Decomposing pushout P2

outer diagram is the pushout P2. So (∗) is a pushout by Lemma 14.2. Since f is
an isomorphism, Lemma 13.2 guarantees that M1 → M2 is an isomorphism as
well. This concludes the proof of Lemma 10. ��

Combining the Critical Pair Lemma with Newman’s Lemma (Lemma 1) yields
a sufficient condition for the confluence of terminating hypergraph rewriting
systems.
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Theorem 7. A terminating hypergraph rewriting system is confluent if all its
critical pairs are strongly joinable.

Example 3. This example continues Example 1 by applying Theorem 7 to the
hypergraph rewriting system of Figure 5. That system is terminating since each
of the rules reduces the size of a hypergraph it is applied to. Figure 14 shows
that all critical pairs of the system are strongly joinable (where track morphisms
are indicated by node names). Note that for each critical pair Γ : U1 ⇐ S ⇒ U2,
PersistΓ is a proper subset of VS . For instance, the persistent nodes of the
topmost pair are w and z; hence the isomorphism between the outer hypergraphs
of this pair is compatible with the track morphisms in the way required by
Definition 18.

Thus, by Theorem 7, the hypergraph rewriting system of Example 1 is con-
fluent. As a consequence, membership in the class of flow graphs defined by the
system can be checked by a backtracking-free reduction algorithm: an input hy-
pergraph G is reduced to its unique normal form N(G) by applying the rules
in any order; G is a flow graph if and only if N(G) is the flow graph on the
right-hand side of rule seq. ��

The converse of Theorem 7 does not hold because if all critical pairs of ter-
minating and confluent systems were strongly joinable, confluence of terminat-
ing systems could be checked by testing critical pairs for strong joinability—
contradicting Theorem 5. The next example gives two terminating and confluent
systems having critical pairs that are not strongly joinable.

Example 4. Let the graph rewriting system 〈Σ,R〉 consist of singletons ΣV and
ΣE , and the following rules:

r1 :
x y

⇒
x y

r2 :
x y

⇒
x y

This system is terminating because every rule application decreases the number
of edges by one. To see that it is confluent, consider two derivations H1 ⇐∗

R
G⇒∗

R H2. Then G, H1 and H2 have the same number of nodes. Hence H1 ⇒∗
R

H ′
1
∼= H ′

2 ⇐∗
R H2, where H ′

1 and H ′
2 consist of |VG| nodes and either no edges

(if G is loop-free) or one loop and no other edges. So the system is confluent.
But the following critical pair7 is not strongly joinable:

x y ⇐
r1

x y ⇒
r1

x y

7 The track morphisms are indicated by node names.
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w

y

z

⇐
seq

w

x

y

z

⇒
seq

w

x

z

w

y

z

⇐
while

⇒
seq

x y

w

z

⇒
dec2

⇐
w
hi
le

x z

w

z

w

x

v

y z

⇐
ddec

x

w

y z

v

⇒
ddec

w

v

y z

w y

z

v

⇐
ddec

⇒
dec2

x

v

w y

z

⇒
dec2

⇐
dd

ec

x

v

w z

w z

v

Fig. 14. The critical pairs of the rules of Figure 5
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This is because the outer graphs are normal forms and the isomorphism between
them is not compatible with the track morphisms of the rewrite steps.

A similar situation can arise in the system 〈Σ(I),R(I)〉 of the previous sub-
section which encodes the Post Correspondence Problem. That system is con-
fluent if the instance I of the PCP has no solution. The rule schemata s1 and s2
give rise to the critical pair

x

�
⇐
s1 x

i ⇒
s2

b1
. . .

bq

a1 . . .
ap

xB

A

which is joinable if I has no solution, as then the graph on the right reduces to
the graph on the left (see Lemma 9). However, this critical pair is not strongly
joinable because the derivation from the right graph to the left graph deletes the
node x which is preserved by both steps of the critical pair. ��

5 Related Work and Conclusion

This section mentions some related work and a couple of topics for future work.
The proof idea for showing that confluence of terminating systems is undecid-

able (Theorem 5) was inspired by Kapur’s, Narendran’s and Otto’s proof that
ground-confluence is undecidable for terminating term rewriting systems [21].

The phenomenon that the joinability of all critical pairs need not imply local
confluence of the rewrite relation refutes the critical pair lemma in [30]. In [26]
the problem is avoided by imposing the strong restriction that distinct nodes in
a graph must not have the same label.

The critical pair lemma of [27] was adopted to the so-called single-pushout
approach to graph transformation in [24]. In [19] a critical pair lemma for a cer-
tain kind of attributed graph transformation (in the double-pushout approach)
was presented. An abstract critical pair lemma in the setting of so-called adhe-
sive high-level replacement systems was given in [10] and specialised in [14] to a
form of attributed graph transformation (different from the aforementioned).

Future research should establish sufficient conditions under which all critical
pairs of a confluent (hyper-)graph rewriting system are strongly joinable. For
a finite and terminating system satisfying such a condition, confluence can be
decided by checking all critical pairs for strong joinability.

Another application of the Critical Pair Lemma could be the completion of
non-confluent systems, in analogy to the well-known completion procedure for
term rewriting systems invented by Knuth and Bendix [22]. Such a procedure
would add rules to a (hyper-)graph rewriting system until all critical pairs are
strongly joinable. The procedure should preserve both the equivalence generated
by the rewrite relation and termination.

Dedication. This paper is dedicated to Jan Willem Klop on the occasion of
his 60th birthday. Since 1997, I have been a regular visitor of Jan Willem at
CWI, the University of Nijmegen, and the Free University of Amsterdam. I am
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grateful for Jan Willem’s hospitality and collaboration during all this time. The
present paper is not directly concerned with our common topic of interest—term
graph rewriting—but confluence of various forms of rewriting plays a prominent
role in Jan Willem’s scientific work.

Appendix: Pushouts

This appendix presents the definition and construction of hypergraph pushouts
and summarises some facts that are used in the proofs of Section 4.

Definition 19 (Pushout). Given two hypergraph morphisms A→ B and A→
C, a hypergraphD together with two hypergraph morphismsB → D andC → D
is a pushout of A→ B and A→ C if the following conditions are satisfied:

Commutativity: A→ B → D = A→ C → D.
Universal property: For all hypergraphs D′ and hypergraph morphisms B →

D′ and C → D′ such that A → B → D′ = A → C → D′, there is a unique
morphism D → D′ such that B → D → D′ = B → D′ and C → D → D′ =
C → D′. (See the right part of Figure 15.)

In this case the diagram on the left of Figure 15 is also called a pushout.

A B

C D

A B

C D

D′

Fig. 15. A pushout diagram (on the left)

Intuitively, hypergraphD is obtained by gluing togetherB and C in a common
part A. In particular, if A → C is injective, then D can be constructed from
C by replacing the image of A with B. The following pushout construction
assumes that one of the given morphisms is injective, which is the case for the
two pushouts of a direct derivation as defined in Definition 5.

Lemma 11 (Pushout construction). Let b : A→ B and c : A ↪→ C be hyper-
graph morphisms such that c is injective. Then a pushout

A B

C D

b

c f

g

can be constructed as follows:
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– VD = (VC − cV(VA)) + VB and ED = (EC − cE(EA)) + EB;
markD(v) = if v ∈ VB then markB(v) else markC(v);
labD(e) = if e ∈ EB then labB(e) else labC(e);
attD(e) = if e ∈ EB then attB(e) else g∗V(attC(e)), where gV : VC → VD is
defined below.

– f(x) = x, separately for nodes and hyperedges.
– g(x) = if x = c(x′) for some x′ in A then b(x′) else x, separately for nodes

and hyperedges.

Proof. Analogous to the corresponding proof for graphs, see [9]. ��

Definition 20 (Pushout complement). Given two hypergraph morphisms
A→ B and B → D, a hypergraph C together with two morphisms A→ C and
C → D is a pushout complement of A→ B and B → D if diagram (1) in Figure
16 is a pushout.

The following lemma gives a sufficient and necessary condition for the exis-
tence of the pushout complement in case B → D is injective (see [13] for the
general case), viz. the dangling condition of Definition 6. A condition for the
uniqueness of pushout complements is given in Lemma 13.4.

Lemma 12 (Pushout complement construction). Let b : A → B and f :
B ↪→ D be hypergraph morphisms such that f is injective. Then b and f possess
a pushout complement if and only if no hyperedge in ED−fE(EB) is incident to a
node in fV(VB)− fV(bV(VA)). In this case a pushout complement A→ C ↪→ D
can be constructed as follows:

– C is the subhypergraph of D with nodes (VD − fV(VB)) ∪ fV(bV(VA)) and
edges (ED − fE(EB)) ∪ fE(bE(EA)).

– C ↪→ D is the inclusion of C in D.
– A→ C is the restriction of A→ B ↪→ D to C.

Proof. Analogous to the corresponding proof for relational structures in [13]. ��

A B

C D

(1)

A B

C D

D′

(1)

(2)

(3)

A B

C D

C′

(1)

(5)

(4)

Fig. 16. Uniqueness of pushouts and pushout complements

Lemma 13 (Pushout properties). Let diagram (1) in Figure 16 be a hyper-
graph pushout. Then the following holds:
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1. Joint surjectivity. Each item in D has a preimage in B or C.
2. Injectivity and surjectivity. If A → B is injective (surjective), then C → D

is injective (surjective) as well.
3. Uniqueness of pushouts. A hypergraph D′ together with morphisms B → D′

and C → D′ is a pushout of A → B and A → C if and only if there is
an isomorphism D → D′ such that the triangles (2) and (3) in Figure 16
commute.

4. Uniqueness of pushout complements. If C′ together with A→ C′ and C′ →
D is a pushout complement of A→ B and B → D, and A→ B is injective,
then there is an isomorphism C → C′ such that the triangles (4) and (5) in
Figure 16 commute.

Proof. The first and the fourth property are shown (for graphs) in [12] and [32],
respectively. The second property holds for set pushouts [1] and hence also for
hypergraph pushouts. The third property holds in every category [1]. ��

Lemma 14 (Composition and decomposition of pushouts). Let the dia-
grams in Figure 17 consist of hypergraph morphisms. Then the following holds:

1. If (1) and (2) are pushouts, then (1)+(2) is a pushout.
2. If (1)+(2) and (1) are pushouts and (2) commutes, then (2) is a pushout.
3. If (1)+(2) and (2) are pushouts, (1) commutes and B → E is injective, then

(1) is a pushout.

Proof. The first two properties hold in every category, the third is proved (for
graphs) in [12]. ��

A B

C D

E

F

(1) (2)

A B

C D

E

F

(1)+(2)

Fig. 17. Pushout composition and decomposition
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1. Jǐŕı Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Cate-
gories. Wiley, 1990.

2. Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An
algebraic theory of graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

3. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

4. Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term Rewriting Sys-
tems. Cambridge University Press, 2003.

5. Hans L. Bodlaender and Babette de Fluiter. Reduction algorithms for constructing
solutions in graphs with small treewidth. In Proc. Computing and Combinatorics,
volume 1090 of Lecture Notes in Computer Science, pages 199–208, 1996.



Confluence of Graph Transformation Revisited 307

6. Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
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Abstract. We study a process algebra which combines both nondeter-
ministic and probabilistic behavior in the style of Segala and Lynch’s
simple probabilistic automata. We consider strong bisimulation and ob-
servational equivalence, and provide complete axiomatizations for a lan-
guage that includes parallel composition and (guarded) recursion. The
presence of the parallel composition introduces various technical diffi-
culties and some restrictions are necessary in order to achieve complete
axiomatizations.

1 Introduction

Process algebras, also known as process calculi, are a powerful mathematical
model for the specification and verification of concurrent systems. They provide
a formal apparatus for representing and reasoning about the behaviors of dis-
tributed systems, algorithms and protocols in a compositional way. Some of the
most prominent representants of these formalisms are CCS [27], ACP [8, 6], and
CSP [21].

The axiomatic theories of process algebra provide an elegant way for proving
properties of systems. Both a system and its desired external behavior can be
expressed as process terms. The correctness of the system can then be verified
by proving that these two terms are equivalent.

In a process algebra typically there are only a few operators, such as action
prefix, summation (nondeterministic choice), recursion and parallel composition.
The latter is particularly important for concurrency, as it allows to specify the
structural properties of systems composed of several interacting parts. For exam-
ple, a typical communication protocol for data transferring involves two agents
S and R, representing the sender and the receiver, and two lossy channels K
and L between them (see Figure 1). The behavior of each of these four compo-
nents can be described as a process term in a chosen process algebra, and then
they are all put together in parallel to form the complete view of the protocol.
The parallel composition operator captures both the interleaving behaviors and
the possible synchronization of the components. The external behavior of the
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S

K

L

R

Fig. 1. A communication protocol

protocol can be specified as a FIFO queue. The equivalence proof between the
protocol and its external behavior is established by equational reasoning based
on axiomatization, hiding internal behavior, using fairness assumption, and the
other feasible methods (see e.g. [9, 17]).

Developing a both complete and sound axiomatization for a chosen bisimula-
tion relation over a process algebra expressing finite-state processes has been a
research focus for the process algebra community. This led to a wealth of classical
results in the literature. Milner [26, 28] gave complete axiomatizations of both
strong bisimilarity and observational equivalence for a core CCS (not containing
the parallel composition operator) with both unguarded and guarded recursion.
Bergstra and Klop [10] axiomatized observational equivalence in an alternative
way by using an interesting graph rewriting technique. Hennessy and Milner [20]
offered a complete equational axiomatization of strong bisimulation over the re-
cursion free fragment of CCS. To deal with parallel composition, they used the
so-called expansion law, which is an equation schema with a countably infinite
number of instances. Bergstra and Klop [8] gave a finite equational axiomati-
zation of the merge operator (as the parallel composition in CCS) using the
auxiliary left merge and communication merge operators. An interesting essay
on equational axiomatizations of parallel composition can be found in [2].

Having both recursion and parallel composition in a process algebra compli-
cates the matters to establish a complete axiomatization, mostly because this
can give rise to infinite-state systems even with the guardedness condition. For
example, let E be the expression μX(a.(X | b)), then we have the infinite transi-
tion graph starting from E in Figure 2. Milner pointed out in [28] that in order to
have a complete axiomatization for CCS with both recursion and parallel com-
position, a sufficient condition is that the parallel composition does not occur in
the body of any recursive expression.

E . . .

a

E | b E | b | b

a a

b bb

Fig. 2. The transition graph of E
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In this paper we relax this restriction by requiring, instead, that free vari-
ables do not appear in the scope of parallel composition. A similar restriction
was adopted, independently, in [5]. In that paper, Baeten and Bravetti considered
a generic process algebra of which CCS, CSP and ACP are subalgebras. Finite-
stateness is achieved by requiring that recursion variables do not occur in the
scope of static operators, which include the parallel composition. Our work and
[5] are, in a sense, incomparable, because we consider a probabilistic and nonde-
terministic framework (as explained in the rest of this introduction) with CCS-
like communication, while [5] considers a purely nondeterministic paradigm, but
more general than our nondeterministic fragment. The same restriction already
appeared in [11], for a nondeterministic process algebra with CSP multiway
synchronization.

Recently there has been an increasing interest in the area of formal meth-
ods for the specification and analysis of probabilistic behaviors, as exhibited
for instance in randomized, distributed and fault-tolerant systems. The notion
of probabilistic bisimulation is introduced first by Larsen and Skou [22]. Later
many variant behavioural equivalences have been defined for various probabilistic
models. A representative model for analyzing probabilistic systems is provided
by Segala and Lynch’s simple probabilistic automata [30], which take into ac-
count both probabilistic and nondeterministic behavior and which have been
successfully adopted in the studies of distributed algorithms [24, 29] and prac-
tical communication protocols [33]. An axiomatization for the finite sequential
fragment of simple probabilistic automata has been provided by Bandini and
Segala in [7]. Following this line of research, Deng and Palamidessi [16, 15] have
given a sound and complete axiomatization for a larger language, which includes
the recursion operator.

In this paper, we improve on [16, 15] by considering also the parallel com-
position. To our knowledge, it is the first time that an axiomatization for a
probabilistic and nondeterministic process algebra with both recursion and par-
allel operator has been attempted. Similar to the case of classical process algebra,
once we have both parallel composition and recursion, the equational axiomati-
zation of strong bisimulation and observational equivalence turns out to be quite
complicated to achieve.

To obtain the completeness of the axiomatizations, we develop a probabilistic
version of the expansion law to eliminate all occurrences of parallel composition.
In order to do that, we heavily rely on the condition that only closed terms are
put in parallel (cf. Theorem 3).

Concerning soundness, it turns out to be particularly difficult to prove that
strong and weak bisimilarities are closed under the parallel composition opera-
tor. Our approach is to manipulate equivalences of distributions on terms. An
important property that we exploit in our proofs is Lemma 2, which says that
if two distributions are equivalent with respect to an equivalence relation R,
then there is a uniform way to extend them so that the resulting distributions
in parallel contexts are equivalent with respect to another equivalence relation
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R|. It turns out that if R is instantiated as strong or weak bisimilarity then R|

is a subset of R, thus R| also relates bisimilar expressions.

Structure of the paper. In the next section we briefly recall some basic con-
cepts and definitions about probabilistic distributions. In Section 3, we present
the syntax and operational semantics of a probabilistic process calculus. Next,
we give the notions of strong and weak behavioral equivalences in Section 4.
We provide complete axiomatizations for strong bisimilarity and observational
equivalence in Sections 5 and 6 respectively, restricted to guarded expressions
in the second case. In Section 7, we conclude and discuss some related work not
yet mentioned in the introduction. Detailed proofs of the main propositions in
Section 4 are in the Appendix.

2 Preliminaries

Let S be a set. A function η : S 2→ [0, 1] is called a discrete probability distribu-
tion, or distribution for short, on S if the support of η, defined as spt(η) = {x ∈
S | η(x) > 0}, is finite or countably infinite and

∑
x∈S η(x) = 1. We denote by

P(S) the set of distributions over S. If η is a distribution with finite support
and V ⊆ spt(η) we use the set {si : η(si)}si∈V to enumerate the probability
associated with each element of V . The constructor 0 on this kind of sets is
defined as follows.

{si : pi}i∈I 0 {s : p} ={
{si : pi}i∈I\j ∪ {sj : (pj + p)} if s = sj for some j ∈ I
{si : pi}i∈I ∪ {s : p} otherwise.

{si : pi}i∈I 0 {tj : pj}j∈1..n =
({si : pi}i∈I 0 {t1 : p1}) 0 {tj : pj}j∈2..n

Given some distributions η1, ..., ηn on S and some real numbers r1, ..., rn ∈ [0, 1]
with
∑

i∈1..n ri = 1, we define the convex combination r1η1+...+rnηn of η1, ..., ηn

to be the distribution η such that η(s) =
∑

i∈1..n riηi(s), for each s ∈ S.
A simple probabilistic automaton is a tuple (S, s,Σ, T ), where S is a set of

states, s ∈ S is a start state, Σ is a set of actions, and T ⊆ S × Σ × P(S)
is a transition relation. Informally, a simple probabilistic automaton is like an
ordinary automaton except that a labeled transition leads to a probabilistic
distribution over a set of states instead of a single state. Simple probabilistic
automata are used in this paper to give operational semantics of our probabilistic
process calculus.

3 Probabilistic Process Calculus

We assume a countable set of variables, Var = {X,Y, ...}, and a countable set of
atomic actions, A = {a, b, ...}. Given a special action τ not in A, we let u, v, ...
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range over the set of actions, Act = A∪A∪ {τ}, and let α, β, ... range over the
set Var ∪Act . The class of expressions E is defined by the following syntax:

E,F ::= u.
⊕

i∈1..n

piEi |
∑

i∈1..m

Ei | E | F | X | μXE

Here
⊕

i∈1..n piEi stands for a probabilistic choice operator, where the pi’s repre-
sent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and

∑
i∈1..n pi = 1. When

n = 0 we abbreviate the probabilistic choice as 0; when n = 1 we abbreviate it as
E1. Sometimes we are interested in certain branches of the probabilistic choice; in
this case we write

⊕
i∈1..n piEi as p1E1⊕ ...⊕pnEn or (

⊕
i∈1..(n−1) piEi)⊕pnEn

where
⊕

i∈1..(n−1) piEi abbreviates (with a slight abuse of notation) p1E1 ⊕
...⊕pn−1En−1. The second construction

∑
i∈1..mEi stands for nondeterministic

choice, and occasionally we may write it as E1 + ... + Em. As in CCS we let
variables range over process expressions. The notation μX stands for a recursion
which binds the variable X . We shall use fv (E) for the set of free variables (i.e.,
not bound by any μX) in E. As explained in the introduction, we require that
only closed expressions are put in parallel composition, i.e., in E | F we have
fv(E | F ) = ∅. As usual we identify expressions which differ only by a change of
bound variables. We shall write E{F1, ..., Fn/X1, ..., Xn} or E{F̃ /X̃} for the re-
sult of simultaneously substituting Fi for each occurrence of Xi in E (1 ≤ i ≤ n),
renaming bound variables if necessary.

Definition 1. The variable X is weakly guarded (resp. guarded) in E if every
free occurrence of X in E occurs within some subexpression u.F (resp. a.F or
ā.F ), otherwise X is weakly unguarded (resp. unguarded) in E.

The operational semantics of an expression E is defined as a simple probabilistic
automaton whose states are the expressions reachable from E and the transition
relation is defined by the axioms and inference rules in Table 1, where E α−→ η
describes a transition that, by performing an action or exposing a free variable,
leaves from E and leads to a distribution η over E . The symmetric rules of par
and com are omitted.

Finitary weak transitions are defined as in [7]. We abstract away finitely many
invisible actions that occur before or after the appearance of a single visible

Table 1. Strong transitions

var X
X−→ {0 : 1} psum u. i∈1..n piEi

u−→ i∈1..n{Ei : pi}

rec
E{μXE/X} α−→ η

μXE
α−→ η

nsum
Ej

α−→ η

i∈1..m Ei
α−→ η

for some j ∈ 1..m

par
E

α−→ {Ei : pi}i

E | F
α−→ {Ei | F : pi}i

com E
a−→ {Ei : pi}i∈I F

ā−→ {Fj : qj}j∈J

E | F
τ−→ {Ei | Fj : piqj}i∈I,j∈J
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Table 2. Weak transitions

wea1 E =⇒ {E : 1} wea2 E
τ−→ η

E =⇒ η
wea3

E
α−→ η

E
α=⇒ η

wea4
E

α=⇒ {Ei : pi}i∈I ∀i ∈ I : Ei =⇒ {Eij : pij}j∈Ji

E
α=⇒ {Eij : pipij}i∈I,j∈Ji

wea5
E =⇒ {Ei : pi}i∈I ∀i ∈ I : Ei

α=⇒ {Eij : pij}j∈Ji

E
α=⇒ {Eij : pipij}i∈I,j∈Ji

action or a variable. It is easy to see that if E X=⇒ η then η = {0 : 1}. We use
the notation α̂=⇒ to stand for α=⇒ if α �= τ , for =⇒ otherwise. We also define
a weak combined transition: E α̂=⇒c η if there exists a collection {ηi, ri}i∈1..n of
distributions and probabilities such that

∑
i∈1..n ri = 1, η = r1η1 + ... + rnηn

and E α̂=⇒ ηi for each i ∈ 1..n. Similarly we write E α=⇒c η if every component
is a “normal” (i.e., non-virtual) weak transition, namely, E α=⇒ ηi for all i ≤ n.

4 Behavioral Equivalences

To define behavioral equivalences in probabilistic process algebra, it is customary
to consider equivalence of distributions with respect to equivalence relations on
expressions.

4.1 Equivalence of Distributions

If η is a distribution on S and V ⊆ S, we write η(V ) for
∑

s∈V η(s). We lift an
equivalence relation on E to an equivalence relation between distributions over
E in the following way.

Definition 2. Given two distributions η1 and η2 over E, we say that they are
equivalent w.r.t. an equivalence relation R on E, written η1 ≡R η2, if

∀V ∈ E/R : η1(V ) = η2(V ).

The following property is simple but important as it underpins many other
results in the rest of the paper.

Lemma 1. If η1 ≡R1 η2 and R1 ⊆ R2 then η1 ≡R2 η2.

Given an equivalence relation R, we construct two relations:

RG
def= {(E | G, F | G) | E R F}

R| def=
⋃
{RG | G ∈ E}.
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Clearly RG and R| are also equivalence relations. If V ∈ E/RG then we write
V \G for the set {E | E | G ∈ V }. It is easy to see that if V ∈ E/R| then there
exists some expression G such that V ∈ E/RG . Furthermore, we observe that
V ∈ E/RG iff V \G ∈ E/R. Suppose θ1 = {Ei : pi}i∈I and θ2 = {Fj : qj}j∈J , we
introduce the following notation:

θ1 | θ2
def= {Ei | Fj : piqj}i∈I,j∈J .

The following lemma is crucial for showing the congruence property of strong
bisimilarity and observational equivalence (cf. Section 4.4). It says that if two
distributions θ1 and θ2 are equivalent w.r.t. an equivalence relation R, then
there is a uniform way to extend the two distributions so that the resulting dis-
tributions on composed terms are equivalent w.r.t. another equivalence relation
R|.

Lemma 2. If θ1 ≡R θ2 then (θ1 | θ) ≡R| (θ2 | θ).

Proof. Let θ = {Gk : pk}k∈K . Without loss of generality, we assume that if
i, j ∈ K and i �= j then Gi �= Gj . For any V ∈ E/R| there exists some expression
G such that V ∈ E/RG . There are two cases:

1. if G �= Gk for all k ∈ K, then (θ1 | θ)(V ) = 0 = (θ2 | θ)(V );
2. if G = Gk for some k ∈ K, then (θ1 | θ)(V ) = rkθ1(V \Gk) = rkθ2(V \Gk) =

(θ2 | θ)(V ).

In summary, (θ1 | θ)(V ) = (θ2 | θ)(V ) for any V ∈ E/R| , i.e., (θ1 | θ) ≡R| (θ2 |
θ), which is the required result. ��

Corollary 1. If θ1 ≡R θ2, θ′1 ≡R θ′2 and R is closed under parallel composition,
then (θ1 | θ′1) ≡R (θ2 | θ′2).

Proof. If R is closed under parallel composition, then R| ⊆ R. By Lemma 1, we
can state Lemma 2 as: if θ1 ≡R θ2 then (θ1 | θ) ≡R (θ2 | θ). Similarly we can
establish a symmetric property: if θ1 ≡R θ2 then (θ | θ1) ≡R (θ | θ2). As a
consequence we have (θ1 | θ′1) ≡R (θ2 | θ′1) ≡R (θ2 | θ′2). ��

4.2 Behavioral Equivalences

Strong bisimulation is defined by requiring equivalence of distributions at every
step. Because of the way equivalence of distributions is defined, we need to
restrict to bisimulations which are equivalence relations.

Definition 3. An equivalence relation R ⊆ E × E is a strong bisimulation if
E R F implies:

– whenever E α−→ η1, there exists η2 such that F α−→ η2 and η1 ≡R η2.

Two expressions E,F are strong bisimilar, written E ∼ F , if there exists a
strong bisimulation R s.t. E R F .
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We have shown in [16, 15] that to define weak equivalences it is necessary to
use weak combined transitions1, so weak probabilistic bisimulation is given in
the following way.

Definition 4. An equivalence relation R ⊆ E ×E is a weak probabilistic bisim-
ulation if E R F implies:

– whenever E α−→ η1, there exists η2 such that F α̂=⇒c η2 and η1 ≡R η2.

We write E ≈ F whenever there exists a weak probabilistic bisimulation R s.t.
E R F .

As usual, observational equivalence is defined in terms of weak probabilistic
bisimulation.

Definition 5. Two expressions E,F are observationally equivalent, written
E % F , if

1. whenever E α−→ η1, there exists η2 such that F α=⇒c η2 and η1 ≡≈ η2.
2. whenever F α−→ η2, there exists η1 such that E α=⇒c η1 and η1 ≡≈ η2.

One can check that all the relations defined above are indeed equivalence rela-
tions and we have the inclusion ordering: ∼ � % � ≈.

Example 1. Consider the following expressions:

E1
def= μX(a.X +X)

E2
def= μX(1

2X ⊕ 1
2 (X +X))

F1
def= a.b+ τ.c

F2
def= F1 + τ.(1

3F1 ⊕ 2
3c)

It can be checked that E1 ∼ E2, F1 ≈ F2, and τ.F1 % τ.F2. Note that F1 �% F2
because the transition F2

τ−→ {F1 : 1
3 , c : 2

3} cannot be matched up by the
transition F1

τ−→ {c : 1}, which is the only normal transition from F1 with
action τ . ��

4.3 Probabilistic “Bisimulation up to” Techniques

A natural way for showing E ∼ F in a probabilistic process calculus is to con-
struct an equivalence relation R which includes the pair (E,F ), and then to
check that R is a bisimulation. However, it is often difficult to ensure that the
relation R one constructs is indeed an equivalence relation. In this case we use
“bisimulation up to” techniques. The idea is that we extend R to be R′ such
that R ⊆ R′ and R′ is easily shown to be a bisimulation.

Given a binary relation R we denote by R∼ the relation (R ∪ ∼)∗, the
equivalence closure of R ∪ ∼. Similarly for the notation R≈.
1 The example given in [16, 15] for supporting this argument is built in probabilis-

tic automata [30], but it is easy to write a similar example in simple probabilistic
automata.
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Definition 6. A binary relation R is a strong bisimulation up to ∼ if E R F
implies:

1. whenever E α−→ η1, there exists η2 such that F α−→ η2 and η1 ≡R∼ η2.
2. whenever F α−→ η2, there exists η1 such that E α−→ η1 and η1 ≡R∼ η2.

A strong bisimulation up to ∼ is not necessarily an equivalence relation. It is
just an ordinary binary relation included in ∼, as shown by the next proposition.

Proposition 1. If R is a strong bisimulation up to ∼, then R ⊆∼.

For weak probabilistic bisimulation, the “up to” relation can be defined as well,
but we need to be careful.

Definition 7. A binary relation R is a weak probabilistic bisimulation up to ≈
if E R F implies:

1. whenever E α=⇒ η1, there exists η2 such that F α̂=⇒c η2 and η1 ≡R≈ η2.

2. whenever F α=⇒ η2, there exists η1 such that E α̂=⇒c η1 and η1 ≡R≈ η2.

In the above definition, we are not able to replace the first double arrow in each
clause by a simple arrow. Otherwise, the resulting relation would not be included
in ≈.

Proposition 2. If R is a weak probabilistic bisimulation up to ≈, then R ⊆≈.

In a way similar to Definition 7, we introduce an “up to %” relation.

Definition 8. A binary relation R is an observational equivalence up to % if
E R F implies:

1. whenever E α=⇒ η1, there exists η2 such that F α=⇒c η2 and η1 ≡R≈ η2.

2. whenever F α=⇒ η2, there exists η1 such that E α=⇒c η1 and η1 ≡R≈ η2.

As expected, observational equivalence up to % is useful because of the following
property.

Proposition 3. If R is an observational equivalence up to %, then R ⊆%.

4.4 Some Properties of Behavioral Equivalences

By using the “bisimulation up to” techniques introduced in the previous section,
together with Lemma 2, we can prove the following results. Their detailed proofs
are in Appendices 7 and 7, respectively.

Proposition 4 (Properties of ∼).

1. ∼ is a congruence relation;
2. μXE ∼ E{μXE/X};
3. μX(E +X) ∼ μXE;
4. If E ∼ F{E/X} and X is weakly guarded in F , then E ∼ μXF .

Proposition 5 (Properties of %).

1. % is a congruence relation;
2. If τ.E % τ.E + F and τ.F % τ.F + E then τ.E % τ.F ;
3. If E % F{E/X} and X is guarded in F then E % μXF .
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5 Axiomatizing Strong Bisimilarity

We present in this section the axiom system As for ∼, which includes all ax-
ioms and rules displayed in Table 3. We assume the usual rules for equality
(reflexivity, symmetry, transitivity and substitutivity), and the alpha-conversion
of bound variables. If we omit all the axioms involving probabilities, we obtain
the system composed by S1-3 and R1-3, which characterizes exactly the class
of nonprobabilistic finite-state behaviors studied in [26]. The two axioms S4-5
allow us to permute and merge probabilistic branches in a probabilistic choice.
E is a probabilistic version of the expansion law in CCS.

Table 3. The axiom system As

S1 E + 0 = E
S2 E + E = E
S3 i∈I Ei = i∈I Eρ(i) ρ is any permutation on I
S4 u. i∈I piEi = u. i∈I pρ(i)Eρ(i) ρ is any permutation on I
S5 u.(( i piEi) ⊕ pE ⊕ qE) = u.(( i piEi) ⊕ (p + q)E)

R1 μXE = E{μXE/X}
R2 If E = F{E/X}, X weakly guarded in F, then E = μXF
R3 μX (E + X) = μXE

E Assume E ≡ i ui. j pijEij and F ≡ k vk. l qklFkl. Then infer:

E | F = i ui. j pij(Eij | F ) + k vk. l qkl(E | Fkl)
+ ui opp vk

τ. j,l(pijqkl)(Eij | Fkl)

where ui opp vk means that ui and vk are complementary actions, i.e., ūi = vk.

The notationAs � E = F (and As � Ẽ = F̃ for a finite sequence of equations)
means that the equation E = F is derivable by applying the axioms and rules
from As. The following theorem shows that As is sound with respect to ∼.

Theorem 1 (Soundness of As). If As � E = E′ then E ∼ E′.

Proof. The soundness of the recursion axioms R1-3 is shown in Section 4.4; the
soundness of S1-4 and E is obvious, and S5 is a consequence of Definition 2. ��

For the completeness proof, the basic points are: (1) if two expressions are
bisimilar then we can construct an equation set in a certain format (standard
format) that they both satisfy; (2) if two expressions satisfy the same standard
equation set, then they can be proved equal by As. This schema is inspired by
[26, 32], but in our case the definition of standard format and the proof itself are
more complicated due to the presence of both probabilistic and nondeterministic
dimensions.
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Definition 9. Let X̃ = {X1, ..., Xm} and W̃ = {W1,W2, ...} be disjoint sets of
variables. Let H̃ = {H1, ...,Hm} be expressions with free variables in X̃ ∪ W̃ . In
the equation set S : X̃ = H̃, we call X̃ formal variables and W̃ free variables.
We say S is standard if each Hi takes the form

∑
j Ef(i,j) +

∑
l Wh(i,l) where

Ef(i,j) = uf(i,j).
⊕

k pf(i,j,k)Xg(i,j,k). We call S weakly guarded if there is no Hi

s.t. Hi
Xi−→ {0 : 1}. We say that E provably satisfies S if there are expressions

Ẽ = {E1, ..., Em}, with E1 ≡ E and fv (Ẽ) ⊆ W̃ , such that As � Ẽ = H̃{Ẽ/X̃}.
We first recall the theorem of unique solution of equations originally appeared
in [26]. Adding probabilistic choice does not affect the validity of this theorem.

Theorem 2 (Unique solution of equations I). If S is a weakly guarded
equation set with free variables in W̃ , then there is an expression E which prov-
ably satisfies S. Moreover, if F provably satisfies S and has free variables in W̃ ,
then As � E = F .

Proof. Exactly as in [26]. ��
Below we give an extension of Milner’s equational characterization theorem

by accommodating probabilistic choice.

Theorem 3 (Equational characterization I). For any expression E, with
free variables in W̃ , there exist some expressions Ẽ = {E1, ..., Em}, with E1 ≡ E

and fv (Ẽ) ⊆ W̃ , satisfying m equations

As � Ei =
∑

j∈1..n(i)

Ef(i,j) +
∑

j∈1..l(i)

Wh(i,j) (i ≤ m)

where Ef(i,j) ≡ uf(i,j).
⊕

k∈1..o(i,j) pf(i,j,k)Eg(i,j,k).

Proof. By induction on the structure of E. We only consider the case that E ≡
F | F ′; all other cases are similar to the proof in [26]. By definition F and F ′ are
closed terms. By induction we have closed terms F1, .., Fm satisfyingm equations

As � Fi =
∑

j∈1..n(i)

Ff(i,j) (i ≤ m)

where Ff(i,j) ≡ uf(i,j).
⊕

k∈1..o(i,j) pf(i,j,k)Fg(i,j,k). Similarly we have closed ex-
pressions F ′

1, ..., F
′
m′ satisfying m′ equations

As � F ′
i′ =

∑
j′∈1..n′(i′)

F ′
f ′(i′,j′) (i ≤ m′)

where F ′
f ′(i′,j′) ≡ u′f ′(i′,j′).

⊕
k′∈1..o′(i′,j′) p

′
f ′(i′,j′,k′)F

′
g′(i′,j′,k′). Now set Ei,i′ ≡

Fi | F ′
i′ . By the expansion law E we obtain the equations

As � Ei,i′ =
∑

j∈1..n(i) uf(i,j).
⊕

k∈1..o(i,j) pf(i,j,k)Eg(i,j,k),i′

+
∑

j′∈1..n′(i′) u
′
f ′(i′,j′).

⊕
k′∈1..o′(i′,j′) p

′
f ′(i′,j′,k′)Ei,g′(i′,j′,k′)

+
∑

uf(i,j) opp u′
f′(i′,j′)

τ.
⊕

k∈1..o(i,j),k′∈1..o′(i′,j′)(pf(i,j,k)p
′
f ′(i′,j′,k′))

Ef(i,j,k),f ′(i′,j′,k′)
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where i ≤ m, i′ ≤ m′ and uf(i,j) opp u
′
f ′(i′,j′) means that uf(i,j) and u′f ′(i′,j′)

are complementary actions, i.e., they are a and ā respectively, for some a, or the
inverse.

Moreover, we have E ≡ F1 | F ′
1 ≡ E1,1. ��

The following completeness proof is closely analogous to that of [32]. It is
complicated somewhat by the presence of nondeterministic choice. For example,
to construct the formal equations, we need to consider a more refined relation
Liji′j′ underneath the relation Kii′ while in [26, 32] it is sufficient to just use
Kii′ .

Theorem 4 (Completeness of As). If E ∼ E′ then As � E = E′.

Proof. Let E and E′ have free variables in W̃ . By Theorem 3 there are provable
equations such that E ≡ E1, E′ ≡ E′

1 and

As � Ei =
∑

j∈1..n(i)

Ef(i,j) +
∑

j∈1..l(i)

Wh(i,j) (i ≤ m)

As � E′
i′ =

∑
j′∈1..n′(i′)

E′
f ′(i′,j′) +

∑
j′∈1..l′(i′)

Wh′(i′,j′) (i′ ≤ m′)

with
Ef(i,j) ≡ uf(i,j).

⊕
k∈1..o(i,j)

pf(i,j,k)Eg(i,j,k)

E′
f ′(i′,j′) ≡ u′f ′(i′,j′).

⊕
k′∈1..o′(i′,j′)

p′f ′(i′,j′,k′)E
′
g′(i′,j′,k′).

Let I = {〈i, i′〉 | Ei ∼ E′
i′}. By hypothesis we have E1 ∼ E′

1, so 〈1, 1〉 ∈ I.
Moreover, for each 〈i, i′〉 ∈ I, the following holds, by the definition of strong
bisimilarity:

1. There exists a total surjective relation Kii′ between {1, ..., n(i)} and {1, ...,
n′(i′)}, given by

Kii′ = {〈j, j′〉 | 〈f(i, j), f ′(i′, j′)〉 ∈ I}.

Furthermore, for each 〈j, j′〉 ∈ Kii′ , we have uf(i,j) = u′f ′(i′,j′) and there
exists a total surjective relation Liji′j′ between {1, ..., o(i, j)} and {1, ...,
o′(i′, j′)}, given by

Liji′j′ = {〈k, k′〉 | 〈g(i, j, k), g′(i′, j′, k′)〉 ∈ I}.

2. As �
∑

j∈1..l(i) Wh(i,j) =
∑

j′∈1..l′(i′) Wh′(i′,j′).

Now, let Liji′j′(k) denote the image of k ∈ {1, ..., o(i, j)} under Liji′j′ and
L−1

iji′j′(k′) the preimage of k′ ∈ {1, ..., o′(i′, j′)} under Liji′j′ . We write [k]iji′j′

for the set L−1
iji′j′ (Liji′j′(k)) and [k′]iji′j′ for Liji′j′(L−1

iji′j′ (k′)). It follows from
the definitions that
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1. If 〈i, i′1〉 ∈ I, 〈i, i′2〉 ∈ I, 〈j, j′1〉 ∈ Kii′
1

and 〈j, j′2〉 ∈ Kii′
2
, then [k]iji′

1j′
1

=
[k]iji′

2j′
2
.

2. If q1 ∈ [k]iji′j′ and q2 ∈ [k]iji′j′ , then Eg(i,j,q1) ∼ Eg(i,j,q2).

Define νijk =
∑

q∈[k]iji′j′ pf(i,j,q) for any i′, j′ such that 〈i, i′〉 ∈ I and 〈j, j′〉 ∈
Kii′ ; define ν′i′j′k′ =

∑
q′∈[k′]iji′j′ p

′
f ′(i′,j′,q′) for any i, j such that 〈i, i′〉 ∈ I

and 〈j, j′〉 ∈ Kii′ . It is easy to see that whenever 〈i, i′〉 ∈ I, 〈j, j′〉 ∈ Kii′ and
〈k, k′〉 ∈ Liji′j′ then νijk = ν′i′j′k′ .

We now consider the formal equations, one for each 〈i, i′〉 ∈ I:

Xi,i′ =
∑

〈j,j′〉∈Kii′

Hf(i,j),f ′(i′,j′) +
∑

j∈1..l(i)

Wh(i,j)

where

Hf(i,j),f ′(i′,j′) ≡ uf(i,j).
⊕

〈k,k′〉∈Liji′j′

(
pf(i,j,k)p

′
f ′(i′,j′,k′)

νijk
)Xg(i,j,k),g′(i′,j′,k′).

These equations are provably satisfied when eachXi,i′ is instantiated to Ei, since
Kii′ and Liji′j′ are total and the right-hand side differs at most by repeated
summands from that of the already proved equation for Ei. Note that each
probabilistic branch pf(i,j,k)Eg(i,j,k) in the subterm Ef(i,j) of Ei becomes the
probabilistic summation of several branches like

⊕
q′∈[k′]iji′j′

(
pf(i,j,k)p

′
f ′(i′,j′,q′)

νijk
)Eg(i,j,k)

in Hf(i,j),f ′(i′,j′){Ei/Xi,i′}i, where 〈i, i′〉 ∈ I, 〈j, j′〉 ∈ Kii′ and 〈k, k′〉 ∈ Liji′j′ .
But they are provably equal because∑

q′∈[k′]iji′j′ (
pf(i,j,k)p

′
f′(i′,j′,q′)

νijk
) = pf(i,j,k)

νijk
·
∑

q′∈[k′]iji′j′ p
′
f ′(i′,j′,q′)

= pf(i,j,k)

νijk
· ν′i′j′k′ = pf(i,j,k)

and then the axiom S5 can be used. Symmetrically, the equations are provably
satisfied when each Xi,i′ is instantiated to E′

i′ ; this depends on the surjectivity
of Kii′ and Jiji′j′ .

Finally, we note that each Xi,i′ is weakly guarded in the right-hand sides
of the formal equations. It follows from Theorem 2 that � Ei = E′

i′ for each
〈i, i′〉 ∈ I, and hence � E = E′. ��

6 Axiomatizing Observational Equivalence

In this section we axiomatize the observational equivalence %. We are not able to
give a complete axiomatization for the whole set of expressions (and we conjec-
ture that it is not possible), so we restrict to the subset of E consisting of guarded
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expressions only. An expression is guarded if for each of its subexpression of the
form μXF , the variable X is guarded in F (cf. Definition 1).

First let us analyze the system As. All axioms except for R2-3 are still valid
for %. R3 is not needed because it deals with unguarded expressions. We can
reuse R2 by requiring X to be (strongly) guarded, so we get R2′ in Table 4. To
establish the system Ao for %, we use five τ -laws, T1-5 in Table 4, to abstract
away invisible actions. Note that T1 and T2 together constitute the probabilistic
version of Milner’s second τ -law ([28] page 231). T3 and T4 are the probabilistic
extensions of Milner’s third and first τ -laws, respectively. The extra rule T5 has
no nonprobabilistic counterpart in CCS, but it plays an important role in the
proof of Theorem 8. As in [7] the axiom C is needed because we use combined
transitions when defining observational equivalence.

Table 4. Some laws for the axiom system Ao

T1 τ. i pi(Ei + X) = X + τ. i pi(Ei + X)
T2 τ. i pi(Ei + u. j pij .Eij) + u. i,j pipij .Eij

= τ. i pi(Ei + u. j pij .Eij)
T3 u. i pi(Ei + τ. j pij .Eij) + u. i,j pipij .Eij

= u. i pi(Ei + τ. j pij .Eij)
T4 u.(pτ.E ⊕ i piEi) = u.(pE ⊕ i piEi)
T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

R2′ If E = F{E/X}, X guarded in F, then E = μXF

C i∈1..n u. j pijEij = i∈1..n u. j pijEij + u. i∈1..n j ripijEij

with i∈1..n ri = 1.

Theorem 5 (Soundness of Ao). If Ao � E = F then E % F .

Proof. The rules R2′ and T5 are proved to be sound in Proposition 5 (its proof
is detailed in Appendix 7). The soundness of C and T1-4 is straightforward. ��

For the completeness proof, it is convenient to use the following saturation
property, which relates operational semantics to term transformation, and which
can be shown by using the probabilistic τ -laws T1-4 and the axiom C.

Lemma 3 (Saturation). Suppose there is no parallel composition in E.

1. If E u=⇒ η with η = {Ei : pi}i, then Ao � E = E + u.
⊕

i piEi;
2. If E u=⇒c η with η = {Ei : pi}i, then Ao � E = E + u.

⊕
i piEi;

3. If E X=⇒ {0 : 1} then Ao � E = E +X.

Proof. The first and third clauses are proved by transition induction on the
inference E u=⇒ η; the second clause is a corollary of the first one. ��
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Below we state two simple properties of weak combined transitions. They will
be used in proving Theorem 8.

Lemma 4. 1. If E û=⇒c η then τ.E u=⇒c η;
2. If E X=⇒c {0 : 1} then E X=⇒ {0 : 1}.

Proof. Trivial. ��
Lemma 5. If E û=⇒c {Ei : pi}i then Ao � τ.E = τ.E + u.

⊕
i piEi.

Proof. It follows from Lemma 4 and Lemma 3. ��

To show the completeness of Ao, we need some notations. Given a standard
equation set S : X̃ = H̃, which has free variables W̃ , we define the relations

α−→S⊆ X̃ ×P(X̃) (recall that the notation P(V ) represents all distributions on
V ) as Xi

α−→S η iff Hi
α−→ η. From α−→S we can define the weak transition

α=⇒S in the same way as in Section 3. We shall call S guarded if there is no Xi

s.t. Xi
Xi=⇒S {0 : 1}. The variable W is guarded in S if it is not the case that

X1
W=⇒S {0 : 1}.

For guarded expressions, the equational characterization theorem and the
unique solution theorem given in last section can now be refined, as done in [28].

Theorem 6 (Equational characterization II). Each guarded expression E

with free variables in W̃ provably satisfies a standard guarded equation set S with
free variables in W̃ . Moreover, if W is guarded in E then W is guarded in S.

Proof. By induction on the structure of E. Consider the case that E ≡ u.⊕
i∈I piEi. For each i ∈ I, let Xi be the distinguished variable of the equa-

tion set Si for Ei. We can define S as {X = u.
⊕

i∈I piXi} ∪
⋃

i∈I Si, with the
new variable X distinguished. All other cases are the same as in [28]. For the
case that E ≡ F | F ′, the arguments are similar to those in Theorem 3. ��

Theorem 7 (Unique solution of equations II). If S is a guarded equation
set with free variables in W̃ , then there is an expression E which provably satisfies
S. Moreover, if F provably satisfies S and has free variables in W̃ , then Ao �
E = F .

Proof. Nearly the same as the proof of Theorem 2, just replacing the recursion
rule R2 with R2′. ��

The following theorem plays a crucial role in proving the completeness of Ao.

Theorem 8. Let E provably satisfy S and F provably satisfy T , where both S
and T are standard, guarded equation sets, and let E % F . Then there is a
standard, guarded equation set U satisfied by both E and F .

Proof. Suppose that X̃ = {X1, ..., Xm}, Ỹ = {Y1, ..., Yn} and W̃ = {W1,W2, ...}
are disjoint sets of variables. Let

S : X̃ = H̃

T : Ỹ = J̃
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with fv (H̃) ⊆ X̃ ∪ W̃ , fv (J̃) ⊆ Ỹ ∪ W̃ , and that there are expressions Ẽ =
{E1, ..., Em} and F̃ = {F1, ..., Fn} with E1 ≡ E, F1 ≡ F , and fv (Ẽ)∪fv (F̃ ) ⊆ W̃ ,
so that

Ao � Ẽ = H̃{Ẽ/X̃}

Ao � F̃ = J̃{F̃ /Ỹ }.
Consider the least equivalence relation R ⊆ (X̃ ∪ Ỹ )× (X̃ ∪ Ỹ ) such that

1. whenever (Z,Z ′) ∈ R and Z α−→ η, then there exists η′ s.t. Z ′ α̂=⇒c η
′ and

η ≡R η′;
2. (X1, Y1) ∈ R and if X1

α−→ η then there exists η′ s.t. Y1
α=⇒c η

′ and η ≡R η′.

Clearly R is a weak probabilistic bisimulation on the transition system over
X̃ ∪ Ỹ , determined by →def=→S ∪ →T . Now for two given distributions η =
{Xi : pi}i∈I , η′ = {Yj : qj}j∈J , with η ≡R η′, we introduce the following nota-
tions:

Kη,η′ = {(i, j) | i ∈ I, j ∈ J, and (Xi, Yj) ∈ R}
νi =
∑
{pi′ | i′ ∈ I, and (Xi, Xi′) ∈ R} for i ∈ I

νj =
∑
{pj′ | j′ ∈ J, and (Yj , Yj′ ) ∈ R} for j ∈ J

Since η ≡R η′ it follows by definition that if (i, j) ∈ Kη,η′ , for some η, η′, then
νi = νj . Thus we can define the expression

Gη,η′
def=

⊕
(i,j)∈Kη,η′

piqj
νi
Zij

which will play the same role as the expression Hf(i,j),f ′(i′,j′) in the proof of
Theorem 4.

Based on the above R we choose a new set of variables Z̃ such that

Z̃ = {Zij | Xi ∈ X̃, Yj ∈ Ỹ and (Xi, Yj) ∈ R}.

Furthermore, for each Zij ∈ Z̃ we construct three auxiliary finite sets of expres-
sions, denoted by Aij , Bij and Cij , by the following procedure.

1. Initially the three sets are empty.
2. For each η with Xi

α−→ η, arbitrarily choose one (and only one — the
same principle applies in other cases too) η′ (if it exists) satisfying η ≡R η′

and Yj
α=⇒c η′. If α ∈ Act then we construct the expression Gη,η′ and

update Aij to be Aij ∪ {α.Gη,η′}; if α = X for some X then we up-
date Aij to be Aij ∪ {X}. Similarly for each η′ with Yj

α−→ η′, arbi-
trarily choose one η (if it exists) satisfying η ≡R η′ and Xi

α=⇒c η. If
α ∈ Act then we construct the expression Gη,η′ and update Aij to be
Aij ∪ {α.Gη,η′}; if α = X for some X then we update Aij to be Aij ∪
{X}.

3. For each η with Xi
τ−→ η, arbitrarily choose one η′ (if it exists) satisfying

η ≡R η′, Yj =⇒c η
′ but not Yj

τ=⇒c η
′, construct the expression Gη,η′ and

update Bij to be Bij ∪ {τ.Gη,η′}.
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4. For each η′ with Yj
τ−→ η′, arbitrarily choose one η (if it exists) satisfying

η ≡R η′, Xi =⇒c η but not Xi
τ=⇒c η, construct Gη,η′ and update Cij to

be Cij ∪ {τ.Gη,η′}.

Clearly the three sets constructed in this way are finite. Now we build a new
equation set

U : Z̃ = L̃

where U11 is the distinguished variable and

Lij =

{∑
G∈Aij

G if Bij ∪ Cij = ∅
τ.(
∑

G∈Aij∪Bij∪Cij
G) otherwise.

We assert that E provably satisfies the equation set U . To see this, we choose
expressions

Gij =
{
Ei if Bij ∪ Cij = ∅
τ.Ei otherwise

and verify that Ao � Gij = Lij{G̃/Z̃}.
In the case that Bij ∪ Cij = ∅, all those summands of Lij{G̃/Z̃} which are

not variables are of the form:

u.
⊕

(i,j)∈Kη,η′

piqj
νi
E′

i

where E′
i = Ei or E′

i = τ.Ei for each i. By T4 we can prove that

u.
⊕

(i,j)∈Kη,η′

piqj
νi
E′

i = u.
⊕

(i,j)∈Kη,η′

piqj
νi
Ei.

Then by some arguments similar to those in Theorem 4, together with Lemma 3,
we can show that

Ao � Lij{G̃/Z̃} = Hi{Ẽ/X̃} = Ei.

On the other hand, if Bij ∪ Cij �= ∅, we let Cij = {D1, ..., Do} (Cij = ∅ is a
special case of the following argument) and D =

∑
l∈1..oDl{G̃/Z̃}. As in last

case we can show that

Ao � Lij{G̃/Z̃} = τ.(Hi{Ẽ/X̃}+D).

For any l with 1 ≤ l ≤ o, let Dl{G̃/Z̃} = τ.
⊕

k pkEk. It is easy to see that
Ei =⇒c η with η = {Ek : pk}k. So by Lemma 5 it holds that

Ao � τ.Ei = τ.Ei +Dl{G̃/Z̃}.

As a result we can infer

Ao � τ.Ei = τ.Ei +D = τ.Ei + (Ei +D).
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by Lemma 3. Similarly,

Ao � τ.(Ei +D) = τ.(Ei +D) +Ei.

Consequently it follows from T5 that

Ao � τ.Ei = τ.(Ei +D) = τ.(Hi{Ẽ/X̃}+D) = Lij{G̃/Z̃}.

In the same way we can show that F provably satisfies U . At last U is guarded
because S and T are guarded. ��

Theorem 9 (Completeness of Ao). If E and F are guarded expressions and
E % F , then Ao � E = F .

Proof. A direct consequence by combining Theorems 6, 8 and 7. ��

In the axiom system Ao the rule T5 deserves more explanations. This rule
holds also in the non-probabilistic setting, but usually it is not part of the axiom-
atization because it is subsumed by other axioms. Here we need it, for instance
to derive τ.F1 = τ.F2 for the two expressions F1, F2 of Example 1 in Section 4.2.
Alternatively, we could use the following equality

τ.E = τ.(E + τ.((1 − p)E ⊕
⊕

i ppiEi)) where E = τ.(τ.
⊕

i piEi + F )

which is sound and indeed derivable from T5. In fact, we could have introduced
the above equality as an axiom in place of T5 in the axiomatization for % — we
would still be able to prove Theorem 8 and the completeness of the alternative
axiomatization. In this paper we have chosen T5 instead merely because it looks
more elegant than the above axiom.

7 Conclusion and Related Work

We have proposed a probabilistic process calculus which combines both nonde-
terministic and probabilistic behavior in the style of Segala and Lynch’s simple
probabilistic automata. The calculus also admits a restricted form of parallel
composition to allow for compositional reasoning of finite-state behaviors. We
have presented sound and complete axiomatizations for two behavioral equiva-
lences: strong bisimilarity and observational equivalence.

In CCS there are other static operators such as restriction and relabeling
that are not studied in this paper. As with parallel composition, these operators
should be treated carefully. For example, the expression μX((a.X | ā)\a) appears
to be guarded (cf. Definition 1), but actually it is strongly bisimilar to μX(τ.X)
thus should be deemed unguarded. When considering axiomatizations one tends
to disallow this kind of expressions by imposing the constraint that free variables
do not occur in the scope of static operators [11, 5].

As we said before, in this paper many concepts and proof techniques are in-
herited from [16, 15]. The main differences are as follows: (i) in this paper we
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have added a parallel composition operator to our probabilistic process calcu-
lus; (ii) to define the operational semantics of this operator we restrict ourself to
simple probabilistic automata, while the results of [16, 15] are valid for all proba-
bilistic automata; (iii) besides strong bisimilarity and observational equivalence,
in [16, 15] we also axiomatized two other equivalences: a strong probabilistic
bisimilarity and a divergency-sensitive equivalence. We think that it should be
possible to adapt those results to the framework of this paper.

In [26] and [28] Milner gave complete axiomatizations for strong bisimilarity
and observational equivalence, respectively, for a core CCS [27]. Our results in
Section 5 and Section 6 extend [26] and [28] (for guarded expressions) respec-
tively, to a strictly larger language with a probabilistic choice and a parallel
composition operator.

The first work to consider (strong) bisimulation for probabilistic processes
was [22]. They considered the so-called reactive model, in which at each step
the probabilistic choice ranges over the next state, while the action is fixed. In a
sequel paper, Larsen and Skou also gave a complete axiomatization for the finite
case [23].

Bandini and Segala [7] axiomatized two strong and two weak equivalences for
a language similar to the fragment of our calculus without recursion and paral-
lelism. They considered two types of semantics. In both cases, their completeness
proofs are done by structural induction on processes, which is, of course, impos-
sible in our setting because of recursion.

Giacalone, Jou and Smolka [18] axiomatized strong bisimulation for a fully
probabilistic (i.e. without nondeterminism) extension of Milner’s SCCS [25],
where parallel composition is synchronous. In contrast, we consider an asyn-
chronous parallel composition and we admit nondeterminism.

Baeten, Bergstra and Smolka [4] proposed a probabilistic ACP by introduc-
ing a parameterized composition. They considered generative models, which are
fully probabilistic, and axiomatized strong probabilistic bisimilarity for finite
processes (without recursion).

Andova [3] studied a different version of probabilistic ACP by allowing nonde-
terminism and a parallel composition which is not parameterized. She provided
a sound and complete axiomatization for strong probabilistic bisimilarity in the
case of finite processes. She also gave some sound verification rules for proba-
bilistic branching bisimilarity in a fully probabilistic model without parallelism.

Strong probabilistic bisimilarity was also axiomatized by Stark and Smolka
in [32]. They gave a probabilistic version of the results of [26]. However, nei-
ther nondeterminism nor parallelism is considered. Later the same calculus was
studied in [1], which uses some axioms from iteration algebra to characterize
recursion.

In the nonprobabilistic setting, Bergstra and Klop [10] established a sound
and complete axiomatization for regular processes with τ -steps and free merge
(which allows arbitrary interleaving but no communication). They required that
free merge should not appear in the body of any recursive expression. To give a
linearization algorithm for pCRL, Groote, Ponse and Usenko adopted a similar
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restriction for parallel composition [19]. Usenko extended this result to μCRL in
his thesis [34]. In this paper our parallel composition operator allows communi-
cation and it can appear in the body of a recursive expression, though only in a
restricted way. For example, the expression

μX(a.X + a.μY (b.Y ) | ā.μZ(c.Z))
is a legal expression in our calculus and we are able to manipulate it in our axiom
systems.

Baeten and Bravetti [5] axiomatized observational equivalence in a generic
process algebra. Their restriction enforced to parallel composition is the same as
ours in spirit. Interestingly, they reduced two of Milner’s axioms for unguarded
recursion [28] to just a single axiom. It remains open whether their results can
be adapted to a probabilistic setting. Similarly, it might be interesting to extend
van Glabbeek’s axiomatization for branching congruence [35] to a probabilistic
setting. We believe that the general proof schema laid out in this paper could be
reused for branching congruence, but the soundness proof of some axioms such
as R2′ would be very complicated because, besides the probabilistic and non-
deterministic features, we need to consider the branching structure of processes,
which is ignored in observational congruence.

Christensen, Hirshfeld and Moller studied a class of standard form CCS [13]
where open expressions are allowed to be put in parallel composition. In that lan-
guage, strong bisimulation is decidable and they obtained a sound and complete
sequent based equational theory, but observational equivalence is semi-decidable
[12]. In this paper we follow [26, 28] and characterize recursion by laws concern-
ing the explicit fixed point operator μ, while we capture by τ -laws the difference
between observational equivalence and strong bisimulation.

Several works in the literature address the problem of how to define appropri-
ate parallel composition operators on various probabilistic models, see [14] for
more discussions and [31] for a good survey. In this paper, we work at simple
probabilistic automata where parallel composition is easy to define (cf. Table 1).
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Appendix

A Proof of Proposition 4

Lemma 6. If fv(E) ⊆ {X̃, Z} and Z �∈ fv (F̃ ), then

E{E′/Z}{F̃/X̃} ≡ E{F̃ /X̃}{E′{F̃ /X̃}/Z}.

Proof. By induction on the structure of E. ��

Lemma 7. Let η = r1η1+...+rnηn and η′ = r1η
′
1+...+rnη′n with

∑
i∈1..n ri = 1.

If ηi ≡R η′i for each i ≤ n, then η ≡R η′.

Proof. For any V ∈ E/R, we have

η(V ) =
∑

i∈1..n

riηi(V ) =
∑

i∈1..n

riη
′
i(V ) = η′(V ).

Therefore η ≡R η′ by definition. ��
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Proposition 6. If E ∼ F then E | G ∼ F | G.

Proof. We show that the relation ∼| is a strong bisimulation. There are four
cases, among which we consider two of them, the others are similar.

Case 1: Suppose η1 = {Ei | G : pi}i and E | G α−→ η1 is derived from
the transition E

α−→ θ1 = {Ei : pi}i. Since E ∼ F , there exists θ2 such that
F

α−→ θ2 and θ1 ≡∼ θ2. Let θ2 = {Fj : qj}j, by rule par we have the transition
F | G α−→ {Fj | G : qj}j = η2. Let θ = {G : 1}, then we have η1 = θ1 | θ and
η2 = θ2 | θ. By Lemma 2 it follows that η1 ≡∼| η2.

Case 2: Suppose E a−→ θ1, G
ā−→ θ, and E | G τ−→ η1 with η1 = θ1 | θ.

Since E ∼ F , there exists θ2 such that F a−→ θ2 and θ1 ≡∼ θ2. By rule com we
have the transition F | G τ−→ η2 with η2 = θ2 | θ. By Lemma 2 it follows that
η1 ≡∼| η2. ��

Proposition 7. If E ∼ F then E{G/X} ∼ F{G/X} for any G ∈ E.

Proof. Similar to the proof of Proposition 13, which is detailed in next section.
��

Proposition 8. If E ∼ F then μXE ∼ μXF .

Proof. Let ρ def= {μXE/X} and σ def= {μXF/X}. We show that the relation

R = {(Gρ,Gσ) | fv (G) ⊆ {X}}

is a strong bisimulation up to ∼. Because of symmetry we only show the
assertion:

“if Gρ α−→ η1 then there exists η2 s.t. Gσ α−→ η2 and η1 ≡R∼ η2”
by induction on the depth of the inference Gσ → η1. There are several cases,
depending on the structure of G.

1. G ≡ X : Then Gρ ≡ μXE
α−→ η1 and there is a shorter inference Eρ α−→ η1.

By induction hypothesis there is some θ s.t. Eσ α−→ θ and η1 ≡R∼ θ. Since
E ∼ F we know that Eσ ∼ Fσ by Proposition 7. Hence there exists some
η2 s.t. Fσ α−→ η2 and θ ≡∼ η2. By Lemma 1 and the transitivity of ≡R∼ it
follows that η1 ≡R∼ η2.

2. G ≡ u.
⊕

i piGi: Then we have Gρ u−→ η1 ≡ {Giρ : pi}i and Gσ u−→ η2 ≡
{Giσ : pi}i. Since Giρ R Giσ, it is easy to see that η1 ≡R∼ η2.

3. G ≡
∑

i∈1..mGi: If Gρ α−→ η1, then Gjρ
α−→ η1 for some j ∈ 1..m, by a

shorter inference. By induction hypothesis we have that Gjσ
α−→ η2 such

that η1 ≡R∼ η2.
4. G ≡ μYG

′: If Gρ α−→ η1 then G′ρ{Gρ/Y } by a shorter inference. Since
G′ρ{Gρ/Y } ≡ (G′{G/Y })ρ we have that (G′{G/Y })ρ α−→ η1. By induc-
tion hypothesis it follows that (G′{G/Y })σ α−→ η2 with η1 ≡R∼ η2. Thus
G′σ{Gσ/Y } α−→ η2, which implies Gσ α−→ η2 by the rule rec.
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5. G ≡ G1 | G2: Suppose Gρ α−→ η1. Depending on the last rule used for
deriving the transition, there are four cases. We consider one typical case
where the last rule used is com. So we have the transitions G1ρ

a−→ θ1,
G2ρ

ā−→ θ′1 and Gρ
τ−→ η1 with η1 = θ1 | θ′1. By induction hypothesis

we have the simulating transitions G1σ
a−→ θ2 and G2σ

ā−→ θ′2 such that
θ1 ≡R∼ θ2 and θ′1 ≡R∼ θ′2. By rule com we infer that Gσ τ−→ η2 with
η2 = θ2 | θ′2. It is easy to see thatR is closed under parallel composition (here
we need the condition of composing closed expressions). By Proposition 6
we know that ∼ is also closed under parallel composition. It follows that R∼
is closed under parallel composition as well. Therefore by Corollary 1 we can
derive that η1 ≡R∼ η2. ��

Proposition 9 (Congruence). If Ẽ ∼ F̃ then

1. u.
⊕

i piEi ∼ u.
⊕

i piFi;
2.
∑

iEi ∼
∑

i Fi;
3. E1 | E2 ∼ F1 | F2;
4. μXE1 ∼ μXF1.

Proof. The first two clauses are easy to prove; the last two follow from Proposi-
tion 6 and Proposition 8 respectively. ��

Proposition 10. μXE ∼ E{μXE/X}.

Proof. Observe that μXE
α−→ η iff E{μXE/X} α−→ η. ��

Proposition 11. μX(E +X) ∼ μXE

Proof. Let ρ def= {μX(E+X)/X} and σ def= {μXE/X}. We show that the relation

R = {(Gρ,Gσ | fv(G ⊆ {X}))}

is a strong bisimulation up to ∼. We prove the following two assertions:

1. If Gρ α−→ η1 then Gσ α−→ η2 and η1 ≡R∼ η2;
2. If Gσ α−→ η2 then Gρ α−→ η1 and η1 ≡R∼ η2.

The proof is carried out by induction on transitions, similar to the proof of
Proposition 8. Here we only consider the case that G ≡ X .

1. If Gρ ≡ Xρ
α−→ η1 then (E+X)ρ α−→ η1 by a shorter inference. By induction

hypothesis it follows that (E + X)σ α−→ η2 and η1 ≡R∼ η2. Then either
Eσ

α−→ η2 or Xσ α−→ η2. From the first case we can also obtain Xσ α−→ η2
by rule rec. Therefore in both cases we have Gσ α−→ η2.

2. If Gσ ≡ Xσ
α−→ η2 then Eσ

α−→ η2 by a shorter inference. By induction
hypothesis it follows that Eρ α−→ η1 with η1 ≡R∼ η2. By the rule nsum we
derive (E+X)ρ α−→ η1. By rec we get the required result that Gρ ≡ Xρ

α−→
η1.

��
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Lemma 8. Suppose fv(G) ⊆ {X} and all free occurrences of X in G are weakly
guarded. If G{E/X} α−→ η1 with η1 ≡ {Gi : pi}i then Gi takes the form
G′

i{E/X}; Moreover, for any F , G{F/X} α−→ η2 with η2 ≡ {G′
i{F/X} : pi}i

and η1 ≡R∼ η2 where

R = {(G{E/X}, G{F/X}) | G ∈ E and fv (G) ⊆ {X}}.

Proof. By transition induction. ��

Proposition 12. If E ∼ F{E/X}, where all occurrences of X in F are weakly
guarded, then E ∼ μXF .

Proof. Similar to the proof of Proposition 8. Now we take R as:

R = {(G{E/X}, G{μXF/X}) | G ∈ E and fv (G) ⊆ {X}}

Let us consider the case that G ≡ X . Suppose E α−→ η1. Since E ∼ F{E/X},
there exists θ s.t. F{E/X} α−→ θ and η1 ≡∼ θ. By Lemma 8 there exists η2 s.t.
F{μXF/X} α−→ η2 and θ ≡R∼ η2. By rule rec we have μXF

α−→ η2. By Lemma
1 and the transitivity of ≡R∼ , we have η1 ≡R∼ η2. With similar reasoning, one
can show that if μXF

α−→ η2 there exists η1 s.t. E α−→ η1 and η1 ≡R∼ η2. ��

At last Proposition 4 is proved by collecting all the results in Propositions
9-12.

B Proof of Proposition 5

Lemma 9. 1. If E u−→ {Ei : pi}i then E{G/X} u−→ {Ei{G/X} : pi}i;
2. If E u=⇒ {Ei : pi}i then E{G/X} u=⇒ {Ei{G/X} : pi}i;
3. If E u=⇒c {Ei : pi}i then E{G/X} u=⇒c {Ei{G/X} : pi}i;
4. If E û=⇒c {Ei : pi}i then E{G/X} û=⇒c {Ei{G/X} : pi}i.

Proof. Straightforward by induction on inference. ��

Lemma 10. 1. If E X−→ {0 : 1} and G α−→ η then E{G/X} α−→ η.
2. If E X=⇒ {0 : 1} and G α−→ η then E{G/X} α=⇒ η.

Proof. Straightforward by examining the structure of E. ��

Lemma 11. If E{G/X} α−→ η then one of the following two cases holds.

1. E X−→ {0 : 1} and G α−→ η;
2. η = {Ei{G/X} : pi}i and E α−→ {Ei : pi}i.

Proof. By induction on the depth of the inference of E{G/X} α−→ η. ��

Proposition 13. If E ≈ F then E{G/X} ≈ F{G/X} for any G ∈ E.
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Proof. Consider the relation R = {(E{G/X}, F{G/X}) | E,F ∈ E and E ≈
F}. Since ≈ is an equivalence relation, it follows that R is also an equivalence
relation. So if we can show the assertion:
“If E{G/X} α−→ η1 then there exists η2 s.t. F{G/X} α̂=⇒c η2 and η1 ≡R η2”

then it follows from Definition 4 that R is a weak probabilistic bisimulation.
We now prove the above assertion. From Lemma 11 we know that there are

two possibilities:

1. E X−→ {0 : 1} and G
α−→ η1. Thus F X=⇒c {0 : 1} because E ≈ F .

From Lemma 4 we know that F X=⇒ {0 : 1}. By Lemma 10 it follows
that F{G/X} α=⇒ η1. We can simply take η1 as η2 and finish this case.

2. η1 = {Ei{G/X} : pi} and E
α−→ θ1 = {Ei : pi}i. Since E ≈ F there

exists θ2 = {Fj : qj}j s.t. F α̂=⇒c θ2 and θ1 ≡≈ θ2. By Lemma 9 we

can derive F{G/X} α̂=⇒c η2 = {Fj{G/X} : qj}j . Observe that for any
E′, F ′ ∈ {Ei}i ∪ {Fj}j it holds that E′ ≈ F ′ iff E′{G/X} R F ′{G/X}.
Hence it follows from θ1 ≡≈ θ2 that η1 ≡R η2 and we complete the proof of
this case. ��

Proposition 14. If E % F then E{G/X} % F{G/X} for any G ∈ E.

Proof. Due to symmetry, it suffices to verify that if E{G/X} α−→ η1 then there
exists η2 s.t. F{G/X} α=⇒c η2 and η1 ≡≈ η2. From Lemma 11 we know that
there are two possibilities:

1. E X−→ {0 : 1} and G
α−→ η1. Thus F X=⇒c {0 : 1} because E % F .

From Lemma 4 we know that F X=⇒ {0 : 1}. By Lemma 10 it follows
that F{G/X} α=⇒ η1. We we can simply take η1 as η2 and finish this case.

2. η1 = {Ei{G/X} : pi} and E α−→ θ1 = {Ei : pi}i. Since E % F there exists
θ2 = {Fj : qj}j s.t. F α=⇒c θ2 and θ1 ≡≈ θ2. By Lemma 9 we can derive
F{G/X} α=⇒c η2 = {Fj{G/X} : qj}j . By Proposition 13 it holds that for
any E′, F ′ ∈ {Ei}i ∪ {Fj}j if E′ ≈ F ′ then E′{G/X} ≈ F ′{G/X}. Hence
it follows from θ1 ≡≈ θ2 that η1 ≡≈ η2 and we complete the proof of this
case. ��

Lemma 12. 1. The following rules are derivable:

D1
Ej

α=⇒c η∑
i∈1..nEi

α=⇒c η
for some j ∈ 1..n D2

E{μXE/X}
α=⇒c η

μXE
α=⇒c η

D3
E

α̂=⇒c {Ei : pi}i

E | F α̂=⇒c {Ei | F : pi}i

D4 E
a=⇒c {Ei : pi}i∈I F

ā−→ {Fj : qj)}j∈J

E | F τ=⇒c {Ei | Fj : piqj)}i∈I,j∈J
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2. If
∑

i∈1..nEi
α=⇒ η then Ej

α=⇒ η for some j ∈ 1..n, with a shorter inference.
3. If μXE

α=⇒ η then E{μXE/X} α=⇒ η, with a shorter inference.

Proof. Straightforward by induction on inference. ��

Lemma 13. 1. Let R be a weak probabilistic bisimulation. If E R F then
whenever E α̂=⇒c η, there exists η′ such that F α̂=⇒c η

′ and η ≡R η′.
2. Suppose E % F . If E α=⇒c η then there exists η′ s.t. F α=⇒c η

′ and η ≡≈ η
′.

Proof. By transition induction. ��

Lemma 14. If E ≈ F then E | G ≈ F | G.

Proof. We show that the relation ≈| is a weak probabilistic bisimulation. There
are four cases, among which we consider two of them, the others are similar.

Case 1: Suppose η1 = {Ei | G : pi}i and E | G α−→ η1 is derived from
the transition E

α−→ θ1 = {Ei : pi}i. Since E ≈ F , there exists θ2 such that
F

α̂=⇒c θ2 and θ1 ≡≈ θ2. Let θ2 = {Fj : qj}j , by rule D3 we have the transition

F | G α̂=⇒c {Fj | G : qj}j = η2. Let θ = {G : 1}, then we have η1 = θ1 | θ and
η2 = θ2 | θ. By Lemma 2 it follows that η1 ≡≈| η2.

Case 2: Suppose E a−→ θ1, G
ā−→ θ, and E | G τ−→ η1 with η1 = θ1 | θ.

Since E ≈ F , there exists θ2 such that F a=⇒c θ2 and θ1 ≡≈ θ2. By rule D4 we
have the transition F | G τ=⇒c η2 with η2 = θ2 | θ. By Lemma 2 it follows that
η1 ≡≈| η2. ��

Proposition 15. If E % F then E | G % F | G.

Proof. Similar to the proof of Lemma 14. We need to use the above proved result
that ≈| ⊆ ≈. ��

Proposition 16. If E % F then μXE % μXF .

Proof. Let ρ = {μXE/X} and σ = {μXF/X}. We show that the relation

R = {(Gρ,Gσ) | E,F,G ∈ E and E % F}

is an observational equivalence up to %. Because of symmetry we only need to
show that if Gρ α=⇒ η there exists η′ s.t. Gσ α=⇒c η

′ and η ≡R≈ η′. The proof
is carried out by induction on the depth of the inference of Gρ α=⇒ η. There are
several cases depending on the structure of G. We consider three typical ones.

– G ≡ X : Then Gρ ≡ μXE
α=⇒ η. By Lemma 12 we have a shorter inference

with the conclusion Eρ
α=⇒ η. By induction hypothesis there exists θ s.t.

Eσ
α=⇒c θ and η ≡R≈ θ. Since E % F we have Eσ % Fσ by Proposition 14.

By Lemma 13 (2) there exists η′ s.t. Fσ α=⇒c η
′ and θ ≡≈ η

′. By rule D2 it
holds that μXF

α=⇒c η
′. At last it follows from Lemma 1 and the transitivity

of ≡R≈ that η ≡R≈ η′.
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– G ≡
∑

i∈1..nGi: If Gρ α=⇒ η then by Lemma 12, Gjρ
α=⇒ η for some

j ∈ 1..n with a shorter inference. By induction hypothesis there exists η′ s.t.
Gjσ

α=⇒c η
′ and η ≡R≈ η′. By rule D1 it holds that Gσ α=⇒c η

′.
– G ≡ G1 | G2: Then fv(G) = ∅ and G = Gρ = Gσ. Clearly if Gρ α=⇒ η then
Gσ

α=⇒ η. ��

Proposition 17. % is a congruence relation.

Proof. Given Ẽ % F̃ , we need to show the following three clauses:

1. u.
⊕

i piEi % u.
⊕

i piFi;
2.
∑

i∈1..nEi %
∑

i∈1..n Fi;
3. E1 | E2 % F1 | F2;
4. μXE1 % μXF1.

Among them, the first two clauses are easy to prove; the last two are shown in
Proposition 15 and Proposition 16 respectively. ��

Proposition 18. 1. E ≈ F iff τ.E % τ.F ;
2. If τ.E % τ.E + F and τ.F % τ.F + E then τ.E % τ.F .

Proof. The first clause is straightforward. For the second one, it suffices to prove
that E ≈ F . Consider the relation

R = {(E,F ) | E,F ∈ E , τ.E % τ.E + F and τ.F % τ.F + E}.

We show that R is a weak probabilistic bisimulation up to ≈. Suppose that
E

α=⇒ η. By the condition E+ τ.F % τ.F and Lemma 13 (2), there exists η′ s.t.
τ.F

α=⇒c η
′ and η ≡≈ η′. Since τ.F ≈ F , by Lemma 13 (1) there exists η′′ s.t.

F
α̂=⇒c η

′′ and η′ ≡≈ η′′. Then it is easy to see that η ≡R≈ η′′. Similar result
holds when E and F exchange their roles. ��

We use a measure dX(E) to count the depth of guardedness of the free variable
X in expression E.

dX(X) = 0
dX(Y ) = 0

dX(E | F ) = 0
dX(a.E) = dX(E) + 1
dX(τ.E) = dX(E)

dX(
⊕

i piEi) = min{dX(Ei)}i

dX(
∑

i Ei) = min{dX(Ei)}i

dX(μYE) = dX(E)

Note that dX(E | F ) = 0 because fv (E | F ) = ∅. If dX(E) > 0 then X is guarded
in E.

Lemma 15. Let dX(G) = n and η = {Gi : pi}i∈I . Suppose G{E/X} α=⇒ η.
For all i ∈ I, it holds that

1. If n > 0 and α = τ then Gi = G′
i{E/X} and dX(G′

i) ≥ n;
2. If n > 1 and α �= τ then Gi = G′

i{E/X} and dX(G′
i) ≥ n− 1.
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Proof. By induction on the depth of the inference of G{E/X} α=⇒ η. ��

Lemma 16. Suppose dX(G) > 1, η = {Gi : pi}i∈I and G{E/X} α=⇒ η. Then
Gi = G′

i{E/X} for each i ∈ I. Moreover, G{F/X} α=⇒ η′ and η ≡R∗ η′, where
η′ = {G′

i{F/X} : pi}i∈I and R = {(G{E/X}, G{F/X}) | for any G ∈ E}.

Proof. A direct consequence of Lemma 15. ��

The following Lemma is a counterpart of Lemma 8.

Lemma 17. Let dX(G) > 1. If G{E/X} α=⇒c η then G{F/X} α=⇒c η
′ such

that η ≡R∗ η′ where R = {(G{E/X}, G{F/X}) | for any G ∈ E}.

Proof. Let η = r1η1 + ... + rnηn and G{E/X} α=⇒ ηi for each i ≤ n. By
Lemma 16, for each i ≤ n, there exists η′i s.t. G{F/X} α=⇒ η′i and ηi ≡R∗ η′i.
Now let η′ = r1η

′
1 + ...+ rnη′n, thus G{F/X} α=⇒c η

′. By lemma 7 it follows that
η ≡R∗ η′. ��

Proposition 19. If E % F{E/X} and X is guarded in F then E % μXF .

Proof. We show that the relation R = {(G{E/X}, G{μXF/X}) | for any G ∈
E} is an observational equivalence up to%. That is, we need to show the following
assertions:

1. if G{E/X} α=⇒ η then there exists η′ s.t. G{μXF/X} α=⇒c η
′ and η ≡R≈ η′;

2. if G{μXF/X} α=⇒ η′ then there exists η s.t. G{E/X} α=⇒c η and η ≡R≈ η′;

We concentrate on the first clause since the second one is similar. The proof
follows closely the arguments in proving Proposition 16, thus we only consider
the case that G ≡ X .

We write G(E) for G{E/X} and G2(E) for G(G(E)). Since E % F (E),
we have E % F 2(E) since % is an congruence relation by Proposition 17. If
E

α=⇒ η then by Lemma 13 (2) there exists θ1 s.t. F 2(E) α=⇒c θ1 and η ≡≈ θ1.
Since X is guarded in F , i.e., dX(F ) > 0, then it follows that dX(F 2(X)) > 1.
By Lemma 17, there exists θ2 s.t. F 2(μXF ) α=⇒c θ2 and θ1 ≡R∗ θ2. From
Proposition 10 we have μXF ∼ F 2(μXF ), thus μXF % F 2(μXF ). By Lemma 13
(2) there exists η′ s.t. μXF

α=⇒c η
′ and θ2 ≡≈ η′. From Lemma 1 and the

transitivity of ≡R≈ it follows that η ≡R≈ η′. ��

Finally Proposition 5 is proved by collecting all the results in Propositions
17-19.
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Abstract. Van Glabbeek (1990) presented the linear time/branching
time spectrum of behavioral equivalences for finitely branching, concrete,
sequential processes. He studied these semantics in the setting of the ba-
sic process algebra BCCSP, and tried to give finite complete axiomati-
zations for them. Obtaining such axiomatizations in concurrency theory
often turns out to be difficult, even in the setting of simple languages
like BCCSP. This has raised a host of open questions that have been the
subject of intensive research in recent years. Most of these questions have
been settled over BCCSP, either positively by giving a finite complete ax-
iomatization, or negatively by proving that such an axiomatization does
not exist. Still some open questions remain. This paper reports on these
results, and on the state-of-the-art in axiomatizations for richer process
algebras with constructs like sequential and parallel composition.

1 Introduction

One of Jan Willem Klop’s main contributions to the theory of concurrency is
the development of the ACP family of process algebras in collaboration with Jan
Bergstra—see the original papers [8, 9, 10, 11, 12], the textbooks [6, 18] and the
historical paper [5]. Process algebras in the ACP style are defined, following the
tradition of the algebraic specification of abstract data types, relying on tools
from universal algebra and equational logic. More specifically, languages in the
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ACP family are defined by specifying their signature—that is, the collection of al-
gebraic operations that can be used to build new descriptions of reactive systems
in terms of ones that we have already constructed—together with a collection
of equational axioms that implicitly define the expected semantic properties of
processes. This is an application of the classic axiomatic method, on which the
development of modern algebra rests, to concurrency theory.

An example of a typical axiom that holds for all of the classic algebras in the
ACP family, and is familiar from the theory of regular languages [16, 33], is

(x + y) · z ≈ (x · z) + (y · z) .

In the above equation, the operation symbols + and · stand for “alternative
composition” (or nondeterministic choice) and “sequencing”, respectively. Intu-
itively, this axiom states that a process that can initially choose to behave either
like x or like y, and then proceeds to behave like z, is “equivalent” to one that
initially chooses to behave either like x · z or like y · z.

On the other hand, the right-distributivity axiom of alternative composition
over sequencing familiar from formal language theory, namely

x · (y + z) ≈ (x · y) + (x · z) ,

is usually not considered part of the axiom systems for process algebras since the
left- and right-hand sides of the above equation may exhibit different deadlock
potential, and should not be equated as descriptions of reactive systems.

Axiom systems arise from the desire of isolating the features that are common
to a collection of algebraic structures—namely, their models. Early examples of
models of the axiom systems for ACP style process algebras were the “projective
limit” model—as employed in, e.g., [8]—, and the “graph model” adopted in [11].

Given a language in the ACP family, one may define intuitively appealing
models of its axiom system as quotients of the collection of labelled transition sys-
tems modulo some behavioural congruence. Labelled transition systems (LTSs)
[32] are a fundamental formalism for the description of concurrent computation,
which is widely used in light of its flexibility and applicability. In particular,
they underlie Plotkin’s Structural Operational Semantics [41, 42] and, following
Milner’s pioneering work on CCS [36], are by now the standard formalism for
describing the semantics of various process description languages.

LTSs model processes by explicitly describing their states and their transi-
tions from state to state, together with the actions that produced them. Since
this view of process behaviours is very detailed, several notions of behavioural
equivalence and preorder have been proposed for LTSs. The aim of such be-
havioural semantics is to identify those (states of) LTSs that afford the same
“observations”, in some appropriate technical sense. The lack of consensus on
what constitutes an appropriate notion of observable behaviour for reactive sys-
tems has led to a large number of proposals for behavioural equivalences for
concurrent processes. (See the study [24], where van Glabbeek presents the lin-
ear time/branching time spectrum—a lattice of known behavioural equivalences
and preorders over LTSs, ordered by inclusion.)
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Having defined a model of an axiom system for a process algebra in terms
of LTSs, it is natural to study the connection between the equations that are
valid in the chosen model, and those that are derivable from the axioms using
the rules of equational logic. The key questions here are:

– Is the axiom system complete? That is, can all of the equations that hold in
the LTS model modulo the chosen notion of behavioural equivalence be de-
rived from the axiom system using the rules of equational logic? (A complete
axiom system is also referred to as a basis for the algebra it axiomatizes.) Re-
searchers in concurrency theory often restrict themselves to studying axiom
systems that are complete with respect to the collection of valid equations
that do not contain occurrences of variables.

– Does the algebra of LTSs modulo the chosen notion of behavioural equiva-
lence afford a finite equational axiomatization?

A complete axiomatization of a behavioural congruence yields a purely syntactic
characterization, independent of LTSs and of the actual details of the definition
of the chosen behavioural equivalence, of the semantics of the process algebra.
This bridge between syntax and semantics plays an important role in both the
practice and the theory of process algebras. From the point of view of practice,
these proof systems can be used to perform system verifications in a purely syn-
tactic way using general purpose theorem provers or proof checkers, and form
the basis of purpose built axiomatic verification tools like, e.g., PAM [34]. A
positive answer to the first basic question raised above is therefore not just theo-
retically pleasing, but has potential practical applications. From the theoretical
point of view, complete axiomatizations of behavioural equivalences capture the
essence of different notions of semantics for processes in terms of a basic col-
lection of identities, and this often allows one to compare semantics which may
have been defined in very different styles and frameworks. A review of exist-
ing complete equational axiomatizations for many of the behavioural semantics
in van Glabbeek’s spectrum is offered in [24]. The equational axiomatizations
offered ibidem are over the language BCCSP, a common fragment of Milner’s
CCS [36] and Hoare’s CSP [31] suitable for describing finite synchronization
trees, and characterize the differences between behavioural semantics in terms
of a few revealing axioms.

If the answer to the second basic question mentioned above is negative, then
one may resort to expanding the signature with auxiliary operations, thus adding
expressive power for the purpose of axiomatizing the equational theory. Bergstra
and Heering [7] have proved that every algebra with a recursively enumerable
equational theory has a finite complete equational axiomatization if it may in-
volve a hidden sort and some auxiliary hidden functions. That the auxiliary
functions are declared hidden means in particular that they themselves need not
be completely axiomatized. So then the question remains whether it is possible
to expand the algebra with (visible) auxiliary operations, preferably with an in-
tuitive interpretation of their own, in such a way that the equational theory of
the expansion has a finite axiomatization.
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A classic example of this line of research, which can again be traced back to
Jan Willem Klop’s work in concurrency theory, is offered by the paper [10]. There
Bergstra and Klop showed how to give a finite axiomatization of the language
ACP using the auxiliary left and communication merge operators to characterize
parallel composition. As shown by Moller [38, 39], auxiliary operators are needed
to obtain a finite basis for that language because the process algebras CCS and
ACP without the auxiliary left merge operator from [8] do not have a finite
equational axiomatization modulo bisimulation equivalence.

An axiom system E is ω-complete when an equation can be derived from E
if, and only if, all of its closed instantiations can be derived from E. In theorem
proving applications, it is often convenient to work with axiomatizations that are
ω-complete. In fact, using an ω-complete axiomatization one can avoid proofs
by (structural) induction in favour of purely equational reasoning. Moreover, as
argued by Heering in [26], ω-completeness of an axiom system is desirable in the
partial evaluation of programs. A classic example of an axiom system that is not
ω-complete is that for the lambda-calculus—see [40].

Many of the existing axiomatizations of behavioural equivalences over expres-
sive process description languages studied in concurrency theory are powerful
enough to prove all of the valid equalities between terms that contain no oc-
currences of variables, but are not ω-complete. In fact, obtaining ω-complete
axiomatizations in concurrency theory often turns out to be a difficult ques-
tion, even in the setting of simple languages like BCCSP. This has raised a host
of open questions that have been the subject of intensive investigation by pro-
cess algebraists in recent years. Most of these questions have been settled over
BCCSP and other simple process algebras, either positively by giving a finite
ω-complete axiomatization, or negatively by proving that such an axiomatiza-
tion does not exist. Still some open questions remain—especially for process
description languages and behavioural equivalences that, like observation equiv-
alence [29, 36], abstract, in some formal sense, from events in process behaviours
that are deemed to be unobservable.

In this paper, we report on positive and negative results pertaining to the
existence of (finite) complete axiomatizations for BCCSP and richer process al-
gebras, containing constructs like sequential composition and interleaving. We
hope that this survey of results will contribute to their dissemination in our
research community, and will stimulate further investigations leading to the so-
lution of the challenging open problems that are left.

The paper is organized as follows. We begin by presenting in Section 2 some
basic background on universal algebra and equational logic that will be useful
for the remainder of this study. In this general setting, we describe a collection
of proof techniques that can be used to establish positive and negative results
pertaining to the existence of finite, complete axiomatizations for algebras of
processes. Section 3 reports on results and open problems on axiomatizations
of behavioural equivalences over the language BCCSP studied by van Glabbeek
in [24]. The paper concludes with a survey of the state-of-the-art in the equa-
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tional theory of extensions of that language with more complex operators such
as parallel composition and sequential composition (Sections 4 and 5).

2 General Techniques

Our aim in this section is to present some general techniques that can be used
to establish results pertaining to the existence or non-existence of finite equa-
tional axiomatizations for behavioural equivalences and preorders over process
description languages. A suitable general framework within which these tech-
niques can be described is given by the classic fields of universal algebra and
equational logic. We therefore begin by introducing the basic notions from these
areas of mathematical research that will be used throughout this paper. We
state at the outset that we shall not need very deep results or constructions
from universal algebra in what follows, and that much more on it may be found
in, e.g., the classic reference [15]. A self-contained presentation from a computer
science perspective of the topics we now proceed to introduce may be found
in [27].

2.1 Preliminaries

Σ-Algebras. We start from a countably infinite set V of variables with typical
elements x, y, w, z. A signature Σ consists of a set of operation symbols, disjoint
from V , together with a function arity that assigns a natural number to each
operation symbol. The set of terms over Σ is the least set such that

– Each x ∈ V is a term.
– If f is an operation symbol of arity n, and t1, . . . , tn are terms, then f(t1,
. . . , tn) is also a term.

An operation symbol f of arity 0 will be often called a constant symbol, and the
term f() will be abbreviated as f .

We write (Σ) for the set of all terms over Σ and use t, u, v, possibly sub-
scripted and/or superscripted, to range over terms. A term is closed (or ground)
if it contains no occurrences of variables. We denote by T(Σ) the set of closed
terms overΣ. A substitution is a mapping from variables to terms. A substitution
is closed if it maps variables to closed terms. For every term t and substitution
σ, the term obtained by replacing every occurrence of a variable x in t with the
term σ(x) will be written σ(t). Note that σ(t) is closed if σ is. Throughout this
paper, we use the symbol “=” to stand for (syntactic) equality.

Example 1. A signature for the natural numbers with the operation max yielding
the maximum of two numbers might contain a constant 0, a unary successor
operation S and the binary operation symbol ∨. We shall use this signature as
our running example throughout this section, and use ∨ in its customary infix
notation for the sake of clarity.
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Example 2. A process algebra that will be discussed extensively in Section 3 is
BCCSP. Its signature consists of the constant 0, the binary operator + called
alternative composition, and unary prefix operators a , where a ranges over a
nonempty set A of actions.

The collection of terms over a signature Σ yields a language. The semantics
of this language can be defined canonically once we equip the set of intended
denotations with the structure of a Σ-algebra. A Σ-algebra is a structure

A = (A,
{
fA | f ∈ Σ

}
) ,

where A is a non-empty set (often called the carrier of the algebra), and

fA : An → A

for each operation symbol f ∈ Σ of arity n. Note that if f is a constant symbol,
then fA can be viewed as an element of A.

In order to interpret terms in (Σ) in a Σ-algebra A = (A,
{
fA | f ∈ Σ

}
)

we need the notion of an environment. An environment is a function ρ mapping
variables to elements of A. The mapping ρ can be extended homomorphically
to (Σ) in a unique way by stipulating that

ρ(f(t1, . . . , tn)) = fA(ρ(t1), . . . , ρ(tn))

for each operation symbol f of arity n and terms t1, . . . , tn. Note that ρ(t) is
independent of ρ whenever t is closed. For each closed term t, we write tA for
the element of A that is the interpretation of t in the algebra A. An element
of the carrier set of A is denotable if it is the interpretation of some closed
term.

Example 3. A suitable algebra N in which to interpret the collection of terms
over the signature introduced in Example 1 has the set of natural numbers IN
as carrier set. The constant symbol 0 is interpreted as the natural number 0,
the unary function symbol S is interpreted as the successor function—that is,
the function mapping each natural number n to n+ 1—and the binary function
symbol ∨ is interpreted as the function mapping each pair of natural numbers
to the largest of the two.

It is easy to see that each element of N is denotable. Indeed, the natural
number n is the interpretation of the term tn defined thus:

t0 = 0 and
tn+1 = S(tn) .

The interpretation of the language (Σ) in a Σ-algebra A = (A,
{
fA | f ∈ Σ

}
)

naturally induces a congruence relation =A over (Σ). This is defined thus:

t =A u if, and only if, ρ(t) = ρ(u), for each environment ρ .
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Example 4. Examples of identities that hold with respect to the congruence
relation =N induced by the interpretation of the language of terms over the
signature for the natural numbers in our running example are

x ∨ 0 =N x

0 ∨ x =N x and
S(x) ∨ S(y) =N S(x ∨ y) .

The results reviewed in this paper all aim at using the classic logic of equal-
ity to offer a syntactic characterization of the relation =A for algebras of pro-
cesses. The study of such axiomatic characterizations of semantic equivalences
falls therefore within the realm of equational logic, whose basics we now proceed
to present.

Equational Logic. An axiom system is a collection E of equations t ≈ u over the
language (Σ). (The equations in E are often referred to as axioms.) An equation
t ≈ u is derivable from an axiom system E, notation E � t ≈ u, if it can be
proven from the axioms in E using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under Σ-contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

ti ≈ ui (1 ≤ i ≤ n)
f(t1, . . . , tn) ≈ f(u1, . . . , un)

.

(The first three rules above state that ≈ is an equivalence relation, whereas
the latter two state that ≈ is closed under substitutions, and is a congruence.)
Formally, a proof of an equation t ≈ u from E is a sequence ti ≈ ui (1 ≤ i ≤ n)
of equations such that

– tn = t and un = u, and
– for each 1 ≤ i ≤ n, the equation ti ≈ ui is obtained by applying one of the

aforementioned inference rules using equations in E or some of the equations
that precede it in the sequence as premises.

Without loss of generality one may assume that the substitution rule is only
applied to axioms, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when (t ≈ u) ∈ E. In this case, the equation σ(t) ≈ σ(u) is
called a substitution instance of an axiom in E.

Moreover, by postulating that for each axiom in E also its symmetric coun-
terpart is present in E, one may assume that there are no applications of the
symmetry rule in equational proofs.

It is well-known (see, e.g., Sect. 2 in [25]) that if an equation relating two
closed terms can be proven from an axiom system E, then there is a closed proof
for it.
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Definition 1 (Soundness). Let A be a Σ-algebra. An equation t ≈ u is sound
with respect to =A iff t =A u. An axiom system is sound with respect to =A iff
so is each of its equations.

The collection of all equations that are sound with respect to =A is called the
equational theory of A.

In other words, an axiom system is sound with respect to =A if it can only
be used to prove equations that are valid in the algebra A. This is, of course, a
most natural requirement on an axiom system. However, ideally an axiom system
should also allow us to prove all of the equations that hold in a given algebra.
This is captured by the technical requirement of completeness.

Definition 2 (Completeness). Let A be a Σ-algebra. An axiom system E is
ground complete with respect to =A iff E � t ≈ u whenever t =A u, for all
closed terms t, u.
E is complete with respect to =A iff E � t ≈ u whenever t =A u, for all terms

t, u.

Definition 3 (Equational Bases and Finitely Based Algebras). An equa-
tional basis for an algebra A is a sound axiom system E that is complete with
respect to =A. We say that an algebra A is finitely based if it has a finite equa-
tional basis.

The notion of completeness of an axiom system relates the proof-theoretic notion
of derivability using the rules of equational logic with the model-theoretic one
of “validity in a model”. From a proof-theoretic perspective, a useful property
of an axiom system E is that, for all terms t, u ∈ (Σ),

E � t ≈ u iff E � σ(t) ≈ σ(u), for each closed substitution σ . (1)

An axiom system with the above property is called ω-complete. In theorem
proving applications, it is convenient if an axiomatization is ω-complete, because
this means that proofs by (structural) induction can be avoided in favour of
purely equational reasoning. In fact, suppose that σ(t) ≈ σ(u) is provable from
an axiom system E, for each closed substitution σ. If E is ω-complete, then we
know that an equational proof of the actual equation t ≈ u from E exists. In
general, the equation t ≈ u might not be derivable from E if E is just ground
complete. In that case, we might have to content ourselves with showing that all
closed instantiations of that equation are derivable from E, and this is usually
done by induction on the structure of the closed terms that can be substituted
for the variables occurring in t and u.

Example 5. The collection of equations corresponding to the congruences listed
in Example 4 is easily seen to be ground complete with respect to =N . That
axiom system is, however, neither complete nor ω-complete. For example, the
equation

x ∨ x ≈ x (2)
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is valid in the algebraN , and all of its closed instantiations are provable from the
three equations in Example 4. However, the above equation itself is not derivable
from the axioms in Example 4. (See Examples 7 and 8 for proofs of this claim.)

A finite basis for the algebra N is given by the following axiom system

x ∨ 0 ≈ x

S(x) ∨ S(y) ≈ S(x ∨ y)
S(x) ∨ x ≈ S(x)

x ∨ x ≈ x

x ∨ y ≈ y ∨ x and
x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z .

It turns out that completeness and ω-completeness are closely related properties
of an axiom system. Indeed, assume that A is a Σ-algebra each of whose elements
is denotable. Suppose that E is sound and complete with respect to =A. It is
not hard to argue that, in this case, E is also ω-complete.

Remark 1. For the aforementioned connection between the model-theoretic no-
tion of completeness and the proof-theoretic one of ω-completeness to hold, it
is crucial that each element in the algebra A be denotable. To see this, consider
the signature consisting of the constant ⊥ and the unary function symbol P .
Interpret this language over the algebra having {0, 1} as carrier set, where ⊥ is
interpreted as 0, and P is interpreted as the constant function 0. We claim that
no basis for this algebra can be ω-complete. To see that this holds, note, first of
all, that each closed term over the aforementioned signature denotes the element
0. Therefore each closed instantiation of the equation P (x) ≈ x holds in the al-
gebra, and is provable from the chosen basis. However, the equation P (x) ≈ x
is itself not provable. This follows because E is sound, and that equation does
not hold in the algebra, as can be seen by setting the variable x to 1.

Consider the Σ-algebra obtained by quotienting the set of closed terms T(Σ)
with respect to the congruence relation that equates two closed terms t, u iff
the equation t ≈ u is provable from an axiom system E. As a corollary of the
aforementioned observation, we have that an equational basis for that algebra is
also ω-complete.

Remark 2. Let A be a Σ-algebra. It is not hard to see that an axiom system that
is both ω-complete and ground complete with respect to =A is also complete
with respect to =A.

One of the classic topics in the field of equational logic, and in its applications
in process algebra, is the study of results pertaining to the existence or non-
existence of finite bases for algebras. In the realm of concurrency theory, van
Glabbeek presented in [23, 24] the linear time/branching time spectrum of be-
havioral equivalences for finitely branching, concrete, sequential processes. He
studied these semantics in the setting of the basic process algebra BCCSP, and
tried to give finite ω-complete axiomatizations for them. In many cases this turns
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out to be a difficult question. Most of these finite basis questions have been set-
tled, either positively by giving a finite ω-complete axiomatization, or negatively
by proving that such an axiomatization does not exist. But some open questions
remain. The main aim of this paper is to survey such results. Before doing so,
however, we give a brief overview of some of the general proof techniques that
have been developed in the literature on universal algebra, and more specifically
within process algebra, to show that certain algebras afford a finite equational
basis, or that no such basis exists. These strategies will then be used in Sec-
tions 3–5 to establish positive and negative results on the existence of finite
bases for behavioural congruences over several process description languages.

2.2 Methods for Establishing Positive Results

Assume that we have an algebra A and a (finite) axiom system E that is sound
with respect to =A. How can we show that E is complete or ground complete?
There are a few general proof techniques that have been applied in the literature
to answer this question, and we review some of those in the remainder of this
section.

Normal Forms. A classic strategy for showing that an axiom system is complete
or ground complete that has had a wealth of applications in process algebra
relies on the following two steps:

– Isolation of normal forms. In this step one finds a collection of terms, the
so-called normal forms, with the property that each term t can be proved
equal to a normal form using the equations in E. In other words, the set
of normal forms is as expressive as the whole collection of terms modulo
the equational theory generated by E. (If we are aiming at showing that
our axiom system E is ground complete, then the normal forms are closed
terms, and it suffices only to prove that each closed term is provably equal
to a normal form using the equations in E.)

– Distinctness of normal forms. In this second step, one argues that two
normal forms are related by =A if, and only if, they are “identical”. This
is often done by showing that, for each pair of different normal forms, it is
possible to construct an environment ρ distinguishing them.

In applications of this method in process algebra, the former step in this proof
strategy is often carried out with the use of term rewriting techniques. In that
case, the normal forms are precisely those of the term rewriting system, and the
analysis is complicated by the need to consider rewriting modulo commutativity
and associativity of certain operators like alternative composition. Moreover,
the isolation of a suitable notion of normal form often requires considerable
ingenuity, and is a difficult art.

Example 6. The aforementioned strategy based upon the isolation of suitable
normal forms for terms can be used to show that the axiom system presented
in Example 5 is, as claimed there, a finite basis for the algebra N . Indeed, a
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suitable set of normal forms for terms over the signature of that algebra is given
by the collection of terms of the form∨

i∈I

Sni(xi) [∨Sn(0)] ,

where

– I is a finite index set,
– ni ≥ 0, for each i ∈ I, and
– the variables xi (i ∈ I) are all different.

The notation [∨{Sn(0)}] used in defining normal forms means that the term
Sn(0) is optional. If that term is present then n must be larger than each of
the ni (i ∈ I). Moreover, for an index set J = {j1, . . . , jk} (k ≥ 0) and col-
lection of terms tj (j ∈ J), we have used the notation

∨
j∈J tj as a short-hand

for
tj1 ∨ · · · ∨ tjk

.

(That term stands for 0 if J is empty.)
It is not too hard to argue that

1. each term can be proven equal to a normal form using the equations in
Example 5 and

2. if t and u are different normal forms, then there is an environment ρ mapping
variables to natural numbers such that ρ(t) �= ρ(u).

Therefore, as claimed in Example 5, that axiom system is a finite basis for
the algebra N . Since each element of N is denotable (Example 3), E is also
ω-complete.

Inverted Substitutions. A proof technique that can be used to prove the ω-
completeness of an axiom system, and that originates from research in process
algebra, was offered by Groote in [25]. Groote’s strategy is based on proof trans-
formations, and proceeds as follows. Assume that we have an axiom system E,
and an arbitrary equation t ≈ u all of whose closed instantiations are provable
from E. The first step in Groote’s “inverted substitutions” strategy is to find a
closed substitution σ such that a proof of the equation σ(t) ≈ σ(u) from E can
be transformed uniformly to a proof of the equation t ≈ u. This proof transfor-
mation is achieved by means of a mapping σ̂ : T(Σ) → (Σ) that intuitively
maps each closed term representing a variable to the variable itself. This trans-
formation yields the desired proof of the equation t ≈ u from E, provided that
the technical conditions stated in the following theorem are met.

Theorem 1 (Groote [25]). Let E be an axiom system over signature Σ. As-
sume that, for each equation t ≈ u all of whose closed instantiations can be
proven from E, there exist a closed substitution σ and a mapping σ̂ : T(Σ) →
(Σ), satisfying the following conditions:
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1. E proves the equations σ̂(σ(t)) ≈ t and σ̂(σ(u)) ≈ u,
2. for each operation symbol f and terms u1, . . . , un, u

′
1, . . . , u

′
n, where n is the

arity of f , the equation σ̂(f(u1, . . . , un)) ≈ σ̂(f(u′1, . . . , u
′
n)) is provable from

those in E and the equations ui ≈ u′i and σ̂(ui) ≈ σ̂(u′i) (1 ≤ i ≤ n) and
3. the equation σ̂(σ′(t1)) ≈ σ̂(σ′(t2)) is provable from E for each (t1 ≈ t2) ∈ E

and closed substitution σ′.

Then E is ω-complete.

The strategy for proving the ω-completeness of axiom systems offered by the
above result has been applied with success by Groote and other researchers in
the field of process algebra, and, when applicable, often leads to simpler proofs
than the standard one based on normal forms. As remarked by Groote in [25],
the ω-completeness of the finite basis for the algebra N given in Example 5
cannot be shown using the technique in Theorem 1.

Giving Semantics to All Terms. The algebras that are used in the field of pro-
cess description languages to interpret terms over some signature Σ are often
obtained by taking the quotient T(Σ)/∼ of the algebra of closed terms over Σ
modulo some notion of congruence ∼. The interpretation of a closed term in this
algebra is its congruence class with respect to ∼, and two arbitrary terms are
congruent if, and only if, so are all of their closed instantiations.

Another technique that has been developed in the field of process algebra to
establish ω-completeness results for axiom systems relies on the following steps:

– Define the congruence relation ∼ over all terms in (Σ) directly.
The relation ∼ should be defined over (Σ) in such a way that two terms
are related by ∼ if, and only if, so are all of their closed instantiations. This
means, in particular, that an equation t ≈ u is sound in the quotient algebra
T(Σ)/∼ exactly when t ∼ u holds. (This step usually involves giving an
operational semantics to open terms, and possibly adapting the definition of
the congruence relation ∼.)

– Completeness over terms. In this second step, one proves that the can-
didate axiom system E is a basis for the quotient algebra of terms (Σ)
modulo ∼, and hence for the quotient algebra of closed terms T(Σ) modulo
∼. Since each element of the algebra T(Σ)/∼ is denotable, it follows that E
is also ω-complete.

To the best of our knowledge, this technique was first applied in [35] by Milner
to show completeness of his inference system for bisimulation equivalence over
the regular fragment of the Calculus of Communicating Systems (CCS) [36].

Cover Equations. This technique from Fokkink and Nain [20] is tailored to
BCCSP. The aim is to obtain an explicit description of the equational theory
for a particular semantics. The central idea is that if an equation t ≈ u is sound
for BCCSP modulo some semantics in the linear time/branching time spectrum,
then u+ t ≈ t and t+ u ≈ u are sound as well; and from the last two equations
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one can derive t ≈ u. This implies that it is sufficient to only consider sound
equations of the form at+u ≈ u (where a denotes an action and t, u are BCCSP
terms). These are called the cover equations.

When the cover equations have been classified, one can proceed in two ways.
Either one can determine an infinite family of cover equations that obstructs a
finite basis, or one can determine a finite basis among the cover equations.

2.3 Methods for Establishing Negative Results

To prove that a set of equations cannot be derived from a given, possibly finite,
subset of this set, we usually point out one specific equation in the superset,
and prove that it is not derivable from the subset. To show that an equational
theory—that is, the set of equations that hold in a given algebra—is not finitely
based, we extend this reasoning by proving that for each finite subset of the
theory, there is an equation that cannot be derived from this finite set. Often
we obtain this result by establishing a stronger result: we identify a particular
countably infinite sequence of equations in the theory with some suitable prop-
erties, and show that no finite subset of the theory can prove all of the equations
in that sequence.

The proof techniques used for this purpose can roughly be divided into two
categories: the model-theoretic techniques and the proof-theoretic ones. In what
follows we will try to describe the essence of these two main methodologies.

Model-theoretic Techniques. If a set of equations E is sound in an algebra A, we
say that A is a model for E. By Birkhoff’s completeness theorem for equational
logic [13], each equation that is derived from E holds in A, if A is a model for
E. Thus, to prove that an equation t ≈ u is not derivable from E it is sufficient
to find an algebra that is a model for E but not of the equation t ≈ u.

Example 7. In Example 5 we claimed that equation (2) is not derivable from
the axioms in Example 4. As argued above, this can be proven by exhibiting a
model of the axioms in Example 4 where ∨ is not idempotent. A simple example
of such a model consists of the collection of all finite strings over the symbol
a, where 0 is interpreted as the empty string, the unary operation symbol S is
interpreted as the identity function, and ∨ is used to stand for concatenation.

In light of the previous observations, to prove that an equational theory is not
finitely based, one may therefore proceed as follows:

– isolate a countably infinite collection of equations en (n ≥ 0) in the equa-
tional theory,

– for each finite subset E of the equational theory, construct an algebra AE

that is a model of E, but in which some of the equations en fail.

Examples of the application of this strategy may be found in, e.g., [1, 2, 16, 22].

Proof-theoretic Techniques. Recall that an equation t ≈ u is derivable from a set
of equations E if there is a sequence ti ≈ ui (1 ≤ i ≤ n) of equations such that
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– tn = t and un = u, and
– for each 1 ≤ i ≤ n, the equation ti ≈ ui is obtained by applying one of the

aforementioned inference rules using equations in E or some of the equations
that precede it in the sequence as premises.

Proof-theoretic techniques aim at showing that t ≈ u is not derivable from E,
by establishing that no such proof sequence exists. This is often done by finding
a property of equations that

– holds true for each instantiation of the axioms in E,
– is preserved by the rules of equational logic—that is, if all of the equations

that are premises of the rule have the property, then so does the conclusion
of the rule—, and

– fails for the equation t ≈ u.

This contradicts the existence of a proof for the equation t ≈ u from E, showing
that t ≈ u is not derivable from that axiom system.

Example 8. The aforementioned proof-theoretic strategy can be used to give an
alternative proof that the idempotence of ∨ is not derivable from the axioms
in Example 4. To this end, observe that the left- and right-hand sides of each
axiom in Example 4 contain the same number of occurrences of each variable. It
is not hard to see that this property is preserved under equational derivations.
On the other hand, the term x ∨ x contains two occurrences of the variable x,
whereas the term x has only one. It follows that equation (2) is not derivable
from the axioms in Example 4.

The proof-theoretic strategy we have just described can be applied to show that
an equational theory is not finitely based as follows:

– isolate a countably infinite collection of equations en (n ≥ 0) in the equa-
tional theory,

– for each finite subset E of the equational theory, show that there is a property
of equations that is satisfied by all of the equations that can be derived from
E, but that is not afforded by some of the equations en.

Proof-theoretic techniques have found wide application in establishing that alge-
bras of processes do not afford a finite basis. In particular, all of the known proofs
of the negative results we survey in Sections 4 and 5 are based on applications
of the aforementioned proof-theoretic strategy.

Remark 3. An observation that can sometimes be used to show that an equa-
tional theory does not afford a finite equational axiomatization relies on the
compactness theorem (see, e.g., [15]). Assume that we have an infinite axioma-
tization E for an equational theory T . If T had a finite axiomatization, then, by
the compactness theorem, some finite subset of E would be a complete axioma-
tization for the theory T . Namely, since E is complete, each axiom in the finite
axiomatization for T could be derived from E, and each of these derivations
uses only finitely many axioms in E. To prove that T does not have a finite
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axiomatization, it therefore suffices to show that, for each finite subset E′ of E,
there is an equation in E that is not provable from E′. This can be achieved
using either of the two general proof strategies described above. Applications of
this proof methodology may be found in, e.g., [16, 17].

3 On Finite Bases for BCCSP

3.1 The Linear Time/Branching Time Spectrum

Van Glabbeek presented in [23, 24] the linear time/branching time spectrum
of behavioural equivalences for finitely branching, concrete processes. In this
section, for the sake of completeness, we define the semantics in this spectrum.

A labelled transition system contains a set of states, with typical element s,
and a set of transitions s a→ s′, where a ranges over some set of labels. The set
I(s) consists of those labels a for which there exists a transition s a→ s′.

First we define four semantics based on simulation.

Definition 4 (Simulations). Assume a labelled transition system.

– A binary relation R on states is a simulation if s0 R s1 and s0
a→ s′0 imply

s1
a→ s′1 with s′0 R s′1.

– A simulation R is a ready simulation if s0 R s1 and a �∈ I(s0) imply a �∈
I(s1).

– A simulation R is a 2-nested simulation if R−1 is included in a simulation.
– A bisimulation is a symmetric simulation.

Next we define six semantics based on decorated versions of execution traces.

Definition 5 (Decorated Traces). Assume a labelled transition system.

– A sequence a1 · · · an, with n ≥ 0, is a trace of a state s0 if there is a sequence
of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn. It is a completed trace of s0 if
moreover I(sn) = ∅.

– A pair (a1 · · ·an, X), with n ≥ 0 and X ⊆ A, is a ready pair of a state s0 if
there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn with I(sn) = X.
It is a failure pair of s0 if I(sn) ∩X = ∅.

– A sequence X0a1X1 . . . anXn, with n ≥ 0 and Xi ⊆ A, is a ready trace of a
state s0 if there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn with
I(si) = Xi for i = 0, . . . , n. It is a failure trace of s0 if I(si) ∩Xi = ∅ for
i = 0, . . . , n.

Finally, we define two semantics based on possible futures and on possible worlds.

Definition 6 (Possible Futures/Worlds). Assume a labelled transition sys-
tem.

– A pair (a1 · · ·an, X), with n ≥ 0 and X ⊆ A∗, is a possible future of a state
s0 if there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn where X is
the set of traces of sn.
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– A state s is deterministic if for each a ∈ I(s) there is exactly one state s′

such that s a→ s′, and moreover s′ is deterministic.
A state s is a possible world of a state s0 if s is deterministic and s R s0
for some ready simulation R.

Two states s and s′ are simulation, ready simulation, or 2-nested simulation
equivalent if there exist simulations, ready simulations, or 2-nested simulations
R1 and R2, respectively, with sR1 s

′ and s′R2 s. They are bisimilar if there
is a bisimulation that relates them. They are possible futures, possible worlds,
ready trace, failure trace, ready, failure, completed trace, or trace equivalent if
they have the same possible futures, possible worlds, ready traces, failure traces,
ready pairs, failure pairs, completed traces, or traces, respectively.

completed traces

traces

possible worlds

failure pairs

bisimulation

2-nested simulation

ready simulation

possible futures

ready pairsfailure tracessimulation

ready traces

Fig. 1. The Linear Time/Branching Time Spectrum

The linear time/branching time spectrum is depicted in Figure 1, where a
directed edge from one semantics to another means that the source of the edge
is included in the target.

3.2 BCCSP

BCCSP is a basic process algebra for expressing finite process behaviour. Its
signature consists of the constant 0, the binary operator + called alternative
composition, and unary prefix operators a , where a ranges over a nonempty
set A of actions, called the alphabet (with typical elements a, b, c, d). Intuitively,
closed BCCSP terms represent finite process behaviour, where 0 does not exhibit
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any behaviour, p+ q is the nondeterministic choice between the behaviours of p
and q, and ap executes action a to transform into p. This intuition is captured by
the transition rules below, in which a ranges over A. They give rise to A-labelled
transitions between BCCSP terms.

ax
a→ x

x
a→ x′

x+ y
a→ x′

y
a→ y′

x+ y
a→ y′

We use summation
∑n

i=1 ti, with n ≥ 0, to denote t1 + · · ·+ tn, where the empty
sum denotes 0.

The semantics in the linear time/branching time spectrum all constitute a
congruence for BCCSP, meaning that p1 ∼ q1 and p2 ∼ q2 imply ap1 ∼ aq1 for
a ∈ A and p1 +p2 ∼ q1 + q2, where ∼ ranges over the semantics in the spectrum.

3.3 Positive and Negative Results for BCCSP

In this section we will survey positive and negative results, and open questions,
on the existence of a finite basis for the equational theories of BCCSP modulo
the equivalences in the spectrum above. The axiomatizations that we will present
for the different semantics in the spectrum were mostly taken from [24].

In case of an infinite alphabet, occurrences of action names in axioms are
interpreted as variables (or action schemes).

Bisimulation. The core axioms in Table 1 are sound and ground complete for
BCCSP modulo bisimulation. Moller [37] proved using normal forms that this
axiomatization is ω-complete; Groote provided an alternative proof of this result
in [25] using inverted substitutions.

Table 1. The axioms for bisimulation

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A6 x + 0 ≈ x

2-Nested Simulation and Possible Futures. Aceto, Fokkink, van Glabbeek and
Ingolfsdottir [4] proved that BCCSP modulo any semantics no coarser than
possible futures and no finer than 2-nested simulation does not possess a finite
sound and ground complete axiomatization. The infinite family of equations that
they used to prove this negative result is defined as follows. Let E be any finite
axiomatization for BCCSP that is sound modulo possible futures. Let the depth
of a BCCSP term t be the largest number of transitions in sequence that t can
exhibit. Pick an m such that

m > max{depth(t), depth(u) | (t ≈ u) ∈ E} .



Finite Equational Bases in Process Algebra: Results and Open Questions 355

For n ≥ 0, let pn and qn be defined inductively as follows, for some a ∈ A:

p0 = a2m−10 q0 = am−10
pn+1 = apn + aqn qn+1 = apn .

The equations pn ≈ qn for n ≥ 2 are sound modulo 2-nested simulation. However,
they cannot be derived from E.

Ready Simulation. Van Glabbeek presented a conditional axiom for ready simu-
lation equivalence: I(x) = I(y) ⇒ a(x+ y) ≈ a(x+ y) + ay. Blom, Fokkink and
Nain [14] showed that a sound and ground complete finite equational axiomati-
zation for BCCSP modulo ready simulation exists. It is obtained by extending
the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z) ,

where a, b range over A. When A is infinite, Groote’s technique of inverted
substitutions can be applied to show that this axiomatization is ω-complete.
When A is finite, it remains an open question whether BCCSP modulo ready
simulation is finitely based.

Simulation. A sound and ground complete axiomatization for BCCSP modulo
simulation is obtained by extending the four core axioms with

a(x+ y) ≈ a(x+ y) + ay .

When A is infinite, Groote’s technique of inverted substitutions can be applied
to show that this axiomatization is ω-complete. When 1 < |A| <∞, it remains
an open question whether BCCSP modulo simulation is finitely based. When
|A| = 1, simulation equivalence coincides with trace equivalence, and we will see
that in this case a finite basis does exist.

Possible Worlds. A sound and ground complete axiomatization for BCCSP mod-
ulo possible worlds is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ z) + a(by + z) .

When A is infinite, Groote’s technique of inverted substitutions can be applied
to show that this axiomatization is ω-complete. Fokkink and Nain [20] showed
that when 1 < |A| < ∞, BCCSP modulo any semantics no coarser than ready
equivalence and no finer than possible worlds equivalence does not possess a
finite basis. (Note that ready traces are within this semantic range.) Their proof
of this negative result, which uses cover equations and applies the compactness
theorem to the equational theory for terms of depth 1, is based on the following
infinite family of equations:

a(
|A|−1∑
i=1

xi) +
|A|−1∑
j=1

a(
j−1∑
i=1

xi +
n∑

i=j+1

xi) +
n∑

j=|A|
a(

|A|−1∑
i=1

xi + xj + yj) ≈

a(
|A|−1∑
i=1

xi) +
|A|−1∑
j=1

a(
j−1∑
i=1

xi +
n∑

i=j+1

xi) +
n∑

j=|A|
a(

|A|−1∑
i=1

xi + xj + yj) + a(
n∑

i=1

xi).
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These equations are sound modulo possible worlds for n ≥ |A|. However, any
finite axiomatization that is sound for BCCSP modulo ready pairs cannot derive
them all. When |A| = 1, possible worlds equivalence coincides with completed
trace equivalence, and we will see that in this case a finite basis does exist.

Ready Traces. Van Glabbeek presented a conditional axiom for ready trace
equivalence: I(x) = I(y) ⇒ ax + ay ≈ a(x + y). Blom, Fokkink and Nain
[14] showed that when A is finite, a sound and ground complete finite equa-
tional axiomatization for BCCSP modulo ready traces exists. It is obtained by
extending the four core axioms with

a(
|A|∑
i=1

(bixi + biyi) + z) ≈ a(
|A|∑
i=1

bixi + z) + a(
|A|∑
i=1

biyi + z) .

When A is infinite, they showed using the compactness theorem that a finite
sound and ground complete axiomatization does not exist. Their proof is based
on the following equations, for n > 0:

a(
n∑

i=1

(bic0 + bid0)) ≈ a(
n∑

i=1

bic0) + a(
n∑

i=1

bid0) .

When 1 < |A| < ∞, the aforementioned negative result from [20] (see the
paragraph on possible worlds) implies that BCCSP modulo ready traces does
not possess a finite basis. When |A| = 1, ready trace equivalence coincides with
completed trace equivalence, and we will see that in this case a finite ω-complete
axiomatization does exist.

Failure Traces. Van Glabbeek presented a conditional axiom for failure traces
(the same one as for ready traces). Blom, Fokkink and Nain [14] showed using
normal forms that a sound and ground complete finite equational axiomatization
for BCCSP modulo failure traces exists. It is obtained by extending the four core
axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(by + z)
ax+ ay ≈ ax+ ay + a(x+ y) .

When A is infinite, Groote’s technique of inverted substitutions can be applied
to show that this axiomatization is ω-complete. When 1 < |A| <∞, it remains
an open question whether BCCSP modulo failure traces is finitely based. When
|A| = 1, failure trace equivalence coincides with completed trace equivalence,
and we will see that in this case a finite basis does exist.

Ready Pairs. A sound and ground complete axiomatization for BCCSP modulo
ready pairs is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(by + z) .
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When A is infinite, Groote’s technique of inverted substitutions can be applied to
show that this axiomatization is ω-complete. When 1 < |A| <∞, the aforemen-
tioned negative result from [20] (see the paragraph on possible worlds) implies
that BCCSP modulo ready pairs does not possess a finite basis. When |A| = 1,
ready equivalence coincides with completed trace equivalence, and we will see
that in this case a finite basis does exist.

Failure Pairs. A sound and ground complete axiomatization for BCCSP modulo
failure pairs is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z)
ax+ a(y + z) ≈ ax+ a(y + z) + a(x+ y) .

Fokkink and Nain [21] proved using cover equations that when A is infinite, this
axiomatization is ω-complete. They also proved that when A is finite, one extra
axiom is needed to obtain an ω-complete axiomatization:

a(
|A|∑
i=1

bixi + y + z) ≈ a(
|A|∑
i=1

bixi + y + z) + a(
|A|∑
i=1

bixi + y) .

Completed Traces. A sound and ground complete axiomatization for BCCSP
modulo completed traces is obtained by extending the four core axioms with

a(bw + y) + a(cx+ z) ≈ a(bw + cx+ y + z) .

Groote [25] proved using normal forms that in order to obtain an ω-complete
axiomatization, one extra axiom is needed:

ax+ a(y + z) ≈ ax+ a(y + z) + a(x+ y) .

Traces. A sound and ground complete axiomatization for BCCSP modulo traces
is obtained by extending the four core axioms with

ax+ ay ≈ a(x+ y) .

Groote [25] proved using normal forms that this axiomatization is ω-complete
when |A| > 1. When |A| = 1, it is not hard to see that one extra axiom,
ax + x ≈ ax, suffices to make the axiomatization ω-complete. Indeed, in that
case, the algebra of closed BCCSP terms modulo trace equivalence is isomorphic
to the algebra N in Example 3. (To the best of our knowledge this is the first
time this last observation appears in print.)

3.4 Overview

Concluding, BCCSP has a finite sound and ground complete axiomatization for
most of the semantics in the linear time/branching time spectrum. Only for 2-
nested simulation and possible futures, and for ready traces in case of an infinite
alphabet, such an axiomatization does not exist.
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Regarding ω-completeness, matters are more mixed, especially when 1 <
|A| < ∞. The table below presents an overview, where + means that there
a finite basis, – means that there is no finite basis, and ? means that it is un-
known whether a finite basis exists. We distinguish between an infinite alphabet,
a finite alphabet with more than one element, and a singleton alphabet.

|A| = 1 1 < |A| <∞ |A| = ∞
bisim + + +
2-nes sim – – –
poss futu – – –
ready sim ? ? +
sim + ? +
poss worl + – +
ready tr + – –
failure tr + ? +
ready + – +
failure + + +
compl tr + + +
traces + + +

4 Parallelism

In this section we discuss extensions of BCCSP with a binary operation ‖ for
parallel composition. We only consider bisimulation semantics. The intuition
is that p ‖ q does a move from either component, or establishes some kind of
synchronization between its components. The synchronization mechanism differs
from one process description language to another. For the sake of generality,
we make use of the mechanism incorporated in ACP, and show how it can be
instantiated, e.g., to the synchronization mechanism of CCS.

ACP’s synchronization mechanism presupposes a communication function γ,
i.e., a partial function

γ : A×A ⇀ A

such that for all a, b, c ∈ A:

(i) if γ(a, b) is defined, then so is γ(b, a) and moreover γ(a, b) = γ(b, a); and
(ii) γ(a, γ(b, c)) is defined iff γ(γ(a, b), c) is defined, and if both are defined, then

γ(a, γ(b, c)) = γ(γ(a, b), c).

The operational semantics of ‖ is then given by the following transition rules:

x
a→ x′

x ‖ y a→ x′ ‖ y
y

a→ y′

x ‖ y a→ x ‖ y′
x

a→ x′, y
b→ y′, γ(a, b) = c

x ‖ y c→ x′ ‖ y′

By additional assumptions on γ we can obtain the different versions of parallel
composition that are encountered in the literature; we give three examples:

1. The assumption γ = ∅ expresses that there is no communication at all, i.e.,
the operation ‖ models pure interleaving.
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2. The assumption that γ(a, γ(b, c)) is always undefined expresses that there
is only handshaking communication.

3. We get the operation for parallel composition of CCS by assuming that
(a) A contains a special action τ ;
(b) there is a bijection .̄ on A − {τ} such that ¯̄a = a and ā �= a for all

a ∈ A− {τ};
(c) γ(a, ā) = γ(ā, a) = τ for all a ∈ A− {τ}, and γ is undefined otherwise.

Let BCCSP‖ be the extension of BCCSP with ‖. A ground complete axioma-
tization for BCCSP‖ modulo bisimulation equivalence is obtained by adding to
the axioms A1–3,6 in Table 1 the equations generated by the so-called Expansion
Law : for all t =

∑
i∈I aixi and u =

∑
j∈J bjyj :

t ‖ u ≈
∑
i∈I

ai (xi ‖ u) +
∑
j∈J

bj (t ‖ yj) +
∑
i∈I

∑
j∈J

γ(ai, bj)(xi ‖ yj) , (3)

with, for i ∈ I and j ∈ J , the summand γ(ai, bj)(ti ‖ uj) only present when
γ(ai, bj) is defined. The result was first established by Hennessy and Milner [29].

Since the Expansion Law generates infinitely many equations, the aforemen-
tioned ground complete axiomatization is infinite. If the set of actions A contains
at least one element a such that γ(a, a) is undefined, then a finite ground com-
plete axiomatization is not possible, as shown by Moller [37, 39]. He establishes
that there does not exist a finite set of BCCSP‖-equations, sound with respect
to bisimulation equivalence, from which all equations of the form

a0 ‖ ϕn ≈ aϕn +
n∑

i=1

aai (with ϕn =
n∑

i=1

ai, n ≥ 1) (4)

are equationally derivable. Moller carries out his proof in a pure interleaving
setting (i.e., γ = ∅), but it is easy to see that the assumption can be relaxed to:
γ(a, a) is undefined. First note that, with the relaxed requirement, the equations
in (4) are still sound with respect to bisimulation equivalence. Now, suppose there
does exist a finite basis E for BCCSP‖ modulo bisimulation equivalence. Then,
since the equations in (4) are sound with respect to bisimulation equivalence,
they are all derivable from E. Let E′ ⊆ E be the set of equations in E that are
involved in the derivations of the equations in (4). Then E′ consists of equations
in which no actions other than a occur (for if p and q are bisimulation equivalent
closed BCCSP‖-terms, then p and q contain the same actions). Obviously, the
equations in E′ are all sound for BCCSP‖ with A = {a} and γ = ∅, contradicting
Moller’s result.

Moller’s result shows that for a finite axiomatization of parallel composition
auxiliary operators are indispensable. Three such auxiliary operators have been
proposed in the literature: Bergstra and Klop introduced the left merge (‖ ) in
[8] and the communication merge (|) in [10], and Hennessy [28] introduced an
operation that we call Hennessy’s merge (|/). In the remainder of this section we
discuss these auxiliary operators in the context of BCCSP. In the next section
we examine the consequences of replacing action prefixing in BCCSP by a binary
operation for sequential composition.



360 L. Aceto et al.

4.1 Left Merge

First we consider the special case of axiomatizing parallel composition under
the pure interleaving assumption (γ = ∅). In that case, as can be seen from the
transition rules for ‖, a parallel composition p ‖ q either does a move p a→ p′

from its left component p and proceeds as p′ ‖ q, or it does a move q a→ q′ from
its right component q and proceeds as p ‖ q′. So, intuitively, it is an alternative
composition of two subprocesses. The auxiliary operation left merge is a device
for expressing these subprocesses in terms of p and q; its operational semantics
is given by the following transition rule:

x
a→ x′

x ‖ y
a→ x′ ‖ y

Using the left merge the intuition with respect to the behaviour of a parallel
composition can be captured in a single equation:

M x ‖ y ≈ x ‖ y + y ‖ x .

The axiom M and the axioms L1–3 in Table 2 allow the elimination of all oc-
currences of ‖ and ‖ from closed terms. (Bergstra and Klop [10] established
a similar result in the more general setting of ACP.) Hence, together with the
axioms of BCCSP in Table 1, those equations constitute a ground complete
axiomatization of BCCSP‖,�.

Table 2. The axioms for left merge

L1 0 ‖ x ≈ 0
L2 ax ‖ y ≈ a(x ‖ y)
L3 (x + y) ‖ z ≈ x ‖ z + y ‖ z
L4 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
L5 x ‖ 0 ≈ x

An ω-complete axiomatization is obtained by adding the axioms L4 and L5
in Table 2. Moller [37] proved this assuming that A is infinite. He used the
technique based on normal forms: first he showed that every term is provably
equal to a normal form, and then he argued that for distinct normal forms there
is a distinguishing environment. Moller used a distinguishing environment that
substitutes a special action (not already occurring in either normal form) for
every variable, which is only possible if there are infinitely many actions. Both
the proof that every term is provably equal to a normal form and the proof that
normal forms can be distinguished are quite involved. It turns out that Groote’s
inverted substitutions technique also applies (see [25]), and the application is in
fact quite straightforward.

The requirement that A is infinite seems essential for the application of
Groote’s technique. However, the authors have recently established that Moller’s
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proof can be adapted with a distinguishing environment that only requires one
action. So, if γ = ∅, then the axioms of BCCSP together with the axioms in
Table 2 constitute a basis for BCCSP‖,� modulo bisimulation equivalence, for
each non-empty set of actions A. Hence, if A is finite, then BCCSP‖,� modulo
bisimulation equivalence is finitely based.

4.2 Communication Merge

If p a→ p′ and q b→ q′ and γ(a, b) = c, then the parallel composition p ‖ q has
the extra option to perform the synchronization move p ‖ q c→ p′ ‖ q′. The com-
munication merge provides notation for this part of the behaviour of a parallel
composition; its operational semantics is given by the following transition rule:

x
a→ x′, y

b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′

Of course, if synchronization is possible, then the axiom M is not sound and
needs to be replaced by:

M’ x ‖ y ≈ (x ‖ y + y ‖ x) + x | y .

Using the axiom M’, the axioms L1–3 in Table 2 and the axioms C1–5 in Table 3
all occurrences of ‖, ‖ and | can be eliminated from closed terms. Hence, together
with the axioms of BCCSP in Table 1, those equations constitute a ground
complete axiomatization of BCCSP‖,�,|.

Let us now consider ω-completeness. Note that it critically depends on γ
whether certain equations between terms with variables are sound. For instance,
the equation

x | y ≈ 0

is sound if γ = ∅, but if there exist actions a and b such that γ(a, b) is defined,
then it is clearly not sound.

Groote [25] proved that if A is a commutative semigroup under γ (which
means that γ is an associative and commutative total function on A), and A is
moreover freely generated by some infinite subset, then the axioms of BCCSP
in Table 1 together with M’ and the axioms in Tables 2 and 3 constitute an ω-
complete axiomatization. (Of course, since γ is total, the axiom C3 is superfluous

Table 3. The axioms for communication merge

C1 0 | x ≈ 0
C2 ax | by ≈ c(x ‖ y) if γ(a, b) = c
C3 ax | by ≈ 0 if γ(a, b) is undefined
C4 (x + y) | z ≈ x | z + y | z
C5 x | y ≈ y | x
C6 (x | y) | z ≈ x | (y | z)
C7 x | (y ‖ z) ≈ (x | y) ‖ z
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in this axiomatization.) It is an open problem whether it is necessary to require
A to be generated by an infinite subset.

If γ satisfies the requirement that γ(a, γ(b, c)) is undefined for all a, b, c ∈ A
(i.e., there is only handshaking communication), then the axiom

H x | y | z ≈ 0

is sound. We conjecture that if A is non-empty and γ implements the CCS
communication mechanism, then the axioms M’ and H together with the axioms
in Tables 1, 2 and 3 constitute an ω-complete axiomatization.

4.3 Hennessy’s Merge

In [28], Hennessy proposed another auxiliary operator, using it in his axiom-
atizations of observation congruence and timed congruence. Hennessy’s merge,
as we call it, combines the behaviour of the left merge and the communication
merge. Its operational semantics is given by the following transition rules:

x
a→ x′

x |/ y a→ x′ ‖ y
x

a→ x′, y
b→ y′, γ(a, b) = c

x |/ y c→ x′ ‖ y′

Note that with Hennessy’s merge, parallel composition is definable with the
following equation:

x ‖ y ≈ x |/ y + y |/ x .

This may seem promising for the existence of a finite axiomatization of parallel
composition that only uses Hennessy’s merge as auxiliary operation. However,
as was already conjectured by Bergstra and Klop in [10], it turns out that the
operation itself cannot be finitely axiomatized. Assuming the CCS synchroniza-
tion mechanism (see the beginning of Section 4), the authors recently proved
in [3] that there does not exist a finite set of sound BCCSP‖,|/-equations from
which all equations of the form

a0 |/ ψn ≈ aψn +
n∑

i=0

τai (with ψn =
n∑

i=0

āai, n ≥ 0)

are equationally derivable.

4.4 Overview

In the table below we summarize the results and open problems discussed in this
section. A + in the first (respectively, second) column means that there exists
a finite ground complete (respectively, ω-complete) axiomatization, a – means
that such an axiomatization does not exist, and a ? means that it is unknown
whether such an axiomatization exists.

ground complete ω-complete
BCCSP‖ – –
BCCSP‖,� + +
BCCSP‖,�,| (handshaking) + ?
BCCSP‖,|/ – –
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Moller’s result shows that BCCSP‖ has no finite ground complete axiomati-
zation. With the two auxiliary binary operations ‖ and | of Bergstra and Klop
a finite ground complete axiomatization becomes possible. If one assumes pure
interleaving, then adding only ‖ suffices, and then there even exists a finite
ω-complete axiomatization. It remains an open problem whether it is possible
to axiomatize BCCSP‖ with arbitrary handshaking or the CCS synchronization
mechanism adding only one auxiliary binary operation.

5 Sequential Composition

In this section we discuss the consequences of having sequential composition in-
stead of action prefixing. We remove the constant 0 and the unary prefixes a
from BCCSP, and replace them by a binary operation · for sequential composi-
tion, treating the actions in A as constant symbols. Thus we get the signature
of BPA [10]. The transition rules for actions and sequential composition are as
follows:

a
a→ √ x

a→ x′

x · y a→ x′ · y
Note the special state

√
that we use to write the transition rules; it signals

successful termination. To make the rules work, we stipulate that
√ · x = x and√ ‖ x = x ‖ √ = x. We also require that bisimulations relate

√
only to

√
.

Table 4. The axioms for alternative and sequential composition

A1 x + y ≈ y + x
A2 x + (y + z) ≈ (x + y) + z
A3 x + x ≈ x
A4 (x + y) · z ≈ x · z + y · z
A5 (x · y) · z ≈ x · (y · z)

The axioms of BPA are obtained by taking the first three axioms of BCCSP,
adding that · distributes from the right over + and that · is associative. For the
sake of clarity, we list them all in Table 4. It is folklore that they constitute
a ground complete axiomatization of BPA. Moreover, the axiomatization is ω-
complete. As far as we know, this latter result does not explicitly appear in print,
but a proof can be extracted from the ω-completeness proof for PA [19] that we
discuss below.

In [38], Moller adapted his proof that BCCSP‖ is not finitely based to the
setting with sequential composition. The infinite family of equations he uses
to establish this result is obtained from the equations in (4) by the obvious
translation (replace action prefixes by actions and sequential compositions, and
omit all occurrences of 0).

The signature of PA combines that of BPA with ‖ and ‖ . Parallel composition
in PA stands for pure interleaving (i.e., γ = ∅), so the relation between ‖ and ‖
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Table 5. The axioms for merge and left merge

M1 x ‖ y ≈ x ‖ y + y ‖ x
M2 a ‖ x ≈ a · x
M3 a · x ‖ y ≈ a · (x ‖ y)
M4 (x + y) ‖ z ≈ x ‖ z + y ‖ z
M5 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
M6 (x · α) ‖ α ≈ (x ‖ α) · α

is expressed by the axiom M1 in Table 5. For a ground complete axiomatization
of PA it suffices to add the first four axioms in Table 5 to the axioms of BPA.
Fokkink and Luttik proved in [19] that if M5 and M6 are added too, then the
axiomatization is ω-complete. The α in M6 ranges over finite sums of distinct
actions. The equation that results by replacing both occurrences of ‖ in M6
with ‖ is also sound (it is an instructive exercise to derive it using M6 and
the other axioms). It is an example of a so-called mixed equation, equating a
parallel composition and a sequential composition. There is a deep theory of
mixed equations developed by Hirshfeld and Jerrum [30] for the benefit of their
proof that bisimulation equivalence is decidable for normed PA. The proof in [19]
that the presented axiomatization is ω-complete partly relies on their theory.

Incorporation of synchronization can be done by adding a communication
merge and replacing the axiom M1 by M’. It is not difficult to adapt the axioms
in Table 3 in such a way that all communication merges can be eliminated from
closed terms; thus a ground complete axiomatization can be obtained. Note that
this does require the addition of a special constant δ that will assume the rôle
of 0; it satisfies

δ · x ≈ δ
x + δ ≈ x .

There are no known ω-completeness results pertaining to the extension of BPA
with ‖, | and δ. It would again be necessary to make some assumptions about the
synchronization mechanism. If there is only handshaking communication, then
the equations

(· · · (((x1 | x2) · y1 ‖ z1) · y2 ‖ z2) · · · · yn ‖ zn) | x3 ≈ δ (n ≥ 0)

are sound. We conjecture that there does not exist a finite set of sound equations
from which they are all derivable.
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Abstract. Skew confluence was introduced as a characterization of non-
confluent term rewriting systems that had unique infinite normal forms
or Böhm like trees. This notion however is not expressive enough to
deal with all possible sources of non-confluence in the context of infinite
terms or terms extended with letrec. We present a new notion called ω-
skew confluence which constitutes a sufficient and necessary condition
for uniqueness. We also present a theory that can lift uniqueness results
from term rewriting systems to rewriting systems on terms with letrec.
We present our results in the setting of Abstract Böhm Semantics, which
is a generalization of Böhm like trees to abstract reduction systems.

1 Introduction

For term rewriting systems, it is well-known that uniqueness of normal forms
follows from confluence and that given termination, confluence and uniqueness
of normal forms are equivalent [27, 32]. Because of this, the normal form of a
term is a natural candidate for the semantics of a term. However, there are many
term rewriting systems in which there are interesting terms that do not have a
normal form. For example, according to the rewriting rule given below:

F x→ Cons(x,F x)

the term F 1 does not have a normal form. More precisely, it doesn’t have a
finite normal form. The term does have an infinite normal form: the infinite list
of ones.

There are several ways to define infinite normal forms on terms. An obvious
way to define them is by means of infinitary rewriting [23, 24, 32, 16, 26]. An-
other way is to use a definition similar to that of the Böhm Tree in the lambda
calculus [13] or Böhm like trees for term rewriting systems [25]. These infinite
normal forms are closely related to the notion of observational equivalence. A
detailed study of the relation between different notions of infinite normal form
and contextual or observational equivalence is given in [19].

An advantage of the Böhm Tree approach or Böhm semantics over infinitary
rewriting is that it allows one to deal in a simple manner with rewrite rules
that remove unused definitions (garbage collection). For example, consider the
rewrite rule

let x = M in N → N , if x does not occur free in N .
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To define Böhm semantics for a rewrite system containing this rule, it suffices
to rewrite to normal form with respect to this rule. It should also be possible
to deal with this in the setting of infinitary rewriting. The rule can be seen as a
rewrite rule in a combinatory reduction system and although the latest results
([26]) cover fully extended CRS’s only, it is known how to deal with non fully
extended rules such as the η-rule ([30]), so the only thing which is needed is a
combination of these two results.

We also prefer the Böhm Tree approach because in programming languages it
is very important if a result can be reached in finitely many steps or not. This is
immediately clear in the Böhm Tree approach and needs a compression lemma
in the infinitary rewriting case.

The notions of infinite normal form and Böhm semantics are related to the
notion of information content, also called instant semantics [36] or direct ap-
proximation [28, 34]. These notions determine a prefix of the term, which can
never be changed by reduction. If we rewrite term graphs represented as terms
with letrec then we can follow the same intuition, but we must be careful by how
we interpret the prefix. In the style of calculus used by Ariola and Klop, the
letrec bindings will remain at the top of the term and keep changing during the
entire reduction. Strictly speaking, the only stable prefix is Ω, our constant for
undefined. However, if we forget about the syntax and look at the picture of the
graph then we will see stable prefixes as usual. Effectively, we have to ignore the
letrec’s when we determine the stable prefix. The same situation occurs when
we consider a term rewriting system in which a strategy has been encoded as a
symbol which keeps traveling up and down the term. In that case the adminis-
trative symbol(s) have to be ignored. If we consider abstract rewriting systems
rather than term rewriting then the information content of a term is simply an
observation about that object. The combination of the information contents of
all reachable objects is what we refer to as the Abstract Böhm Semantics.

An important property is uniqueness (also referred to as soundness) of Böhm
semantics. This property is similar to uniqueness of normal forms and states
that every two convertible terms have the same Böhm semantics. Confluence
implies uniqueness of Böhm semantics. However, confluence is not necessary for
guaranteeing uniqueness. Skew confluence1, as introduced in [4, 14, 6], character-
izes rewrite systems that have unique Böhm semantics with respect to a notion
of direct approximant or notion of finite information content. The idea behind
skew confluence is that if there exists a computation that develops a certain in-
formation content, then any other computation can be extended to develop more
detailed information content. The theory of skew confluence works well for term
rewriting and certain forms of term graph rewriting. However, there are prob-
lems in applying the notion to other forms of term graph rewriting and infinitary
rewriting. These problems are due to the fact that the information content is
not really a single observation. It actually is a set of observations. For example,
when we observe a term we actually observe the finite prefixes of that term. If
the term is finite, the set of observations is finite and skew confluence works.

1 The name was suggested to us by Jan Willem Klop.
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If the term is infinite, the set of observations can become infinite and problems
arise with skew confluence. For example, consider the infinite term M below:

M ≡ (λf.f x (f x (f x (· · ·))))(I g) ,

where I ≡ λx.x. On one side, M rewrites to an infinite normal form in two steps:

(λf.f x (f x (f x (· · ·))))(I g) −−→
β

(λf.f x (f x (f x (· · ·))))g
−−→
β
g x (g x (g x (· · ·)))) .

This infinite normal form has itself as its information content. On the other
side, M rewrites to M1 which does not have a finite normalizing sequence:

M ≡ (λf.f x (f x (f x (· · ·))))(I g) −−→
β

I g x (I g x (I g x (· · ·))) ≡M1 .

Moreover, in each reduct of M1 only finitely many of the (I g) redexes have
been reduced, which means that each reduct has finite information content. For
example, the information content of the terms in the sequence

I g x (I g x (· · ·)) −−→
β
g x (I g x (I g x (· · ·))) −−→

β
g x (g x (I g x (I g x (· · ·)))) −−→

β
· · ·

is
Ω, g xΩ, g x (g xΩ), · · · .

Because the information content of any reduct of M1 is finite and the infor-
mation content of the infinite normal form is infinite, it is impossible that the
information content of any reduct ofM1 exceeds that of the normal form. Hence,
we do not have skew confluence.

To solve the problem, we introduce a new variant of skew confluence, called
ω-skew confluence, which is more suitable to the case of infinite information
content. The idea behind ω-skew confluence is that if an object (a) reduces to
two other objects (a1, a2) then for any observation that can be made about the
first reduct (a1) there exists a reduct (a′2) of the second reduct (a2) about which
the same observation can be made. We call this reduct the covering reduct. For
example, given any prefix of the infinite normal form of M , we can find a reduct
of M1 whose information content exceeds the given prefix.

Note that for every observation, we may have a different covering reduct (a′2).
If it is possible to find a reduct that covers all observations then we have skew con-
fluence. Such a reduct will always exist if the set of observations is finite, but as we
have seen in the example it might not exist if the set of observations is infinite.

Later in this paper, we will consider term graphs represented by cyclic terms or
terms with letrec. Cyclic graphs/terms can represent infinite terms. For example,
the infinite list of ones can be represented as the graph in Fig. 1. Thus, the infor-
mation content of a cyclic term can be infinite as well. Because examples of infinite
information content for term graphs are lengthy, we will delay them until Sect. 5.

Proving (ω-)skew confluence of a non-confluent rewrite system can be rather
tedious and non-confluence often complicates matters. In the case of cyclic cal-
culi the source of non-confluence is often a subset of the rewrite rules which deals
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Cons

1

Fig. 1. Finite representation of an infinite list of ones

with substitution and/or unwinding. The idea behind the lifting theory in [15] is
to partition the problem into a problem of the substitution rules and a problem
of the other rules. The intention is that only the part dealing with substitution
is non-confluent. Thus, one deals with non-confluence in a simplified setting and
in the more complicated setting one can use confluence. In this paper we present
an abstract version of this lifting theory. We start with an abstract rewrite sys-
tem (ARS for short) equipped with a notion of information content which yields
unique Abstract Böhm Semantics. We assume the ARS is equipped with a partial
order. (E.g. finite terms with the prefix order.) Next, we consider an extension of
the rewrite system where we use the ideal completion of the original set of objects
as the semantics of the objects in the extension. (E.g. term graphs using unwinding
of a term graph to an infinite term as semantics.) Finally, we define a construction
that lifts the notion of information content from the original ARS to the exten-
sion and provide conditions under which we have uniqueness of Abstract Böhm
Semantics with respect to the lifted notion of information content.

The notions and results about skew confluence are taken from [6]. The notion
of abstract Böhm semantics is a modification of the notions in [14, 6]. The results
about lifting are abstract versions of the results in [15]. The notion of ω-skew
confluence is introduced explicitly for the first time in this paper. It was implicitly
present in earlier work, but not identified as a notion.

The paper is organized as follows: We start in Sect. 2 with a few preliminaries.
The next section contains an informal description of the different notions of
confluence with both abstract examples and naive rewriting examples. In Sect.
4, we formalize skew and ω-skew confluence and the notion of abstract Böhm
semantics. In Sect. 5, we present a counterexample to confluence that arises
from unwinding a graph in different ways. We discuss how confluence modulo
bisimilarity provides a solution. We also explain the need of skew and ω-skew
confluence to cope with the loss of confluence when the substitution rules are
extended with other rewrite rules. In Sect. 6, we use these notions to show the
consistency of the call-by-name and call-by-need cyclic calculi. In Sect. 7, we
present an abstract version of the lifting theory. We conclude in Sect. 8.

2 Preliminaries

We will briefly state a few definitions and introduce our notation.

Definition 1. A partial order is a pair (S,≤), where ≤ is a transitive, reflexive
and anti-symmetric binary relation over S. An upper bound of a set S′ ⊆ S is
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an element s ∈ S, such that ∀s′ ∈ S′ : s′ ≤ s. An element s ∈ S is the least upper
bound of S′ (denoted as lubS′) if and only if s is an upper bound and s ≤ s′

for all upper bounds s′ of S′. A non-empty set D ⊆ S is a directed set if for
every finite subset D′ of D there exists d ∈ D such that d is an upper bound of
D′. A partial order (S,≤) is complete if there exists a least element and every
directed subset has a least upper bound. A complete partial order is referred to
as a CPO. A set D ⊆ S is downward closed if ∀d ∈ S, d′ ∈ D : d ≤ d′ ⇒ d ∈ D.

A non-empty set I ⊆ S is an ideal if I is downward closed and directed. The
set of all ideals over S is denoted by I(S). The set of all ideals over S ordered
by inclusion (I(S),⊆) is called the ideal completion of S, denoted I(S,≤). The
downward closure of S′ ⊆ S is given by

↓ S′ = {s ∈ S | ∃s′ ∈ S′ : s ≤ s′} .

Definition 2. Given a CPO (A,≤). An element a ∈ A is finite if for every
directed set D ⊆ A, such that a ≤ lubD, we have that there exists d ∈ D, such
that a ≤ d. The set of all finite elements in A is denoted by F(A). The CPO is
algebraic if ∀a ∈ A : a = lub{a′ ∈ F(A) | a′ ≤ a}.

In other words, in an algebraic CPO, each element is a directed limit of its
“finite” approximations. For an extensive treatment of the use of partial orders
in semantics see [21].

Proposition 1. If A ≡ (A,≤) is a partial order with a least element then the
ideal completion AI ≡ (I(A),⊆) is an algebraic complete partial order.

Definition 3. An ARS is a structure (A,→), where A is a set of objects and
→⊆ A×A is a relation, called the reduction relation.
The transitive, reflexive closure of → is denoted −→→.
The equivalence relation generated by →, also called conversion, is denoted by
←∗−→ rather than the usual =, to avoid overloading of the symbol =.

In the lambda calculus, the compatible closure of a relation R is the least
relation such that M R N ⇒ C[M ] R C[N ] for any context C (see [13]). The
constant Ω stands for an undefined term. By replacing an Ω with a larger term
you get a “more defined term”.

Definition 4. Let ΛΩ be the set of lambda calculus terms extended with the
constant Ω. We define the order ≤Ω as the transitive, reflexive and compatible
closure of

Ω ≤M ,

where M ∈ ΛΩ.

Note that (ΛΩ,≤Ω) is a partial order with a least element (Ω). Hence, its
ideal completion is an algebraic CPO. Moreover, the ideal completion is one of
the representation of infinite lambda terms.
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3 Confluence, Skew Confluence and ω-Skew Confluence

In the following, we give an informal description of the properties of skew and
ω-skew confluence through a series of simple examples. To better understand
these new properties, we review the well-established notion of confluence and a
version of confluence modulo. We start by defining the set of objects A as the
set consisting of the bottom element ⊥, two copies of the set of natural numbers
and infinity:

A = {⊥} ∪ IN ∪ {n | n ∈ IN} ∪ {∞} .
By using possibly underlined numbers, we have both a natural equivalence

and a natural order on our set of objects. Moreover, the number functions as the
information content as well. For example, the numbers 2 and 2 have the same
information content: 2.

For each abstract example, we will give a matching example in term rewriting
or infinitary term rewriting. These term rewriting examples are derived from
graph rewriting examples given in Sect. 5.

3.1 Confluence

Confluence is an important property since it guarantees the consistency of the
rewriting theory. If rewriting formalizes execution, then confluence guarantees
that execution of a program has a unique result. In other words, diverging com-
putations with the same starting point can always converge on the same inter-
mediate result. We define the reduction relation −→ on A as follows:

⊥−→ 0, ⊥−→ 0, n −→ n+ 1, n −→ n+ 1, 2n −→ 2n, 2n+ 1 −→ 2n+ 1 .

That is, we rewrite each number in IN and its copy to its successor. Moreover,
in addition to replacing ⊥ with 0 and 0 we have rules to relate the numbers
and their copies. We then have that (A,−→) is confluent, which means that di-
vergent computations can always be brought together, as shown in the following
commuting diagram:

⊥ ��

���
��

��
0 �� 1 �� 2 �� 3 ��

0 ��

��

1 ��
��

2 ��

��

3 ��
��

A matching concrete example can be found in term rewriting. The reduction
graph of the term A in the TRS:

A→B
A→C
C→B
B→F (C)
C→F (B)
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is:
A ��

���
��

��
B �� F (C) �� F (F (B)) �� F (F (F (C))) ��

C ��

��

F (B) ��
��

F (F (C)) ��

��

F (F (F (B))) ��
��

3.2 Confluence Modulo

Confluence could fail for reasons that do not impact the end result. For example,
if you optimize computations in different ways, you might not get exactly the
same intermediate result, but as long as you perform a single unit of work in
a single step you should get equivalent results. Similarly, in modeling execution
one often reasons about a program modulo the names of bound variables. To
continue with our example, we define the reduction relation −→ on A as follows:

⊥−→ 0, ⊥−→ 0, n −→ n+ 1, n −→ n+ 1 .

Unlike before, there are no reduction rules connecting the two copies of IN. This
causes confluence to fail. To cope with the situation, one defines an equivalence
(i.e., reflexive, symmetric and transitive) relation ∼ on A and then shows that
divergent reductions can always reach equivalent terms, as opposed to the same
term. This is called confluence modulo ∼. For our running example, we define
∼ on A as follows:

a ∼ a′, if |a| = |a′| ,

where |.| : A→ IN is defined as:

| ⊥ | = 0, |n| = n+ 1, |n| = n+ 1 .

In other words, the difference between the two different copies of n is not es-
sential; we can regard it as “syntactic noise”. We then obtain that (A,−→) is
confluent modulo ∼. Pictorially:

⊥ ��

���
��

��
0 �� 1 �� 2 �� 3 ��

0 ��
∼

1 ��
∼

2 ��
∼

3 ��
∼

In the context of term graph rewriting, an interesting notion of confluence
modulo is confluence modulo bisimilarity [11].

A matching concrete example can be found in term rewriting. The reduction
graph of the term A in the TRS:

A → B1
A → B2
B1 → F (B1)
B2 → F (B2)
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is:
A ��

���
��

��
B1 �� F (B1) �� F (F (B1)) �� F (F (F (B1))) ��

B2 ��

∼

F (B2) ��

∼

F (F (B2)) ��

∼

F (F (F (B2))) ��

∼

where ∼ is the equivalence relation generated by B1 ∼ B2.

3.3 Skew Confluence

The goal of optimization is of course to do more than one unit of work in a single
step. But if you do two units of work in a single step then you can easily get an
out-of-sync phenomenon. For example, define the reduction relation −→ on A as
follows:

⊥−→ 0, ⊥−→ 1, n −→ n+ 2, n −→ n+ 2 .

We have that (A,−→) is neither confluent nor confluent modulo ∼. The situ-
ation is depicted below:

⊥

���
��

��
�

�� 1 �� 3 �� 5

0 �� 2 �� 4 �� 6

On the top reduction we will always obtain an odd number and on the bottom
we will always obtain an even number. However, notice that for every number
n reached with the top reduction one can always reach a number greater than
n with the bottom reduction, and vice-versa. Intuitively, it seems that both
reductions converge to the same result. That result is infinity and we call it the
abstract Böhm semantics. In this example, the uniqueness of the abstract Böhm
semantics is guaranteed by the notion of skew confluence. Instead of requiring
that divergent computations lead to the same or equivalent term, skew confluence
requires that divergent computations reach a result which is better. In other
words, instead of reasoning up to an equivalence relation we reason up to a
quasi-order (i.e., a reflexive and transitive relation). We define a quasi order /
on A as follows:

a / a′, if |a| ≤ |a′| ,

where |.| : A→ IN is defined as before. We say that a′ is better than a. We then
have that (A,−→) is skew confluent:

⊥

���
��

��
�

�� 1 ��
�

3 ��
�

5
�

�� 7

0 ��
�

2 ��
�

4 ��
�

6
�

A matching concrete example can be found in term rewriting. The reduction
graph of the term A in the TRS:
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A → B
A → F (B)
B → F (F (B))

is:

A

		�
��
��

�� F (B) ��
�

F (F (F (B))) ��
�

F (F (F (F (F (B)))))

�

B ��
�

F (F (B)) ��
�

F (F (F (F (B))))

�

where s / t if t begins with at least as many F symbols as s.

3.4 ω-Skew-Confluence

Another possible outcome of optimization might be that you are suddenly able
to do infinitely many units of work in a single step or the opposite where you
throw away the possibility of doing more than finitely many units of work in a
single step. Skew confluence is not expressive enough to deal with this situation.
For example, define the reduction relation −→ on A as follows:

⊥ −→∞,⊥ −→ 0, n −→ n+ 1 .

For this ARS skew confluence fails: ⊥ −→→ ∞ and ⊥ −→→ 60 and there does not
exist an n, such that 60 −→→ n and ∞ / n. Pictorially:

∞

2

1



�����

0

��������

⊥

��

�������������

However, for each approximation m of ∞, we have that 60 −→→ m′ such that
m / m′. We say that (A,→) is ω-skew confluent.

A matching concrete example can be found in infinitary rewriting. The re-
duction graph of the term A in the infinitary TRS:

A → F (G(F (G(· · ·))))
A → F (F (G(F (G(· · ·)))))
F (F (x)) → F (G(x))
G(G(x)) → G(F (x))

is (redexes are underlined):
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F (G(F (G(· · ·))))

F (G(F (F (G(F (G(· · ·)))))))

F (G(G(F (G(F (· · ·))))))
������

F (F (G(F (G(· · ·)))))

����������

A

��

������������������

4 Skew and ω-Skew Confluence and Abstract Böhm
Semantics

In this section we develop the theory of Abstract Böhm Semantics, which is a
generalization of the theory of Böhm trees to abstract reduction systems. This
generalization is based on the Böhm tree definition of Lévy [28].

4.1 Abstract Böhm Semantics

Seen from an abstract point of view, the first step in the Böhm tree construction
of Lévy is to define a notion of information content. Given an ARS (A,→) and
a partial order (A,≤), we would need to define a monotonic function ω : A →
A, such that ω(a) ≤ a. Ketema followed this approach in his paper on Böhm
like trees [25], but for us this doesn’t work because we also want to compute
Böhm semantics for terms with letrec. The problem is that terms with letrec
can represent infinite terms. Hence, it is possible that the information content
of a term with letrec is an infinite term. This is why one wants the domain of
the rewrite system to be different from the domain of the information content.

The difference between finite and infinite information content is important.
This difference needs to be reflected in our models. An obvious choice is to model
finite objects as a partial order and infinite objects as ideals over finite objects.
This however forces us to distinguish between finite and infinite objects, which
makes for a cluttered presentation. Hence, we have chosen to use an algebraic
complete partial order. In an algebraic CPO we can distinguish between finite
and infinite elements as a property on the elements. Moreover, the infinite ele-
ments are completely defined by their sets of finite approximations.

Thus, we get the following abstraction of a rewrite systems with information
content:

Definition 5. A structure A ≡ ((A,→), ω, (B,≤)) is an ARS with information
content (ARSI) if (A,→) is an ARS, (B,≤) is an algebraic complete partial
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order and ω : A→ B is monotonic with respect to →. We say that A has finite
information content if for every a ∈ A we have that ω(a) is finite.

Given an ARSI ((A,→), ω, (B,≤)) we refer to ω(a) as the information content
of a or as the direct approximation of a. The function ω induces a quasi order
≤ω on A, defined by a ≤ω a

′ if ω(a) ≤ ω(a′).
In the introduction we viewed the information content of an object as a set

of observations to get some intuition. This intuition is consistent with our for-
malization of ARSI due to the fact that the power set of any set, ordered by
inclusion is an algebraic CPO. Moreover, the finite elements in this CPO are the
finite subsets of the original set.

The second step in the Böhm tree construction of Lévy is to define the actual
tree or in our case the abstract Böhm semantics. The abstract Böhm semantics
of an element a is supposed to be the set of all information that can be found
in reducts of that element. Following the definition of Lévy we would formalize
that set as:

↓ {ω(b) | a −→→ b} .
The set {ω(b) | a −→→ b} is called the reachable information of a. Lévy already
found that it is necessary to take its downward closure because otherwise there
would be gaps in the set. For example, the reachable information content of

(λx.f (I y) (xx)) (λx.f (I y) (xx))

is
{Ω, f Ω Ω, f y Ω, f Ω (f Ω Ω), · · ·} .

But when we rewrite the two I y redexes then the reachable information content
of the result is

{Ω, f y Ω, f y (f y Ω), · · ·} .
These sets are different, but their downward closures are the same.

In our case this is not enough. As we have seen in the introduction and Sect.
4, it is possible that a term allows two sequences: one sequence in which an
infinite information content (e.g. ∞) is reached in a few steps and one sequence
in which the information content is built up in finite pieces (e.g. 1, 2, 3, · · ·). The
set of finite pieces doesn’t contain the infinite result so the downward closures
will not be the same. To flatten this difference, we introduce the notion of finite
element downward closure:

Definition 6. Given a complete partial order (A,≤), we define

↓F s = {a ∈ F(A) | a ≤ s} , ∀s ∈ A ;
↓F S = ∪s∈S ↓F (s) , ∀S ⊆ A .

We refer to ↓F S as the finite element downward closure of S and to ↓F s as
the set of finite approximations of s. For example:

↓F {∞} =↓F {0, 2, 4, · · ·} = {0, 1, 2, · · ·} .
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Note that the finite element downward closure not only fills the gaps between
the even numbers like the downward closure would, but also breaks ∞ up into
it’s finite approximations. Thus, our definition of abstract Böhm semantics is:

Definition 7. Given an ARSI ((A,→), ω, (B,≤)). The Abstract Böhm Seman-
tics ABS(a) of an element a ∈ A is defined by

ABS(a) =↓F {ω(a′) | a −→→ a′} .

The ARSI has unique abstract Böhm semantics if

a←∗−→ a′ ⇒ ABS(a) = ABS(a′) .

In the running text, we will often omit the word abstract and just talk about
Böhm semantics. As an example of an ARSI, let us define an ARSI whose Böhm
semantics is the Böhm tree from the lambda calculus.

Example 1. We consider the ARS (Λ,−−→
β

). The function ωBT from lambda terms
to possibly infinite lambda terms is defined recursively as follows:

ωBT(M) =
{
λx1 · · ·xn.x ωBT(M1) · · ·ωBT(Mk) , if M ≡ λx1 · · ·xn.xM1 · · ·Mk

Ω , otherwise

This function is a notion of information content. That is,

((Λ,−−→
β

), ωBT, I(ΛΩ,≤Ω))

is an ARSI. Moreover, for all lambda terms M , we have

BT(M) = ABSωBT(M) ,

where BT(M) stands for the Böhm Tree of M .

The notion of uniqueness for abstract Böhm semantics for ARSI’s is related
to uniqueness of normal forms in ARS’s in the following sense. Consider an ARS
(A,→). We can build an order by adding a bottom element, leaving the original
elements incomparable. Next, we define

ω(a) =
{
a , if a is a normal form
⊥ , otherwise

This gives us an ARSI for any ARS. Moreover, the ARSI has unique abstract
Böhm semantics if and only if the ARS has unique normal forms.

Next, we consider sufficient and necessary conditions for uniqueness.

4.2 Skew Confluence

Skew confluence is a sufficient condition for uniqueness. To define skew confluence
we need a way of telling if an object is better than another object. We formalize
this by considering an ARS and a quasi order.
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Definition 8 (skew confluence). Given an ARS A ≡ (A,→) and a quasi
order (A,/). The ARS A is skew confluent with respect to / if

∀a1, a2, a3 ∈ A : a1 −→→ a2 ∧ a1 −→→ a3 ⇒ ∃a4 : a2 / a4 ∧ a3 −→→ a4 .

The commutative diagram for skew confluence is

a1

����

�� �� a3

�����
�
�

a2 �
��� a4

Confluence implies skew confluence. More precisely, if the reduction relation is
increasing in a quasi order then confluence implies skew confluence with respect
to that quasi order:

Proposition 2. Given an ARS A ≡ (A,→) and a quasi order (A,/). If →⊆/
and A is confluent then A is skew confluent with respect to /.

The definitions of confluence and skew confluence are easily extended to ARSI’s.
We say that an ARSI ((A,→), ω, (B,≤)) is confluent, if (A,→) is confluent and we
say that it is skew confluent if (A,→) is skew confluent with respect to ≤ω.

4.3 ω-Skew Confluence

In [6], we defined abstract Böhm semantics (called infinite normal forms in that
paper) in a setting where information content was always finite. In that setting,
skew confluence is a necessary and sufficient condition for uniqueness of abstract
Böhm semantics. In the current setting, it still is a sufficient condition, but it
is not necessary. We will now define ω-skew confluence which is a necessary and
sufficient condition in the presence of infinite information content. Later, we will
show that for finite information content the two properties coincide. Hence, the
result in this paper can be seen as an extension of the earlier result.

The definition of ω-skew confluence follows the intuition in the introduction
based on observations. An ARSI is ω-skew confluent if given two diverging com-
putations and an observation about the first result, we can find a reduct of the
second result which allows the same observation. To make that formal, an ob-
servation about an object is defined as a finite element less than or equal to the
information content of the object. This results in the following definition:

Definition 9 (ω-skew confluence). The ARSI A ≡ ((A,→), ω, (B,≤)) is ω-
skew confluent if

∀a1, a2, a3 ∈ A, d1 ∈ F(B) :
a1 −→→ a2 ∧ a1 −→→ a3 ∧ d1 ≤ ω(a2) ⇒ ∃a4 ∈ A : a3 −→→ a4 ∧ d1 ≤ ω(a4) .

To be able to draw diagrams about ω-skew confluence, we introduce two
arrows: −−→ω and F−−→ω . The former computes ω, the latter selects a finite element
less than the information content:
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Definition 10. Given an ARSI ((A,→), ω, (B,≤)), we define the relations −−→
ω
⊆

A×B and F−−→ω ⊆ A×F(B) as

∀a ∈ A : a −−→ω ω(a) ;
∀a ∈ A ∀b ∈↓F (ω(a)) : a F−−→ω b .

Based on this definition, we can draw diagrams of skew confluence (SC) and
ω-skew confluence (ωSC):

a1

����

�� �� a3

�����
�
�

a2

ω
��

a4

ω
���
�
�

ω(a2) ≤
����� ω(a4)

a1

����

�� �� a3

�����
�
�

a2

ω F
��

a4

ω
���
�
�

d1 ≤
����� ω(a4)

SC ωSC

Unfortunately, the diagram of ω-skew confluence is not suitable for diagram
proofs using tiling. The reason is that the assumption on the left-hand side
involves selecting a finite element and the conclusion on the right-hand side might
not yield such an element. Hence, we include the following characterization.

Proposition 3. For any ARSI ((A,→), ω, (B,≤)) the following diagram equiv-
alence holds:

����

�� ��

�����
�
�

ω F
��

ω

���
�
�

≤
�����

iff ����

�� ��

�����
�
�

ω F
��

ω F
���
�
�

≡
�����

iff ����

�� ��

�����
�
�

ω F
��

ω F
���
�
�

≤
�����

(i) (ii) (iii)

(1)

Proof. (i)⇒(iii) Assume that d ≤ ω(a) for some finite d ∈ B and some a ∈ A.
Because the CPO is algebraic, we have ω(a) = lub ↓F (ω(a)). Because d
is finite, there exists d′ ∈↓F (ω(a)) such that d ≤ d′. For that d′, we have
a F−−→ω d′ by definition.

(iii)⇒(ii) If d ≤ d′ and a F−−→ω d′ then a F−−→ω d must hold as well.

(ii)⇒(i) If a F−−→ω d then d ≤ ω(a) because ω(a) = lub ↓F (ω(a)).

Next, we prove that ω-skew confluence is a necessary and sufficient condition
for uniqueness of abstract Böhm semantics.

Theorem 1. Given an ARSI A ≡ ((A,→), ω, (B,≤)). The ARSI A has unique
abstract Böhm semantics iff A is ω-skew confluent.
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Proof. From the arrow notation for ω, we can also derive the following equation:

ABS(a) = {b | a −→→ F−−→ω b} ; (2)

⇒ Assume that A has unique abstract Böhm semantics. Let a1, a2, a3 ∈ A and
d ∈ B be given such that a1 −→→ a2, a1 −→→ a3 and a2

F−−→ω d.

In particular, we have a1 −→→ F−−→ω d, so because of Eq. 2, we have that d ∈
ABS(a1). Because of the uniqueness, we have that ABS(a1) = ABS(a3), so
d ∈ ABS(a3). Again by Eq. 2, it follows that a3 −→→ F−−→ω d. This proves diagram
1.(ii) and hence by the previous proposition ω-skew confluence.

⇐ Assume that A is ω-skew confluent. Let a1, a2 ∈ A be given. It suffices to
show that if a1 −→ a2 then ABS(a1) = ABS(a2).
From the definition of abstract Böhm semantics it is obvious that ABS(a2) ⊆
ABS(a1), so the part we need to show is ABS(a1) ⊆ ABS(a2). Let d ∈

ABS(a1) be given. Then by Eq. 2, it follows that a1 −→→ F−−→ω d. Because of
ω-skew confluence and the previous proposition, diagram 1.(ii) holds. From
this diagram it follows that a2 −→→ F−−→ω d and hence by Eq. 2 d ∈ ABS(a2).

The definition of ω-skew confluence allows us to select a different matching
reduct for every observation that must be matched. If we can match every ob-
servation with the same reduct then this is called uniform ω-skew confluence.
This is however not a new property because it is equivalent to skew confluence:

Proposition 4. Given an ARSI A ≡ ((A,→), ω, (B,≤)). We say that A is
uniformly ω-skew confluent if

∀a1, a2, a3 ∈ A ∃a4 ∈ A ∀d1 ∈ F(B) :
a1 −→→ a2 ∧ a1 −→→ a3 ∧ d1 ≤ ω(a2) ⇒ a3 −→→ a4 ∧ d1 ≤ ω(a4) .

We have that A is uniformly ω-skew confluent iff A is skew confluent.

Proof. Follows from the claim that

∀a, a′ ∈ A : (∀d ∈ F(B) : d ≤ ω(a) ⇒ d ≤ ω(a′)) ⇔ a ≤ω a
′ .

The claim follows from the fact that ω(a) = lub ↓F (ω(a)) and ω(a′) = lub ↓F
(ω(a′)) because (B,≤) is an algebraic CPO.

Hence, it is not surprising that we can prove skew confluence implies ω-skew
confluence. We also prove that in the case of finite information content the two
notions are equivalent.

Proposition 5. Given an ARSI A ≡ ((A,→), ω, (B,≤)).

(i) If A is skew confluent then A is ω-skew confluent.
(ii) If A is ω-skew confluent and A has finite information content then A is skew

confluent.
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Proof. (i) By the previous proposition skew confluence implies uniform ω-skew
confluence. It is obvious that uniform ω-skew confluence implies ω-skew con-
fluence.

(ii) Because the information content is finite, we have

∀a ∈ A : a F−−→ω ω(a)

From this fact and ω-skew confluence, skew confluence follows easily.

This completes the presentation of the basic theory of abstract Böhm seman-
tics. We continue with an example of an application area: term graph rewriting
based on terms with letrec.

5 Lack of Confluence in Term Graph Rewriting

The need for a less restrictive notion of confluence arises in practice if one wants
to provide a more accurate foundation of programming languages. To reason
about either execution or optimizations one has to deal with the notion of sharing
and cyclic structures [12, 31, 2]. As pointed out by Wadsworth [35], these concerns
can be accommodated by considering term graph rewriting as opposed to term
(or tree) rewriting.

As pointed out in [9, 10], term graphs can be nicely represented as terms with
the letrec 2 construct:

〈M | x1 = M1, · · · , xn = Mn〉 .

We sometimes refer to the variables x1, · · · , xn as the recursion variables, to the
equations and to M as the internal and external part of the letrec construct,
respectively. Because of the capability of the letrec to represent graphs with
cycles, we refer to terms with letrec’s as cyclic terms.

The cyclic structure depicted in Fig. 1 is represented as

〈x | x = Cons(1, x)〉 .

The advantage of this representation is that one can apply existing term
rewrite rules directly to the cyclic term. However, the old rewrite rules are not
enough: we must also use rules that modify the letrec structure to make potential
redexes visible [9, 10]. For example, with respect to the rule

F(1) → G(1)

the terms:
〈F(x) | x = 1〉 and 〈x | x = F(y), y = 1〉

2 We use the Ariola/Klop notation for letrec (〈M | E〉 ≡ letrec E in M).
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are in normal form. Whereas, their corresponding graphs contain a redex. To
cope with this situation, the following two rules for external and internal substi-
tution are introduced:

〈C[x] | x = M,E〉 −−→es 〈C[M ] | x = M,E〉
〈M | x = C[y], y = N,E〉 −−→is 〈M | x = C[N ], y = N,E〉

where C[x] stands for a one-hole context filled with variable x, and E for a
collection of unordered equations. According to these rules we have:

〈F(x) | x = 1〉 −−→es 〈F(1) | x = 1〉
〈x | x = F(y), y = 1〉 −−→is 〈x | x = F(1), y = 1〉

Both right-hand sides contain the redex F(1). One more substitution rule is
needed. Consider the following rule:

F(F(x)) → G(x)

and the term
〈x | x = F(x)〉 .

To make the redex explicit in the internal part, one needs a substitution
applied to the equation itself. We call it cyclic substitution:

〈M | x = C[x], E〉 −−→cs 〈M | x = C[C[x]], E〉

We have:

〈x | x = F(x)〉 −−→cs 〈x | x = F(F(x))〉 −→ 〈x | x = G(x)〉 .

The problem with these three substitution rules is that confluence is lost. The
classical example is:

M
≡

〈x | x = F(x)〉 es
��

cs
��

〈F(x) | x = F(x)〉 cs
�� 〈F(x) | x = F(F(x))〉

≡
Mo

〈x | x = F(F(x))〉
≡
Me

The cyclic terms Mo and Me do not have a common reduct because any reduct
of Mo will contain an odd number of F symbols and any reduct of Me an even
number.

The fact that the three substitution rules aren’t confluent is not in itself a
big problem. Not only are these rewrite rules confluent modulo bisimulation,
but it is also possible to add rewrite rules to regain confluence. Even if we
add an orthogonal TRS we can keep the rewrite systems confluent. (See [29]).
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However, if we consider combinatory reduction systems or non-orthogonal TRS’s
then interaction between the rewrite rules and substitution rules becomes a real
problem. For example, consider the TRS

F(F(x)) → F(G(x))
G(G(x)) → G(F(x)) (3)

This TRS is confluent and terminating, but not orthogonal. When we apply
these rewrite rules to Mo and Me we get:

Me → 〈x | x = F(G(x))〉 ≡M ′
e ;

Mo → 〈F(x) | x = F(G(x))〉 ≡M ′
o .

As before, a count of the symbols leads to the conclusion that these M ′
e and

M ′
o do not have a common reduct.
All reducts of M ′

e will be of the form

〈(FG)n(x) | x = (FG)m(x)〉 ,

where (FG)0(x) = x and (FG)n+1(x) = F(G((FG)n(x))). Note that a term of
this form has exactly the same number of F’s and G’s and that there it will not
contain a redex of the TRS rules from Eq. 3.

All reducts of M ′
o will be of the form

〈(FG)n(G((FG)k(x))) | x = (FG)m(x)〉 or 〈(FG)n(F((FG)k(x))) | x = (FG)m(x)〉 .

Note that a term of one of these forms has one more F than G’s or one more
G than F’s. More importantly, a term of these forms always has a redex with
respect to the TRS rules.

The fundamental difference between the reduction sequences from M to M ′
e

and fromM toM ′
o is that in the first sequence the “correct” redex is exposed and

contracted. In the second sequence the “wrong” redex is exposed and contracted.
The result of that is that a redex remains, which will create a new redex whenever
it is contracted. Because a new redex is created in every step, it is impossible to
reduce M ′

0 to normal form in finitely many steps.
We will now define a notion of information content for this TRS and show

that the resulting ARSI is ω-skew confluent. The function ω from cyclic terms
to infinite terms is defined as follows:

ω(M) = lub{N |M −−→ω→ N and N is a normal form} , (4)

where −−→ω→ is defined as follows:

〈C[x] | x = M,E〉 −−→ω 〈C[M ] | x = M,E〉
F(F(x)) −−→

ω
Ω

G(G(x)) −−→ω Ω
〈M | x1 = M1, · · · , xn = Mn〉−−→ω M [x1 := Ω, · · · , xn := Ω]
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For example:
M ′

o ≡ 〈F(x) | x = F(G(x))〉
−−→ω 〈F(F(G(x))) | x = F(G(x))〉
−−→ω 〈Ω | x = F(G(x))〉
−−→
ω
Ω .

Because this normal form is unique, we have that

ω(M ′
o) = lub{Ω} = Ω .

The normal form of M ′
e with respect to −−→

ω
is not unique. For every n we have

M ′
e ≡ 〈x | x = F(G(x))〉 −−→ω→ (FG)n(Ω) .

This means that

ω(M ′
e) = lub{(FG)n(Ω) | n ∈ IN} = (FG)ω .

There does not exist any reduct of M ′
o, whose information content is (FG)ω so

the rewrite system is not skew confluent. However, for every n, we can find a
reduct of M ′

o, such that the information content of the reduct is (FG)n(Ω):

Mn = 〈(FG)n(F(x)) | x = F(G(x))〉 .

These reducts show that the example is ω-skew confluent.

6 Cyclic Lambda Calculi

In this section we consider extensions of the call-by-name lambda calculus and
the call-by-need lambda calculus [8, 7] with cyclic structures. These extensions
contain a large number of rules. This is in order to be able to address the
correctness of compilation by transformation [18]. But before we give the calculi
let us start with the basic principles.

We are interested in cyclic lambda terms. That is, lambda terms extended
with letrec.

Definition 11. The set of cyclic lambda terms Λ◦ is defined as follows:

Terms M ::= x | λx.M | M N | 〈M | E〉 ;
Equations E ::= x1 = M1, . . . , xn = Mn .

where the variables x1, · · · , xn, are distinct from each other and the order of the
equations does not matter. Terms are taken up to α-conversion.

Because it is not really important where the definitions are placed, we base our
lambda calculi on a rewrite system that brings any cyclic term into a standard
form. This standard form is:

ST ::= x | 〈x | SE〉 ;
SE ::= x = x | x = λy.ST | x = x1 x2 | SE, SE .
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Table 1. A rewrite system for normalizing the representation of a graph

Variable substitution:
〈M | x = y, E〉 −−→vs 〈M [x := y] | E[x := y]〉 x �≡ y

Lift:
〈M | E〉 N −−−→lift 〈M N | E〉
M 〈N | E〉 −−−→lift 〈M N | E〉
λx.〈M | E1, E2〉 −−−→lift 〈λx.〈M | E1〉 | E2〉 C1
Merge:
〈〈M | E1〉 | E2〉 −−−→em 〈M | E1, E2〉
〈M | x = 〈N | E1〉, E2〉 −−→im 〈M | x = N, E1, E2〉
Garbage collection:
〈M | E1, E2〉 −−→gc 〈M | E1〉 C2
〈M |〉 −−→gc M

Naming:
Csafe[λy.M ] −−−−−→name Csafe[〈x | x = λy.M〉] C3
Csafe[M N ] −−−−−→name Csafe[〈x | x = M N ]〉 C3

C1: E2 is non-empty and neither x nor a variable defined in E1 occurs free in E2;
C2: E2 is non-empty and none of the variables defined in E2 occur free in E1 or M ;
C3: x is a fresh variable and the rule is not closed under contexts;

Csafe ::= C′ | C[λx.C′] | C[C′ M ] | C[M C′] ;
C′ ::= � | 〈C′ | E〉 .

That is, a standard term is either a variable or a letrec with a non-empty list of
standard definitions. A standard definition can be a black hole definition (x = x),
a function definition (x = λy.ST ) or an application definition (x = x1 x2). In
Table 1 we present a confluent and terminating rewrite system for computing
standard representations. Apart from the usual conditions on lifting and garbage
collection it contains a special condition on the naming rules. Unlike the other
rules which can be applied in any context these rules are only applicable in safe
contexts. This restriction is necessary to guarantee termination.

Representing the same graph is one equivalence. Another equivalence is having
the same unwinding. The unwinding of a cyclic term is the unique (infinite) term
represented by the cyclic term. The substitution rules compute the unwinding
in the sense that we can define a notion of information content such that the
unwinding of a cyclic term is the Böhm semantics of the term:

ωes(x) = x
ωes(M1M2) = ωes(M1)ωes(M2)
ωes(λx.M) = λx.ωes(M)
ωes(〈M | x1 = M1, · · · , xn = Mn〉) = ωes(M)[x1 := Ω, · · · , xn := Ω]

We have used the label es because external substitution is actually the only rule
needed to compute the unwinding.
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Definition 12. The unwinding of a cyclic term M , denoted [[M ]], is the Böhm
semantics of M with respect to the ARSI ((Λ◦,−−→es ), ωes, I(ΛΩ,≤Ω)):

[[M ]] = ABSes(M) .

What we want is a set of rewrite rules such that terms with the same un-
winding are convertible. To that end, we introduce a rewrite rule for copying.
What copying means is that one duplicates definitions and for every reference
to a duplicated variable one can choose to refer to the original definition or to
one of the copies. In the following definition, we define the copy rewrite rule on
graphs by means of a meta rewrite system.

Definition 13. On cyclic terms extended with the binary symbol +, we define
the rewrite relation −−→+ as follows:

〈M | x = N,E〉 −−→+ 〈Mσ | y = Nσ, z = Nσ,Eσ〉 where σ = [x := y + z]
for fresh variables y and z

y + z −−→+ y

y + z −−→+ z

If M −−→+→ N and M nor N contain on occurrence of + then

M −−→cp N .

For example:

λz.〈u | u = z u〉 −−→+ λz.〈(x+ y) | x = z (x+ y), y = z (x+ y)〉
−−→+

3 λz.〈x | x = z y, y = z x〉 .

For a more precise discussion of the issues of representation see [3].
The principle of cyclic lambda calculi is simple. In the beta-rule, instead of a

substitution one uses a letrec:

(λx.M) N −−−→
β◦ 〈M | x = N〉 .

To simulate the normal β-rule, we must obviously include substitution. But this
is not enough. Consider the term (I stands for the term λx.x):

〈λy.x y | x = I〉 I .

It contains a potential redex “(λy.x y) I” which needs to be made explicit by
moving the equation “x = I” around. This is made possible by the first lift rule:

〈λy.x y | x = I〉 I −−−→lift 〈(λy.x y)I | x = I〉
−−−→
β◦ 〈〈x y | y = I〉 | x = I〉
−−→es 〈〈I y | y = I〉 | x = I〉
−−−→
β◦ 〈〈〈z | z = y〉 | y = I〉 | x = I〉
−−→es→ 〈〈〈I | z = y〉 | y = I〉 | x = I〉 .
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Table 2. The cyclic call-by-name lambda calculus λ◦
β◦:
(λx.M) N −−−→

β◦ 〈M | x = N〉
Substitution:
〈C[x] | x = M, E〉 −−→es 〈C[M ] | x = M, E〉
〈M | x = C[y], y = N, E〉 −−→is 〈M | x = C[N ], y = N, E〉
Lift:
〈M | E〉 N −−−→lift 〈M N | E〉
M 〈N | E〉 −−−→lift 〈M N | E〉
λx.〈M | E1, E2〉 −−−→lift 〈λx.〈M | E1〉 | E2〉 C1
Merge:
〈〈M | E1〉 | E2〉 −−−→em 〈M | E1, E2〉
〈M | x = 〈N | E1〉, E2〉 −−→im 〈M | x = N, E1, E2〉
Garbage collection:
〈M | E1, E2〉 −−→gc 〈M | E1〉 C2
〈M |〉 −−→gc M

Copy:
M −−→cp N

C1: E2 is non-empty and neither x nor a variable defined in E1 occurs free in E2;
C2: E2 is non-empty and none of the variables defined in E2 occur free in E1 or M .

Our entire call-by-name cyclic lambda calculus in given in Table. 2. Basi-
cally, it consists of the β◦-rule, the substitution rules, the representation rules
and copying. However, superfluous rules have been removed. For example, the
cyclic substitution is derivable from copying, internal substitution and garbage
collection:

〈M | x = C[x], E〉 −−→cp 〈M | x = C[y], y = C[x], E〉
−−→is 〈M | x = C[C[x]], y = C[x], E〉
−−→gc 〈M | x = C[C[x]], E〉 .

Naming is not included since, due to substitution, it is not needed to equate
different representations of a graph.

We explained the third lift rule as a rule needed to normalize terms represent-
ing graphs. This is not the only explanation of this rule. It is also needed to be
able to capture different kinds of evaluation, such as, full laziness [34]. The rule
lifts declarations, that do not contain occurrences of the bound variable, out of
a lambda body. As an example, consider the following term:

〈f I (f I) | f = λx.〈w x | w = (I I)〉〉 .

If we do not lift the redex I I (i.e., the one underlined) out of the lambda body,
that redex will be reduced twice. We have:

〈f I (f I) | f = λx.〈w x | w = (I I)〉〉
−−−→lift 〈f I (f I) | f = 〈λx.〈w x |〉 | w = (I I)〉〉 .
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To complete the work done by the lift rule we apply the internal merge:

〈f I (f I) | f = 〈λx.〈w x |〉 | w = (I I)〉〉
−−→im 〈f I (f I) | f = λx.〈w x |〉, w = (I I)〉
−−→es 〈(λx.〈w x |〉)I (f I) | f = λx.〈w x |〉, w = (I I)〉 .

Note that the substitution of f did not cause the duplication of the redex I I.
In Sect. 5, we already pointed out that the substitution rules lead to non-

confluence. However, the cyclic call-by-name lambda calculus is skew-confluent
with respect to a notion of finite information content, which returns a lambda
calculus term extended with a constant Ω. As usual in the field of program-
ming languages, the information content for the call-by-name lambda calculus
is derived from that for the Lévy-Longo tree rather than the Böhm tree.

Definition 14. Given the ARS (Λ◦,−−→λ◦ ) and the partial order (ΛΩ,≤Ω). The
finite information content ωλ◦(M) of a term M ∈ Λ◦ is the normal form of M
with respect to the following rules:

(λx.M)N −−−−→ωλ◦
Ω βω

〈C[x] | x = M,E〉 −−−−→ωλ◦
〈C[Ω] | x = M,E〉 esω

ΩM −−−−→ωλ◦
Ω @ω

〈M | E〉 −−−−→ωλ◦
M C gcω

C: none of the variables defined in E occurs free in M .

Examples: ωλ◦(〈λx.y z | y = I〉) = λx.Ω, ωλ◦(〈x | x = x〉) = Ω, ωλ◦(〈x y |
y = I〉x) = (xΩ)x, and ωλ◦(〈xx | x = I〉) = Ω. Note that even though
〈x y | y = I〉x is a lift redex, its information content is not Ω.

Theorem 2. The ARSI ((Λ◦,−−→λ◦ ), ωλ◦, I(ΛΩ,≤Ω)) is skew confluent.

This theorem guarantees uniqueness of Böhm semantics. A direct proof can
be found in [6]. In the next section, we will develop a theory which allows us to
prove uniqueness of Böhm semantics from a list of other properties. First, we
present a call-by-need calculus.

One of the features of the call-by-need calculus is that duplication of terms is
restricted to the class of values. Thus, we need a version of copying which only
duplicates a certain class of terms.

Definition 15. Let C be a set of terms. On cyclic terms extended with the binary
symbol +, we define the rewrite relation −−−→+C as follows:

〈M | x = N,E〉−−−→+C 〈Mσ | y = Nσ, z = Nσ,Eσ〉 where N ∈ C and
σ = [x := y + z] for fresh variables y and z

y + z −−−→+C y

y + z −−−→+C z
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Table 3. The cyclic call-by-need lambda calculus λ◦need

β◦:
(λx.M)N −−−→

β◦ 〈M | x = N〉
Value Substitutions:
〈C[x] | x = V, E〉 −−−→esV

〈C[V ] | x = V, E〉
〈M | x = C[x1], x1 = V, E〉 −−−→isV

〈M | x = C[V ], x1 = V, E〉
Lift:
〈M | E〉N −−−→lift 〈MN | E〉
M〈N | E〉 −−−→lift 〈MN | E〉
λx.〈M | E, VE〉 −−−→lift 〈λx.〈M | E〉 | VE〉 C1
Merge:
〈〈M | E〉 | E′〉 −−−→em 〈M | E, E′〉
〈M | x = 〈N | E〉, E1〉 −−→im 〈M | x = N, E, E1〉
Garbage collection:
〈M | E, E′〉 −−→gc 〈M | E〉 C2
〈M | 〉 −−→gc M

Value Copying:
M −−−−→cpV

N

Naming:
Csafe[M N ] −−−−−→name Csafe[〈x | x = M N〉] C3

C1: VE is non-empty and neither x nor a variable defined in E occurs free in VE;
C2: E′ is non-empty and none of the variables defined in E′ occur free in E or M ;
C3: x is a fresh variable and the rule is not closed under contexts;

Csafe ::= C′ | C[λx.C′] | C[C′ M ] | C[M C′] ;
C′ ::= � | 〈C′ | E〉 ;
V ::= x | λx.M ;

VE ::= x1 = V1, · · · , xn = Vn .

If M −−−→+C→ N and M nor N contain on occurrence of + then

M −−−→cpC
N .

The cyclic call-by-need lambda calculus is defined in Table 3. We can define
a notion of information content for it using the information content of the call-
by-name calculus:

Definition 16. Given the ARS (Λ◦,−−−−−−→
λ◦need

) and the partial order (ΛΩ,≤Ω).
The information content ωλ◦need

of a term M ∈ Λ◦ is given as follows:

ωλ◦need
(M) = lub{ωλ◦(N) |M −−→es→ N} .

The Böhm semantics of M with respect to ωλ◦need
is denoted ABSneed(M).
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Due to the fact that the information content is infinite, we do not have skew
confluence. Consider the following two reductions:

M ≡ 〈x | x = λz.z y, y = λz′.z′ (x z′)〉
−−−−−−→
λ◦need

→ 〈λz.z y | y = λz′.z′ ((λz.z y) z′)〉
−−−−−−→
λ◦need

→ 〈λz.z y | y = λz′.z′ (z′ y)〉 ≡M1

and
M ≡ 〈x | x = λz.z y, y = λz′.z′ (x z′)〉

−−−−−−→
λ◦need

→ 〈x | x = λz.z (λz′.z′ (x z′))〉 ≡M2 .

We have that ωλ◦need
(M1) = ABSneed(M1), because the only redexes in M1 and

any of its reducts are value substitutions, which are performed as part of the
computation of the information content. However, there cannot exist M3 such
that M2 −−−−−−→λ◦need

→ M3 and ωλ◦need
(M1) ⊆ ωλ◦need

(M3) because ωλ◦need
(M1) is in-

finite whereas the information content of any reduct of M2 is finite. The reason
is that in the unwinding of M we have an infinite number of β-redexes. When
we rewrite M into M1 we do all of those redexes at once and when we rewrite
M into M2 we destroy the opportunity to do them in one step. The consistency
of λ◦need is guaranteed by the following theorem.

Theorem 3. The ARSI ((Λ◦,−−−−−−→
λ◦need

), ωλ◦need , I(ΛΩ,≤Ω)) is ω-skew confluent.

Uniqueness of Böhm semantics follows from this theorem. A direct proof of
an equivalent statement can be found in [5].

7 Lifting Abstract Böhm Semantics

The Böhm semantics of both the cyclic call-by-name and call-by-need lambda
calculi are closely related to unwinding. The information content for the cyclic
call-by-name calculus can be seen as a two step process. First, one computes
the normal form with respect to the esω and gcω rules given in Definition
14. Second, one applies the notion of information content associated to the
lambda calculus [34], which consists of computing the normal form with re-
spect to the βω and @ω rules. The call-by-need information content of a term
is the information content of the unwinding of the term. In this section, we
study how to derive these notions of information content in an abstract
setting.

We first introduce in Sect. 7.1 the notion of a finite basis and its properties. In
Sect. 7.2 we consider extensions consisting of infinite objects over the basis and
objects whose semantics are infinite objects. In Sect. 7.3, we consider abstract
Böhm semantics of extensions.



Skew and ω-Skew Confluence and Abstract Böhm Semantics 393

7.1 Finite Basis

We start from an ARSI equipped with a partial order on its objects. The partial
order should have a least element to ensure that its ideal completion [20] is an
algebraic CPO. The finite elements of the ideal completion are the embeddings
of the original partial order, so the information content of the finite elements is
already defined. To be able to lift the notion of information content to infinite
elements, we must require that the notion of information content and the rewrite
relation are also monotonic with respect to the partial order. We formalize this
starting point with the notion of a finite basis, for which we need one auxiliary
definition: monotonicity of a rewrite relation with respect to an order.

Definition 17. Given an ARS (A,−→) and a partial order (A,≤) with a least
element, we say that −→ is monotonic with respect to ≤ if

a −→ a′ ∧ a ≤ a′′ ⇒ ∃a′′′ : a′ ≤ a′′′ ∧ a′′ −→ a′′′ .

The diagram of monotonicity is

a

��

≤
a′′

���
�
�
�
�

a′ ≤
����� a′′′

Definition 18 (finite basis). A tuple (A,−→,≤A, ω,D,≤D) is a finite basis if

– ((A,−→), ω, (D,≤D)) is an ARSI with unique abstract Böhm semantics;
– ω is monotonic with respect to ≤A: a ≤A a′ ⇒ ω(a) ≤D ω(a′);
– −→ is monotonic with respect to ≤A.

Example 2. Let ωLL stand for the function which given a lambda calculus term
M returns the normal form of M with respect to the following ωLL-rules [28]:

(λx.M)N −−−−→ωLL
Ω

ΩM −−−−→ωLL
Ω

Then one has that (ΛΩ,−−→β ,≤Ω, ωLL, I(ΛΩ),⊆) is a finite basis.

Next, we consider rewrite systems, referred to as extensions, whose objects
have infinite objects as semantics. Moreover, we want these rewrite systems to
mimic the behavior of their finite counterparts. For the cyclic lambda calculi
mimicking the finite lambda calculus meant that the rewrite relation induced by
the cyclic calculi was contained in the infinitary lambda calculus and that finite
reductions in an approximation could be lifted to reductions in the extension.
The equivalent of this involves lifting the reduction in a finite basis to a reduction
on its ideal completion.
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7.2 Extensions

The set of infinite terms can be seen as the ideal completion of the set of finite
terms under the prefix order ≤Ω. Therefore, we treat the ideal completion of a
set of objects as infinite objects. We then define a rewrite relation on ideals as
follows: we say that an ideal rewrites to another if every sufficiently large element
of the first ideal rewrites to an element of the second and every sufficiently large
element of the second ideal can be obtained by rewriting an element of the first.
This is in a way similar to how Corradini defined complete developments of an
infinite set of redexes in an infinite term [17].

Definition 19. Given a finite basis A = (A,−−→
A
,≤A, ω,D,≤D). The operator

[·〉 : P(A×A) → P(I(A)× I(A)) is defined by I1[R〉I2 if

∀a ∈ I1, ∃a′ ∈ I1, a
′′ ∈ I2 : a ≤A a′ R a′′

and
∀a′′ ∈ I2, ∃a′ ∈ I2, a ∈ I1 : a R a′ ≥A a′′ .

If for I ∈ I(A), we denote a ∈ I as I −−→α a then we can phrase this definition
with the following two diagrams:

I1

α

��

[R〉

α

		�
�
�

�
�

�
� I2

α

���
�
�
�
�
�

a
≤A

��� a′
R

��� a′′

and I1
[R〉

α

���
�
�
�
�
� I2

α

��

α

���
�
�
�
�
�
�

a
R

��� a′ ≥A

��� a′′

Example 3. Consider the infinitary lambda calculus term

(λx.f x (f x (f x (· · ·))))(I I) .

The reduction of I I to I can be matched:

(λx.f x (f x (f x (· · ·))))(I I) [−−→
β
〉(λx.f x (f x (f x (· · ·))))I

because (λx.Ω) (I I) −−→
β

(λx.Ω) I

(λx.f x (Ω)) (I I) −−→
β

(λx.f x (Ω)) I

(λx.f x (f x (Ω))) (I I) −−→
β

(λx.f x (f x (Ω))) I

...
...

...

It is obvious that for any single step we can do this. We also have

(λx.f x (f x (f x (· · ·))))I [−−→
β
〉 f I (f I (f I (· · ·)))
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and
(λx.f x (f x (f x (· · ·))))(I I) [−−→

β
〉 f (I I) (f (I I) (f (I I) (· · ·))) .

By using [−−→
β
→〉 rather than [−−→

β
〉, we can also develop infinite sets of redexes.

The trick is to develop the finite subset of redexes present in suitable finite
prefixes. For example, the fact that

f (I I) (f (I I) (f (I I) (· · ·))) [−−→
β
→〉 f I (f I (f I (· · ·)))

follows from

f (I I)Ω −−→
β
→ f I Ω

f (I I) (f (I I)Ω) −−→
β
→ f I (f I (Ω))

f (I I) (f (I I) (f (I I) (Ω))) −−→
β
→ f I (f I (f I (Ω)))

...
...

...

Now that we can lift any relation from an order to its ideal completion, it is
logical to also extend information content from the order to the ideal completion.
Because the information contained in an ideal can be infinite, we define the
information content of an ideal as the downward closure of the set of information
contents of its elements:

Definition 20. Given a finite basis A = (A,−−→
A
,≤A, ω,D,≤D) and I ∈ I(A).

Let
ω∞(I) = lub{ω(a) | a ∈ I} .

This is well-defined because of the monotonicity of ω with respect to ≤A. Next,
we consider the abstract version of an extension which contains objects whose
semantics are infinite objects over the basis. Moreover, the reduction relation of
the extension should contain a subset that can compute the semantics internally
as a normal form. A good example is the call-by-name calculus, where the subset
of just external substitution plus ωes as the notion of information content can
compute the unwinding. In general, we can always compute the semantics by
using the empty (sub)set and the semantics as information content.

Definition 21. A tuple B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]) is an extension of a finite

basis A ≡ (A,−−→
A
,≤A, ω,D,≤D), if

– (B,−−→
B

) is an ARS;
– −−−→

[[B]]
⊆−−→

B
;

– ((B,−−−→
[[B]]

), ω[[·]], I(A,≤A)) is an ARSI, such that

∀b ∈ B : ABS(b) = [[b]] .

The function [[·]] takes the place of the unwinding. The function ω[[·]] denotes
the visible part of the unwinding. This visible part is used to restrict information
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[[·]]
F

����
��
��
��
��
��
�

B ��

[[·]] F

���
�
�
�
�
�
�

[[·]] F

���
�
�
�
�
�

≤A

������
A

�� �����

B ��

[[·]] F

���
�
�
�
�
�

[[·]] F

���
��
��
��
��
��
��

[[·]]
F

���
�
�
�
�
�
�

A
�� ����� ≥A ������

[[·]] F

��

B �� ��������

[[·]] F

���
�
�
�
�
�

A
�� ��

A
�� �����

Fig. 2. Soundness and completeness of an extension as commutative diagrams

content. For example, in the call-by-name calculus the visible part would be ωes
and in the call-by-need calculus it would be [[·]]. There must also be a subset of
the rewrite relation, such that the semantics can be computed internally.

The cyclic lambda calculi are extensions of the lambda calculus in this sense
because the semantics of a cyclic lambda term is its unwinding, which is an
infinite term. For an extension to make sense, we require it to be sound and
complete with respect to the basis [22, 1]. In other words, the extension cannot
do more than the basis (soundness) and the extension can simulate everything
the basis can do (completeness). To define soundness we use the [·〉 operator. To
define completeness we use a simple lifting property:

Definition 22. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an exten-

sion B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]). Then,

– B is infinitarily sound with respect to A if

s −−→
B
t⇒ [[s]] [−−→

A
→〉 [[t]] ;

– B is infinitarily complete with respect to A if

∀a, s : a ∈ [[s]] ∧ a −−→
A
→ a′ ⇒ ∃t, a′′ : s −−→

B
→ t ∧ a′ −−→

A
→ a′′ ∈ [[t]] .

In order to be able to draw diagrams, we use the fact that our notation
allows us to denote a ∈ [[s]] by s F−−→

[[·]] a. Thus, the diagrams for soundness and
completeness can be drawn as given in Fig. 2.

7.3 Abstract Böhm Semantics

We can now define an abstract Böhm semantics for extensions. The idea is
simple: given an object, we compute the visible part of its semantics and apply
the infinite extension of the information content of the basis to it.

Definition 23. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an exten-

sion B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]). Define ωB : B → D by

ωB(s) = ω∞(ω[[·]](s)) .
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The only problem with the above definition is that the visible part and the
base information content must fit together to form a proper notion of information
content. First, we will give an example that shows that the result might not be
an ARSI. Next, we will prove two propositions that help establishing that the
result is an ARSI.

Example 4. Consider the cyclic extension

F(F(x)) → 〈x | x = F(G(x))〉
G(G(x)) → 〈x | x = G(F(x))〉
〈x | x = M,E〉 → 〈M | x = M,E〉

〈F(x) | x = M,E〉 → F(〈x | x = M,E〉)
〈G(x) | x = M,E〉 → G(〈x | x = M,E〉)

and the functions ω, defined in Eq. 4, and ωes, defined below:

ωes(x) = x
ωes(f(M1, · · · ,Mn) = f(ωes(M1), · · · , ωes(Mn))
ωes(〈M | x1 = M1, · · · , xn = Mn〉) = ωes(M)[x1 := Ω, · · · , xn := Ω]

The function ω ◦ ωes is not a notion of information content:

(ω ◦ ωes)(F(F(x))) = ω(F(F(x))) = F(Ω)

and
(ω ◦ ωes)(〈x | x = F(G(x))〉) = ω(Ω) = Ω .

So ω◦ωes is not monotonic with respect to the reduction relation of the extension.

The following proposition assumes that the visible part of the semantics is
the whole semantics.

Proposition 6. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an exten-

sion B ≡ (B,−−→
B
, ∅, [[·]], [[·]]). If B is infinitarily sound with respect to A then

L ≡ ((B,−−→
B

), ωB, (D,≤D)) is an ARSI.

Proof. We have to establish that ωB is monotonic with respect to −−→
B

. That is,
we need to show that if s −−→

B
s′ then ωB(s) ≤D ωB(s′). Unfolding definitions we

get
ωB(s) = ω∞([[s]]) = lub{ω(a) | a ∈ [[s]]}

and
ωB(s′) = lub{ω(a) | a ∈ [[s′]]} .

From the soundness of B, we get that

∀a ∈ [[s]] : ∃a′ ∈ [[s]], a′′ ∈ [[s′]] : a ≤A a′ −−→
A
→ a′′ .

Since A is a finite basis, we have monotonicity of ω with respect to both ≤A and
−−→
A

, so

∀a ∈ [[s]] : ∃a′ ∈ [[s]], a′′ ∈ [[s′]] : ω(a) ≤D ω(a′) ≤D ω(a′′) .
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Hence
{ω(a) | a ∈ [[s]]} ⊆ {ω(a) | a ∈ [[s′]]}

and also
ωB(s) ≤D ωB(s′) .

The problem with the counterexample is that the extended rewrite rules de-
stroy a part of the unwinding, which was already part of the information content.
The solution therefore is to require that every rewrite step in the extension pre-
serves enough unwinding to compute at least the information content of the
left-hand side:

∀s, t ∈ B : s −−→
B
t⇒ ∃I ∈ I(A) : I ⊆ ω[[·]](s)∧I ⊆ ω[[·]](t)∧ω∞(I) = ω∞(ω[[·]](s)) .

So the rewrite step from s to t preserves a part of the unwinding a and a is
enough to compute the information content of s.

For the call-by-name calculus this property holds, because if M −−→
λ◦ N then

it is either not a β◦ step and ω[[·]](M) ≤Ω ω[[·]](N) and we can take a = ω[[·]](M)
or it is a β◦ step C[(λx.P )Q] −−−→

β◦ C[〈P | x = Q〉]. In this case we can take
a = ω[[·]](C[Ω]).

This idea give us our second proposition:

Proposition 7. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an exten-

sion B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]). If

1. B is infinitarily sound with respect to A;
2. ∀s, t ∈ B : s −−→

B
t ⇒ ∃I ∈ I(A) : I ⊆ ω[[·]](s) ∧ I ⊆ ω[[·]](t) ∧ ω∞(I) =

ω∞(ω[[·]](s));

then L ≡ ((B,−−→
B

), ωB, (D,≤D)) is an ARSI.

Proof. We have to establish that ωB is monotonic with respect to −−→
B

. That is,
we need to show that if s −−→

B
s′ then ωB(s) ≤D ωB(s′). By the second condition

we can find I ∈ I(A), such that

I ⊆ ω[[·]](s) ∧ I ⊆ ω[[·]](s′) ∧ ω∞(I) = ω∞(ω[[·]](s)) .

From the fact that ω is monotone w.r.t. ≤A it is easy to prove that

I ⊆ ω[[·]](s′) ⇒ ω∞(I) ≤D ω∞(ω[[·]](s′)) .

Hence
ωB(s) ≤D ωB(s′) .

Once we have established that the result is an ARSI then we can prove unique-
ness of the abstract Böhm semantics. We establish a few lemmas first.

Lemma 1. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an extension

B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]) such that
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1. B is infinitarily sound with respect to A;
2. B is infinitarily complete with respect to A;
3. L ≡ ((B,−−→

B
), ωB, (D,≤D)) is an ARSI.

We have:

∀b1, b2 ∈ B, a ∈ A : b1 −−→B→ b2
F−−→
[[·]] a⇒ ∃a′, a′′ ∈ A : b1 F−−→

[[·]] a
′′ −−→

A
→ a′ ≥A a .

Proof. Follows by induction on the length of b1 −−→
B
→ b2 from soundness and

monotonicity of −−→
A

with respect to ≤A. In a diagram:

b1
B

��  
  
  
  
[[·]] F

���
�
�

B

����!!
!!
!!
!!

[[·]] F

���
�
�
� a′′

A

�����
�
�

b2

[[·]] F
��

A

�����
�
�
� ≤A

���

A
�����
�
�

a
≤A

���
≤A

��� a′

In this diagram, the left part is the induction hypothesis, the top right part is
soundness and the bottom right part is monotonicity.

Lemma 2. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an extension

B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]) such that

1. B is infinitarily sound with respect to A;
2. B is infinitarily complete with respect to A;
3. L ≡ ((B,−−→

B
), ωB, (D,≤D)) is an ARSI.

We have:

∀b1, b2 ∈ B, a1, a
′
1 ∈ A, d1 ∈ D : b1 −−→B→ b2 ∧ b1 F−−→

[[·]] a1 −−→A→ a′1
F−−→ω d1 ⇒

∃a2, a
′
2 ∈ A, d2 ∈ D : b2 F−−→

[[·]] a2 −−→A→ a′2
F−−→ω d2 ∧ d1 ≤D d2 .

Proof. By repeating the following diagram:

B ��

[[·]] F
��

[[·]] F
���
�
�

A
����

≤A

���

A
�����
�
�

A
�� �����

A
�����
�
�

ω F
��

≤A

���

ω F
���
�
�

ω F
���
�
�

≤D

���
≤D

���
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The diagram is built up from an instance of soundness on the top, two in-
stances of monotonicity on the left bottom and an instance of ω-skew confluence
of the basis on the right bottom.

Theorem 4. Given a finite basis A ≡ (A,−−→
A
,≤A, ω,D,≤D) and an extension

B ≡ (B,−−→
B
,−−−→

[[B]]
, ω[[·]], [[·]]). If

1. B is infinitarily sound with respect to A;
2. B is infinitarily complete with respect to A;
3. L ≡ ((B,−−→

B
), ωB, (D,≤D)) is an ARSI;

then L yields unique abstract Böhm semantics.

Proof. The following diagram proves ω-skew confluence of L:

B

����		
		
		
		
		
		
		
		

B �� ��

[[·]] F
���
�
�

[[·]] F
���
�
�

B

�� ���
�

�
�

A

�����
�
�
�
�
�

A

�����
�
�
�
�
�

[[·]] F

���
�
�
�
�
�

[[B]]

�� ���
�

�
�

F
ωB

��		
		
		
		
		
		
		
		
[[·]] F

���
�
�
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From left to right, we can obtain the sub-diagrams along the top by unfolding the
definition of ωB, the first lemma, the second lemma, completeness, the fact that
[[b]] = ABS[[·]](b) and again unfolding the definition of ωB. The bottom rectangles
are various applications of monotonicity.

This completes the presentation of the abstract lifting theory. It is a fairly
complicated theory, but we think that using all of this machinery is easier than
giving a direct proof of uniqueness of Böhm semantics in the extension. With
a direct proof, we have to deal with effects of non-confluence for most of the
proof. When we use the extension approach, we have a lot more statements to
prove, but most of them can be proved in a context where the rewrite system is
confluent. For example, in the case of the lambda calculus we can use the fact
that the lambda calculus is confluent while proving that the lambda calculus
is a basis. Proving that the cyclic lambda calculus is infinitarily sound for the
β◦ rule is made easy by the fact that the rewrite system consisting of external
substitution, external lift and β◦ is confluent. Proving soundness for the other
rules is somewhat harder, because this involves a property of non-confluent rules.
However, it should be noted that what we really have to do is to prove that those
rules preserve the unwinding. Hence, the result can be reused for other calculi.
Finally, to prove completeness it is sufficient to prove a confluent subset complete.
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8 Conclusions

We have given a modified version of the notion of abstract Böhm tree, which is
capable of dealing with infinite information content. To guarantee the uniqueness
of the new form of abstract Böhm semantics, we have introduced a new member
of the confluence family: ω-skew confluence, which is a generalization of the
existing notion of skew confluence.

Also, we have developed an abstract framework to be able to construct a new
system while deriving properties from the old one. In particular, we have defined
the notion of a finite basis, consisting of an ARS and a notion of information
content with suitable properties. We have defined how to extend the ARS to its
ideal completion. We have defined an extension as an ARS, whose objects have
the ideal completion of the basis as their semantics and we have defined when
such an extension is sound and complete. We have shown that a finite basis and
a sound and complete extension give rise to a notion of information content on
the extension.
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number CCR-0204389.

References

1. Z. M. Ariola. Relating graph and term rewriting via Böhm models. Applicable
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Abstract. We introduce an ambient-based calculus that combines am-
bient mobility with process mobility, uses group names to collect ambi-
ents with homologous features, and exploits co-moves and runtime type
checking to implement flexible policies for controlling process activities.
Types rely on group names and, to support dynamicity, may depend on
group variables. Policies can dynamically change also through installa-
tion of co-moves. The compliance with ambient policies can be checked
locally to the ambients and requires no global assumptions. We prove
that the type assignment system and the operational semantics of the
calculus are ‘sound’, and define a sound and complete type inference algo-
rithm which, when applied to terms whose type decorations only express
the desired policies, computes the minimal type annotations required for
their execution. As an application of our calculus, we present a couple
of examples and linger on the setting up of policies for controlling the
activities of the entities involved.

1 Introduction

The foundational research on distributed and mobile computing, driven by the
technological advances of the last decades, has produced a number of theoretical
models (for example [27,12,29,7,3], to cite just a few), which can be generally
assimilated to some form of distributed process calculus or of ‘ambient’ calculus.
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All such models rely on (often sophisticated) type systems to express and
check behavioural properties concerning mobility, resource access, security, etc.
In most of them, a system or component is represented by a term P of a given
calculus, a type V assigned to P and an environment Σ. In the standard view,
as is well-known, the term P abstractly describes the implementation, its type
V may express some behavioural properties, and the environment Σ is a set of
assumptions on the outside world. There is thus the notion of a global envi-
ronment, whose corresponding concrete scenario is one where all the interacting
parties are known in advance to each other, so that static checks performed
before execution ensure the correctness of the whole system.

In particular, type systems for ambient calculi are usually based on the notion
of a process/ambient type which describes the kind of communication and the
kind of mobility actions a process can perform and, at the same time, the kind
of movements and actions an ambient can make because of the activity of its
internal processes. Every ambient name is assigned (by a global assumption or by
a name restriction) a type which is simply the type of the processes it is allowed
to contain. The basic typing rule for such systems is therefore some variant of
the rule:

Σ, m:V � P : V

Σ, m:V � m[P ] is well typed
(Amb)

When dealing with computing in wide-area distributed and mobile systems,
however, static verification is impractical both because of the huge amount of
information to be checked and because typing information could be partial, in-
accurate or missing. In such ‘open’ and dynamic systems no global environment
can be assumed; on the contrary, there usually exist several different local and
autonomous computational environments. Moreover, interaction may take place
between parties whose respective properties are unknown or only partially known
to each other. If stopping the execution for re-checking is to be avoided, every
potentially dangerous component must dynamically carry with it sufficient be-
havioural information that can be checked at runtime by the other components
interacting with it (see, e.g., the approach based on proof-carrying code [33]).

To model these scenarios, we propose here an ambient-based calculus which
combines ambient mobility with general process mobility (like M3 [15]) and
where there are no global assumptions on ambient names, since there is no static
ambient type. Every ambient name m may be used to build an ambient m[P ] with
any desired content P ; on the other hand, process movements are constrained by
the presence of co-moves and by runtime type checking. Indeed, following [22],
we define an operational semantics with types which exploits types to authorize
or block reductions but is simpler than a full-fledged typed operational semantics,
because it only checks that types agree with process movements.

Types rely on group names, sort of ‘family names’ that group ambients with
homologous features. Mobility properties and co-actions (entrance permissions)
are expressed in terms of groups. The notion of a group, however, can be as
fine-grained as necessary: in principle, each ambient can be in a distinct group.
Dynamicity is enhanced by means of group-dependent types: types can contain
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variables which communication can instantiate to group names. In this way,
during computation, processes can acquire knowledge of new group names that
can be used either in movement actions or to let processes in.

Our first result shows that the type assignment system and the operational
semantics of our calculus are ‘sound’. This means that in any reduction sequence,
ambient and process movements always comply with the constraints expressed by
the types associated to the single ambients, and the types of messages exchanged
in communications always match. This is done by first proving a property of
subject reduction, namely that an ambient’s ‘policy’ – expressed by its inner
type – is preserved by reduction, and then by proving a property of type safety,
i.e., that a process or ambient’s behaviour complies, at each reduction step, with
the policy of the enclosing ambient.

Since the terms of our calculus are quite heavily decorated with types, one
would like to avoid writing all those types explicitly, and to let the system
partially infer them à la ML: ideally, one would like to write them only for
specifying, within an ambient, the rights granted to incoming mobile processes,
without having to introduce any extra type annotation.

Also, safety suggests that an ambient, before letting in a process coming from
an untrusted ambient, must typecheck it to ascertain that its actual behavioural
type agrees with the one it declares, i.e., with the rights it requires (see [23]).
More generally, it is useful to know which are, for ambient types, the minimal
requirements that ensure the initial consistency of the system.

Both these issues require a type inference algorithm which, when applied to
processes whose type decorations only express ambient-access policies, computes
the minimal rights needed for running them. Such an algorithm is therefore the
second result we present, along with the proofs of its soundness and completeness.

The rest of the paper is organized as follows. In Section 2 the different con-
structs of the calculus are explained by means of a simple example. In Section 3
the calculus’ syntax, type system and operational semantics are formally pre-
sented, while in Section 4 the soundness results are stated and proved. Section 5
illustrates an application of our calculus to modelling a public transportation sys-
tem and to controlling mobility of the entities involved (e.g., trains and passen-
gers). In Section 6, a type inference algorithm is defined and its soundness and
completeness are proved. Finally, in Section 7 we draw some short conclusions
and touch upon directions for future work and comparisons with related work.

2 An Explanatory Example: The Publisher

The scenario envisaged in the example consists of a publisher pub that publishes
a number of electronic journals to which different institutions may subscribe.
Two kinds of institutions are present: those that are fully trusted by the publisher
and whose names are known to it, and all the others, whose names are not known
in advance to the publisher and which are only partially trusted (in a sense that
will be apparent below). The whole system is therefore the parallel composition
(via the operator ‘ | ’) of institutions and publisher:
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(νginst)(νgtdl1) . . . (νgtdlm)(νgins)
(inst1 | . . . | instm | (νgdl1)ins1 | . . . | (νgdln)insn | pub) (2.1)

where the insti (with i = 1, . . . , m) are the known trusted institutions and the
insi (with i = 1, . . . , n) are those only partially trusted.

Each ambient has a name and a group name: the association of an ambi-
ent with a group is not established by a static assumption but is done in the
construction of the term. Ambient names and group names respectively act as
the ambient’s first name and family name; different ambients with homologous
features are generally assigned the same group. For example, all the trusted in-
stitutions are assigned the group ginst, while all the others belong to the group
gins; the group gtdli (for i = 1, . . . , m) labels the download processes originated
by the trusted institution insti, while the group gdli (for i = 1, . . . , n) labels the
download processes originated by the untrusted institution insi.

The standard construct (νg)P declares that the name g is known only to
process P ; thus the fact that the group of processes originated by an untrusted
institution is not known in advance to the publisher has been modelled in (2.1)
by putting the publisher out of the scope of its declaration.

Each of these top-level components is an ambient containing other ambients
and processes: the publisher contains the journals and a manager process; an
institution is an ambient that sends the publisher a subscription request and
hosts a number of download processes; these in turn are represented by mobile
ambients moving from their institutions to the publisher (where they access the
subscribed journal) and back.

pub = pub:gpub(〈〈∅, {gjrn}〉〉, com(amb, group))[mgr | jrn1 | . . . | jrnn]
insti = insti:ginst(〈〈∅, {gpub}〉〉, shh)[reqk

i |tdl1
i | . . . |tdlh

i ]
insi = insi:gins(〈〈∅, {gpub}〉〉, shh)[rqk

i |dl1
i | . . . |dll

i]

As anticipated in the Introduction, an ambient’s properties are purely local
and are not committed to global assumptions on the ambient’s name or group.
So the construct α:γ V[P ] also contains a type V ≡ (〈〈C , E 〉〉, T) which coincides
with the type of its inner process P . This type consists of two components, the
mobility type 〈〈C , E 〉〉 and the communication type T, which are sets of group
names: C is the set of ambient groups which α is allowed to cross (driven by
P ) and E is the set of ambient groups which processes sent by α (and then by
P ) are allowed to enter. On the other hand T specifies the type of the messages
that can be communicated within α by input and output actions of P . It can
be shh if no input and output action can be performed by P , or it can be of
the form com(W), where W is an ambient name, a group name or a capability
type. For instance, the ambient pub of group gpub can cross no ambients, can
send processes only to ambients of group gjrn and internally communicates pairs
consisting each of an ambient name and a group name.

The ambient typing rule therefore informally becomes:

Σ � α : amb Σ � γ : group Σ � P : V

Σ � α:γ V[P ] : V′
(Amb)
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where V′ is any well-formed process type. As usual, the ambient’s external process
type V′, which may be any type, is not to be confused with its inner type V. The
global environment Σ is used only for associating types to variables: they can
range over different ambients and processes, so global assumptions on their types
are unavoidable.

The whole computation starts with a request being sent by an institution
(trusted or untrusted) to the publisher for subscribing to a journal jrnk:

reqk
i = to pub:gpub with (〈〈∅, ∅〉〉, com(amb, group)) . 〈jrnk, gtdli〉

or rqk
i = to pub:gpub with (〈〈∅, ∅〉〉, com(amb, group)) . 〈jrnk, gdli〉

The request is a simple mobile process that, by performing a to action, moves
from the institution to the publisher, where it communicates the journal’s name
and the institution’s ‘signature’, i.e., the group name of its download ambients.
We remark that, although this example employs dyadic communication, the
formal definition of the calculus (which will be presented in the next section),
for the sake of simplicity, allows only monadic communication.

The construct tom:γwithV .P (introduced in a basic form in the calculus M3)
denotes a process that sends its continuation P to a sibling ambient named m of
group γ, where it will behave in conformity with the declared type V. Static type
checking ensures that the type of P actually equals its declared type V. Here,
the request process reqk

i announces that, once reached the publisher, it will
communicate a pair consisting of an ambient name and a group name, without
performing any mobility action.

At runtime, a to action can fire only if the target ambient accepts the incoming
process through the consumption of a suitable co-move of the form co γ with U,
where γ is the group of the expected incoming process and U a mobility type.
The firing of the to-co transition is subject to the dynamic check that the com-
munication type of the incoming process complies with the one of the entered
ambient and that its mobility type is bounded by U (this notion is rendered by
a suitable notion of subtyping). Static type checking ensures that U is in turn
compatible with the mobility type of the entered ambient. On the other hand,
dynamic checking of type compatibility between the incoming process and the
entered ambient is necessary since, in the absence of a global type environment
for ambient or group names, the type properties of the entered ambient can be
known only at runtime. Note that in this way it is possible to allow processes of
different groups to enter a same ambient with different mobility rights. Checking
the mobility type of a process going from one ambient to another is motivated by
the fact that this may be extremely dangerous for the receiving ambient, since
the process could take complete control of it.

In our example the control is performed by the manager, which is a process
running within the publisher and dedicated to handling incoming requests:

mgr = ! co ginst with 〈〈∅, ∅〉〉 . (x:amb, y:group) .
down x:gjrn with (〈〈∅, {y}〉〉, shh) . !co y with 〈〈∅, {y}〉〉

| ! co gins with 〈〈∅, ∅〉〉 . (x:amb, y:group) .
down x:gjrn with (〈〈∅, ∅〉〉, shh) . !co y with 〈〈∅, ∅〉〉
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The first action performed by the manager is the consumption of the co-move
co ginst with 〈〈∅, ∅〉〉, which authorizes a process to enter the publisher only if it
cannot move the publisher nor send processes from it. As previously described,
subscription requests satisfy such constraint.

The co-move is consumed in the action; the standard replication operator ‘ ! ’
is therefore used to provide authorization for an unlimited number of accesses.
After accepting the request, the manager receives from it the journal’s name and
the institution’s signature, goes down into the journal and finally leaves there
a co-move that will grant the institution’s reading processes the right to access
the journal. Depending on whether the request comes from a known trusted
institution or from an unknown one, the co-move deposited in the journal will
be slightly different: in the second case it grants more restricted rights, which
will compel processes from unknown institutions to adopt a more controlled
behaviour.

The down primitive is a process mobility primitive analogous to the to: it
sends the continuation process down from its ambient into a child ambient. The
set of process mobility primitives is completed by the up action, which sends
the continuation process to the parent ambient. For the sake of simplicity, there
is only one kind of co-move which synchronizes with any of the three kinds of
process movements (to, up and down).

The type expression in the co construct may contain a variable bound by an
input abstraction. For example, in the case of a request from a fully trusted
institution the co-move deposited by the manager in the journal contains the
variable y: the journal will thus accept any reading agent coming from a download
ambient of group y and going back as a continuation process to a y-ambient (i.e.,
to an ambient of the same group y). The actual value of y is provided by the
input operation performed by the manager prior to dropping the co-move at the
journal.

Journals are simple ambients that communicate their contents any number of
times:

jrnk = jrnk:gjrn(〈〈∅, {gtdl1 , . . . , gtdlm}〉〉, com(paper))[
! 〈paper 〉 | ! co gpub with 〈〈∅, {gtdl1 , . . . , gtdlm}〉〉]

The co-move initially present in the journal enables it to receive from the pub-
lisher (through the manager) the co-move that in turn will authorize the journal
to accept reader agents from members of an institution, if this has subscribed
the journal.

As we have seen, the latter ‘dynamic’ co-move, in case of a trusted institution,
will authorize the reader agent to go back to its originating y-ambient; the former
‘static’ co-move, to be able to accept the dynamic one, must therefore authorize
the movement to any possible value of y, i.e., it must explicitly mention the
signatures (i.e., the groups of download ambients) of all the trusted institutions.

Finally, a download process performing an access to a subscribed journal is a
mobile ambient going out from its institution into the publisher, where it sends
a reading agent to the journal; the agent, represented by a process, reads a paper
within the journal and then goes back to the download mobile ambient, which
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in turn goes back to the institution. In the case of fully trusted institutions
such behaviour can be implemented exactly as described. In particular, since
the above list of actions has to be performed strictly in the given order, the
ambient’s main internal component will be a process consisting of a sequence
of prefixes, in parallel with the co-move needed to eventually take in again the
reading process:

tdlj
i = (νtdlji ) tdlji : gtdli(〈〈{gpub, ginst}, {gjrn}〉〉, com(paper))[

out insti: ginst . in pub: gpub .
to jrnk:gjrn with (〈〈∅, {gtdli}〉〉, com(paper)).
(x: paper).
to tdlji :gtdli with (〈〈{gpub, ginst}, ∅〉〉, shh) .
out pub: gpub . in insti: ginst . ! (〈x〉 | co ginst with 〈〈∅, {ginst}〉〉) |
!co gjrn with 〈〈{gpub, ginst}, ∅〉〉]

The main process starts by driving the ambient out of the institution and into
the publisher, by means of the usual out and in actions of ambient calculi; the
only difference w.r.t. the standard primitives is that in our calculus an action
takes as arguments not only an ambient name, but also a group name.

Once the download ambient is in the publisher, the main thread asks to be
allowed to jump into the journal, by promising that it will not move the journal
itself, will have a continuation coming back to an ambient of group gtdli , and
will perform an input/output of messages of type paper.

The journal accepts the reader process because it contains the appropriate
co-move; then, the process reads the paper in the journal through an input
operation and goes back to the download ambient, with the accompanying dec-
laration that it will continue there by driving the ambient across publisher and
institution boundaries; which in fact is what it performs in the second-last line
of the definition, before finally making available the paper to other processes in
the institution.

For the agent to be allowed to return from the journal after reading the paper,
the download ambient must contain a suitable co-move, which is shown in the
last line of the definition. Its with-component 〈〈{gpub, ginst}, ∅〉〉 exactly matches
the one of the returning process.

It is important to observe that an ambient’s mobility type 〈〈C , E 〉〉 is an upper
bound of the mobilities of the parallel processes it contains and will contain, in
the sense that the set C collects all the group names that are arguments of in
or out actions or are found in the C components of co-actions, while the set E
analogously collects the arguments of to, up or down actions and the members of
the E components of co-actions. The inclusion of the with components of the co-
moves guarantees that all the possible future contents of the ambient are taken
into account and that therefore the ambient’s inner type will not be changed
by reduction. This is formally expressed by the theorems relative to soundness,
proved in Section 4.

As we have seen, the ambient’s inner communication type must be kept at
runtime in the ambient construct, to allow the check of incoming processes; on
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the contrary, the ambient’s mobility type is not strictly needed at runtime, since
its C and E are supersets of the respective components of the co-actions, which
are the ones that perform the checks w.r.t. mobility. Nevertheless, we have chosen
to also include the mobility type in the ambient syntax, and thus to explicitly
attach to each ambient its complete inner type (〈〈C , E 〉〉, T), in order to make
the calculus more perspicuous and to facilitate the expression of the soundness
property.

For example, in the tdlj
i component, the ambient named tdlji (and of group

gtdli) is labelled with the type (〈〈{gpub, ginst}, {gjrn}〉〉, com(paper)), correspond-
ing to the fact that the ambient goes across the boundaries of publisher and
institutions, and sends a process to a journal.

The download originating from an unknown institution differs from the
previous case because the reading process, once read the paper, is not allowed to
directly go back from the journal to the download mobile ambient, whose group
is not known to the publisher and therefore not mentioned in the authorization to
exit the journal. To be able to return to the download ambient, the reader must
turn itself into a mobile ambient – in the example, we have named such an am-
bient with the secret name box – which is then able to leave the journal without
needing a permission. The ambient box acts as a sort of sandbox wherein the oth-
erwise potentially harmful process may run safely, because ambients, differently
from processes, in the absence of the open primitive cannot directly act on their
surrounding ambients, nor perform input/output operations; they can therefore
move around without need of any co-move authorization and runtime check.

Once out of the journal, the reader agent may then go back to the download
ambient, which of course knows the family name (i.e., the group) of the sandbox
ambient and can therefore authorize the move. The rest of the process is like in
the case of known institutions.

dlj
i = (νdlji ) dlji : gdli(〈〈{gpub, gins}, {gjrn}〉〉, com(paper))[

out insi: gins . in pub: gpub .
to jrnk:gjrn with (〈〈∅, ∅〉〉, com(paper)).
(x: paper)
(νbox) box: gbox(〈〈{gjrn}{gdli}〉〉, shh)

[out jrnk:gjrn . to dlji :gdli with (〈〈{gpub, gins}, ∅〉〉, com(paper)) .
out pub: gpub . in insi: ginst . ! (〈x〉 | co gins with 〈〈∅, {gins}〉〉)] |

!co gbox with 〈〈{gpub, gins}, ∅〉〉]
A side effect of the above implementation is that at each download access a
new box ambient is created and then left empty within the publisher. However,
the name restriction immediately transforms such ambients into garbage, which
can be collected by means of the equivalence (ν box) box: gbox(〈〈{gjrn}{gdli}〉〉, shh)
[0] ≡ 0.

3 The Calculus

This section formally introduces the calculus. The syntax of the pre-terms of the
language (where type constraints are ignored) is given in Fig. 1. Processes are
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A denotes the set of ambient names and G denotes the set of group names.

α ::= ambients
m, n, . . . ambient names
x, y, . . . ambient variables

γ ::= groups
g, h, . . . group names
x, y, . . . group variables

χ ::= capabilities
in α:γ moves the containing ambient into ambient α of group γ
out α:γ moves the containing ambient out of ambient α of group γ
co γ with U lets into the containing ambient a process with mobility rights U

coming from an ambient of group γ
χ.χ′ path
x, y, . . . capability variables

M, N, L ::= messages
α ambients
γ groups
χ capabilities

P, Q ::= processes
0 null
χ . P capability prefix

〈M〉 . P synchronous output
(x: W) . P typed input
down α:γ with V . P from an ambient, sends the process P , requiring

rights V, down to an enclosed ambient α of group γ
up α:γ with V . P from an ambient, sends the process P , requiring

rights V, up to the enclosing ambient α of group γ
to α:γ with V . P from an ambient, sends the process P , requiring

rights V, to a sibling ambient α of group γ
P | Q parallel composition
α:γ V[P ] ambient
! P replication
(νn)P name restriction
(νg)P group restriction

where U, V and W are defined in Figure 2.

Fig. 1. Syntax

built from the 0 process through the standard constructs of sequential prefixing,
parallel composition, ambient formation, replication, name restriction and group
restriction. Admissible syntactic prefixes are the capabilities in and out, the co-
move co, the input/output actions and the process movement constructs down,
up and to. Messages can be ambient names, group names or (sequences of) capa-
bilities; note that process movement actions (to, down, up) are not considered
capabilities and cannot be communicated.

In the input construct (x: W) .P the prefix (x: W) binds the variable x in P , while
in the name restriction (νn)P the binder (νn) binds the name n in P ; group re-
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C , E , . . . sets of group names and variables;

V ::= (U, T) process type or mobcom type:
mobility type and communication type

U ::= 〈〈C , E 〉〉 mobility type: mobility rights C , E

T ::= communication type
shh no communication
com(W) communication of messages of type W

W ::= message type
amb ambient
group group
cap(U) capability type

Σ ::= environment
∅ empty environment
Σ, x:W environment containing the typing assumption x:W

Fig. 2. Types

striction (νg) works analogously. A name or a variable that is not bound is called
free. The sets of free and bound names/variables of a term are respectively de-
fined in accordance with that. We identify processes modulo renaming of bound
names and variables. We will use the notation η ∈ (�∈)Υ , where η ∈ {α, γ} and
Υ ∈ {P, C , V, Σ, . . .}, as short for ‘η does (does not) occur free in Υ ’.

The syntax of types is given in Fig. 2. Since types in our system describe
communication and mobility properties, the type system is based on the notion
of a mobcom type (or process type) V which packs the mobility type and the
communication type of a process. A mobility type U consists of two sets C and
E whose elements may be both group names and group variables; the intuitive
meaning is that C is the set of the ambient groups which the enclosing ambient
is allowed to cross when the process executes an in or out action, and E is the
set of the ambient groups which the process may enter by means of a down, up
or to action. As a matter of notation, if V = (〈〈C , E 〉〉, T), we will write C (V) and
E (V) to denote C and E , respectively; an analogous notation will be used for U.

Observe that types may depend on group variables, i.e. on parameters of
input prefixes; they are therefore affected by reduction, when an input action
substitutes a variable with a group name. Types, in turn, may occur in terms:
mobcom types appear in the with components of the process mobility primitives
(where they characterize process continuations) and in the ambient labels (where
they represent the types of the inner processes); mobility types appear in the
co-moves, where they represent the rights of the processes which are allowed to
enter; message types appear in the input construct. The calculus is therefore a
truly typed one, where types play an essential role both in the language definition
and in the operational semantics.

The communication type T of a process indicates whether the process is silent
(type shh) or can engage in the communication of messages of type W. A mes-
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sage type can be the atomic type group of group names, the atomic type amb
of ambient names, or a capability type cap(U) representing the mobility rights
required by capabilities.

A type environment Σ is a finite set of pairs x: W, where x is a variable and
W is its assumed message type. The domain Dom(Σ) of the environment Σ is
defined as usual:

Dom(∅) = ∅ Dom(Σ, x: W) = Dom(Σ) ∪ {x}.

A subtyping relation ≤ is naturally defined on mobility types by componentwise
set inclusion and then trivially extended to capability types, while the other
two message types amb and group are not comparable with them. Subtyping on
message types does not extend in the same way to communication types, since we
do not allow subtyping polymorphism in input/output, except for the particular
case of silent processes. Communication types are therefore not comparable with
each other, with the exception of the type shh, which is the least element. We
keep the same notation (≤) for both relations since there is no risk of confusion.
Finally, subtyping on process (mobcom) types is the one trivially induced by
subtyping on mobility and communication types.

Definition 1 (Subtyping).

1. 〈〈C , E 〉〉 ≤ 〈〈C ′, E ′〉〉 if C ⊆ C ′ and E ⊆ E ′;
2. amb ≤ amb; group ≤ group; cap(U) ≤ cap(U′) if U ≤ U′;
3. T ≤ T; shh ≤ T;
4. (U, T) ≤ (U′, T′) if U ≤ U′ and T ≤ T′.

Whenever we write Σ ⊆ Σ′, with Σ and Σ′ type environments, we mean the
standard set-theoretic inclusion.

We now turn to the typing rules. There are seven kinds of typing judgments:

� Σ good environment Σ
Σ � U good mobility type U
Σ � W good message type W
Σ � T good communication type T
Σ � V good mobcom type V
Σ � M : W good message M of type W
Σ � P : V good process P of type V

In the sequel, the generic form Σ � Γ is intended to range over the last six kinds
of judgments.

Figure 3 contains the rules for the well-formedness of environments and types,
necessary because the calculus allows variables to occur within mobility types as
long as they stand for group names. To simplify the presentation of the rules we
rely on the established notational conventions to distinguish between the syntac-
tic categories of objects. So, for instance, W denotes a message type, U a mobility
type and so on. The rules are all standard; in particular, rule (Mob Type)
checks that all the variables contained in a mobility type have been assumed to
be of type group.
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∀γ ∈ C ∪ E Σ � γ : group

Σ � 〈〈C , E 〉〉
(Mob Type)

� Σ

Σ � group
(Group Type)

� Σ

Σ � amb
(Amb Type)

Σ � U

Σ � cap(U)
(Cap Type)

� Σ

Σ � shh
(Shh Type)

Σ � W

Σ � com(W)
(MsgCom Type)

Σ � U Σ � T

Σ � (U, T)
(MobCom Type)

� ∅
(Empty Env)

Σ � W x �∈ Dom(Σ)

� Σ, x: W
(Env Constr)

Fig. 3. Good Types and Environments

� Σ n ∈ A

Σ � n : amb
(Amb Const)

� Σ g ∈ G

Σ � g : group
(Grp Const)

Σ � W′ x:W ∈ Σ W ≤ W′

Σ � x : W′
(Env)

Σ � γ : group Σ � U′ U ≤ U′

Σ � co γ with U : cap(U′)
(Co)

Σ � χ : cap(U) Σ � χ′ : cap(U)

Σ � χ.χ′ : cap(U)
(Path)

Σ � α : amb Σ � U γ ∈ C (U)

Σ � in α:γ : cap(U)
(In)

Σ � α : amb Σ � U γ ∈ C (U)

Σ � out α:γ : cap(U)
(Out)

Fig. 4. Good Messages

The typing rules for messages and processes are given in Fig. 4 and Fig. 5,
respectively. Rules (Amb Const) and (Grp Const) are straightforward.
In the rule (Env), if a variable is assigned a message type W equal to the atomic
type amb or group, its deduced type W′ can only be the same as W. If, on the
other hand, a variable is assumed to be of a capability type W ≡ cap(U), then
subsumption applies, and the deduced type W′ can be any supertype of W.

As usual, subtyping enhances typability by allowing a subterm to have a
type that is a subtype of the one required by the construction of the term. For
example, the simple process (x: cap(〈〈{g}, ∅〉〉)) .x . inm:gm . 0 is well typed (in the
empty environment), with typing:

� (x: cap(〈〈{g}, ∅〉〉)) .x . in m:gm . 0 : (〈〈{g, gm}, ∅〉〉, com(cap(〈〈{g}, ∅〉〉)))
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Σ � V

Σ � 0 : V
(Null)

Σ � χ : cap(U) Σ � P : (U, T)

Σ � χ.P : (U, T)
(Cap Prefix)

Σ � α : amb Σ � P : V Σ � V′ γ ∈ E (V′)

Σ � down α:γ with V . P : V′ (Down)

Σ � α : amb Σ � P : V Σ � V′ γ ∈ E (V′)

Σ � up α:γ with V . P : V′ (Up)

Σ � α : amb Σ � P : V Σ � V′ γ ∈ E (V′)

Σ � to α:γ with V . P : V′ (To)

Σ, x:W � P : (U, com(W)) x �∈ Σ x �∈ (U, com(W))

Σ � (x:W) . P : (U, com(W))
(Input)

Σ � P : (U, com(W)) Σ � M : W

Σ � 〈M〉 . P : (U, com(W))
(Output)

Σ � α : amb Σ � γ : group Σ � P : V Σ � V′

Σ � α:γ V[P ] : V′ (Amb)

Σ � P : V Σ � Q : V

Σ � P | Q : V
(Par)

Σ � P : V

Σ �!P : V
(Repl)

Σ � P : V

Σ � (νn)P : V
(Amb Res)

Σ � P : V g �∈ Σ g �∈ V

Σ � (νg)P : V
(Grp Res)

Fig. 5. Good Processes

where the capability that is going to be received in input carries a more restricted
mobility than the resulting mobility of the whole process. Though quite natural,
that would not be possible without subtyping.

Rule (Co) checks that the mobility type of the co-move is a supertype of the
mobility type of the processes the co-move lets in. Rule (Path) checks that the
mobility types of the two (sequences of) capabilities are equal.

Rules (In) and (Out) check that the C component of the mobility type
contains the group γ of the ambient across whose border the capability drives
its ambient; a similar check is performed in rules (Down), (Up) and (To) for the
E component. Rule (Amb) ensures that the type of the inner process is recorded
in the ambient header. The same rule allows an ambient to have an arbitrary
type, as does rule (Null) for the 0 process.
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Structural Congruence: ( | , 0) is a commutative monoid.

(νn)(P | Q) ≡ (νn)P | Q (n �∈ Q) (νn)(νm)P ≡ (νm)(νn)P

n:g V[(νm)P ] ≡ (νm)n:g V[P ] (n �= m) (νn)(νg)P ≡ (νg)(νn)P

(νg)(P | Q) ≡ (νg)P | Q (g �∈ Q) (νg)(νg′)P ≡ (νg)(νg′)P

n:g V[(νg′)P ] ≡ (νg′)n:g V[P ] (g �= g′ & g′ �∈ V) ! P ≡ P | ! P

(νn)0 ≡ 0 (νg)0 ≡ 0 (νn)n:g V[0] ≡ 0

Basic reduction rules:

(R-in) n:gn Vn[ in m:gm . P1 | P2 ] | m:gm Vm[Q]

→ m:gm Vm[ n:gn Vn[P1 | P2 ] | Q ]

(R-out) m:gm Vm[ n:gn Vn[ out m:gm . P1 | P2 ] | Q ]

→ n:gn Vn[ P1 | P2 ] | m:gm Vm[Q]

(R-down) n:gn Vn[down m:gm with (U, T) . P1 | P2 | m:gm (Um, Tm)[co gn with U′.Q1 | Q2]]
→ n:gn Vn[m:gm (Um, Tm)[P1 | Q1 | Q2] | P2]

if U ≤ U′ and T ≤ Tm

(R-up) m:gm (Um, Tm)[n:gn Vn[up m:gm with (U, T) . P1 | P2] | co gn with U′.Q1 | Q2]
→ m:gm (Um, Tm)[n:gn Vn[P2] | P1 | Q1 | Q2]

if U ≤ U′ and T ≤ Tm

(R-to) n:gn Vn[to m:gm with (U, T) . P1 | P2] | m:gm (Um, Tm)[co gn with U′.Q1 | Q2]
→ n:gn Vn[P2] | m:gm (Um, Tm)[P1 | Q1 | Q2]

if U ≤ U′ and T ≤ Tm

(R-comm) (x: W) . P | 〈M〉 . Q → P{x := M} | Q
Structural reduction rules:

(R-par) P → Q ⇒ P | R → Q | R
(R-amb) P → Q ⇒ n:g V[P ] → n:g V[Q]

(R-ν-amb) P → Q ⇒ (νn)P → (νn)Q

(R-ν-group) P → Q ⇒ (νg)P → (νg)Q

(R-≡) P ′ ≡ P ′, P → Q, Q ≡ Q′ ⇒ P ′ → Q′

Fig. 6. Operational Semantics

Rule (Cap Prefix) checks that the mobility type of the process matches the
type of its prefix, in the same way as rules (Input) and (Output) check that
the communication type of the process matches the type of the message. Rules
(Par), (Repl), (Amb Res) and (Grp Res) are standard.

Finally, we present the operational semantics of the calculus. As is common in
calculi for distributed computation, the operational semantics relies on a struc-
tural congruence and on a reduction relation. The structural congruence equates
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terms whose syntactical differences should be considered inessential; it is defined
as the smallest congruence satisfying the laws in Fig. 6. The only non-standard
law is (νn)n:g V[0] ≡ 0, which – in the absence of the open capability – is handy
for disposing of ‘garbage’ inactive ambients.

The reduction relation is defined only for closed processes, i.e., processes with
no occurrences of free variables; the rules are given in Fig. 6.

The first five rules deal with mobility and can be divided into two groups:
those for ambient mobility and those for process mobility. The former are the
standard rules of ambient calculi for the in and out capabilities, which can drive
ambients into or out of other ambients. The latter are the ones for the down, up
and to actions (already found in M3), which allow the continuation process to
move to a parent, child or sibling ambient, respectively. As discussed earlier, an
action of this kind must specify not only the name of the target ambient but also
its group, because of the absence of a global mapping from ambients to groups.

In the case of process movements the reduction may take place only if the
communication type of the continuation is compatible with the one of the tar-
get ambient, and in addition if the ambient contains a suitable co-move letting
the process in; both checks make use of the subtyping relations introduced in
Definition 1. Note that the co-move is consumed in the reaction and this, in
turn, allows the co-move’s continuation to synchronize on the entering of a pro-
cess; moreover, the consumable nature of co-moves allows the implementation
of fine-tuned admittance policies.

The last reduction rule is the standard one for communication, local to am-
bients as in the original ambient calculus.

To get the full reduction relation, the basic reduction rules are then closed
under the application of all possible reduction contexts, which are those contexts
that are built only by parallel composition, ambient formation, and group and
name restriction. Note that no reduction rule can be applied within the con-
tinuation of an action prefix, in particular within the body of an input process
(before the input itself is performed). Thus, if C[−] is a reduction context and
C[P ] is a good closed process, no free variable can occur in P . Finally, the last
rule is standard and states that structurally congruent processes have the same
reductions.

4 Soundness

The type system satisfies the usual property of subject reduction (Theorem 1),
which here, as in all systems of behavioural types, is particularly meaningful. In
fact, joined to type safety (Corollary 1), which states the exact correspondence
between types and behavioural properties, subject reduction guarantees that
any evolution of a system, i.e., any reduction sequence, satisfies the constraints
expressed by types. This represents a form of soundness, in the sense that com-
munication and movements of both ambients and processes actually obey the
constraints that the type attached to each ambient is supposed to express.

The construction of the proof of the subject reduction theorem starts, as usual,
with the statement of generation lemmata, which trivially hold because of the
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evident syntax-directed character of the typing rules. To simplify the statements
we only consider for each syntactic category of terms the corresponding type
pattern. It is easy to verify that, in all cases, no other type pattern would be
possible.

Lemma 1 (Generation Lemma I).

1. If Σ � Γ then � Σ.
2. If Σ � 〈〈C , E 〉〉 then Σ � γ : group for all γ ∈ C ∪ E .
3. If Σ � cap(U) then Σ � U.
4. If Σ � com(W) then Σ � W.
5. If Σ � (U, T) then Σ � U and Σ � T.
6. If � Σ, x: W then Σ � W and x �∈ Dom(Σ).
7. If Σ � n : amb then n ∈ A .
8. If Σ � g : group then g ∈ G .
9. If Σ � x : W then x: W′ ∈ Σ for some W′ ≤ W.

10. If Σ � in α:γ : cap(U) then Σ � α : amb and Σ � cap(U) and γ ∈ C (U).
11. If Σ � out α:γ : cap(U) then Σ � α : amb and Σ � cap(U) and γ ∈ C (U).
12. If Σ � co γ with U : cap(U′) then Σ � γ : group and Σ � cap(U′) and U ≤ U′.
13. If Σ � χ.χ′ : cap(U) then Σ � χ : cap(U) and Σ � χ′ : cap(U).

Lemma 2 (Generation Lemma II).

1. If Σ � 0 : V then Σ � V.
2. If Σ � χ.P : (U, T) then Σ � χ : cap(U) and Σ � P : (U, T).
3. If Σ � downα:γ withV.P : V′ then Σ � α : amb, Σ � γ : group and Σ � P : V

and Σ � V′ and γ ∈ E (V′).
4. If Σ � up α:γ with V.P : V′ then Σ � α : amb, Σ � γ : group and Σ � P : V

and Σ � V′ and γ ∈ E (V′).
5. If Σ � to α:γ with V.P : V′ then Σ � α : amb, Σ � γ : group and Σ � P : V

and Σ � V′ and γ ∈ E (V′).
6. If Σ � (x: W) .P : (U, com(W′)) then W = W′ and Σ, x : W � P : (U, com(W)) and

x �∈ Σ and x �∈ (U, com(W)).
7. If Σ � 〈M〉 .P : (U, com(W)) then Σ � P : (U, com(W)) and Σ � M : W.
8. If Σ � α:γ V[P ] : V′ then Σ � α : amb and Σ � γ : group and Σ � V′ and

Σ � P : V.
9. If Σ � P |Q : V then Σ � P : V and Σ � Q : V.

10. If Σ �!P : V then Σ � P : V.
11. If Σ � (νn)P : V then Σ � P : V.
12. If Σ � (νg)P : V then Σ � P : V, and g �∈ Σ and g �∈ V.

Note that the lemmata imply that every valid typing judgement has a unique
derivation.

We also need a substitution lemma, which in our case handles the substitution
of variables by messages. The application of substitutions to types, messages and
processes is standard, while environments need some care. The substitution of
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the variable x by the message M in the environment Σ (denoted by Σ{x := M})
is defined by induction on Σ:

∅{x := M} = ∅

(Σ,y: W){x := M}=
Σ{x := M},y: W{x := M} if x �= y

Σ{x := M} if x= y and M is not a variable
Σ{x := M},M: W{x := M} otherwise

In the last case, where x is the same as y and M is a variable, the resulting
environment might be non-well-formed (if the variable M occurs in Σ); however,
that will never happen with substitutions as used in the paper. Also notice that
if M is not a variable, then it is an ambient name, a group name or a capability,
but in either case no assignment is allowed for it in environments.

Lemma 3 (Substitution Lemma).

1. If Σ � Γ and x ∈ Γ then x ∈ Dom(Σ).
2. If � Σ, x: W and Σ � M : W then � Σ{x := M}.
3. If Σ, x: W � Γ and Σ � M : W then Σ{x := M} � Γ{x := M}.

Proof. The proof of Point (1) by induction on the derivations is standard. Points
(2) and (3) can be proved simultaneously by induction on the derivations; we
only consider two interesting cases.

The first case is the proof of Point (2) when the last rule applied (in the
derivation of the point’s first antecedent) is (Env Constr):

Σ, x: W � W′ y �∈ Dom(Σ, x: W)

� Σ, x: W, y: W′

Then, to the judgement Σ, x: W � W′ we may apply the inductive hypothesis of
Point (3), with Γ instantiated to W′, and we obtain Σ{x := M} � W′{x := M}.

To be able to re-apply the rule (Env Constr) with x substituted by M , and
thus to prove the conclusion � (Σ, y: W′){x := M}, we only need to show that the
side condition y �∈ Dom(Σ{x := M}) holds. But this is not hard, since by Lemma
1(1) the well-formedness judgment � Σ, x: W holds, which in turn by Lemma 1(6)
implies x �∈ Dom(Σ); it follows that Dom(Σ) = Dom(Σ{x := M}). From the
rule’s rightmost premise y �∈ Dom(Σ, x: W) in the assumption, we immediately
have that y �∈ Dom(Σ); thus also y �∈ Dom(Σ{x := M}).

As a second interesting case we consider the proof of Point (3) when the last
rule applied is (Input):

Σ, x: W, y:W′ � P : (U, com(W′)) y �∈ (Σ, x: W) y �∈ (U, com(W′))

Σ, x: W � (y: W′) .P : (U, com(W′))

By induction on Point (3), with Σ replaced by Σ, y:W′ and Γ instantiated to
P :(U, com(W′)), we obtain (Σ, y: W′){x := M} � (P :(U, com(W′))){x := M}. As
for the two needed side conditions on y, observe that by Point (1) y �∈ (Σ, x:W)
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and Σ � M :W imply y �∈ M ; from y �∈ Σ and y �∈ M it follows that y �∈ Σ{x :=
M}, while the rightmost premise y �∈ (U, com(W′)), again with the condition
y �∈ M , implies that y �∈ (U, com(W′)){x := M}. We may therefore conclude
by applying the rule (Input), thus obtaining the consequent Σ{x := M} �
((y: W′).P :(U, com(W′))){x := M}. ��

The other standard lemmata needed for the proof of subject reduction are
those concerning strengthening, weakening, and admissibility of subtyping.

Strengthening is expressed by the first two points of the Lemma below. Point
(1) states that if the environment Σ ∪Σ′ is well formed and no x occurring in Σ
‘depends’ on Σ′, i.e., is in the domain of Σ′, then Σ is separately well formed.
Point (2) says that if the judgment Σ ∪Σ′ � Γ holds, and no x occurring (free)
in Σ or in Γ is in the domain of Σ′, then Σ′ may be disposed of, and the
strengthened judgment Σ � Γ holds.

The Lemma’s third point expresses the weakening in the usual form.

Lemma 4 (Strengthening and Weakening Lemma).

1. If � Σ ∪Σ′ and x �∈ Σ for all x ∈ Dom(Σ′) then � Σ.
2. If Σ ∪Σ′ � Γ and x �∈ Σ and x �∈ Γ for all x ∈ Dom(Σ′) then Σ � Γ .
3. If Σ � Γ and � Σ′ and Σ ⊆ Σ′, then Σ′ � Γ .

Proof. Points (1) and (2) can be proved simultaneously by induction on deriva-
tions. The proof of Point (3) is also by induction on derivations. We only consider
a single interesting case, the one in which the last rule applied is (Input):

Σ, x: W � P : (U, com(W)) x �∈ Σ x �∈ (U, com(W))

Σ � (x: W) .P : (U, com(W))

and, in addition, x ∈ Σ′.
Let x′ be a fresh variable; by applying induction to the rule’s (leftmost)

premise we obtain Σ, x: W, x′: W � P: (U, com(W)), while the rule (Env) yields
Σ, x′: W � x′: W. From these two judgments it follows by Lemma 3(3) (since envi-
ronments are sets) that the typing Σ, x′: W � P{x := x′} : (U, com(W)) holds, i.e.,
is derivable. It is easy to verify that the derivations of Σ, x: W � P: (U, com(W))
and Σ, x′: W � P{x := x′} : (U, com(W)) are isomorphic; then by the induction
hypothesis we obtain Σ′, x′: W � P{x := x′} : (U, com(W)). By the rule (Input)
this implies that Σ′ � (x′: W) .P{x := x′} : (U, com(W)), and we are done, since
(x: W) .P and (x′: W) .P{x := x′} are α-equivalent. ��

Lemma 5 (Admissibility of Subtyping).

1. If Σ � M : cap(U) and U ≤ U′ and Σ � U′ then Σ � M : cap(U′).
2. If Σ � P : V and V ≤ V′ and Σ � V′ then Σ � P : V′.

Proof. Points (1) and (2) are easily proved simultaneously by induction on the
derivations. ��
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We are now finally able to prove subject reduction. The property is expressed
in its most natural form, which only holds for closed processes, i.e., processes
without free variables.

Theorem 1 (Subject Reduction).
Let � P : V. Then

1. P ≡ Q implies � Q : V.
2. P → Q implies � Q : V.

Proof. The proof is standard, by induction on the derivations of P ≡ Q and P →
Q using the Weakening, Substitution, Admissibility of Subtyping and Generation
Lemmata. We only explicitly present the case of rule (R-up):

m:gm (Um, Tm)[n:gn Vn[up m:gm with (U, T) .P1 |P2] | co gn with U1.Q1 |Q2]
→ m:gm (Um, Tm)[n:gn Vn[P2] |P1 |Q1 |Q2]

if U ≤ U1 and T ≤ Tm.

If

� m:gm (Um, Tm)[n:gn Vn[up m:gm with (U, T) .P1 |P2] | co gn with U1.Q1 |Q2] : V

then by Lemma 2(8) we get � V and

� n:gn Vn[up m:gm with (U, T) .P1 |P2] | co gn with U1.Q1 |Q2 : (Um, Tm).

By Lemma 2(9) we must have

� n:gn Vn[up m:gm with (U, T) .P1 |P2] : (Um, Tm) (4.2)
� co gn with U1.Q1 : (Um, Tm) (4.3)

� Q2 : (Um, Tm). (4.4)

From (4.2) by Lemma 2(8) we have � (Um, Tm) and

� up m:gm with (U, T) .P1 |P2 : Vn,

which implies by Lemma 2(9)

� up m:gm with (U, T) .P1 : Vn (4.5)
� P2 : Vn. (4.6)

Now, by Lemma 2(4) we get � P1 : (U, T) and � Vn and gm ∈ E (Vn). Furthermore,
by Lemma 5(2) from � P1 : (U, T) we have � P1 : (Um, Tm) since U ≤ Um and
T ≤ Tm. From (4.3) by Lemma 2(2) we get � Q1 : (Um, Tm).

Rule (Amb) applied to (4.6) gives � n:gn Vn[P2] : (Um, Tm) since � (Um, Tm).
Rule (Par) applied to � n:gn Vn[P2] : (Um, Tm), � P1 : (Um, Tm), � Q1 : (Um, Tm),
and (4.4) gives

� n:gn Vn[P2] |P1 |Q1 |Q2 : (Um, Tm).

We conclude
� m:gm Vm[n:gn Vn[P2] |P1 |Q1 |Q2] : V

by rule (Amb) since � V. ��
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Clearly, subject reduction guarantees that in any sequence of reductions ev-
ery process obeys the constraints imposed by its enclosing ambient. As a matter
of fact, a more accurate and stronger property is satisfied: any sub-process of a
‘good’ process does not only behave in compliance with the policy of its enclosing
ambient (if any), but it also complies with the policy against which it has been
checked when entering the ambient. Such policy is in general more restrictive
than the one of the enclosing ambient, and is expressed by the with component
of the co-move that has authorized the movement. Unfortunately this expression
completely disappears with its containing co-move as soon as the incoming pro-
cess is authorized: it thus becomes impossible to formalize the statement that
the policy is respected during the whole computation carried out by the process
before any further migration.

To overcome this problem, we enrich the process syntax by introducing tagged
processes. Tags will be used to record, for each process entering an ambient by
consuming a to, down, or up capability, the mobility type U associated with it.
To accommodate tags in the syntax of Figure 1, we add the production:

P ::= . . .
{P}U tagged process

Tagging has no influence on process formation and well-typing rules: the type
of a tagged process is the one of its untagged version, obtained by dropping all
tags occurring in it.

The operational semantics attaches new tags to processes (when needed),
but in reduction it considers tagged processes as ordinary ones; i.e., tags are
not exploited to enable or disable reduction steps. We always assume that the
initial process of a system is untagged and that all tags are generated during
reduction. All properties concerning reduction, notably subject reduction, are
then unaffected. Nevertheless, the operational semantics must be extended to
represent the generation of tags upon process movements and to allow tagged
processes to evolve. The basic reduction rules of Fig. 6 are therefore replaced
by those given in Fig. 7, where we convene that a process not explicitly tagged
may be either untagged or tagged. In the same figure we also give the additional
structural congruence rules for dealing with tagged processes. Notice that the
tag disappears when tagging 0 or the ambient formation, and that tags commute
with all other process constructs except the ones for mobility (of both ambients
and processes). For this reason we need to duplicate the movement reduction
rules.

The rules are hopefully self-explanatory. We only remark that after a reduc-
tion with rule (R-down), (R-up) or (R-to), a tag is attached to the migrating
process to record the policy against which it has been checked. Similarly, in
rules (R-down)′, (R-up)′ and (R-to)′ the tag of the migrating process is changed
appropriately.

The structural reduction rules of Fig. 6 are still valid, but we need to extend
the notion of reduction contexts to also encompass the occurrence of tagged
processes. Thus, we will say that C[−] is a reduction context if its untagged
version is a reduction context.
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Structural congruence (additional rules):

{0}U ≡ 0 {co g with U′.P}U ≡ co g with U′.{P}U
{(x: W) . P}U ≡ (x: W) . {P}U {〈M〉 . P}U ≡ 〈M〉 . {P}U

{P | Q}U ≡ {P}U | {Q}U { ! P}U ≡ ! {P}U
{(νn)P}U ≡ (νn){P}U {(νg)P}U ≡ (νg){P}U (g �∈ U)

{n:g V[P ]}U ≡ n:g V[P ] P ≡ Q implies {P}U ≡ {Q}U

Basic reduction rules:

(R-in) n:gn Vn[ in m:gm . P1 | P2 ] | m:gm Vm[Q]

→ m:gm Vm[ n:gn Vn[P1 | P2 ] | Q ]

(R-in)′ n:gn Vn[ {in m:gm . P1}U1 | P2 ] | m:gm Vm[Q]

→ m:gm Vm[ n:gn Vn[{P1}U1 | P2 ] | Q ]

(R-out) m:gm Vm[ n:gn Vn[ out m:gm . P1 | P2 ] | Q ]

→ n:gn Vn[ P1 | P2 ] | m:gm Vm[Q]

(R-out)′ m:gm Vm[ n:gn Vn[ {out m:gm . P1}U1 | P2 ] | Q ]

→ n:gn Vn[ {P1}U1 | P2 ] | m:gm Vm[Q]

(R-down) n:gn Vn[down m:gm with (U, T) . P1 | P2 | m:gm (Um, Tm)[co gn with U1.Q1 | Q2]]
→ n:gn Vn[m:gm (Um, Tm)[{P1}U1 | Q1 | Q2] | P2]

if U ≤ U1 and T ≤ Tm

(R-down)′ n:gnVn[{down m:gm with(U, T).P1}U′ | P2 | m:gm(Um, Tm)[co gnwith U1.Q1| Q2]]
→ n:gn Vn[m:gm (Um, Tm)[{P1}U1 | Q1 | Q2] | P2]

if U ≤ U1 and T ≤ Tm

(R-up) m:gm (Um, Tm)[n:gn Vn[up m:gm with (U, T) . P1 | P2] | co gn with U1.Q1 | Q2]
→ m:gm (Um, Tm)[n:gn Vn[P2] | {P1}U1 | Q1 | Q2]

if U ≤ U1 and T ≤ Tm

(R-up)′ m:gm(Um, Tm)[n:gn Vn[{up m:gm with (U, T) . P1}U′ | P2] | co gn with U1.Q1| Q2]
→ m:gm (Um, Tm)[n:gn Vn[P2] | {P1}U1 | Q1 | Q2]

if U ≤ U1 and T ≤ Tm

(R-to) n:gn Vn[to m:gm with (U, T ) . P1 | P2] | m:gm (Um, Tm)[co gn with U1.Q1 | Q2]
→ n:gn Vn[P2] | m:gm (Um, Tm)[{P1}U1 | Q1 | Q2]

if U ≤ U1 and T ≤ Tm

(R-to)′ n:gnVn[{to m:gm with (U, T ) . P1}U′ | P2] | m:gm (Um, Tm)[co gn with U1.Q1| Q2]
→ n:gn Vn[P2] | m:gm (Um, Tm)[{P1}U1 | Q1 | Q2]

if U ≤ U1 and T ≤ Tm

(R-comm) (x: W) . P | 〈M〉 . Q → P{x := M} | Q

Fig. 7. Operational Semantics with Tags
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The main property of the tag system is that on the one hand the tag assigned
to a process during reduction refines the policy of the enclosing ambient, on the
other hand it encompasses all the actions the process can perform while running
in that ambient. Formally, it is expressed as follows.

Theorem 2 (Correctness of Tagging). If P is a good untagged process and
P →∗ C[m:gm (Um, Tm)[{P1}U1 |P2]], then U1 ≤ Um and � P1 : (U1, Tm).

Proof. To show that the thesis holds for all the tags generated by the operational
semantics, we prove that it holds as soon as a tag is generated and that the
property is preserved by reduction. Formally, we reason by induction on the
length of the computation that generates the tag. Since by hypothesis the process
P is untagged while the process at the right of the arrow has at least one tag,
the reduction sequence must be composed of at least one step (the one that
introduces the tag). Let then Q be a process such that

P →∗ Q → C[m:gm (Um, Tm)[{P1}U1 |P2]] (4.7)

The hypotheses imply that Q is a good process (by Theorem 1) and that all
the tags occurring within Q have been generated in the computation from P .
Therefore, by induction, the thesis holds for all the tags in Q.

To prove that the thesis holds also for the tag U1, we reason by induction
on the depth of the proof of the last reduction step in (4.7). In the inductive
case, the last rule applied to infer the reduction step is a structural reduction
rule and therefore the property trivially holds. The base case is when only one
of the basic reduction rules of Fig. 7 is applied; we distinguish between process
movement and ambient movement or communication.

In the case of a process movement, the tag U1 is generated by the reduction
step. We only consider rule (R-down)′; the other cases can be dealt with similarly.
With reference to the notations of Fig. 7, we have � P1 : (U, T) by Lemma 2(3)
and U1 ≤ Um by Lemmata 1(12) and 2(2), because Q is a good process. Also, we
have U ≤ U1 and T ≤ Tm, otherwise the rule cannot fire. Hence, by Lemma 5(2),
we get � P1 : (U1, Tm), which proves the thesis.

In the case of a reduction corresponding to an ambient movement or a com-
munication, the tag U1 was already present in Q. Again, we only consider one
significant case, namely when rule (R-in)′ is applied. We refer to the notations of
Fig. 7, but with n and m exchanged. Let Vm = (Um, Tm); then we have U1 ≤ Um

and � in n:gn .P1 : (U1, Tm) by induction, because the tag U1 was generated pre-
viously. Now, U1 ≤ Um still holds because the last reduction step in (4.7) does
not change the tag, while � in n:gn .P1 : (U1, Tm) implies � P1 : (U1, Tm) by
Lemma 2(2). ��

Type safety can now be stated by exploiting tags assigned to processes.

Corollary 1 (Type Safety). Let Q be a good untagged process, and let Q →∗

C[P ] → C[P ′] where P → P ′ is obtained by applying one of the basic reduction
rules of Fig. 7. With reference to the notations of Fig. 7 we have:
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1. If P → P ′ by (R-in) or (R-out) and Vn = (Un, Tn) then gm ∈ C (Un).
2. If P → P ′ by (R-in)′ or (R-out)′ then gm ∈ C (U1).
3. If P → P ′ by (R-up), (R-down) or (R-to) and Vn = (Un, Tn) then gm ∈

E (Un).
4. If P → P ′ by (R-up)′, (R-down)′ or (R-to)′ then gm ∈ E (U′).
5. If P → P ′ by (R-comm) and P ≡ (x: W) .P1 | 〈M〉 .P2 and

C[P ] ≡ C′[n:gn (Un, Tn)[(x: W) .P1 | 〈M〉 .P2 |Q1]] then Tn = com(W) and �
M : W .

Proof. The proofs of cases 1, 3 and 5 follow from the observation that by Theo-
rem 1 C[P ] is a good process, therefore by Lemma 2 P and all its sub-processes
are good processes too. We consider case 5 as an interesting example. In or-
der to type C[P ], by Lemma 2(9) we must have � (x: W) .P1 : (Un, Tn) and
� 〈M〉 .P2 : (Un, Tn) which, by Lemma 2(7) and (8), imply that com(W) = Tn

and � M : W.
For cases 2 and 4 notice that by Theorem 2 if {P1}U1 is a sub-process of P

then � P1 : (U1, T) for some T. ��

We can therefore conclude that ambient and process moves always respect the
mobility rights represented by types, and that the types of messages exchanged
in communications always match.

As an example, we apply the previous results to the scenario described in
Section 2 and prove some behavioural and security properties of the journals.

Proposition 1. The ambient jrnk is immobile and can send processes only to
ambients of groups {gtdl1 , . . . , gtdlm}. Also, whenever pub is the only ambient of
group gpub, a process entering jrnk from an ambient of group gtdli is allowed to
send a process to an ambient of the same group, while a process from an ambient
of group gdli cannot send processes.

Proof. The ambient jrnk is immobile since its internal process is well typed with
type (〈〈∅, {gtdl1 , . . . , gtdlm}〉〉, com(paper)). Therefore by Theorem 1 and Corol-
lary 1(1) and (2) no action driving it into or out of another ambient is possible.
Similarly, by Theorem 1 and Corollary 1(3) and (4), each process inside jrnk can
send processes only to ambients belonging to the set of groups {gtdl1 , . . . , gtdlm}.

Notice that the initial co-moves in the ambient jrnk only let in processes
coming from ambients of group gpub, while the co-moves in the ambient pub
only let in ‘idle’ processes, i.e., processes that can be tagged by 〈〈∅, ∅〉〉. So, the
ambient jrnk can receive from the ambient pub only two kinds of co-moves (see
process mgr): !cogtdli with 〈〈∅, {gtdli}〉〉 and !cogdli with 〈〈∅, ∅〉〉. Therefore, a process
P entering jrnk from an ambient of group gtdli will be tagged by 〈〈∅, {gtdli}〉〉 and
so by Theorem 2 we get � P : (〈〈∅, {gtdli}〉〉, com(paper)): this, by Theorem 1 and
Corollary 1(3) and (4), means that P can send processes to ambients of group
gtdli . On the other hand, a process entering jrnk from an ambient of group gdli
will be tagged by 〈〈∅, ∅〉〉 and so it cannot send processes. ��
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5 An Exemplifying Application: The Train Scenario

In this section we focus on the modelling of a public transportation system, the
train introduced by [9], as a nice illustration of the issues related to the control
of mobility.

We want to represent a railway network connecting a set of different places
(e.g., cities) in the world. Trains move between stations, travellers may get into
and off trains only at stations and cannot drive them (no hijacking is possible).
The number of passengers in a train at any given instant cannot exceed the
number of seats; a passenger takes a seat on boarding and releases it on getting
off. Each train has a fixed route.

For the sake of simplicity, we assume that:

– There is a top-level untrusted ambient world, which includes stations, trav-
ellers, and some other unspecified process S (e.g. other means of transport);
it has mobcom type Vw, but no assumption can be made on it.

– In our intended representation different stations should be found within dif-
ferent cities or localities, and moving from one city to another would only be
possible by train. The presence of cities would however increase the size of the
example in a trivial manner, without providing more insights; we therefore
place stations directly within world, although in this way travellers appear
to use a train to end up in the same ambient world which they started from.

– There are only two stations stA and stB, and one train train commuting
between them. Initially, the train is within stA.

Stations and trains are represented by ambient processes; travellers are rep-
resented by simple processes; the number of free seats in a train is represented
by the multiplicity of the co-actions allowing to get into the train.

Since there is no communication in any considered ambient except at most in
the world, we will write for all other ambients mobcom types 〈〈C , E 〉〉 instead of
(〈〈C , E 〉〉, shh).

Stations are immobile ambients of group gst, and can have travellers both
going down into the trains (of group gtr) or up into the world (of group gw);
they can be crossed by trains, and can receive travellers with different rights
both from train and from the outside world. Stations contain also an ambient
checkOut instrumental to preserving the condition of having at most n passengers
on the train. Each station thus always contains the process:

statp 
 ! co gw with Ufrom | ! co gtr with Uto | checkOut:gcheck Ufrom[ ! co gst with Ufrom]

where Ufrom = 〈〈∅, {gtr}〉〉, Uto = 〈〈∅, {gw, gcheck}〉〉. Therefore the process statp
can be typed by the mobility type Ust = 〈〈∅, {gtr, gw, gcheck}〉〉.

The mobility types Ufrom and Uto specify the behaviours of a passenger re-
spectively in the departure station, when going to board a train, and in the
arrival station, when going to exit the station into the outside world or city and
to send a notification (through the ambient checkOut) that a seat becomes free.
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As an immediate application of Theorem 2 and Lemmata 1 and 2 passenger
behaviours must respect this policy, so for example a passenger entering the
station from the world cannot send a notification to the ambient checkOut.

The train is an ambient which can cross stations, send traveller processes into
stations and receive at most n passengers from stations, provided they behave
as good passengers (and not, for example, as drivers). The train can also receive
the notification of free seats from the ambient checkOut.

train 
 tr:gtr(〈〈{gst}, {gst}〉〉)[ co gst with Upsng | . . . | co gst with Upsng︸ ︷︷ ︸
n

|

! co gcheck with Upsng | ! out stA:gst . in stB:gst . out stB:gst . in stA:gst]

where Upsng = 〈〈∅, {gst}〉〉.
A traveller is represented by a parametric process traveller(src, dst) which

from some unspecified place in the world enters the station src to become a
passenger of a train that takes him to the station dst:

traveller(src, dst) 

down src:gst with Ufrom . down tr:gtr with Upsng . up dst:gst with Uto .
(up world:gw with Uw .P |
down checkOut:gcheck with Ufrom . to tr:gtr with Upsng . co gst with Upsng)

where Uw are the rights of passengers in the world. The traveller after exiting
the train sends a co-move to the train using the ambient checkOut.

The initial configuration is:

(νstA, stB)(world :gw(Vw)[ ! co gst with Uw | S |trvlrs(stA, stB)
| stA :gst(Ust)[train | statp] | stB :gst(Ust)[statp]
| trvlrs(stB, stA) ])

where S is unknown (the world can be dangerous!) and trvlrs(src, dst) is a par-
allel composition of traveller(src, dst) processes. The world accepts passengers
from stations, since it contains ! co gst with Uw.

A bad passenger willing to get off the train when this is not in a station,
though it may be statically well-typed, is dynamically not allowed to do so.
Suppose the bad passenger is represented by the process

badpsng 
 down tr:gtr with Ubad . up world:gw with Uw .bp

By assuming Σ � bp : Uw one may derive the typing

Σ � up world:gw with Uw .bp : Ubad with Ubad 
 〈〈∅, {gw}〉〉

Observe that the mobility type Ubad characterizes a process that, once boarded
the train, wants to go from it directly into the world. From the above, we may
infer the typing Σ � badpsng : Ust, since for that it is enough that Ust allows
the process to get into the train, i.e., gtr ∈ E (Ust).

The process badpsng is therefore statically allowed to stay within a station,
as for example in the well-typed term stA:gst Ust[badpsng |train]. Nevertheless,
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when trying at runtime to get into the train, the process is blocked. As a matter
of fact, for the action down tr:gtr withUbad to fire, it is required that Ubad ≤ Upsng,
which is not the case since Ubad = 〈〈∅, {gw}〉〉 while Upsng = 〈〈∅, {gst}〉〉: the type
Ubad allows going into the world while Upsng does not.

This should have been somehow expected, because in our calculus the dy-
namic checks, performed when co-moves are consumed, are assigned the very
task of controlling that mobile processes either respect some given policies ex-
pressed through types, or are blocked. Notice that all the previous properties are
guaranteed by exploiting in the operational semantics only information local to
the involved processes.

A similar scenario has already been modelled in [9,19,14]. In the first two
cases, the mobility control is implemented by informing the passenger when the
train has reached the station at which he wants to get off. More specifically,
in [9] a new primitive for ambient renaming is exploited. Intuitively, the train
ambient takes a suitable name to implicitly inform the passengers when it has
arrived at a certain station and to allow them to get in or off, while it takes
a name unknown to passengers when it is moving (in this way passengers can-
not get in or off the train). In [19], mobility policies are implemented through
guardians, i.e., components attached to ambients for monitoring inner activities
and interaction with the external environment. When the train arrives at a sta-
tion, the attached guardian allows passengers to get in; in addition, the train
generates a suitable ambient called announcement that informs the passengers
of the arrival at a certain station and guides the passengers willing to get off. In
[14], the mobility control is performed by exploiting dynamic checks to ensure
that mobile processes willing to get in an ambient do respect some fixed policies
expressed through types.

6 Type Inference

An inference algorithm for a typed calculus takes a raw term, i.e. a simplified
form of term with no or only partial type annotations, and reconstructs an
ordinary typed term along with a valid typing judgment for it. The first decision
to be taken when designing an algorithm therefore concerns the syntax for raw
terms.

In our calculus the naive approach of erasing all type annotations does not
work, because in this way a typing cannot always be sensibly reconstructed; we
have to leave in the term some type information, which – by taking part in the
reduction rules – actually ‘implements’ some specified behaviour of the modelled
system.

In particular, we have chosen to erase the type in the input binder and to
eliminate as many mobcom annotations as reasonable (those in the with com-
ponent of the prefixes up, down and to, and in the ambient construct); on the
other hand, the group assigned to an ambient occurrence and the group and the
mobility type within a co-move are kept, because these annotations define the
policies and the mobility constraints established by the designer of the applica-
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. . . . . . . . . . . .
R ::= raw processes
. . . . . . . . . . . .

(x) . R untyped input
down α:γ . R moves process R out from its ambient down

to an enclosed ambient α of group γ
up α:γ . R moves process R out from its ambient up

to the enclosing ambient α of group γ
to α:γ . R moves process R out from its ambient to

a sibling ambient α of group γ
α:γ[R] ambient

. . . . . . . . . . . .

Fig. 8. Raw Processes

tion. The formal definition of raw terms is given in Fig. 8, where the missing
parts are as in Fig. 1. We omit the obvious definition of the untyped version |P |
of a typed term P .

An analysis of the typing rules shows that they do not directly provide an
algorithm for inferring the typing of a term, because of three distinct problems.
The first is the implicit weakening present in the rule (Env), coupled with the
fact that the different premises of a single rule must share the same environment.
This is well known: in such cases, a more algorithmic system can be obtained by
delaying the application of weakening until the end of the inference process and
by admitting different environments in different premises.

The second problem arises from the fact that there is no uniqueness of typing:
in the rule (Null), for instance, the type of 0 has no relationship with the term.
The standard approach consists in the introduction of type variables; this alone,
however, is not sufficient here, since in some rules the type variables occurring
in the conclusion are limited in their range by conditions in the premises. For
instance, in the rule (In-I) (corresponding to rule (In)) the variable u of the ca-
pability type scheme cap(u) that types the conclusion must satisfy the constraint
of being greater than or equal to the mobility type 〈〈{γ}, ∅〉〉. We cope with this
difficulty by employing, jointly with type variables, the technique of delaying
the solution by simply recording the constraints: these will then be solved at the
very end (see e.g. Chapter 22 of [34]).

The third problem comes from having dependent types, i.e., possible occur-
rences of group variables and group names within type expressions: when a vari-
able or name γ is being bound, as in rules (Input) and (Grp Res), one must
check that such γ does not occur in the current environment and type. In the
type inference this condition is expressed by adding non-occurrence constraints,
i.e., constraints of the form γ �∈ I where I is a set of group variables or group
names. A substitution satisfies the constraint γ �∈ I when, applied to all the
variables in I, returns types without occurrences of γ.

Fig. 9 defines type schemes, i.e. a type syntax augmented with type variables
(denoted by lowercase letters): more specifically, we introduce three distinct sets
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. . . . . . . . . . . .
V ::= (U, T) mobcom (or process) type scheme

U ::= mobility type scheme
U mobility type
u mobility type variable

T ::= communication type scheme
com(W) communication of messages of type scheme W
shh no communication
t communication type variable

W ::= message type scheme
cap(U) capability type scheme
amb, group ambient and group types
w message type variable

Θ ::= environment scheme
∅ empty environment scheme
Θ, x:W environment scheme containing the assumption x:W

Fig. 9. Type Schemes

of variables respectively for mobility types, message types and communication
types. We use ξ to range over communication, message and mobility type vari-
ables and Ξ to range over communication, message and mobility type schemes.

We remark that types in raw terms can belong only to the original type
syntax, while the inference algorithm can infer (and annotate terms with) type
schemes. More precisely, the inference algorithm builds process schemes, envi-
ronment schemes and sets of constraints, defined respectively as follows.

Definition 2. 1. A process scheme is defined by the same syntax as the one of
a process in Fig. 1, except that all type decorations are type schemes instead
of types.

2. An environment scheme is defined by the same syntax as the one of an
environment in Fig. 2, except that all predicates are type schemes instead
of types.

3. A set of constraints is a set whose elements may be equalities and inequalities
(w.r.t. the relation ≤) between type schemes, and non-occurrence constraints.

We use S to range over process schemes and C to range over sets of constraints.
The input of the algorithm is either a message M or a raw term R. In the first

case the output consists of: an environment scheme Θ, the message M , a message
type scheme W and a set of constraints C. In the second case the output is given
by: an environment scheme Θ, a process scheme S, a mobcom type scheme V
and a set of constraints C. We respectively use the notations:

M =⇒〈Θ �I M : W ‖ C〉 and R =⇒〈Θ �I S : V ‖ C〉

It is easy to verify, by looking at the inference rules in Fig. 10, 11 and 12, that
the elements of a set of constraints are of the form Ξ = Ξ ′ or U ≤ u or γ �∈ I.
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To relate type inference with type assignment, type variables must be replaced
by types of the respective kinds. More precisely, a solution of a set of constraints
is defined as follows.

Definition 3. 1. A ground substitution is a total mapping from mobility vari-
ables to mobility types, from message variables to message types and from
communication variables to communication types.

2. A solution of a set of constraints C is a ground substitution ς such that
– if Ξ = Ξ ′ ∈ C then ς(Ξ) = ς(Ξ ′);
– if U ≤ u ∈ C then ς(U) ≤ ς(u);
– if γ �∈ I ∈ C then γ �∈ ς(ξ) for all ξ ∈ I.

As usual, the application of ς to Υ , written ς(Υ ), with Υ ∈ {ξ,Ξ, U, . . .}, denotes
the term obtained by replacing all the variables ξ occurring in Υ with ς(ξ).

The handling of constraints will be explained later; suffice it now to say that
we will present an algorithm solve which accepts as input a set of constraints C
and either fails or outputs a solution, as stated in Proposition 4.

For the description of the inference rules some preliminary definitions are
necessary. We need to eliminate from sets of typing assumptions those whose
subjects are not variables: let then Ω be a set of typing assumptions whose
subjects are names or variables: Ω⇓ is defined as the maximum subset containing
only assumptions whose subjects are variables, i.e., Ω⇓= {x: W | x: W ∈ Ω}.

In defining the combination of two environment schemes our choice is that
whenever they respectively contain two (generally different) assumptions with
the same subject, we take the assumption found in the leftmost environment
and add to the set of constraints the equality between the two predicates. More
precisely we define:

– the combination Θ % Θ′ of two environment schemes Θ and Θ′:

Θ % Θ′ = {x: W | x: W ∈ Θ} ∪ {x: W | x �∈ Dom(Θ) & x: W ∈ Θ′}

– the set of constraintsΘ♦Θ′ generated by the combination of two environment
schemes Θ and Θ′:

Θ♦Θ′ = {W = W′ | x: W ∈ Θ & x: W′ ∈ Θ′}.

Clearly, combination might be defined with the roles of Θ and Θ′ exchanged;
in any case the constraints obtained would be the same, as is obvious from the
symmetric nature of the operator ♦. It is also easy to verify that every solution
of the set of constraints, when applied to the combination of the two originating
environments, is the same as the union of its application to the environments
themselves, as stated by the following proposition.

Proposition 2. If ς is a solution of Θ♦Θ′ then ς(Θ % Θ′) = ς(Θ) ∪ ς(Θ′).

The inference rules are given in Fig. 10, 11 and 12. Type variables that do
not occur in the premises are assumed to be fresh; in this way, when different
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n ∈ A

n =⇒ 〈∅ �I n : amb ‖ ∅〉
(Amb Const-I)

g ∈ G

g =⇒ 〈∅ �I g : group ‖ ∅〉
(Grp Const-I)

x =⇒〈{x: w} �I x : w′ ‖ w ≤ w′〉 (Env-I)

in α:γ =⇒〈{α: amb, γ: group}⇓�I in α:γ : cap(u) ‖ {〈〈{γ}, ∅〉〉 ≤ u}〉 (In-I)

out α:γ =⇒〈{α: amb, γ: group}⇓�I out α:γ : cap(u) ‖ {〈〈{γ}, ∅〉〉 ≤ u}〉 (Out-I)

co γ with U =⇒〈{γ: group}⇓∪{x: group | x ∈ U}�I co γ withU :cap(u)‖{U ≤ u}〉 (Co-I)

χ =⇒〈Θ �I χ : W ‖ C〉 χ′ =⇒〈Θ′ �I χ′ : W′ ‖ C′〉
χ . χ′ =⇒〈Θ � Θ′ �I χ.χ′ :cap(u) ‖ C∪ C′∪{W = cap(u),W′= cap(u)}∪ Θ♦Θ′〉

(Path-I)

Fig. 10. Type Inference Rules for Messages

0 =⇒ 〈∅ �I 0 : (u, t) ‖ ∅〉 (Null-I)

χ =⇒〈Θ �I χ : W ‖ C〉 R =⇒〈Θ′ �I S : (u, t) ‖ C′〉
χ . R =⇒〈Θ � Θ′ �I χ . S : (u, t) ‖ C ∪ C′ ∪ {W = cap(u)} ∪ Θ♦Θ′〉

(Cap Prefix-I)

R =⇒〈Θ �I S : V ‖ C〉
down α:γ . R =⇒〈{α: amb, γ: group}⇓ �Θ �I down α:γ with V . S : (u, t) ‖ C′〉

(Down-I)

where C′ = C ∪ {〈〈∅, {γ}〉〉 ≤ u} ∪ {α: amb, γ: group}⇓ ♦Θ

R =⇒〈Θ �I S : V ‖ C〉
up α:γ . R =⇒〈{α: amb, γ: group}⇓ �Θ �I up α:γ with V . S : (u, t) ‖ C′〉

(Up-I)

where C′ = C ∪ {〈〈∅, {γ}〉〉 ≤ u} ∪ {α: amb, γ: group}⇓ ♦Θ

R =⇒〈Θ �I S : V ‖ C〉
to α:γ . R =⇒〈{α: amb, γ: group}⇓ �Θ �I to α:γ with V . S : (u, t) ‖ C′〉

(To-I)

where C′ = C ∪ {〈〈∅, {γ}〉〉 ≤ u} ∪ {α: amb, γ: group}⇓ ♦Θ

Fig. 11. Type Inference Rules for Raw Processes I

derivations are pasted together in a multiple-premise rule, their variables are all
distinct.

Rules (Amb Const-I) and (Grp Const-I) are very similar to (Amb Const)
and (Grp Const): the only difference is in the inferred environment, which is
empty as is the constraint set. Similarly in (Env-I) the minimal environment is
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R =⇒〈Θ �I S : (u, t) ‖ C〉
(x) . R =⇒〈Θ↓x �I (x: w) . S : (u, t) ‖ C ∪ {t = com(w), x �∈ I} ∪ {x: w}♦Θ〉

(Input-I)

where I = {w | w ∈ Θ↓x} ∪ {u, t}

R =⇒〈Θ �I S : (u, t) ‖ C〉 M =⇒〈Θ′ �I M : W ‖ C′〉
〈M〉 . R =⇒〈Θ � Θ′ �I 〈M〉 . S : (u, t) ‖ C ∪ C′ ∪ {t = com(W)} ∪ Θ♦Θ′〉

(Output-I)

R =⇒〈Θ �I S : V ‖ C〉
α:γ[R]=⇒〈{α: amb, γ: group}⇓�Θ�I α:γV[S] :(u, t)‖ C∪{α: amb, γ: group}⇓♦Θ〉

(Amb-I)

R =⇒〈Θ �I S : (u, t) ‖ C〉 R′ =⇒〈Θ′ �I S′ : (u′, t′) ‖ C′〉
R | R′ =⇒〈Θ � Θ′ �I S | S′ : (u, t) ‖ C ∪ C′ ∪ {u = u′, t = t′} ∪ Θ♦Θ′〉

(Par-I)

R =⇒〈Θ �I S : V ‖ C〉
! R =⇒〈Θ �I ! S : V ‖ C〉

(Repl-I)
R =⇒〈Θ �I S : V ‖ C〉

(νn)R =⇒〈Θ �I (νn)S : V ‖ C〉
(Amb Res-I)

R =⇒〈Θ �I S : V ‖ C〉
(νg)R =⇒〈Θ �I (νg)S : V ‖ C ∪ g �∈ {ξ | ξ ∈ Θ ∨ ξ ∈ V}〉

(Grp Res-I)

Fig. 12. Type Inference Rules for Raw Processes II

inferred; the inferred type scheme is a fresh message type variable which must be
greater than or equal to the message type variable assumed for the term variable
in the environment.

Rules (In-I) and (Out-I) are the first interesting cases, because they show
how the typing rules are adapted to the inference framework. The condition γ ∈
C in rules (In) and (Out) becomes the constraint 〈〈{γ}, ∅〉〉 ≤ u, where u is the
fresh mobility type variable such that cap(u) is the type scheme inferred for the
capability. The assumptions α: amb and γ: group are added to the environment
scheme only if α, γ are variables. To avoid writing several different rules we build
the set {α: amb, γ: group} and then obtain an environment scheme by filtering it
through the operator ⇓.

In rule (Co-I) we add to the environment (scheme) all the variables that occur
in the mobility type U and we assume for them the type group. The resulting
mobility type scheme is cap(u), where u is a fresh variable constrained to be
greater than or equal to U.

In rule (Path-I) it is easy to verify that W and W′ can be either message
type variables or capability type schemes containing only mobility variables.
Besides, W (respectively W′) is a message type variable iff χ (respectively χ′)
is a variable. In both cases it is necessary that the mobility rights of the path
are equal to those of the components. This is accomplished by requiring that
W = W′ = cap(u), where the fresh variable u represents the mobility rights of
χ, χ′ and χ .χ′. We keep track of the previous constraints C and C′ by adding
them to the new constraint set. In addition, the environment schemes of the
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premises are combined using the operator % and the equalities generated by the
application of ♦ to these environments are added to the set of constraints.

For the 0 process we derive the parametric mobcom type scheme (u, t) from
the empty environment and we do not require any constraint.

Rule (Cap Prefix-I) is similar to rule (Path-I): the message type scheme
variable representing the mobility rights of the capability must be equal to
cap(u), where the mobility variable u represents the mobility rights of the whole
process.

In the rules for the process-moving prefixes (Down-I)–(To-I) we decorate
the prefix (after the keyword with) with the mobcom type scheme of the process
to be sent. For the type scheme of the whole process we only require that it
expresses the right to send a process to an ambient of group γ: this is ensured
by the constraint 〈〈∅, {γ}〉〉 ≤ u. As in rules (In-I) and (Out-I), we add to the
environment scheme the premises α: amb and γ: group only if α, γ are variables.

In rule (Input-I) the communication type scheme t is equated with com(w)
where w is a fresh message variable, the input binder is annotated with w, and
x is removed from the environment. In fact Θ↓x is defined as {y: W | y: W ∈
Θ & y �= x}. We add to the set of constraints the equality (if any) generated
by combining the assumption x: w with the environment scheme of the premise.
In order to take into account the conditions x �∈ Σ and x �∈ (U, com(W)) of rule
(Input) we add the constraint x �∈ {w | w ∈ Θ↓x} ∪ {u, t}.

Rule (Output-I) is similar but simpler: we equate the communication type
scheme t of the process scheme with com(W) where W is the message type scheme
of the output. We deal with the environment schemes and the constraints of the
premises as in rule (Cap Prefix-I).

In rule (Amb-I) the mobcom type scheme of the ambient is the mobcom type
scheme of the enclosed process scheme and the mobcom type scheme of the whole
process scheme is just (u, t) with u and t fresh.

Rule (Par-I) needs to ensure that the two process schemes have the same
mobcom type scheme: this is achieved by adding to the constraint set the equality
between the mobility variables and the communication type schemes of these
process schemes.

Finally, in rule (Grp Res-I) we need to ensure that g will not appear in the
environment or in the process type: this is accomplished by adding the constraint
g �∈ {ξ | ξ ∈ Θ ∨ ξ ∈ V}.

The following properties of the inference rules can be easily proved by inspec-
tion of the rules themselves.

Proposition 3. Let R =⇒〈Θ �I S : V ‖ C〉. Then:

1. x: W ∈ Θ implies W ∈ {w, amb, group} for some w;
2. V = (u, t) for some u, t;
3. C = C= ∪ C≤ ∪ C �∈ where:

(a) C= is a set of equalities of the following forms (equalities symmetric of
the listed ones are omitted):

amb = amb group = group amb = group amb = cap(u)
group = cap(u) t = t′ w = w′ u = u′
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t = com(amb) t = com(group) t = com(w) t = com(cap(u))
w = amb w = group w = cap(u) cap(u) = cap(u′)

(b) C≤ is a set of subtyping judgments of the form w ≤ w′ and U ≤ u;
(c) C �∈ is a set of constraints of the form γ �∈ {w1, . . . , wk, u, t} where k ≥ 0.

We are now going to describe a procedure solve which, applied to a set of
constraints, checks if it is solvable. If the set of constraints is solvable solve
generates a particular solution of it, otherwise fails. The procedure makes use
of three sub-procedures, executed in sequence: solve=, which solves the equality
constraints; solve≤, which solves the inequalities; and solve�∈, which checks the
non-occurrence conditions. Any of the three may fail; in this case the set of
constraints has no solution, the algorithm stops and the given term is not typable.
If all succeed, then solve provides a solution.

The procedure solve= applies the standard unification algorithm to C=. By
Proposition 3(3a), C= is a set of equations, therefore solve= either fails or returns
a substitution σ= which is a most general unifier. It is easy to verify that σ=
maps communication type variables to communication type schemes different
from shh, message type variables to message type schemes and mobility type
variables to mobility type variables.

If C= is solvable, then the main procedure solve applies the substitution σ= to
both sides of the subtyping judgments in C≤, thus obtaining a set of subtyping
judgments C1

≤. Since the subtyping judgments in C≤ are of the forms U ≤ u and
w ≤ w′, then C1

≤ contains only judgments of the forms U ≤ u and W ≤ W′,
where W and W′ are either amb, or group, or capability type schemes cap(u), or
message type variables w.

The procedure solve≤ starts by defining a substitution σW from message type
variables that occur in C1

≤ to message type schemes. To this end we build the
transitive closure of the relation ≤ in C1

≤, i.e., we add W1 ≤ W3 to C1
≤ whenever

W1 ≤ W2 and W2 ≤ W3 are in it, for some W2. Let C2
≤ be the resulting set of

inequalities.
Assume initially σW as the trivial identity substitution and repeat the following

steps (which transform both σW and C2
≤) until possible:

1. for all w such that amb ≤ w or w ≤ amb set σW(w) = amb and replace w
with amb in C2

≤;
2. for all w such that group ≤ w or w ≤ group set σW(w) = group and replace

w with group in C2
≤;

3. for all w such that cap(u′) ≤ w or w ≤ cap(u′) set σW(w) = cap(u), where u
is fresh, and replace w with cap(u) in C2

≤.

At the end, define σW(w) = group for all remaining message type variables w and
replace them accordingly in C2

≤. Let C3
≤ be the so obtained set of constraints.

For instance, if C2
≤ = {w1 ≤ w2, w1 ≤ group}, after the first iteration we get

σW = id{w1 := group} (where id is the identity substitution) and C2
≤ = {group ≤

w2, group ≤ group} and after the second iteration σW = id{w1 := group, w2 :=
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group} and C2
≤ = C3

≤ = {group ≤ group}. Note the need, in defining σW, to iterate
the previous steps more than once.

If C3
≤ is inconsistent (i.e., if it contains inequalities involving amb and group,

or amb and cap(u), or cap(u) and group) then solve≤ fails. Otherwise the non-
trivial subtyping judgments in C3

≤ are of the forms cap(u) ≤ cap(u′) and U ≤ u.
The procedure solve≤ applies the following transformations to C3

≤:

– replace 〈〈C , E 〉〉 ≤ u and 〈〈C ′, E ′〉〉 ≤ u with 〈〈C ∪ C ′, E ∪ E ′〉〉 ≤ u
– add U ≤ u whenever cap(u′) ≤ cap(u) and U ≤ u′

until a fixed point C4
≤ is reached. Now define for all mobility variables u:

σU(u) =

{
U if U ≤ u ∈ C4

≤,

〈〈∅, ∅〉〉 otherwise.

Finally, the main procedure solve calls solve�∈, which checks the satisfiability
of the constraints in C �∈. If there are γ and ξ such that the constraint γ �∈ I is
in C �∈, and ξ ∈ I and γ ∈ σU ◦ σW ◦ σ=(ξ), then the result of solve�∈ is failure;
otherwise solve�∈ returns success.

For the output of solve to be a ground substitution, the remaining commu-
nication type variables must be replaced by types; then, only in the case solve�∈
returned success, define:

σT(t) = shh

The output of the whole procedure solve is finally defined as

solve(C) =

{
σT ◦ σU ◦ σW ◦ σ= if all substitutions are defined,
failure otherwise.

The proof of the following proposition is straightforward:

Proposition 4. If the set of constraints C is solvable then solve(C) is a solution
of C. Vice versa, if C is not solvable then solve(C) fails.

In the rest of this section we will prove soundness and completeness of our in-
ference algorithm. Crucial here is the treatment of free and bound variables.
While the type assignment system considers processes modulo renaming of
bound variables and names, the inference procedure cannot, since bound vari-
ables and names may appear in the set of constraints. For instance, we get

(x) . to n:g . co g′ with 〈〈{x}, ∅〉〉 . 0 =⇒〈 �I S0 : (u, t) ‖ C0〉

where
S0 = (x: w) . to n:g with (u′, t′) . co g′ with 〈〈{x}, ∅〉〉 . 0

and

C0 = { 〈〈{x}, ∅〉〉 ≤ u′′, cap(u′′) = cap(u′), 〈〈∅, {g}〉〉 ≤ u, t = com(w), w = group,
x /∈ {u, t}}.
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Note that C0 contains constraints involving the bound variable x. The substi-
tution ς0 = solve(C0) for the current variables is defined by ς0(u′′) = ς0(u′) =
〈〈{x}, ∅〉〉, ς0(u) = 〈〈∅, {g}〉〉, ς0(t) = com(group), ς0(w) = group, ς0(t′) = shh. As
will follow from Theorem 3, applying ς0 to the inferred process scheme S0 gives
a good process; however, to be able to apply ς0, we are forced to introduce an
occurrence of x in the scope of the binder, because u′ must be replaced with
〈〈{x}, ∅〉〉. We conclude that:

when we apply a substitution to a process scheme in the scope of a
binder, we need to allow capturing of group variables and names.

Therefore, following the ‘nomenclature’ of [16], we say that type variables are
replaced by types.

As regards soundness, note that if the statement M =⇒〈Θ �I M : W ‖ C〉 is
derivable from the type inference rules and ς is a solution of C, then ς(Θ) may
not be a good environment because the mobility types appearing in it might
contain variables which either are assigned a type different from group or are
not in its domain. To obtain a deducible typing judgment we therefore have to
require that the enlarged environment ς(Θ) ∪ Σ is a good environment, where
the domain of Σ contains the missing group variables. The case of statements
of the form R =⇒〈Θ �I S : V ‖ C〉 is analogous.

Theorem 3 (Soundness of Inference).

1. If M =⇒〈Θ �I M : W ‖ C〉 holds and ς is a solution of C such that ς(Θ)∪Σ
is good, with Σ = {x: group | ∃ξ . (ξ∈Θ ∨ ξ∈W) ∧ x∈ ς(ξ)}, then the typing
ς(Θ) ∪Σ � ς(M) : ς(W) is derivable.

2. If R =⇒〈Θ �I S : V ‖ C〉 holds, then |S| = R; also, if ς is a solution of C such
that ς(Θ)∪Σ is good, with Σ = {x: group | ∃ξ . (ξ∈Θ∨ξ∈S∨ξ∈V)∧x∈ς(ξ)},
then the typing ς(Θ) ∪Σ � ς(S) : ς(V) is derivable.

Proof. The proofs of (1) and (2) are respectively by induction on the derivations
of M =⇒ 〈Θ �I M : W ‖ C〉 and R =⇒ 〈Θ �I S : V ‖ C〉. We only consider two
representative cases.

Let the last rule applied be (Cap Prefix-I):

χ =⇒〈Θ �I χ : W ‖ C〉 R =⇒〈Θ′ �I S : (u, t) ‖ C′〉
χ .R =⇒〈Θ % Θ′ �I χ . S : (u, t) ‖ C ∪ C′ ∪ {W = cap(u)} ∪Θ♦Θ′〉

The theorem’s first conclusion |χ . S| = χ .R is immediate since |χ . S| = χ . |S|
and by induction |S| = R. As for the second and more important conclusion,
first of all observe that a solution ς of the set of constraints C ∪ C′ ∪ {W =
cap(u)}∪Θ♦Θ′ is also a solution of C, C′, and Θ♦Θ′. A first consequence is that
by Proposition 2 one has ς(Θ % Θ′) = ς(Θ) ∪ ς(Θ′). Now put

Σ = {x: group | ∃ξ . (ξ∈Θ ∨ ξ∈W) ∧ x∈ς(ξ)};
Σ′ = {x: group | ∃ξ . (ξ∈Θ′ ∨ ξ∈S ∨ ξ∈(u, t)) ∧ x∈ς(ξ)};
Σ′′ = {x: group | ∃ξ . (ξ∈(Θ % Θ′) ∨ ξ∈(χ . S) ∨ ξ∈(u, t)) ∧ x∈ς(ξ)}.
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The constraint W = cap(u) implies ς(W) = ς(cap(u)) and then Σ′′ = Σ ∪ Σ′.
If we assume that Σ′′ ∪ (Θ % Θ′) is a good environment, then so are Σ ∪Θ and
Σ′ ∪Θ′; then by (1) we get ς(Θ) ∪Σ � ς(χ): ς(W), and by induction on (2) we
get ς(Θ′) ∪Σ′ � ς(S): ς((u, t)).

By weakening (Lemma 4(3)) we have ς(Θ % Θ′) ∪ Σ′′ � ς(χ): ς(W) and also
ς(Θ % Θ′) ∪ Σ′′ � ς(S): ς((u, t)). Being ς(W) = ς(cap(u)) we can conclude by
applying the rule (Cap Prefix).

Consider now the case where the last rule applied is (Input-I):

R =⇒〈Θ �I S : (u, t) ‖ C〉
(x) .R =⇒〈Θ↓x �I (x: w) . S : (u, t) ‖ C ∪ {t = com(w), x �∈ I} ∪ {x: w}♦Θ〉

where I = {w | w ∈ Θ↓x}∪{u, t}. Since by hypothesis ς solves x �∈ I, we get x �∈
ς(Θ↓x) and x �∈ ς((u, t)). As in the previous case, by induction, by Proposition 2
and by Lemma 4(3) we get ς({x: w} % Θ) ∪ Σ � ς(S): ς((u, t)), with Σ properly
defined following the type inference rule. By definition {x: w}%Θ = {x: w}∪Θ↓x
and the constraint {t = com(w)} implies ς(t) = ς(com(w)). So we conclude by
applying the rule (Input). ��

It is not surprising that the output of solve turns out to produce a derivable
statement:

Corollary 2. If R =⇒ 〈Θ �I S : V ‖ C〉 and ς = solve(C), then ς(Θ) � ς(S) :
ς(V) is derivable.

Proof. By inspection of the type inference rules and of the solve procedure it is
easy to check that if x occurs in the range of solve(C) then R contains a co-move
coγ with U for some γ, U such that x ∈ U. By rule (Co-I) the assumption x: group
is in Θ; therefore {x: group | ∃ξ . (ξ∈Θ ∨ ξ∈S ∨ ξ∈V) ∧ x∈ ς(ξ)} is a subset of
Θ, and we can conclude by Theorem 3. ��

We can state and prove completeness as expected.

Theorem 4 (Completeness of Inference).

1. If Σ � M : W, then M =⇒ 〈Θ �I M : W ‖ C〉 and there is a solution ς of C
such that ς(Θ) ⊆ Σ and ς(W) = W.

2. If Σ � P : V, then |P | =⇒ 〈Θ �I S : V ‖ C〉 and there is a solution ς of C
such that ς(Θ) ⊆ Σ and ς(S) = P and ς(V) = V.

Proof. The proofs of (1) and (2) are respectively by induction on the derivations
of Σ � M : W and Σ � P : V. We only consider some representative cases.

If the last rule applied is (Cap Prefix):

Σ � χ : cap(U) Σ � P : (U, T)

Σ � χ.P : (U, T)

then
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– by (1), χ =⇒ 〈Θ �I χ : W ‖ C〉 and there is a solution ς1 of C such that
ς1(Θ) ⊆ Σ and ς1(W) = cap(U);

– by induction on (2), |P | =⇒ 〈Θ′ �I S : (u, t) ‖ C′〉 and there is a solution ς2
of C′ such that ς2(Θ′) ⊆ Σ and ς2(S) = P and ς2((u, t)) = (U, T).

By rule (Cap Prefix-I) we get:

χ =⇒〈Θ �I χ : W ‖ C〉 |P | =⇒〈Θ′ �I S : (u, t) ‖ C′〉
χ . |P | =⇒〈Θ % Θ′ �I χ . S : (u, t) ‖ C ∪ C′ ∪ {W = cap(u)} ∪Θ♦Θ′〉

We can assume that the sets of type variables which occur free in C and C′ are
disjoint and define for all type variables ξ:

ς(ξ) =

{
ς1(ξ) if ξ ∈ C,
ς2(ξ) otherwise.

By construction ς is a solution of both C and C′. Moreover, since ς(W) = cap(U)
and ς((u, t)) = (U, T), the substitution ς solves the constraint W = cap(u). Lastly,
ς(Θ) ⊆ Σ and ς(Θ′) ⊆ Σ imply that for all term variables x if x: w ∈ Θ and
x: w′ ∈ Θ′ then ς(w) = ς(w′), i.e., ς is also a solution of Θ♦Θ′. By Proposition 2
this implies ς(Θ % Θ′) = ς(Θ) ∪ ς(Θ′) and then we get ς(Θ % Θ′) ⊆ Σ.

If the last rule applied is (Input):

Σ, x: W � P : (U, com(W)) x �∈ Σ x �∈ (U, com(W))

Σ � (x: W) .P : (U, com(W))

then by induction |P | =⇒ 〈Θ �I S : (u, t) ‖ C〉 and there is a solution ς of
C such that ς(Θ) ⊆ Σ, x: W and ς(S) = P and ς((u, t)) = (U, com(W)). Since
ς(t) = com(W) and ς(Θ) ⊆ Σ, x: W, the substitution ς is also a solution of {t =
com(w)} ∪ {x: w}♦Θ. The condition x �∈ Σ implies x �∈ ς(Θ↓x); moreover x �∈
(U, com(W)). Therefore ς satisfies also the constraint x �∈ {w | w ∈ Θ↓x} ∪ {u, t}.

��

7 Conclusions and Related Work

We have introduced a variant of the Calculus of Mobile Ambients (MA) that
combines ambient and process mobility and allows the expression of flexible
policies for controlling process activities. The calculus exploits co-move actions
and runtime type checking to require the agreement between a moving process
and the target ambient (similar mechanisms could also be used for ambient
movements, but we have omitted them for the sake of simplicity). Policies can
dynamically change due to further co-moves being added to an ambient, either
by means of process movements or indirectly through communication. The op-
erational semantics and the type assignment system ensure that an incoming
process conforms to the policy of the target ambient. The compliance with am-
bient policies can be checked locally and requires no global assumption. We
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have defined a sound and complete type inference algorithm and illustrated a
few applications of our framework to examples.

As future work, we are considering ways of increasing the expressive power of
our type system so as to be able to express stronger properties. For instance, in-
coming processes are only checked against mobility capabilities. No check about
their input/output behaviour is currently done, except that their communication
type must comply with the communication type of the entered ambient. Instead,
one could need a more strict control as, for example, in the scenario of Section 2
where reader processes entering a journal could be allowed only to read (i.e.,
input) papers, not to write (i.e., output) them. This would require distinguish-
ing between input and output, as is usually done in calculi with channel-based
communication (see, e.g., [35]). One could also obtain more informative policies
by asking that the operation of ambient creation be subject to authorization.
This would be especially significant when creating ambients of known groups, in
which case, in general, one may expect they behave in a controlled way.

Related Work

Modelling wide-area distributed systems requires that the space of locations
and the mobility in such space are taken into account as new dimensions of
computing. Most foundational languages proposed in the literature model this
space either as an evolving graph of fully connected locations, like the Dπ [27] and
the language Klaim [17], or as an evolving forest of trees of locations, like MA
[12] and its variants. Some recent proposals explicitly handling the underlying
network topology are tKlaim [18] and DπF [20]. An interesting core model
generalizing many of the available calculi and languages has been developed
within the Mikado project [5].

Many variants of MA have been defined: for a survey see [21]. A crucial
choice in all these calculi is the form of interaction between processes in differ-
ent ambients. In the original calculus [12] interaction is only local to an ambient,
and for processes in different ambients to communicate, at least one of the am-
bients’ boundaries has to be dissolved by means of the open capability. This
approach has also been used in [12,29,6,31,1]. However, the open capability has
been considered by many researchers as potentially dangerous, because it could
be inadvertently or maliciously used to destroy an ambient’s individuality (by
dissolving its boundary). Therefore, several variants of MA have been proposed
which either are equipped with additional constructs for controlling the execu-
tion of open, like the co-moves of Safe Ambients [29] (used with modifications
also in [6,31,32,8]), or replace it with other interaction-enabling mechanisms:
among them, we mention communication between nested ambients in Boxed
Ambients [7,32,8] and in Seal calculus [13], and process (objective) mobility in
[15,14]. To ensure and enforce behavioural properties, in particular those con-
cerning resource access, communication, mobility and security, ambient calculi
are usually typed [10,29,11,6,1,7,31,32,8,30].

The calculus presented in this paper is derived from the variant of M3 pre-
sented in [14]. However, the two calculi use different authorization mechanisms.
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In [14], rights to cross or enter an ambient are recorded as passive components
(i.e., multisets of rights attached to the ambient); here, authorization relies on
co-moves and rights, which allow more flexible policies. Also the mechanisms
used to pass permits are different: in [14] specific primitives are used to add
permissions to the multisets attached to ambients; the mechanism used in this
paper, on the contrary, has been somehow inspired by [24], where policies to
access network resources can dynamically change due to communication of per-
missions.

Before the present calculus, only the calculi of [26,28,6,24,4,23], to our knowl-
edge, considered type information local to computational environments, while in
the other proposals there is a global environment containing all typing assump-
tions. In [26,24,28,23] local type information is sufficient because processes are
dynamically checked whenever they migrate, which prevents processes not com-
plying with the policies of a locality to get in. This is similar to our approach,
though their computational environments are not hierarchically structured. To
reduce the amount of dynamic controls, in [28] a relation of trust among nodes
is exploited; thus, a process coming from a trusted node is never dynamically
type-checked. In [23] each location comes equipped with a membrane that con-
trols access by type-checking the incoming processes. The presence of the open
capability requires in [6] a careful updating of the local type information of am-
bients when they migrate. The aim of types in [4] is dual to ours: the type system
ensures a liberal but safe communication policy, so that ambient movements are
only allowed when this does not break the soundness of data exchanges. Also,
the calculus of [4] is a variant of Boxed Ambients and therefore communication
may cross one ambient boundary.

Dependent types have been widely used in the framework of the calculus Dπ
(see, e.g., [25]) to restrict capabilities of processes launched by incoming code. To
our knowledge, the type system of [30], where types directly depend on ambient
variables, is the only with dependent types for variants of MA. Our type system
is simpler but less precise than the one of [30] in the specification of ambient
behaviours, since in our approach all ambients of the same group share the same
“passive” behaviour.

The first type inference algorithm for MA was presented in [36]. Other algo-
rithms for variants of typed ambient calculi can be found in [2] and [15]. The
main challenge in the design of the inference algorithm presented in this paper
has been the handling of dependent types, an issue not addressed by any of the
above.
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Abstract. We present a first-order extension of the algebraic theory
about processes known as ACP and its main models. Useful predicates
on processes, such as deadlock freedom and determinism, can be added
to this theory through first-order definitional extensions. Model theory
is used to analyse the discrepancies between identity in the models of the
first-order extension of ACP and bisimilarity of the transition systems
extracted from these models, and also the discrepancies between dead-
lock freedom in the models of a suitable first-order definitional extension
of this theory and deadlock freedom of the transition systems extracted
from these models. First-order definitions are material to the formaliza-
tion of an interpretation of one theory about processes in another. We
give a comprehensive example of such an interpretation too.

1 Introduction

Model theory is for some time now a very active branch of mathematical logic.
Therefore, it looks to be worthwhile to introduce various techniques from model
theory into the field of process algebra. This forms the greater part of our mo-
tivation to take up the work presented in this paper. With great pleasure, we
contribute this paper to the Liber Amicorum in honor of the 60th birthday of
Jan Willem Klop.

Usually, theories about processes such as ACP [1, 2] and CCS [3, 4] are equa-
tionally axiomatized. However, it is also possible to give first-order theories. An
important advantage of a first-order approach is that it makes available the tool
of first-order definition of predicates and operations on processes.

In this paper, we present a first-order extension of ACP and its main models.
The first-order extension concerned includes a binary reachability predicate on
processes with an associated first-order axiom schema for subprocess induction.
The reachability predicate can be used to give first-order definitions of many
general properties of processes, such as deadlock freedom and determinism, and
the axiom schema for subprocess induction can then be used to verify whether
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processes have these properties. This is one of the interesting applications of
first-order definitions of predicates on processes.

First-order definitions of predicates and operations on processes are generally
indispensable for the formalization of an interpretation of one theory about pro-
cesses in another. For example, a first-order definition of the deadlock freedom
predicate permits the formalization of the interpretation of BPA in BPAδ [2]
(both are subtheories of ACP). By first-order definitions of operations on pro-
cesses, we are able to formalize more complicated interpretations, such as the
interpretation of BPPA [5, 6] in the first-order extension of ACP. If one theory
is interpretable in another theory, then a model of the former theory can be
obtained from each model of the latter theory by taking a submodel of a re-
striction of an expansion by definitions. The expansion concerns the first-order
definable operations on processes needed in the formalization of the interpreta-
tion concerned; and the first-order definable predicate on processes needed in the
formalization of the interpretation determines the domain of the submodel. This
technique to construct models can be regarded as a first-order generalization of
the SRM-technique from [7].

In this paper, we analyse the discrepancies between identity in the models of
the first-order extension of ACP and external bisimilarity, i.e. bisimilarity of the
transition systems extracted from these models. Besides external bisimilarity,
we pay attention to observational equivalence; and we have a look at other
related issues such as bisimilarity based on structural operational semantics and
modal characterization of external bisimilarity. We also analyse the discrepancies
between deadlock freedom in the models of a suitable first-order definitional
extension of the first-order extension of ACP and external deadlock freedom,
i.e. deadlock freedom of the transition systems extracted from these models.
Additionally, we briefly consider the comparable discrepancies for determinism.

It happens that the first-order extension of BPAδ, which is a subtheory of
the first-order extension of ACP, gets great expressive power in case it is ex-
tended with restricted reachability predicates. Even the first-order extension of
ACP can be interpreted in it. In this paper, we formalize the interpretation con-
cerned. Thus, we provide a comprehensive example of the formalization of an
interpretation of one theory about processes in another.

The structure of this paper is as follows. First of all, we introduce BPAfo
δ ,

the (finitary) first-order extension of an important subtheory of ACP, to wit
BPAδ (Sect. 2). Next, we consider some useful infinitary and second-order ax-
ioms (Sect. 3). After that, we introduce transition systems, bisimilarity of tran-
sition systems (Sect. 4) and full bisimulation models, the main models of BPAfo

δ

(Sect. 5). Thereupon, we analyse the discrepancies between external bisimilarity
and identity in models of BPAfo

δ (Sect. 6) and investigate the related external
equivalence known as observational equivalence (Sect. 7). Following this, we have
a closer look at bisimilarity based on structural operational semantics (Sect. 8)
and the modal characterization of external bisimilarity (Sect. 9). Then, we ex-
tend BPAfo

δ with a deadlock freedom predicate and analyse the discrepancies
between external deadlock freedom and internal deadlock freedom in models
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of the extension of BPAfo
δ concerned (Sect. 10). We also briefly consider the

extension with a determinism predicate (Sect. 11). After that, we consider the
addition of restricted reachability predicates to BPAfo

δ (Sect. 12). Next, we intro-
duce ACPfo, the first-order extension of ACP (Sect. 13) and the full bisimulation
models of ACPfo (Sect. 14). Thereupon, we consider interpretations of one the-
ory in another (Sect. 15) and give as an example the interpretation of ACPfo in
the extension of BPAfo

δ with restricted reachability predicates (Sect. 16). Finally,
we make some concluding remarks (Sect. 17).

Some familiarity with model theory is required. The desirable background can
be found in [8, 9, 10].

2 The First-Order Theory BPAfo
δ

In this section, we present BPAfo
δ , a first-order extension of an important sub-

theory of ACP, being known as BPAδ. In BPAfo
δ , it is assumed that there is a

fixed but arbitrary finite set of actions A with δ �∈ A.
The first-order theory BPAfo

δ has the following nonlogical symbols:

– the deadlock constant δ;
– for each a ∈ A, the action constant a;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary summand inclusion predicate symbol # ;
– for each a ∈ A, the unary action termination predicate symbol a−→√;
– for each a ∈ A, the binary action step predicate symbol a−→ ;
– the binary reachability predicate symbol →→ .

We use infix notation for the binary operators, postfix notation for the unary
predicate symbols and infix notation for the binary predicate symbols. The fol-
lowing precedence conventions are used to reduce the need for parentheses. Oper-
ators bind stronger than predicate symbols, and predicate symbols bind stronger
than logical connectives and quantifiers. Moreover, the operator · binds stronger
than the operator +, the logical connective ¬ binds stronger than the logical
connectives ∧ and ∨ , and the logical connectives ∧ and ∨ bind stronger than
the logical connectives ⇒ and ⇔ . Quantifiers are given the smallest possible
scope. We often use t �= t′, where t and t′ are terms of L(BPAfo

δ ), as a shorthand
for ¬ t = t′.

The constants and operators of BPAfo
δ are the same as the constants and op-

erators of BPAδ. The additional nonlogical symbols of BPAfo
δ are all predicate

symbols. In the context of BPAδ, the summand inclusion predicate symbol is
sometimes used in abbreviations for equations expressing summand inclusions.
The action termination and action step predicate symbols are used in the de-
scription of the structural operational semantics of BPAδ. That usage is related
to the usage in the theory BPAfo

δ , but the one should not be mistaken for the
other. A similar remark applies to the reachability predicate symbol.

Let t and t′ be closed terms of L(BPAfo
δ ). Intuitively, the constants and op-

erators can be explained as follows:
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– δ cannot perform any action;
– a first performs action a and then terminates successfully;
– t+ t′ behaves either as t or as t′, but not both;
– t · t′ first behaves as t, but when t terminates succesfully it continues by

behaving as t′.

Intuitively, the predicates can be explained as follows:

– t # t′ means that t′ is capable of behaving as t;
– t

a−→√ means that t is capable of performing action a and then terminating
successfully;

– t a−→ t′ means that t is capable of performing action a and then behaving
as t′;

– t →→ t′ means that t is capable of performing a number of actions and then
behaving as t′.

Before we give the axioms of BPAfo
δ , we introduce an important notational

convention which will be used throughout this paper. If we introduce a term t
as t(x1, . . . , xn), where x1, . . . , xn are distinct variables, this indicates that all
variables that have occurrences in t are among x1, . . . , xn. In the same context,
t(t1, . . . , tn) is the term obtained by simultaneously replacing in t all occurrences
of x1 by t1 and . . . and all occurrences of xn by tn. Similarly, if we introduce a
formula φ as φ(x1, . . . , xn), where x1, . . . , xn are distinct variables, this indicates
that all variables that have free occurrences in φ are among x1, . . . , xn. In the
same context, φ(t1, . . . , tn) is the formula obtained by simultaneously replacing
in φ all free occurrences of x1 by t1 and . . . and all free occurrences of xn by tn.
Bound variables are first renamed if needed to avoid free occurrences of variables
in the replacing terms becoming bound.

The axioms of BPAfo
δ are given in Table 1. Many axioms in this table are actu-

ally axiom schemas. RDPf and RSPf are axiom schemas where t1(x1, . . . , xn), . . . ,
tn(x1, . . . , xn) are terms of L(BPAfo

δ ) in which all occurrences of variables are
guarded. We call an occurrence of a variable x in a term t guarded if t has a
subterm of the form a · t′ with t′ containing this occurrence of x. BS and RS
are axiom schemas where φ(x, y) is a formula of L(BPAfo

δ ). SI2–SI9, TR1–TR2
and R2 are axiom schemas where a and b are action constants. The instances of
axiom schema SI4 are restricted by a side condition to those in which a is not
(syntactically) identical to b.

Axioms A1–A7 are the axioms of BPAδ. So BPAfo
δ imports the (equational)

axioms of BPAδ. Axiom schemas RDPf and RSPf are relevant to the use of
recursion for describing (potentially) non-terminating processes. They will be
explained separately below. Axiom SI1 is the defining axiom of the summand in-
clusion predicate. Axiom schemas SI2–SI9 exclude models that identify processes
that cannot be related by a bisimulation (a precise definition of bisimulation is
given in Sect. 4). Axiom SI10 is an extensionality axiom for summand inclusion.
The instances of axiom schema TR1 are the defining axioms of the action ter-
mination predicates and the instances of axiom schema TR2 are the defining



Model Theory for Process Algebra 449

Table 1. Axioms of BPAfo
δ (in t1, . . . , tn all occurrences of variables must be guarded)

x + y = y + x A1

(x + y) + z = x + (y + z) A2

x + x = x A3

(x + y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x + δ = x A6

δ · x = δ A7

∃x1, . . . , xn • 1≤i≤nxi = ti(x1, . . . , xn) RDPf

1≤i≤nxi = ti(x1, . . . , xn) ∧ 1≤i≤nyi = ti(y1, . . . , yn) ⇒ 1≤i≤nxi = yi RSPf

x � y ⇔ x + y = y SI1

¬ a � δ SI2

¬ a · x � δ SI3

¬ a � b if a �≡ b SI4

¬ a · x � b SI5

¬ a � x · y SI6

a · x � y · z ⇒ (a � y ∧ x = z) ∨ ∃y′ • (a · y′ � y ∧ x = y′ · z) SI7

a � x + y ⇒ a � x ∨ a � y SI8

a · x � y + z ⇒ a · x � y ∨ a · x � z SI9

a∈A((a � x ⇒ a � y) ∧ ∀z • (a · z � x ⇒ a · z � y)) ⇒ x � y SI10

x
a−→√ ⇔ a � x TR1

x
a−→ y ⇔ a · y � x TR2

φ(x, y) ∧
∀x′, y′ • (φ(x′, y′) ⇒

a∈A((x′ a−→√ ⇔ y′ a−→√) ∧
∀x′′ • (x′ a−→ x′′ ⇒ ∃y′′ • (y′ a−→ y′′ ∧ φ(x′′, y′′))) ∧
∀y′′ • (y′ a−→ y′′ ⇒ ∃x′′ • (x′ a−→ x′′ ∧ φ(x′′, y′′))))) ⇒ x = y BS

x →→ x R1

x
a−→ y ∧ y →→ z ⇒ x →→ z R2

x →→ y ∧
∀x′, y′, z′ • (φ(x′, x′) ∧ a∈A(x′ a−→ y′ ∧ φ(y′, z′) ⇒ φ(x′, z′))) ⇒ φ(x, y) RS

axioms of the action step predicates. Axiom schema BS, called the bisimilarity
axiom schema, excludes models that do not identify processes that can be re-
lated by a first-order definable bisimulation. Axiom R1 and axiom schemas R2
and RS concern the reachability predicate. Axiom schema RS is an induction
schema, called the subprocess induction schema. It is unknown to us whether the
reachability predicate is implicitly defined by BPAfo

δ .
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We do not claim that the axioms of BPAfo
δ are independent. For example,

axiom SI2 is derivable from axioms A7 and SI6. Axiom SI10 and axiom schema
BS are dependent in a weak sense: extensionality for equality, i.e.∧

a∈A((a # x ⇔ a # y) ∧ ∀z • (a · z # x ⇔ a · z # y)) ⇒ x = y ,

is not only derivable from SI10 and SI1, but also from BS, TR1 and TR2.
The axiom schemas RDPf and RSPf are called the recursive definition prin-

ciple and the recursive specification principle for finite guarded recursive spec-
ifications. A guarded recursive specification (over BPAfo

δ ) is a set of equations
E = {x = tx | x ∈ V } where V is a set of variables and each tx is a term
of L(BPAfo

δ ) in which only the variables in V may have occurrences and all
those occurrences are guarded. There is an instance of RDPf and an instance
of RSPf for each finite guarded recursive specification E. We write RDPfE for
the instance of RDPf for E and RSPfE for the instance of RDPf for E. RDPfE

expresses that E has at least one solution and RSPfE expresses that E has at
most one solution.

Because the implications from right to left are derivable, the (outmost) occur-
rence of “⇒ ” in SI7–SI10 and BS can be replaced by “⇔ ”. The equivalences

x = y ⇔ x # y ∧ y # x ,

x+ y # z ⇔ x # z ∧ y # z .

are easily derived from axiom SI1 and axiom SI10, respectively. Both equivalences
are used in the proof of Theorem 1 (see below).

Using the reachability predicate, we can give explicit definitions of other prop-
erties of processes. For example, deadlock freedom, absence of termination, and
determinism can be explicitly defined as follows:

dlf(x) ⇔ ¬ x→→ δ ,

perp(x) ⇔ ¬ x→→ δ ∧
∧
a∈A

¬ ∃y •
(
x→→ y ∧ y

a−→√) ,
det(x) ⇔ ∀y •

(
x→→ y ⇒

∧
a∈A

((
y

a−→√ ⇒ ∀z • ¬ y a−→ z
)
∧

∀z, z′ •
(
y a−→ z ∧ y a−→ z′ ⇒ z = z′

)))
.

Using the subprocess induction schema, we can derive a formula according to
which case distinction with respect to reachability can be made.

Proposition 1 (Case distinction for reachability). The following formula
is derivable from BPAfo

δ :
x→→ y ⇒
x = y ∨

∨
a∈A

x
a−→ y ∨ ∃z •

(
z �= x ∧

∨
a∈A

(
x

a−→ z ∧ z →→ y
))
.

Proof. We use cdr(x, y) as an abbreviation for the right-hand side of the above
implication. We will apply RS, taking x →→ y ∧ cdr(x, y) for φ(x, y). When we
have shown that x→→ y ⇒ (x→→ y ∧ cdr(x, y)), we can immediately conclude
that x→→ y ⇒ cdr(x, y) and we are done.
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It remains to be shown by means of RS that x→→ y ⇒ (x→→ y ∧ cdr(x, y)).
First of all, we conclude from R1, because obviously cdr(x, x), that

∀x′ • (x′ →→ x′ ∧ cdr(x′, x′)) .

Moreover, we easily derive the following implications:

x′ a′
−→ y′ ∧ y′ →→ z′ ⇒ x′ →→ z′ ,

x′ a′
−→ y′ ∧ y′ →→ z′ ∧ y′ = z′ ⇒

∨
a∈A

x′ a−→ z′ ,

x′
a′
−→ y′ ∧ y′ →→ z′ ∧

∨
a∈A

y′
a−→ z′ ⇒∨

a∈A

x′
a−→ z′ ∨ ∃z •

(
z �= x′ ∧

∨
a∈A

(
x′

a−→ z ∧ z →→ z′
))
,

x′ a′
−→ y′ ∧ y′ →→ z′ ∧ ∃z •

(
z �= y′ ∧

∨
a∈A

(
y′ a−→ z ∧ z →→ z′

))
⇒

∃z •
(
z �= x′ ∧

∨
a∈A

(
x′ a−→ z ∧ z →→ z′

))
.

The first implication is derived using R2, the second implication is derived by
elementary logical reasoning, the third implication is derived using R1 and R2
(with distinction between the cases x′ = y′, y′ = z′ and x′ �= y′ ∧ y′ �= z′),
and the fourth implication is derived by elementary logical reasoning (with dis-
tinction between the cases x′ = y′ and x′ �= y′). The left-hand sides of the second,
third and fourth implication are conjunctions of x′ a′

−→ y′ ∧ y′ →→ z′ and one of
the disjuncts of cdr(y′, z′). The right-hand sides of these implication consists of
one or two of the disjuncts of cdr(x′, z′). Hence, we also conclude that

∀x′, y′, z′ •∧
a′∈A

(
x′ a′
−→ y′ ∧ (y′ →→ z′ ∧ cdr(y′, z′)) ⇒ x′ →→ z′ ∧ cdr(x′, z′)

)
.

Using the subprocess induction schema, it follows from these conclusions that
x→→ y ⇒ (x→→ y ∧ cdr(x, y)). ��

A well-known subtheory of BPAδ is BPA, which is BPAδ without the deadlock
constant and consequently without axioms A6 and A7. Analogously, we have a
subtheory of BPAfo

δ , to wit BPAfo. As to be expected, the first-order theory
BPAfo is BPAfo

δ without the deadlock constant and without axioms A6, A7, SI2
and SI3. In other words, the possibility that a process gets into a deadlock is
not covered by BPAfo.

To prove a statement for all closed terms of L(BPAfo
δ ), it is sufficient to prove it

for all basic terms over BPAfo
δ . The set B of basic terms over BPAfo

δ is inductively
defined by the following rules:

– δ ∈ B;
– if a ∈ A, then a ∈ B;
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– if a ∈ A and t ∈ B, then a · t ∈ B;
– if t1, t2 ∈ B, then t1 + t2 ∈ B.

We can prove that all closed terms of L(BPAfo
δ ) are derivably equal to a basic

term over BPAfo
δ .

Proposition 2 (Elimination). For all closed terms t of L(BPAfo
δ ) there exists

a basic term t′ ∈ B such that BPAfo
δ � t = t′.

Proof. This follows immediately from the elimination property for BPAδ: the
closed terms of L(BPAfo

δ ) are the same as the closed terms of L(BPAδ), and the
equational axioms of BPAfo

δ are the same as the axioms of BPAδ. ��

For closed equations, BPAfo
δ is a complete theory.

Theorem 1 (Complete theory for closed equations). For all closed terms
t1, t2 of L(BPAfo

δ ), we have either BPAfo
δ � t1 = t2 or BPAfo

δ � ¬ t1 = t2, but
not both.

Proof. In Sect. 5, we will show that there exist models of BPAfo
δ . From this,

it follows by the Extended Completeness Theorem (see e.g. [9]) that there are
no closed terms t1, t2 of L(BPAfo

δ ) such that both t1 = t2 and ¬ t1 = t2 are
derivable. Moreover, the equivalence x = y ⇔ x # y ∧ y # x is derivable.
For these reasons, and Proposition 2, it is sufficient to prove that for all basic
terms t1, t2 ∈ B, either BPAfo

δ � t1 # t2 or BPAfo
δ � ¬ t1 # t2. This is easily

proved by induction on the sum of the lengths of t1 and t2. All cases follow
immediately from axioms SI1–SI9, sometimes using the induction hypothesis,
except the cases a · t′1 # b · t′2 and t′1 + t′′1 # t2. Those cases follow immediately
from the derivable equivalences a · x # b · y ⇔ a # b ∧ x # y ∧ y # x and
x+ y # z ⇔ x # z ∧ y # z, using the induction hypothesis. ��

For arbitrary closed formula, BPAfo
δ is not a complete theory. This follows from

the fact that there are models of BPAfo
δ that are not elementary equivalent (see

Theorems 4 and 8).

3 Infinitary and Second-Order Axioms

It appears to be of use to add certain infinitary and second-order axioms to
BPAfo

δ . In this section, we consider those axioms.
The recursive definition principle and recursive specification principle for finite

guarded recursive specifications (RDPf and RSPf) do not exclude models in
which there are countably infinite guarded recursive specifications without a
unique solution. The infinitary axiom schemas RDP and RSP from Table 2 would
exclude all such models. Like in the case of axiom schemas RDPf and RSPf, we
write RDPE and RSPE for the instances of RDP and RSP, respectively, for
guarded recursive specification E.

The instances of axiom schema RSP are formulas of Lω1ω(BPAfo
δ ), the first-

order language of BPAfo
δ with conjunctions and disjunctions of countable sets of
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Table 2. Infinitary first-order axioms

∃x1, x2, . . . • i≥1xi = ti(x1, x2, . . .) RDP

i≥1xi = ti(x1, x2, . . .) ∧ i≥1yi = ti(x1, x2, . . .) ⇒ i≥1xi = yi RSP

formulas. The instances of axiom schema RDP are formulas of Lω1ω1(BPAfo
δ ), the

first-order language of BPAfo
δ with conjunctions and disjunctions of countable

sets of formulas and quantification on countable sets of variables. RDP and RSP
are not axiomatizable in the usual finitary first-order language L(BPAfo

δ ).

Theorem 2 (RDP and RSP are not axiomatizable in L(BPAfo
δ )). There

does not exist a finitary first-order extension of BPAfo
δ of which all models satisfy

RDP and there does not exist a finitary first-order extension of BPAfo
δ of which

all models satisfy RSP.

Proof. First, we show that there does not exist a finitary first-order extension
of BPAfo

δ , say BPAfo
δ ∪H , such that BPAfo

δ ∪H |= RDP. Suppose that BPAfo
δ ∪

H |= RDP. A contradiction is found as follows. By the Downward Löwenheim-
Skolem Theorem (see e.g. [10]), there exists a countable model of BPAfo

δ ∪ H .
Take a countable model A |= BPAfo

δ ∪ H . Let a and b be different actions.
Consider the guarded recursive specifications EV = {Xi = a · Xi+1 | i ∈ V } ∪
{Xi = b · Xi+1 | i �∈ V } for V ⊆ N. EV encodes the characteristic function of
V . Because BPAfo

δ ∪H |= RDP by our supposition, and A |= BPAfo
δ ∪H , there

exists a solution pV of EV for X0 in A for each V ⊆ N. There exist uncountably
many V such that V ⊆ N; and it is easily proved by induction on the smallest i
such that i ∈ V ⇔ i �∈ V ′ that V �= V ′ implies pV �= pV ′ . Hence, A must be an
uncountable model, which contradicts the fact that A is a countable model.

Next, we show that there does not exist a finitary first-order extension of
BPAfo

δ , say BPAfo
δ ∪ H , such that BPAfo

δ ∪ H |= RSP. Suppose that BPAfo
δ ∪

H |= RSP. A contradiction is found as follows. Let c0, c1, c2, . . . and d0, d1, d2, . . .
be different new constants; and let a, a′, a′′ be different actions. Consider the
following sets of formulas:

H ′ = {c0 �= d0} ∪ {ci = a · ci+1 | i ≥ 0} ∪ {di = a · di+1 | i ≥ 0} ,

H ′
n = {c0 �= d0} ∪ {ci = a · ci+1 | 0 ≤ i < n} ∪ {di = a · di+1 | 0 ≤ i < n}
∪ {cn = a′, dn = a′′}

(for n ≥ 0) .

Take an arbitrary model A of BPAfo
δ ∪ H . It follows easily from the axioms

of BPAfo
δ that, for each n ≥ 0, H ′

n is satisfied in the definitional expansion of
A determined by the definitional extension of BPAfo

δ ∪ H with the constants
c0, . . . , cn, d0, . . . , dn and the equations ci = an−i · a′ for 0 ≤ i < n, cn = a′,
di = an−i · a′′ for 0 ≤ i < n, dn = a′′.1 Hence, for each n ≥ 0, H ′

n is consistent
1 For each action a and each n ≥ 1, the term an is defined by induction on n as follows:

a1 is a and an+1 is a · an.
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with BPAfo
δ ∪ H . Each finite H ′′ ⊆ H ′ is consistent with BPAfo

δ ∪ H because
there is an n ≥ 0 for which H ′′ ⊆ H ′

n. From this, it follows by the Compactness
Theorem (see e.g. [9]) that H ′ is consistent with BPAfo

δ ∪ H . Now consider
an arbitrary model A′ of BPAfo

δ ∪ H ∪ H ′. Because A′ satisfies H ′, we have
cA

′

0 �= dA′

0 . Both cA
′

0 and dA′

0 are solutions of the guarded recursive specification
E = {Xi = a · Xi+1 | i ∈ N} for X0. Hence, by RSP, it must be the case that
cA

′

0 = dA′

0 , which contradicts the fact that cA
′

0 �= dA′

0 . ��

If we restrict ourselves to recursively enumerable theories, we can even give an
instance of RDP that is not axiomatizable.

Theorem 3 (Instance of RDP is not axiomatizable in L(BPAfo
δ )). Let T

be a finitary first-order extension of BPAfo
δ that is recursively enumerable, let a, b

be different actions, let V be a subset of N that is not recursively enumerable,
and let EV be the guarded recursive specification {Xi = a · Xi+1 | i ∈ V } ∪
{Xi = b ·Xi+1 | i �∈ V }. Then T �|= RDPEV .

Proof. Let ψn(x), for each n ≥ 0, be the following formula:

∃y • ∃z0, . . . , zn •
(
x = z0 · . . . · zn · y ∧

∧
i≤n,i∈V

zi = a ∧
∧

i≤n,i�∈V

zi = b
)
.

Let Ψ be the set of formulas {ψn(x) | n ∈ N}. It is easy to see that there does not
exist a solution of EV in a model of BPAfo

δ iff that model omits Ψ . Moreover, by
the Omitting Types Theorem (see e.g. [9]), there exists a model that omits Ψ if
T or some consistent extension of T locally omits Ψ . Thus, when we have shown
that T or some consistent extension of T locally omits Ψ , we can immediately
conclude that T �|= RDPEV and we are done.

We prove that some consistent extension of T locally omits Ψ by constructing
such an extension of T . Let φ0(x), φ1(x), φ2(x), . . . be an enumeration of all
formulas of L(BPAfo

δ ) in which no variable other than x has free occurrences.
We start to construct a non-decreasing sequence T 0, T 1, T 2, . . . of consistent
extensions of T as follows:

T 0 = T ,

T 2k+1 = T 2k ∪ {φk(x)} if not T 2k � ¬ φk(x) ,
T 2k+1 = T 2k ∪ {¬ φk(x)} otherwise ,

T 2k+2 = T 2k+1 if T 2k+1 � ¬ ∃x • φk(x) ,
T 2k+2 = T 2k+1 ∪ {∃x • (φk(x) ∧ ¬ ψn(x))} otherwise ,

for some n ∈ N such that not T 2k+1 � ¬ ∃x • (φk(x) ∧ ¬ ψn(x)) .

For all k, there exists an n such that not T 2k+1 � ¬ ∃x•(φk(x) ∧ ¬ ψn(x)). This
is easily proved by contradiction. If it was not the case for some k, then we would
have T 2k+1 � ∀x • (φk(x) ⇒ ψn(x)). Because of the recursive enumerability of
T (and therefore also T 2k+1), it would follow that V is recursively enumerable.
This contradicts the fact that V is not recursively enumerable.
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Table 3. Second-order axioms

∃R • (R(x, y) ∧
∀x′, y′ • (R(x′, y′) ⇒

a∈A((x′ a−→√ ⇔ y′ a−→√) ∧
∀x′′ • (x′ a−→ x′′ ⇒ ∃y′′ • (y′ a−→ y′′ ∧ R(x′′, y′′))) ∧
∀y′′ • (y′ a−→ y′′ ⇒ ∃x′′ • (x′ a−→ x′′ ∧ R(x′′, y′′)))))) ⇒

x = y B

∀R • (x →→ y ∧
∀x′, y′, z′ • (R(x′, x′) ∧ a∈A(x′ a−→ y′ ∧ R(y′, z′) ⇒ R(x′, z′))) ⇒
R(x, y)) R

For each k ∈ N, T k is consistent by construction. Let T∞ =
⋃

k∈N
T k. Then

T∞ is also consistent by construction. Moreover, T∞ locally omits Ψ by con-
struction. ��

The bisimilarity axiom schema (BS) from Table 1 does not exclude all models
that distinguish between processes that can be related by a bisimulation. It
only excludes models that distinguish between processes that can be related
by a first-order definable bisimulation. The second-order axiom B from Table 3
would exclude all such models. Axiom B is called the bisimilarity axiom. It is
a second-order axiom because of the existential quantification on R, which is a
variable ranging over binary relations on processes instead of a variable ranging
over processes.

The subprocess induction schema (RS) from Table 1 does not exclude all
models in which there are processes that have more reachable processes than
needed to satisfy axiom R1 and the instances of axiom schema R2. The second-
order axiom R from Table 3 would exclude all such models. Axiom R is called
the subprocess induction axiom.

Let A be a model of BPAfo
δ , i.e. A |= BPAfo

δ . Then A is a bisimulation model
if A |= B; and A is a model with standard reachability if A |= R.

4 Transition Systems and Bisimilarity

In this section, we introduce transition systems and bisimilarity of transition
systems. In Sect. 5, we will make use of transition systems and bisimilarity of
transition systems to construct the main models of BPAfo

δ .
A transition system T consists of the following:

– a set S of states ;
– a set a−→ ⊆ S × S, for each a ∈ A;
– a set a−→√ ⊆ S, for each a ∈ A;
– an initial state s0 ∈ S.

If (s, s′) ∈ a−→ for some a ∈ A, then we say that there is a transition from state
s to state s′. We usually write s a−→ s′ instead of (s, s′) ∈ a−→ and s a−→√ instead
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of s ∈ a−→√. Furthermore, we write −→ for the family of sets ( a−→)a∈A and −→√ for
the family of sets ( a−→√)a∈A.

A transition system may have states that are not reachable from its initial
state by a number of transitions. Unreachable states, and the transitions between
them, are not relevant to the behaviour represented by the transition system.
We exclude transition systems with unreachable states as follows.

Let T = (S,−→,−→√, s0) be a transition system. Then the reachability relation
of T is the smallest relation →→ ⊆ S × S such that:

– s→→ s;
– if s a−→ s′ and s′ →→ s′′, then s→→ s′′.

We write RS(T ) for {s ∈ S | s0 →→ s}. T is called a connected transition system
if S = RS(T ). Henceforth, we will only consider connected transition systems.
However, this often calls for extraction of the connected part of a transition
system that is composed of connected transition systems.

Let T = (S,−→,−→√, s0) be a transition system that is not necessarily con-
nected. Then the connected part of T , written Γ(T ), is defined as follows:

Γ(T ) = (S′,−→′,−→√′, s0) ,

where

S′ = RS(T ) ,

and for every a ∈ A:

a−→′ = a−→∩ (S′ × S′) ,
a−→√′ = a−→√ ∩ S′ .

It is assumed that for each infinite cardinal κ a fixed but arbitrary set Sκ

with the following properties has been given:

– the cardinality of Sκ is greater than or equal to κ;
– if S1, S2 ⊆ Sκ, then S1 0 S2 ⊆ Sκ and S1 × S2 ⊆ Sκ.2

Let κ be an infinite cardinal number. Then TSκ is the set of all connected
transition systems T = (S,−→,−→√, s0) such that S ⊂ Sκ and the branching
degree of T is less than κ, that is, for all s ∈ S, the cardinality of the set
{(a, s′) ∈ A× S | s a−→ s′} ∪ {a ∈ A | s a−→√} is less than κ.

The condition S ⊂ Sκ guarantees that TSκ is indeed a set.
A connected transition system is said to be finitely branching if its branching

degree is less than ℵ0. Otherwise, it is said to be infinitely branching.
The identity of the states of a connected transition system is not relevant to

the behaviour represented by it. Connected transition systems that differ only
with respect to the identity of the states are isomorphic.
2 We write A � B for the disjoint union of sets A and B, i.e. A � B = (A × {∅}) ∪

(B × {{∅}}). We write μ1 and μ2 for the associated injections μ1 : A → A � B and
μ2 : B → A � B, defined by μ1(a) = (a, ∅) and μ2(b) = (b, {∅}).
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Let T1 = (S1,−→1,−→√
1, s

0
1) and T2 = (S2,−→2,−→√

2, s
0
2) be connected transi-

tion systems. Then T1 and T2 are isomorphic, written T1 ∼= T2, if there exists a
bijective function b : S1 → S2 such that

– b(s01) = s02;
– s1

a−→1 s
′
1 iff b(s1)

a−→2 b(s′1);
– s

a−→√
1 iff b(s) a−→√

2.

Henceforth, we will always consider two connected transition systems essentially
the same if they are isomorphic.

Remark 1. The set TSκ is independent of Sκ. By that we mean the following. Let
TSκ and TS′

κ result from different choices for Sκ. Then there exists a bijection
b : TSκ → TS′

κ such that for all T ∈ TSκ, T ∼= b(T ).

Bisimilarity of transition systems from TSκ is defined as follows.
Let T1 = (S1,−→1,−→√

1, s
0
1) ∈ TSκ and T2 = (S2,−→2,−→√

2, s
0
2) ∈ TSκ (κ ≥

ℵ0). Then a bisimulation B between T1 and T2 is a binary relation B ⊆ S1× S2
such that B(s01, s02) and for all s1, s2 such that B(s1, s2):

– s1
a−→√

1 iff s2
a−→√

2;
– if s1

a−→1 s
′
1, then there is a state s′2 such that s2

a−→2 s
′
2 and B(s′1, s

′
2);

– if s2
a−→2 s

′
2, then there is a state s′1 such that s1

a−→1 s
′
1 and B(s′1, s′2).

Two transition systems T1, T2 ∈ TSκ are bisimilar, written T1 ↔ T2, if there
exists a bisimulation B between T1 and T2. Let B be a bisimulation between T1
and T2. Then we say that B is a bisimulation witnessing T1 ↔ T2.

Note that ↔ is an equivalence on TSκ. Let T ∈ TSκ. Then we write [T ] for
{T ′ ∈ TSκ | T ↔ T ′}, i.e. the↔-equivalence class of T . We write TSκ/↔ for the
set of equivalence classes {[T ] | T ∈ TSκ}.

In Sect. 5, we will use TSκ/↔ as the domain of a structure that is a model
of BPAfo

δ . As the domain of a structure, TSκ/↔must be a set. That is the case
because TSκ is a set. The latter is guaranteed by considering only connected
transition systems of which the set of states is a subset of Sκ.

Remark 2. The question arises whether Sκ is large enough if its cardinality is
greater than or equal to κ. This question can be answered in the affirmative.
Let T = (S,−→,−→√, s0) be a connected transition system of which the branching
degree is less than κ. Then there exists a connected transition system T ′ =
(S′,−→′,−→√′, s0′) of which the branching degree is less than κ such that T ↔ T ′

and the cardinality of S′ is less than κ.

It is easy to see that, if we would consider transition systems with unreachable
states as well, each transition system would be bisimilar to its connected part.
This justifies the choice to consider only connected transition systems. It is easy
to see that isomorphic transition systems are bisimilar. This justifies the choice
to consider transition systems essentially the same if they are isomorphic.

In the construction of the main models of BPAfo
δ in Sect. 5, we also make use

of subsystems of transition systems.
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Let T = (S,−→,−→√, s0) ∈ TSκ and s ∈ S. Then the subsystem of T with
initial state s, written (T )s, is defined as follows:

(T )s = Γ(S,−→,−→√, s) .

5 Full Bisimulation Models of BPAfo
δ

In this section, we introduce the full bisimulation models of BPAfo
δ . They are

models of which the domain consists of equivalence classes of connected transi-
tion systems modulo bisimilarity. The qualification “full” will be explained later
on.

The models of BPAfo
δ are structures that consist of the following:

– a non-empty set D, called the domain of the model;
– for each constant of BPAfo

δ , an element of D;
– for each n-ary operator of BPAfo

δ , an n-ary operation on D;
– for each n-ary predicate symbol of BPAfo

δ , an n-ary relation on D.

In the full bisimulation models of BPAfo
δ that are introduced in this section,

the domain is TSκ/↔ for some κ ≥ ℵ0. We obtain the models concerned by
associating certain elements of TSκ/↔, certain operations on TSκ/↔ and cer-
tain relations on TSκ/↔ with the constants, operators and predicate symbols of
BPAfo

δ . We begin by associating elements of TSκ and operations on TSκ with
the constants and operators, and a binary relation on TSκ with the reachability
predicate symbol. The result of this is subsequently lifted to TSκ/↔.

It is assumed that for each infinite cardinal κ a fixed but arbitrary function
chκ : (P(Sκ) \ ∅) → Sκ such that for all S ∈ P(Sκ) \ ∅, chκ(S) ∈ S has been
given.

We associate with each constant c of BPAfo
δ an element ĉ of TSκ and with

each operator f of BPAfo
δ an operation f̂ on TSκ as follows.

– δ̂ = ({s0}, ∅, ∅, s0) .
where

s0 = chκ(Sκ) .

– â = ({s0}, ∅,−→√, s0) ,
where

s0 = chκ(Sκ) ,
a−→√ = {s0} ,

and for every a′ ∈ A such that a′ �= a:

a′
−→√ = ∅ .



Model Theory for Process Algebra 459

– Let Ti = (Si,−→i,−→√
i, s

0
i ) ∈ TSκ for i = 1, 2. Then

T1 +̂ T2 = Γ(S,−→,−→√, s0) ,

where
s0 = chκ(Sκ \ (S1 0 S2)) ,

S = {s0} ∪ (S1 0 S2) ,

and for every a ∈ A:
a−→ =

{
(s0, μ1(s))

∣∣ s01 a−→1 s
}
∪
{
(s0, μ2(s))

∣∣ s02 a−→2 s
}

∪
{
(μ1(s), μ1(s′))

∣∣ s a−→1 s
′} ∪ {(μ2(s), μ2(s′))

∣∣ s a−→2 s
′} ,

a−→√ =
{
s0
∣∣ s01 a−→√

1
}
∪
{
s0
∣∣ s02 a−→√

2
}

∪
{
μ1(s)

∣∣ s a−→√
1
}
∪
{
μ2(s)

∣∣ s a−→√
2
}
.

– Let Ti = (Si,−→i,−→√
i, s

0
i ) ∈ TSκ for i = 1, 2. Then

T1 ·̂ T2 = Γ(S,−→,−→√, s0) ,

where
S = S1 0 S2 ,

s0 = μ1(s01) ,

and for every a ∈ A:
a−→ =

{
(μ1(s), μ1(s′))

∣∣ s a−→1 s
′} ∪ {(μ1(s), μ2(s02))

∣∣ s a−→√
1
}

∪
{
(μ2(s), μ2(s′))

∣∣ s a−→2 s
′} ,

a−→√ =
{
μ2(s)

∣∣ s a−→√
2
}
.

We associate with the reachability predicate symbol →→ a relation →̂→ on
TSκ as follows.

– Let Ti = (Si,−→i,−→√
i, s

0
i ) ∈ TSκ for i = 1, 2. Then

T1 →̂→ T2 iff ∃s ∈ S1 • (T1)s = T2 .

In the definition of alternative composition on TSκ, the connected part of a
transition system is extracted because the initial states of the transition systems
T1 and T2 may be unreachable from the new initial state. The new initial state
is introduced because, in T1 and/or T2, there may exist a transition back to the
initial state. In the definition of sequential composition on TSκ, the connected
part of a transition system is extracted because the initial state of the transition
system T2 may be unreachable from the initial state of the transition system
T1 – due to absence of termination in T1.

We do not associate relations on TSκ with the summand inclusion, action ter-
mination and action step predicate symbols. They have defining axioms, which
explicitly define them in terms of the other nonlogical symbols of BPAfo

δ . There-
fore, it is known how to obtain the relations on TSκ/↔ to be associated with
these predicate symbols from the elements of TSκ/↔, operations on TSκ/↔ and
relations on TSκ/↔ to be associated with the other nonlogical symbols of BPAfo

δ .
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Remark 3. The elements of TSκ and the operations on TSκ defined above are
independent of chκ. Different choices for chκ lead for each constant of BPAfo

δ to
isomorphic elements of TSκ and lead for each operator of BPAfo

δ to operations
on TSκ with isomorphic results.

We can easily show that bisimilarity is a congruence with respect to alternative
composition and sequential composition.

Proposition 3 (Congruence). For all T1, T2, T
′
1, T

′
2 ∈ TSκ (κ ≥ ℵ0), T1 ↔ T ′

1
and T2 ↔ T ′

2 imply T1 +̂ T2 ↔ T ′
1 +̂ T ′

2 and T1 ·̂ T2 ↔ T ′
1 ·̂ T ′

2.

Proof. Let Ti = (Si,−→i,−→√
i, s

0
i ) and T ′

i = (S′
i,−→′

i,−→
√′

i, s
0
i
′) for i = 1, 2. Let

R1 and R2 be bisimulations witnessing T1 ↔ T ′
1 and T2 ↔ T ′

2, respectively. Then
we construct relations R+ and R · as follows:

– R+ = ({(s0, s0′)}∪μ1(R1)∪μ2(R2))∩ (S×S′), where S and S′ are the sets
of states of T1 +̂ T2 and T ′

1 +̂ T ′
2, respectively, and s0 and s0′ are the initial

states of T1 +̂ T2 and T ′
1 +̂ T ′

2, respectively;
– R · = (μ1(R1) ∪ μ2(R2)) ∩ (S × S′), where S and S′ are the sets of states of
T1 ·̂ T2 and T ′

1 ·̂ T ′
2, respectively.

Here, we write μi(Ri) for {(μi(s), μi(s′)) | Ri(s, s′)}, where μi is used to denote
both the injection of Si into S1 0 S2 and the injection of S′

i into S′
1 0 S′

2. Given
the definitions of alternative composition and sequential composition, it is easy
to see that R+ and R · are bisimulations witnessing T1 +̂ T2 ↔ T ′

1 +̂ T ′
2 and

T1 ·̂ T2 ↔ T ′
1 ·̂ T ′

2, respectively. ��
The full bisimulation models Pκ, one for each κ ≥ ℵ0, consist of the following:3

– a set P , called the domain of Pκ;
– for each constant c of BPAfo

δ , an element c̃ of P ;
– for each n-ary operator f of BPAfo

δ , an n-ary operation f̃ on P ;
– for each n-ary predicate symbol R of BPAfo

δ , a n-ary relation R̃ on P ;

where those ingredients are defined as follows:

P = TSκ/↔ ,

δ̃ = [ δ̂ ] ,

ã = [ â ] ,

[T1 ] +̃ [T2 ] = [T1 +̂ T2 ] ,

[T1 ] ·̃ [T2 ] = [T1 ·̂ T2 ] ,

[T1 ] #̃ [T2 ] iff [T1 ] +̃ [T2 ] = [T2 ] ,

[T1 ] ã−→ √ iff ã #̃ [T1 ] ,

[T1 ] ã−→ [T2 ] iff ã ·̃ [T2 ] #̃ [T1 ] ,

[T1 ] →̃→ [T2 ] iff ∃T ∈ [T2 ] • T1 →̂→ T .

Alternative composition and sequential composition on TSκ/↔ are well-defined
because↔ is a congruence with respect to the corresponding operations on TSκ.
Reachability on TSκ/↔ is well-defined because↔ preserves reachability on TSκ

up to↔ : if T1 ↔ T ′
1 and T1 →̂→ T2, then there exists a T ′

2 such that T2 ↔ T ′
2 and

T ′
1 →̂→ T ′

2.
The structures Pκ are models of BPAfo

δ .
3 P is the Gothic capital P.
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Theorem 4 (Soundness of BPAfo
δ ). For all κ ≥ ℵ0, we have Pκ |= BPAfo

δ .

Proof. The soundness of all axioms, except RDPf and RSPf, follows easily from
the definitions of the ingredients of Pκ. The soundness of RDPf and RSPf follows
immediately from Theorem 5 (see below), which states the soundness of RDP
and RSP. ��

All finite and countably infinite guarded recursive specifications have a unique
solution in the full bisimulation models.

Theorem 5 (Soundness of RDP and RSP). For all κ ≥ ℵ0, we have
Pκ |= RDP and Pκ |= RSP.

Proof. This is essentially the proof of soundness of RDP and RSP in the graph
models of ACPτ given in [11] adapted to the case without silent steps. ��

Moreover, B and R are valid in the full bisimulation models.

Theorem 6 (Soundness of B and R). For all κ ≥ ℵ0, we have Pκ |= B and
Pκ |= R.

Proof. The soundness of B follows easily from the definitions of ã−→ √ and ã−→,
the definition of bisimilarity of transition systems and Proposition 4. The sound-
ness of R follows easily from the definitions of ã−→ and →̃→, the definition of the
reachability relation of a transition system and Corollary 2.4 ��

As to be expected, the full bisimulation models are related by isomorphic
embeddings.

Theorem 7 (Isomorphic embedding). Let ℵ0 ≤ κ < κ′. Then Pκ is iso-
morphically embedded in Pκ′ .

Proof. It follows immediately from the definitions of TSκ, TSκ′ and ↔ that for
each p ∈ TSκ/↔, there exists a unique p′ ∈ TSκ′/↔ such that p ⊆ p′. Now
consider the function h : TSκ/↔ → TSκ′/↔ where for each p ∈ TSκ/↔, h(p)
is the unique p′ ∈ TSκ′/↔ such that p ⊆ p′. It follows immediately from the
definition of h that h is injective. Moreover, it follows easily from the definitions
of the operations and relations on TSκ/↔ and TSκ′/↔ that h is a homomorphism
from Pκ to Pκ′ . ��

In Sect. 6, we will show that every bisimulation model with standard reachability,
i.e. every model that additionally satisfies the second-order axioms B and R, is
isomorphically embedded in the models Pκ from some κ ≥ ℵ0. This explains
why the models Pκ are called full bisimulation models: within the bound on the
branching degree set by κ, Pκ is full.

The question whether all full bisimulation models are elementary equivalent
must be answered in the negative.
4 Proposition 4 and Corollary 2 are in Sect. 6 and Sect. 10, respectively, because they

need definitions of auxiliary notions which are better in place in there.
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Theorem 8 (No elementary equivalence). We have Pℵ0 �≡ P2ℵ0 , Pℵ0 �≡
P22ℵ0 and P2ℵ0 �≡ P22ℵ0 .

Proof. Pℵ0 �≡ P2ℵ0 and Pℵ0 �≡ P22ℵ0 are proved as follows. Let a be an action.
Let φ be the following formula of L(BPAfo

δ ):

∃x •
(
x a−→ δ ∧ ∀y •

(
x a−→ y ⇒ ∃z •

(
z �= y ∧ x a−→ z ∧ z a−→ y

)))
.

Clearly, Pℵ0 �|= φ, but P2ℵ0 |= φ and P22ℵ0 |= φ.
P2ℵ0 �≡ P22ℵ0 is proved as follows. Let a, a′, b, b′ be different actions. Let φ(x)

be the following formula of L(BPAfo
δ ):

∀y •
(
x→→ y ⇒ ∃!z • y

a−→ z ∧ ¬
(
y

a′
−→√ ⇔ y

b′
−→√)) .

For all κ ≥ ℵ0, there exist 2ℵ0 different x in the domain of Pκ for which φ(x).
Let ψ be the following formula of L(BPAfo

δ ):

∃w •
(
∀x •
(
φ(x) ⇒ w

b−→ x
))
.

Clearly, P2ℵ0 �|= ψ and P22ℵ0 |= ψ. ��

We conjecture that there exists a countably infinite set of infinite cardinal num-
bers U such that, for κ, κ′ ∈ U , Pκ �≡ Pκ′ if κ �= κ′.

We can summarize the state of affairs as follows. The full bisimulation models
Pκ are models of BPAfo

δ in which RDP, RSP, B and R are valid. If κ < κ′, then
Pκ is essentially included in Pκ′ . Moreover, not all full bisimulation models
satisfy exactly the same formulas of L(BPAfo

δ ). In subsequent sections, we will
see that the full bisimulation models have many more interesting properties.

6 External Bisimilarity

Each model of BPAfo
δ induces a transition system for each element of its domain.

Let A be a model of BPAfo
δ with domain P , a binary relation a−→′ on P for

each predicate symbol a−→, and a unary relation a−→√′ on P for each predicate
symbol a−→√. Moreover, let p ∈ P . Then the transition system of p induced by
A, written TS(A, p), is defined as follows:

TS(A, p) = Γ(P,−→′,−→√′, p) .

In each of the full bisimulation models, every element of the domain is an equiv-
alence class of transition systems. The transition system of an element induced
by the model is (up to isomorphism) a representative of that element.

Lemma 1 (Pκ induces representatives). Let p ∈ TSκ/↔ for some κ ≥ ℵ0.
Then TS(Pκ, p) ∈ p.

Proof. Let TS(Pκ, p) = (P,−→′,−→√′, p). Take an arbitrary transition system
T = (S,−→′′,−→√′′, s0) ∈ TSκ such that [T ] = p. Consider the relation B ⊆ P×S
defined as follows:

B = {([ (T )s ], s) | s ∈ S} .
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It is easy to see that B is a bisimulation between TS(Pκ, p) and T . Hence,
TS(Pκ, p) ∈ [T ] = p. ��

Let A be a model of BPAfo
δ with domain P . Then bisimilarity on P is defined

as follows:

p1 ↔A p2 iff TS(A, p1)↔TS(A, p2) .

Bisimilarity on the domain of a model of BPAfo
δ as defined above is called ex-

ternal bisimilarity. In each of the full bisimulation models, external bisimilarity
coincides with identity.

Proposition 4 (External bisimilarity is identity in Pκ). Let p1, p2 ∈
TSκ/↔ for some κ ≥ ℵ0. Then p1 ↔Pκ p2 iff p1 = p2.

Proof. Follows immediately from Lemma 1. ��

There does not exist a consistent extension of BPAfo
δ with first-order axioms that

has only models in which external bisimilarity coincides with identity.

Theorem 9 (Undefinability of external bisimilarity). Each first-order
consistent extension of BPAfo

δ has a model in which external bisimilarity is not
identity.

Proof. Suppose that there exists a first-order consistent extension of BPAfo
δ , say

BPAfo
δ ∪ H , that has only models in which external bisimilarity is identity. A

contradiction is found as follows. Let c0, c1, c2, . . . and d0, d1, d2, . . . be different
new constants; and let a, a′, a′′ be different actions. Consider the following sets
of formulas:

H ′ = {c0 �= d0} ∪ {ci = a · ci+1 | i ≥ 0} ∪ {di = a · di+1 | i ≥ 0} ,

H ′
n = {c0 �= d0} ∪ {ci = a · ci+1 | 0 ≤ i < n} ∪ {di = a · di+1 | 0 ≤ i < n}
∪ {cn = a′, dn = a′′}

(for n ≥ 0) .

Take an arbitrary model A of BPAfo
δ ∪ H . It follows easily from the axioms

of BPAfo
δ that, for each n ≥ 0, H ′

n is satisfied in the definitional expansion of
A determined by the definitional extension of BPAfo

δ ∪ H with the constants
c0, . . . , cn, d0, . . . , dn and the equations ci = an−i · a′ for 0 ≤ i < n, cn = a′,
di = an−i ·a′′ for 0 ≤ i < n, dn = a′′. Hence, for each n ≥ 0, H ′

n is consistent with
BPAfo

δ ∪H . Each finite H ′′ ⊆ H ′ is consistent with BPAfo
δ ∪H because there is

an n ≥ 0 for which H ′′ ⊆ H ′
n. From this, it follows by the Compactness Theorem

that H ′ is consistent with BPAfo
δ ∪ H . Now consider an arbitrary model A′ of

BPAfo
δ ∪H ∪H ′. Because A′ satisfies H ′, we have cA

′

0 �= dA′

0 . Since TS(A′, cA
′

0 )
and TS(A′, dA′

0 ) are isomorphic transition systems, we have cA
′

0 ↔A′ dA′

0 . Hence,
because external bisimilarity is identity, it must be the case that cA

′

0 = dA′

0 ,
which contradicts the fact that cA

′

0 �= dA′

0 . ��
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We can summarize the state of affairs as follows. It is obvious that equality
derivable from BPAfo

δ implies external bisimilarity in each model of BPAfo
δ . In the

full bisimulation models, external bisimilarity coincides with identity. However,
there also exist models of which the domain contains pairs of different elements
that are externally bisimilar. Moreover, those models cannot be excluded by
extending BPAfo

δ with first-order axioms.
The above-mentioned discrepancy can for the greater part be eliminated in

second-order logic, as indicated below by Theorem 10. This theorem states that
each bisimulation model with standard reachability is isomorphic to a substruc-
ture of one of the full bisimulation models.

Theorem 10 (Isomorphic embedding). Let A be a model of BPAfo
δ such that

A |= R. Then A |= B iff A is isomorphically embedded in Pκ for some κ ≥ ℵ0.

Proof. The implication from left to right is proved as follows. Let P be the
domain of A, κ′ be the cardinality of P , and κ > κ′. It follows immediately from
the definitions of TS and TSκ that for each p ∈ P , TS(A, p) ∈ TSκ. Now consider
the function h:P → TSκ/↔ such that for each p ∈ P , h(p) = [ TS(A, p) ]. Because
A |= B, it follows immediately that h is injective. Because the implications from
right to left are derivable, the occurrence of “⇒ ” in axioms SI7–SI9 (Table 1) can
be replaced by “⇔ ”. It follows easily from these equivalences and the definitions
of alternative composition and sequential composition on TSκ/↔ (Sect. 5) that
h is a homomorphism with respect to these operations. From this, it follows
immediately by axioms SI1, TR1 and TR2 that h is also a homomorphism with
respect to the summand inclusion, action termination and action step relations.
Because A |= R, it follows immediately that h is a homomorphism with respect
to the reachability relation. The implication from right to left is trivial. ��

Models of BPAfo
δ other than bisimulation models with standard reachability

are to BPAfo
δ as nonstandard models of number theory are to number theory.

7 Observational Equivalence

In this section, we have a closer look at observational equivalence as defined in [12].
This equivalence on the domain of models of BPAfo

δ is closely related to external
bisimilarity. Observational equivalence is defined in the following way.

Let A be a model of BPAfo
δ with domain P , a binary relation a−→′ on P for

each predicate symbol a−→, and a unary relation a−→√′ on P for each predicate
symbol a−→√. Then equivalences ∼n⊆ P × P for each n ≥ 0 are defined as
follows:

– p1 ∼0 p2 for all p1, p2 ∈ P ;
– p1 ∼n+1 p2 if

• p1 a−→√′ iff p2
a−→√′;

• if p1
a−→′ p′1, then there is a p′2 ∈ P such that p2

a−→′ p′2 and p′1 ∼n p
′
2;

• if p2
a−→′ p′2, then there is a p′1 ∈ P such that p1

a−→′ p′1 and p′1 ∼n p
′
2.
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Table 4. Approximation induction principle

x ∼0 y OBS0

x ∼n+1 y ⇔
a∈A((x a−→√ ⇔ y

a−→√) ∧
∀x′ • (x a−→ x′ ⇒ ∃y′ • (y a−→ y′ ∧ x′ ∼n y′)) ∧
∀y′ • (y a−→ y′ ⇒ ∃x′ • (x a−→ x′ ∧ x′ ∼n y′))) OBSn+1

x ∼ y ⇔ n≥0x ∼n y OBS

x ∼ y ⇒ x = y AIP

Now, p1 and p2 are observationally equivalent in A, written p1 ∼A p2, if p1 ∼n p2
for all n ≥ 0.

If all transition systems that can be extracted from a model are finitely branch-
ing, then observational equivalence and external bisimilarity coincide.

Theorem 11 (Observational equivalence vs external bisimilarity). Let
A be a model of BPAfo

δ with domain P . Then ∼A =↔A if TS(A, p) ∈ TSℵ0 for
all p ∈ P .

Proof. The proof is analogous to the proof of the corresponding property for
process graphs given in [13]. ��

An interesting extension of BPAfo
δ is obtained as follows. We add to the non-

logical symbols of BPAfo
δ , for each n ≥ 0, a binary observational equivalence up

to depth n predicate symbol ∼n and a binary observational equivalence predi-
cate symbol ∼ . Moreover, we add the axioms given in Table 4 to the axioms of
BPAfo

δ . OBSn+1 is actually an axiom schema with an instance for each n ≥ 0.
Axiom OBS0 is the defining axiom of the observational equivalence up to

depth 0 predicate; and OBSn+1 is an axiom schema whose instances are the
defining axioms of the observational equivalence up to depth n + 1 predicates.
Axiom OBS is the defining axiom of the observational equivalence predicate.
Axiom AIP is called the approximation induction principle.

We write P∼
κ (κ ≥ ℵ0) for the unique definitional expansion of Pκ determined

by the definitional extension of BPAfo
δ with the binary predicate symbols ∼0, ∼1,

∼2, . . . and ∼ and axioms OBS0, OBS1, . . . and OBS. AIP is valid in P∼
ℵ0

, but
not in P∼

κ with κ ≥ ℵ1.

Theorem 12 (Soundness of AIP). We have P∼
κ |= AIP iff κ = ℵ0.

Proof. It follows immediately from Proposition 4 and Theorem 11 that P∼
κ |=

AIP if κ = ℵ0. For κ > ℵ0, we have the following counterexample. Fix an a ∈ A.
Consider the transition systems T1 = (S1,−→1, ∅, 0) and T2 = (S2,−→2, ∅, 0) where

S1 = {0} ∪ {(i, j) | i, j ∈ N, i ≥ j ≥ 1} ,
a−→1 = {(0, (i, 1)) | i ∈ N, i ≥ 1} ∪ {((i, j), (i, j + 1)) | i, j ∈ N, i > j ≥ 1} ,
a′
−→1 = ∅ for every a′ ∈ A such that a′ �= a,
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and

S2 = S1 ∪N ,

a−→2 = a−→1 ∪ {(i, i+ 1) | i ∈ N} ,
a′
−→2 = ∅ for every a′ ∈ A such that a′ �= a.

Clearly, T1, T2 �∈ TSℵ0 . Because T1 has no infinite branch and T2 has an infinite
branch, T1 �↔P∼

κ
T2. However, T1 ∼P∼

κ
T2. ��

All models of BPAfo
δ ∪AIP satisfy B. Here, and in Theorem 23, we abuse the

name AIP for the set of axioms {OBSn | n ≥ 0} ∪ {OBS,AIP}.

Proposition 5 (AIP implies B). We have BPAfo
δ ∪AIP |= B.

Proof. Take a model A of BPAfo
δ ∪AIP with domain P . Let p, p′ ∈ P . It is easily

proved by induction on n that p↔A p′ implies p ∼n p
′ (in A) for each n ≥ 0.

Because AIP is satisfied, it follows immediately that B is satisfied. ��

We can summarize the state of affairs as follows. In the models of BPAfo
δ from

which only finitely branching transition systems can be extracted, observational
equivalence coincides with external bisimilarity. It happens that observational
equivalence can be used to formulate AIP. The strength of AIP is witnessed
by the fact that P∼

ℵ0
is the only full bisimulation model in which AIP is valid.

Moreover, in all models in which AIP is valid, B is also valid.
AIP was first formulated in [14]. To the best of our knowledge, the formulation

given here is the first one using observational equivalence explicitly. In [15, 16],
more can be found on bisimulation models in which AIP is valid. However, in
those papers, only bisimulation models of PA, i.e. ACP without communication
(see also Sect. 13), are considered.

Note that the defining axiom of observational equivalence is a formula of
Lω1ω(BPAfo

δ ). Observational equivalence is not definable in L(BPAfo
δ ). It is shown

in [17] that external bisimilarity is not even definable in Lω1ω(BPAfo
δ ).

8 SOS-Based Bisimilarity

It is customary to associate transition systems with closed terms of the language
of an ACP-like theory about processes by means of structural operational se-
mantics and to identify closed terms if their associated transition systems are
bisimilar. In this section, we briefly dwell on this approach.

In the presence of recursion the approach requires a special provision, namely
constants for the solutions of recursive specifications.

We add to the nonlogical symbols of the first-order theory BPAfo
δ , for each

finite guarded recursive specification E and each variable X that occurs as the
left-hand side of an equation in E, a constant standing for the unique solution
of E for X . This constant is denoted by 〈X |E〉. Moreover, we add the axiom
(schema) given in Table 5 to the axioms of BPAfo

δ . We write BPAfo
δc for the
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Table 5. Axiom schema for the constants 〈X|E〉

1≤i≤n〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉)
if E = {Xi = ti(X1, . . . , Xn) | 1 ≤ i ≤ n} RDPc

Table 6. Structural operational semantics of BPAfo
δc

a
a−→√

x
a−→√

x + y
a−→√

y
a−→√

x + y
a−→√

x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

x
a−→√

x · y
a−→ y

x
a−→ x′

x · y
a−→ x′ · y

ti(〈X1|E〉, . . . , 〈Xn|E〉) a−→√

〈Xi|E〉 a−→√ E = {Xi = ti(X1, . . . , Xn) | 1 ≤ i ≤ n}

ti(〈X1|E〉, . . . , 〈Xn|E〉) a−→ x′

〈Xi|E〉 a−→ x′ E = {Xi = ti(X1, . . . , Xn) | 1 ≤ i ≤ n}

resulting theory. RDPc is an axiom schema with an instance for each guarded
recursive specification E. Note that the models of BPAfo

δc are simply the expan-
sions of the models of BPAfo

δ obtained by associating with each constant 〈X |E〉
the unique solution in the model concerned of E for X .

The structural operational semantics of BPAfo
δc is described by the transition

rules given in Table 6. It determines a transition system for each process that can
be denoted by a closed term of L(BPAfo

δc). These transition systems are special
in the sense that their states are closed terms of L(BPAfo

δc).
Let t be a closed term of L(BPAfo

δc). Then the transition system of t induced by
the structural operational semantics of BPAfo

δc, written TS(t), is the connected
transition system Γ(S,−→,−→√, s0), where:

– S is the set of closed terms of L(BPAfo
δc);

– the sets a−→ ⊆ S × S and a−→√ ⊆ S for each a ∈ A are the smallest subsets of
S × S and S, respectively, for which the transition rules from Table 6 hold;

– s0 ∈ S is t.

Clearly, the structural operational semantics does not give rise to infinitely
branching transition systems. In other words, for each closed term t of L(BPAfo

δc),
we have TS(t) ∈ TSℵ0 .

Let t1 and t2 be closed terms of L(BPAfo
δc). Then we say that t1 and t2 are

bisimilar, written t1 ↔sos t2, if TS(t1)↔TS(t2).
We have the following relationship between bisimilarity of terms, which is

based on structural operational semantics, and validity of equations in models
of BPAfo

δc.
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Theorem 13 (SOS-based bisimilarity and validity of equations).

1. Let t1, t2 be closed terms of L(BPAfo
δ ). Then t1 ↔sos t2 implies A |= t1 = t2

for all models A of BPAfo
δc.

2. Let t1, t2 be closed terms of L(BPAfo
δc). Then t1 �↔sos t2 implies A |= t1 �= t2

for all models A of BPAfo
δc.

Proof.
Proof of part 1. It follows easily from the structural operational semantics of
BPAfo

δc that, for all closed terms t1, t2 of L(BPAfo
δ ), t1 ↔sos t2 iff BPAfo

δc � t1 = t2
(see also [18]). From this, it follows immediately that, for all closed terms t1, t2
of L(BPAfo

δ ), t1 ↔sos t2 implies A |= t1 = t2 for all models A of BPAfo
δc.

Proof of part 2. It follows easily from the structural operational semantics of
BPAfo

δc that, for all closed terms t1, t2 of L(BPAfo
δc), t1 ↔sos t2 iff BPAfo

δc∪{OBSn |
n ≥ 0} � t1 ∼n t2 for all n ≥ 0 (see also [18]). Moreover, for all closed terms
t1, t2 of L(BPAfo

δc) and n ≥ 0, either BPAfo
δc ∪ {OBSn | n ≥ 0} � t1 ∼n t2 or

BPAfo
δc ∪ {OBSn | n ≥ 0} � ¬ t1 ∼n t2, but not both. This is easily proved

by induction on n. As a consequence, for all closed terms t1, t2 of L(BPAfo
δc),

t1 �↔sos t2 iff BPAfo
δc ∪ {OBSn | n ≥ 0} � ¬ t1 ∼n t2 for some n ≥ 0. From this,

it follows easily that, for all closed terms t1, t2 of L(BPAfo
δc), t1 �↔sos t2 implies

BPAfo
δc � ¬ t1 = t2. From this, it follows immediately that, for all closed terms

t1, t2 of L(BPAfo
δc), t1 �↔sos t2 implies A |= ¬ t1 = t2 for all models A of BPAfo

δc.
��

This theorem implies that, for closed equations of L(BPAfo
δ ), validity in all mod-

els coincides with (SOS-based) bisimilarity of the closed terms concerned.
We could have introduced constants for the solutions of unguarded recursive

specifications as well. In that case, the structural operational semantics would
have given rise to countably branching transition systems. Moreover, it would
have fixed a particular solution for each unguarded recursive specification. In
this paper, we do not consider unguarded recursion.

The following remark on fixing a particular solution in the case of unguarded
recursion is in order. Suppose that we also add to the nonlogical symbols of
the first-order theory BPAfo

δ a constant, denoted by 〈X |E〉, for each finite un-
guarded recursive specification E and each variable X that occurs as the left-
hand side of an equation in E. Consider the two unguarded recursive specifica-
tions X = a ·X +X and Y = b ·Y +Y , where a and b are different actions. The
structural operational semantics of BPAfo

δc described in Table 6 fixes the obvious
solution for each of these unguarded recursive specifications. However, as usual
with unguarded recursive specifications, both have more than one solution. The
problem is not so much that they have more than one solution, but that the sets
of solutions are not disjoint. For example, the solution of the guarded recursive
specification Z = a · Z + b · Z is a common solution of X = a · X + X and
Y = b · Y + Y . The common solutions exclude any possibility to achieve that
A |= 〈X |{X = a · X +X}〉 �= 〈Y |{Y = b · Y + Y }〉 for all models A, although
〈X |{X = a ·X +X}〉 �↔sos 〈Y |{Y = b · Y + Y }〉.
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9 A Modal Fragment of L(BPAfo
δ )

In this section, we have a closer look at a modal fragment of L(BPAfo
δ ). This

fragment corresponds to a variant of HML (Hennessy-Milner Logic), a simple
modal logic introduced in [12] to give a modal characterization of bisimilarity.

The set M of modal fragment formulas of L(BPAfo
δ ) is inductively defined as

follows:

– if x is a variable, then x = x ∈ M;
– if φ ∈M, then ¬ φ ∈ M;
– if φ1, φ2 ∈ M, then φ1 ∧ φ2 ∈M;
– if a ∈ A and x is a variable, then x a−→√ ∈M;
– if a ∈ A, x, y are different variables and φ ∈M, then ∃y •(x a−→ y ∧ φ) ∈M.

We write M1 for the subset of M that contains all formulas from M in which
exactly one variable occurs free. The set M1 of one-variable modal fragment
formulas has an interesting property: M1 is essentially the set of formulas of
L(BPAfo

δ ) that are invariant for external bisimulation.

Theorem 14 (Invariance for external bisimilarity). Let A be a model of
BPAfo

δ with domain P , and let φ be a formula of L(BPAfo
δ ). Then the following

are equivalent:

– A |= φ[p1] iff A |= φ[p2] for all p1, p2 ∈ P such that p1 ↔A p2;
– there exists a formula φ′ ∈M1 such that φ ⇔ φ′.

Proof. The proof is analogous to the proof of the corresponding property for
first-order formulas that correspond to HML-like modal formulas given in [17].

��
We have the following corollary of Theorem 14.

Corollary 1 (External bisimilarity implies indistinguishability). Let A
be a model of BPAfo

δ with domain P , and let p1, p2 ∈ P . If p1 ↔A p2, then for
all φ ∈ M1 we have A |= φ[p1] iff A |= φ[p2].

In general, we do not have the converse of Corollary 1. The transition systems
from the counterexample used in the proof of Theorem 12 provide a counterexam-
ple here as well. However, we do have the converse in the case of finite branching.

Theorem 15 (Indistinguishability implies external bisimilarity). Let A
be a model of BPAfo

δ with domain P , and let p1, p2 ∈ P . If for all φ ∈ M1 we
have A |= φ[p1] iff A |= φ[p2] and moreover TS(A, p1),TS(A, p2) ∈ TSℵ0 , then
p1 ↔A p2.

Proof. The proof is analogous to the proof of the corresponding property for
HML-like modal formulas given in [19]. ��

Now we come back to the variant of HML of which the formulas correspond
to the formulas in M. HML is a modal logic introduced in [12] to be used
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in a setting where no distinction is made between successful termination and
deadlock. The variant of HML considered here is adapted to a setting where
distinction is made between successful termination and deadlock. This variant is
henceforth also called HML. The set H of HML formulas is inductively defined
as follows:

– T ∈ H;
– if ψ ∈ H, then ¬ ψ ∈ H;
– if ψ1, ψ2 ∈ H, then ψ1 ∧ ψ2 ∈ H;
– if a ∈ A, then 〈a〉√ ∈ H;
– if a ∈ A and ψ ∈ H, then 〈a〉ψ ∈ H.

There is a “standard translation” from HML formulas to formulas of L(BPAfo
δ ).

Let x be a fixed but arbitrary variable. Then the translation of HML formulas
is defined as follows:

T• = x = x ,

(¬ ψ)• = ¬ (ψ•) ,
(ψ1 ∧ ψ2)• = ψ1

• ∧ ψ2
• ,

〈a〉√ • = x
a−→√ ,

(〈a〉ψ)• = ∃y •
(
x a−→ y ∧ ψ•(y)

)
where y is a fresh variable.

This translation is justified by the fact that satisfaction for HML formulas ψ is
defined such that A |= ψ iff A |= ∀x • ψ•.

Clearly, the image of the translation from HML formulas to formulas of
L(BPAfo

δ ) consists of all formulas from M1 of which the free variable is x. HML
is a modal logic which has been devised to complement the process algebra
CCS [3, 4] with a formalism that allows one to express and verify properties
of processes which are definable directly in terms of the action steps that are
possible at any stage. Apparently, BPAfo

δ can be considered to include a process
algebra and a variant of HML as fragments.

10 Deadlock Freedom

In this section, we add a deadlock freedom predicate to BPAfo
δ . In Sect. 2, we

demonstrated that the deadlock freedom predicate can be explicitly defined by
using the reachability predicate. Here, the deadlock freedom predicate will be
implicitly defined without using the reachability predicate.

We add to BPAfo
δ the unary deadlock freedom predicate symbol dlf and the

axioms given in Table 7. We write DLF for this set of axioms. DLFS is an axiom
schema where ψ(x) is a formula of L(BPAfo

δ ∪DLF). Axiom schema DLFS is an
induction schema.

The deadlock freedom predicate that is implicitly defined by DLF is equivalent
to the one that is explicitly defined by using the reachability predicate.

Theorem 16 (Explicit definability of deadlock freedom). We have
BPAfo

δ ∪DLF � dlf(x) ⇔ ¬ x→→ δ.
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Table 7. Axioms for deadlock freedom

¬ dlf(δ) DLF1

a∈A∀x, y • (dlf(x) ∧ x
a−→ y ⇒ dlf(y)) DLF2

¬ ψ(δ) ∧ a∈A∀x, y • (ψ(x) ∧ x
a−→ y ⇒ ψ(y)) ⇒ ∀x • (ψ(x) ⇒ dlf(x)) DLFS

Proof. We will apply RS, taking dlf(x) ⇒ y �= δ for φ(x, y), to prove the implica-
tion dlf(x) ⇒ ¬ x→→ δ. When we have shown that x→→ y ⇒ (dlf(x) ⇒ y �= δ),
we can first conclude by substitution of δ for y that x →→ δ ⇒ ¬ dlf(x), and
then by contraposition that dlf(x) ⇒ ¬ x→→ δ.

It remains to be shown by means of RS that x →→ y ⇒ (dlf(x) ⇒ y �= δ).
First of all, we immediately conclude from DLF1 that

∀x′ • (dlf(x′) ⇒ x′ �= δ) .

Moreover, we conclude from DLF2, using substitutivity of implication, that

∀x′, y′, z′ •
∧

a′∈A

(
x′

a′
−→ y′ ∧ (dlf(y′) ⇒ z′ �= δ) ⇒ (dlf(x′) ⇒ z′ �= δ)

)
.

Using the subprocess induction schema, it follows from these conclusions that
x→→ y ⇒ (dlf(x) ⇒ y �= δ).

We will apply DLFS, taking ¬ x→→ δ for ψ(x), to prove the reverse implication
¬ x→→ δ ⇒ dlf(x).

First of all, we immediately conclude from R1 that

¬ (¬ δ →→ δ) .

Moreover, we conclude from R2, because (x a−→ y ∧ y →→ z ⇒ x →→ z) ⇔
(¬ x→→ z ∧ x

a−→ y ⇒ ¬ y →→ z), that∧
a∈A

∀x, y •
(
¬ x→→ δ ∧ x a−→ y ⇒ ¬ y →→ δ

)
.

Using DLFS, it follows from these conclusions that ∀x•(¬ x→→ δ ⇒ dlf(x)). ��

Using Proposition 1 and Theorem 16, we can easily prove that, for example, the
solution of the guarded recursive specification X = a ·X is deadlock free.

Proposition 6 (Solution of X = a ·X is deadlock free). We have BPAfo
δ ∪

DLF � X = a ·X ⇒ dlf(X).

Proof. Suppose ¬ dlf(X). By Theorem 16, then also X →→ δ. We distinguish
three cases according to Proposition 1:

– X = δ. Then, because X = a ·X , also δ = a ·δ. This is equivalent to a ·δ # δ,
which contradicts axiom SI3.

– X a−→ δ for some a ∈ A. Then a ·δ # X . Because X = a ·X , this is equivalent
to a · δ # a ·X . This in turn implies δ = X , which contradicts the conclusion
of the previous case that X �= δ.
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– X a−→ z for some a ∈ A and z �= X with z →→ δ. Then a · z # X . Because
X = a · X , this is equivalent to a · z # a · X . This in turn implies z = X ,
which contradicts the fact that z �= X .

So ¬ dlf(X) leads in all cases to contradiction. From this, we conclude that
dlf(X). ��

Let A be a model of BPAfo
δ ∪ DLF with domain P . Then reachability and

deadlock freedom on P are defined as follows:

p1 →→A p2 iff p1 →→ p2 ,

where →→ is the reachability relation of TS(A, p1);

dlfA(p) iff not p→→A δ
A .

Reachability and deadlock freedom on the domain of a model of BPAfo
δ ∪ DLF

as defined above are called external reachability and external deadlock freedom,
respectively.

We write Pdlf
κ (κ ≥ ℵ0) for the unique definitional expansion of Pκ determined

by the definitional extension of BPAfo
δ with the unary predicate symbol dlf and

the formula dlf(x) ⇔ ¬ x →→ δ. In the proof of Proposition 8 (see below), we
will use the next lemma. It states that in the models Pdlf

κ , external reachability
coincides with internal reachability.

Lemma 2 (External reachability is internal reachability in Pdlf
κ ). Let

p1, p2 ∈ TSκ/↔ for some κ ≥ ℵ0. Then p1 →→Pdlf
κ
p2 iff p1 →̃→ p2.

Proof. By Lemma 1, TS(Pκ, p1) ∈ p1 and TS(Pκ, p2) ∈ p2. Hence, p1 →̃→ p2 iff
[ TS(Pκ, p1) ] →̃→ [ TS(Pκ, p2) ]. It is easy to see that p is a state of TS(Pκ, p1) iff
p1 →→ p where →→ is the reachability relation of TS(Pκ, p1); and also that, if p is
a state of TS(Pκ, p1), (TS(Pκ, p1))p = TS(Pκ, p). From this, and the definitions
of →̃→ and →̂→, it follows that [ TS(Pκ, p1) ] →̃→ [ TS(Pκ, p2) ] iff there exists a
p such that p1 →→Pκ p and TS(Pκ, p) ∈ [ TS(Pκ, p2) ]. Moreover, by Lemma 1,
TS(Pκ, p) ∈ [ TS(Pκ, p2) ] iff p = p2. Thus, we conclude that p1 →̃→ p2 iff p1 →→Pκ

p2. Because Pdlf
κ is a definitional expansion of Pκ, it follows immediately that

also p1 →̃→ p2 iff p1 →→Pdlf
κ
p2. ��

A useful corollary of the proof of Lemma 2 is the following.

Corollary 2 (External reachability is internal reachability in Pκ). Let
p1, p2 ∈ TSκ/↔ for some κ ≥ ℵ0. Then p1 →→Pκ p2 iff p1 →̃→ p2.

In the models of BPAfo
δ ∪ DLF, internal deadlock freedom implies external

deadlock freedom.

Proposition 7 (Internal deadlock freedom implies external deadlock
freedom). Let A be a model of BPAfo

δ ∪ DLF with domain P and let p ∈ P .
Then dlfA(p) implies dlfA(p).
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Proof. By Theorem 16, dlfA(p) iff not p→→′ δA, where →→′ is the binary relation
on P associated with the predicate symbol →→ in A. By the definition of external
deadlock freedom, dlfA(p) iff not p→→′′ δA, where →→′′ is the reachability relation
of TS(A, p). It follows immediately from axioms R1, R2 and RS of BPAfo

δ (Ta-
ble 1) and the definition of reachability relation of a transition system (Sect. 4)
that for all p′, p′′ ∈ P , p′ →→′′ p′′ implies p′ →→′ p′′. Hence, p →→′′ δA implies
p→→′ δA; and by the above-mentioned equivalences dlfA(p) implies dlfA(p). ��

In the full bisimulation models Pdlf
κ , external deadlock freedom coincides with

internal deadlock freedom.

Proposition 8 (External deadlock freedom is internal deadlock free-
dom in Pdlf

κ ). Let p ∈ TSκ/↔ for some κ ≥ ℵ0. Then dlfPdlf
κ

(p) iff d̃lf(p).

Proof. By Lemma 2, p →→Pdlf
κ
δ̃ iff p →̃→ δ̃ . Hence, dlfPdlf

κ
(p) iff not p →̃→ δ̃ . By

Theorem 16, also d̃lf(p) iff not p →̃→ δ̃ . From this, it follows immediately that
dlfPdlf

κ
(p) iff d̃lf(p). ��

There does not exist a consistent extension of BPAfo
δ ∪ DLF with first-order

axioms that has only models in which external deadlock freedom coincides with
internal deadlock freedom.

Theorem 17 (Undefinability of external deadlock freedom). Each first-
order consistent extension of BPAfo

δ ∪DLF has a model in which external deadlock
freedom is not internal deadlock freedom.

Proof. Suppose that there exists a first-order consistent extension of BPAfo
δ ∪

DLF, say BPAfo
δ ∪ DLF ∪H , that has only models in which external deadlock

freedom is internal deadlock freedom. A contradiction is found as follows. Let
c0, c1, c2, . . . be different new constants; and let a be an action. Consider the
following sets of formulas:

H ′ = {¬ dlf(c0)} ∪ {ci = a · ci+1 | i ≥ 0} ,

H ′
n = {¬ dlf(c0)} ∪ {ci = a · ci+1 | 0 ≤ i < n} ∪ {cn = δ} .

Take an arbitrary model A of BPAfo
δ ∪ DLF ∪ H . It follows easily from the

axioms of BPAfo
δ ∪ DLF that, for each n ≥ 0, H ′

n is satisfied in the definitional
expansion of A determined by the definitional extension of BPAfo

δ ∪ DLF ∪ H
with the constants c0, . . . , cn and the equations ci = an−i · δ for 0 ≤ i < n and
cn = δ. Hence, for each n ≥ 0, H ′

n is consistent with BPAfo
δ ∪ DLF ∪ H . Each

finite H ′′ ⊆ H ′ is consistent with BPAfo
δ ∪ DLF ∪H because there is an n ≥ 0

for which H ′′ ⊆ H ′
n. From this, it follows by the Compactness Theorem that

H ′ is consistent with BPAfo
δ ∪DLF ∪H . Now consider an arbitrary model A′ of

BPAfo
δ ∪DLF∪H∪H ′. Because A′ satisfies H ′, not dlfA

′
(cA

′

0 ). It is easy to see that
the reachability relation→→ of TS(A′, cA

′

0 ) is such that not cA
′

0 →→ δA′
.This means
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that dlfA′(cA
′

0 ). Hence, because external deadlock freedom is internal deadlock
freedom, dlfA

′
(cA

′

0 ), which contradicts the fact that not dlfA
′
(cA

′

0 ). ��
Apparently, there is a discrepancy in relation to deadlock freedom which is sim-
ilar to the discrepancy in relation to bisimilarity found in Sect. 6.

We can summarize the state of affairs as follows. Deadlock freedom derivable
from BPAfo

δ ∪DLF implies external deadlock freedom in each model of BPAfo
δ ∪

DLF. In the full bisimulation models Pdlf
κ , external deadlock freedom coincides

with internal deadlock freedom. However, there also exist models of which the
domain contains elements that are externally deadlock free, but not internally
deadlock free. Moreover, those models cannot be excluded by extending BPAfo

δ ∪
DLF with first-order axioms.

11 Determinism

In the previous section, the relation between external deadlock freedom and
internal deadlock freedom in models of BPAfo

δ ∪ DLF was analysed in detail.
It is obvious that there are other properties of processes of which the relation
between the external version and the internal version can be analysed. In this
section, we briefly consider one other property, namely determinism.

The determinism predicate symbol det is explicitly defined in terms of
L(BPAfo

δ ) by

det(x) ⇔ ∀y •
(
x→→ y ⇒

∧
a∈A

((
y

a−→√ ⇒ ∀z • ¬ y a−→ z
)
∧

∀z, z′ •
(
y a−→ z ∧ y a−→ z′ ⇒ z = z′

)))
.

External determinism can be defined in the same vein as external deadlock free-
dom.

In this case, it is easy to see that there exist models of the extension of
BPAfo

δ with determinism in which external determinism does not coincide with
internal determinism. We know from Theorem 9 that each first-order extension
of BPAfo

δ has a model of which the domain contains pairs of different elements
that are externally bisimilar. Let A be such a model, and let p and p′ be elements
from the domain of A such that p↔A p′ and not p = p′. Clearly, the element
aA ·A p+A aA ·A p′ is externally deterministic, but not internally deterministic.

It is also easy to see that external determinism coincides with internal deter-
minism in the unique expansions of the full bisimulation models Pκ determined
by the explicit definition of det. We know from Proposition 4 that external bisimi-
larity coincides with identity in those models; and we know from Corollary 2 that
external reachability coincides with internal reachability in those models. From
this, it is clear that external determinism coincides with internal determinism in
those models.

12 Restricted Reachability

In this section, we present an interesting extension of BPAfo
δ , called BPAfo

δrr. It is
obtained as follows. We add to the nonlogical symbols of BPAfo

δ , for each a ∈ A,
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Table 8. First-order and second-order axioms for restricted reachability

x
a−→→ x RR1

x a−→ y ∧ y a−→→ z ⇒ x a−→→ z RR2

∃!y • ψa,b(x, y) if a �≡ b RR3

x
a−→→ y ∧

∀x′, y′, z′ • (φ(x′, x′) ∧ (x′ a−→ y′ ∧ φ(y′, z′) ⇒ φ(x′, z′))) ⇒ φ(x, y) RRS

∀R • (x a−→→ y ∧
∀x′, y′, z′ • (R(x′, x′) ∧ (x′ a−→ y′ ∧ R(y′, z′) ⇒ R(x′, z′))) ⇒ R(x, y)) RR

a binary reachability by a-steps predicate symbol a−→→ . Moreover, we add the
axioms given in Table 8, with the exception of RR, to the axioms of BPAfo

δ .
In axiom RR3 and henceforth, ψa,b(x, y), where a and b are different actions,
stands for the formula

y
b−→ x ∧ ∀x •

(
y

b−→ x ⇒ x = x
)
∧

∀y′ •
(
y a−→→ y′ ⇒ ∃x′, x′′ •

(
y′ b−→ x′ ∧

∨
a′∈A

x′ a′
−→ x′′ ⇒

∃!y′′ •
(
y′ a−→ y′′ ∧ y′′ b−→ x′′

))
∧

∃x′, y′′ •
(
y′

b−→ x′ ∧ y′
a−→ y′′ ⇒

∃!x′′ •
( ∨

a′∈A

x′
a′
−→ x′′ ∧ y′′

b−→ x′′
)))

.

RR1–RR3 are axiom schemas where a and b are action constants. RRS is an ax-
iom schema where a is an action constant and φ(x, y) is a formula of L(BPAfo

δrr).
The differences of RR1, RR2 and RRS with R1, R2 and RS reflect that a−→→
is the restricted kind of reachability in which only action a is involved. We will
return to the additional axiom schema RR3 below. Axiom schema RRS is called
the restricted subprocess induction schema.

Similar to RS, the first-order axiom schema RRS does not exclude all models
in which there are processes that have more processes reachable by a-steps than
needed to satisfy the instances of axiom schemas RR1 and RR2. Similar to R,
the second-order axiom schema RR from Table 8, where a is an action constant,
would exclude all such models.

One can think of ψa,b(x, y) as a formula expressing that y produces an index-
ing of the processes reachable from x with a set of processes reachable from y
by a-steps only. Axiom schema RR3 excludes models in which such an indexing
cannot be produced for all processes. This looks to be indispensable to establish
that the (unrestricted) reachability predicate is explicitly definable by means of
a restricted reachability predicate. It is unknown to us whether RR3 is derivable
from the other axioms of BPAfo

δrr.
Note further that axiom schema RR3 induces the existence of an indexing

operator for each pair of different actions a and b. The formula

χa,b(x) = y ⇔ ψa,b(x, y)
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is an explicit definition of this operator in terms of L(BPAfo
δrr). Thus, a defini-

tional extension of BPAfo
δrr is obtained. Hence, every model of BPAfo

δrr can be
expanded in a unique way with an indexing operation that satisfies this formula.
Using an auxiliary operator χa,b, we can equationally characterize χa,b as follows:

χa,b(x) = b · x+ χa,b(x) ,
χa,b(c) = δ ,

χa,b(c · x) = a · χa,b(x) ,
χa,b(x + y) = χa,b(x) + χa,b(x) ,

where c stands for an arbitrary constant of BPAfo
δrr (i.e. c ∈ A ∪ {δ}).

Now we come back to the explicit definability of unrestricted reachability.

Theorem 18 (Explicit definability of unrestricted reachability). We
have BPAfo

δrr � x →→ y ⇔ P→→(x, y), where P→→(x, y) stands for the following
formula of L(BPAfo

δrr):

∃z •
(
ψa,b(x, z) ∧ ∃z′ •

(
z

a−→→ z′ ∧ z′
b−→ y
))
,

with a and b different actions.

Proof. We will apply the subprocess induction schema RS, taking P→→(x, y) for
φ(x, y), to prove the implication x→→ y ⇒ P→→(x, y).

First of all, we conclude from RR1 and RR3, because ψa,b(x, z) ⇒ z
b−→ x,

that

∀x′ • P→→(x′, x′) .

Moreover, using SI1, SI9, TR2 and RR2, we easily derive the following:

x′ a′
−→ y′ ∧ ψa,b(y′, u′) ∧ ∃u′′ •

(
u′ a−→→ u′′ ∧ u′′ b−→ z′

)
⇒

ψa,b(x′, a · u′ + b · x′) ∧ ∃u′′ •
(
a · u′ + b · x′ a−→→ u′′ ∧ u′′

b−→ z′
)
.

Hence, we conclude from RR3, using existential generalization, that

∀x′, y′, z′ •
∧

a′∈A

(
x′

a′
−→ y′ ∧ P→→(y′, z′) ⇒ P→→(x′, z′)

)
.

Using the subprocess induction schema, it follows from these conclusions that
x→→ y ⇒ P→→(x, y).

In the proof of the implication P→→(x, y) ⇒ x →→ y given below, ρ(u, u′)
stands for the formula

∃x • ψa,b(x, u) ⇒
∃!x •

(
ψa,b(x, u) ∧ u a−→→ u′ ∧ ∃!y •

(
u′ b−→ y ∧ x→→ y

))
.

We will apply the restricted subprocess induction schema RRS, taking ρ(x, y) for
φ(x, y). When we have shown in this manner that u a−→→ u′ ⇒ ρ(u, u′), we can
conclude that P→→(x, y) ⇒ x→→ y as follows. Assume P→→(x, y). Then there exist
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u and u′ such that ψa,b(x, u) ∧ u a−→→ u′ ∧ u′ b−→ y. Because u a−→→ u′ ⇒ ρ(u, u′),
also ρ(u, u′). This immediately gives x→→ y.

It remains to be shown by means of RRS that u a−→→ u′ ⇒ ρ(u, u′). First of
all, we conclude from RR1 and R1, because ψa,b(x, u) ⇒ u b−→ x, that

∀u • ρ(u, u) .

Moreover, using RR2 and R2, we easily derive from the hypothesis ∃x•ψa,b(x, u)
the following implications:

u
a−→ u′ ∧ ψa,b(x′, u′) ⇒ ∃!x •

(
ψa,b(x, u) ∧

∨
a′∈A

x
a′
−→ x′

)
,

u a−→ u′ ∧ u′ a−→→ u′′ ⇒ u a−→→ u′′ ,∨
a′∈A

x a′
−→ x′ ∧ ∃!y •

(
u′′ b−→ y ∧ x′ →→ y

)
⇒ ∃!y •

(
u′′ b−→ y ∧ x→→ y

)
.

The left-hand sides of the first and second implication are conjunctions of u a−→ u′

and (an instance of) one of the first two conjuncts occurring in the right-hand
side of ρ(u′, u′′). The left-hand side of the third implication is a conjunction of
the second conjunct occurring in the right-hand side of the first implication and
(an instance of) the third conjunct occurring in the right-hand side of ρ(u′, u′′).
Hence, we also conclude that

∀u, u′, u′′ •
(
u a−→ u′ ∧ ρ(u′, u′′) ⇒ ρ(u, u′′)

)
.

Using the restricted subprocess induction schema, it follows from these conclu-
sions that u a−→→ u′ ⇒ ρ(u, u′). ��

The following is a corollary of the proof of Theorem 18.

Corollary 3 (RRS implies RS). We have BPAfo
δrr \ RS |= RS.

Moreover, in the models of BPAfo
δrr, R holds if RR holds.

Theorem 19 (RR implies R). We have BPAfo
δrr ∪ RR |= R.

Proof. Suppose ∀x′, y′, z′•(R(x′, x′) ∧
∧

a∈A(x′ a−→ y′ ∧ R(y′, z′) ⇒ R(x′, z′))).
Then we must show that BPAfo

δrr ∪RR |= x→→ y ⇒ R(x, y). By Theorem 18, it
is sufficient to show that ∀u, u′ • (ψa,b(x, u) ∧ u a−→→ u′ ∧ u′ b−→ y ⇒ R(x, y)).
This is done by induction on the number of steps, say k, required for u a−→→ u′.
If k = 0, then we immediately have R(x, y). If k = n+ 1, then there exists a u′′

such that u a−→ u′′ and u′′ a−→→ u′. It follows from ψa,b(x, u), that there exists a
unique x′′ such that x a′

−→ x′′ for some action a′ and u′′ b−→ x′′. By the induction
hypothesis, R(x′′, y). From x a′

−→ x′′ and R(x′′, y), it follows that R(x, y). ��

For each κ ≥ ℵ0, Prr
κ is the expansion of Pκ that additionally has for each

predicate symbol a−→→ a binary relation ã−→→ on TSκ/↔ defined as follows:

[T1 ] ã−→→ [T2 ] iff ∃T ∈ [T2 ] • T1
â−→→ T ,
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where â−→→ is a binary relation on TSκ which will be defined below. However,
we first introduce an auxiliary notion. Let T = (S,−→,−→√, s0) be a transition
system. Then, for each a ∈ A, the reachability by a-steps relation of T is the
smallest relation a−→→ ⊆ S × S such that:

– s
a−→→ s;

– if s a−→ s′ and s′ a−→→ s′′, then s a−→→ s′′.

We write RSa(T ) for {s ∈ S | s0 a−→→ s}. Now the relation â−→→ on TSκ is defined
as follows. Let T1, T2 ∈ TSκ. Then

T1
â−→→ T2 iff ∃s ∈ RSa(T1) • (T1)s = T2 .

Reachability by a-steps on TSκ/↔ is well-defined because ↔ preserves reacha-
bility by a-steps on TSκ up to ↔.

The structures Prr
κ are models of BPAfo

δrr.

Theorem 20 (Soundness of BPAfo
δrr). For all κ ≥ ℵ0, we have Prr

κ |= BPAfo
δrr.

Proof. Because Prr
κ is an expansion of Pκ, it is sufficient to show that the ad-

ditional axioms for restricted reachability are sound. The soundness of all addi-
tional axioms for restricted reachability follows easily from the definitions of the
ingredients of Prr

κ . ��

The extension of BPAfo
δ to BPAfo

δrr may seem at first sight rather far-fetched.
However, unrestricted reachability is explicit definable in BPAfo

δrr. Moreover, in
all models of BPAfo

δrr, the validity of RS is implied by the validity of RRS and
the validity of R is implied by the validity of RR. All this strongly suggests that
restricted reachability is more basic than unrestricted reachability. In addition,
we will see in Sect. 16 that ACPfo, i.e. the first-order extension of ACP presented
in Sect. 13, can be interpreted in BPAfo

δrr.
It is unknown to us whether the restricted reachability predicates a−→→ are

definable in terms of L(BPAfo
δ ) in BPAfo

δ . In any case, the extension turns out
to have great expressive power. Consider the following formula of L(BPAfo

δrr):

∃z •
(
∀u •
(
z

a−→→ u ⇒ ∃!v • u
a−→ v ∧

∃!u′ • u b−→ u′ ∧
∧

a′∈A,a′ �=a,b

¬ ∃w • u
a′
−→ w

)
∧

z b−→ x ∧

∀u, v •
(
z

a−→→ u ∧ u
a−→ v ⇒

∃u′, v′ •
(
u

b−→ u′ ∧ v
b−→ v′ ∧

∨
a′∈A

u′
a′
−→ v′

)))
,

where a and b are different actions. We use ∞(x) as an abbreviation of the
above formula. Let A be a model of BPAfo

δrr with domain P , and let p ∈ P . Then
A |= ¬∞(x) [p] only if p has no infinite path in TS(A, p). If A is one of the full
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Table 9. Bar induction schema

a∈Aψ(a) ∧ ∀x • (¬ ∞(x) ⇒ (∀y • a∈A(x a−→ y ⇒ ψ(y)) ⇒ ψ(x))) ⇒
∀x • (¬ ∞(x) ⇒ ψ(x)) BAR

bisimulation models Prr
κ , “only if” can be replaced by “if and only if”. It looks

to be that there is no formula of L(BPAfo
δ ) with analogous properties.

The axiom schema BAR given in Table 9 can be used to prove properties of
all processes that have no infinite path. BAR is an axiom schema where ψ(x) is
a formula of L(BPAfo

δrr). Axiom schema BAR is an induction schema, called the
bar induction schema.

BAR is valid in the full bisimulation models Prr
κ .

Theorem 21 (Soundness of BAR). For all κ ≥ ℵ0, we have Prr
κ |= BAR.

Proof. We define an ordinal function || || on the domain P of Prr
κ as follows:

– if {p′ | p →̃→ p′} = ∅, then ||p|| = 0;
– if {p′ | p →̃→ p′} �= ∅ and {||p′|| | p →̃→ p′} has a maximal element, then
||p|| = max{||p′|| | p →̃→ p′}+ 1;

– if {p′ | p →̃→ p′} �= ∅ and {||p′|| | p →̃→ p′} has no maximal element, then
||p|| = sup{||p′|| | p →̃→ p′}.

Because p ã−→ p′ implies ||p′|| < ||p|| if p has no infinite path, it is easily proved by
transfinite induction on ||x|| that BAR is valid in Prr

κ . ��

13 The First-Order Theory ACPfo

In this section, we present ACPfo, a first-order extension of ACP. Like in BPAfo,
it is assumed that there is a fixed but arbitrary finite set of actions A with δ �∈ A.
We write Aδ for A∪{δ}. In ACPfo, it is further assumed that there is a fixed but
arbitrary commutative and associative communication function | :Aδ ×Aδ → Aδ

such that δ | a = δ for all a ∈ Aδ. The function | is regarded to give the result of
synchronously performing any two actions for which this is possible, and to be
δ otherwise.

The first-order theory ACPfo is an extension of BPAfo
δ . It has the nonlogical

symbols of BPAfo
δ and in addition:

– the binary parallel composition operator ‖ ;
– the binary left merge operator ++ ;
– the binary communication merge operator | ;
– for each H ⊆ A, the unary encapsulation operator ∂H .

We use infix notation for the additional binary operators as well. The precedence
conventions for the binary operators are now as follows. The operator · binds
stronger than all other binary operators and the operator + binds weaker than
all other binary operators.
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Table 10. Additional axioms for ACPfo (a, b, c ∈ Aδ)

x ‖ y = x �� y + y �� x + x | y CM1

a �� x = a · x CM2

a · x �� y = a · (x ‖ y) CM3

(x + y) �� z = x �� z + y �� z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a �∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

The constants and operators of ACPfo are the same as the constants and
operators of ACP.

Let t and t′ be closed terms of L(ACPfo). Intuitively, the additional operators
can be explained as follows:

– t ‖ t′ behaves as the process that proceeds with t and t′ in parallel;
– t ++ t′ behaves the same as t ‖ t′, except that it starts with performing an

action of t;
– t |t′ behaves the same as t‖t′, except that it starts with performing an action

of t and an action of t′ synchronously;
– ∂H(t) behaves the same as t, except that it does not perform actions in H .

The axioms of ACPfo are the axioms of BPAfo
δ and the additional axioms

given in Table 10. CM2–CM3, CM5–CM7, C1–C3 and D1–D2 are axiom schemas
where a, b and c are constants of ACPfo. In D1–D4, H stands for an arbitrary
subset of A. So, D3 and D4 are axiom schemas as well.

Axioms A1–A7, CM1–CM9, C1–C3 and D1–D4 are the axioms of ACP. So
ACPfo imports the (equational) axioms of ACP.

A well-known subtheory of ACP is PA, which is ACP without communication.
Likewise, we have a subtheory of ACPfo, to wit PAfo. The first-order theory PAfo

is ACPfo without the communication merge operator, without axioms CM5–CM9
and C1–C3, and with axiom CM1 replaced by x‖y = x++y+y ++x (M1). In other
words, the possibility that actions are performed synchronously is not covered
by PAfo.

To prove a statement for all closed terms of L(ACPfo), it is sufficient to prove
it for all basic terms over BPAfo

δ . The reason for this is that all closed terms of
L(ACPfo) are derivably equal to a basic term over BPAfo

δ .

Proposition 9 (Elimination). For all closed terms t of L(ACPfo) there exists
a basic term t′ such that ACPfo � t = t′.

Proof. This follows immediately from the elimination property for ACP: the
closed terms of L(ACPfo) are the same as the closed terms of L(ACP), and the
equational axioms of ACPfo are the same as the axioms of ACP. ��

For closed equations, ACPfo is a complete theory.
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Theorem 22 (Complete theory for closed equations). For all closed terms
t1, t2 of L(ACPfo), we have either ACPfo � t1 = t2 or ACPfo � ¬ t1 = t2, but
not both.

Proof. This follows immediately from Proposition 9 and Theorem 1. ��

We have not yet investigated the decidability of ACPfo, but it is to be expected
that it is an undecidable theory. By adaptation of the proof of a similar theorem
from [20], we can easily establish the undecidability of ACPfo ∪AIP.

Theorem 23 (Undecidability). ACPfo ∪AIP is an undecidable theory.

Proof. We consider a register machine with three registers, numbered 1, 2 and 3.
A program for the register machine is a finite sequence I1, . . . , Ik of instructions
of the following form:

– (addi, j): add 1 to the contents of register i and go to instruction j;
– (subi, j): if the contents of register i equals 0, then go to instruction j, oth-

erwise subtract 1 from the contents of register i and go to instruction j;
– (zeroi, j, j

′): if the contents of register i equals 0, then go to instruction j,
otherwise go to instruction j′;

– halt: halt;

where i ∈ {1, 2, 3} and j, j′ ∈ {1, . . . , k}.
Let K be a recursively enumerable but not recursive subset of N, and let

n ∈ N. Then there exists a program for this register machine such that, if the
registers are initialized to n, 0 and 0, the program halts iff n ∈ K (see e.g. [21]).
Let P = I1, . . . , Il be this program. We will show that P can be represented in
ACPfo ∪AIP.

Let A = {ai, si, zi | 1 ≤ i ≤ 3} and A = {ai, si, zi | 1 ≤ i ≤ 3}. We fix the set
of actions A and the communication function | as follows: A = A ∪ A ∪ {t, h};
and a | b = t if either a ∈ A, b ∈ A and a = b, or a ∈ A, b ∈ A and a = b, and
a | b = δ otherwise.

Let E be the guarded recursive specification that consists of the following
equations:

Ri = zi · Ri + ai ·R′
i · Ri for i ∈ {1, 2, 3} ,

R′
i = si + ai ·R′

i ·R′
i for i ∈ {1, 2, 3} ,

Xj = [[Ij ]] for j ∈ {1, . . . , l} ,

T = t · T ,

where the map [[ ]] from register machine instructions to terms of L(ACPfo) is
defined as follows:
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[[(addi, j)]] = ai ·Xj ,

[[(subi, j)]] = (zi + si) ·Xj ,

[[(zeroi, j, j
′)]] = zi ·Xj + si · ai ·Xj′ ,

[[halt]] = h .

We introduce for m ≥ 0 the abbreviation Ri(m) defined by Ri(0) = Ri and
Ri(m+1) = R′

i ·Ri(m). Note that Ri(m) represents register i in the state where
its contents is m.

It is easy to see that P does not halt iff

ACPfo ∪AIP � E ⇒ ∂H(X1 ‖R1(n) ‖R2(0) ‖R3(0)) = T ,

where H = A∪A. Therefore, the problem whether n �∈ K is one to one reducible
to the problem whether a given formula of L(ACPfo∪AIP) is derivable. Because
the former problem is undecidable, we conclude that the latter problem is un-
decidable as well. This shows that ACPfo ∪AIP is an undecidable theory. ��

In this section, BPAfo
δ has been extended to ACPfo. BPAfo

δrr can be extended
with the same nonlogical symbols and axioms as BPAfo

δ , resulting in ACPfo
rr.

14 Full Bisimulation Models of ACPfo

In this section, we expand the full bisimulation models of BPAfo
δ to ACPfo. We

will use the abbreviation s a−→ s′ ; s′′ for s a−→ s′ ∨ (s a−→√ ∧ s′ = s′′).
First of all, we associate with each additional operator f of ACPfo an opera-

tion f̂ on TSκ as follows.

– Let Ti = (Si,−→i,−→√
i, s

0
i ) ∈ TSκ for i = 1, 2. Then

T1 ‖̂ T2 = (S,−→,−→√, s0) ,
where

s0 = (s01, s
0
2) ,

s
√

= chκ(Sκ \ (S1 ∪ S2)) ,

S = ((S1 ∪ {s
√})× (S2 ∪ {s

√})) \ {(s√
, s

√
)} ,

and for every a ∈ A:
a−→ =

{
((s1, s2), (s′1, s2))

∣∣ (s′1, s2) ∈ S ∧ s1
a−→1 s

′
1 ; s

√}
∪
{
((s1, s2), (s1, s′2))

∣∣ (s1, s′2) ∈ S ∧ s2
a−→2 s

′
2 ; s

√}
∪
{

((s1, s2), (s′1, s′2))
∣∣∣ (s′1, s′2) ∈ S ∧∨

a′,b′∈A

(
s1

a′
−→1 s

′
1 ; s

√ ∧ s2
b′
−→2 s

′
2 ; s

√ ∧ a′ | b′ = a
)}

,

a−→√ =
{
(s1, s

√
)
∣∣ s1 a−→√

1
}
∪
{
(s

√
, s2)
∣∣ s2 a−→√

2
}

∪
{

(s1, s2)
∣∣∣ ∨

a′,b′∈A

(
s1

a′
−→√

1 ∧ s2
b′
−→√

2 ∧ a′ | b′ = a
)}

.
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– Let Ti = (Si,−→i,−→√
i, s

0
i ) ∈ TSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→√, s0) where S = ((S1 ∪ {s
√})× (S2 ∪ {s

√})) \ {(s√
, s

√
)} and s

√
=

chκ(Sκ \ (S1 ∪ S2)). Then

T1 +̂+ T2 = Γ(S′,−→′,−→√, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S′ = {s0′} ∪ S ,

and for every a ∈ A:
a−→′ =

{
(s0′, (s, s02))

∣∣ s01 a−→1 s ; s
√} ∪ a−→ .

– Let Ti = (Si,−→i,−→√
i, s

0
i ) ∈ TSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→√, s0) where S = ((S1 ∪ {s
√})× (S2 ∪ {s

√})) \ {(s√
, s

√
)} and s

√
=

chκ(Sκ \ (S1 ∪ S2)). Then

T1 |̂ T2 = Γ(S′,−→′,−→√′, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S′ = {s0′} ∪ S ,

and for every a ∈ A:

a−→′ =
{
(s0′, (s1, s2))

∣∣∣ (s1, s2) ∈ S ∧∨
a′,b′∈A

(
s01

a′
−→1 s1 ; s

√ ∧ s02
b′
−→2 s2 ; s

√ ∧ a′ | b′ = a
)}

∪ a−→ ,

a−→√′ =
{
s0′
∣∣∣ ∨

a′,b′∈A

(
s01

a′
−→√

1 ∧ s02
b′
−→√

2 ∧ a′ | b′ = a
)}

∪ a−→√ .

– Let T = (S,−→,−→√, s0) ∈ TSκ. Then

∂̂H(T ) = Γ(S,−→′,−→√′, s0) ,

where for every a �∈ H :

a−→′ = a−→ ,

a−→√′ = a−→√ ,

and for every a ∈ H :

a−→′ = ∅ ,
a−→√′ = ∅ .
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We can easily show that bisimilarity is a congruence with respect to parallel
composition, left merge, communication merge and encapsulation.

Proposition 10 (Congruence). For all T1, T2, T
′
1, T

′
2 ∈ TSκ (κ ≥ ℵ0), T1 ↔

T ′
1 and T2 ↔ T ′

2 imply T1 ‖̂ T2 ↔ T ′
1 ‖̂ T ′

2, T1 +̂+ T2 ↔ T ′
1 +̂+ T ′

2, T1 |̂ T2 ↔ T ′
1 |̂ T ′

2
and ∂̂H(T1)↔ ∂̂H(T ′

1).

Proof. Let Ti = (Si,−→i,−→√
i, s

0
i ) and T ′

i = (S′
i,−→′

i,−→
√′

i, s
0
i
′) for i = 1, 2. Let

R1 and R2 be bisimulations witnessing T1 ↔ T ′
1 and T2 ↔ T ′

2, respectively. Then
we construct relations R‖, R��, R | and R∂H

as follows:

– R‖ = {((s1, s2), (s′1, s′2)) ∈ S × S′ | (s1, s′1) ∈ R1 ∪ R
√
, (s2, s′2) ∈ R2 ∪ R

√},
where S and S′ are the sets of states of T1 ‖̂T2 and T ′

1 ‖̂T ′
2, respectively, and

R
√

= {(chκ(Sκ \ (S1 ∪ S2)), chκ(Sκ \ (S′
1 ∪ S′

2)))};
– R�� = ({(s0, s0′)} ∪ R‖) ∩ (S × S′), where S and S′ are the sets of states

of T1 +̂+ T2 and T ′
1 +̂+ T ′

2, respectively, and s0 and s0′ are the initial states of
T1 +̂+ T2 and T ′

1 +̂+ T ′
2, respectively;

– R | = ({(s0, s0′)} ∪ R‖) ∩ (S × S′), where S and S′ are the sets of states

of T1 |̂ T2 and T ′
1 |̂ T ′

2, respectively, and s0 and s0′ are the initial states of
T1 |̂ T2 and T ′

1 |̂ T ′
2, respectively;

– R∂H
= R1 ∩ (S × S′), where S and S′ are the sets of states of ∂̂H(T1) and

∂̂H(T ′
1), respectively.

Given the definitions of parallel composition, left merge, communication merge
and encapsulation, it is easy to see that R‖, R��, R | and R∂H

are bisimulations

witnessing T1 ‖̂T2 ↔ T ′
1 ‖̂T ′

2, T1 +̂+T2 ↔ T ′
1 +̂+ T ′

2, T1 |̂ T2 ↔ T ′
1 |̂ T ′

2 and ∂̂H(T1)↔
∂̂H(T ′

1), respectively. ��

The full bisimulation models P′
κ of ACPfo, one for each κ ≥ ℵ0, are the

expansions of the full bisimulation models Pκ of BPAfo
δ with an n-ary operation

f̃ on the domain of Pκ (TSκ/↔) for each additional n-ary operator f of ACPfo.
Those additional operations are defined as follows:

[T1 ] ‖̃ [T2 ] = [T1 ‖̂ T2 ] ,

[T1 ] +̃+ [T2 ] = [T1 +̂+ T2 ] ,

[T1 ] |̃ [T2 ] = [T1 |̂ T2 ] ,

∂̃H([T1 ]) = [ ∂̂H(T1) ] .

Parallel composition, left merge, communication merge and encapsulation on
TSκ/↔ are well-defined because ↔ is a congruence with respect to the corre-
sponding operations on TSκ.

The structures P′
κ are models of ACPfo.

Theorem 24 (Soundness of ACPfo). For all κ ≥ ℵ0, we have P′
κ |= ACPfo.
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Proof. Because P′
κ is an expansion of Pκ, it is sufficient to show that the addi-

tional axioms for ACPfo are sound. The soundness of all additional axioms for
ACPfo follows easily from the definitions of the ingredients of P′

κ. ��

It is easy to see that Theorems 5, 7 and 8 go through for P′
κ.

In this section, the full bisimulation models Pκ of BPAfo
δ have been expanded

to obtain the full bisimulation models P′
κ of ACPfo. The full bisimulation models

Prr
κ of BPAfo

δrr can be expanded in the same way to obtain the full bisimulation
models Prr

κ
′ of ACPfo

rr.

15 Interpretation of One Theory in Another

Let T be a first-order theory with non-logical symbols Σ. Then we say that Σ
is the signature of T . We write Σ(T ) for the signature of T .

Let T and T ′ be first-order theories, and d �∈ Σ(T )∪Σ(T ′). Then an interpre-
tation Θ of T in T ′ is a family of formulas that consists of the following:

– an explicit definition Θd of a unary predicate d in terms of L(T ′);
– for each σ ∈ Σ(T ) \ Σ(T ′), an explicit definition Θσ in terms of L(T ′);

such that the following holds for T ′′ = T ′ ∪ {Θσ | σ ∈ (Σ(T ) \Σ(T ′)) ∪ {d}}:

T ′′ � ∃x • d(x) ,

T ′′ � d(x1) ∧ . . . ∧ d(xn) ⇒ d(f(x1, . . . , xn))
for each n-ary operator f ∈ Σ(T ) ,

T ′′ � φ∗

for each axiom φ of T ,

where φ∗ is the formula obtained from φ by first taking the universal closure
of φ and then replacing each subformula ∀x • φ′ by ∀x • (d(x) ⇒ φ′) and each
subformula ∃x • φ′ by ∃x • (d(x) ∧ φ′).

This notion of interpretation of one theory in another is more general than
the corresponding notion from [8], but in line with the notion of interpretability
of one theory in another from [8]. It is less general than the corresponding notion
in [10]. In the terminology of [10], an interpretation as defined here is an injective
one-dimensional interpretation. We believe that higher dimensional interpreta-
tions are irrelevant to the case where theories about processes are considered.
So long as we only consider bisimilarity as the intended notion of identity, non-
injective interpretations are irrelevant as well. Note that the last condition in
the definition given above can be replaced by

T � φ implies T ′′ � φ∗ for each formula φ of L(T ) .

The following is an important property of interpretations. For each interpre-
tation Θ of a theory T in a theory T ′, T ′′ = T ′∪{Θσ | σ ∈ (Σ(T )\Σ(T ′))∪{d}}
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is a definitional extension of T ′. This means that, for each model A′ of T ′, there
is a unique expansion of A′ that is a model of T ′′.

Let Θ be an interpretation of theory T in theory T ′, and let T ′′ = T ′ ∪ {Θσ |
σ ∈ (Σ(T ) \Σ(T ′))∪{d}}. Suppose that A′ is a model of T ′. Then a model A of
T can be obtained from A′ in the following steps:

1. take the unique expansion A′′ of A′ such that A′′ |= T ′′;
2. take the restriction A′′|Σ(T )∪{d} of A′′ to Σ(T ) ∪ {d};
3. take the unique substructure A∗ of A′′|Σ(T )∪{d} such that A∗ |= ∀x • d(x);
4. take the restriction A = A∗|Σ(T ) of A∗ to Σ(T ).

The most simple example of this construction is the following: The interpre-
tation of BPA in BPAfo

δ consists only of the explicit definition d(x) ⇔ ¬ x→→ δ.
That is, d is in this case just another symbol for the deadlock freedom predi-
cate. If we apply the construction described above to one of the full bisimulation
models of BPAfo

δ , then we obtain one of the main models of BPA.
MPAδ, Minimal Process Algebra with deadlock, provides another simple ex-

ample. MPAδ, introduced in [22], differs from BPAδ by having a unary action
prefixing operator a . for each a ∈ A instead of the binary sequential compo-
sition operator of BPAδ.5 The axioms of MPAδ are axioms A1, A2, A3 and
A6 from Table 1. The interpretation of MPAδ in BPAfo

δ consists of the explicit
definition d(x) ⇔

∧
a∈A ¬ ∃y • (x →→ y ∧ y

a−→√) and an explicit definition
a . x = y ⇔ a · x = y for each a ∈ A. If we apply the construction described
above to one of the full bisimulation models of BPAfo

δ , then we obtain one of the
main models of MPAδ.

It needs no explaining that an interpretation of a theory T in a theory T ′

includes an explicit definition of each non-logical symbol of T that T does not
have in common with T ′. The examples given above make clear why it also
includes an explicit definition of a special unary predicate symbol d. BPA is only
concerned with processes that are deadlock free and MPAδ is only concerned
with processes that are free of successful termination. In the interpretations of
BPA and MPAδ in BPAfo

δ described above, d takes care of the restriction to the
processes concerned.

16 Interpretation of ACPfo in BPAfo
δrr

In this section, we consider the interpretation of ACPfo in BPAfo
δrr. This interpre-

tation consists of explicit definitions of the predicate symbol d and the operators
‖, ++, | and ∂H (one for each H ⊆ A). The explicit definition of d is simply
d(x) ⇔ x = x. The explicit definitions of the operators are quite unusual in
the sense that they involve an auxiliary process (u) that is used to represent a
bisimulation.
5 For action prefixing and sequential composition different kinds of dot, viz. the low dot

and the centered dot, are used. In MPAδ, we have action prefixing without variable
binding. In [7], the semicolon is used for action prefixing with variable binding.
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First, we consider the explicit definition of the parallel composition operator.
We begin by introducing the abbreviation P′

‖(x, y, z, u), which enables us to
formulate the explicit definition of ‖ as x ‖ y = z ⇔ ∃u • P′

‖(x, y, z, u). We fix
different actions i, l, r and m. We use P′

‖(x, y, z, u) as an abbreviation of the
following formula of L(BPAfo

δrr):

φ1(x, y, z, u) ∧ φ2(x, y, z, u) ∧ φ3(u) ∧ φ4(u) ∧ φ5(u) ∧
φ6(u) ∧ φ7(u) ∧ φ8(u) ∧ φ9(u) ∧ φ10(u) ∧ φ11(u) ;

where:
φ1(x, y, z, u) is the formula

∀u′ •
(
u i−→→ u′ ⇒

∃!x′, y′, z′ •
(
x→→ x′ ∧ y →→ y′ ∧ z →→ z′ ∧
u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′

)
∧∧

a′∈A,a′ �=i,l,r,m

¬ ∃v′ • u′ a′
−→ v′

)
,

φ2(x, y, z, u) is the formula

u l−→ x ∧ u r−→ y ∧ u m−→ z ,

φ3(u) is the formula

∀x′, y′, z′, u′, x′′•∧
a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧ x′ a′

−→ x′′ ⇒
∃u′′, z′′•(

u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′ ∧ u′′ m−→ z′′ ∧ z′ a′
−→ z′′

))
,

φ4(u) is the formula

∀x′, y′, z′, u′, y′′•∧
a′∈A

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

r−→ y′ ∧ u′
m−→ z′ ∧ y′

a′
−→ y′′ ⇒

∃u′′, z′′•(
u′ i−→ u′′ ∧ u′′ l−→ x′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧ z′ a′

−→ z′′
))
,

φ5(u) is the formula

∀x′, y′, z′, u′, x′′, y′′•∧
a′,b′∈A,a′|b′ �=δ

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

r−→ y′ ∧ u′
m−→ z′ ∧

x′ a′
−→ x′′ ∧ y′ b′

−→ y′′ ⇒
∃u′′, z′′ •(

u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧
z′

a′|b′
−−−→ z′′

))
,
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φ6(u) is the formula
∀x′, y′, z′, u′•∧

a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧
x′ a′
−→√ ⇒ z′ a′

−→ y′
)
,

φ7(u) is the formula
∀x′, y′, z′, u′•∧

a′∈A

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

r−→ y′ ∧ u′
m−→ z′ ∧

y′
a′
−→√ ⇒ z′

a′
−→ x′

)
,

φ8(u) is the formula
∀x′, y′, z′, u′, x′′•∧

a′,b′∈A,a′|b′ �=δ

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧
x′

a′
−→ x′′ ∧ y′

b′
−→√ ⇒ z′

a′|b′
−−−→ x′′

)
,

φ9(u) is the formula
∀x′, y′, z′, u′, y′′•∧

a′,b′∈A,a′|b′ �=δ

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

r−→ y′ ∧ u′
m−→ z′ ∧

x′ a′
−→√ ∧ y′ b′

−→ y′′ ⇒ z′
a′|b′
−−−→ y′′

)
,

φ10(u) is the formula
∀x′, y′, z′, u′•∧

a′,b′∈A,a′|b′ �=δ

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

r−→ y′ ∧ u′
m−→ z′ ∧

x′ a′
−→√ ∧ y′ b′

−→√ ⇒ z′
a′|b′
−−−→√) ,

φ11(u) is the formula
∀x′, y′, z′, u′, z′′ •∧

a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧ z′ a′

−→ z′′ ⇒
∃x′′, u′′ •(

u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′ ∧ u′′ m−→ z′′ ∧ x′ a′
−→ x′′

)
∨

∃y′′, u′′ •(
u′ i−→ u′′ ∧ u′′ l−→ x′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧ y′ a′

−→ y′′
)
∨

∃x′′, y′′, u′′ •(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧∨
b′,c′∈A,a′=b′|c′

(
x′ b′
−→ x′′ ∧ y′ c′

−→ y′′
))

∨

(
x′ a′
−→√ ∧ z′′ = y′

)
∨
(
y′ a′
−→√ ∧ z′′ = x′

)
∨∨

b′,c′∈A,a′=b′|c′

(
x′ b′
−→ z′′ ∧ y′ c′

−→√) ∨∨
b′,c′∈A,a′=b′|c′

(
x′ b′
−→√ ∧ y′ c′

−→ z′′
))

∧
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∀x′, y′, z′, u′ •∧
a′∈A

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

r−→ y′ ∧ u′
m−→ z′ ∧ z′

a′
−→√ ⇒∨

b′,c′∈A,a′=b′|c′

(
x′

b′
−→√ ∧ y′

c′
−→√)) .

Formula φ1 expresses that each process reachable by i-steps from u relates a
process reachable from x and a process reachable from y to a process reachable
from z. Formula φ2 expresses that u relates x and y to z. The conjunction of
formulas φ3–φ10 expresses that, if x′ and y′ are related to z′, then z′ is capable
of behaving as x′ ‖y′: formula φ3 expresses that, if x′ and y′ are related to z′ and
x′ a′
−→ x′′, then there exists a z′′ such that z′ a′

−→ z′′ and x′′ and y′ are related to
z′′; formula φ4 expresses that, if x′ and y′ are related to z′ and y′ a′

−→ y′′, then
there exists a z′′ such that z′ a′

−→ z′′ and x′ and y′′ are related to z′′; formula φ5
expresses that, if x′ and y′ are related to z′, x′ a′

−→ x′′, y′ b′
−→ y′′ and a′ | b′ �= δ,

then there exists a z′′ such that z′ a′|b′
−−−→ z′′ and x′′ and y′′ are related to z′′;

etc. Formula φ11 expresses that, if x′ and y′ are related to z′, then x′ ‖ y′ is
capable of behaving as z′. In other words, P′

‖(x, y, z, u) expresses that u encodes
a bisimulation witnessing the bisimilarity of x ‖ y and z.

The formula x ‖ y = z ⇔ ∃u • P′
‖(x, y, z, u) is only admissible as an explicit

definition of ‖ if ∃!z•∃u•P′
‖(x, y, z, u) is derivable. This admissibility condition for

‖ can be split into an existence condition ∃z •∃u •P′
‖(x, y, z, u) and a uniqueness

condition ∃u • P′
‖(x, y, z, u) ∧ ∃u • P′

‖(x, y, z, u) ⇒ z = z. The uniqueness
condition for ‖ is derivable in BPAfo

δrr.

Proposition 11 (Uniqueness for parallel composition). We have BPAfo
δrr �

∃u • P′
‖(x, y, z, u) ∧ ∃u • P′

‖(x, y, z, u) ⇒ z = z.

Proof. Assume P′
‖(x, y, z, u) and P′

‖(x, y, z, u). Then we derive z = z by applying
the bisimulation axiom schema BS, taking the following formula for φ(z, z):

∃x′, y′, u′, u′ • (u i−→→ u′ ∧ u′ m−→ z ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧
u

i−→→ u′ ∧ u′
m−→ z ∧ u′

l−→ x′ ∧ u′
r−→ y′) .

��
We will come back to the existence condition for ‖ later on.

As mentioned in Sect. 13, left merge and communication merge are the same
as parallel composition except that the actions that can be performed at the start
are restricted. As a consequence, the explicit definitions of the left merge operator
and the communication merge operator can be formulated as
x ++ y = z ⇔ ∃u •P′

��(x, y, z, u) and x | y = z ⇔ ∃u •P′
|(x, y, z, u), where the for-

mulas for which P′
��(x, y, z, u) and P′

|(x, y, z, u) stand are simply obtained from
the formula for which P′

‖(x, y, z, u) stands by replacing at appropriate places
u

i−→→ u′ by u
i−→→ u′ ∧ ¬ u = u′. We refrain from giving the precise formulas

for which P′
��(x, y, z, u) and P′

|(x, y, z, u) stand. We mention that the uniqueness

conditions for ++ and | are derivable in BPAfo
δrr.
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Next, we consider the explicit definition of the encapsulation operators. As
in the case of parallel composition, we begin by introducing the abbreviation
P′

∂H
(x, y, u), which enables us to formulate the explicit definition of ∂H as

∂H(x) = y ⇔ ∃u • P′
∂H

(x, y, u). We fix different actions i, l and e. We use
P′

∂H
(x, y, u) as an abbreviation of the following formula of L(BPAfo

δrr):

φ1(x, y, u) ∧ φ2(x, y, u) ∧ φ3(u) ∧ φ4(u) ∧ φ5(u) ;

where:
φ1(x, y, u) is the formula

∀u′ •
(
u i−→→ u′ ⇒

∃!x′, y′ •
(
x→→ x′ ∧ y →→ y′ ∧ u′

l−→ x′ ∧ u′
e−→ y′
)
∧∧

a′∈A,a′ �=i,l,e

¬ ∃v′ • u′ a′
−→ v′

)
,

φ2(x, y, u) is the formula

u
l−→ x ∧ u

e−→ y ,

φ3(u) is the formula

∀x′, y′, u′, x′′ •∧
a′∈A\H

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ x′ a′

−→ x′′ ⇒
∃u′′, y′′ •

(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ e−→ y′′ ∧ y′ a′

−→ y′′
))
,

φ4(u) is the formula

∀x′, y′, u′ •
∧

a′∈A\H

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ x′ a′

−→√ ⇒ y′ a′
−→√) ,

φ5(u) is the formula

∀x′, y′, u′, y′′ •∧
a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ y′ a′

−→ y′′ ⇒
∃x′′, u′′ •(

u′
i−→ u′′ ∧ u′′

l−→ x′′ ∧ u′′
e−→ y′′ ∧

∨
b′∈A\H,a′=b′

x′
b′
−→ x′′

))
∧

∀x′, y′, u′ •∧
a′∈A

(
u

i−→→ u′ ∧ u′
l−→ x′ ∧ u′

e−→ y′ ∧ y′
a′
−→√ ⇒

∨
b′∈A\H,a′=b′

x′
b′
−→√
)
.

The uniqueness condition for ∂H is derivable in BPAfo
δrr.

Proposition 12 (Uniqueness for encapsulation). We have BPAfo
δrr �

∃u • P′
∂H

(x, y, u) ∧ ∃u • P′
∂H

(x, y, u) ⇒ y = y.
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Table 11. Existence conditions

∃z • ∃u • P′
‖(x, y, z, u) X1

∃z • ∃u • P′
��(x, y, z, u) X2

∃z • ∃u • P′
|(x, y, z, u) X3

∃y • ∃u • P′
∂H

(x, y, u) X4

Proof. The proof follows the same line as to the proof of Proposition 11. ��

The formulas of L(BPAfo
δrr) that are given in Table 11 are existence conditions

for ‖, ++, | and ∂H . We write X for this set of formulas. X4 is actually an axiom
schema with an instance for each H ⊆ A. The existence conditions from Table 11
are valid in the full bisimulation models Prr

κ (κ ≥ ℵ0). It is unknown to us
whether they are derivable from BPAfo

δrr.

Theorem 25 (Interpretation of ACPfo in BPAfo
δrr). The following is an

interpretation of ACPfo in BPAfo
δrr ∪X:

d(x) ⇔ x = x ,

x ‖ y = z ⇔ ∃u • P′
‖(x, y, z, u) ,

x ++ y = z ⇔ ∃u • P′
��(x, y, z, u) ,

x | y = z ⇔ ∃u • P′
|(x, y, z, u) ,

∂H(x) = y ⇔ ∃u • P′
∂H

(x, y, u) for each H ⊆ A .

Proof. Because d(x) ⇔ x = x, the first two conditions made in the definition of
interpretation are trivially fulfilled. Because d(x) ⇔ x = x, the third condition
becomes

BPAfo
δrr ∪X ∪ E � φ for each axiom φ of ACPfo ,

where E is the set of explicit definitions given above. For each axiom φ of BPAfo
δ ,

we immediately have BPAfo
δrr ∪ X ∪ E � φ. Hence, it is sufficient to establish

BPAfo
δrr ∪ X ∪ E � φ only for each axiom φ of ACPfo that is not an axiom of

BPAfo
δ .

All axioms in question are atomic formulas of L(BPAfo
δrr ∪ E). Each atomic

formula φ of L(BPAfo
δrr∪E) is equivalent in BPAfo

δrr∪X∪E to an existential formula
φ′ of L(BPAfo

δrr∪E) in which no other terms occur than terms of L(BPAfo
δrr) and

terms t1 ‖ t2, t1 ++ t2, t1 | t2 and ∂H(t1) of which the subterms t1 and t2 are terms
of L(BPAfo

δrr) (see e.g. [10]). Because E contains the explicit definitions for ‖, ++,
| and ∂H , this existential formula φ′ is equivalent in BPAfo

δrr∪X∪E to a formula
φ′′ of L(BPAfo

δrr). Because definitional extensions are conservative extensions (see
e.g. [8]), BPAfo

δrr ∪ X ∪ E � φ′′ iff BPAfo
δrr ∪ X � φ′′. This suggests the following

three-steps approach to establish that BPAfo
δrr ∪X ∪ E � φ:

1. eliminate from φ all nested terms other than terms of L(BPAfo
δrr), resulting

in φ′;
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2. eliminate from φ′ all atomic formulas in which ‖, ++, | or ∂H occur, resulting
in φ′′;

3. derive φ′′ from BPAfo
δrr ∪X.

For each axiom of ACPfo that is not an axiom of BPAfo
δ , the first two steps are

short and simple. The last step is generally straightforward, but tedious. We
outline the proof for axioms CM3 and CM4.

The first two steps result for CM3 in the formula

∃z •
(
∃u • P′

��(a · x, y, a · z, u) ∧ ∃u′ • P′
‖(x, y, z, u

′)
)

and for CM4 in the formula

∃v, w •
(
∃u • P′

��(x+ y, z, v + w, u) ∧
∃u′ • P′

��(x, z, v, u
′) ∧ ∃u′′ • P′

��(y, z, w, u
′′)
)
.

The last step for CM3 goes as follows. First of all, it follows from X that ∃z •
∃u′ • P′

‖(x, y, z, u
′). Therefore, it is sufficient to show that ∃u′ • P′

‖(x, y, z, u
′) ⇒

∃u • P′
��(a · x, y, a · z, u). This is done as follows. Assume P′

‖(x, y, z, u
′). Take

l · (a ·x)+ r · y+m · (a · z)+ i ·u′ for u. Then P′
��(a ·x, y, a · z, u) is easily derived.

The last step for CM4 follows essentially the same line as the last step for
CM3. However, there are two complications in the construction of u from u′ and
u′′. The first complication is that four cases have to be distinguished according
to the reachability of x from x in one or more steps and the reachability of
y from y in one or more steps. The second complication is that u has to be
constructed from subprocesses of u′ and u′′ instead of u′ and u′′ themselves.
Thus, although the construction of u is rather straightforward, it becomes very
tedious to express it in L(BPAfo

δrr) and to derive P′
��(x+y, z, v+w, u). We refrain

from outlining the last step for CM4 further.
The proofs for CM2, CM5–CM7 and D4 are similar to the proof for CM3.

The proofs for CM1, CM8–CM9 and D3 are similar to the proof for CM4. The
proofs for C1–C3, D1 and D2 are easy. ��

17 Concluding Remarks

In this paper, we build on earlier work on ACP. The algebraic theory ACP
was first presented in [1] and RDP, RSP and AIP were first formulated in [14].
Moreover, the full bisimulation models are basically the graph models of ACP,
which are most extensively described in [11]. In this paper, we extend ACP to
a first-order theory and look into that theory from the point of view of classical
model theory. Some open problems that arise from this work are:

– Is the reachability predicate →→ of BPAfo
δ first-order definable in Pℵ0 if the

cardinality of A is given?
– What are the relations between RDP, RSP (Table 2), B, R (Table 3) and

AIP (Table 4) in the presence of BPAfo
δ ? In particular, do all models of BPAfo

δ

extended with R satisfy B?
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– Is it derivable from BPAfo
δ or a finitary first-order extension thereof, for all

pairs of guarded recursive specifications of which the solutions in Pℵ0 are
not identical, that their solutions are not equal?

– Is axiom RR3 (Table 8) derivable from the other axioms of BPAfo
δrr?

– Are the restricted reachability predicates a−→→ of BPAfo
δrr first-order definable

in Pℵ0 if the cardinality of A is given (they are if the cardinality of A is 1)?
– Are the existence conditions for ‖, ++, | and ∂H (Table 11) derivable from

BPAfo
δrr?

To the best of our knowledge there is no related work. Many options for future
work remain. We mention:

– Development of extensions of ACPfo with additional operators, such as the
iteration operators from [23, 24, 25].

– Development of first-order extensions of variants of ACP with timing, such
as the ones from [26, 27, 28].

– Re-development of the α/β-calculus [29] in the setting of ACPfo.
– Further analysis of the relation between external and internal versions of

predicates on processes.
– Further investigations into interpretation of existing process algebras in

ACPfo.
– Investigations into interpretation of other related algebraic theories, such as

the network algebra from [30], in ACPfo.
– Exploration of the strong and weak points of ACPfo for process specification

and verification.
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Abstract. Expression Reduction Systems is a formalism for higher-
order rewriting, extending Term Rewriting Systems and the lambda-
calculus. Here we give an overview of results in the literature concerning
ERSs. We review confluence, normalization and perpetuality results for
orthogonal ERSs. Some of these results are extended to orthogonal con-
ditional ERSs. Further, ERSs with patterns are introduced and their
confluence is discussed. Finally, higher-order rewriting is translated into
equational first-order rewriting. The technique develops an isomorphic
model of ERSs with variable names, based on de Bruijn indices.

1 Introduction

Many programming languages and logical systems are modelled by transforma-
tions that allow programs or expressions to be rewritten as values that are just
simpler expressions.

The more traditional rewriting frameworks are first-order rewriting systems,
where expressions are represented using term algebras, and the λ-calculus, where
expressions are modelled by λ-terms. Both languages can be combined naturally
into a higher-order rewriting system, which is a well-suited formalism to deal
simultaneously with algebraic data structures and functions. We thus obtain a
framework inheriting the advantages from both the first-order and the functional
worlds.

Following the ground-breaking work by J. W. Klop [67] on Combinatory
Reduction Systems (CRS), many different frameworks for higher-order rewrit-
ing have been proposed: Expression Reduction Systems (ERS) by Z. Khasi-
dashvili [52], Higher-Order Rewrite Systems (HRS) by T. Nipkow [81], Higher-
Order Rewriting Systems (HORS) by V. van Oostrom and F. van Raams-
donk [98], Higher-Order Term Rewriting Systems (HOTRS) by D. Wolfram [101],
The General Scheme family (GS) or Algebraic-Functional Systems (AFS) by
Jouannaud and Okada [46].

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 496–553, 2005.
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In this chapter we review some results concerning Expression Reduction Sys-
tems. We start this introduction by relating ERS to Pkhakadze’s work as well
as to other well-known formalisms in the literature.

1.1 A Short History of ERSs

Expression Reduction Systems (ERSs) were introduced by Khasidashvili [52],
under the supervision of Sh. Pkhakadze. The syntax of ERSs was influenced by
the syntax of the Notation Theory of Pkhakadze [86, 87].

Pkhakadze’s work was motivated by a study of formal mathematical theories
and, in particular, extensions of formal theories with new function or predicate
symbols. When new symbols are defined using the original or previously defined
symbols, one expects that the new, extended theory is a conservative extension
of the original one – no new results can be proven on expressions of the original
theory.

Besides function and predicate symbols, one often needs to introduce new
quantifiers. Bourbaki [18] devoted a large part of their study of set theory to
the introduction of new symbols in formal theories. However, a general syntactic
framework for defining new symbols was missing there, which would enable, for
all introduced symbols, uniform proofs of syntactic results, such as termination
or confluence in current rewriting terminology. The aim of Pkhakadze’s work [86]
was indeed to define a uniform syntax for defining new symbols, and the hard
work went into understanding the binding structure of the rules defining new
quantifiers. A famous example of a definition of a quantifier is Hilbert’s definition
of the existential quantifier using the choice operator τ : ∃x(A) → (τx(A)/x)A.

Pkhakadze introduced several syntactic categories for defining new symbols.
The most general of them are of the form σa1 . . . an(A1 . . . Am) → B, where
ai are object-metavariables expressing, after instantiation, the binding variables
of the quantifier symbol σ. The Aj are term-metavariables that are instanti-
ated to terms or formulae, and B is a meta-expression written using metavari-
ables occurring in the left-hand side and using meta-substitutions of the form
(Al/ak)Ar. Clearly, for the rewrite relation to be well defined, several syntactic
constraints need to be imposed on the right-hand sides of the rules, which was
done in [86]. These conditions are described in detail in a more recent summary
of Pkhakadze’s work (written in English) [87].

It would be fair to say that the alphabet in Pkhakadze’s system was typed –
there were symbols that could take terms or formulae as arguments, and return
terms or formulae, depending on their types. The early versions of ERSs [52]
used a similar syntax – symbols of types NAT and BOOL were used, but we
cannot see them in later versions of ERSs. Similarly, object-metavariables are
no longer used in rewrite rules of ERSs.

The main results in [86] concern termination of rewriting (or elimination of
defined symbols) and uniqueness of the normal forms. Most of the results there
correspond to first-order rewriting. For more information, we refer to [87].

While ERSs were introduced independently from Klop’s work [67], later work
of the third author on ERSs, and especially on perpetual strategies, was greatly
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influenced by [67] and by J.W. Klop himself. Indeed, many results on per-
petual reductions in ERSs presented in Section 5 generalise or refine Klop’s
results.

1.2 ERSs with Respect to Other Higher-Order Formalisms

There are many different ingredients in higher-order formalisms and each of them
admits an interesting variety of possibilities.

The first property making substantial differences between all the formalisms
for higher-order rewriting is the use of types. While CRS and ERS are untyped
languages, HRS, HORS and AFS allow specification of type information and
work only with well-typed terms.

Metavariables are also defined differently in all these formalisms. A metavari-
able Z in CRS has a fixed arity m (m ≥ 0) which has to be respected in order
to construct metaterms, while metavariables in ERS are symbols of an alpha-
bet (without arity) and do not appear applied to other symbols. For example,
Z([x]M) is a CRS metaterm which can be expressed by the ERS metaterm
(λx.M/y)Z. Also, metaterms in HRS appearing in rewrite rules are required to
be in η-long-normal-form which can be cumbersome. Indeed, a metavariable M
representing a unary function has to be written as λx.Mx.

Binding operators are reduced to the singleton λ in most of the formalisms,
while ERS allows different names for different binders. Thus for example, we
can write f(μy.λx.M,N), where μ and λ are different binder symbols having
different behaviour. This enables ERS to be more natural but it is, of course,
just a syntactical issue that can be expressed within a syntax having only one
binder symbol.

Another important issue is the definition of metavariable substitution. For
example, a CRSs substitution replaces a free metavariable of arity n by an ab-
straction of n bound variables. The result of such a substitution, as for example
when applying σ = {Z 2→ λx.app(x, a)} to abs([y]Z(y)) is obtained by a com-
plete development of the term abs([y](λx.app(x, a))(y)) in the λ-calculus, thus
giving abs([y]app(y, a)). The concept of complete development can be replaced
by a η-long β-normalisation in the typed framework of HRSs, which is more
powerful. However, a simpler definition of substitution is adopted in ERS where
substitution of metavariables is just defined as replacement and the semantics of
the syntactic substitution operator is given by means of the traditional higher-
order substitution on terms and a suitable notion of safeness.

The notion of an instance of a rule is also different in these formalisms. While
the CRS mechanism used to instantiate metavariables avoids capture of vari-
ables, the ERS replacement mechanism is forced to add a notion of safeness in
order to guarantee that no bound variable becomes free during reduction.

The decision of whether or not to include the β-rule at the object level also
makes these formalisms different. While CRS and ERS do not assume any object-
level operation, GS uses β-reduction in the object-level as part of the reduction
relation associated to it and HRS and HORS suppose a given substitution cal-
culus in the meta-level which includes β reduction.
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1.3 ERS with Pattern Matching

All the higher-order formalisms mentioned above use a binding mechanism acting
only on variables. However, most functional languages currently in used, such
as [20, 84, 42, 78, 96] and most popular proof assistants, such as, for example,[2,
24, 32, 44, 73, 89], allow definition by cases using pattern-matching mechanisms.
Thus, a natural extension of higher-order rewriting consists in the use of binders
for patterns so that a projection function like λf(x, y).x would be acceptable.

The Pattern-Matching Calculus [50], proposed as a theoretical framework
to study pattern-matching within a pure functional paradigm, allows precisely
this kind of binding mechanism. This calculus was later extended with explicit
operators [21, 22, 33]; weak reduction was widely studied in [33]. Other languages
allowing abstractions on patterns appear in [23, 45].

The formalism we discuss here, Expression Reduction Systems with Patterns
(ERSP), was introduced by J. Forest and D. Kesner. It provides binding mech-
anisms for complex patterns. The calculus constitutes a generalisation of the
Pattern-Matching Calculus to the case of higher-order rewriting (and not only
functional rewriting).

1.4 Outline

We attempt to present all known important results about ERSs and their ex-
tensions. We assume the reader is familiar with basic concepts of rewriting – the
book [94] is an excellent introduction. We however recall here the most basic
concepts that are important in this work:

Definition 1. Let →S be a reduction relation defined on a set T and let
→∗

S be its reflexive-transitive closure. The relation →S is said to have the local
confluence (resp. confluence) property iff for every t, s, o ∈ T such that t→S s
and t →S o (resp. t →∗

S s and t →∗
S o), there is e ∈ T such that s →∗

S e and
o →∗

S e. The relation →S is said to have the diamond property if for every
t, s, o ∈ T such that t →S s and t →S o there is e ∈ T such that s →S e and
o→S e.

The relation →S is said to have the weak normalisation property iff for
every t ∈ T there is at least one finite →S-reduction chain t →S . . .→S s such
that s cannot be further reduced; s is then called a normal form of t. The
relation →S is said to have the strong normalisation property iff for every
t ∈ T there is no infinite →S-reduction chain starting at t.

We introduce the basic concepts of ERSs and their extensions, give numerous
examples, and discuss the results, often sketching the intuition behind the proofs.
Proofs are omitted for brevity but references are provided to appropriate sources.
We do not discuss related work in detail but instead refer to the recent survey
of higher-order rewriting by F. van Raamsdonk, in [94].

We start by introducing the syntax of context-sensitive conditional ERSs, and
discuss their expressive power. We define a concept of orthogonality for them,
and study confluence, normalisation and perpetuality results. We then introduce
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ERSs with patterns and discuss their confluence. Finally, a de Bruijn setting is
proposed for rewriting in (simple) ERSs, which has a translation into equational
first-order rewriting. We conclude by suggesting a few research directions for
future work on ERSs and their extensions.

2 Context-Sensitive Conditional ERSs

In this section, we will introduce context-sensitive conditional ERSs (CCERSs);
conditional ERSs and ERSs will be defined as special cases of CCERSs. Con-
versely, conditional ERSs are obtained from ERSs by restricting arguments of
redexes in rewrite rules, and CCERSs are obtained from conditional ERSs by
restricting the context in which reduction steps are allowed. We will demon-
strate with concrete examples how typed λ-calculi and process calculi, which
are not ERSs, can be encoded as CCERSs. We will also discuss an encod-
ing of ERSs with reduction strategies as CCERSs. The material is taken
from [63].

2.1 The Syntax of CCERSs

Terms in CCERSs are built from the alphabet as they are in the first-order
case. Like the λ in λ-calculus and the

∫
in integrals, symbols may have binding

power and require some binding variables and terms as arguments, as specified
by their arity. Scope indicators are used to specify which variables have binding
power in which arguments. For example, a β-redex in the λ-calculus appears
as Ap(λx t, s), where Ap is a function symbol of arity 2 and λ is an operator
sign of arity (1, 1) and scope indicator (1). Integrals such as

∫ t

s
f(x) dx can be

represented as
∫
x(s, t, f(x)) by using an operator sign

∫
of arity (1, 3) and scope

indicator (3).
Metaterms will be used to write rewrite rules. They are constructed from

metavariables and meta-expressions for substitutions, called metasubstitutions.
Instantiation of metavariables in metaterms yields terms. Metavariables play
the rôle of variables in the TRS rules and of function variables in other for-
mats of higher-order rewriting such as Higher-Order TRSs (HOTRSs) [101],
Higher-Order Rewrite Systems (HRS) [82], and Higher-Order Rewriting Systems
(HORSs) [98]. Unlike the function variables in HOTRSs, HRSs, and HORSs,
however, metavariables cannot be bound. In the current formalism, we do not
use the object metavariables used by [86, 87, 52] to express bindings in rewrite
rules; instead we express bindings using variables, which makes the formalism
slightly simpler.

Definition 2. Let Σ be an alphabet comprising infinitely many variables, de-
noted by x, y, z, . . ., and symbols (signs). A symbol σ can be either a func-
tion symbol (simple operator) having an arity n ∈ N or an operator sign
(quantifier sign) of arity (m,n) ∈ N+ × N+. An operator sign needs to be
supplied with m binding variables x1,. . . ,xm to form a quantifier (compound
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operator) σx1 . . . xm, and it also has a scope indicator specifying in which of
the n arguments it has binding power. 1

Terms t, s, e, o are constructed from variables, function symbols, and quanti-
fiers in the usual first-order way, respecting (the second component of the) arities.
A predicate AT on terms specifies which terms are admissible.

Metaterms are constructed like terms, but also allowing metavariables A,
B, . . . and metasubstitutions (t1/x1, . . . , tn/xn)t0, where each ti is an arbi-
trary metaterm and the xi have a binding effect in t0. Metaterms without meta-
substitutions are called simple. An assignment θ maps each metavariable to
a term. The application of θ to a metaterm t is written tθ and is obtained from
t by replacing metavariables with their values under θ and by replacing meta-
substitutions (t1/x1, . . . , tn/xn)t0, in right to left order (for example), with the
result of substitution of terms t1,. . . ,tn for free occurrences of x1,. . . ,xn in t0.
The substitution operation may involve a renaming of bound variables to avoid
collision, and we assume that the set of variables in Σ comes equipped with an
equivalence relation, called renaming, such that any equivalence class of vari-
ables is infinite. We also assume that any variable can be renamed by any other
variable in the corresponding equivalence class. Unless otherwise specified, the
default renaming relation is the total binary relation on variables (that is, there
is only one equivalence class). A partial renaming relation may be useful for
conditional systems.

The specification of a CCERS consists of an alphabet (generating a set of
terms possibly restricted by the predicate AT as specified above), and a set of
rules (generating the rewrite relation possibly restricted by admissibility predi-
cates AA and AC as specified below). The predicate AT can be used to express
sorting and typing constraints, since sets of admissible terms allowed for argu-
ments of an operator can be seen as terms of certain sorts or types. The predi-
cates AA and AC impose restrictions respectively on arguments of (admissible)
redexes and on the contexts in which they can be contracted.

The CCERS syntax is very close to the syntax of the λ-calculus. For example,
the β-rule is written as Ap(λxA,B) → (B/x)A, where A and B can be instan-
tiated by any term. The η-rule is written as λxAp(A, x) → A, where for any
assignment θ ∈ AA(η), x �∈ FV (Aθ) (the set of free, i.e., unbound, variables of
Aθ); otherwise an x occurring free in Aθ and therefore bound in λxAp(Aθ, x)
would become free. A rule like f(A) → ∃x(A) is also allowed, but in that case the
assignment θ with x ∈ Aθ is not allowed in CCERSs. Such a collision between
free and bound variables cannot arise when assignments are restricted by the
condition [vcf ], described below. For that reason, the η-rule is not conditional,
but is an (unconditional) ERS rule, as defined below.

Familiar rules for defining the existential quantifier ∃x and the quantifier ∃!x
(there exists exactly one x) are written as ∃x(A) → (τx(A)/x)A and ∃!x(A) →
∃x(A)∧∀x∀y(A∧(y/x)A⇒ x = y), respectively. For the assignment associating
1 Scope indicators can be avoided at the expense of side conditions of the form x �∈

FV (s). In which case, in order to avoid unintended bindings, such conditions must
be imposed on construction of admissible terms.
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x = 5 to the metavariable A, these rules generate rewrite steps ∃x(x = 5) →
τx(x = 5) = 5 and ∃!x(x = 5) → ∃x(x = 5) ∧ ∀x∀y(x = 5 ∧ y = 5) ⇒ x = y).
In general, evaluation of a reduction step may involve execution of a number of
substitutions corresponding to the metasubstitutions in the right-hand-side of
the rule. This will be explained below in examples.

Definition 3. A Context-sensitive Conditional Expression Reduction
System (CCERS) is a pair (Σ,R), where Σ is an alphabet described in Def-
inition 2 and R is a set of rewrite rules r : t → s, where t and s are closed
metaterms (i.e., metaterms possibly containing ‘free’ metavariables but not con-
taining free variables).

Furthermore, each rule r has a set of admissible assignments AA(r) which,
to prevent confusion of variable bindings, must satisfy the following condition for
variable-capture-freeness:

[vcf ] for any assignment θ ∈ AA(r), any metavariable A occurring in t or s,
and any variable x ∈ FV (Aθ), either every occurrence of A in r is in the scope
of some binding occurrence of x in r or no occurrence is.

For any θ ∈ AA(r), tθ is an r-redex or an R-redex (and so is any variant
of tθ obtained by renaming of bound variables), and sθ is the contractum of tθ.
We call R simple if the right-hand sides of R-rules are simple metaterms. We
call redexes that are instances of the same rule weakly similar.

Furthermore, each pair (r, θ) with r ∈ R and θ ∈ AA(r) has a set AC(r, θ) of
admissible contexts such that if a context C[ ] is admissible for (r, θ) and o
is the contractum of u = rθ according to r, then C[u] → C[o] is an R-reduction
step. In this case, u is admissible for r in the term C[u]. We require that the
set of admissible terms be closed under reduction. We also require that admissi-
bility of terms, assignments, and contexts be closed under the renaming of bound
variables. That is, if u is admissible in C[u] and if C′[u′] is its variant obtained
by a renaming of bound variables in C[u], then u′ must be a redex admissible for
C′[ ].

We call a CCERS context-free, or simply a Conditional Expression Re-
duction System (CERS), if every term is admissible, if every context is admis-
sible for any redex, if the rules r : t→ s are such that t is a simple metaterm and
is not a metavariable, and if each metavariable that occurs in s also occurs in t.
Moreover if for any rule r ∈ R, AA(r) is the maximal set of variable-capture-
free assignments, then we call the CERS an unconditional Expression Reduction
System, or simply an Expression Reduction System (ERS).

Note that in CCERSs (but not in CERSs or ERSs) we allow metavariable-rules
like η−1 : A → λxAp(A, x) and metavariable-introduction-rules like f(A) →
g(A,B), which are usually excluded a priori. This is useful only when the system
is conditional. As in the η-rule, the requirement [vcf] forces x �∈ FV (Aθ) for
every θ ∈ AA(η−1). A metavariable-introduction-rule is used in [65] to model a
Hilbert style proof system as a CCERS. Such a rule allows adding any axiom
(and not any formula) to a sequence of already proven theorems. A rule with
a metasubstitution in the left-hand side (allowed in CCERSs) is used there to
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model the ∃-introduction rule. In a simplified form, such a rule is written as
(B/x)A → ∃xA. We consider such a rule as a simple rule since no substitution
needs to be performed to apply the rule once the left-hand side has been pattern-
matched.

Let r : t→ s be a rule in a CCERSR and let θ be admissible for r. Subterms of
a redex v = tθ that correspond to the metavariables in t are the arguments of v,
and the rest of v is the pattern of v (hence the binding variables of the quantifiers
occurring in the pattern also belong to the pattern while the corresponding
bound variables belong to the arguments). Subterms of v whose head symbols
are in its pattern are called the pattern-subterms of v. The pattern of the right-
hand side of a simple CCERS rule is defined similarly.

Notation. We use a, b, c, d for constants, use t, s, e, o for terms and metaterms,
use u, v, w for redexes, and use N,P,Q for reductions (i.e., reduction paths). We
write s ⊆ t if s is a subterm (occurrence) of t. A one-step reduction in which a
redexoccurrence u ⊆ t is contracted is written as t u→ s or t → s or just u. We
write P : t →→ s or t P→→ s if P denotes a reduction (sequence) from t to s, write
P : t →→ if P may be infinite. For finite P , P +Q denotes the concatenation of
P and Q.

Below, when we refer to terms and redexes, we always mean admissible terms
and admissible redexes except when explicitly mentioned.

2.2 Expressive Power of CCERSs

Here we discuss briefly how to encode conditional TRSs [10] and reduction strate-
gies as CCERSs. We also present an encoding of the π-calculus into a CCERS.
For more details refer to [66] where, for example, encodings of Hilbert- and
Gentzen-style proof systems into CCERSs are also given.

Conditional TRSs. Conditional term rewriting systems (CTRSs) were in-
troduced by Bergstra and Klop [10]. Their conditional rules have the form
t1 = s1 ∧ · · · ∧ tn = sn ⇒ t → s, where si and ti may contain variables in
t and s. According to such a rule, tθ can be rewritten to sθ if all the equations
siθ = tiθ are satisfied. CTRSs were classified depending on how satisfaction is
defined (‘=’ can be interpreted as →→ , ↔∗, etc.). As Bergstra and Klop remark,
this can be generalised by allowing for arbitrary predicates on the variables as
conditions (cf. also [29, 95]).

Clearly, all these CTRSs are context-free CCERSs since they allow conditions
on the arguments but not on the context of rewrite rules. For this reason results
for them are sometimes a special case of general results holding for all CCERSs.
In particular, stable CTRSs for which the unconditional version is orthogonal as
defined in [10] are orthogonal in our sense (to be defined in Subsection 3) and
hence are confluent.

Encoding of Strategies. In the literature a strategy for a rewriting system
(R,Σ) is often defined as a map F :Ter(Σ) → Ter(Σ), such that t → F (t) if
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t is not a normal form, and t = F (t) otherwise (e.g., [5]). Such strategies are
deterministic and do not specify the way in which to obtain F (t) from t.

The above definition of a strategy is unsatisfactory for the following reasons:

– In a term, there may be several redex occurrences yielding the same re-
sult if reduced. For example, I(Ix) can be β-reduced in one step to Ix, by
contracting either of the two I-redexes.

– A redex occurrence can be an instance of more than one rule. For example,
or(true, true) → true by applying either of the two rules or(true, x) → true
and or(x, true) → true,

– The result of a reduction step is in general not determined uniquely by the
redex occurrence and the rule that is applied. For example, applying the
variable-introducing rule a → A to the term a in the empty context may
lead to any result, depending on the assignment to A.

– One may want to define t = F (t) even if t is not a normal form (e.g., when
one is interested in computing head-normal forms [5]).

In [63], a strategy is defined as a set F of triples (r, θ, C[ ]) specifying that a
rule r : t→ s ∈ R can be used with assignment θ in context C[ ] to rewrite C[tθ]
to C[sθ]. With a strategy F one can associate a CCERSRF , encoding exactly the
same information, by taking θ, C[ ] admissible for r iff (r, θ, C[ ]) ∈ F . Obviously,
this also holds the other way around; that is, every CCERS can be viewed as a
strategy for its unconditional version.

Encoding of the π-Calculus as a CCERS. In this subsection we will encode
as a CCERS the version of the π-calculus described by Milner [77] . Recall that
the π-calculus agents P , Q, . . . are defined as follows:

P ::= xy.P | x(y).P | 0 | P |P | !P | (x)P

Basic interaction is generated from the rule

x(y).P |xz.Q→ [z/y]P |Q

by closing under unguarded contexts and working modulo structural congruence
(where a guard is a prefix of form xy. or x(y).).

A CCERS (Σπ, Rπ) can be associated to the π-calculus as follows. The alpha-
bet Σπ consists of the function symbols 0, !, |, O with respective arities 0, 1, 2, 3
and the quantifier symbols I and R with arities (1, 2) and (1, 1). I binds only in
its last argument. The map [ ] transforms π-terms into terms in Ter(Σπ). The
only non-obvious cases are input, output, and restriction:

[x(y).P ] = Iy(x, [P ]) ; [xz.Q] = O(x, z, [Q]) ; [(x)P ] = Rx([P ])

Combining the transformation [ ] with the closing under unguarded contexts and
the structural congruence leads to rules Rπ of the form

C1[Iy(X,P )] |C2[O(X,Z,Q)] → C1[(Z/y)P ] |C2[Q], where
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1. P,Q,X,Z are metavariables, and admissible assignments for X,Z are vari-
ables.

2. The indicated subterms must be unguarded in C1[ ] and C2[ ] and not in the
scope of RX (among the symbols above them can occur only the operators
|, ! and Rx with x �= X).

3. For any redex only (all) unguarded contexts are admissible.

3 Orthogonal CCERSs

In this section, we introduce a suitable concept of orthogonality for CCERSs,
outline a strict and strong confluence proof methods for them, and indicate
how these confluence results can be used for proving confluence for restricted
λ-calculi. These results are taken from [53, 63]. Finally, we will discuss briefly a
classification of orthogonal CCERSs according to redex-creation.

3.1 Orthogonality and Confluence

The idea of orthogonality is that contraction of a redex does not destroy other re-
dexes (in whatever way) but instead leaves a number of their residuals. A prereq-
uisite for the definition of residual is the concept of descendant, also called trace,
which allows the tracing of subterms along a reduction. Whereas this concept
is pretty simple in the first-order case, CCERSs may exhibit complex behaviour
due to the possibility of nested metasubstitutions in the right-hand sides of
rules, thereby complicating the definition of descendants. A standard technique
in higher-order rewriting [67] (illustrated below on examples) is to decompose or
refine each rewrite step into two parts: a TRS -part in which the left-hand side is
replaced by the right-hand side without evaluating the (meta)substitutions, and
a substitution-part in which the delayed substitutions are evaluated. To express
substitution we use the S-reduction rules

Sn+1x1 . . . xnA1 . . . AnA0 → (A1/x1, . . . , An/xn)A0, n = 1, 2, . . .,

where Sn+1 is a substitution operator sign with arity (n, n+ 1) and scope indi-
cator (n+1) and where x1, . . . , xn and A1, . . . , An, A0 are pairwise distinct vari-
ables and metavariables. (We assume that the CCERS does not contain symbols
Sn+1; it can of course contain a renamed variant of S-rules. The collection of all
substitution rules, renamed or not, is an ERS itself.) Thus Sn+1 binds only in
the last argument. One can think of S-redexes as (simultaneous) let-expressions.
Clearly, using just S2 would be enough.

If a CCERS R is simple, we define RfS = Rf = R; otherwise RfS =
Rf ∪ S, where Rf is obtained from R by adding symbols Sn+1 to the alpha-
bet and by replacing all metasubstitutions of the form (t1/x1, . . . , tn/xn)t0 with
Sn+1x1 . . . xnt1 . . . tnt0 in the right-hand sides of the rules. Thus the descendant
relation of a rewrite step can be obtained by composing the descendant relation
of the TRS-step in Rf and the descendant relations of the S-reduction steps.

All known concepts of descendants agree in the cases when the subterm s ⊆ t
which is to be traced during a step t u→ o is (1) in an argument e of the contracted
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redex u, (2) properly contains u, or (3) does not overlap with u. In case (1), one
traces the argument e first; and in every descendant e′ of e (if any), the subterm
of e′ at the same position as that of s in e is a descendant of s in o. A special case
of (1) for an S-reduction step is the situation when s is a variable occurrence
in the last argument, bound by the S-operator, in which case the descendant
of s is the subterm occurrence which instantiates it after the substitution step.
In cases (2)-(3), the subterm of o at the same position as that of s in t is the
unique descendant of s in o. The known descendant concepts differ when s is a
pattern-subterm (i.e., when s is in the contracted redex u but is not in any of its
arguments), in which case we define the contractum of u to be the descendant
of s. According to many definitions, however, s does not have a u-descendant
(descendant is often used as a synonym of residual, which it is not). In the case
of TRSs, our definition coincides with Boudol’s [17] and the descendant concept
corresponds to Boudol-Khasidashvili labelling as defined in [94]. It differs slightly
from Klop’s [68] definition where the descendants of a contracted redex, as well
as of any of its pattern-subterms, are all subterms whose head-symbols are within
the pattern of the contractum.

We explain our descendant concept by using examples (for a formal definition,
see [63]). Consider a TRS-step t = f(g(a)) → h(b) = s performed according to
the rule f(g(x)) → h(b). The descendant of both pattern-subterms f(g(a)) and
g(a) of t in s is h(b) and a does not have a descendant in s.

The refinement of a β-step t = Ap(λx(Ap(x, x)), z) →β Ap(z, z) = e would
be t = Ap(λx(Ap(x, x)), z) →βf

o = S2xzAp(x, x) →S Ap(z, z) = e: the de-
scendant of both t and λx(Ap(x, x)) after the TRS -step is the contractum
S2xzAp(x, x), the descendants of Ap(x, x), z ⊆ t are the respective subterms
Ap(x, x), z ⊆ o, the descendant of both o = S2xzAp(x, x) and Ap(x, x) after the
substitution step is the contractum e, and the descendants of z ⊆ o, as well as of
the bound occurrence of x in Ap(x, x), are the occurrences of z in e. As another
example, consider the S-reduction step t = S2xf(a)g(x) →S g(f(a)) = s. Then
the descendant of x ⊆ t is f(a) ⊆ s, and the descendant of g(x) ⊆ t is s. The
descendants of f(a), a ⊆ t are the occurrences f(a), a ⊆ s, respectively.

The descendant concept extends by transitivity to arbitrary reductions con-
sisting of TRS-steps and S-reduction steps. If P is an R-reduction, then P -
descendants are defined to be the descendants under the refinement of P . The
ancestor relation is the inverse of the descendant relation. The descendant con-
cept allows us to define residuals:

Definition 4. Let t u→ s be in a CCERS R, let v ⊆ t be an admissible re-
dex, and let w ⊆ s be a u-descendant of v. We call w a u-residual of v if
(a) the patterns of u and v do not overlap (i.e., the pattern-occurrences do
not share an occurrence of a symbol in t), (b) w is a redex weakly similar to
v (see Definition 3), and (c) w is admissible. (So u itself does not have u-
residuals in s.) The concept of a residual of redexes extends naturally to ar-
bitrary reductions. A redex in s is called a new redex or a created redex if it
is not a residual of a redex in t. The predecessor relation is inverse to that of
residual.



Expression Reduction Systems and Extensions: An Overview 507

Definition 5. We call a CCERS orthogonal if:

– the left-hand sides of rules are not single metavariables,
– the left-hand side of any rule is a simple metaterm and its metavariables

contain those of the right-hand side, and
– all the descendants of an admissible redex u in a term t under the contraction

of any other admissible redex v ⊆ t are residuals of u.

The second condition ensures that rules exhibit deterministic behaviour when
they can be applied. Failure of the last condition may easily lead to non-
confluence: For example, consider the rules a → b and f(A) → A with the
(only) admissible assignment Aθ = a. The descendant f(b) of the redex f(a)
after contraction of a is not a redex because the assignment Aθ = b is not
admissible. Hence the system is not orthogonal, nor is it confluent.

Definition 6. Reductions starting from the same term are called co-initial. Re-
call that co-initial reductions P : t →→ s and Q : t →→ e are weakly equivalent
or Hindley-equivalent [5], written P ≈H Q, if s = e and the residuals of any
redex of t under P and under Q are the same redexes in s. Furthermore, P and
Q are strictly equivalent [51], written P ≈st Q, if s = e and the descendants
of any subterm of t under P and under Q are the same subterms in s.

Using these equivalencies and the above definition of residuals, we can easily
infer strong [70, 43] and strict [51] forms of the Church-Rosser (CR) property
for CCERSs.

A standard method of proving the strong version of CR is one using termina-
tion of developments (FD) and the fact that any pair of redexes u, v in a term
strongly commute: u+ v/u ≈H v+ u/v [70] where v/u denotes a complete de-
velopment of a set of residuals of v after contracting u, and similarly for u/v;
that latter property will be called strong local confluence. Recall that a develop-
ment of a term t is a reduction in which only residuals of redexes present in t are
contracted; and a development of a set U of redexes in t is a reduction in which
only residuals of redexes in U are contracted. A complete development of U is
a development t →→ s of U such that s does not contain residuals of redexes in
U . Below U may also denote a complete development of a set of redexes U ; and
U is also called a multi-step. As in orthogonal TRSs [43], the λ-calculus [71, 5],
orthogonal CRSs [67], and orthogonal HRSs [97], one can in orthogonal CCERSs
use FD and strong commutativity to define for any co-initial reductions P and
Q the residual of P under Q, written P/Q. One way to do it is to consider P and
Q as multi-step reductions, say P = U+P ′, where U is the first multi-step in P ,
and define inductively that P/Q = U/Q+P ′/(Q/U). For a correctness proof of
this definition, we refer the reader to [71]. We write P�LQ if P/Q = ∅ (�L is the
Lévy-embedding relation); P and Q are called Lévy-equivalent or permutation-
equivalent (written P ≈L Q) if P �LQ and Q�LP . It follows from the definition
of / that if P + P ′ and Q +Q′ are co-initial finite reductions in an orthogonal
CCERS, then (P +P ′)/Q ≈L P/Q+ P ′/(Q/P ) and P/(Q+Q′) ≈L (P/Q)/Q′.
This is all well known and we do not give more details. The strong Church-
Rosser theorem then states that, for any co-initial finite reductions P and Q in
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an orthogonal ERS, P �Q ≈L Q� P , where P �Q means P +Q/P . The Strict
Church-Rosser theorem states that, for any co-initial finite reductions P and Q
in an orthogonal ERS, P �Q ≈st Q � P . (Thus, P ≈L Q implies P ≈st Q since
P/Q and Q/P are empty reductions.) Like the strong CR property, the strict
CR property follows from FD and the following strict local confluence property:
any two co-initial steps u, v strictly commute: u � v ≈st v � u.

Theorem 1. ([53, 63]) (Finite Developments) All developments of a term t
in an orthogonal CCERS R eventually terminate.

Using this theorem and the last condition in the definition of orthogonality,
the next theorem follows from some abstract theory of residuals.

Theorem 2. ([53, 63]) Let P and Q be any co-initial finite reductions in an
orthogonal CCERS R. Then

(1) (Strong Church-Rosser) P �Q ≈L Q � P .
(2) (Strict Church-Rosser) P �Q ≈st Q � P .

By restricting term formation in the λ-calculus [5], one arrives at a large class
of typed lambda calculi. Since the rewrite relation in these calculi is not restricted
and typed terms are closed under β-reduction, these CCERSs are orthogonal,
and hence confluent. As an example, see [63] for a proof that the call-by-need λ-
calculus of Ariola et al. [3] is an orthogonal CCERS. Other interesting examples
of context-sensitive, conditional orthogonal λ-calculi can also be found in [63].

3.2 A Classification of Orthogonal CCERSs According to Redex
Creation

Properties of orthogonal CCERSs depend on the types of redex-creation during
reduction. It is therefore natural to classify CCERSs according to redex creation.
Here we recall from [55, 57] some of the interesting types of CCERSs where
redex creation is restricted. In subsequent sections we discuss more results on
subclasses of orthogonal CCERSs.

Definition 7. 1. Let t −→u s in an orthogonal ERS R, let t −→uf
t′→→S s

be its refinement in RfS, and let v be a new redex in s. Redex v is called
generated if it is a residual of a redex v′ ⊆ t′ whose pattern is in the pattern
of the contractum of uf . If furthermore the redex v′ is not inside an S-redex
in t′, then we call v uniformly generated.

2. An orthogonal ERS R is persistent (PERS) (resp. uniformly persistent)
if each created redex in R is generated (resp. uniformly generated).

3. An orthogonal ERS R is strongly persistent (SPERS) if RfS is persistent.

It is easy to see that a non-simple orthogonal ERS (OERS) R is strongly
persistent iff the left-hand sides of its rules consist of a single operator: RfS

contains S-rules which can create any redex whose pattern contains at least two
operators. Recall that if R is simple (see Definition 3), then RfS = R.
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Higher Order Recursive Program Schemes (HRPSs) are the prime examples of
persistent ERSs [55]. In HRPSs, the left-hand side of any rewrite rule contains
only one function or quantifier symbol. The rules ∃x(A) → (τx(A)/x)A and
∃!x(A) → ∃x(A) ∧ ∀x∀y(A ∧ (y/x)A ⇒ x = y) are important examples. In the
rewrite step σx(x) → f((σx(x)/x)x) = f(σx(x)) corresponding to rule σx(A) →
f((σx(x)/x)A) and assignment θ(A) = x, the created redex σx(x) is generated
but not uniformly generated – for steps corresponding to assignments θ′ such
that x �∈ FV (θ′(A)), no redexes will be generated.

For persistent ERSs, weak and strong normalisation are decidable; and for
uniformly persistent ERSs, the lengths of shortest reductions can be computed
statically [55]. For strongly persistent ERSs, lengths of longest reductions too can
be computed statically, see Section 5.3. These results are obtained by analysing
essential similarity and strong similarity of redexes, respectively, which will be
introduced in the next section.

4 Normalising Strategies for Orthogonal CCERSs

If a term t in a rewrite system has a normal form (a term without a redex), then
a normalising strategy, when applied to t, computes a reduction of t to a normal
form. A normalising strategy, called a needed strategy, was found for orthogonal
TRSs by Huet and Lévy [43]. They defined a redex u in a term t of an orthogonal
TRS as needed if any normalising reduction of t contracts at least one residual
of u; and a needed strategy is defined as a strategy that repeatedly contracts a
needed redex in the given term, till a normal form is computed. This strategy
was later generalised to many other rewrite systems.

In this section we will review normalising strategies developed for orthogonal
CCERSs. We will mainly focus on the concept of essentiality which makes sense
for all subterms, including free or bound variable occurrences, and for the case
of redexes coincides with Maranget’s concept of neededness [72] which, unlike
Huet-Lévy’s concept, is meaningful for terms without a normal form as well.
We discuss briefly usage of essentiality where neededness cannot be used. We
will also discuss properties of external redexes and similarity of redexes, used for
proving many results for orthogonal CCERSs.

The material discussed in this section is taken from the following publica-
tions [51, 58, 55, 54, 63]. For more on strategies in orthogonal rewrite systems,
see [94].

4.1 Relative Normalisation by Neededness in Orthogonal CCERSs

A theory of normalisation by neededness for orthogonal CCERSs is developed
in [35]. It introduces a concept of stable results, and develops normalisation
with respect to this set of “normal forms”. Important examples of stable results
are normal forms [43], head-normal forms [7], and weak-head-normal forms in
the λ-calculus, constructor-head-normal forms for constructor TRSs [83], and
root-stable forms (terms that cannot be rewritten to a redex) in TRSs [76].
A labelling system for orthogonal CCERSs, in the style of Lévy’s labelling for
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optimal β-reduction [71], is also introduced in [35] and relative optimal normali-
sation is studied. In later works by Glauert and Khasidashvili [36, 59, 61, 60, 62],
and others (e.g. [Mel98]), this relativized normalisation theory was generalised
to abstract reduction systems with axiomatised residual and family relations,
and therefore it is less relevant to review these results here in the context of
Orthogonal CCERSs. Instead, we review briefly a normalisation proof method
which uses the descendant concept discussed in previous sections.

4.2 External Redexes

In this subsection we will show that every reducible term in an orthogonal fully-
extended (see Definition 9) CCERS has an external redex. External redexes for
orthogonal TRSs were introduced by Huet and Lévy [43], who also proved the
existence of external redexes in every reducible term. Both the original definition
of external redexes and the existence proof are quite lengthy.

With our concept of descendant, external redexes can be defined as follows:

Definition 8. ([58, 63]) A subterm s ⊆ t in an orthogonal CCERS is exter-
nal if no descendants of s along any reduction P : t →→ o appear inside redex-
arguments.2

In the above definition, s may be a redex, in which case its descendants are
in fact its residuals. Any external redex is trivially outermost, but an outer-
most redex is not necessarily external. Contracting a redex disjoint from it, may
cause its residual to be non-outermost. For example, consider the orthogonal
TRS {f(x, b) → c, a → b}. The first a in f(a, a) is outermost but not external;
contracting the second a (which is disjoint from it) creates the redex f(a, b)
having the residual of the first a as argument. The second a is external.

In an ERS, there may be another reason why an outermost redex need not be
external. Contracting a redex in one of its arguments may cause its residual to
be non-outermost. This already shows up in the λβη-calculus. Let I = λx.x and
K = λxy.x, as usual [5]. The redex u = I(KIx) in λx.I(KIx)x is outermost
but not external; contracting the redex KIx in its argument creates the η-redex
λx.IIx having the residual II of u as argument. This particular example, but
not the entire λβη-calculus), can be readily encoded as an orthogonal ERS. We
will see later that because of rules like η which test for the absence of variables
in subterms (occur check!) even the conservation theorem fails for orthogonal
CCERSs in general.

To exclude such rules, we restrict ourselves to fully extended CCERSs [63]
(defined after [38]).

Definition 9. We call a CCERS R fully-extended iff for any step t u→ s in R
and any occurrence w ⊆ t of an instance of the left-hand-side (of a rule r ∈ R)
such that:

2 In [58], external redexes are called unabsorbed.
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(a) the patterns of w and u in t do not overlap, and
(b) w has a u-descendant w′ ∈ s that is a redex,

w is an admissible redex in t weakly similar to w′.

A simple proof of the following theorem can be found in [63]. A similar method
for orthogonal TRS was used in [58]. Even for orthogonal TRSs, there is no
algorithm for computing an external redex in every term [43].

Theorem 3. Every reducible term in an orthogonal fully-extended CCERS has
an external redex.

4.3 Normalisation of the Essential Strategy

Normalisation theory based on tracing subterms rather than only redexes was in-
troduced by Khasidashvili for the λ-calculus [51], independently from the work of
Huet and Lévy [43]. The proof method generalises easily to orthogonal TRSs [58].
The same method can be used for orthogonal CCERSs; we will review this
method briefly here. We will also discuss some important applications where one
needs to reason about essentiality of subterms that are not redexes, in particu-
lar, about essentiality of variable occurrences, where the concept of neededness
cannot be used.

Definition 10. Let t be a term in an orthogonal CCERS R. We call a subterm s
in t essential if s has at least one descendant under any finite reduction starting
from t and otherwise call it inessential.

It is easy to prove that contraction of a non-essential redex cannot create
an essential redex; therefore any (normalising) reduction P : t →→ o can be re-
organised into a reduction Q : t →→ o so that essential redexes are contracted
first in Q. And since an inessential redex cannot reduce a term to its normal
form, the “essential prefix” Qe of Q must end in a normal form. Finally, there
cannot be an infinite essential reduction P ′ starting from t: indeed, an essential
redex cannot erase another essential redex; thus the reduction P ′/Qe would be
an infinite essential reduction if P ′ was an infinite essential reduction, which
is impossible since Qe ends in a normal form o. Any term not in normal form
has an essential redex – an external redex constructed in Section 4.2 is essen-
tial since it has a descendent along any reduction. Thus we have proven the
theorem:

Theorem 4. The essential strategy is normalising in fully-extended orthogonal
CCERSs.

For persistent and uniformly persistent orthogonal ERSs one can prove more:

Theorem 5 ([55]). Let t be a term in a persistent ERS R.

1. Weak and strong normalisation of t is decidable.
2. All essential redexes of t can be computed statically.
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3. When R is uniformly persistent and t is normalisable, repeated contraction
of innermost essential redexes in t yields a shortest normalizing reduction
starting from t.

The last statement of Theorem 5 does not hold for persistent ERSs in
general: For example, all normalizing reductions starting from term σx(f(x))
in the following persistent ERS R = {σx(A) → (εx(A)/x)A, εx(A) →
(τx(A)/x)A, f(x) → g(x, x)} must contract two copies of at least one redex.
Indeed, contracting the f -redex f(x) first would duplicate x, which will cause
generating two copies of a ε-redex when the σ redex is contracted; while con-
tracting the σ-redex first would cause a duplication of the f -redex. Note that
developments in orthogonal ERSs can be encoded as ERSs where there is no
redex-creation, thus the above theorem allows one to construct shortest devel-
opments in orthogonal ERSs. These results can be generalised to orthogonal
CCERSs as well.

4.4 Similarity of Redexes

In this section, we discuss several concepts of similarity of redexes which are
used in many proofs, including proofs concerning the shortest as well as longest
reductions. These concepts have not been studied for other forms of higher-order
rewriting. The idea of similarity of redexes [55, 54] u and v is that u and v are
weakly similar – that is, they match the same rewrite rule – and quantifiers in the
pattern of u and v bind ‘similarly’ in the corresponding arguments. For exam-
ple, recall that a β-redex Ap(λxt, s) is an I-redex if x ∈ FV (t) and is a K-redex
otherwise. Then all I-redexes are similar and all K-redexes are similar, but no I-
redexes are similar to a K-redex. Consequently, for any pair of corresponding ar-
guments of u and v, either both are erased after contraction of u and v or none is.

A redex in a CCERS has the form u = C[t1, . . . , tn], where C is the pattern
and t1, . . . , tn are the arguments. Sometimes we write u as u = C[x1t1, . . . , xntn],
where xi = {xi1 , . . . , xini

} is the subset of binding variables of C such that ti is
in the scope of an occurrence of each xij , j = 1, . . . , ni. Let us call the maximal
subsequence j1, . . . , jk of 1, . . . , n such that tj1 , . . . , tjk

have u-descendants the
main sequence of u (or the u-main sequence), call tj1 , . . . , tjk

the (u-)main ar-
guments, and call the remaining arguments (u)-erased. Further, call u erasing if
k < n and non-erasing otherwise.

Now the similarity of redexes can be defined as follows: weakly similar redexes
u = C[x1t1, . . . , xntn] and v = C[x1s1, . . . , xnsn] are similar if, for any 1 ≤ i ≤
n, xi ∩ FV (ti) = xi ∩ FV (si). For example, consider the rule σx(A,B) →
(σx(f(A), A)/x)B. Then the redexes u = σx(x, y) and v = σx(f(x), y) are
similar, while w = σx(y, y) is not similar to any of them since x �∈ FV (y).
However, note that the second arguments of all the redexes u, v and w are main
and the first arguments are erased. In this presentation it is more convenient to
use a slightly relaxed concept of similarity, written ∼, such that u ∼ v ∼ w:

Definition 11. We write u ∼ v if the main sequences of u and v coincide and
for any main argument ti of u, xi ∩ FV (ti) = xi ∩ FV (si).
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The following lemma implies in particular that, indeed, if u and v are similar,
then u ∼ v, and that ∼ is an equivalence relation. Its proof involves properties of
essentiality of subterms, in particular of variable occurrences, and strict conflu-
ence. Roughly, the idea is that bound variable occurrences in erased arguments
of a redex u are “inessential” even if we do not contract redexes in the arguments
of u. Therefore only bindings in main arguments are relevant.

Below, θ will not only denote assignments but will also denote substitutions
assigning terms to variables; when we write o′ = oθ for a substitution θ, we
assume that no free variables of the substituted subterms become bound in o′

(i.e., we rename bound variables in o when necessary).

Lemma 1. (Redex Similarity) Let u and v be weakly similar redexes of the form
u = C[x1t1, . . . , xntn] and v = C[x1s1, . . . , xnsn], and let for any main argument
si of v, xi ∩ FV (ti) ⊆ xi ∩ FV (si). Then the main sequence of u is a subset of
the main sequence of v. Furthermore, if xi ∩ FV (ti) = xi ∩FV (si), then u ∼ v;
in particular, if u = vθ, then u ∼ v.

For many results for CCERSs, one needs to understand how the erasure of
arguments depends on the binding structure of the redex. The similarity lemma
above establishes such a relation. This lemma is used essentially in many proofs
of perpetuality of redexes, longest reductions, as well as for characterising lengths
of shortest reductions for classes of orthogonal CCERSs. The following lemma is
an example of application of the similarity lemma. It is used in proving properties
of perpetual/safe redexes, in Section 5.2.

Lemma 2. Let t u→ s be in a CCERS, let o ⊆ t be either in an argument of u
or not overlapping with u, and let o′ ⊆ s be a u-descendant of o. Then o′ = oθ
for some substitution θ. Moreover, if o is a redex, then so is o′ and o ∼ o′.

For results concerning the shortest and the longest reductions in orthogonal
CCERSs, one needs the concepts of essential and strong similarity of redexes,
respectively:

Definition 12. Let u = C[x1e1, . . . , xnen] and v = C[x1o1, . . . , xnon] be weakly
similar redexes in an orthogonal CCERS R.

– Redexes u and v are called R-essentially similar if, for all i and every
xij ∈ xi, xij has an R-essential occurrence in ei iff it has one in oi.

– Redexes u and v are called strongly similar if, for all i and every xij ∈ xi,
the numbers of occurrences of xij in ei and oi coincide.

Consider for example redexes u = (λx.x)s, v = (λx.(λy.z)x)o, and w =
(λx.xx)e. Then u and v are similar and strongly similar, but not β-essentially
similar; and u and w are similar and β-essentially similar, but not strongly
similar.

The properties of essential bindings are needed to prove Theorem 5. The
analysis of essential bindings is also crucial for proving normalisation results for
the hyperbalanced λ-calculus [64]. There, essentiality of bound variables and of
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redexes can be determined statically (thus one has a static garbage collection
algorithm for the hyperbalanced λ-calculus). Furthermore, the number of su-
perdevelopments [99, 69] needed to normalise a hyperbalanced λ-term can be
computed statically as well.

Using the concept of strong similarity, an algorithm is developed in [57] for
computing the lengths of longest reductions in persistent ERSs; as a corollary,
one gets an algorithm for statically computing lengths of longest developments
in orthogonal CCERSs.

5 Perpetual and Longest Reductions in Orthogonal
CCERSs

In this section we review results on perpetual and longest reductions in orthog-
onal CCERSs. For brevity, we will not discuss related results in other formats
of higher-order rewriting, or in the λ-calculus, and instead refer to [63, 94]. Most
of the results in this section are taken from [63].

5.1 A Minimal Perpetual Strategy

In this subsection we introduce a perpetual strategy F∞
m for orthogonal fully-

extended CCERSs by generalising the constricting perpetual strategies in the
literature [88, 93, 37, 74, 100]. We also study properties of F∞

m that are used
in the next subsection to obtain new criteria for the perpetuality of redexes
and of redex occurrences in orthogonal fully-extended CCERSs. A survey
on perpetual reductions in the λ-calculus and its extensions can be found
in [92, 100].

Recall that a term t is called weakly normalizing (WN), written WN (t), if it is
reducible to a normal form (i.e., a term without a redex), and t is called strongly
normalizing (SN), written SN (t), if it does not possess an infinite reduction.
We call t an ∞-term (written ∞t), if ¬SN (t). Clearly, for any term t, SN (t) ⇒
WN (t). If the converse is also true, then we call t uniformly normalizing (UN).
So a UN term t either does not have a normal form or all reductions from t
eventually terminate. Correspondingly, a rewrite system R is called WN, SN, or
UN if all terms in R are WN, SN, or UN, respectively.

Following [9, 68], we call a rewrite step t u→ s, as well as the redex-occurrence
u ⊆ t, perpetual if ∞t ⇒ ∞s. Otherwise we call them critical. We call a redex
(not an occurrence) perpetual iff its occurrence in every (admissible) context
is perpetual. A perpetual strategy in an orthogonal fully-extended CCERS is a
(partial) function on terms which in any reducible term selects a perpetual redex-
occurrence; the orthogonality of the CCERS implies that the redex-occurrence
uniquely determines the rewrite rule (and the corresponding admissible assign-
ment) according to which the redex is to be contracted.

Definition 13. Let P : t →→ and s ⊆ t. Reduction P is internal to s if it
contracts redexes only in (the descendants of) s.
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Definition 14. (1) Let t be an ∞-term in an orthogonal fully-extended CCERS
and let s ⊆ t be a smallest subterm of t such that ∞(s) (i.e., such that every
proper subterm e ⊂ s is SN). Then we call s a minimal perpetual subterm
of t, and call any external redex of s a minimal perpetual redex of t.

(2) Let F∞
m be a one-step strategy that contracts a minimal perpetual redex in t

if ∞t and otherwise contracts any redex. Then we call F∞
m a minimal perpetual

strategy. We call F∞
m constricting if for any F∞

m -reduction P : t0
u0→ t1

u1→ . . .
(i.e., any reduction constructed using F∞

m ) starting from an ∞-term t0 and for
any i, P ∗

i : ti
ui→ ti+1

ui+1→ . . . is internal to si, where si ⊆ ti is the minimal
perpetual subterm containing ui. Constricting minimal perpetual strategies will
be denoted F∞

cm.
(3) F∞

m is the leftmost minimal perpetual strategy, denoted F∞
lm, if in each

term it contracts the leftmost minimal perpetual redex.

Now we can state the main results on minimal perpetual strategies for fully-
extended orthogonal CCERSs [63].

Theorem 6. 1. F∞
m is a perpetual strategy in any orthogonal fully-extended

CCERS.
2. F∞

lm is a constricting strategy in any orthogonal fully-extended CCERS.

It is interesting to note that the constricting perpetual reductions are minimal
w.r.t. Lévy’s embedding relation �L (see [63] for a proof).

5.2 Two Characterisations of Critical Redexes

In this section we give an intuitive characterisation of critical redex occurrences
for orthogonal fully-extended CCERSs, generalising Klop’s characterisation of
critical redex occurrences for orthogonal TRSs [68], and derive from it a char-
acterisation of perpetual redexes similar to Bergstra and Klop’s perpetuality
criterion for β-redexes [9].

Definition 15. (1) Let P : t0
u0→ t1

u1→ . . .
uk−1→ tk, be in an orthogonal CCERS,

and let s0, s1, . . . , sk be a chain of descendants of s0 along P (i.e, si+1 is a ui-
descendant of si ⊆ ti). Then, following [9], we call P passive w.r.t. s0, s1, . . . , sk

if the pattern of ui does not overlap si (si may be in an argument of ui or be
disjoint from ui) for 0 ≤ i < k, and we call sk a passive descendant of
s0. By Lemma 2, sk = s0θ for some substitution θ, which we call a passive
substitution, or P -substitution (w.r.t. s0, s1, . . . , sk).

(2) Let t be a term in an orthogonal fully-extended CCERS and let s ⊆ t. We
call s a potentially infinite subterm of t if s has a passive descendant s′ s.t.
∞(s′). (Thus ∞(sθ) for some passive substitution θ.)

Theorem 7. Let t be an ∞-term and let t v→ s be a critical step in an orthogonal
fully-extended CCERS. Then v erases a potentially infinite argument o (thus
∞(oθ) for some passive substitution θ).
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Note in the above theorem that if the orthogonal fully-extended CCERS is
an orthogonal TRS, a potentially infinite argument is actually an ∞-term (since
passive descendants are all identical), implying Klop’s perpetuality lemma [68].
O’Donnell’s [85] lemma, stating that any term from which an innermost re-
duction is normalizing is strongly normalizing, is an immediate consequence of
Klop’s Lemma.

Corollary 1. Any redex whose erased arguments are closed SN terms is perpet-
ual in orthogonal fully-extended CCERSs.

Note that Theorem 7 implies a general (although not computable) perpetual
strategy: simply contract a redex u in the term t whose erased arguments (if
any) are not potentially infinite w.r.t. at least one ∞-subterm s ⊆ t (although
the erased arguments of u may be potentially infinite w.r.t. t). Many known
perpetual strategies can be obtained as special cases, such as for example those
reported in [5, 6, 9, 56, 54, 57, 74, 100, 93]

We conclude this section with a characterisation of the perpetuality of erasing
redexes, a characterisation similar to the perpetuality criterion of βK-redexes
that was given by Bergstra and Klop [9].

Below, a substitution θ will be called SN iff SN (xθ) for every variable x.

Definition 16. We call a redex u safe (respectively, SN-safe) if it is non-
erasing or if it is erasing and for any (resp. SN-) substitution θ, if uθ erases an
∞-argument, then the contractum of uθ is an ∞-term. (Note that, by Lemma 1,
u is erasing iff uθ is, for any θ, erasing.)

Theorem 8. In an orthogonal fully-extended CCERS R, any safe redex v is
perpetual.

The following example demonstrates that non-erasing steps need not be per-
petual in orthogonal CCERSs in general, that is, the restriction to fully-extended
CCERSs is necessary:

Example 1. Consider the ERS with rules: λx(A,B) → (B/x)A, κyz(A) →
(a/z)A, and e(A,B) → c, f(a) → f(a), where λ is a partial quantifier symbol
binding only in its first argument, and y �∈ FV (Aθ) for any assignment θ admissi-
ble for the κ-rule. Consider the term s = κyz(λx(e(x, y), f(z))). Note that s is not
a redex (yet) due to the occurrence of y. On the one hand, contracting the e-redex
yields an infinite reduction s → κyz(λx(c, f(z))) → λx(c, f(a)) → . . . . On the
other hand, contracting the (non-erasing) λ-redex yields s→ κyz(e(f(z), y)) →
κyz(c) → c as the only, and strongly normalizing, reduction. Hence the λ-step
is non-erasing but critical.

Corollary 2. ([57]) (Conservation) If a term t in a fully-extended OERS R
has an infinite reduction and t −→u s, where u is a non-erasing redex, then s
has also an infinite reduction.
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5.3 The Longest Perpetual Reductions in OERSs

In this section, we introduce the limit strategy and show that it is perpetual
in OERSs and moreover it constructs the longest reductions. We also give an
algorithm for characterising the lengths of longest reductions of strongly normal-
isable terms [57]. The results are obtained with a well known “memory method”,
first studied by Nederpelt [80] and Klop [67].

The idea of the memory method is to associate with a rewrite system R a
non-erasing system Rμ in such a way that all reductions in R can be simulated
by reductions in Rμ. One can show that Rμ is an occur-conditional ERS for
any OERS R, meaning that for any rule r ∈ R and an assignment θ ∈ AA(R),
if an assignment θ′ is such that FV (Aθ) = FV (Aθ′) for every metavariable A
occurring in r, then θ′ ∈ AA(r), which implies easily that Rμ is orthogonal. Since
Rμ is non-erasing, one hopes to prove that if a term in R is weakly normalisable
in Rμ, it is also strongly normalisable in Rμ. Because of the above simulation,
it would therefore be strongly normalisable in R too. One needs special memory
symbols to keep erasable arguments in the right-hand sides of Rμ-rules (we use
μ-symbols for that purpose), and the memory symbols may block the creation
of redexes during Rμ-steps. One way to ensure the possibility of simulation is to
have special ‘restructuring rules’ for moving these memory symbols away from
undesirable positions such as the shift rule introduced by Klop [67]. Another
way, and the one used here, is simply to extend the left-hand sides by allowing
occurrences of memory symbols in them.

Another difference between our method and the Nederpelt-Klop method is
that we do not memorise all arguments in the right-hand sides. Only erasable
arguments are memorised; thus there are no extra (unnecessary) copies of non-
erasable arguments in the right-hand sides of Rμ-rules. This difference is impor-
tant in that it allows us to characterise the least upper bounds of the lengths of
reductions in OERSs in terms of the number of μ-occurrences in corresponding
Rμ-normal forms.

Definition 17. The μ-extension (Σμ, Rμ) of an OERS (Σ,R) is a conditional
ERS defined as follows:

1. Σμ = Σ ∪ {μn |n = 0, 1, . . .}, where μn is a fresh n-ary function symbol.
For any subterm s = μn+1(t1, . . . , tn, t0) of a term t over Σμ, the arguments
t1, . . . , tn, as well as subterms and symbols in t1, . . . , tn and the head-symbol
μ itself, are called μ-erased – or more precisely, μ′-erased, where μ′ is the
occurrence of the head symbol of s in t. The argument t0 is called μ′-main.
Symbols and subterms in t that are not μ-erased are called μ-main. We
denote by [t]μ the term obtained from t by removing all μ-erased symbols.

2. Rμ is the set of all rules of the form rμ : t′ → s′ such that
(a) there is a rule r : t→ s in R such that [t′]μ = t;
(b) t′ is linear, its head symbol is not a μ-symbol, the μ-erased arguments of

each μ-occurrence μ′ in t′ are metavariables, and the μ′-main argument
is not a metavariable;
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(c) if A1, . . . , An are all μ-main metavariables of t′, B1, . . . , Bj are all μ-
erased metavariables of t′, and k is the number of occurrences of μ-
symbols in t′, then

s′ = μm(

k︷ ︸︸ ︷
μ0, . . . , μ0, B1, . . . , Bj , Ai1 , . . . , Ail

, s),

where i1, . . . , il is the erased sequence of some r-redex. Furthermore,
an assignment θ′ is admissible for rμ iff it is variable-capture-free and
i1, . . . , il is the erased sequence of the r-redex tθ′ (considered as an R-
redex). If θ′ is admissible, the arguments of the rμ-redex t′θ′ that corre-
spond to the erased (main) arguments of the r-redex tθ′ are called quasi-
erased (quasi-main).

For example,

Ap(μ3(A,B, μ2(C, λxD)), E) → μ7(μ0, μ0, A,B,C,E, (E/x)D)

and
Ap(μ3(A,B, μ2(C, λxD)), E) → μ6(μ0, μ0, A,B,C, (E/x)D)

are two βμ-rules with the same left-hand sides and different right-hand sides. The
arguments A, B, and C are μ-erased, and E and D are μ-main. An assignment
θ is admissible for the first rule iff x �∈ FV (Dθ) (since E is kept in its right-hand
side as a μ-erased argument) and otherwise is admissible for the second one.

The following result is essential for proving properties of longest reduction;
we state it here as an example of application of the Similarity Lemma 1.

Corollary 3. (1) Let R be an OERS, let u and v be Rμ-redexes such that u
is in an argument of v, and let v −→u w in Rμ. Then w is an Rμ-redex
similar to v, and the quasi-main sequences of v and w coincide.

(2) Let u be a redex in an OERS R, and let v be an Rμ-redex such that [v]μ = u
and the set of free variables of any quasi-main argument of v coincides with
that of the corresponding argument of u. Then an argument of v is quasi-
erased iff the corresponding argument of u is erased.

(3) Let u be a redex in an OERS R and v be an Rμ-redex such that [v]μ = u.
Then the corresponding argument of any quasi-erased argument of v is u-
erased.

Definition 18. Let ul be a redex in a term t in a fully extended OCCERS,
defined as follows: choose an external redex u1 in t; choose an erased argument
s1 of u1 that is not in normal form (if any); choose in s1 an external redex u2,
and so on as long as possible. Let u1, s1, u2, . . . , ul be such a sequence. Then we
call ul a limit redex and call u1, s1, u2, . . . , ul a limit sequence of t.

Thus in any term not in normal form there is a limit redex. We call a reduction
limit if each contracted redex is a limit redex, and call a strategy limit if in
any term not in normal form it contracts a limit redex.
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Theorem 9. A limit strategy is perpetual in fully-extended OERSs. Moreover,
if a term t in a fully-extended OERS R is strongly normalisable, then a limit
strategy constructs a longest normalizing reduction starting from t, and its length
coincides with the number of occurrences of the μ-symbols in the Rμ-normal form
of t.

6 Expression Reduction Systems with Patterns

The Pattern-Matching Calculus [50] employs an evaluation process given by a
generalisation of the standard β-rule:

(βPM ) app(λX.M,N) −→ M{X by N}

where X denotes a pattern and {X by N} denotes a substitution resulting from
the pattern-matching operation on the pattern X and the term N .

Expression Reduction Systems with Patterns (ERSP) were introduced in [34]
by J. Forest and D. Kesner as an extension of ERS [52] and Simplified Expression
Reduction Systems (SERS) [15] to the case of patterns, and a generalisation
of the Pattern-Matching Calculus to the case of higher-order rewriting (and
not only functional rewriting). ERSP patterns are defined as combinations of
standard algebraic structures with special choice constructors used to denote
different possible syntactic forms for any abstracted argument.

This section gives an overview of ERSP and introduces the key notions to
get a confluence result for such a formalism. For a formal development and full
proofs we refer the reader to [34].

6.1 Basic Notions of the ERSP Formalism

We consider a set of usual variables denoted x, y, z, . . ., a set of choice vari-
ables denoted a, b, c, . . ., a set of pattern metavariables denoted X,Y, . . ., a set of
term metavariables denoted M,N, . . ., a set of function symbols equipped with
a fixed (possibly zero) arity, denoted f, g, h, . . ., a set of binder symbols denoted
λ, μ, ν, . . .. We assume all these sets to be denumerable and disjoint.

When no special distinction is needed for the previous sets of variables and
metavariables will use the symbols x̂, ŷ, ẑ, . . .

Metapatterns (p) and metaterms (t) are generated by the grammars:

p ::= x usual variable t ::= x usual variable
| X pattern metavariable | M term metavariable
| f(p, . . . , p) algebraic | f(t, . . . , t) algebraic
| a〈p, . . . , p〉 choice | a〈t, . . . , t〉 case
| @(p, . . . , p) layered | μp.t abstraction
| wildcard | t{p by t} meta pattern-matching

The constructor @() is varyadic, i.e. it has no fixed arity. It will be used as
a generalisation of the as constructor in functional programming [84]. As we
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will see later, the wildcard pattern can be considered as a special case of
@() applied to 0 arguments. The constructor a〈 〉 is also varyadic, but with a
non-zero arity. We assume that whenever a choice variable a appears inside t,
then all its occurrences have the same arity; thus, a term like μa〈x〉.a〈x, y〉 is not
allowed since for every term t and every choice variable a, the arity of a inside t is
unique. The symbol { by } is called the meta pattern-matching constructor. The
metaterms μp.t and t{p by t′} define bindings whose scope is t for all the (usual
and choice) variables occurring in p. From now on, we write FV(t) (resp. BV(t))
the set of free (resp. bound) variables of t. Without any loss of generality we
assume these sets to be disjoint by working modulo α-conversion on preterms as
for example in μa〈x, y, z〉.a〈x, x, v〉 =α μb〈x′, y′, z′〉.b〈x′, x′, v〉. Thus, renaming
of bound variables is used when necessary to avoid clashes and capture of free
variables.

As an example the term μa〈f(0, y), f(s(x), y)〉.a〈y, s(addition f(x, y))〉, where
f( , ) denotes a pair constructor, could be used to denote an addition function.

A metapattern (resp. metaterm) is said to be a pattern (resp. preterm) if
it contains no metavariables. A preterm is said to be a term if it contains no
pattern-matching constructors.

We denote by Var(p) the set of all the variables appearing in a metapattern p.
We denote by MV(t) the set of all the pattern and term metavariables appearing
in t.

Definition 19. A metapattern is called linear if each variable and metavariable
appears at most once in it. We use the notation p ∈ p′ to say that the metapattern
p appears inside the metapattern p′. A metaterm t is called pattern-linear iff
every metapattern p in t is linear.

A position is a (possibly empty) word over the alphabet IN. We use POS(t)
to denote the set of positions of a metaterm t. The submetaterm of t at position
p is written as t|p. When t|p = u, we will say that p is an occurrence of u in t.

The following notion is used to describe the set of variables/metavariables
appearing along a given path playing a role of “bound” objects.

Definition 20 (Parameter Path). Given a metaterm s and p ∈ POS(s),
we define the parameter path of s at position q, written PP(s, q), as the
following subset of variables and metavariables of s:

PP(s, ε) = ∅
PP(f(s1, . . . , sn), i.q) = PP(si, q), for i ∈ {1 . . . n}
PP(a〈s1, . . . , sn〉, i.q) = PP(si, q), for i ∈ {1 . . . n}
PP(μp.s, 1.q) = Var(p) ∪MV(p) ∪ PP(s, q)
PP(u{p by v}, 1.1.q) = Var(p) ∪MV(p) ∪ PP(u, q)
PP(u{p by v}, 2.q) = PP(v, q)

This notion can be extended to contexts by saying that the parameter path of
a context C[ ] is the parameter path of C[ ] at the position of the hole. ��
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As an example, if t = M{g(X, x) by μa〈Y, s(Y)〉.N}, then we have PP(t, 2) =
∅, PP(t, 1.1) = {X, x}, and PP(t, 2.1) = {Y, a}.

Definition 21 (Well-formed metaterm). A metaterm t is well-formed iff t
has no free occurrences of choice/usual variables. Thus, μa〈x, y〉.a〈x, y〉 is well-
formed while f(a〈g, g〉) and f(x) are not.

Also, we assume that different “non parallel” metapatterns appearing on
the same path cannot share (meta)variables. Thus for example, μX.λX.M or
λx.μx.M are not well-formed but the metaterm t = μa〈Y, s(Y)〉.N is well-formed
since the two occurrences of Y in t are not nested. This is just a generalisation
of what is called “Barendregt’s convention on bound variables”.

The following notion is used to talk about the free variables of a term which
remain after a given choice on a choice variable.

Definition 22 (Localised Free Variables). Let t be a preterm and a be a
choice variable having fixed arity k inside t. Given 1 ≤ i ≤ k, the set FVi

a(t) of
localised free variables of t can be defined as follows:

FV i
a(x) = {x}

FV i
a(f(t1, . . . , tn)) = FV i

a(t1) ∪ . . .FV i
a(tn)

FV i
a(a〈t1, . . . , tk〉) = FV i

a(ti)
FV i

a(b〈t1, . . . , tn〉) = FV i
a(t1) ∪ . . .FV i

a(tn) ∪ {b}
FV i

a(μp.u) = FV i
a(u) \ Var(p)

FV i
a(t{p by u}) = (FV i

a(t) \ Var(p)) ∪ FVi
a(u)

Indeed, FV i
a(b〈x, y, z〉) = {b, z, x, y} for any i, and FV1

a(a〈x, y, z〉) =
{x}. Moreover, as we work modulo α-conversion we have
FV1

a(μa〈x, y〉.a〈f(x, z), u〉) = FV1
a(μb〈x, y〉.b〈f(x, z), u〉) = {z, u}.

We remark that when the choice variable a is not free in t then we have
FVi

a(t) = FV(t) for every i.

Definition 23 (Acceptable preterms). Acceptability of preterms is defined
by induction as follows:

– All variables are acceptable.
– If t1, . . . , tn are acceptable, then f(t1, . . . , tn) and a〈t1, . . . , tn〉 are acceptable

for any choice variable a and any function symbol f .
– If t is acceptable and p is a pattern such that for all a〈p1, . . . , pn〉 ∈ p, for

all i ∈ 1 . . . n, and for all j �= i we have (FVj
a(t) \ Var(pj)) ∩ Var(pi) = ∅,

then we have that μp.t is an acceptable term.
– If μp.t and u are acceptable, then t{p by u} is acceptable.

Indeed, the terms μa〈x, x〉.a〈x, x〉 and μa〈x, y〉.a〈x, y〉 are acceptable while
μa〈x, y〉.b〈x, y〉 is not since FV1

a(b〈x, y〉) \Var(x) = {y, b} and {y, b}∩Var(y) =
{y}. The role of acceptability is to prevent the creation of new free variables
during evaluation: let us consider the term μa〈x, y〉.a〈y, x〉 and let us suppose
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that we apply this term to some value, forcing in this way the choice of the
first branch x in the pattern a〈x, y〉, i.e., the choice variable a takes the value 1.
We will then force the choice of the first branch y in the term a〈y, x〉, thus the
variable y will become a new free variable. The example will be more clear after
definitions of substitution and reduction.

Definition 24 (Contexts). Contexts are preterms with one (and only one)
occurrence containing a distinguished constant called a “hole” (and denoted �) in
a non bound position and with no occurrence of the pattern-matching constructor.
Thus μX.� is a context but μ�.y is not.

We remark that the notion of acceptability is not closed by contexts as for
example the preterm a〈x, y〉 is acceptable but λa〈y, x〉.a〈x, y〉 is not.

Definition 25 (Metasubstitution and Substitution).

– A metasubstitution is a denumerable set of pairs of the form X � p and
M � t where p is a pattern and t is a term. Metasubstitutions will be denoted
by rho, delta, sigma, theta, etc.

– A substitution is a denumerable set of pairs of the form x � t and a � i,
where t is a term and i is a natural number. Substitutions will be denoted by
ρ, δ, σ, θ, etc.

When no special distinction is needed between metasubstitutions and substi-
tutions will use the symbols ρ̂, δ̂, σ̂, . . .. We denote by id the empty metasubstitu-
tion/substitution.

The domain of a metasubstitution (resp. substitution) σ̂ is given by
Dom(σ̂) = {x̂ | (x̂ � o) ∈ σ and x̂ �= o}. When x̂ ∈ Dom(σ̂) we write σ̂x̂
to denote the object o such that x̂ � o ∈ σ̂. The codomain of σ̂ is given by
Codom(σ̂) =

⋃
x∈Dom(σ) FV(σ̂x̂).

The union of two metasubstitutions (resp. two substitutions) θ̂1 and θ̂2 is
denoted by θ̂1 � θ̂2. This union is only defined if for every variable x̂ ∈ Dom(θ̂1)∩
Dom(θ̂2) we have θ̂1x̂ = θ̂2x̂.

We are now ready to define the notion of pattern-matching. This operation
is not defined in general as a function from patterns and terms to substitutions
but from patterns and terms to sets of substitutions. We will see latter how to
ensure the uniqueness of this result.

Definition 26 (Pattern-matching). For each pair (p, t), where p is a pattern
and t is a term, we associate a set of substitutions as follows:

id ∈ {{ by t}}
{x � t} ∈ {{x by t}}
θ1 � . . . � θn ∈ {{@(p1, . . . , pn) by t}} if θi ∈ {{pi by t}}
θ1 � . . . � θn ∈ {{f(p1 . . . pn) by f(t1 . . . tn)}} if θi ∈ {{pi by ti}}
{a � i} � θi ∈ {{a〈p1 . . . pn〉 by t}} if θi ∈ {{pi by t}}
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We remark that in the last three cases the result of {{p by t}} is defined only if
� is defined. When {{p by t}} is a singleton we will make an abuse of notation
by writing {{p by t}} to denote the only element of this set.

As an example of the previous definition, the pattern-matching {{a〈0, x〉 by 0}}
has two solutions: {a � 1} and {a � 2, x � 0}. This comes from the fact that the
pattern a〈0, x〉 contains two “overlapping” subpatterns 0 and x.

Definition 27 (Acceptable/linear metasubstitution/substitution). Let
S be a set of term metavariables (resp. usual variables). A metasubstitution
(resp. substitution) θ̂ is said to be acceptable (resp. linear) w.r.t. S iff for
every metavariable x̂ ∈ S we have that θ̂(x̂) is an acceptable term (resp. a linear
term). A metasubstitution (resp. substitution) θ̂ is said to be acceptable (resp.
linear) if it is acceptable (resp. linear) w.r.t. Dom(θ̂).

Lemma 3. Let t be an acceptable term and p be a pattern. Then any substitution
σ ∈ {{p by t}} is acceptable.

It is time to make the point w.r.t. capture of variables in higher-order rewriting.
In CRS [67, 69] for example, a metaterm like λx.M(x) allows the (eventual)

capture of the variable x while λx.M does not. In this formalism the β-rule has
to be written as app(λx.M(x), N) −→ M(N) which does not correspond to the
traditional way to express the β-rule.

In ERS [52] there is a metasubstitution operator which allows the β-rule to
be expressed in a more traditional way as app(λx.M,N) −→ (N/x)M . The
instantiation of the metavariable M may or may not capture the variable x.
However, we cannot assume α-conversion on metaterms in this formalism: if we
suppose λx.M =α λy.M , then the instantiation of M by x will give two non
α-equivalent terms λx.x �=α λy.x.

To allow α-conversion on the level of terms but not on that of metaterms,
instantiation of metaterms must be done very carefully: metasubstitution will
be first-order replacement allowing capture of variables and substitution will be
higher-order substitution dealing with α-conversion on terms.

Definition 28 (Applying a substitution). The application of a substitu-
tion θ to preterm t (or instantiation of t by θ) yields a set of terms, written
θ(t), which is computed as a higher-order substitution (modulo α-conversion) as
follows:

t ∈ θ(x) if ({x � t}) ∈ θ
x ∈ θ(x) if x /∈ Dom(θ)
μp.t′ ∈ θ(μp.t) if t′ ∈ θ(t) and no capture of variables occurs
f(t′1, . . . , t

′
n) ∈ θ(f(t1, . . . , tn)) if t′i ∈ θ(ti)

t′i ∈ θ(a〈t1, . . . , tn〉) if θa = i and t′i ∈ θ(ti)
a〈t′1, . . . , t′n〉 ∈ θ(a〈t1, . . . , tn〉) if t′i ∈ θ(ti) and a /∈ Dom(θ)
t′ ∈ θ(t{p by u}) if u′ ∈ θ(u), θ′ ∈ {{p by u′}},

t′ ∈ (θ′ � θ)(t)
and no capture of variables occurs
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Definition 29 (Applying a metasubstitution). The application of a re-
placement theta to a metaterm t (or instantiation of t by theta) yields a set
of terms, written theta(t), given by:

x ∈ theta(x)
t ∈ theta(M) if (M � t) ∈ theta
μtheta(p).t′ ∈ theta(μp.t) if t′ ∈ theta(t)
f(t′1, . . . , t

′
n) ∈ theta(f(t1, . . . , tn)) if t′i ∈ theta(ti)

a〈t′1, . . . , t′n〉 ∈ theta(a〈t1, . . . , tn〉) if t′i ∈ theta(ti)
t′ ∈ theta(t{p by u}) if u′ ∈ theta(u), θ′ ∈ {{theta(p) by u′}},

t′ ∈ θ′(theta(t))

We remark that if a metaterm t has no pattern-matching constructor, then
theta(t) is at most a singleton.

Let us see how the application of a metasubstitution works on an example.
Consider theta = {X/a〈x, f(z, y)〉,M/a〈g(x, x), z〉, N/f(x′, x′)} and let us com-
pute theta(M{X by N}). We first compute the set theta(N) = {f(x′, x′)}, then
the set

{{theta(X) by theta(N)}} = {{a〈x, f(z, y)〉 by f(x′, x′)}} = {ρ1, ρ2}

where ρ1 = {a � 1, x � f(x′, x′)} and ρ2 = {a � 2, z � x′, y � x′}. Finally,
we conclude with ρ1(theta(M)) = ρ1(a〈g(x, x), z〉) = g(f(x′, x′), f(x′, x′)) and
ρ2(a〈g(x, x), z〉) = x′ so that theta(M{X by N}) = {g(f(x′, x′), f(x′, x′)), x′}.

In order to see how α-conversion takes part in the substitution procedure
let us take another example given by theta = {X/x,Y/y,M/y,N/x}. Let t =
(μX.M){Y by N} and t′ = μX.M{Y by N}. We have theta(t) = {(μx.y){y �
x}} = {μz.x} and theta(t′) = {μx.y{y � x}} = {μx.x}.

Lemma 4. Let t be an acceptable preterm and let θ be an acceptable substitution
w.r.t. FV(t). Then, the set θ(t) has only acceptable terms.

6.2 Rewrite Rules and Reduction Relation

This section introduces the precise syntax used to specify rewrite rules in the
ERSP formalism as well as the reduction relation associated to them.

Definition 30. An Expression Reduction System with Patterns
(ERSP) is a set of rewrite rules of the form l −→ r (written also (l, r))
such that:

– l and r are well-formed metaterms,
– l contains no occurrence of the pattern-matching constructor and the head

symbol of l is a function symbol or a binder symbol,
– MV(r) ⊆MV(l),
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Thus for example, the rule app(λX.M,N) −→ M{X by N} given in the in-
troduction, which generalises the classical β-rule to the case of patterns, belongs
to our framework.

In order to be able to guarantee that no free variable is “generated” during
reduction the following notion will be necessary.

Definition 31 (Path condition). Let M be a term metavariable in a
metaterm t. We consider all the occurrences p1, . . . , pn of M in t and their
corresponding parameter paths l1, . . . , ln. A metasubstitution theta is said to
have the path condition property for M in t iff:

∀x̂ ∈ FV(theta(M)), (∀1 ≤ i ≤ n, x̂ ∈ theta(li)) ∨ (∀1 ≤ i ≤ n, x̂ /∈ theta(li))

where the notation theta(l) denotes the set
⋃

x∈l FV(theta(x̂)).
This notion is extended to rewrite rules by saying that theta has the path

condition for M in (l, r) iff it has the path condition for M in 2→ (l, r), where
2→ is a fresh binary function symbol. This trick is used to consider a rule as a
unique “tree”.

The classical example where the path condition is not satisfied for a rewrite
rule is given by the η-rule of the λ-calculus (see for example [52, 15]). Another
rule in the same spirit but using patterns is λf(X).M −→ M . The replacement
theta = {X � x,M � x} does not satisfy the path condition for M in this rule.

We now define the set of “good” replacements to instantiate rewrite rules.
For that we remark that given a rewrite rule l −→ r, the metaterm l does not
contain the pattern-matching constructor, so that for any replacement theta
the term theta(l) is a singleton.

Definition 32 (Admissible replacement for metaterms/rules). A re-
placement theta is admissible for a metaterm t iff

– theta(t) contains only acceptable terms
– theta has the path condition for every term metavariable in t.

A replacement theta is admissible for a rule (l, r) iff theta is admissible for
2→ (l, r), where 2→ is a fresh binary function symbol.

We remark that this definition implies that given a rule (l, r) both theta(l)
and theta(r) are defined, so in particular all the pattern/term metavariables in
l are also in Dom(theta).

Definition 33 (Admissible reduction relation). Let R be a ERSP. We say
that s rewrites to t, written s −→R t (or s a−→R t when the distinction must
be made), iff there exists a rule (l, r) ∈ R, an admissible replacement theta
for (l, r) and a context C such that s = C[theta(l)] and t ∈ C[theta(r)]. This
notion can also be defined by induction by the following sentences:

(l, r) ∈ R
theta(l) −→R t

t ∈ theta(r)
t −→R u

C[t] −→R C[u]
C is a context
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Even if the relation −→R is defined on any kind of term, the reduction can
only take place on acceptable subterms.

As expected, the relation reduction enjoys good preservation properties.

Lemma 5 (Preservation of free variables and acceptable terms). Let us
consider the reduction step s −→R t. Then

– ∀a, ∀i,FVi
a(t) ⊆ FVi

a(s).
– FV(t) ⊆ FV(s).
– If s is an acceptable term, then t is also acceptable.

6.3 A Subclass of Confluent ERSP

This section is devoted to the study of confluence for a certain class of ERSP
which are called the orthogonal l-constructor ERSP, and a certain class of terms,
which are called l-constructor deterministic terms. Intuitively, an orthogonal
ERSP is left-linear and not overlapping. Sufficiency of orthogonality for conflu-
ence in first and higher-order rewrite systems is well-known [4]. An l-constructor
ERSP is a system R where the set of function symbols is partitioned into two
different subsets, namely, the set of constructors, which cannot be reduced, and
the set of defined symbols, which cannot be matched. As an example, let us
consider the following system which is not an l-constructor ERSP.

R :
{

f −→ g
app(μf.h,M) −→ h{f byM}

The term app(μf.h, f) can be reduced to both app(μf.h, g) and h which are
not joinable since the substitution {{f by g}} is not defined. Thus, R turns out
to be non confluent.

Unfortunately, orthogonal l-constructor ERSP do not immediately guarantee
confluence as the rule βPM : app(λX.M,N) −→ M{X by N} shows: the term
t = app(λa〈x, y〉.a〈0, 1〉, 3) has two non-joinable reducts 0 and 1 by this unique
rule. The reason is that t contains two “overlapping” patterns x and y inside the
choice pattern a〈x, y〉. The failure of the confluence property in this case is com-
pletely natural since the term t corresponds, informally, to a “non-orthogonal”
first-order rewriting system. It is then clear that we have to get rid of this class
of terms in order to get a confluence result, this will be done by introducing the
notion of l-constructor deterministic terms.

We are now ready to give a formal definition of all these notions.

Definition 34 (L-constructor system). A system R is l-constructor iff

– The set F of function symbols can be partitioned into two sets Fc and Fd,
called respectively constructors and defined symbols, such that:
• Each defined symbol is the head of some left-hand side of R.
• All the function symbols in metapatterns of R are constructors and no

constructor is the head of some left-hand side of R.
– For every rule (l, r) ∈ R, both l and r are pattern-linear metaterms.



Expression Reduction Systems and Extensions: An Overview 527

The system R1 = {βPM} ∪ {0 + N −→ N, s(M) + N −→ s(M + N)}
is l-constructor. The system R2 = {μf(X).M −→ M, f(0) −→ 0} is not l-
constructor since the function symbol f appears as the head symbol of some
rule and inside a metapattern of R. The system R3 = {μf(X,X).0 −→ 0} is
not l-constructor since μf(X,X).0 is not pattern-linear.

Definition 35 (L-constructor metapattern and metaterms). Given an l-
constructor system R, we say that a metapattern is l-constructor iff it is linear
and all its function symbols are constructors of R. A l-constructor metaterm
contains only l-constructor metapatterns.

As an example concerning our previous system R1, we can observe that the
metapattern s(X) is l-constructor but X + Y is not since the symbol + is not a
constructor function symbol.

Even if Definition 34 depends on a given l-constructor system R we will make
an abuse of notation by just writing l-constructor metapattern/metaterm instead
of R l-constructor metapattern/metaterm.

One could be tempted to define l-constructor metasubstitutions to be those
having only l-constructor patterns and terms in their image. However, an l-
constructor metasubstitution sigma applied to an l-constructor metaterm t does
not always gives an l-constructor term: indeed, sigma = {X � x} and t =
μf(x,X).b are l-constructor but sigma(t) = μf(x, x).b is not.

We thus define l-constructor metasubstitutions as follows:

Definition 36 (L-constructor metasubstitutions). Let sigma be a meta-
substitution. We say that sigma is l-constructor w.r.t. a metaterm t iff
sigma(t) is l-constructor. A metasubstitution sigma is said to be l-constructor
w.r.t. a rule l −→ r iff it is l-constructor w.r.t. the metaterm 2→ (l, r) where 2→
is a fresh function symbol.

Thus, considering the system R1 presented above, the metasubstitution
sigma = {X � 0 + 0,M � 0, N � 0} is not l-constructor for the lhs of the βPM

rule but the metasubstitution theta = {X � a〈0, s(x)〉,M � a〈0, x〉, N � 3 + 4}
is l-constructor for the βPM -rule.

Definition 37 (L-constructor reduction relation). If R is an l-constructor
system, we say that s (l-)constructor rewrites to t (written s c−→R t) iff there
exists a rewrite rule (l, r) ∈ R, an l-constructor and admissible metasubstitution
theta for (l, r) and a context C such that s = C[theta(l)] and t ∈ C[theta(r)].

As an example, given the previous system R1, we have 0 + 0 c−→R1 0 but we
do not have t = app(λ(0 + 0).3, 0 + 0) c−→R1 3 (even if we have t a−→R1 3) since
the term t is not an l-constructor term.

Using Definition 37, it is easy to show by induction on the definition of c−→R
the following property:

Lemma 6 (Preservation of l-constructor terms). If R is l-constructor, s
is l-constructor and s c−→R t, then t is l-constructor.
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We now introduce l-constructor deterministic terms for which the class
of orthogonal l-constructor ERSP will be confluent. Let us start by the following
notion.

Definition 38 (Overlapping patterns). Two patterns p and q are said to
be overlapping iff there exists a term t s.t. both {{p by t}} and {{q by t}} are
defined.

The patterns f( , x) and f(y, g(0)) are overlapping. Also a〈0, s(x)〉 and
b〈s(0), s(s( ))〉 are overlapping.

Definition 39 (Deterministic patterns/preterms). The set of determin-
istic patterns is defined to be the smallest subset of linear patterns containing
wildcard and variables, closed by algebraic and layered patterns, and such that
if p1, . . . , pn are deterministic and for all i �= j the patterns pi and pj are not
overlapping, then a〈p1, . . . , pn〉 is deterministic. An acceptable preterm t is said
to be a deterministic preterm iff for every pattern p appearing in t, p is
deterministic.

Thus for example, b〈s(0), s(s( ))〉 is deterministic but b〈s(0), s( )〉 is not.
We remark that if a term t is deterministic then any subterm of t is also deter-
ministic.

The definition of deterministic pattern implies that whenever p is a determin-
istic pattern, then there exists at most one substitution θ belonging to {{p by t}}.

When p is deterministic and {{p by t}} is defined, we will identify {{p by t}}
with its single element.

Definition 40 (Deterministic metasubstitution for metaterms/rules).
A metasubstitution theta is said to be deterministic for a metaterm t iff

– theta is admissible for t,
– theta(t) is a deterministic term,

Finally, theta is deterministic for a rule (l, r) iff theta is deterministic for
the metaterm 2→ (l, r), where 2→ is a fresh function symbol.

Definition 41 (Deterministic reduction relation). Given a system R, we
say that s deterministically rewrites to t (written s d−→R t) iff there exists a
rewrite rule (l, r) ∈ R, a deterministic metasubstitution theta for (l, r) and a
context C such that s = C[theta(l)] and t = C[theta(r)].

From now on we use the notation
c,d−→R to denote c−→R ∩ d−→R .

As expected, orthogonal systems allow us to preserve deterministic terms.

Definition 42 (Left linear systems). A rewrite rule l −→ r is said to be
left linear iff l contains at most one occurrence of any term metavariable. A
system is left linear if all its rule are left linear.
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As an example, the rule f(M,M) −→ 3 is not left linear while f(M) −→
g(M,M) and μx.f(x, x) −→ 0 are.

Definition 43 (Redexes and overlapping redexes). Given an ERSP R and

a relation �∈ { a−→ ,
c−→ ,

d−→ ,
c,d−→ }, a term t is said to be a redex for � if

t = theta(l) for some rule (l, r) ∈ R and some theta satisfying the conditions
for �.

A rewrite system is said to be non-overlapping for � iff

– Whenever a redex theta(lj) for � contains (not necessarily properly) an-
other redex rho(li) for � (i �= j), then rho(li) must be contained in
theta(M) for some term metavariable M of lj.

– Likewise whenever a redex theta(l) for � properly contains another redex
rho(l) for � of the same rule.

From now on, we will make an abuse of notation by simply saying that a term
is a redex when the considered reduction relation � is clear from the context.

Definition 44 (Orthogonal systems). A rewrite system R is said to be or-

thogonal (w.r.t.�∈ { a−→ ,
c−→ ,

d−→ ,
c,d−→ }) iff R is left-linear and non-

overlapping (w.r.t. �).

As an example, the system {f(μx.x) −→ 0, μX.y −→ 1} is overlapping
whatever � should be: the redex f(μy.y) = theta(f(μx.x)) contains the redex
μy.y = rho(μX.y). The system {f(μX.M) −→ 0, λZ.N −→ g(2)} is orthogonal
whatever � should be.

Lemma 7 (Preservation of deterministic terms). Given a system R, if s
is deterministic and s d−→R t, then t is deterministic.

Theorem 10 (Confluence). Let R be an l-constructor ERSP which is orthog-

onal w.r.t.
c,d−→R . Then the relation

c,d−→R is confluent.

7 SERS as Particular ERSP

Simplified Expression Reduction Systems (SERS) were introduced by E. Bonelli,
D. Kesner and A. Rı́os in [15] as an appropriate simplification of ERS: binders are
restricted to those binding only one (usual) variable and substitution is restricted
to simple substitution (in contrast to simultaneous or parallel substitution).

We discuss here how SERS can be seen as particular ERSP. In the SERS
formalism only normal variables are (meta)patterns so that SERS (meta)terms
can be generated by the grammar:

t ::= x usual variable
| M term metavariable
| f(t, . . . , t) algebraic
| μx.t abstraction
| t{x by t} meta substitution
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We define the ordered parameter path of a context as the list containing all
the variables occurring in the parameter path from the hole � to the root of the
context. For example, the parameter path of the context f(λx.(z, ξy.(h(y,�))))
is the sequence yx.

Every SERS metaterm without free variables turns out to be linear, well-
formed and acceptable. An SERS metasubstitution is a denumerable set of pairs
of the form M � t, where M is a term metavariable and t is a term, while an
SERS substitution is a denumerable set of pairs of the form x � t.

The application of a substitution θ to a preterm t (without term metavari-
ables), written θ(t), can be expressed as follows:

θ(x) = θx if (x � t) ∈ θ
θ(x) = x if x /∈ Dom(θ)
θ(μx.t) = μx.θ(t) if no capture of variables occurs
θ(t{x by u}) = {x � θ(u)}θ(t) if no capture of variables occurs
θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn))

The application of a metasubstitution theta to a preterm t, written theta(t),
is defined by:

theta(x) = x
theta(M) = t if (M � t) ∈ theta
theta(μx.t) = μx.theta(t)
theta(t{x by u}) = {x � theta(u)}theta(t)
theta(f(t1, . . . , tn)) = f(theta(t1), . . . , theta(tn))

Example 2. The λx-calculus [11, 91] is defined by considering the signature con-
taining the function symbols F = {app, subs} and binder symbols B = {λ, σ},
together with the following SERS -rewrite rules:

app(λx.M)N −→Beta subs(σx.M,N)
subs(σx.(app(M)N), L) −→App app(subs(σx.M,L))subs(σx.N,L)
subs(σx.λy.(M), L) −→Lam λy.(subs(σx.M,L))
subs(σx.x, L) −→Var L
subs(σx.M,L) −→rGc M

8 Simplified Expression Reduction Systems with Indices

This section gives an overview of the higher-order rewriting formalism SERSdB ,
based on de Bruijn indices, which was introduced in [15] by E. Bonelli, D. Kesner
and A. Rı́os. A journal version with full proofs and details will appear as [13].

In order to distinguish a concept defined for the SERS formalism from its
corresponding version (if it exists) in the SERSdB formalism we may prefix it
using the qualifying term “de Bruijn”, e.g.. “de Bruijn metaterms”.

In what follows label means a finite sequence of symbols and simple label a
label without repeated symbols. The notation at(l, i) is used to distinguish the
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i-th element of l when it exists and pos(x, l) the position of the first occurrence
of the element x in the label l if it exists.

We consider a set of binder indicators denoted x, y, z, a set of t-metavariables
(t for term), denoted Ml, Nl, Ll, . . ., where l ranges over the set of labels built
over binder indicators, a set of function symbols equipped with a fixed (possibly
zero) arity, denoted f, g, h, . . ., a set of binder symbols equipped with a fixed (non-
zero) arity, denoted λ, μ, ν, ξ, . . .. We assume all these sets to be denumerable and
disjoint.

Definition 45 (de Bruijn metaterms). The set of de Bruijn metaterms,
denoted PMTdB , is defined by the following two-sorted grammar:

metaindices I ::= 1 | S(I)
pre-metaterms A ::= I |Ml | f(A, . . . , A) | ξ(A, . . . , A) | A[A]

The operator •[•] in a metaterm A[A] is called the de Bruijn metasubsti-
tution operator. The binder symbols together with the de Bruijn metasubstitu-
tion operator are called binder operators. Thus the de Bruijn metasubstitution
operator is a binder operator (since it has binding power) but is not a binder
symbol.

The set of metavariables of A is written MV(A). The set of names of free
metavariables of A is the set MV(A) where each Ml is replaced simply by M .
We also write, by abuse of notation, MV(A) to denote such a set of names. For
example, MV(f(λMx, Nε)) = {M,N}.

The set of de Bruijn terms (metaterms without metavariables) is denoted by
TdB . We reserve the name (meta)context for (meta)terms with a hole �.

We use A,B,Ai, . . . to denote de Bruijn metaterms, a, b, ai, bi, . . . for de Bruijn
terms and E,F, . . . for de Bruijn contexts. We use the convention that S0(1) = 1
and Sj+1(n) = S(Sj(n)). As is usual for indices, we shall abbreviate Sj−1(1) as j
or j. In particular, the notation j emphasises the fact that j could be represented
by an alternative implementation.

As in the SERS formalism, we also need here a notion of well-formed
metaterm. The first motivation is to guarantee that labels of t-metavariables
are correct w.r.t. the context in which they appear, the second one is to en-
sure that indices like j correspond to bound variables. Indeed, the metaterms
ξ(Mxy), ξ(ξ(4)) shall not make sense for us, and hence shall not be considered
well-formed.

Definition 46 (Well-formed de Bruijn metaterms). A metaterm A ∈
PMTdB is said to be well-formed iff the predicate WF (A) holds, where WF (A)
iff WFε(A), and WF l(A) is defined for any label l as follows:

– WF l(Sj(1)) iff j + 1 ≤ |l|
– WF l(Mk) iff l = k and l is a simple label
– WF l(f(A1, . . . , An)) iff for all 1 ≤ i ≤ n we have WF l(Ai)
– WF l(ξ(A1, . . . , An)) iff there exists x /∈ l such that for all 1 ≤ i ≤ n we have
WFxl(Ai)

– WF l(A1[A2]) iff WF l(A2) and there exists x /∈ l such that WFxl(A1)
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Therefore if WFk(A), then any metavariable occurring in A must be of the
form Mlk for some label l (moreover, lk is a simple label).

Example 3. Metaterms ξ(Mx, λ(Nyx, 2)) and g(λ(ξc)) are well-formed, whereas
the metaterms λ(ξ(Mxx)), λ(f(Mx, Ny)) are not.

We may refer to the binder path number of a context, which is the number of
binders between the � and the root.

Remark that de Bruijn terms are also de Bruijn metaterms, that is, TdB ⊂
PMTdB , although some de Bruijn terms may not be well-formed de Bruijn
metaterms. Indeed, the term ξ(ξ(4)) is not a well-formed metaterm: if an
arbitrary free variable is wished to be represented in a metaterm, then i-
metavariables should be used.

Definition 47 (Free de Bruijn indices). The set of free indices of a de
Bruijn term a, written FI(a), is defined as follows:

FI(n) =def {n}
FI(f(a1, . . . , an)) =def

⋃n
i=1 FI(ai)

FI(ξ(a1, . . . , an)) =def (
⋃n

i=1 FI(ai))\\1

where for every set of indices S, the operation S\\j is defined as {n − j | n ∈
S and n > j}.

When encoding SERSdB systems as SERS systems we shall need to speak of
the free variable names associated with the free de Bruijn indices. For example,
if a = ξ(1, 2, 3), then FI(a) = {1, 2}. The named variable we will associate with
the free index 1 (resp. 2) is x1 (resp. x2).

Definition 48 (de Bruijn substitution and de Bruijn updating func-
tion). The result of substituting a term b for the index n ≥ 1 in a term a is
denoted a{{n← b}} and defined as:

f(a1, . . . , an){{n← b}} =def f(a1{{n← b}}, . . . , an{{n← b}})
ξ(a1, . . . , an){{n← b}} =def ξ(a1{{n+ 1 ← b}}, . . . , an{{n+ 1 ← b}})

m{{n← b}} =def

⎧⎨⎩m− 1 if m > n
Un

0 (b) if m = n
m if m < n

where for i ≥ 0 and n ≥ 1 we define the updating functions Un
i (•) as

follows:
Un

i (f(a1, . . . , an)) =def f(Un
i (a1), . . . ,Un

i (an))
Un

i (ξ(a1, . . . , an)) =def ξ(Un
i+1(a1), . . . ,Un

i+1(an))

Un
i (m) =def

{
m+ n− 1 if m > i
m if m ≤ i
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We now consider the rewrite rules of a SERSdB . This includes defining val-
uations, their validity, and the term rewrite relation in SERSdB . Rewrite rules
are specified with de Bruijn metaterms, whereas the induced rewrite relation is
on de Bruijn terms.

Definition 49 (SERSdB). A de Bruijn rewrite rule or SERSdB-rewrite
rule is a pair of de Bruijn metaterms (L,R) (also written L −→ R) such that
the metasubstitution operator does not occur in L, the head symbol of L is a
function symbol or a binder symbol, and MV(R) ⊆ MV(L). We shall use r to
denote rewrite rules.

Hence, we define a SERSdB to be a pair (Σ,R) where Σ is a SERSdB -
signature and R is a set of SERSdB -rewrite rules over Σ.

As in the case of SERS , we shall often omit Σ and write R instead of (Σ,R),
if no confusion arises.

Example 4. The λdB -calculus is defined by considering the signature containing
the function symbols {app} and binder symbols {λ}, together with the SERSdB -
rewrite rule: app(λMx)Nε −→βdB Mx[Nε]. The λdBηdB -calculus is obtained by
adding the following SERSdB-rewrite rule: λ(app(Mx, 1)) −→ηdB Mε.

Definition 50 (de Bruijn valuation). A de Bruijn valuation κ is a (par-
tial) function from t-metavariables to de Bruijn terms which defines a unique
function κ from metaterms to terms as follows:

κ(I) =def I
κ(Ml) =def κM
κ(f(A1, . . . , An)) =def f(κ(A1), . . . , κ(An))
κ(ξ(A1, . . . , An)) =def ξ(κ(A1), . . . , κ(An))
κ(A1[A2]) =def κ(A1){{1 ← κ(A2)}}

De Bruijn t-metavariables having the same name but different label cannot be
instantiated arbitrarily as they have to reflect the renaming of variables which is
indicated by their labels. Indeed, the goal pursued by the labels of metavariables
is that of incorporating “context” information as a defining part of a metavari-
able. As a consequence, we must verify that the terms substituted for every
occurrence of a fixed metavariable coincide “modulo” their corresponding con-
text. Dealing with such notion of “coherence” of substitutions in a de Bruijn
formalism is also present in other formalisms but in a more restricted form.
Thus for example, as mentioned before, a pre-cooking function is used in [30] in
order to avoid variable capture in the higher-order unification procedure. Our
notion of “coherence” is implemented with valid valuations.

Definition 51 (Value function). Let a ∈ TdB and l be a label of binder indi-
cators. We define the value function Value(l, a) as Value0(l, a) where:

Valuei(l, n) =def

⎧⎨⎩n if n ≤ i
at(l, n− i) if 0 < n− i ≤ |l|
xn−i−|l| if n− i > |l|

Valuei(l, f(a1, . . . , an)) =def f(Valuei(l, a1), . . .Valuei(l, an))
Valuei(l, ξ(a1, . . . , an)) =def ξ(Valuei+1(l, a1), . . . ,Valuei+1(l, an))
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The function Value(l, a) interprets the de Bruijn term a in an l-context: bound
indices are left untouched, free indices referring to the l-context are replaced by
the corresponding binder indicator and the remaining free indices are replaced
by their corresponding variable names. It might be observed that if repeated
binder indicators are allowed in the label l of Definition 51, then this intuition
would not seem to hold. Indeed, for our purposes the case of interest is when
the label l is simple. Nevertheless, many auxiliary results may be proved with-
out this requirement, thus we prefer not to restrict this definition prematurely
(by requiring l to be simple). Finally, note also that Valuei(l, n) may return
three different kinds of results. This is just a technical resource to make easier
later proofs. Indeed, we have for example Value (xy, ξ(f(3, 1))) = ξ(f(y, 1)) =
Value (yx, ξ(f(2, 1))) and Value (ε, f(ξ1, λ2)) �= Value (x, f(ξ1, λ2)).

Definition 52 (Valid de Bruijn valuation). A de Bruijn valuation κ is valid
for a rewrite rule r if every metavariable in r is in Dom(κ) and for every
pair of t-metavariables Xl and Xl′ in r we have Value(l, κXl) = Value(l′, κXl′).

It is interesting to note that there is no concept analogous to safeness as used
for named SERS due to the use of de Bruijn indices.

Example 5. In the above example we have that κ = {Xyx/2, Xxy/1} is valid for
the rule rdB since Value(yx, 2) = x = Value(xy, 1).

Another interesting example is the η-contraction rule λx.app(M,x) −→ M
if x �∈ FV(M) which can be expressed in the SERS formalism, without condi-

tions, as the rule λx.app(M,x) −→η M . In the SERSdB formalism it may be
expressed as the rule λ(app(Mx, 1)) −→ηdB Mε.

Note that a valid valuation κ for ηdB could, for example, be a valuation
κ = {Mx/m,Mε/n} such that Value(x, κMx) = Value(ε, κMε), that is, m = 1 is
not possible, and n is necessarily m− 1.

To summarise, valid valuations guarantee that the unique value assigned to a
t-metavariable M in the framework with names is translated accordingly in the
de Bruijn framework w.r.t. the different parameter paths of all the occurrences
of M in the rewrite rule. This is, in some sense, an updating of M w.r.t. the
different parameter paths where it appears, and it gives us the right notion of
coherence for valuations.

Definition 53 (Rewriting de Bruijn terms). Let R be a set of de Bruijn
rules and a, b de Bruijn terms. We say that a R-rewrites or R-reduces to
b, written a −→R b, iff there is a de Bruijn rule (L,R) ∈ R and a de Bruijn
valuation κ valid for (L,R) such that a = E[κL] and b = E[κR], where E is a
de Bruijn context.

Thus, the term λ(app(λ(app(1, 3)), 1)) rewrites by the ηdB rule to λ(app(1, 2)),
using the (valid) valuation κ = {Mx/λ(app(1, 3),Mε/λ(app(1, 2))}.

As expected, the rewrite relation on de Bruijn terms preserves free de Bruijn
indices.
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8.1 From Names to Indices

In this section we show how rewriting in the SERS formalism may be simulated
in the SERSdB formalism. This requires two well-distinguished phases which we
can refer to as the definition phase and the rewrite-preservation phase. The def-
inition phase consists in defining appropriate translations from pre-metaterms,
terms and valuations in the SERS setting into the corresponding notions in
the SERSdB setting, work which is carried out in the first part of this section.
The second part deals with the rewrite-preservation phase, that is, showing how
SERS rewrite steps can be simulated via SERSdB rewrite steps.

Definition 54 (From metaterms to de Bruijn metaterms). A metaterm
M is translated as T (M), where T (M) = Tε(M) and Tk(M) is defined by

Tk(x) =def

{
pos(x, k) if x ∈ k
O(x) + |k| if x /∈ k

Tk(M) =def Mk

Tk(f(M1, . . . ,Mn)) =def f(Tk(M1), . . . , Tk(Mn))
Tk(ξx.(M1, . . . ,Mn)) =def ξ(Txk(M1), . . . , Txk(Mn))
Tk(M1[x←M2]) =def Txk(M1)[Tk(M2)]

The translation of a (meta)context, denoted T (C), is defined as above but
adding the clause Tk(�) =def �.

Note that if M is a well-formed metaterm, then T (M) will be defined and will
only have t-metavariables with simple labels. Moreover, if M is a well-formed
metaterm then T (M) is a well-formed de Bruijn metaterm 3.

This translation is of course compatible with α-conversion in the sense that
s =α t implies Tk(s) = Tk(t) for any label of variables k.

Example 6. Let M ′ = ξx.(M,λy.(Y, x)) and M ′′ = g(λx.(ξy.c)). Then their
respective translations are A′ = ξ(Mx, λ(Yyx, S(1))) and A′′ = g(λ(ξc)), which
are metaterms as remarked in Example 3.

Now, given a rewrite rule (G,D) in the SERS formalism, its translation in
SERSdB is given by T (G,D) = (T (G), T (D)). As a consequence, if (G,D) is an
SERS rewrite rule, then T (G,D) is an SERSdB rewrite rule.

Example 7 (λx continued). Following Example 2, the specification of λx in the
SERSdB formalism is given below.

app(λMx, Nε) −→ subs(σMx, Nε)
subs(σ(app(Mx, Nx)), Lε) −→ app(subs(σMx, Lε))subs(σNx, Lε)
subs(σ(λ(Myx)), Lε) −→ λ(subs(σ(Mxy), Ly))
subs(σ(1), Lε) −→ Lε

subs(σ(Mx), Lε) −→ Mε

3 This can be proved by showing a more general property, namely, for every pre-
metaterm M , if WF l(M), then WF l(Tl(M)).
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The rule subs(σ(λMyx), Lε) −→ λ(subs(σMxy, Ly)) is interesting since it
illustrates the use of binder commutation from Myx to Mxy and shows that
some index adjustment is necessary when going from Lε to Ly.

Suppose some rewrite rule (L,R) is used to rewrite a term s. Then s =α

C[θ(L)] for some context C and admissible valuation θ. When encoding this
rewrite step in the SERSdB setting we have to encode not only terms and
metaterms, but also the valuation θ. In particular, we need to know what the
names of the variables of the binders above the � of the context C[ ] are. This
is the rôle of the label k in the following definition.
Definition 55 (From valuations to de Bruijn valuations). Let θ be a val-
uation and k be a label of variables. Then the translation of θ w.r.t. the label k
(referred to as the context label) is defined as the de Bruijn valuation:

Tk(θ)(Xl) =def Tlk(θ(X)) where X ∈ Dom(θ)

We now arrive to the rewrite-preservation phase, that is, rewriting in the
formalism with de Bruijn indices has the same semantics as the corresponding
one with names. For that, we essentially need two compositionality properties:
compositionality w.r.t. contexts which is given by Tk(C[t]) = Tk(C)[Tlk(t)], and
compositionality w.r.t. valuations which is given by Tlk(θM) = Tk(θ)(Tl(M)).
We refer the reader to [15] to full details and proofs about these properties.

Using compositionality we can finally conclude this section by stating the
rewrite-preservation property:

Proposition 1 (Simulating SERS-rewriting via SERSdB-rewriting). Sup-
pose s −→ t in the SERS formalism using the rewrite rule (G,D). Then
T (s) −→ T (t) in the SERSdB formalism using the de Bruijn rewrite rule
T (G,D).

8.2 From Indices to Names

In this section we show that SERS are operationally equivalent to SERSdB . For
that, we show how the notion of rewriting in the SERSdB formalism may be
simulated in the SERS . As in Section 8.1 we shall develop the required results
by distinguishing the definition phase and the rewrite-preservation phase.
Definition 56 (From de Bruijn (meta)terms to (meta)terms). The
translation of a ∈ TdB , denoted U(a), is defined as UN

ε (a) where, N is the set
of names associated to the free indices of a and for every finite set of variables
S, and every label of variables k, US

k (a) is defined as follows:

US
l (n) =def

{
at(l, n) if n ≤ |l|
xn−|l| if n > |l| and xn−|l| ∈ S

US
l (Xl) =def X
US

l (f(A1, . . . , An)) =def f(US
l (A1), . . . , US

l (An))
US

l (ξ(A1, . . . , An)) =def ξx.(US
xl(A1), . . . , US

αl(An)),
if 1 ≤ i ≤ nWFxl(Ai) for some x /∈ (l ∪ S)

US
l (A1[A2]) =def U

S
xl(A1)[x← US

l (A2)],
if WFxl(A1) for some x /∈ (l ∪ S)
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The translation of a de Bruijn context E, denoted U(E), is defined as above
but adding the clause US

k (�) =def �.

Note that U(•) is not a function in the sense that the choice of bound variables
is non-deterministic.

Now, given a de Bruijn rewrite rule (L,R) in the SERSdB formalism, its
translation in SERS is given by U (L,R) = (U(L), U(R)).

Note that if A is such that WF l(A) holds then its translation U∅
l (A) is also a

named metaterm, that is, WF l(U∅
l (A)) also holds. Therefore, by definition, the

translation of a de Bruijn rewrite rule is a rewrite rule in the SERS formalism.

Example 8. Consider the rule app(ΔMx, Nε) −→ Δ(Mxy[λ(app(2, app(1,
Nzy)))]). The rule obtained by the translation introduced before is

app(Δx.M,N) −→ Δy.(M [x← λz.(app(y, app(z,N)))])

Definition 57 (From de Bruijn valuations to valuations). Given a finite
set of variables S and a label of variables k, we define the translation of κ as the
valuation U(S,k)(κ), where U(S,k)(κ)(M) =def U

S
lk(κMl) for any Ml ∈ Dom(κ)

such that l ∩ (S ∪ k) = ∅.

Now, if κ is a valid de Bruijn valuation then this definition is correct, that is,
the definition does not depend on the choice of the t-metavariableMl inDom(κ).

We now arrive to the rewrite-preservation phase, that is, rewriting in the for-
malism with names has the same semantics as the corresponding one with de
Bruijn indices. As before, we need some compositionality properties: composi-
tionality w.r.t. de Bruijn contexts which is given by US

k (E[a]) =α U
S
k (E)[US

lk(a)],
and compositionality w.r.t. valuations which is given by the equationUS

lk(κA) =α

U(S,k)(κ)US
l (A). We again refer the reader to [15] for full details and proofs of

these properties.
Using compositionality we can now state that the SERS formalism preserves

SERSdB -rewriting.

Proposition 2 (Simulating SERSdB-rewriting via SERS-rewriting). As-
sume a −→ b in the SERSdB formalism using rewrite rule (L,R). Then
U(a) −→ U(b) in the SERS formalism using rule U(L,R).

8.3 Preserving Properties

Sections 8.1 and 8.2 state that rewriting is preserved when going from names
to indices and from indices to names. But the relationship between the SERS
and SERSdB formalisms is even more deep because it gives rise to two results
stating, respectively, that given a metaterm M then U(T (M)) is equal (modulo
some appropriate equivalence notion) toM , and that given a de Bruijn metaterm
A then T (U(A)) is identical to A. These results are used to show that properties
such as confluence, local confluence, the diamond property and strong and weak
normalisation are preserved when translating an SERS rewrite system into a
SERSdB rewrite system and vice versa.
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Theorem 11 (Preservation of Confluence).

– If the SERS R has the confluence (resp. local confluence or diamond) prop-
erty, then the SERSdB T (R) has the confluence (resp. local confluence or
diamond) property.

– If the SERSdB R has the confluence (resp. local confluence or diamond)
property, then the SERS U(R) has the confluence (resp. local confluence or
diamond) property.

Theorem 12 (Preservation of Normalisation).

1. If R is a weakly (resp. strongly) normalizing SERS, then T (R) is a weakly
(resp. strongly) normalizing SERSdB .

2. If R is a weakly (resp. strongly) normalizing SERSdB , then U(R) is a weakly
(resp. strongly) normalizing SERS.

9 From Indices to First-Order Systems

Section 8 reviewed the SERSdB formalism [15] based on de Bruijn indices which
does away with α-conversion and establishes a precise correspondence with the
SERS formalism. However, substitution remains in both formalisms as a met-
alevel operation. This becomes a concrete problem in real implementations where
substitutions must be denoted by symbols and constructors of the language, and
the computational behaviour of substitutions must be specified by reduction
rules belonging to the operational rules of the language itself. Thus, all SERSdB

can be encoded as first-order rewriting systems with the aid of explicit substi-
tutions and the goal of this section is to give an overview of the work done by
E. Bonelli, D. Kesner and A. Rı́os [16] in this direction. The reader interested
in full proofs and details is referred to [14].

The case of the λ-calculus is interesting but at the same time not fully repre-
sentative of the problems we are faced with when encoding a higher-order system
into a first-order setting. For this particular case it is enough to replace the usual
variable names by de Bruijn indices and to promote metalevel substitution to the
object-level in order to obtain a first-order rewrite system. However, this is not
always the case for an arbitrary higher-order rewrite system. The reason is that
in higher-order rewriting the left-hand side of a rewrite rule is a higher-order
pattern so that we must somehow also encode higher-order pattern matching
when encoding the higher-order system in a first-order framework. To illustrate
this purpose let us consider the ηdB -rewrite rule:

λ(app(Xx, 1)) −→ηdB Xε

One may verify that the term λ(app(3, 1)) rewrites to 2. In a first-order setting
with explicit substitution, we have the alternative formulation:

λ(app(X [↑], 1)) −→ X
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However, in order for the term X [↑] to match the subterm 3 syntactic match-
ing is no longer sufficient as we need E-matching, that is, we would need to
solve the matching equation X [↑] ?=E 3 in an appropriate substitution calcu-
lus E . This may be seen as the reason why the ηdB -rule has received so much
attention [90, 39, 19, 48].

Another less evident example is given by the commutation rule CdB:

imply(∃∀Xyx, ∀∃Xxy) −→CdB
true

The näıve translation to first-order, namely imply(∃∀X, ∀∃X) −→ true, is
evidently not correct: in order for a term to be an instance of this rule, a term a
instantiated for the leftmost X must be the one instantiated for X [2 · 1· ↑2], say
a′, except that all 1-level and 2-level indices in a shall be interchanged in order
to obtain a′. The following rewrite rules Cfo and C′

fo do the job:

imply(∃∀X, ∀∃X [2 · 1· ↑2]) −→ true
imply(∃∀X [2 · 1· ↑2], ∀∃X) −→ true

Now, the rules Cfo and C′
fo have exactly the same intended meaning as the

original higher-order rule C. Note that both rules induce the same rewrite rela-
tion on terms.

The goal of this part is to provide a conversion algorithm for encoding higher-
order rewriting systems into first-order rewriting modulo an equational theory
E . A distinctive feature of our original algorithm is that we do not attach to
the encoding any particular substitution calculus. Instead, we work with an ab-
stract formulation of substitution calculi, called Basic Substitution Calculi and
originally used in [48, 49] to deal with confluence proofs of λ-calculi with explicit
substitutions. This macro-based presentation of calculi of explicit substitutions
gives us the freedom of choosing from a wide range of calculi of explicit substi-
tution, such as σ [1], σ⇑ [40], υ [8], f [48], d [48], s [47], λφ [79]. For brevity
we illustrate the conversion algorithm via a concrete substitution calculus,
namely σ⇑.

The conversion procedure that we introduce in this section consists then in
transforming a SERSdB R into a first-order rewrite system fo(R). The rewrite
rules produced by the conversion may or may not have occurrences of the ex-
plicit substitution operator on the LHSs. In the case that they do, as in the ηdB
example, we need matching modulo the induced equational theory of the substi-
tution calculus σ⇑. Otherwise, syntactic matching suffices and thus the SERSdB

R, called in this case an essentially first-order higher-order rewrite system, can
be translated to a full first-order rewrite system, where equational reasoning is
not needed at all. This is for example the case of the λ-calculus which can be
translated to the (full) first order λσ⇑ calculus.

9.1 The σ⇑ Calculus

The λσ calculus [1] was introduced as a bridge between the classical λ-calculus
and concrete implementations of functional programming. It is inspired by de
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Bruijn notation [27, 28] and Categorical Combinatory Logic (CCL) [25], it is
very useful for deriving machines for the λ-calculus [41] or implementing higher-
order unification [30]. The λσ-calculus is confluent on closed terms, and remains
confluent when meta-variables for terms are added to the syntax (i.e., λσ is
confluent on semi-open terms), but is no longer confluent when variables for
substitutions are also considered (confluence fails for open terms). To overcome
this problem, Hardin and Lévy introduced in [40] the λσ⇑-calculus which con-
siders a new operator, written ⇑, that allows to recover confluence on the set of
open terms [26].

The grammar of λσ⇑ is given by :

(Terms) a ::= 1 | app(a, b) |λa | a[s]
(Substitutions) s ::=↑ | id | ⇑ s | s ◦ s | a · s

We use the notation ↑k for k ≥ 1 to denote the substitution defined as follows:
↑1 =def↑ and ↑n+1 =def↑ ◦↑n. Note that indices in σ⇑ are represented slightly
differently than in Definition 45. Indeed, the notation j now represents the σ⇑-
term 1[↑j−1].

The set of rewriting rules of λσ⇑ contains the Beta rule, which is used to start
computation :

(Beta) app(λa, b) −→ a[b · id]

and the σ⇑ rules, given in Fig 1, which are used to propagate and apply substi-
tutions :

We denote by σ⇑(a) the unique σ⇑-normal form of the term a (this normal
form exists since σ⇑ is a terminating and confluent system [40]).

9.2 The Conversion Procedure

We now present the Conversion Procedure, an algorithm to translate any higher-
order rewrite system in the formalism SERSdB to a first-order rewrite system
(eventually modulo an equational theory). The Conversion Procedure is some-
what involved since several conditions, mainly related to the labels of metavari-
ables, must be met in order for a valuation to be admitted as valid (Defini-
tion 52). The idea is to replace all occurrences of metavariables Xl by a first-
order variable X followed by an appropriate index-adjusting explicit substitution
which computes valid valuations.

In order to define the conversion procedure we need two key notions that are
essential to correctly manipulate all the metavariables appearing in a de Bruijn
rewriting rule: binding allowance and pivot. The notion of binding allowance
gives the common binder indicators appearing in all the labels of the metavari-
ables of a rule. If this binding allowance is empty, then the conversion is trivial,
otherwise, we have to take into account the position in which these binder in-
dicators occur to correctly define the conversion. This is done via the second
notion called shifting index.



Expression Reduction Systems and Extensions: An Overview 541

(App) app(a, b)[s] −→ app(a[s], b[s])
(Lambda) (λa)[s] −→ λ(a[⇑ s])
(Clos) (a[s])[t] −→ a[s ◦ t]
(V arShift1) n[↑] −→ n + 1
(V arShift2) n[↑ ◦s] −→ n + 1[s]
(FV ar) 1[a · s] −→ a
(FV arLift1) 1[⇑ s] −→ 1
(FV arLift2) 1[(⇑ s) ◦ t] −→ 1[t]
(RV ar) n + 1[a · s] −→ n[s]
(RV arLift1) n + 1[⇑ s] −→ n[s◦ ↑]
(RV arLift2) n + 1[(⇑ s) ◦ t] −→ n[s ◦ (↑ ◦t)]
(Ass) (s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3)
(Map) (a · s) ◦ t −→ a[t] · (s ◦ t)
(Shift) ↑ ◦(a · s) −→ s
(ShiftLift1) ↑ ◦ ⇑ s −→ s◦ ↑
(ShiftLift2) ↑ ◦(⇑ s ◦ t) −→ s ◦ (↑ ◦t)
(Lift1) ⇑ s◦ ⇑ t −→ ⇑ s ◦ t
(Lift2) ⇑ s ◦ (⇑ t ◦ u) −→ ⇑ (s ◦ t ◦ u
(LiftEnv) ⇑ s ◦ (a · t) −→ a · (s ◦ t)
(IdL) id ◦ s −→ s
(IdR) s ◦ id −→ s
(LiftId) ⇑ id −→ id
(Id) a[id] −→ a

Fig. 1. The σ⇑ calculus

Definition 58 (Binding allowance). The binding allowance of X in the
metaterm A (resp. the rule (L,R)), denoted BaA(X) (resp. Ba(L,R)(X)), is the
set of binder indicators appearing at the same time in all the metavariables with
name X in A (resp. in L and R).

As an example, ifA = f(ξ(Xx), g(ξ(λ(Xyx)), ξ(λ(Xxz)))), then BaA(X) = {x}.

Definition 59 (Shifting index). We define the shifting index determined
by the metavariable Xl at position i in l, denoted Sh(Xl, i), as the total number
of binder indicators in l at positions 1..i− 1 that do not belong to BaA(X).

Thus for example, if A = f(ξ(Xx), g(ξ(λ(Xyx)), ξ(λ(Xxz)))), then
Sh(Xx, 1) = Sh(Xxz, 2) = 0, Sh(Xyx, 2) = 1. Remark that Sh(Xl, 1) is always 0.

Consider the rewrite rule λ(λ(Xxy)) −→ λ(λ(Xyx)) and a valid valuation κ
for this rule. If κ maps the metavariable Xxy to a term a, then by the condition
of validity it must be the case that it maps Xyx to the term b resulting from
a where all 1-level and 2-level indices have been interchanged. For example, if
a = 1 then b = 2 and if a = λ(2) then b = λ(3). Therefore, the conversion of the
aforementioned rule would be

λ(λ(X)) −→ λ(λ(X [2 · 1 · ↑2])) (1)
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In this discussion our focus was set on the metavariable Xxy in the sense that
κ was assumed valid if the term mapped to Xyx was a suitable transformation
of the one mapped by κ to Xxy. However, we may also state that κ is valid if
the term it maps to Xxy is a suitable transformation of the one mapped by κ to
Xyx. In this case, the conversion of the rewrite rule would be

λ(λ(X [2 · 1 · ↑2])) −→ λ(λ(X)) (2)

As a consequence, for each metavariable name in a rewrite rule, the metavari-
able that is set into focus determines the form that the conversion of this rule
shall take (see also Example 10). The metavariable that is set into focus is called
the pivot metavariable.

Definition 60 (Pivot). Let {Xl1 , . . . , Xln} the set of all X-based metavariables
in the SERSdB -rewrite rule (L,R). The t-metavariable Xlj is called an (X-
based) pivot for (L,R) if |lj | ≤ |li| for all i ∈ 1..n, and

1. Xlj ∈ L, or
2. Xlj ∈ R and |lj | < |li| for all Xli ∈ FMV(L).

A pivot set for a rewrite rule (L,R) is a set of pivot metavariables, one for
each name X in L such that Ba(L,R)(X) �= ∅. This notion extends to a set of
rewrite rules as expected.

A pivot set for (L,R) fixes a metavariable for each metavariable name having
a non-empty binding allowance. Note that Definition 60 admits the existence
of more than one X-based pivot metavariable. One can prove (Proposition 3),
however, that the induced rewrite relation is unique, thus it is not biased by any
particular choice of pivots. Nevertheless, the fact remains that the converted
rewrite rule in each case differs substantially. For example, the rule (1) is a first-
order rule in which syntactic matching suffices in order to apply it. However,
the rule (2) requires matching modulo the equational theory of the substitution
calculus. In order to favour the former over the latter in our definition of pivot
we select a metavariable with shortest label on the LHS whenever possible. As a
consequence, rule (2) is no longer obtainable since Xyx is not considered a valid
X-based pivot according to Definition 60.

Example 9. Both metavariables Xxy and Xyx can be chosen as X-based pivot
in the rewrite rule

Implies(∃(∀(Xxy)), ∀(∃(Xyx))) −→ true

In the rewrite rule f(Yε, g(λ(ξ(Xxy)), λ(ξ(Xyx)))) −→ ν(Xx, Yx) the metavari-
able Xx is the only possible X-based pivot. Also, since the binding allowance of
Y in this rewrite rule is the empty set, no Y -based metavariable is declared as
pivot.

As in Section 8, if l is a label of binder indicators then at(l, i) is used to
denote the i-th element of l when it exists. Also, pos(x, l) is the position of the
first occurrence of the element x in l when it exists.
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Definition 61 (Index-Adjusting Substitutions). Let (L,R) be a SERSdB -
rewrite rule and suppose BaL,R(X) �= ∅. Let Xl be the X-based pivot for (L,R)
and let Xk be any t-metavariable Xk appearing in the rule (L,R). The index-
adjusting substitution for Xk w.r.t. the pivot Xl is given by b1 · . . . · b|l| · ↑j,
where j = |k|+ |l \ Ba(L,R)(X)| and each bi is defined as follows:

1. if Xk is the pivot (hence l = k), then

bi =
{
i if at(l, i) ∈ Ba(L,R)(X)
|l|+ 1 + Sh(Xl, i) if at(l, i) /∈ Ba(L,R)(X)

2. if Xk is not the pivot then

bi =
{
pos(xh, k) if i = pos(xh, l) for some xh ∈ Ba(L,R)(X)
|k|+ 1 + Sh(Xl, i) otherwise

Note that for an index-adjusting substitution b1 · . . . · b|l| · ↑j each bi is a
distinct de Bruijn index and less than or equal to j. Substitutions of this form,
in the particular case where we fix the basic substitution calculus to σ, have been
called pattern substitutions in [31], where unification of higher-order patterns via
explicit substitutions is studied.

We can address the conversion of rewrite rules. Before proceeding we recall
that the name of a metavariable Xl is X and that by abuse of notation we write
FMV(A) to denote the set of all the names of the free metavariables of M .

Definition 62 (Conversion of rewrite rules). Let r be a SERSdB -rewrite
rule and let P be a pivot set for r. The conversion of the rewrite rule r via P
is defined as (Cr(L), Cr(R)) where Cr(A) is defined by induction on A, where
FMV(A) ⊆ FMV(L), as:

Cr(n) =def n

Cr(Xk) =def

⎧⎪⎪⎨⎪⎪⎩
X [↑|k|] if Bar(X) = ∅ and k �= ε

X [b1 · . . . · b|l| · ↑j ] if Bar(X) �= ∅ and
b1 · . . . · b|l| · ↑j �= 1 · . . . · |l| · ↑|l|

X otherwise
Cr(f(A1, . . . , An)) =def f(Cr(A1), . . . , Cr(An))
Cr(ξ(A1, . . . , An)) =def ξ(Cr(A1), . . . , Cr(An))
Cr(A1[A2]) =def Cr(A1)[Cr(A2) · id]

The term X [b1 ·. . .·b|l| ·↑j ] on the RHS of the second clause is the index-adjusting
substitution for Xk w.r.t. the pivot Xl ∈ P computed in Definition 61.

It should be noted how the de Bruijn metasubstitution operator •[•] is con-
verted to the term substitution operator •[•].

Below we present some examples.
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SERSdB -rewrite rule Converted rewrite rule

λ(app(Xx, 1)) −→ Xε λ(app(X[↑], 1)) −→ X

λ(λ(Xxy)) −→ λ(λ(Xyx)) λ(λ(X)) −→ λ(λ(X[2 · 1 · ↑2]))

f(λ(λ(Xxy)), λ(λ(Xyx))) −→ λ(Xz) f(λ(λ(X[↑2])), λ(λ(X[↑2]))) −→ λ(X[↑])

app(λXx, Yε) −→βdB
Xx[Yε] app(λX, Y ) −→ X[Y · id]

Note that no pivot is selected for the first and third rows since the binding
allowance of X in the respective rule is the empty set. The pivot selected in the
second row is Xxy and in the last rule Xx (no Y -based pivot required).

In the general case the system resulting from the Conversion Procedure is
coded as a first-order rewrite system where equational matching may be used.
Moreover, it is possible in some cases to get a first-order system where the sets
of equations needed to perform the equational matching part is empty, so that
matching becomes just syntactic first-order matching, and the resulting first-
order system is called a full first-order system.

Definition 63 (Conversion Procedure). Let R be a SERSdB . The Conver-
sion Procedure consists in selecting a pivot set for each rewrite rule in R and
converting all its rewrite rules as dictated by Definition 62. The resulting set
of rewrite rules is written fo(R) and called a first order-version of R. If the
LHS of each rule in fo(R) contains no occurrences of the substitution operator
•[•], then fo(R) is said to be a full first-order system.

Of course, we must also consider pivot selection and how it affects the con-
version procedure. Assume given some rewrite rule r and different pivot sets P
and Q for this rule. It is clear that conversion of the rewrite rule r via P and Q
shall not be identical.

Example 10. Let us consider again the following binder-commutation rule dis-
cussed in the introduction of this section:

imply(∃∀Xyx, ∀∃Xxy) −→C true

If we select Xyx as the X-based pivot we obtain the following version of C:

imply(∃∀X, ∀∃X [2 · 1· ↑2]) −→Cfo true

However, Xxy may also be selected as an X-based pivot metavariable. In this
case, the resulting converted rewrite rule shall be different:

imply(∃∀X [2 · 1· ↑2], ∀∃X) −→C′
fo

true
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Nevertheless, the rewrite relation generated by both of these converted rewrite
rules is identical.

Proposition 3 (Pivot Selection). Let r be a SERSdB-rewrite rule and let P
and Q be different pivot sets for this rule. Then the rewrite relation generated
by the two conversions of the rewrite rule r via P and Q are the same.

Proposition 3 is important, for it makes clear that the Conversion Procedure
is not biased by the selection of pivot sets (as regards the induced rewrite rela-
tion). Thus, with full precision, we may now speak of the first-order version of a
SERSdB R.

The main properties concerning the translation presented in this section is
that the Simulation Proposition holds: Any higher-order rewrite step may be
simulated or implemented by first-order rewriting. Also, rewrite steps in the
first-order version of a higher-order system R can be projected in R. Finally,
we give in Section 9.3 a syntactical characterisation of higher-order rewriting
systems that can be translated into first-order rewriting systems modulo an
empty theory. We shall see that, for example, the λ-calculus is covered by this
characterisation.

In order to introduce the simulation proposition let us recall this standard
notion of reduction modulo.

Given a rewrite system S and an equational system E on a set O, the relation
S-reduction modulo E is defined by a −→S/E b iff there exist a′, b′ ∈ O such
that a =E a′ −→S b′ =E b. We recall also that a �S b means that there exist
a finite S-reduction sequence from a to b.

Proposition 4 (Simulation Proposition). Let R be a SERSdB and let fo(R)
be its first-order version. Suppose a −→R b then

1. if fo(R) is not full first-order, then a −→fo(R)/σ⇑ b.
2. if fo(R) is full first-order, then a −→fo(R) �σ⇑ b.

The first statement of the proposition says that any higher-order reduction
step in the setting with indices R can be simulated by first order rewriting in
fo(R) but modulo the equational theory σ⇑ generated by the rules in Figure 1
(the rules must be taken as equations). The second statement gives an optimisa-
tion for the case where the translation of R gives a full first-order system fo(R).
Thus, any higher-order reduction step in the setting with indices R will be sim-
ulated by one step of first-order rewriting in fo(R) followed by finitely many
steps of first-order rewriting in σ⇑ (this time σ⇑ is taken as a rewrite system and
not as an equational theory). This second statement corresponds to the more
common higher-order languages such as λ-calculus.

We conclude this part by considering the relationship between first-order
rewriting and higher-order rewriting in the setting with indices which is given by
the following property, where σ⇑(c) denotes the σ⇑-normal form of the term c.

Proposition 5 (Projection Proposition). Let R be a SERSdB and let fo(R)
be its first-order version. If a −→fo(R) b, then σ⇑(a) �R σ⇑(b).



546 J. Glauert, D. Kesner, and Z. Khasidashvili

9.3 Essentially First-Order SERSdB

This last subsection provides a very simple syntactical criterion that can be used
to decide if a given higher-order rewrite system can be translated into a full
first-order rewrite system (modulo an empty equational theory). In particular,
we can check that many higher-order calculi in the literature, such as the lambda
calculus, verify this property.

Definition 64 (Essentially first-order SERSdB). A SERSdB R is called es-
sentially first-order if fo(R) is a full first-order rewrite system.

Definition 65 (fo-condition). A SERSdB R satisfies the fo-condition if
every rewrite rule (L,R) ∈ R satisfies: for every name X in L such that
Xl1 , . . . , Xln are all the X-based metavariables in L, then

1. all the labels l1 . . . ln are identical and equal to Ba(L,R)(X), and
2. for all Xk ∈ R the length of k is greater or equal to |Ba(L,R)(X)|.

As an example, consider the rules

app(λXx, Yε) −→βdB Xx[Yε]
λ(app(Xx, 1)) −→ηdb Xε

The βdB -rule satisfies the fo-condition but the ηdb rule does not: the label of
Xx in λ(app(Xx, 1)) is different from Ba(λ(app(Xx,1)),Xε)(X) = ∅.

Proposition 6 puts forward the importance of the fo-condition. Its proof relies
on a close inspection of the Conversion Procedure.

Proposition 6. Let R be a SERSdB . Then R satisfies the fo-condition iff R is
essentially first-order.

Note that many results on higher-order systems (e.g. perpetuality [63], stan-
dardisation [74]) require left-linearity and fully-extendedness or locality. The
reader may find it interesting to observe that these conditions together seem
to imply the fo-condition. A proof of this fact would require either developing
the results of this work in the above mentioned HORS or via some suitable
translation to the SERSdB formalism, and is left to future work.

Of course, all first-order rewriting systems are essentially first-order SERSdB :
Indeed all metavariables in first-order rewriting systems carry ε as label. Hence
the latter systems need not be left-linear. Also, an orthogonal SERSdB need not
be essentially first-order, the prime example of this fact being the rewrite system
consisting of the sole rule ηdB .

10 Conclusions and Further Work

In this chapter we have given an overview of Expression Reduction Systems in its
original form and also extended to express context-sensitive and pattern-directed
rewriting. We have presented the major results proven in this framework.
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Many future directions remain to be explored. First of all, a rich theory of
strategies exists for Expression Reduction Systems, so it would be interesting to
explore if the theory applies also for ERSP . Further, an appropriate notion of
context-sensitive ERSP would give the possibility to enlarge further the class of
programs based on pattern matching.

It would be also interesting to explore ERSP with a more expressive syntax for
patterns as in [23] or [45]. Also, pioneer work on typed pattern calculi [50] was
inspired by the Curry-Howard isomorphism, via a computational interpretation
of Gentzen sequent calculus for intuitionistic minimal logic. As a consequence,
each pattern constructor comes from the interpretation of some left logical rule
of Gentzen calculus. It is however less evident how to associate a Curry-Howard
style interpretation with the entire ERSP syntax.

The encoding of Expression Reduction Systems into First-Order Term Rewrit-
ing Systems opens up the possibility of transferring results (such as confluence,
termination, completion, evaluation strategies, implementation techniques, etc.)
from the first-order framework to the higher-order framework. A first step in
this direction is studied in [75, 12] where the standardisation property is lifted
from first-order to higher-order rewriting. Thus, the translation proposed in this
paper for encoding higher-order rewriting could provide a new means for study-
ing properties of higher-order rewriting through corresponding results in the
first-order setting.
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first-order rewriting. Journal of Logic and Computation. To appear.

15. Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos. A de Bruijn notation for
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substitutions. In Proceedings of the 7th International Symposium on Proceedings
of the International Symposium on Programming Language Implementation and
Logic Programming, volume 982 of Lecture Notes in Computer Science, pages
45–62. Springer-Verlag, 1995.

48. Delia Kesner. Confluence properties of extensional and non-extensional λ-calculi
with explicit substitutions. In 7th International Conference on Rewriting Tech-
niques and Applications, volume 1103 of Lecture Notes in Computer Science, pages
184–199. Springer-Verlag, 1996.

49. Delia Kesner. Confluence of extensional and non-extensional lambda-calculi with
explicit substitutions. Theoretical Computer Science, 238(1-2):183–220, 2000.

50. Delia Kesner, Laurence Puel, and Val Tannen. A Typed Pattern Calculus. Infor-
mation and Computation, 124(1):32–61, 1996.

51. Zurab Khasidashvili. β-reductions and β-developments of λ-terms with the least
number of steps. In International Conference on Computer Logic 88, volume 417
of Lecture Notes in Computer Science, pages 105–111. Springer-Verlag, 1990.

52. Zurab Khasidashvili. Expression reduction systems. Technical Report 36 : 200-
220, I. Vekua Institute of Applied Mathematics of Tbilisi State University, 1990.

53. Zurab Khasidashvili. The church-rosser theorem in orthogonal combinatory re-
duction systems. Technical Report 1825, INRIA-Rocquencourt, 1992.

54. Zurab Khasidashvili. The longest perpetual reductions in orthogonal expression
reduction systems. In Proceedings of the 3rd International Symposium on Logi-
cal Foundations of Computer Science, volume 813 of Lecture Notes in Computer
Science, pages 191–203. Springer-Verlag, 1994.

55. Zurab Khasidashvili. On higher order recursive program schemes. In 19th Inter-
national Colloquium on Trees in Algebra and Programming, volume 787 of Lecture
Notes in Computer Science, pages 172–186. Springer-Verlag, 1994.

56. Zurab Khasidashvili. Perpetuality and strong normalization in orthogonal term
rewriting systems. In 11th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 775 of Lecture Notes in Computer Science, pages 163–174.
Springer-Verlag, 1994.

57. Zurab Khasidashvili. On the longest perpetual reductions in orthogonal expression
reduction systems. Theoretical Computer Science, 266(1/2):737–772, 2001.

58. Zurab Khasidashvili. Optimal normalization in orthogonal term rewriting sys-
tems. In 14th International Conference on Rewriting Techniques and Applications,



Expression Reduction Systems and Extensions: An Overview 551

volume 2706 of Lecture Notes in Computer Science, pages 243–258. Springer-
Verlag, 2003.

59. Zurab Khasidashvili and John Glauert. Relating conflict-free stable transition
and event models via redex families. Theoretical Computer Science, 286(1):65–
95, 2002.

60. Zurab Khasidashvili and John Glauert. An abstract concept of optimal implemen-
tation. In 3rd International Workshop on Reduction Strategies in Rewriting and
Programming, volume 84(4) of Electronic Notes in Theoretical Computer Science.
Elsevier Science, 2003.

61. Zurab Khasidashvili and John Glauert. Stable computational semantics of
conflict-free rewrite systems (partial orders with erasure). In 14th International
Conference on Rewriting Techniques and Applications, volume 2706 of Lecture
Notes in Computer Science, pages 467–482. Springer-Verlag, 2003.

62. Zurab Khasidashvili and John Glauert. The geometry of conflict-free reduction
spaces. Theoretical Computer Science, 2005. To appear.

63. Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom. Perpetuality
and uniform normalization in orthogonal rewrite systems. Information and Com-
putation, 164(1):118–151, 2001.

64. Zurab Khasidashvili and Adolfo Piperno. Perpetuality and uniform normaliza-
tion. In Join International Conference on Algebraic and Logic Programming and
International Workshop on Higher-Order Algebra, volume 1298 of Lecture Notes
in Computer Science, pages 240–255. Springer-Verlag, 1997.

65. Zurab Khasidashvili and Vincent van Oostrom. Context-sensitive conditional
expression reduction systems. In Workshop on Graph Rewriting and Computation,
volume 2 of Electronic Notes in Theoretical Computer Science. Elsevier Science,
1995.

66. Zurab Khasidashvili and Vincent van Oostrom. Context-sensitive conditional
rewrite systems. Technical Report SYS–C95–06, University of East Anglia, 1995.

67. Jan-Willem Klop. Combinatory Reduction Systems. PhD thesis, Mathematical
Centre Tracts 127, CWI, Amsterdam, 1980.

68. Jan-Willem Klop. Term Rewriting Systems. In Handbook of Logic in Computer
Science, volume 2, pages 1–116. Oxford University Press, 1992.

69. Jan-Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combina-
tory reduction systems: introduction and survey. Theoretical Computer Science,
121(1/2):279–308, 1993.
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thesis, Université Paris VII, France, 1978.
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Axiomatic Rewriting Theory I:
A Diagrammatic Standardization Theorem

Paul-André Melliès
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Abstract. By extending nondeterministic transition systems with con-
currency and copy mechanisms, Axiomatic Rewriting Theory provides
a uniform framework for a variety of rewriting systems, ranging from
higher-order systems to Petri nets and process calculi. Despite its gener-
ality, the theory is surprisingly simple, based on a mild extension of tran-
sition systems with independence: an axiomatic rewriting system is de-
fined as a 1-dimensional transition graph G equipped with 2-dimensional
transitions describing the redex permutations of the system, and their
orientation. In this article, we formulate a series of elementary axioms
on axiomatic rewriting systems, and establish a diagrammatic standard-
ization theorem.

Foreword by the Author

Many concepts of Rewriting Theory started in the λ-calculus — which is by
far the most studied rewriting system in history. A remarkable illustration is
the confluence theorem . The theorem was formulated by A. Church and
J.B. Rosser in the early years of the λ-calculus [7]. The theorem was then gener-
alized and applied extensively to other rewriting systems. It became eventually
an object of study in itself, in a line of research pioneered by H.-B. Curry and
R. Feys in their book on Combinatory Logic (1958). This culminated in a series
of beautiful papers by G. Huet, J. W. Klop, and J.-J. Lévy published at the end
of the 1970s and beginning of the 1980s. Today, more than half a century after
its appearance in the λ-calculus, the confluence property is universally accepted
as the theoretical principle underlying deterministic computations.

The article is concerned with another key property of the λ-calculus: the
standardization theorem , which was discovered by A. Church and J.B. Rosser
quite at the same time as the confluence property. We advocate in this article
that, in the same way as confluence underlies deterministic computations, stan-
dardization guides causal computations. It is worth clarifying here what kind of
causality we have in mind, since the concept has been used in so many different
ways. First of all, by computation, we mean a rewriting path

M1
u1−→M2

u2−→M3 −→ · · · −→Mn−1
un−→Mn

in which every term Mk describes a particular state of the system, and in which
every redex uk describes a particular transition on states, for 1 ≤ k ≤ n. Then,

A. Middeldorp et al. (Eds.): Processes... (Klop Festschrift), LNCS 3838, pp. 554–638, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by causal computation, we mean a computation in which every transition uk is
enabled by a chain or cascade of previous transitions. We are particularly inter-
ested in situations where the chain of causality leading to uk is not necessarily
the whole rewriting path

M1
u1−→M2

u2−→M3 −→ · · · −→Mk−1
uk−1−→ Mk. (1)

At this point, we advise the reader to practice the following spiritual exercise:
think of today as a particular sequence of transitions (1) starting from your bed-
room (state M1) and leading you to the current position in the day (state Mk).
Then, call v = uk the transition consisting in reading this very article:

v = uk : Mk −→Mk+1.

You must admit that some transitions performed today among the
u1, . . . , uk−1 are not necessary to read this article. And that it seems partic-
ularly difficult to disentangle the necessary transitions from the unnecessary
ones. This is the point of this article: we investigate how to perform this task in
Rewriting Theory by permuting transitions — in the spirit of true concurrency
and Mazurkiewicz traces. Suppose for instance that your last action u = uk−1
today has been to drink coffee:

u = uk−1 : Mk−1 −→Mk.

Do you really need that coffee to read these lines? The simplest way to answer
is to check whether the transition v may be permuted before the transition u.
If this is the case, then coffee is not necessary. Of course, you may reply that
you have already drunk your coffee ten minutes ago, and thus, that it is far
too late now to permute the order of events! You are certainly right... but this
is not what matters here: the very fact that permuting the transition v before
the transition u is possible in principle is sufficient to establish that performing
transition u is not necessary in order to perform transition v.

Suppose on the other hand that your last action u has been to fetch this
article from the library. In that case, performing the transition u is absolutely
necessary in order to perform the transition v. There is no way indeed (either in
reality or in principle) to permute the order of the two transitions... and this is
precisely the reason why you went to the library on the first hand!

Of course, separating the necessary transitions from the unnecessary ones
may involve more than just one permutation. Suppose for instance that you have
drunk coffee just before fetching the article from the library. In that case, it takes
two permutations (permute your coffee time after your visit to the library, and
then after your exploration of the article) in order to demonstrate that drinking
coffee is not necessary.

Everyday life shows that chains of causality may be reconstructed by applying
relevant series of permutations on transitions. Now, Rewriting Theory compli-
cates matters by implementing a symbolic universe in which computations may
be erased or duplicated at will. New situations arise, which often defy common
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sense! We illustrate this with a simple example, involving three transitions, a
coffee machine M producing a cup of coffee C, and a duplicator replicating all
that. The situation proceeds in three transitions:

1. M produces the cup of coffee C,
2. Duplicator replicatesM in two exact copies M1 andM2, each one containing

its own cup of coffee C1 and C2,
3. You fetch the cup of coffee C1 from M1, and drink it.

The situation is particularly intricate from a conceptual point of view. On one
hand, producing the cup of coffee C (first transition) is necessary to fetch the
cup of coffee C1 (last transition) since the cup C1 is just a copy of the cup C.
On the other hand, the first two transitions produce the cup of coffee C2 which
is not necessary to fetch the cup of coffee C1 in the last transition. The only way
to clarify things here is to permute the duplication of the machine M (second
transition) before the production of the cup of coffee C (first transition). From
this results a series of four transitions:

1. Duplicator replicates M in two exact copies M1 and M2,
2. M1 produces the cup of coffee C1,
3. M2 produces the cup of coffee C2,
4. You fetch the cup of coffee C1 from M1, and drink it.

There is more work for everybody now (except for Duplicator possibly) since
each machine M1 and M2 has to produce its own cup of coffee C1 and C2. On
the other hand, starting by duplicating the machine M enables to disentangle
the necessary part (producing the cup of coffee C1) from the unnecessary part
(producing the cup of coffee C2). It then becomes possible to exhibit the chain
of causality leading to the cup of coffee C1, by permuting the two last steps in
the previous sequence of transitions:

1. Duplicator replicates M in two exact copies M1 and M2,
2. M1 produces the cup of coffee C1,
3. You fetch the cup of coffee C1 from M1, and drink it.

This long discussion explains why standardization reorganizes computations by
giving priority to duplicators and erasers: duplication and erasure are an inherent
part of disentanglement. This aspect of causality is fundamental but subtle, and
thus often misunderstood, even by specialists.

Technically speaking, the article is built on a seminal observation made by
Jan Willem Klop in his PhD thesis, more than twenty-five years ago. The PhD
thesis, published in 1980, contains two proofs of the standardization theorem
for the leftmost-outermost λ-calculus. In the second proof, Jan Willem Klop re-
duces standardization to strong normalization and confluence of a 2-dimensional
rewriting process on the β-rewriting paths, thus understood as 1-dimensional
entities. The process consists in permuting the so-called anti-standard pairs of
β-redexes u and v in the following way:
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P v

��
M

u ��

w ��

⇓ N

Q h

��

The 2-dimensional transition f =⇒ g transforms the β-rewriting path f = u · v
into the β-rewriting path g = w · h where:

– the β-redex w is the ancestor of the β-redex v before β-reduction of the
β-redex u,

– the β-rewriting path h develops the residuals of the β-redex u after β-
reduction of the β-redex w.

By anti-standard pair, one means that the β-redex w lies outside or to the left
of the β-redex u. Jan Willem Klop shows that the 2-dimensional procedure =⇒
strongly normalizes and converges on a unique normal form for every β-rewriting
path. The resulting normal form is precisely the standard (that is, leftmost-
outermost) β-rewriting path associated to the original β-rewriting path.

In this article, we generalize the construction to a wide class of rewriting
systems, ranging from higher-order systems to Petri nets or process calculi.
This provides evidence that causality is a general phenomenon in Rewriting
Theory, and that its scope is not limited to deterministic computations. We
proceed in a purely diagrammatic way: we start by formulating a series of 3-
dimensional principles which regulate the 2-dimensional permutations acting on
the 1-dimensional rewriting paths. We then show that every Rewriting System
satisfying these elementary principles (called axioms) satisfies our diagrammatic
standardization theorem. The theorem states that applying 2-dimensional per-
mutations to a rewriting path f leads eventually to a unique rewriting path g —
modulo a fundamental notion of reversible permutation introduced in the course
of the article. The standard rewriting path is finally defined as the unique normal
form obtained at the end of the 2-dimensional procedure.

I have had several occasions to appreciate the extraordinary quality and in-
sight of Jan Willem Klop’s contribution to Rewriting Theory. It is thus a great
pleasure and honour for me to dedicate today this article to Jan Willem Klop,
on the occasion of his 60th birthday.

1 Standardization: From Syntax to Diagrams

1.1 Computing Leftmost Outermost is Judicious... in the λ-Calculus

The λ-calculus is the pure calculus of functions. It has a unique reduction rule,
called the β-rule,

(λx.M)P −→M [x := P ] (2)

which substitutes every free variable x in the λ-term M with the λ-term P .
Despite its simplicity, the β-rule enables an extraordinary range of behaviours.
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For instance, depending on the number of times the variable x occurs in M ,
the β-redex (2) duplicates its argument P , or erases it... Typically, the λ-term
Δ = (λx.xx) defines a duplicator, while the λ-term K = (λx.λy.x) defines an
eraser, with the following behaviours:

ΔP −→ PP, KPQ −→ (λy.P )Q −→ P.

Amusingly, the duplicator Δ applied to itself defines a λ-term ΔΔ whose com-
putation loops:

ΔΔ −→ ΔΔ −→ · · ·

The λ-term Ka(ΔΔ) obtained by applying the eraser K to the variable a and
to the loop ΔΔ is particularly interesting, because its behaviour depends on the
strategy chosen to compute it. When computed from left to right, the λ-term
Ka(ΔΔ) reduces in two steps to its result a:

Ka(ΔΔ) −→ (λy.a)(ΔΔ) −→ a (3)

On the other hand, when computed from right to left, the same λ-term Ka(ΔΔ)
loops for ever on the unnecessary computation of its subterm ΔΔ:

Ka(ΔΔ) −→ Ka(ΔΔ) −→ · · · (4)

To summarize: applying the “wrong” strategy on the λ-term Ka(ΔΔ) computes
it for ever, whereas applying the more judicious strategy (3) transforms it into
its result a. This raises a very pragmatic question: does there exist a “judicious”
strategy for every λ-term? This strategy would avoid useless computations, and
reach the result of the λ-term, whenever this result exists. Remarkably, such a
“judicious” strategy exists, and its recipe is surprisingly uniform: reduce at each
step the leftmost outermost β-redex of the λ-term! Note that this is precisely
the strategy applied successfully in (3) to compute the λ-term Ka(ΔΔ).

We recall below the definition of the leftmost outermost strategy, formulated
originally by A. Church and J. B. Rosser in the λI-calculus (the λ-calculus with-
out erasers) then adapted to the λ-calculus by H.-B. Curry and R. Feys. A
β-redex is a pattern (λx.P )Q occurring in the syntactical tree of a λ-term. The
λ-terms (λx.P ) and Q are called respectively the function and the argument of
the β-redex (λx.P )Q. A λ-term which does not contain any β-redex is called a
normal form: it cannot be computed further. Now, consider a λ-term M con-
taining a β-redex at least. Its leftmost outermost β-redex is defined by induction
on the size of the λ-term M :

1. as (λx.P )Q when M = λx1...λxk.((λx.P )QR1...Rm),
2. as the leftmost outermost β-redex of Q when

M = λx1...λxk.(xP1...PmQR1...Rn)

and every Pi is a normal form.
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Theorem 1 (Curry-Feys). Suppose that there exists a rewriting path from a
λ-term M to a normal form P . The strategy consisting in rewriting at each step
Mi the leftmost outermost β-redex in Mi constructs a rewriting path

M = M0 −→M1 −→ · · · −→Mk−1 −→Mk = P

from M to P .

Theorem 1 may be stated alternatively by defining � as the least relation
between λ-terms satisfying the inductive steps of Figure 1, then by establishing
thatM −→−→ P is equivalent toM � P , for every λ-termM and normal form P .
We leave the reader check as exercise that the definition of � constructs the
rewriting path (3) in the case of M = Ka(ΔΔ).

1.2 Computing Leftmost Outermost is not Necessarily Judicious...
in Other Rewriting Systems

This clarifies how a term should be computed in the λ-calculus: from left to right.
It appears however that this orientation is very particular to the λ-calculus.
Consider for instance the term rewriting system defined by the rules

A→ A
B → C

F (x,C) → D
(5)

Then, the rightmost outermost strategy (6) rewrites the term F (A,B) to a
result D:

F (A,B) −→ F (A,C) −→ D (6)

whereas the leftmost outermost strategy loops for ever on the term F (A,B):

F (A,B) −→ F (A,B) −→ · · · (7)

One must admit here that there exists no universal “syntactic orientation” in
Rewriting Theory. This should not be a surprise: after all, the “syntactic orien-
tation” of a rewriting system is extremely sensitive to its notation! Think only

(Var) x � x

(Beta)
M � λx.P P [x := N ] � Q

MN � Q

(App)
M � xP1...Pk N � Q

MN � xP1...PkQ

(Xi) M � P
λx.M � λx.P

Fig. 1. An inductive definition of Curry and Feys’ leftmost outermost strategy
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of the λ-calculus written through the Looking Glass, in a reverse notation: now,
the calculus is oriented right to left, instead of left to right... The general case
is even worse. A rewriting system does not enjoy any uniform orientation in
general, and finding the “judicious” strategy, even if we know that it exists, is a
non decidable problem, see [18].

Despite the apparent mess, we will initiate in this article a generic theory
of orientations and causality in rewriting systems. But on what foundations?
Obviously, we need to abstract away from syntax in order to describe uniformly
examples (3), (4), (6) and (7). We are thus compelled to reason diagrammatically
instead of syntactically, and to develop a syntax-free Rewriting Theory, based
on a 2-dimensional refinement of the traditional notion of Abstract Rewriting
System developed in [32, 17, 21].

1.3 Forget Syntax, Think Diagrammatically!

The diagrammatic approach to Rewriting Theory which we have in mind is jus-
tified by a simple but surprising observation: despite their syntactic differences,
the two terms Ka(ΔΔ) and F (A,B) define exactly the same transition system,
which we draw below.

Ka(ΔΔ)

K

��

Δ1 �� Ka(ΔΔ)

K

��
(λy.a)(ΔΔ) Δ2 ��

λ

��

(λy.a)(ΔΔ)

λ

��
a

ida

a

F (A,B)

B

��

A1 �� F (A,B)

B

��
F (A,C) A2 ��

F

��

F (A,C)

F

��
D

idD
D

(8)

Apparently, the dynamical analogy between the two terms Ka(ΔΔ) and F (A,B)
goes beyond the equality of their transition systems. Observe that in the lefthand
side and the righthand side of the diagram:

– the steps Δ1 and A1 are “unnecessary” because they may be “erased” by
the paths K · λ and B · F ,

– the paths K ·λ and B ·F are more “judicious” than the paths Δ1 ·K ·λ and
A1 ·B · F because they avoid computing the “unnecessary” redexes Δ1 and
A1.

This analogy between the two terms Ka(ΔΔ) and F (A,B) is too subtle to be
reflected by the transition systems of Diagram 8. However, it is possible to refine
the notion of transition system, in order to capture the analogy. The refinement
is based on the concept of redex permutation introduced by J.-J. Lévy in his
work on the λ-calculus and on term rewriting systems, see [24, 18, 3]. Permuting
redexes inside rewriting paths enables to express by local transformations that
two different rewriting paths compute the same events, but in a different order.
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Typically, the transition system of the terms Ka(ΔΔ) and F (A,B) may be
equipped with two redex permutations [1] and [2] indicated below:

Ka(ΔΔ)

[1]K

��

Δ1 �� Ka(ΔΔ)

K

��
(λy.a)(ΔΔ) Δ2 ��

[2]λ

��

(λy.a)(ΔΔ)

λ

��
a

ida

a

F (A,B)

[1]B

��

A1 �� F (A,B)

B

��
F (A,C) A2 ��

[2]F

��

F (A,C)

F

��
D

idD
D

(9)

Consider for instance the transition system of the λ-term Ka(ΔΔ) on the left-
hand side of Diagram 9:

– the two paths Δ1 ·K ·λ and K ·Δ2 ·λ are equivalent modulo permutation [1]
of the β-redexes Δ1 and K, and

– the two paths K ·Δ2 · λ and K · λ are equivalent modulo permutation [2] of
the β-redexes Δ2 and λ.

All put together, the two paths f = Δ1 · K · λ and g = K · λ are equivalent
modulo the two permutations [1] and [2]. In particular, they compute the same
events, but in a different order. Note however that the redex Δ1 has disappeared
in the process of reorganizing the rewriting path f into the rewriting path g.
Remarkably, the same story may be told of the term F (A,B): the redex A1 has
disappeared during the process of reorganizing the rewriting path f = A1 ·B ·F
into the rewriting path g = B · F using the two permutations [1] and [2].

The process of reorganizing a path f : P −→−→ Q into the properly oriented
path g : P −→−→ Q is known as the standardization procedure. The rewriting
path g obtained at the end of the procedure is called the standard path asso-
ciated to the path f . J.-J. Lévy introduced the idea of an equivalence relation
between rewriting paths modulo redex permutation. Here, we orient the redex
permutations and thus refine Lévy equivalence relation into a preorder on rewrit-
ing paths. We call this preorder the standardization preorder. This enables us to
describe standardization in a purely diagrammatic way, as an extremal problem:

standard paths = minimal paths wrt. the standardization order.

All this is explained in Sections 1.4—1.8, and illustrated by the λ-calculus in
three different ways in Section 1.9. A concise and subjective history of the stan-
dardization theorem is provided in Section 1.10.

1.4 Standardization as 2-Dimensional Rewriting “Modulo”

Standardization is too often explained syntactically, and this complicates mat-
ters... In order to understand the reorganization of redexes in a simple and dia-
grammatic way, we decide to orient the permutations [1] and [2], and to define
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standardization as the 2-dimensional process of transforming the path Δ1 ·K ·λ
into the path K · λ. During that transformation, each permutation [1] and [2]
plays the role of a 2-dimensional rewriting step =⇒ reducing a rewriting path
into another “more standard” rewriting path:

Δ1 ·K · λ =⇒ K ·Δ2 · λ =⇒ K · λ. (10)

The normal form of Δ1 ·K · λ is the standard path K · λ. In this way, we define
uniformly — for the first time — standardization for a wide class of existing
rewriting system. The 2-dimensional perspective unifies already our two favourite
examples: the rewriting path A1 ·B ·F is rewritten as the “rightmost outermost”
rewriting path B · F by the same 2-dimensional procedure as example (10):

A1 · B · F =⇒ B · A2 · F =⇒ B · F.

The interpretation of standardization as 2-dimensional rewriting is the author’s
rediscovery of an old idea published fifteen years earlier by J. W. Klop in his
PhD thesis. At the time of J. W. Klop’s PhD thesis (1975-80) standardization
was limited to the λ-calculus and similar “leftmost-outermost” standardization
theorems. J. W. Klop observed that standardization could be expressed nicely
as a plain 2-dimensional rewriting system. Quite at the same time, G. Huet and
J.-J. Lévy reshaped the field entirely by establishing a revolutionary standard-
ization theorem for term rewriting systems, in [18]. Unfortunately, the richer
standardization mechanisms disclosed by G. Huet and J.-J. Lévy cannot be ex-
pressed as a plain 2-dimensional rewriting system anymore — and J. W. Klop’s
elegant idea would simply not work.

It is only fifteen years later, trying to abstract away from the syntactical
details of [18] that the 2-dimensional approach took shape again. This was a
completely independent discovery originating from a long and obsessive reflex-
ion on the diagrammatic presentation of [13]. Already in germ there and in the
author’s PhD thesis [27] the idea emerged finally that the standardization mech-
anism described by G. Huet and J.-J. Lévy reduces to distinguishing two classes
of permutations:

– the reversible permutations — for instance, permutation [1] in Diagram (9),
– the irreversible permutations — for instance, permutation [2] in Diagram (9).

In this way, the standardization mechanisms disclosed by G. Huet and J.-J. Lévy
can be reformulated as a 2-dimensional rewriting system modulo reversible per-
mutations — which then specializes to a plain 2-dimensional rewriting system
in the case of the “leftmost-outermost” standardization theorems studied by
J. W. Klop in his PhD thesis.

At this point, it is worth explaining briefly and informally the difference be-
tween a reversible and an irreversible permutation. Permutation [1] is called
reversible because it permutes two disjoint rewriting steps K and Δ1, or B and
A1 — disjoint in the syntactic sense that no redex contains the other redex in
the tree nesting order. The permutation is thus neutral from the point of view
of standardization.
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Ka(ΔΔ)

[1]K

��

Δ1 �� Ka(ΔΔ)

K

��
(λy.a)(ΔΔ)

Δ2

�� (λy.a)(ΔΔ)

F (A,B)

[1]B

��

A1 �� F (A,B)

B

��
F (A,C)

A2

�� F (A,C)

Permutation [2] is called irreversible because it replaces the “inside-out” com-
putation Δ2 · λ or A2 · F by its “outside-in” equivalent λ or F — thus strictly
improving the computation from the point of view of standardization.

(λy.a)(ΔΔ)
Δ2 ��

[2]λ

��

(λy.a)(ΔΔ)

λ

��
a

ida

a

F (A,C)
A2 ��

[2]F

��

F (A,C)

F

��
D

idD
D

1.5 The Basic Vocabulary of Axiomatic Rewriting Theory

It is time to introduce several key definitions related to our diagrammatic theory
of standardization.

Definition 1 (transition system). A transition system (or oriented graph) G
is a quadruple

(terms, redexes, source, target)

consisting of a set terms of vertices (= terms), a set redexes of edges (=
rewriting steps, or redexes), and two functions source, target : redexes →
terms (= the source and target functions). We write

u : M −→ N when source(u) = M and target(u) = N .

Recall that a path in a transition system G is a sequence

f = (M1, u1,M2, ...,Mm, um,Mm+1) (11)

where ui : Mi −→ Mi+1 for every i ∈ [1...m]. We write f : M1 −→ Mm+1. The
length of f is m and f is said to be empty when m = 0. Two paths f : M −→−→ N
and g : P −→−→ Q are coinitial (resp. cofinal) when M = P (resp. N = Q). The
path f ; g : M −→−→ Q denotes the concatenation of two paths f : M −→−→ P and
g : P −→−→ Q.

Definition 2 (2-dimensional transition system). A 2-dimensional transi-
tion system is a pair (G,�) consisting of a transition system G and a binary
relation � on the paths of G. The relation � is required to relate coinitial and
cofinal paths:

∀f : M −→−→ N, g : P −→−→ Q, f � g ⇒ (M,N) = (P,Q)
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The idea of Axiomatic Rewriting Theory is to replace a concrete rewriting sys-
tem by its 2-dimensional transition system. This has the effect of revealing un-
expected similarities: typically, the two terms Ka(ΔΔ) and F (A,B) behave
differently syntactically (left to right vs. right to left) but induce the same 2-
dimensional transition system (drawn below) in the λ-calculus and in the term
rewriting system (5).

X

u

��

w1 �� X

u

��
Y w2 ��

v

��

Y

v

��
Z

idZ
Z

w1 · u � u · w2
u · w2 � w1 · u
w2 · v � v

(12)

It should be obvious at this point of the exposition that the dynamical anal-
ogy observed previously between the terms Ka(ΔΔ) and F (A,B) (Section 1.3)
follows from the identity of their 2-dimensional transition system.

Definition 3 (permutation). A permutation (f, g) in a 2-dimensional tran-
sition system (G,�) is a pair of paths such that f � g. We often use the more
explicit (and overloaded) notation f � g for a permutation (f, g).

Definition 4 (standardization step, 1=⇒). A standardization step from a
path d : M −→−→ N to a coinitial and cofinal path e : M −→−→ N in a 2-dimensional
transition system (G,�), is a triple (d1, f � g, d2) consisting of a permutation
f � g and two paths d1, d2 such that:

d = M
d1−→−→ P

f−→−→ Q
d2−→−→ N e = M

d1−→−→ P
g−→−→ Q

d2−→−→ N

We write d 1=⇒ e when there exists a standardization step from d to e.

Definition 5 (standardization preorder =⇒, Lévy equivalence ≡). In
every 2-dimensional transition system (G,�)

– the standardization preorder =⇒ is the least transitive reflexive relation con-
taining 1=⇒. We say that a path e : M −→−→ N is more standard than a path
d : M −→−→ N when d =⇒ e.

– the Lévy permutation equivalence ≡ is the least equivalence relation con-
taining =⇒. Alternatively, the equivalence relation ≡ is the least equivalence
relation containing � and closed under composition.

To illustrate our definitions with diagram (12), one shows that the path u · v is
more standard than the path w1 · u · v by exhibiting the sequence of standard-
ization steps:

w1 · u · v 1=⇒ u · w2 · v 1=⇒ u · v.
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1.6 Reversible and Irreversible Permutations

Permutations of (G,�) are discriminated in two classes, reversible and irre-
versible, according to the following definition.

Definition 6 (reversible, irreversible permutation). In every 2-
dimensional transition system (G,�)

1. A permutation (f, g) is reversible when g � f . A box ♦ signals reversible
permutations f ♦ g in text and diagrams.

2. A permutation (f, g) is irreversible when ¬(g � f). A triangle � signals
irreversible permutations f � g in text and diagrams.

Check that the definition matches the previous qualification in Section 1.4 of
permutation [1] as reversible, and permutation [2] as irreversible, in diagrams (9)
and (12). We illustrate our new diagrammatic conventions on the 2-dimensional
transition system (12).

X

♦u

��

w1 �� X

u

��
Y w2 ��

�v

��

Y

v

��
Z

idZ
Z

w1 · u ♦ u · w2
w2 · v � v

(13)

In the definition below, the discrimination on permutations generalizes to the
obvious discrimination on standardization steps. The key concept of reversible
permutation equivalence % is revealed, as a stronger version of usual Lévy per-
mutation equivalence ≡.

Definition 7 (REV=⇒ ,
IRR=⇒, reversible permutation equivalence %). In every

2-dimensional transition system (G,�)

– A standardization step (e, f � g, h) is reversible (resp. irreversible) when the
permutation f � g is reversible (resp. irreversible). We write

d
REV=⇒ e d

IRR=⇒ e

when there exists a Reversible (resp. Irreversible) standardization step from d
to e.

– The reversible permutation equivalence % is the least equivalence relation
containing the relation REV=⇒ .
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1.7 Standard Rewriting Paths

Definition 8 (standard path). A rewriting path d : M −→−→ N is standard
when there does not exist any sequence of standardization steps

d
REV=⇒ d1

REV=⇒ · · · REV=⇒ dk
IRR=⇒ dk+1

consisting of a series of k Reversible steps followed by an Irreversible step.

So, a standard path is just a normal form of the standardization process, modulo
reversible steps. So, when a rewriting path d is standard, and when d =⇒ e,
then d % e and the rewriting path e is standard.

For instance, the path X w1−→ X
u−→ Y

v−→ Z in diagram (12) is transformed
in two steps in the standard path X u−→ Y

v−→ Z. The rewriting path X w1−→
X

u−→ Y is another example of standard path, because every standardization
sequence from it to itself or to X u−→ Y

w2−→ Y is reversible.

1.8 The Standardization Theorem

One main challenge of Axiomatic Rewriting Theory is to capture the diagram-
matic properties of redex permutations in syntactic rewriting systems, in order to
establish the following diagrammatic standardization theorem: for every rewrit-
ing path d : M −→−→ P in the transition system G,

1. existence: there exists a standardization sequence

d =⇒ e

transforming the rewriting path d into a standard path e,
2. uniqueness: every standardization sequence

d =⇒ f

may be extended to a standardization sequence leading to the standard
path e:

d =⇒ f =⇒ e.

The uniqueness property has a series of remarkable consequences. Suppose for
instance that the rewriting path f is standard. In that case, the standardization
sequence

f =⇒ e

consists of Reversible steps. Thus,

f % e.

From this follows that there exists a unique standard path e such that

d =⇒ e
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modulo reversible permutation equivalence. In fact, the uniqueness property en-
sures that there exists a unique standard path, modulo reversible permutation
equivalence, in the Lévy equivalence class of the rewriting path d.

In this article, we formulate a series of nine elementary axioms on the 2-
dimensional transition system (G,�) and deduce from them the diagrammatic
standardization theorem stated above. The axioms uncover a series of simple
and elegant principles of causality in computations. They also illustrate that
a purely diagrammatic and syntax-free theory of computations is possible, and
useful, since it enscopes almost every existing rewriting system, from Petri nets
to higher-order rewriting systems.

1.9 Illustration: The λ-Calculus and Its Three Standardization
Orders

There are at least three different ways to interpret the λ-calculus as a 2-dimen-
sional transition system, each one associated to a particular nesting order on
the β-redexes of λ-terms. The underlying transition system Gλ is the same in
the three cases. It is defined in [10, 24] as follows:

– its vertices are the λ-terms, modulo α-conversion,
– its edges are the β-redexes u : M −→ N .

Recall that a β-redex u = (M, o,N) is a triple consisting of a λ-term M , the
occurrence o of a β-pattern (λx.P )Q in M and the λ-term N obtained after
β-reducing

(λx.P )Q −→ P [x := Q]

in the λ-term M .
It is worth noting that there are two different edges I(Ia) −→ Ia in the

graph Gλ: each edge corresponds to the reduction of a particular identity com-
binator I = (λx.x) in the λ-term I(Ia).

There are at least three different ways to refine the transition system Gλ as a
2-dimensional transition system, depending on the order chosen on β-redexes:

– the tree-order : a β-redex u is smaller than a β-redex v when v occurs in the
function or argument part of u; or equivalently, when the occurrence of u is
a strict prefix of the occurrence of v. We use the notation: u /tree v.

– the left-order : a β-redex u is smaller than a β-redex v when v occurs in the
function or argument part of u, or when there exists an occurrence o of an
application node PQ in the λ-term M , such that u occurs in P and v occurs
in Q. We use the notation: u /left v.

– the argument-order : a β-redex u is smaller than a β-redex v when v occurs
in the argument of u. We use the notation: u /arg v.

Each order induces in turn its own permutation relation �tree, �left and �arg
on the transition system Gλ. The order considered in the literature is generally
the left-order, see [10, 24, 20]. However, we prefer to study here the tree-order,
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because this seems the most natural choice after the work by G. Huet and J.-
J. Lévy on term rewriting systems [18]. The two alternative orders /left and
/arg are discussed briefly in Section 8.

We define the relation �tree as follows. Two paths f, g are related as f �tree g
precisely when:

1. the paths f and g factor as f = v · u′ and g = u · h where u, v, u′ are
β-redexes and h is a path,

2. the two β-redexes u and v are coinitial, and ¬(v /tree u),
3. the β-redex u′ is the (unique) residual of u after v, and the path h develops

the (possibly) several residuals of v after u. [For a definition of residual and
complete development, see [10, 24, 18, 3, 21, 22] or Section 6.]

Thus, every permutation f �tree g is of the form:

M
v ��

u

��
⇐tree

Q

u′

��
P

h
�� N

f = v · u′
g = u · h (14)

where u and v are different β-redexes, u′ is a β-redex and h is a path. The three
paradigmatic examples of β-redex permutation f �tree g are:

PQ
v ��

u

��
⇐tree

P ′Q

u′

��
PQ′

v′
�� P ′Q′

(λx.a)P v ��

u

��
⇐tree

(λx.a)P ′

u′

��
a

ida

a

ΔP
v ��

u

��
⇐tree

ΔP ′

u′

��
PP v1·v2

�� P ′P ′

where P −→ P ′ and Q −→ Q′ are two β-redexes. The three permutations are re-
spectively reversible, irreversible and irreversible in the 2-dimensional transition
system (Gλ,�tree).

Remark: the argument-order /arg is included in the tree-order /tree which is
included in the left-order /left. From this follows that the permutation rela-
tion �arg contains the permutation relation �tree which contains in turn the
permutation relation �left. It is not difficult then to establish that every rewrit-
ing path standard wrt. the left-order /left is standard wrt. the tree-order /tree,
and that every rewriting path standard wrt. the tree-order/tree is standard wrt.
the argument-order /arg. The converse is obviously false in the two cases.

1.10 A Concise History of the Standardization Theorem

Many authors have written on the standardization theorem. We do not draw
below a comprehensive list, but deliver a concise history of the subject, in eight
key steps.
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[1936]. A. Church and J.B. Rosser introduce the λI-calculus, a λ-calculus
without erasure, and prove that the number of β-steps from a λI-term to its
normal form is bounded by the length of the leftmost outermost computation.
This result is the ancestor of all later standardization theorems.

[1958]. H.B. Curry and R. Feys formulate the first standardization theorem
for the λ-calculus: the two authors prove that every time a λ-term P β-
reduces to a λ-term Q, there exists also a standard way to β-reduce P to
Q. The theorem extends Church and Rosser result for the λI-calculus, and
plays a role in Curry and Feys’ defense of their erasing combinator K.

[1978]. J.-J. Lévy formulates the standardization theorem in its modern alge-
braic form: using an equivalence relation on rewriting paths — called today
Lévy permutation equivalence — Lévy proves that there exists a unique stan-
dard rewriting path in each equivalence class. The uniqueness result was so
striking at the time that the theorem was called the strong standardization
theorem by subsequent authors. Despite its conceptual novelty, the theorem
is still limited to the λ-calculus and to its leftmost-outermost order.

[1979]. G. Huet and J.-J. Lévy formulate and establish a standardization the-
orem for term rewriting systems without critical pairs. This is probably the
most revolutionary step in the history of standardization, the first time at
least that another standardization order is considered than the “leftmost
outermost” order of the λ-calculus. The theorem is still limited to term
rewriting systems — because its proof relies heavily on syntactical notions
like tree-occurrence — but the article delivers the message that standard-
ization is a general property of rewriting systems, related to causality and
domain-theoretic notions like stability and sequentiality.

[1980]. J. W. Klop introduces a 2-dimensional rewriting system on paths, con-
sisting in permuting “anti-standard” paths of length 2 into “standard” paths
of arbitrary length. In this way, Klop deduces Lévy’s strong standardization
theorem for leftmost-outermost λ-calculus, by establishing confluence and
strong normalization of the 2-dimensional rewriting process: the standard
path is obtained as the normal form of the procedure. Another important
contribution of J. W. Klop is to stress the role of the finite development
lemma in the proof of standardization, and to extend to any “left-regular”
Combinatory Reduction System the standardization theorem for leftmost-
outermost λ-calculus.

[Early 1980s]. G. Boudol extends G. Huet and J.-J. Lévy standardization
theorem to term rewriting systems with critical pairs. This is another decisive
step, because it extends the principle of standardization to non deterministic
rewriting systems.

[1992]. G. Gonthier and J.-J. Lévy and P-A. Melliès deliver an axiomatic
standardization theorem, where the syntactical proof of[18] is replaced by
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diagrammatic arguments on redexes, residuals and the nesting relation. Sub-
sequently reworked by the author in his PhD thesis [27], the theorem extends
G. Huet and J.-J. Lévy’s original theorem to a great variety of rewriting sys-
tems with and without critical pairs — with the remarkable and puzzling
exception (as first noted by R. Kennaway) of rewriting systems based on
directed acyclic graphs.

[1996]. D. Clark and R. Kennaway adapt the syntactical works of G. Huet, J.-
J. Lévy and G. Boudol and establish a standardization theorem for (possibly
conflicting) rewriting systems based on directed acyclic graphs (dags).

It took the author nine years to derive the current axiomatics from [13]. One
difficulty was to find the simplest possible description of rewriting systems with
critical pairs. The trinity of residual, compatibility and nesting relations operat-
ing in [13] was certainly too complicated. Slowly, the 2-dimensional presentation
emerged, leading the author to the elementary axiomatics of this article. Twenty-
five years ago, the work of [18, 6] on term rewriting systems revealed that the
“conflict-free left-regular” rewriting systems considered earlier was the emerged
part of the much wider and exciting world of causal computations. This is that
world and its boundaries which we will explore here in our 2-dimensional dia-
grammatic language.

1.11 Structure of the Paper

Axiomatic Rewriting Systems (AxRS) are introduced in Section 2, along with
their nine standardization axioms. A less innovative but more traditional ax-
iomatics based on residuals, critical pairs and nesting is formulated in Section 6.
Standard paths are characterized in Section 3 as the paths which do not contain
a particular “anti-standard” pattern, just as in [13, 27]. The standardization the-
orem is proved in Section 4, and reformulated 2-categorically in Section 5. An
alternative axiomatization based on residuals and nesting orders is formulated
in Section 6. A few additional hypotheses on axiomatic rewriting systems are
discussed in Section 7. Finally, we illustrate our definition of AxRS with a series
of examples in Section 8, like asynchronous transition systems, term rewriting
systems, call-by-value λ-calculus, λ-calculus with explicit substitutions.

2 The Standardization Axiomatics

An Axiomatic Rewriting System (AxRS) is defined as a 2-dimensional transition
system (G, �) which satisfies moreover the series of nine standardization axioms
presented in this section. Each axiom of the section is illustrated by the λ-calculus
and its 2-dimensional transition system (Gλ, �tree) defined in Section 1.9.

2.1 Axiom 1: Shape

The first axiom generalizes to every AxRS the shape of permutations encountered
in the λ-calculus — see Diagram (14)in Section 1.9.
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Axiom 1 (Shape). We ask that in every permutation f � g,

– the path f is of length 2,
– the path g is of length at least 1,
– the initial redexes of f and g are different.

Thus, every permutation f � g in the 2-dimensional transition system (G, �)
has the following shape:

M
v ��

u

��
⇐

Q

u′

��
P

h
�� N

f = v · u′

g = u · h (15)

where u and v are different redexes, u′ is a redex and h is a path. In case of a
reversible permutation f ♦ g, this shape specializes to a 2× 2 square:

M
v ��

u

��
♦

Q

u′

��
P

v′
�� N

f = v · u′

g = u · v′

where u, u′, v and v′ are redexes, u and v different.

2.2 Axioms 2, 3, 4, 5: Ancestor, Reversibility, Irreversibility and
Cube

The standardization theorem is usually established by a fine-grained analysis of
syntactic mechanisms like erasure, duplication, etc... related to Lévy theory of
residuals. The fragment of Lévy theory necessary to the theorem, e.g. the finite
development property, appears in our axiomatics... but reformulated, because the
more geometric idea of “oriented permutation” replaces the traditional concept
of “residual of a redex”. The residual theory is particularly visible in the four
Axioms ancestor, reversibility, irreversibility and cube introduced below,
as well as in Axiom termination of Section 2.6.

Axiom ancestor incorporates two properties of the λ-calculus, traditionally
called uniqueness of ancestor and finite development. The existence of a permu-
tation f �tree g between two β-rewriting paths:

f = M
v−→ Q

u′
−→ N g = M

u−→ P
h−→−→ N

means that the β-redex u′ is the unique residual of the β-redex u after β-
reduction of the redex v, and that the path h is a complete development of
the residuals of the redex v after β-reduction of the redex u. In that case, we
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say that the redex u is an ancestor of the redex u′ before β-reduction of the re-
dex v. The uniqueness of ancestor property states that the redex u is the unique
such ancestor of the redex u′. Besides, the finite development property of the
λ-calculus, recalled in Section 6, states that two complete developments of the
same set of β-redexes, are Lévy equivalent. From this follows that any rewriting
path g′ involved in a permutation f �tree g′ factors as g′ = u′ · h′ where u = u′

and h ≡tree h′. This leads us to formulate the

Axiom 2 (Ancestor). Suppose that u, u′ are redexes, that f, h, h′ are rewriting
paths, forming together permutations f � u ·h and f � u′ ·h′. We ask that u = u′

and h ≡ h′.

Axiom reversibility indicates that every permutation f � g is either re-
versible, or reduces to a rewriting path g for which there exists no permutation
of the form g � h. This mirrors the following property of the λ-calculus. Sup-
pose that f, g, h : M −→−→ N are three β-rewriting paths involved in permutations
f �tree g and g �tree h. The paths f and g are of length 2, the path h is of length
at least 1, and the paths f, g, h decompose as

f = M
v−→ Q

u′
−→ N, g = M

u−→ P
v′
−→ N, h = M

v′′
−→ O

hu−→−→ N

where the two redexes v and v′′ are ancestor of the same redex v′, and thus
v = v′′; and where the β-redex u′ is the unique residual of the β-redex u, and
the rewriting path hu is a development of the residuals of u after v, and thus
hu = u′. It follows that f = h.

Axiom 3 (Reversibility). We ask that f = h when f � g and g � h.

Axiom irreversibility completes the two previous axioms. The axiom mirrors
the fact that in the λ-calculus and in many rewriting systems, standardization
preserves complete developments — see [24, 18] or Section 6 for a definition of
complete developments. Let us explain briefly what we mean here. Consider
any β-rewriting path h : M −→−→ N which defines a complete development of a
multi-redex (M, U) in the λ-calculus, and suppose that the path h factors as

h = M
h1−→−→ M ′ h2−→−→ N ′ h3−→−→ N

where the β-rewriting path h2 is involved in a standardization permutation

h2 � h′
2.

By definition of �tree, the two β-rewriting paths h2 and h′
2 decompose as

h2 = M ′ v−→ P
u′
−→ N ′ and h′

2 = M ′ u−→ Q
h′′
−→−→ N ′.

We claim here that the resulting β-rewriting path

h′ = M
h1−→−→ M ′ h′

2−→−→ N ′ h3−→−→ N
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defines a complete development of (M, U). How do we prove this? We establish
first that the two redexes u and v are residual of a redex in U after the β-
rewriting path h1. The very definition of the path h as a complete development
of the multi-redex (M, U) induces already that:

– the redex v is residual of a redex v0 ∈ U after the β-rewriting path h1; and
– the redex u′ is residual of a redex u0 ∈ U after the β-rewriting path h1 · v.

We know moreover that the β-redex u is the unique ancestor of the β-redex u′

before reduction of the β-redex v. This uniqueness property ensures that the
β-redex u is residual of the redex u0 ∈ U after the β-rewriting path h1. This
establishes that the two redexes u and v are residual of a redex in U after the
β-rewriting path h1. Now, we know by definition of �tree that the two paths h2
and h′

2 define complete developments of the multi-redex (M ′, {u, v}). The finite
development property of the λ-calculus states moreover that the two β-rewriting
paths h2 and h′

2 define the same residual relation. It follows quite immediately
that, as we claimed, the β-rewriting path h1 · h′

2 · h3 defines a complete devel-
opment of the multi-redex (M, U). We conclude more generally that every path
more standard than the path h is also a complete development of the multi-
redex (M, U).

How is this result interpreted in our axiomatic setting? Consider an irre-
versible permutation f �tree g between two β-rewriting paths

f = M
v−→ Q

u′
−→ N g = M

u−→ P
hv−→−→ N

and a β-rewriting path h such that

g =⇒ h.

It follows from our previous argument that, just like the β-rewriting path f and g,
the β-rewriting path h is a complete development of the multi-redex (M, {u, v}).
Besides, the first β-redex reduced in the path h is not the β-redex v. Thus, the
β-rewriting path h decomposes necessarily as

h = M
u−→ P

h′
v−→−→ N

where
hv =⇒ h′

v.

Here, we apply our previous argument another time, and deduce from hv =⇒ h′
v

that, just like the β-rewriting path hv, the β-rewriting path h′
v is a complete

development of the residuals of the β-redex v after reduction of the β-redex u.
This shows in particular that f �tree h. This leads to

Axiom 4 (Irreversibility). We ask that f � h when f � g and g =⇒ h.

Axiom cube incorporates the cube lemma established in [24, 18] as well as a
careful analysis of nesting in the λ-calculus. Suppose that C[−] is a context, see
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[3] for a definition, and that a β-rewriting path g : C[M ] −→−→ C[N ] computes
only inside M , never inside C[−]. Then, just as the β-rewriting path g, every
Lévy equivalent β-rewriting path f : C[M ] −→−→ C[N ] computes only inside
M , never inside C[−]. So, every β-redex w inside C[−] has the same (unique)
residual w′′ after the β-rewriting paths f and g. Diagrammatically speaking, the
property amounts to the cube property stated in the next axiom, when f �tree g
and f = v · u′ and g = u · v1 · · · vn and w′′ = wn+1. The axiom requires that the
property holds in every AxRS.

Axiom 5 (Cube). We ask that every diagram

hu

��

v ��

u

��
⇐⇑

w���

�����

u′

��
v1···vn ��

w1
		
	

��		
	 wn+1

��
�

���
��

h1···hn

��
⇐···⇐

with u, u′, v and v1, ..., vn and w, w1, ..., wn, wn+1 a series of redexes and h1, ..., hn

a series of paths forming permutations

v·u′ � u·v1 · · · vn u·w1 � w·hu vi ·wi+1 � wi ·hi for 1 ≤ i ≤ n

may be completed as a diagram:

hu

��

hv ��

⇐

hu′

��

v ��

u

��
⇐⇑

w���

�����

u′

��

w′
			

��			

v1···vn ��

w1
		
	

��		
	 wn+1

��
�

���
��

⇑

h1···hn

��
⇐···⇐

hv ��

hu

��

≡ hu′

��
h1···hn

��

where w′ is a redex and hv, hu′ are paths which form permutations

u′ · wn+1 � w′ · hu′ v · w′ � w · hv

and induce the equivalence

hv · hu′ ≡ hu · h1 · · ·hn.
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2.3 Axiom 6: Enclave

Axiom enclave is based on a fundamental property of the λ-calculus, observed
for the first time in the preliminary work of [13]. Suppose that a β-redex v is
nested under a β-redex u — that is u /tree v — and that the β-redex v creates
a β-redex w′. By creation, we mean that the β-redex w′ has no ancestor before
reduction of the β-redex v. In that case, the β-redex w′ is necessarily nested
under the (unique) residual u′ of the β-redex u after reduction of the β-redex v.

The next axiom formulates the property as its contrapose. The existence of
the permutation

u′ · wn+1 �tree w′ · hu′

means that the β-redex w′ is not nested under the β-redex u′. And from this
follows that the β-redex w′ is not created, and thus, has an ancestor w before
reduction of the β-redex v. The axiom requires that this enclave property holds
in every AxRS.

Axiom 6 (Enclave). We ask that every diagram

hu′

��

v ��

u

��
� u′

��

w′
			

��			

v1···vn

��

wn+1
��

�

���
��

⇑

where u, v, u′ and v1, ..., vn and w′, wn+1 are redexes, and hu′ is a path, form-
ing the permutations (recalling our convention, the symbol � means that the
permutation is irreversible)

v · u′ � u · v1 · · · vn u′ · wn+1 � w′ · hu′

may be completed as a diagram:

hu

��

hv ��

⇐

hu′

��

v ��

u

��
�⇑

w���

�����

u′

��

w′
			

��			

v1···vn ��

w1
		
	

��		
	 wn+1

��
�

���
��

⇑

h1···hn

��
⇐···⇐

with w, w1, ..., wn a series of redexes and hu, hv and h1, ..., hn a series of paths,
forming the n + 2 permutations

v ·w′ � w ·hv u ·w1 � w ·hu vi ·wi+1 � wi ·hi for 1 ≤ i ≤ n
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2.4 Axioms 7 and 8: Stability and Reversible Stability

Axiom stability incorporates another key property of the λ-calculus, also ob-
served for the first time in the preliminary work of [13]. Consider any reversible
permutation

M
u−→ P

v′
−→ N ♦ tree M

v−→ Q
u′
−→ N

in which the β-redex u creates a β-redex w1 and the β-redex v creates a β-
redex w2. It is not difficult to establish that there exists no β-redex w12 in the
λ-term N which would be at the same time residual of the β-redex w1 after
reduction of the β-redex v′, and residual of the β-redex w2 after reduction of
the β-redex u′. The property is axiomatized below as its contrapose. The axiom
states that the characteristic function of the event of creating the β-redex w12
(or equivalently the β-redex w1, or the β-redex w2) is stable in the sense of
G. Berry, see [5]. Axiom reversible-stability repeats the axiom in the reversible
case.

Axiom 7 (Stability). We ask that every diagram

hu′

��

v ��

u

��
♦ u′

��

w2			

��			

v′ ��

w1
		
	

��		
	 w12

��
�

���
��

⇑

hv′
��

⇐

where u, v, u′, v′ and w1, w2, w12 are redexes and hu′ , hv′ are paths, forming the
permutations (recalling our convention, the symbol ♦ means that the permuta-
tion is reversible)

v · u′ ♦ u · v′ u′ · w12 � w2 · hu′ v′ · w12 � w1 · hv′

may be completed as a diagram

hu

��

hv ��

⇐

hu′

��

v ��

u

��
♦⇑

w���

�����

u′

��

w2			

��			

v′ ��

w1
		
	

��		
	 w12

��
�

���
��

⇑

hv′
��

⇐

where w is a redex and hu, hv are two paths, forming two permutations

v · w2 � w · hv u · w1 � w · hu
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Axiom 8 (Reversible stability). We ask that every diagram

u12

��

v ��

u

��
♦ u1

��

w2			

��			

v1 ��

w1
		
	

��		
	 w12

��
�

���
��

♦

v12
��

♦

(16)

where u, v, u1, v1 and w1, w2, w12, u12, v12 are redexes forming the reversible per-
mutations

v · u1 ♦ u · v1 u1 · w12 ♦ w2 · u12 v1 · w12 ♦ w1 · v12

may be completed as a diagram

u2

��

v2 ��

♦

u12

��

v ��

u

��
♦♦

w���

�����

u1

��

w2			

��			

v1 ��

w1
		
	

��		
	 w12

��
�

���
��

♦

v12
��

♦

v2 ��

u2

��

♦ u12

��
v12

��

where w, u2, v2 are three redexes forming the reversible permutations

v ·w2 ♦ w ·v2 and u·w1 ♦ w ·u2 and v2 ·u12 ♦ u2 ·v12

Remark: Axiom reversible-stability may be understood as a converse of the
reversible variant of Axiom cube formulated in Section 7.3. Indeed, Axiom
reversible-stability states that every diagram

u

��		
		
		
		
	

v

���
��

��
��

��

♦

w1

��

v1
��

��

���
��

�
w2

��

u1
		
		

��		
		

w12

��

♦♦

v12

���
��

��
��

��

u12

��		
		
		
		
	

(17)
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u

��

v1 ��

⇐ ⇐

v2 ��

u2

��

��

u3

��

vn ��

⇐un

��
v

��
h1

��
h2

�� ��
hn

��

Fig. 2. The path f = v1 · · · vn drags the redex v to the redex u

may be completed into the diagram

u

��		
		
		
		
	

v

���
��

��
��

��

w

��
w1

��

♦

w2

��

♦

u2
		
		

��		
		

v2
��

��

���
��

�

♦

v12

���
��

��
��

��

u12

��		
		
		
		
	

(18)

and conversely, Axiom reversible-cube formulated in Section 7.3 states that
Diagram (18) may be completed as Diagram (17). Besides, it is remarkable
that the two Axioms reversible-stability and reversible-cube are dual in
the sense that each axiom may be obtained from the other one by reversing the
orientations of all the arrows in diagrams.

2.5 Drag and Extraction

We need to introduce a few definitions related to standardization in order to
state the last axiom of the theory (Axiom 9).

Definition 9 (drag). A path f : M −→−→ N drags a redex v outgoing from N
to a redex u outgoing from M , when

– f = idM and v = u,
– or f = v1 · · · vn and there exists n + 1 redexes u1, ..., un+1 and n paths

h1, ..., hn such that:
• u1 = u and un+1 = v,
• the rewriting paths vi ·ui+1 and ui ·hi form a permutation vi ·ui+1 � ui ·hi

for every index 1 ≤ i ≤ n.

Notation: We write u
f←− � v when the rewriting path f drags the redex v to the

redex u. See Figure 2.
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u

��

v1 ��

⇐ ⇐

v2 ��

u2

��

��

u3

��

vi−1 ��

⇐ui−1

��
vi

��
h1

��
h2

�� ��
hi−1

�� vi+1···vn ��

Fig. 3. The redex u is extractible from the path f = v1 · · · vn and the path g =
h1 · · · hi−1 · vi+1 · · · vn is a projection of the rewriting path f by extraction of the
redex u.

Lemma 10 (preservation of drag). For every path f : M −→−→ N , the rela-

tion
f←− � is a partial function, from the redexes outgoing from N to the redexes

outgoing from M . Moreover, the relation is invariant by permutation on f :

∀g : M −→−→ N, f ≡ g ⇒ f←− � =
g←− � .

Proof. Suppose that u
f←− � v and u′ f←− � v. Then u = u′ by Axiom ancestor,

and an easy induction on the length of f . Now, by Axiom cube, the relation
increases by anti-standardization: if the rewriting path g drags the redex v to
the redex u, and f =⇒ g, then the rewriting path f drags the redex v to the
redex u. By Axiom enclave, the relation increases also by standardization: if
the rewriting path f drags the redex v to the redex u, and f =⇒ g, then the
rewriting path g drags the redex v to the redex u as well. We conclude. ��

Definition 11 (extraction, projection, ↘u). A redex u : M −→ P is ex-
tractible from a path f = v1 · · · vn : M −→−→ N when there exists an index
1 ≤ i ≤ n such that the path v1 · · · vi−1 drags the redex vi to the redex u. In
that case, we call projection of the rewriting path f by extraction of the re-
dex u : M −→ P any rewriting path g : P −→−→ N which decomposes as

g = h1 · · ·hi−1 · vi+1 · · · vn

where there exists redexes u1, ..., ui with u1 = u and ui = vi and a permutation

vj · uj+1 � uj · hj

for every index 1 ≤ j ≤ i− 1.

Notation: We write f ↘u g when the redex u is extractible from the path f ,
and g is a projection of f by extraction of the redex u. See figure 3.

Lemma 12 (preservation of extraction). Suppose that a redex u is ex-
tractible from a path g : M −→−→ N more standard than a path f : M −→−→ N .
Then the redex u is also extractible from the path f . Moreover, every projection
of f by extraction of u and every projection of g by extraction of u are Lévy
equivalent.
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Proof. Suppose that the redex u is extractible from the path f = v1 · · · vn :
M −→−→ N . By definition, there exists an index 1 ≤ i ≤ n such that the path
v1 · · · vi−1 drags the redex vi to the redex u. We show that the index i is unique.
Suppose that there exists another index 1 ≤ j ≤ n such that v1 · · · vj−1 drags
the redex vj to the redex u. We may suppose without loss of generality that
i < j. Let the rewriting path h be a projection of the rewriting path v1 · · · vi by
extraction of the redex u at position i. By definition of extraction and projection,
the two rewriting paths v1 · · · vi and u · h are Lévy equivalent. From this follows
that the two paths

v1 · · · vj−1 = v1 · · · vi · vi+1 · · · vj−1 and u · h · vi+1 · · · vj−1

are Lévy equivalent. Here comes the contradiction. By Lemma 10 (preservation
of drag), the path u ·h ·vi+1 · · · vj−1 drags the redex vj to the redex u. This may
be decomposed in two steps: first, the path h · vi+1 · · · vj−1 drags the redex vj to
a redex v, then the redex u drags the redex v to the redex u. This very last point
means that there exists a permutation of the form u · v � u ·h′. This contradicts
the Axiom shape. We thus conclude that the index i is unique for a given u.

We may suppose without loss of generality that there exists a unique standard-
ization step from the rewriting path f to the rewriting path g. The remainder
of the lemma follows then from Axioms reversibility and cube when the stan-
dardization step from f to g is reversible, and from Axioms irreversibility,
ancestor and cube when the standardization step is irreversible. ��
Remark: The uniqueness of the index i in the proof of Lemma 12 is not really
necessary to establish the property, but it is a safeguard, since after all, we have
not supposed anything like the optional hypothesis descendant formulated in
Section 7.1.

2.6 Axiom 9: Termination

Axiom termination mirrors in our theory the finite development property of the
λ-calculus, which states that every development of a set of β-redexes terminates.
Jan Willem Klop uses the property in his PhD thesis to deduce that it is not
possible to extract infinitely many times a β-redex from a fixed β-rewriting path,
see [20] as well as Section 6.

Axiom 9 (Termination). There exists no infinite sequence

f1 ↘u1 f2 ↘u2 · · · ↘uk−1 fk ↘uk
· · ·

where fi are paths and ui are redexes.

3 A Direct Characterization of the Standard Paths

In this section, we establish a key preliminary step in our proof of the standard-
ization theorem, performed in Section 4, by characterizing standard rewriting
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M

u

��

u1 ��

♦ ♦

u2 ��

w2

��

��

w3

��

un ��

♦wn

��

N

v

��
P v1

��
v2

�� ��
vn

�� Q

Fig. 4. The path f = u1 · · · un : M −→−→ N followed by the redex v : N −→ Q permutes
reversibly to the redex u : M −→ P followed by the path g = v1 · · · vn : P −→−→ Q.
Alternatively, the redex u : M −→ P followed by the path g = v1 · · · vn : P −→−→ Q
permutes reversibly to the path f = u1 · · · un : M −→−→ N followed by the redex v :
N −→ Q.

path in a more direct and explicit way. In Section 3.1, we introduce the notions
of starts and stops of a rewriting path, and analyze their properties. From this,
we deduce in Section 3.2 that every path is epi (left cancellable) with relation to
the Reversible permutation relation %. In Section 3.3, we introduce the notion
of anti-standard path and establish that a rewriting path is standard if and only
if it does not contain any occurrence of such anti-standard path.

3.1 The Structure of Starts and Stops

Definition 13 (starts and stops). A redex u : M −→ P starts a path f :
M −→−→ N when there exists a path g : P −→−→ N such that f % u · g. A
redex v : Q −→ N stops a path f : M −→−→ N with remainder g : M −→−→ Q when
f % g · v. A redex v : Q −→ N stops a path f : M −→−→ N when the redex v stops
the path f with some remainder g : M −→−→ Q.

Definition 14 (reversible permutation of path and redex). A path f : M
−→−→ N followed by a redex v : N −→ Q permutes reversibly to a redex u : M −→
P followed by a path g : P −→−→ Q, when

– f = idM and g = idP and v = u : M −→ P ,
– or f = u1 · · ·un and g = v1 · · · vn and there exists a series of n + 1 redexes

w1, ..., wn+1 such that
• w1 = u and wn+1 = v,
• the two paths ui · wi+1 and wi · vi form a reversible permutation ui ·

wi+1 ♦ wi · vi for every index 1 ≤ i ≤ n.

In that case, we say also that the redex u : M −→ P followed by the path g :
P −→−→ Q permutes reversibly to the path f : M −→−→ N followed by the redex v :
N −→ Q. See Figure 4.

Remark: In Definition 14, the redex u and the rewriting path g are uniquely
determined by the rewriting path f and the redex v — and conversely, the
rewriting path f and the redex v are uniquely determined by the redex u and the
rewriting path g. The one-to-one relationship follows from Axiom reversibility.



582 P.-A. Melliès

Lemma 15 (structure of stops). A redex v : Q −→ N stops a path f =
u1 · · ·un : M −→−→ N with remainder g : M −→−→ Q iff there exists an index
1 ≤ i ≤ n and a path vi+1 · · · vn such that

– the redex ui followed by the path ui+1 · · ·un permutes reversibly to the path
vi+1 · · · vn followed by the redex v,

– the rewriting path (u1 · · ·ui−1) · (vi+1 · · · vn) is equivalent to the path g mod-
ulo %.

Proof. We declare that a redex v : Q −→ N super-stops a path f = u1 · · ·un :
M −→−→ N at position 1 ≤ i ≤ n with remainder g : M −→−→ Q when there exists
a path vi+1 · · · vn such that

– the redex ui followed by the path ui+1 · · ·un permutes reversibly to the
path vi+1 · · · vn followed by the redex v,

– the rewriting path (u1 · · ·ui−1) · (vi+1 · · · vn) is equivalent to the path g
modulo %.

We declare that a redex v super-stops a path f with remainder g when it super-
stops the path f with remainder g at some position i.

The lemma states that a redex v stops a path f with remainder a path g
iff the redex v super-stops f with remainder g. Right-to-left implication (⇐) is
immediate. The other direction (⇒) reduces to showing that whenever the two
assertions below holds:

– a redex v : Q −→ N super-stops a path f = u1 · · ·un with remainder g, and
– the path f ′ is equivalent to the path f modulo reversible permutations,

then the redex v super-stops the path f ′ with remainder the same rewriting
path g. This elementary but fundamental preservation property is established
in the following way. We may suppose without loss of generality that the two
rewriting paths f = u1 · · ·un and f ′ = u′

1 · · ·u′
n are related by a unique reversible

permutation
f

REV=⇒ f ′

occurring at a position 1 ≤ j ≤ n− 1 in the rewriting path f . We thus have:

– u′
k = uk for every index 1 ≤ k ≤ n different to j and j + 1, and

– uj · uj+1 ♦ u′
j · u′

j+1.

Now, call i any position (there exists in fact only one of these positions, 1 ≤ i ≤ n,
but nobody cares about that here) such that the redex v : Q −→ N super-stops
the path f = u1 · · ·un at position i with remainder g. We show by case analysis
on the indices i and j that there exists an index 1 ≤ k ≤ n such that the
redex v : Q −→ N super-stops the path

f ′ = u′
1 · · ·u′

k−1 · u′
k · u′

k+1 · · ·u′
n

at position k with remainder g. To that purpose, we define a rewriting path
v′k+1 · · · v′n consisting of n− k redexes, such that:
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a. the redex u′
k followed by the path u′

k+1 · · ·u′
n permutes reversibly to the

path v′k+1 · · · v′n followed by the redex v,
b. the rewriting path (u′

1 · · ·u′
k−1) · (v′k+1 · · · v′n) is equivalent to the path g

modulo %.

◦ The construction is immediate when j+1 ≤ i: simply take k = i and v′i · · · v′n =
vi · · · vn.
◦ The construction is also nearly immediate when j = i: simply take k = i + 1
and v′i+2 · · · v′n = vi+2 · · · vn, then apply Axiom reversibility to establish the
two properties a. and b.
◦ The difficult case is the remaining case when j > i. In that case, let the redex x
denote the unique redex such that the redex ui followed by the path ui+1 · · ·uj−1
permutes reversibly to the path vi+1 · · · vj−1 followed by the redex x. Consider
the diagram below, which describes in two perspectives how the redex x followed
by the path uj · uj+1 permutes reversibly to the path vj · vj+1 followed by the
redex z:

x
��

�

���
��

vj

��

u′
j ��

uj

��
♦♦ u′

j+1

��
uj+1 ��

y′
			

��			

vj+1
��

♦ z���

�����

or u′
j+1

��

x ��

vj

��
♦ uj

��

u′
j			

��			

y′ ��

vj+1
		
	

��		
	

uj+1
��

�

���
��

♦

z
��

♦

By Axiom reversible-stability, the diagram may be completed in the fol-
lowing way

x
��

�

���
��

vj

��

v′
j ��

♦ y	
		

��		
	

v′
j+1

��

u′
j

��

uj

��
♦♦ u′

j+1

��
♦

uj+1 ��

y′
			

��			

vj+1
��

♦ z���

�����

v′
j+1

��

y ��

♦

u′
j+1

��

x ��

vj

��
♦♦

v′
j���

�����

uj

��

u′
j			

��			

y′ ��

vj+1
		
	

��		
	

uj+1
��

�

���
��

♦

z
��

♦

where y and v′j and v′j+1 denote three redexes involved in the three reversible
permutations:

x · u′
j ♦ v′j · y, and vj · vj+1 ♦ v′j · v′j+1 and y · u′

j+1 ♦ v′j+1 · z.

The completed diagram shows (in two perspectives again) that the redex x
followed by the path u′

j · u′
j+1 permutes reversibly to the path v′j · v′j+1 followed

by the redex z. So, by taking k = i and by defining v′l = vl for every index
i + 1 ≤ l ≤ n different to j and j + 1, one obtains that:
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a. the redex ui followed by the path u′
i+1 · · ·u′

n permutes reversibly to the path
v′i · · · v′n followed by the redex v,

b. the rewriting path (u1 · · ·ui−1) · (v′i+1 · · · v′n) is equivalent to the path g
modulo %. This very last point follows from the series of equivalence

g % (u1 · · ·ui−1) · (vi+1 · · · vn) and vi+1 · · · vn % v′i+1 · · · v′n.
��

Unfortunately, the characterization of starts is not as simple as the characteri-
zation of stops. The main reason is that the following 2-dimensional transition
system

u2

��

v2 ��

♦

u12

��

v ��

u

��
♦♦

w���

�����

u1

��

w2			

��			

v1 ��

w1
		
	

��		
	 w12

��
�

���
��

�

v12
��

�

v2 ��

u2

��

♦ u12

��
v12

��

where

u · v1 ♦ v · u1 v · w2 ♦ w · v2 w2 · u12 � u1 · w12
u2 · v12 ♦ v2 · u12 u · w1 ♦ w · u2 w1 · v12 � v1 · w12

satisfies the nine properties required of an axiomatic rewriting system in Sec-
tion 2. The series of equivalence

u · w1 · v12 % w · u2 · v12 % w · v2 · u12 % v · w2 · u12

illustrates then that a redex u may start the path v ·w2 ·u12 even if the path v ·w2
followed by the redex u12 does not permute reversibly. However, the situation is
not entirely hopeless: observe that the path v · w2 is %-equivalent to the path
w ·v2 which followed by the redex u12 permutes reversibly to the redex u followed
by the path w1 · v12. Next lemma shows that the property characterizes starts
in any axiomatic rewriting system.

Lemma 16 (structure of starts). A redex u : M −→ P starts a path
u1 · · ·un : M −→−→ N if and only there exists an index 1 ≤ i ≤ n and two
paths v1 · · · vi−1 and w1 · · ·wi−1 such that

– the path v1 · · · vi−1 is equivalent to the path u1 · · ·ui−1 modulo %,
– the path v1 · · · vi−1 followed by the redex ui permutes reversibly to the redex u

followed by the path w1 · · ·wi−1.

Proof. We declare that a redex u : M −→ P super-starts a path u1 · · ·un :
M −→−→ N when there exists an index 1 ≤ i ≤ n and two paths v1 · · · vi−1 and
w1 · · ·wi−1 such that
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– u1 · · ·ui−1 % v1 · · · vi−1,
– the path v1 · · · vi−1 followed by the redex ui permutes reversibly to the re-

dex u followed by the path w1 · · ·wi−1.

We prove that a redex u starts a path f iff the redex u super-starts f . Right-to-
left implication (⇐) is immediate: the redex u super-starts the path f implies
the redex u starts the path f . The converse implication (⇒) reduces to the
following preservation property: when a redex u super-starts a path f , and when
the path g is obtained from the path f by applying a reversible permutation,
then the redex u super-starts also the path g.

So, consider a redex u : M −→ P and a path f = u1 · · ·un : M −→−→ N such
that the redex u super-starts the path f . By definition, there exists an index
1 ≤ i ≤ n and two paths v1 · · · vi−1 and w1 · · ·wi−1 such that

– u1 · · ·ui−1 % v1 · · · vi−1,
– the redex u followed by the path w1 · · ·wi−1 permutes reversibly to the path

v1 · · · vi−1 followed by the redex ui.

Consider any reversible standardization step

f
REV=⇒ g

or equivalently, any index 1 ≤ j ≤ n−1 and reversible permutation uj ·uj+1 ♦ u′
j ·

u′
j+1. We claim that the redex u super-starts the path

g = (u1 · · ·uj−1) · (u′
j · u′

j+1) · (uj+2 · · ·un).

We proceed by case analysis.
◦ The two first cases, when j ≤ i− 2 or when j ≥ i, are immediate.
◦ The remaining case, when j = i−1, is the only difficult case. The equivalence

u1 · · ·ui−1 % v1 · · · vi−1

shows that the redex ui−1 stops the path v1 · · · vi−1 with remainder u1 · · ·ui−2.
By Lemma 15, there exists an index 1 ≤ k ≤ i− 1 and a path v′k+1 · · · v′i−1 such
that

– the redex vk followed by the path vk+1 · · · vi−1 permutes reversibly to the
path v′k+1 · · · v′i−1 followed by the redex ui−1,

– the path (v1 · · · vk−1) · (v′k+1 · · · v′i−1) is equivalent to the path u1 · · ·ui−2
modulo %.

We are also in a situation where

– there exists a reversible permutation ui−1 · ui ♦ u′
i−1 · u′

i

– the path vk+1 · · · vi−1 followed by the redex ui permutes reversibly to a
redex y followed by the path wk+1 · · ·wi−1.

All put together, we deduce by applying Axiom reversible-stability i− k − 1
times, and Axiom reversibility once, that there exists a redex x and path
w′

k+1 · · ·w′
i−1 such that
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a. the redex u followed by the path w1 · · ·wk−1 permutes reversibly to the
path v1 · · · vk−1 followed by the redex x,

b. the redex x followed by the redex wk permutes reversibly to the redex vk

followed by the redex y,
c. the redex y followed by the path wk+1 · · ·wi−1 permutes reversibly to the

path vk+1 · · · vi−1 followed by the redex ui,
d. the redex x followed by the path w′

k+1 · · ·w′
i−1 permutes reversibly to the

path v′k+1 · · · v′i−1 followed by the redex u′
i−1,

e. the redex wk followed by the path wk+1 · · ·wi−1 permutes reversibly to the
path w′

k+1 · · ·w′
i−1 followed by the redex u′

i.

Points a–d. are summarized in the diagram below.

P
w1···wk−1 ��

wk

��

w′
k+1···w′

i−1 ��

♦···♦

u′
i

��

M v1···vk−1
��

u

����������
♦···♦

v′
k+1···v

′
i−1

��

vk

��
♦···♦♦

x""""

��""""

ui−1

��

u′
i−1####

��####

vk+1···vi−1 ��

y	
		

��		
	 ui

���
�

���
���

♦

wk+1···wi−1
��

♦···♦

Point e. completes the diagram above by providing the front face of the cuboid
generated by the redexes x and vk and the path v′k+1 · · · v′i−1.

w′
k+1···w

′
i−1 ��

wk

��

♦···♦ u′
i

��
wk+1···wi−1

��

It appears now that the redex u super-starts the path

g = (u1 · · ·ui−2) · (u′
i−1 · u′

i) · (ui+1 · · ·un).

because

– the path u1 · · ·ui−2 is equivalent to the path (v1 · · · vk−1) · (v′k+1 · · · v′i−1)
modulo %,

– the path (v1 · · · vk−1) · (v′k+1 · · · v′i−1) followed by the redex u′
i−1 permutes

reversibly to the redex u followed by the path (w1 · · ·wk−1) · (w′
k+1 · · ·w′

i−1).

This establishes the equivalence between starting and super-starting a path.
Since this is precisely what our lemma asserts, we conclude. ��
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3.2 Application: Every Rewriting Path is Epi wrt. �
We illustrate the previous section with an application of Lemma 15.

Lemma 17 (epi wrt. %). If f · g1 % f · g2 then g1 % g2.

Proof. We may suppose without loss of generality that the rewriting path f is
a redex u. We prove that u · g1 % u · g2 implies g1 % g2 by induction on the
length of g1 (and of g2). The property is immediate when g1 (and therefore g2)
is empty. Otherwise, the path g1 factors as g1 = h1 · v for some path h1 and
redex v. By Lemma 15, because the redex v stops the path u · g2 with remainder
u · h1, one of the two following cases occurs:

– either there exists a path h2 such that g2 % h2 · v and u · h1 % u · h2,
– or there exists a path h2 such that the redex u followed by the path g2

permutes reversibly to the path h2 followed by the redex v, and such that
h2 % u · h1.

In the first case, we deduce that h1 % h2 by induction hypothesis on u·h1 % u·h2,
and conclude that g1 % g2 by the series of equivalence:

g1 = h1 · v % h2 · v % g2

Now, we prove that the second case does not occur. Obviously, the path h2 drags
the redex v to the redex u. By Lemma 10 (preservation of drag) and equivalence
h2 % u · h1, the path u · h1 drags the redex v to the redex u. In particular, there
exists a redex w and a path h such that u · w � u · h. This contradicts Axiom
shape, and we conclude. ��
Remark: In Section 7.2 an additional hypothesis of reversible-shape is required
to complete the property to an epi-mono property wrt. %.

3.3 Characterization Lemma

We introduce below the fundamental notion of anti-standard path. These anti-
standard paths are called conflicts in [13, 27]. We change the terminology here
because the word conflict is generally understood as non determinism, and be-
cause the notion of anti-standard path specializes to the notion of anti-standard
pair introduced by J. W. Klop in the particular case of the λ-calculus equipped
with the left-order /left — see [20] and Section 1.9.

Definition 18. A path is anti-standard (see Figure 5) when it factors as

M
u−→ P

f−→−→ Q
y−→ N

where u and y are redexes and f is a rewriting path, and

– the redex u followed by the path f permutes reversibly to the path g followed
by the redex v,
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u

��

v1 ��

♦ ♦

v2 ��

��

��

��

vn ��

♦
��

v

��

x ��

� h

��
u1

��
u2

�� ��
un

��
y

��

Fig. 5. The definition of an anti-standard path u · u1 · · · un · y: the redex u followed
by the path u1 · · · un permutes reversibly to the path v1 · · · vn followed by the redex v
which permutes irreversibly with the redex y, as follows: v · y � x · h.

– the redex v and the redex y induce an irreversible permutation v · y � x · h,
for some redex x and rewriting path h.

The β-rewriting path taken earlier as illustration

Ka(ΔΔ) Δ1−→ Ka(ΔΔ) K−→ (λx.a)(ΔΔ) λ−→ a

is a typical example of anti-standard path in the axiomatic rewriting system
(Gλ, �tree). Compare indeed Diagrams (9) and (13) to Figure 5.

This leads us to the main result of the section.

Lemma 19 (characterization). A path u1 · · ·un is standard if and only if
there exists no pair of indices 1 ≤ i < j ≤ n such that ui · · ·uj defines an
anti-standard path.

Proof. Left-to-Right implication (⇒) is immediate. Proving the converse direc-
tion (⇐) reduces to showing that:

– when two rewriting paths f and g are equivalent modulo reversible permu-
tations %, and

– when the path f contains an anti-standard path,

then the path g contains also an anti-standard path.
So, consider two rewriting paths f = u1 · · ·un and g = u′

1 · · ·u′
n, and suppose

that the path g is obtained after a unique reversible standardization step on the
path f :

f
REV=⇒ g. (19)

Let 1 ≤ k ≤ n− 1 denote the index where the reversible permutation occurs in
the path f . Obviously,

u′
1 · · ·u′

k−1 = u1 · · ·uk−1 and u′
k·u′

k+1 ♦ uk·uk+1 and u′
k+2 · · ·u′

n = uk+2 · · ·un.

Now, suppose that the path f contains an anti-standard path, in the sense that
there exist two indices 1 ≤ i < j ≤ n such that the path ui · · ·uj is anti-standard.
Let y denote the redex uj. By definition of an anti-standard path, there exists a
path vi+1 · · · vj−1 and redex w such that:
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– the redex ui followed by the path ui+1 · · ·uj−1 permutes reversibly to the
path vi+1 · · · vj−1 followed by the redex w,

– the redexes w and y form an irreversible permutation w · y � x · h for some
redex x and path h.

We establish now that there exist two indices 1 ≤ I < J ≤ n such that the
path u′

I · · ·u′
J is anti-standard. This will show in particular that the path g

contains an anti-standard path.
◦ The property is immediate when k > j: simply take (I, J) = (i, j).
◦ The property follows from Lemma 15 when k + 1 < j:

– take (I, J) = (i− 1, j) when k = i− 1,
– take (I, J) = (i + 1, j) when k = i,
– take (I, J) = (i, j) otherwise.

There remain only two difficult cases to treat: when k = j − 1 and when k = j.

◦ We treat the first case, when k = j − 1. The situation is summarized by the
diagram:

h

��

vj−1 ��

v

��
♦ w

��

x			

��			

uj−1 ��

u′
j−1

			

��			
y
��

�

���
��

�

u′
j

��
♦1

where the reversible permutation ♦ 1 relates the rewriting paths f and g in
Equation (19) and where the irreversible permutation w · y � x · h between
the redex w and the redex y witnesses the fact that the path ui · · ·uj−1 · y (or
equivalently the path ui · · ·uj−1 · uj) is anti-standard.

The diagram may be completed by Axiom stability in the following way:

hv′

��

h′
��

⇐

h

��

vj−1 ��

v

��
♦⇑

v′
j−1���

�����

w

��

x			

��			

uj−1 ��

u′
j−1

			

��			
y
��

�

���
��

�

u′
j

��
♦

where v′j−1 is a redex, where h′ and hv′ are two rewriting paths, forming per-
mutations

v · u′
j−1 � v′j−1 · hv′ and vj−1 · x � v′j−1 · h′.
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We proceed by case analysis on the permutation v · u′
j−1 � v′j−1 · hv′ :

— Either the permutation is irreversible. In that case, the path ui · · ·uj−2 ·
u′

j−1 is anti-standard, and we may thus conclude with (I, J) = (i, j − 1).

— Or the permutation is reversible. In that case, the path hv′ is a redex;
we write it v′ for clarity’s sake. We claim that the path ui · · ·uj−2 · u′

j−1 · u′
j

is anti-standard. Indeed, the redex ui followed by the path ui+1 · · ·uj−2 · u′
j−1

permutes reversibly to the path vi+1 · · · vj−2 · v′j−1 followed by the redex v′,
and we establish now that the redexes v′ and u′

j are involved in an irreversible
permutation v′ · u′

j � v′j · h′′ for some redex v′j and rewriting path h′′. First
of all, the rewriting path v · u′

j−1 drags the redex u′
j to the redex vj−1. So, by

Lemma 10 (preservation of drag), the path v′j−1 · v′ which is Lévy equivalent to
the path v · u′

j−1, drags the redex u′
j to the redex vj−1. From this follows that

there exists a permutation of the form v′ · u′
j � v′j · h′′ for some redex v′j and

rewriting path h′′. There remains to show that this permutation is irreversible
in order to establish our claim. We proceed by contradiction and suppose that
the permutation v′ · u′

j � v′j · h′′ is reversible. Then, it follows from Axiom
reversible-stability applied around the permutation v · u′

j−1 ♦ v′j−1 · v′ that:

– there exists a reversible permutation starting from the rewriting path v ·
uj−1; this permutation is necessarily the permutation v · uj−1 ♦ vj−1 ·w by
Axiom reversibility,

– there exists a reversible permutation starting from the rewriting path w · y.

By Axiom reversibility, this last assertion contradicts the fact that there exists
an irreversible permutation starting from the rewriting path w · y. From this,
we conclude that the permutation v′ · u′

j � v′j · h′′ starting from the rewriting
path v′ · u′

j is irreversible, and thus that the rewriting path ui · · ·uj−2 · u′
j−1 · u′

j

is anti-standard. We may thus take (I, J) = (i, j).

◦ We treat the second case, when k = j, and thus, the two redexes uj and uj+1
are permuted reversibly in the path f to obtain the path g. Again, we let y
denote the redex uj . So, the redex ui followed by the path ui+1 · · ·uj−1 permutes
reversibly to the path vi+1 · · · vj−1 followed by the redex w; and the redex w
induces the irreversible permutation w · y � x · h with the redex y, witnessing
the fact that the path ui · · ·uj−1 · y (or equivalently the path ui · · ·uj−1 · uj) is
anti-standard.

The situation is summarized in the diagram below:

x ��

w

��
� h

��
y ��

u′
j

			

��			
uj+1
��

�

���
��

u′
j+1

��
♦1

where the reversible permutation ♦ 1 relates the rewriting paths f and g in
Equation (19).
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Here, we apply Axiom enclave and complete the diagram in the following
way:

hw′

��

h′
��

⇐

h1···hm

��

x ��

w

��
�⇑

v′
j���

�����

h

��

vj+1			

��			

y ��

u′
j

			

��			
uj+1
��

�

���
��

⇑
...
⇑

u′
j+1

��
♦

with two redex v′j and two rewriting paths hw′ and h′ inducing permutations:

w · u′
j � v′j · hw′ and x · vj+1 � v′j · h′.

Note moreover that the path h grabs the redex uj+1 to a redex vj+1, and that
the redex x grabs the redex vj+1 to the redex v′j .

We proceed by case analysis on the permutation w · u′
j � v′j · hw′ :

— Either the permutation is irreversible. In that case, the rewriting
path ui · · ·uj−1 · u′

j is anti-standard, and we may thus conclude with (I, J) =
(i, j).

— Or the permutation is reversible. In that case, the path hw′ is a redex; we
thus write it w′ for clarity’s sake. We claim that the rewriting path ui · · ·uj−1 ·u′

j ·
u′

j+1 is anti-standard. Indeed, the redex ui followed by the path ui+1 · · ·uj−1 ·u′
j

permutes reversibly to the path vi+1 · · · vj−1 · v′j followed by the redex w′, and
we establish now that the redexes w and u′

j+1 induce together an irreversible
permutation starting from the path w′ ·u′

j−1. The path w·u′
j grabs the redex u′

j+1
to the redex x. By Lemma 10 (preservation of drag), the path v′j · w′ which
is Lévy equivalent to the path w · u′

j, drags the redex u′
j+1 to the redex x.

This ensures that the two redexes w′ and u′
j+1 induce together a permutation

starting from the rewriting path w′ · u′
j+1. There remains to show that this

permutation is irreversible. We proceed by contradiction and suppose that the
permutation v′·u′

j � v′j ·h′′ is reversible. Then, it follows from Axiom reversible-
stability applied around the permutation w · u′

j ♦ v′j · w′ that there exists a
reversible permutation starting from the rewriting path w ·y. This together with
Axiom reversibility contradicts the existence of the irreversible permutation
w · y � x · h which starts also from the rewriting path w · y. We conclude
that, as claimed, the two redexes w′ and u′

j+1 are involved in an irreversible
permutation starting from the rewriting path w′ · u′

j+1. Thus, the rewriting
path ui · · ·uj−1 ·u′

j ·u′
j+1 is anti-standard. This concludes the proof, with (I, J) =

(i, j + 1).

Conclusion: We have just established that when a path f contains an anti-
standard path, then every path g equivalent to the path f modulo re-
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versible permutations % contains also an anti-standard path. Lemma 19 follows
immediately. ��

Lemma 20 (interface). Suppose that two paths f : M −→−→ P and g : P −→−→ N
are standard. Then, the composite path f · g : M −→−→ N is standard if and only
if the path u · g is standard, for every redex u which stops f .

Proof. Follows immediately from Lemma 19. ��

4 The Standardization Theorem

All along this section, we suppose that the 2-dimensional transition system (G, �)
defines an axiomatic rewriting system — equivalenly, that it satisfies the nine
axioms formulated in Section 2. From this assumption, we deduce the diagram-
matic standardization theorem (Theorem 2) evocated in the Introduction — in
Section 1.8.

4.1 The Outermost Redex

For every nonempty path f : M −→−→ N , we define a redex outm(f) : M −→ P
extractible from the path f , in these sense of Definition 11. This redex is called
the outermost redex of the rewriting path f . We will see at the later stage of the
proof that the redex outm(f) is the first redex of a particular standard path g
associated to the path f . The definition of the redex outm(f) is by induction on
the length of the path f .

Definition 21 (outermost redex). For every non-empty path f : M −→−→ N ,
the redex outm(f) is defined as follows:

outm(v) = v for a redex v,

outm(v · f) =
{

u when the redex v drags the redex outm(f) to the redex u,
v when there is no permutation of the form v · outm(f) � h.

Lemma 22 (preservation of outermost). Let f : M −→−→ N be a path. Sup-
pose that u : M −→ P is a redex extractible from f , and that g is a projection
of f by extraction of u. Then,

– either outm(f) = u,
– or the path g is nonempty, and outm(g) u←−� outm(f).

Proof. By induction on the length of the path f . The property is immediate when
the path f is a redex. Otherwise, suppose that the path f factors as f = v · f ′

where v is a redex and where f ′ is a nonempty path satisfying the property
stated in the lemma. Suppose moreover that the redex u is extractible from the
path f , and that f ↘u g (see Definition 11 for a definition of the notation ↘u.)



Axiomatic Rewriting Theory I: A Diagrammatic Standardization Theorem 593

We proceed by case analysis, depending whether the two redexes u and v
coincide.
◦ Suppose that u = v, and thus, that the redex u is the first redex rewritten
in the path f . Then, by definition of the redex outm(−), either u = outm(f) or
outm(f ′) u←− � outm(f). We conclude because the equality f ′ = g holds.
◦ Suppose now that u �= v. By definition of f ↘u g, there exists a redex u′

and two paths hv′ and g′ such that (1) the path g factors as g = hv′ · g′, and
(2) f ′ ↘u′ g′ and (3) v ·u′ � u ·hv′ . The situation is summarized in the diagram
below:

M
v ��

u

��
⇐

f ′
��

u′

��

⇐

N

P
hv′

��
g′

�� N

Since the proof is finished when outm(f) = u, we suppose from now on that
outm(f) �= u. From this follows that outm(f ′) �= u′ by definition of outm(−) and
by Axiom ancestor. Here, we apply our induction hypothesis on the path f ′, and

deduce that outm(f ′) u′
←−� outm(g′). The diagram below describes the situation:

h

��

M
v ��

u

��
⇐ u′

��

outm(f ′)
��!!!!!!!!

P
hv′

��

outm(g′)
��$

$$
$$

$$
$

⇑

From now on, we proceed by case analysis on the permutation v · u′ � u · hv′ .

— Either the permutation v · u′ � u · hv′ is irreversible. In that case, we
apply Axiom enclave, and deduce that

1. the redex v drags the redex outm(f ′) to the redex outm(g), and
2. the path hv′ drags the redex outm(g′) to the redex outm(g), and
3. the redex u drags the redex outm(g) to the redex outm(f).

The third assertion concludes the proof.

— Or the permutation v ·u′ � u ·hv′ is reversible. In that case, the path hv′

is a redex. We write it v′ for clarity’s sake. Again, we proceed by case analysis,
depending on whether the redex v coincides with the redex outm(f).

1. Suppose that the redex v does not coincide with outm(f). By definition
of outm(−), the redex v drags the redex outm(f ′) to the redex outm(f).
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From this follows that the path v · u′ drags the redex outm(g′) to the re-
dex outm(f). By Lemma 10 (preservation of drag), the path u · v′ which is
Lévy equivalent to the path v · u′, the path u · v′ drags the redex outm(g′)
to the redex outm(f). From this follows that the redex v′ drags the re-
dex outm(g′) to the redex outm(g), and that the redex u drags the re-
dex outm(g) to the redex outm(f). This concludes the proof.

2. Suppose that the redex v is equal to the redex outm(f). In that case, we
claim that the redex v′ coincides with the redex outm(g). We proceed by
contradiction and suppose that v′ �= outm(g). By definition of outm(−),
the redex v′ drags the redex outm(g′) to the redex outm(g). It follows from
Axiom stability applied around the reversible permutation v · u′ ♦ u · v′,
that the redex v drags the redex outm(f ′) to a redex w. This contradicts
the equality v = outm(f). We conclude that v′ = outm(g), and thus, that
the redex u drags the redex v′ = outm(g) to the redex v = outm(f). We
conclude.

All this concludes our proof by induction on the length of the path f . ��

Lemma 23. Let f : M −→−→ N be a path. The redex outm(f) is extractible from
any path u1 · · ·un : M −→−→ N obtained as follows:

f ↘u1 f2 ↘u2 · · · fn ↘un idN .

Proof. Immediate consequence of Lemma 22. ��

4.2 Uniqueness

Lemma 24. Suppose that (M1
u1−→ M2

u2−→ · · · un−1−→ Mn
un−→ Mn+1) is a stan-

dard path. Suppose moreover that, for every index 1 ≤ i ≤ n, the path ui · · ·un

is more standard than every path in its Lévy equivalence class:

∀ 1 ≤ i ≤ n, ∀h : Mi −→−→ Mn+1, h ≡ ui · · ·un implies h =⇒ ui · · ·un.

Then, for every path f1 : M1 −→−→ Mn+1 Lévy equivalent to the path u1 · · ·un,
there exists a series of rewriting paths fi : Mi −→−→ Mn+1 indexed by 1 ≤ i ≤ n
and a sequence of extractions:

f1 ↘u1 f2 ↘u2 · · · fn ↘un idMn+1 .

Proof. We proceed by induction on the length n of the rewriting path u1 · · ·un.
Suppose that f : M −→−→ N is a rewriting path Lévy equivalent to the path
u1 · · ·un. Note that the redex u1 is extractible from the path u1 · · ·un with
resulting projection the path u2 · · ·un. Now, by hypothesis, the path u1 · · ·un

is more standard than the path f . From this and Lemma 12 (preservation of
extraction) follows that the redex u1 is extractible from the path f1 = f with
projection a path f2 Lévy equivalent to the path u2 · · ·un. We know by induction
that there exists a sequence of extractions

f2 ↘u2 f3 ↘u3 · · · fn ↘un idMn+1 .
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We have thus established that there exists a sequence of extractions

f1 ↘u1 f2 ↘u2 · · · fn ↘un idMn+1 .

This concludes our proof by induction. ��

Lemma 25 (uniqueness). A standard path is more standard than every path
in its Lévy equivalence class.

Proof. We proceed by induction on the length of the standard path. Suppose
from now on that the property is satisfied for every path of length n − 1, and
suppose that

f = (M1
u1−→ M2

u2−→ · · · un−1−→ Mn
un−→ Mn+1)

is a standard path of length n. We establish that the path f is more standard
than every path in its Lévy equivalence class.

Step 1. First of all, we claim that in order to establish that property of the
path f , we only need to show that the redex u1 is extractible from every path
Lévy equivalent to the path f . Suppose indeed that this is the case, and consider a
path g Lévy equivalent to the standard path f . By definition of Lévy equivalence,
there exists a sequence of permutations

f = f1
1≡ f2

1≡ · · · 1≡ fm
1≡ fm+1 = g

of standardization steps fi
1=⇒ fi+1 or fi

1⇐= fi+1, for every 1 ≤ i ≤ m.
For each such index i, the rewriting path fi is Lévy equivalent to the path f .
We have just assumed that the redex u1 is thus extractible from each path fi.
Now, we may apply Lemma 12 (preservation of extraction) as many times as
there are permutation steps from the path f to the path g to deduce that the
two paths f and g have the same projections (modulo Lévy equivalence) after
extraction of the redex u1. Now, the path u2 · · ·un is the unique projection of
the path f by extraction of the redex u1. We conclude that any projection g′ of
the rewriting path g obtained by extraction of the redex u1 is Lévy equivalent to
the path u2 · · ·un. By applying our induction hypothesis on the path u2 · · ·un,
we know that the path u2 · · ·un is more standard than the path g′. It follows
that the path f = u1 · · ·un is more standard than the path u1 · g′, which is, by
construction, more standard than the path g. This establishes that the path f
is more standard than every path in its Lévy equivalence class.

Step 2. We have just shown in Step 1. that we only need to prove here that the
redex u1 is extractible from every path Lévy equivalent to the path f = u1 · · ·un.
We introduce the necessary notation to that purpose. The proof proceeds by con-
tradiction. We suppose that the redex u1 is not extractible from a particular path
in the Lévy equivalence class of the path f . By definition of Lévy equivalence,
there exists a sequence

f1
1≡ f2

1≡ · · · 1≡ fm
1≡ fm+1
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of standardization steps fi
1=⇒ fi+1 or fi

1⇐= fi+1, for every 1 ≤ i ≤ m, such
that:

– f1 = f ,
– the redex u1 is extractible from the path fj, for every index 1 ≤ j ≤ m,
– the redex u1 is not extractible from the path fm+1.

For each index 1 ≤ i ≤ m, we define the path gi as any projection of the path fi

by extraction of the redex u1. So,

∀1 ≤ i ≤ m, fi ↘u1 gi.

Note that Lemma 12 (preservation of extraction) implies that all the paths g1 =
u2 · · ·un, and g2, ... , gm are Lévy equivalent.

Step 3. Here, we will be slightly more explicit than in Step 2. Let p denote the
length of the path fm. Thus, the path fm factors as

fm = v1 · · · vp

where each vi denotes a redex, for 1 ≤ i ≤ p. We know by construction that
fm

1≡ fm+1. It follows from Lemma 12 (preservation of extraction) that in fact

fm
1=⇒ fm+1

because the redex u1 is extractible from the path fm but not from the path fm+1.
By definition of 1=⇒, the paths fm and fm+1 factor as:

fm = v1 · · · vk−1·(vk·vk+1)·vk+2 · · · vp fm+1 = v1 · · · vk−1·(wk·h)·vk+2 · · · vp

for some index 1 ≤ k ≤ p− 1, where wk is a redex and h is a path involved in a
permutation vk · vk+1 � wk · h. Now, it follows from Lemma 10 (preservation of
drag) and Axiom ancestor that:

– the permutation vk · vk+1 � wk · h is irreversible,
– the path v1 · · · vk−1 drags the redex vk to the redex u1.

The situation is summarized in the diagram below:

M1

u1

��

v1···vk−1 ��

⇐···⇐ vk

��

wk ��

� h

��
M2

h1···hk−1

��
vk+1

��
vk+2···vp

�� Mn+1

Step 4. We establish the equality outm(fm) = outm(fm+1). We proceed
by case analysis, depending whether the redex vk+1 coincides with the redex
outm(vk+1 · · · vp).
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– Suppose that the redex vk+1 is not equal to the redex outm(vk+1 · · · vp). By
Lemma 22, the path vk+2 · · · vp is nonempty, and the redex vk+1 drags the
redex outm(vk+2 · · · vp) to the redex outm(vk+1 · · · vp). By Axiom enclave
applied around the irreversible permutation vk · vk+1 � wk · h, the two
paths vk · vk+1 and wk · h drag the redex outm(vk+2 · · · vp) to the same
redex outm(vk · · · vp) = outm(wk · h · vk+2 · · · vp). The inductive definition
of outm(−) ensures then that outm(fm) = outm(fm+1). We conclude.

– Suppose now that the redex vk+1 coincides with the redex outm(vk+1 · · · vp).
In that case, outm(vk · · · vp) = wk because the redex vk drags the redex
vk+1 = outm(vk+1 · · · vp) to the redex wk. Now, we claim that outm(wk ·
h · vk+2 · · · vp) = wk. First of all, it follows from Axioms ancestor and
irreversibility and from vk · vk+1 � wk · h that the redex wk is the only
redex extractible from the path wk · h. So, there only remains to prove that
the redex outm(wk ·h·vk+2 · · · vp) is extractible from the path wk ·h. Suppose
that it is not. In that case, the path wk ·h drags the redex outm(vk+2 · · · vp)
to the redex outm(wk · h · vk+2 · · · vp). By Lemma 10 (preservation of drag)
the path vk · vk+1 which is Lévy equivalent to the path wk · h, drags the
redex outm(vk+2 · · · vp) to the same redex outm(vk · · · vp) = outm(wk · h ·
vk+2 · · · vp). This contradicts the equality wk = outm(vk · · · vp) = vk+1. We
conclude that outm(vk · · · vp) = wk = outm(wk ·h ·vk+2 · · · vp) and thus that
outm(fm) = outm(fm+1).

Step 5. We deduce from Step 4 that the redex u1 drags the redex outm(gm)
to the redex outm(fm). We have just proved that outm(fm) = outm(fm+1).
From this follows that the redex outm(fm) is extractible from the path fm+1.
Since by construction of the path fm+1, the redex u1 is not extractible from that
path, the two redexes u1 and outm(fm) are necessarily different. We may thus
apply Lemma 22 on the extraction fm ↘u1 gm. This establishes our claim: the
redex u1 drags the redex outm(gm) to the redex outm(fm).

Step 6. We prove that the redex outm(gm) is extractible from the path g1 =
u2 · · ·un. By induction hypothesis, each path ui · · ·un is more standard than any
of its Lévy equivalent paths, for 2 ≤ i ≤ n. We may thus apply Lemma 24 to
the paths g1 and u2 · · ·un, and deduce that there exists a series of extractions

g1 ↘u2 · · · ↘un idMn+1 .

By Lemma 23, the series implies that the redex outm(gm) is extractible from
the path u2 · · ·un.

Step 7. We deduce from Step 6 that the redex outm(gm) is extractible from
all the paths g1, ..., gm. We have already noted at the end of Step 2 that all the
paths g1 = u2 · · ·un, g2, . . ., gm are Lévy equivalent. By induction hypothesis,
the standard path g1 = u2 · · ·un is more standard than every path gi, for every
index 1 ≤ i ≤ m. We also know that the redex outm(gm) is extractible from the
path g1. By Lemma 12 (preservation of extraction), the redex outm(gm) is thus
extractible from the path gi, for every index 1 ≤ i ≤ m.

Step 8. We deduce from Steps 4, 5 and 7 that the redex outm(fm) is ex-
tractible from the paths f1, ..., fm, fm+1. By Step 4, the redex outm(fm) is ex-
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tractible from the path fm+1. So, there remains to show that the redex outm(fm)
is extractible from the paths f1, ..., fm. By Step 5, the redex u1 drags the re-
dex outm(gm) to the redex outm(fm). By Step 7, the redex outm(gm) is ex-
tractible from all the paths g1, . . ., gm. From this follows that the redex gm is
extractible from the paths u1 ·g1, . . ., u1 ·gm. Now, for every index 1 ≤ i ≤ m, the
path u1 ·gi is more standard than the path fi because fi ↘u1 gi. We conclude by
Lemma 12 (preservation of extraction) that the redex outm(fm) is extractible
from the paths f1, ..., fm.
Step 9. By Step 8, we may define for every index 1 ≤ i ≤ m + 1 the path f ′

i as
an (arbitrary) projection of the path fi by extraction of outm(fm). We thus have
fi ↘outm(fm) f ′

i . By Lemma 12 (preservation of extraction) applied m times, the
rewriting paths f ′

1 ,..., f ′
m+1 are Lévy equivalent.

Step 10. In order to reach a contradiction with our hypothesis, we prove that
the redex u1 is extractible from the rewriting path fm+1. We have already noted
in Step 9 that the paths f ′

1, ..., f
′
m+1 are Lévy equivalent. The path f ′

1 is standard
of length n − 1 since it is defined as the projection of the standard path f1 =
u1 · · ·un by extraction of the redex outm(fm). By induction hypothesis, the
path f ′

1 is more standard than all the paths f ′
1, ..., f

′
m+1. Besides, the rewriting

path f ′
1 is not empty. We have proved indeed in Step 5 that the redexes u1

and outm(fm) are different redexes, and more precisely, that the redex u1 drags
the redex outm(gm) to the redex outm(fm). From this follows that the extraction
of the redex outm(fm) from the standard path f1 = u1 · · ·un induces a reversible
permutation u1 · outm(gm) ♦ outm(fm) · u′

1. The redex u′
1 is the first redex of

the path f ′
1, and the path f ′

1 is more standard than all the paths f ′
1, ..., f

′
m+1.

By Lemma 12 (preservation of extraction), the redex u′
1 is extractible from all

the paths f ′
1, ..., f

′
m+1. The diagram below summarizes the situation:

f ′
i ��

u′
1

��

Mn+1

♦

M1

outm(fm)
����������

fi ��

u1

��

Mn+1

M2

outm(gm)
  ��
��
��
��

gi

�� Mn+1

All this has the remarkable consequence that the redex u′
1 is extractible from

the rewriting path f ′
m+1. From this follows that the redex u1 is extractible

from the rewriting path outm(fm) · f ′
m+1. Now, the path outm(fm) · f ′

m+1 is
more standard than the path fm+1 by definition of fm+1 ↘outm(fm) f ′

m+1.
We conclude by Lemma 12 (preservation of extraction) that the redex u1 is
extractible from the rewriting path fm+1.

Step 11. This is the concluding step. We deduce from the contradiction reached
in Step 10 that the redex u1 is extractible from every path Lévy equivalent to
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the rewriting path f . By the preliminary discussion of Step 1, this concludes our
proof by induction of Lemma 25. ��

4.3 Existence

Lemma 26 (towards existence). Suppose that f : M1 −→−→ Mn+1 is a non-
empty path whose projection by extraction of the redex outm(f) : M1 −→ M2 is
Lévy equivalent to a standard path

M2
u2−→ M3

u3−→ · · · un−1−→ Mn
un−→ Mn+1.

Then, the rewriting path

M1
outm(f)−→ M2

u2−→ M3
u3−→ · · · un−1−→ Mn

un−→ Mn+1

is standard.

Proof. By induction on n. The lemma is immediate when n = 1 because the
path outm(f) is standard, like every path of length 1. Suppose that the property
is established for every standard path of length n − 2, and consider a standard
path

M2
u2−→ M3

u3−→ · · · un−1−→ Mn
un−→ Mn+1

of length n − 1. Consider moreover a nonempty path f : M1 −→−→ Mn+1, and
suppose that (one of) its projection g by extraction of the redex outm(f) :
M1 −→ M2 is Lévy equivalent to the standard path u2 · · ·un. We write u1 for
the redex outm(f).

We want to prove that the path u1 ·u2 · · ·un is standard. We proceed by con-
tradiction, and suppose that the path u1 ·u2 · · ·un is not standard. By Lemma 19
(characterization lemma) there exists an anti-standard path inside the rewriting
path u1 · u2 · · ·un. Since the path u2 · · ·un is standard, this anti-standard path
is necessarily of the form u1 · · ·uk+1 for some index 1 ≤ k ≤ n− 1.

By definition of an anti-standard path, and whatever the value of the index k,
there exists a redex u′

2 and a path hu′
1

forming a permutation u1 · u2 � u′
2 · hu′

1
.

The situation is summarized in the the diagram below:

Mn+1

⇒

Mn+1

M1 u1 ��

u′
2

��

⇐

f���

!!���

M2

u2

��

g����

������

hu′
1

�� M3

u3···un

��
�

""�
��

⇓

Mn+1

(20)



600 P.-A. Melliès

We show in Steps 2, 3, 4, 5 and 6 that the permutation u1 · u2 � u′
2 · hu′

1
is

reversible, or equivalently, that k ≥ 2.
Step 2. We show that the redex u′

2 is extractible from the path f . By Lemma 25
(uniqueness), the path u2 · · ·un is more standard than every Lévy equivalent
path. In particular, the path u2 · · ·un is more standard than the path g. It
follows from Lemma 12 (preservation of extraction) that the redex u2 which is
extractible from the path u2 · · ·un is also extractible from the path g. This and
the existence of the permutation u1 · u2 � u′

2 · hu′
1

implies that the redex u′
2 is

extractible from the path u1 ·g. The path u1 ·g is more standard than the path f
by definition of extraction f ↘u1 g. Thus, by applying Lemma 12 (preservation
of extraction) again, the redex u′

2 is extractible from the path f .
Step 3. Let the path f ′ denote an arbitrary projection of the path f by ex-
traction of the redex u′

2. By construction, and Axiom shape, the redex u′
2 does

not coincide with the redex outm(f) = u1. By Lemma 22, the path f ′ is non-
empty and the redex u′

2 drags the redex outm(f ′) (denoted u′
1 from now) to the

redex u1 = outm(f). More explicitly, the two redexes u′
1 and u′

2 are involved in
a permutation u′

2 · u′
1 � u1 · hu2 for some path hu2 . Let the path g′ denote an

arbitrary projection of the path f ′ by extraction of the redex u′
1. The situation

is summarized in the diagram below:

Mn+1

M1 u1 ��

u′
2
��

⇑⇓

f���

!!���

M2

hu2
��

u′
1

��

f ′%%
%%

##%%%
% g′

&&&
&

$$&&
&&

Mn+1

⇒

Mn+1

(21)

In the next Steps 4–7, we analyze the relationship between the two dia-
grams (20) and (21). We establish in Steps 4–6 that the paths hu′

1
and hu2

coincide respectively with the redexes u′
1 and u2, and thus, that the permuta-

tion u1 ·u2 � u′
2 ·hu′

1
is reversible. We establish in Step 7 that the path g′ is Lévy

equivalent to the path u3 · · ·un. This enables to combine the two diagrams (20)
and (21) in a larger diagram.
Step 4. Here, we deduce from Lemma 25 (uniqueness) that the redex u2 is
extractible from the path hu2 · g′. By construction, the path u1 · hu2 · g′ is more
standard than the path f . The paths hu2 · g′ and g are the projections of the
paths u1 ·hu2 ·g′ and f by extraction of the redex u1, respectively. By Lemma 12
(preservation of extraction), the two paths hu2 · g′ and g are Lévy equivalent.
Now, the path g is also Lévy equivalent to the standard path u2 · · ·un. From
this and Lemma 25 (uniqueness) follows that the path u2 · · ·un is more standard
than the path hu2 · g′. By Lemma 12 (preservation of extraction), we conclude
that the redex u2 is extractible from the path hu2 · g′.
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Step 5. We deduce from Step 4 that the redex u2 is extractible from the
path hu2 . We proceed by contradiction, and suppose that it is not. The redex u2
is extractible from the path hu2 · g′. By definition of extraction, there exists a
redex v extractible from the path g′ such that the path hu2 drags the redex v
to the redex u2. From this follows that the path u1 · hu2 drags the redex v to
the redex u′

2. Now, the path u1 · hu2 is Lévy equivalent to the path u′
2 · u′

1.
By Lemma 10 (preservation of drag), the path u′

2 · u′
1 drags the redex v to the

redex u′
2. More explicitly, there exists a redex w such that: (a) the redex u′

1
drags the redex v to the redex w; and (b) the redex u′

2 drags the redex w to
the redex u′

2. This very last statement (b) contradicts the Axiom shape since it
implies that there exists a path h and permutation u′

2 ·w � u′
2 · h. We conclude

that the redex u2 is extractible from the path hu2 .
Step 6. We deduce from Step 5 that the paths hu′

1
and hu2 coincide respectively

with the redexes u′
1 and u2, and that the permutation u1 · u2 � u′

2 · hu′
1

is
reversible. By definition of extraction, there exists a path h such that hu2 =⇒
u2 · h. From this follows that u′

2 · u′
1 � u1 · hu2 and u1 · hu2 =⇒ u′

2 · hu′
1
· h.

Diagrammatically,

M1

u1

��

u′
2

��

u′
2

��

hu′
1

%%

⇐ ⇐

u′
1

&&

M2

u2
��
��
�

''��
��
� hu2

��
��

�

���
��

��
⇐···⇐

M3

h



Suppose that the permutation u′
2 · u′

1 � u1 · hu2 is irreversible. In that case,
it follows from Axiom irreversibility that u′

2 · u′
1 � u′

2 · hu′
1
· h. This last

statement contradicts Axiom shape, and we thus conclude that the permutation
u′

2 · u′
1 � u1 · hu2 is reversible. From this follows that the path hu2 is a redex.

The equality hu2 = u2 follows immediately from the fact that the redex u2
is extractible from the path hu2 . We conclude that u′

2 · u′
1 � u1 · u2. At this

point, there only remains to apply Axiom reversibility on the permutations
u′

2 ·u′
1 � u1 ·u2. u1 ·u2 � u′

2 ·hu′
1
, from which we deduce that hu′

1
= u′

1 and that
the permutation u1 · u2 � u′

2 · hu′
1

is reversible.
Step 7. We have just established that the permutation u1 · u2 ♦ u′

2 · u′
1 is re-

versible. In Step 4, we have also proved that u2 · · ·un is more standard than the
path hu2 · g′. We know now that the path hu2 · g′ is equal to the path u2 · g′. The
two paths u3 · · ·un and g′ are respectively the projections of the paths u2 · · ·un

and u2 · g′ by extraction of the redex u2. By Lemma 12 (preservation of extrac-
tion), the path g′ is Lévy equivalent to the path u3 · · ·un.
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Step 8. We have just established in Step 7 that the projection g′ of the path f ′

by extraction of the redex u′
1 = outm(f ′) is Lévy equivalent to the path u3 · · ·un.

This enables to apply our induction hypothesis on the standard path u3 · · ·un.
We deduce that the path u′

1 · u3 · · ·un is standard. In particular, the path u′
1 ·

u3 · · ·uk+1 is not anti-standard. From this follows that the path u1 ·u2 · · ·uk+1 is
not anti-standard. This contradicts our original hypothesis. The path u1·u2 · · ·un

is thus standard. This concludes the reasoning by induction, and the proof of
Lemma 4.3. ��

Lemma 27 (existence). For every path f : M −→−→ N there exists a standard
path g : M −→−→ N such that f =⇒ g.

Proof. First, we show that every rewriting path u1 · · ·un : M −→−→ N is standard
when it is obtained as a sequence of extractions from a path f1 : M −→−→ N :

f1 ↘u1 f2 ↘u2 f3 · · · fn ↘un idN (22)

where ui = outm(fi) for every index 1 ≤ k ≤ n. The proof is nearly immedi-
ate, by induction on the length n. Suppose that the property is established for
every path of length n− 1, and consider a path u1 · · ·un obtained as a series of
extractions (22). By induction hypothesis, the path

f2 ↘u2 f3 ↘u3 f4 · · · fn ↘un idN

is standard. By Lemma 26, the path u1 · u2 · · ·un = outm(f1) · u2 · · ·un is also
standard. We conclude.

Now, suppose that f : M −→−→ N is an arbitrary rewriting path. By Axiom
termination, every sequence of extractions

f = f1 ↘outm(f1) f2 ↘outm(f2) f3 · · · fn ↘outm(fn) · · ·

is finite. Thus, there exists an index n such that

f1 ↘u1 f2 ↘u2 f3 · · · fn ↘un idN

where ui = outm(fi), for all 1 ≤ i ≤ n. By construction, the path u1 · · ·un :
M −→−→ N is more standard than the path f , and it is standard by the previous
argument. We conclude. ��

4.4 Standardization Theorem

Theorem 2 (standardization). Suppose that (G, �) is an axiomatic rewriting
system and that f : M −→−→ N is a path in the transition system G. Then:

– there exists a standard path g : M −→−→ N more standard than f ,
– every standard path Lévy equivalent to f is equal to g modulo reversible

permutation equivalence %.
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The standard path of any path f : M −→−→ N may be computed by extracting
recursively the outermost redex outm(fi) in a sequence of rewriting paths

f = f1 ↘outm(f1) f2 ↘outm(f2) f3 ↘outm(f3) · · · fn ↘outm(fn) idN .

We call this algorithm STD as in [13]. Note that the algorithm is non deter-
ministic because it depends at each step fi on the choice of the next rewriting
path fi+1.

Corollary 28. The relation =⇒ on paths is confluent modulo %. The =⇒-
normal form of a path is computed by the algorithm STD.

5 Standardization from the 2-Categorical Point of View

In Sections 1—4. we interpret standardization as a 2-dimensional rewriting
procedure on 1-dimensional paths, and establish a confluence and normaliza-
tion property for that procedure. However, we say nothing there about the
2-dimensional reductions f =⇒ g themselves. Intuitively, each such reduc-
tion f =⇒ g describes a possible way to tile the 2-dimensional surface lying
between the two rewriting paths f and g. In this section is to show that all
tilings f =⇒ g from a path f to its standard path g, are equivalent in an intu-
itive sense. We refer the reader to the last chapter of [25] (second edition) for a
nice and motivated introduction to 2-categories.

5.1 Tiling Graph, Tiling Paths, and Partial Injections

To every 2-dimensional transition system (G, �) we associate a tiling graph in
the following way:

Definition 29 (tiling graph, path, step). The graph tiling-graph(G, �) has
the paths of G as vertices, and the standardization steps (e, f � g, h) as edges
e · f · h =⇒ e · g · h. The paths in tiling-graph(G, �) are called tiling paths
to avoid confusion with the rewriting paths of the transition system G. Ac-
cording to that spirit, we often call tiling step a standardization step. In the
graph tiling-graph(G, �), we write idf : f =⇒ f for the identity of f , and
α ∗ β : f =⇒ h for the composite of two paths α : f =⇒ g and β : g =⇒ h.

Definition 30 (canonical equivalence on tiling path). To every tiling path
α : f =⇒ g, we associate a partial injection [α] : [g] ⇁ [f ] as follows.

– to every vertex of tiling-graph(G, �) we associate the finite set [f ] =
{1, ..., n} of cardinal n the length of f as 1-dimensional path,

– to every edge α = (e, f � g, h) of tiling-graph(G, �) where e, f, g and h
decompose as:

e = u1 · · ·um f = v ·u′ g = v1 · · · vn h = w1 · · ·wp

we associate the partial injection [α] : [e · g · h] ⇁ [e · f · h] defined as
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• when f♦g: ⎧⎪⎪⎨⎪⎪⎩
k 2→ k for every 1 ≤ k ≤ m

m + 1 2→ m + 2
m + 2 2→ m + 1

m + 2 + k 2→ m + 2 + k for every 1 ≤ k ≤ p

• when f � g:⎧⎨⎩ k 2→ k for every 1 ≤ k ≤ m
m + 1 2→ m + 2

m + n + k 2→ m + 2 + k for every 1 ≤ k ≤ p

The partial injection [α] : {1, ..., n} ⇁ {1, ..., m} associated to a tiling path

α : u1 · · ·um =⇒ v1 · · · vn

is defined by composing the partial injections [αi]’s:

[α] = [αn] ◦ · · · ◦ [α1]

Intuitively, the function [α] traces every redex vk back to its unique “ancestor”
u[α](k) in the 1-dimensional path u1 · · ·um, when this redex exists.

The main result of the section states that

Theorem 3. Suppose that g is a standard rewriting path in an axiomatic rewrit-
ing system (G, �). Then, every two tiling paths α, β : f =⇒ g from a rewriting
path f to the rewriting path g define the same partial injection [α] = [β].

Reformulated 2-categorically, the theorem states that in the 2-category
2-cat(G, �) defined at the beginning of Section 5.3, the standard path g :
M −→−→ N is terminal in its connected component in the hom-category
2-cat(G, �)(M, N). The standard path g is in fact strongly terminal, in the
sense that in every cell g =⇒ h, the path h is also standard, and thus terminal.

We proceed methodologically, and prove the theorem in two steps. In Sec-
tion 5.2, we give a series of conditions on an equivalence relation ∼= on the paths
of tiling-graph(G, �) to ensure that every two tiling paths α, β : f =⇒ g from
a path f to a standard path g, are equal modulo ∼=. In Section 5.3, we prove
that the equivalence relation α ∼= β induced by the equality [α] = [β] of partial
injections, satisfies the formal conditions of Section 5.2.

Remark: Theorem 3 repeats in dimension 2 the observation by J.-J. Lévy in the
λ-calculus, or in any conflict-free (term) rewriting system, that there exists a
unique path from a term to its normal form, modulo permutation. Here, objects
are 1-dimensional, paths are 2-dimensional, permutations are 3-dimensional —
and the concept of a conflict-free 2-dimensional system remains to be clarified.
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5.2 Standard=Strong Terminal

Definition 31 (horizontal composition). The horizontal composite α · h of
a tiling step (=standardization step)

α = (e, f � g, h) : e · f · h =⇒ e · g · h : M −→−→ N

and of a 1-dimensional path h′ : N −→−→ P is defined as the tiling step:

α · h = (e, f � g, h · h′) : e · f · h · h′ =⇒ e · g · h : M −→−→ P

The horizontal composite α · h of a tiling path

α = α1 ∗ · · · ∗ αn : f =⇒ g : M −→−→ N

and a 1-dimensional path h : N −→−→ P is defined as the tiling path

α · h = (α1 · h) ∗ · · · ∗ (αn · h) : M −→−→ P

The horizontal composite e ·α of a 1-dimensional path e : L −→−→ M and a tiling
path α : f · g : M −→−→ N is defined symmetrically.

From now on, we consider an equivalence relation ∼= between the tiling paths of
tiling-graph(G, �), satisfying the four properties below:

1. for all tiling paths α : f =⇒ f ′ and β : g =⇒ g′,

α ∼= β ⇒ f = g and f ′ = g′

2. for all tiling paths α, α′ : f =⇒ g and β, β′ : g =⇒ h,

α ∼= α′ and β ∼= β′ ⇒ α ∗ β ∼= α′ ∗ β′

3. for all tiling paths α, β : g =⇒ g′ : M −→−→ N and all 1-dimensional paths
f : L −→−→ M and h : N −→−→ P ,

α ∼= β ⇒ f · α · h ∼= f · β · h

4. for all of tiling paths α : f =⇒ f ′ : M −→−→ N and β : g =⇒ g′ : N −→−→ P ,

(α · g) ∗ (f ′ · β) ∼= (f · β) ∗ (α · g′)

Lemma 32. The equivalence relation ∼= defines a 2-category 2-cat∼=(G, �).

Proof. The 2-category 2-cat∼=(G, �) has vertices and paths of G as objects and
morphisms, and equivalence classes modulo ∼= of tiling paths as cells. Conditions
1–3. ensure the necessary compositionality properties of 2-cat∼=(G, �), while
condition 4. ensures the so-called interchange law of 2-categories, see [25]. ��
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Suppose moreover that:

5. for every path f = u · v where u drags the redex v to a redex v0, and for
every standard path g,

∀α, β, α, β : f =⇒ g ⇒ α ∼= β

6. for every path f = u ·v ·w where the redex u drags the redex v to a redex v0,
and where the path u · v drags the redex w to a redex w0, and for every
standard path g,

∀α, β, α, β : f =⇒ g ⇒ α ∼= β

These two additional conditions 5 and 6 regulate the potential critical pairs
occurring during the 2-dimensional transitions implementing standardization.
The lemma below establishes that the two assumptions are sufficient to the
purpose.

Lemma 33. Suppose that the equivalence relation ∼= satisfies Conditions 1–6.
Then, every standard path h : M −→−→ N is strongly terminal in its connected
component in the hom-category 2-cat∼=(G, �)(M, N).

Proof. By induction on the length of h : M −→−→ N . Suppose that the property
is established for every standard path of length n, and that the path u · h is
standard of length 1 + n. Suppose that f is a path Lévy equivalent to u · h. We
claim that for every tiling path γ : f =⇒ u · g resulting of an extraction f ↘u g,
and for every tiling path α : f =⇒ f ′ starting from f , there exists a tiling path
γ′ : f ′ =⇒ u · g′ resulting of an extraction f ′ ↘u g′, such that

γ ∗ (u · δg) ∼= α ∗ γ′ ∗ (u · δg′) : f =⇒ u · h (23)

where δg : g =⇒ h and δg′ : g′ =⇒ h are arbitrary tiling paths to the terminal
object h. To prove the claim, it is sufficient to consider the case when α is a tiling
step (f1, f2 � f ′

2, f3). The general case follows by a straightforward induction
on the length of α. So, we want to establish that the diagram below commutes
modulo ∼= for a tiling step α = (f1, f2 � f ′

2, f3) : f =⇒ f ′ and a tiling path
γ : f =⇒ u · g resulting of an extraction f ↘u g.

f
α ��

γ

(%

f ′

γ′

(%
u · g

u·δg �(










∼=

u · g′

u·δg′)� ''
''
''

''
''
''

u · h

By definition of α, the paths f and f ′ factor as

f = f1 · f2 · f3 f ′ = f1 · f ′
2 · f3.
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The redex u is extractible from the path f = f1 ·f2 ·f3. One of the three following
situations occurs. We say that the redex u is

1. extractible from the component f1 when the redex u is extractible from the
path f1,

2. extractible from the component f2 when the redex u is extractible from the
path f1 · f2 but not from the path f1,

3. extractible from the component f3 when the redex u is extractible from the
path f1 · f2 · f3 but not from the path f1 · f2.

By definition of γ as the tiling path produced by the extraction f ↘u g, the
rewriting paths g and the tiling path γ factor as

g = g1 · g2 · g3

γ = (f1 · f2 · γ3) ∗ (f1 · γ2 · g3) ∗ (γ1 · g2 · g3)

where the definitions of g1, g2, g3 and γ1, γ2, γ3 depend on the component f1 or f2
or f3 from which the redex u is extractible:

1. The redex u is extractible from the component f1: in that case, g3 = f3 and
γ3 = idf3 , g2 = f2 and γ2 = idf2 , and γ1 : f1 =⇒ u · g1 is the result of an
extraction f1 ↘u g1,

2. The redex u is extractible from the component f2: in that case, g3 = f3 and
γ3 = idf3 , γ2 : f2 =⇒ u′ · g2 is the result of an extraction f2 ↘u′ g2, the
path f1 drags u′ to u and γ1 : f1 · u′ =⇒ u · g1 is the result of the extraction
f1 · u′ ↘u g1,

3. The redex u is extractible from the component f3: in that case, γ3 : f3 =⇒
u′′ · g3 is the result of an extraction f3 ↘u′′ g3, the path f2 drags u′′ to u′

and γ2 : f2 · u′′ =⇒ u′ · g2 is the result of the extraction f2 · u′′ ↘u′ g2, the
path f1 drags u′ to u and γ1 : f1 · u′ =⇒ u · g1 is the result of the extraction
f1 · u′ ↘u g1.

The tiling path γ′ is defined as

γ′ = (f1 · f ′
2 · γ3) ∗ (f1 · γ′

2 · g3) ∗ (γ1 · g′2 · g3)

where the definition of the tiling path γ′
2 is by case analysis.

1. The redex u is extractible from the component f1: in that case, g′2 = f ′
2 and

γ′
2 : f ′

2 =⇒ g′2 is defined as idf ′
2
. Equivalence (23) follows from induction

hypothesis on h, as well as conditions 2, 3 and 4 on the equivalence relation
∼=.

2. The redex u is extractible from the component f2: in that case, the path g′2
and γ′

2 : f ′
2 =⇒ u′ · g′2 are the result of an arbitrary extraction f ′

2 ↘u′ g′2.
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Equivalence (23) follows from the series of equivalence:

γ ∗ (u · δg)∼= γ ∗ (u · g1 · (g2 =⇒ g′′
2 ) · g3) ∗ (u · δg1·g′′

2 ·g3) by ind. hyp.
∼= (f1 · (γ2 ∗ η2) · g3) ∗ (γ1 · g′′

2 · g3) ∗ (u · δg1·g′′
2 ·g3) by cond. 2, 3, 4.

∼= (f1 · ((f2 � f ′
2) ∗ γ′

2 ∗ η′
2) · g3) ∗ (γ1 · g′′

2 · g3) ∗ (u · δg1·g′′
2 ·g3) by cond. 5.

∼= (f1 · (f2 � f ′
2) · f3) ∗ (f1 · (γ′

2 ∗ η′
2) · g3) ∗ (γ1 · g′′

2 · g3) ∗ (u · δg1·g′′
2 ·g3)
by cond. 2, 3, 4.

∼= α ∗ (f1 · γ′
2 · g3) ∗ (γ1 · g′

2 · g3) ∗ (u · g1 · η′
2 · g3) ∗ (u · δg1·g′′

2 ·g3) by cond. 2, 3, 4.
∼= α ∗ γ′ ∗ (u · δg1·g′

2·g3) by ind. hyp.
∼= α ∗ γ′ ∗ (u · δg′)

where g′′2 is a standard path Lévy equivalent to the paths g2 and g′2, and
where

η2 : u · g2 =⇒ u · g′′2 and η′
2 : u · g′2 =⇒ u · g′′2

δg1·g′
2·g3 : g1 · g′2 · g3 =⇒ h and δg1·g′′

2 ·g3 : g1 · g′′2 · g3 =⇒ h

are arbitrary tiling paths.
3. The redex u is extractible from the component f3: in that third case, g′2 and

γ′
2 : f ′

2 ·u′′ =⇒ u′ · g′2 are the result of an arbitrary extraction f ′
2 ·u′′ ↘u′ g′2.

Equivalence (23) follows from the series of equivalence:

γ ∗ (u · δg)∼= γ ∗ (u · g1 · (g2 =⇒ g′′
2 ) · g3) ∗ (u · δg1·g′′

2 ·g3) by ind. hyp.
∼= (f1 · f2 · γ3) ∗ (f1 · (γ2 ∗ η2) · g3) ∗ (γ1 · g′′

2 · g3) ∗ (u · δg1·g′′
2 ·g3) by cond. 2, 3, 4.

∼= (f1 · f2 · γ3) ∗ (f1 · (((f2 � f ′
2) · u′′) ∗ γ′

2 ∗ η′
2) · g3) ∗ (γ1 · g′′

2 · g3)∗(u · δg1·g′′
2 ·g3)

by cond 6.
∼= (f1 · (f2 � f ′

2) · f3) ∗ (f1 · f ′
2 · γ3) ∗ (f1 · (γ′

2 ∗ η′
2) · g3) ∗ (γ1 · g′′

2 · g3) ∗ (u · δg1·g′′
2 ·g3)

by cond. 2, 3, 4.
∼= α ∗ (f1 · f ′

2 · γ3) ∗ (f1 · γ′
2 · g3) ∗ (γ1 · g′

2 · g3) ∗ (u · g1 · η′
2 · g3) ∗ (u · δg1·g′′

2 ·g3)
by cond. 2, 3, 4.

∼= α ∗ γ′ ∗ (u · δg1·g′
2·g3) by ind. hyp.

∼= α ∗ γ′ ∗ (u · δg′)

where g′′2 is a standard path Lévy equivalent to g2 and g′2, and where

η2 : u · g2 =⇒ u · g′′2 and η′
2 : u · g′2 =⇒ u · g′′2

δg1·g′
2·g3 : g1 · g′2 · g3 =⇒ h and δg1·g′′

2 ·g3 : g1 · g′′2 · g3 =⇒ h

are arbitrary tiling paths.

This proves our introductory claim. Now, we prove the lemma as follows. Let
γ : f =⇒ u · g be the result of an arbitrary extraction f ↘u g. Consider any
tiling path α from f to u ·h. By property (23) proved above, there exists a tiling
path γ′ such that:

γ ∗ (u · δg) ∼= α ∗ γ′ ∗ (u · δh) : f =⇒ u · h
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In that particular case, as the result of the “empty” extraction u · h ↘u h, the
tiling path γ′ is the identity idu·h : u · h =⇒ u · h. Moreover, the tiling path δh

is the identity idh : h =⇒ h by induction hypothesis. It follows that

α ∼= γ ∗ (u · δg)

This concludes the proof. ��

5.3 The 2-Category 2-cat(G, �)

Definition 34 (2-cat(G, �)). The 2-category 2-cat(G, �) is the 2-category
2-cat∼=(G, �) associated to the following equivalence relation on tiling paths:

α ∼= β ⇐⇒ [α] = [β]

The main goal of the section is to prove Theorem 4.

Lemma 35. Suppose that α : f =⇒ g : M −→−→ N is a tiling path between the
1-dimensional paths f = u1 · · ·um and g = v1 · · · vn. Suppose that w is a redex
outgoing from M . The two following assertions are equivalent:

1. the path v1 · · · vi−1 drags the redex vi to the redex w,
2. the index [α](i) = j is defined and the path u1 · · ·uj−1 drags the redex uj to

the redex w.

Proof. By induction on the length of α. ��

Theorem 4. In the 2-category 2-cat(G, �), every standard path is strongly ter-
minal in its Lévy equivalence class.

Proof. By Lemma 33, we only need to check conditions 5 and 6 on the equivalence
relation ∼= on tiling paths α, β : f =⇒ g induced by the equality [α] = [β].
Consider

– a path f = u · v′ such that u drags v′ to a redex v
– or a path f = u · v′ · w′′ such that u drags v′ to a redex v, and u · v′ drags

w′′ to a redex w.

Consider two tiling paths α, β : f =⇒ g standardizing f into a standard path
g = v1 · · · vn. Suppose that [α](i) = j for some i ∈ [n]. By Lemma 35(1 ⇒ 2), the
path v1 · · · vi−1 drags the redex vi to the redex t = u when j = 1, to redex t = v
when j = 2, or to the redex t = w when j = 3. Thus, by Lemma 35(1 ⇒ 2), the
index [β](i) = k is defined and such that the path u1 · · ·uk−1 drags the redex uk

to the redex t. This implies that j = k. Applying the argument to every i ∈ [n],
and by symmetry, we deduce that [α] = [β]. This proves conditions 5 and 6, and
we conclude. ��

Remark: In the case of the λ-calculus, and more generally in any axiomatic
rewriting system derived from an axiomatic nesting system, see Section 6, the
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partial injection [α] : [g] ⇁ [f ] may be replaced by a total function [α] : [g] −→−→
[f ] without breaking Theorem 4. The idea is to replace the partial function
[α] associated to an irreversible standardization step α in Definition 30 by the
following total function [α]:

[α] :

⎧⎪⎪⎨⎪⎪⎩
k 2→ k for every 1 ≤ k ≤ m

m + 1 2→ m + 2
m + 1 + k 2→ m + 1 for every 1 ≤ k ≤ n− 1
m + n + k 2→ m + 2 + k for every 1 ≤ k ≤ p

It is not difficult to show that conditions 5 and 6 of Section 5.2 still hold with
the new definition — in the case of the λ-calculus or any axiomatic nesting
systems. Theorem 4 follows. However, Theorem 4 does not generally hold with
the alternative definition. The axiomatic rewriting system
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u′′ = v′′

v · u′ ♦ u · v′
u′ · w′′ � w2 · u′′

v′ · w′′ � w1 · v′′
u · w1 � w
v · w2 � w

and tiling paths

α1 : u · v′ · w′′ 1=⇒ v · u′ · w′′ 1=⇒ v · w2 · u′′ 1=⇒ w · u′′

α2 : u · v′ · w′′ 1=⇒ u · w1 · v′′ 1=⇒ w · v′′ = w · u′′

illustrate this point, since both α1 and α2 transform the path u · v′ · w′′ to the
standard path w · u′′ = w · v′′, but do not define the same total functions [α1]
and [α2], since [α1](2) = 1 and [α2](2) = 2.

6 An Alternative Axiomatics Based on Residuals and
Nesting

The 2-dimensional axiomatics formulated in Section 2 is particularly adapted
to reason and prove diagrammatically... but it is also far away from common
practice, and may be difficult to understand for someone simply interested in
checking that the axioms are satisfied by his or her favorite rewriting system.
For that reason, we step back (in this section only) to the axiomatics developed
in [13] and [27] and based on the trinity of residuals, critical pairs and nesting
order. Since the formulation is nearly independent of the remainder of the article,
the reader may very well jump this section at a first reading.



Axiomatic Rewriting Theory I: A Diagrammatic Standardization Theorem 611

The section is organised as follows. Axiomatic nesting system are defined in
Section 6.1, and their axioms are formulated in Sections 6.2–6.5. We establish
in Section 6.6 that every axiomatic nesting system (G, [[−]],/, ↑) defines an ax-
iomatic rewriting system, that is, a 2-dimensional transition system (G, �) which
satisfies the axioms of Section 2.

Remark: we provide two examples in Section 8

– the argument-nesting λ-calculus,
– the graph of sequentializations of an ordered set X .

which demonstrate that the axiomatics presented in this section is at the same
time strictly more general than the axiomatics of [13] which inspired it, and
strictly less general than the 2-dimensional axiomatics formulated in Section 2.

6.1 Axiomatic Nesting Systems

The main definition of the section follows.

Definition 36. An Axiomatic Nesting System is a quadruple (G, [[−]],/,
↑) consisting of:

1. a transition system (or oriented graph) G = (terms, redexes, source,
target),

2. for every redex u : M −→ N , a binary relation [[u]] relating the redexes
outgoing from M to the redexes outgoing from N ,

3. for every vertex M of G, a transitive reflexive antisymmetric relation /M

between the redexes outgoing from M ,
4. for every vertex M of G, a reflexive relation ↑M between the redexes outgoing

from M .

Every nesting system is supposed to satisfy a series of ten (4+2+4) axioms. The
first four Axioms Finite, Compat, Ancestor, Self state elementary properties
of residuals and compatibility. The two next Axioms FinDev, Perm enforce the
well-known property of finite developments, appearing for instance in [32, 18, 20,
3, 27]. The four last Axioms I, II, III, IV regulate the properties of the nesting
relation vs. the compatibility and residual relations. The ten axioms are called
N-axioms (N stands for nesting) to distinguish them from the 2-dimensional
axioms of Section 2.

6.2 The First N-axioms: Finite, Compat, Ancestor, Self

N-axiom Finite (finite residuals). We ask that a redex v : M −→ Q has at
most a finite number of residuals after a coinitial redex u : M −→ P .

∀u, v ∈ redexes, the set {v′ | v[[u]]v′} is finite.
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N-axiom Compat (forth compatibility). We ask that two compatible
redexes u : M −→ P and v : M −→ Q have compatible residuals u′ and v′ after
a coinitial redex w : M −→ N .

∀u, v, w, u′, v′ ∈ redexes, u[[w]]u′ and v[[w]]v′ and u ↑ v ⇒ u′ ↑ v′

N-axiom Ancestor (unique ancestor). We ask that two different coinitial
redexes u : M −→ P and v : M −→ Q do not have any residual in common after
a coinitial redex w : M −→ N .

∀u, v, w, u′, v′ ∈ redexes, u[[w]]u′ and v[[w]]v′ and u′ = v′ ⇒ u = v

N-axiom Self (self-destruction). We ask that a redex v : M −→ Q has no
residual after itself, or after an incompatible coinitial redex u : M −→ P .

∀u, v ∈ redexes, (u = v or ¬(u ↑ v)) ⇒ {v′ | v[[u]]v′} = ∅

6.3 A Few Preliminary Definitions: Multi-redex, Development

We need a few preliminary definitions to formulate the N-axioms FinDev and
Perm.

Definition 37 (residual through path). Given a path f : M −→−→ N , the re-
lation [[f ]] between the redexes outgoing from M and the redexes outgoing from N ,
is defined as follows:

– [[f ]] is the identity relation when f = idM ,
– [[f ]] is the composite relation [[v1]] · · · [[vn]] when f = v1 · · · vn.

Explicitly, for every two redexes u and u′,

u[[idM ]]u′ ⇐⇒ u = u′

u[[v1 · · · vn]]u′ ⇐⇒ ∃u2, ..., un−1 ∈ redexes,
u[[v1]]u2[[v2]]u3 · · ·un−2[[vn−1]]un−1[[vn]]u′

Definition 38 (multi-redex). A multi-redex in (G, [[−]],/, ↑) is a pair (M, U)
consisting of a term M and a finite set U of pairwise compatible redexes of source
M .

Remark: every redex u : M −→ N may be identified to the multi-redex (M, {u}).

Definition 39 (multi-residual). Suppose that (M, U) is a multi-redex and
that v is a redex compatible with every redex in U . The multi-residual of (M, U)
after v, notation (M, U)[[v]], is the multi-redex (N, W ) where W = {w | u[[v]]w}.

Remark: Definition 39 defines a multi-redex (N, W ) thanks to the N-axioms Fi-
nite and Compat.
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Definition 40 (development). A complete development of a multi-redex
(M, U) is a path f such that:

– f = idM when U is empty,
– f = u · g when u : M −→ N is a redex in U , and the path g is a complete

development of the multi-redex (M, U)[[u]].

A development of (M, U) is a path f : M −→−→ P which is prefix of a complete
development g : M −→−→ N of (M, U). Here, we call f a prefix of g when there
exists a path h : P −→−→ N such that g = f · h.

We define two notions mentioned informally in Sections 1 and 2, and which
appear in the N-axioms III and IV.

Definition 41 (created redex). A redex u : M −→ P creates a redex v :
P −→ N , when there does not exist any redex w outgoing from M , such that v
is a residual of w after u.

Definition 42 (disjoint). Two redexes u and v are disjoint when ¬(u / v)
and ¬(v / u).

6.4 The N-axioms Related to Finite Developement: FinDev and
Perm

N-axiom FinDev (finite developments). Let (M, U) be a multi-redex.
Then, there does not exist any infinite sequence of redexes

M1
u1−→ M2

u2−→ · · · un−1−→ Mn
un−→ Mn+1

un+1−→ · · ·

such that, for every index n, the path u1 · · ·un is a development of (M, U).

N-axiom Perm (compatible permutation). For every two coinitial, com-
patible and different redexes u : M −→ P and v : M −→ Q, there exists a
complete development hu of u[[v]], and a complete development hv of v[[u]], such
that:

1. the paths hu and hv are cofinal,
2. the residual relations [[u · hv]] and [[v · hu]] are equal.

6.5 The Fundamental N-axioms: I, II, III, IV

N-axiom I (unique residual). We ask that

u ↑ v and ¬(v / u) ⇒ ∃!u′, u[[v]]u′

when u and v are coinitial redexes.
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N-axiom II (context-free). Suppose that u, v, w are pairwise compatible
redexes, that the redex u′ is residual of u after w, and the redex v′ residual of v
after w. We ask that,

a. (u / v ⇒ u′ / v′) or (w / u and w / v)
b. (u′ / v′ ⇒ u / v) or w / v

N-axiom III (enclave). Suppose that u and v are two compatible redexes,
and that u ≺ v. Call u′ the residual of u after v. We ask that for every redex v′

created by v,
u′ ≺ v′ or ¬(u′ ↑ v′)

N-axiom IV (stability). Suppose that u and v are two compatible disjoint
redexes. Call u′ the residual of u after v, and v′ the residual of v after u. We ask
that there exists no triple of redexes (w1, w2, w) such that w1 is a redex created
by u, w2 is a redex created by v, and

w1[[v′]]w and w2[[u′]]w

6.6 Every Axiomatic Nesting System Defines an Axiomatic
Rewriting System

Definition 43. Every axiomatic nesting system (G, [[−]],/, ↑) defines a 2-
dimensional transition system (G, �) as follows:

� is the least relation between paths of G such that v · hu � u · hv when

– the paths u · hv and v · hu are cofinal, and satisfy [[u · hv]] = [[v · hu]],
– u and v are two coinitial redexes outgoing from a term M ,
– u ↑ v and ¬(v / u),
– the path hu is a complete development of (M, {u})[[v]],
– the path hv is a complete development of (M, {v})[[u]].

Observe that the 2-dimensional transition system (Gλ, �tree) of Section 1.9 is the
result of applying Definition 43 to the axiomatic nesting system (Gλ, [[−]]λ,/tree,
↑λ) below:

– [[−]]λ is the usual residual relation between β-redexes in the λ-calculus, as
defined in [10, 24, 20, 3],

– ↑λ is the compatibility relation between β-redexes, in that case the total
relation, indicating that every two coinitial β-redexes are compatible,

– /tree is the tree-nesting relation between β-redexes, defined in Section 1.9.

The main result of the section (Theorem 5) states that the 2-dimensional tran-
sition system (G, �) of Definition 43 satisfies the standardization axiomatics of
Section 2. Before proving that theorem, we start with five preliminary lemmas.
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Lemma 44. The 2-dimensional transition system (G, �) of Definition 43 satis-
fies Axiom shape.

Proof. Suppose that f � g is a permutation in (G, �). By definition, the two
first steps of f and g are different. By the N-axioms I and Self , the length of
the rewriting path f is 2. Axiom shape follows. ��
Definition 43 exports from axiomatic rewriting systems to axiomatic nesting
systems the definitions of standardization preorder =⇒ and Lévy equivalence
relation ≡ in Section 1.5, as well as (thanks to Lemma 44) the definitions of
extraction and projection in Section 2.5. We prove

Lemma 45 (cube lemma). Suppose that (M, U) is a multi-redex in an ax-
iomatic nesting system (G, [[−]],/, ↑). Then, every two complete developments f
and g of (M, U) are Lévy equivalent.

Proof. By the N-axioms Finite and Compat, the complete developments
of (M, U) ordered by prefix, define a finitely branching tree. The tree is thus
finite by König’s lemma and N-axiom FinDev. We proceed by induction on the
length of the longest path of that tree, called the “depth” of (M, U). Suppose
that the lemma is established for every multi-redex of depth less than n, and
let (M, U) be a multi-redex of depth n + 1. Let f and g be two complete de-
velopments of (M, U). If one of the two paths f or g is empty, then the set U
is empty, and thus the two complete developments f and g are empty: it fol-
lows that f ≡ g. Otherwise, the two paths f and g factor as f = u · f ′ and
g = v · g′ where the redexes u and v are elements of the multi-redex (M, U),
the path f ′ is a complete development of (M, U)[[u]], and the path g′ is a com-
plete development of (M, U)[[v]]. We proceed by case analysis. Either u = v or
u �= v. In the first case, both paths f ′ and g′ are complete developments of
the multi-redex (M, U)[[u]] = (M, U)[[v]]; the equivalence f ′ ≡ g′ follows from
our induction hypothesis applied to the multi-redex (M, U)[[u]], and we conclude
that f ≡ g. In the second case, when u �= v, it follows from N-axiom Perm
that there exist two complete developments hu of u[[v]] and hv of v[[u]], such
that the paths v · hu and u · hv are coinitial and cofinal, and induce the same
residual relation [[u · hv]] = [[v · hu]]. Let h be any complete development of the
multi-redex (M, U)[[u · hv]] = (M, U)[[v · hu]]. By definition of a complete de-
velopment, the path hv · h is a complete development of (M, U)[[u]], and the
path hu · h is a complete development of (M, U)[[v]]. The two equivalence rela-
tions hv · h ≡ f ′ and hu · h ≡ g′ follow from our induction hypothesis applied
to the multi-redexes (M, U)[[u]] and (M, U)[[v]]. We conclude that f ≡ g by the
series of equivalence:

f = u · f ′ ≡ u · hv · h ≡ v · hu · h ≡ v · g′ = g ��

Lemma 46. Suppose that the path f is a complete development of a multi-
redex (M, U) in an axiomatic nesting system (G, [[−]],/, ↑). Suppose that a re-
dex u is element of U , and satisfies ¬(v / u) for every redex v in the set U−{u}.
Then, the redex u is extractible from the path f . ��
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Proof. By induction on the length of the complete development f . The path f is
not empty. It thus factors as f = w · g, where w : M −→ P is a redex of U , and
g is a complete development of (M, U)[[w]]. The lemma is obvious when u = w.
Otherwise, by hypothesis, u ↑ w and ¬(w / u). By N-axiom I, the redex u has a
unique residual residual after reduction of the redex w. Let us call this redex u′.
Let v′ denote any redex in (N, U ′) = (M, U)[[w]] different from the redex u′. We
prove that ¬(v′ / u′). By definition of the redex v′, there exists a redex v in U ,
such that v[[w]]v′. Obviously, the redex v is different from the redex u because u′

is the unique residual of the redex u after w. It follows from hypothesis on u that
¬(v / u). We apply the N-axiom IIb. to ¬(v / u) and ¬(w / u) to deduce that
¬(v′ / u′). We have just proved that ¬(v′ / u′) for any redex v′ in U ′ − {u′}.
Our induction hypothesis implies then that the redex u′ is extractible from the
complete development g of (N, U ′).

To summarize, we know that u ↑ w, that ¬(w / u), and that the
unique residual of u after w, denoted u′, is extractible from the path g.
We claim that it follows from this that the redex u is extractible from the
path w · g. Indeed, by N-axiom Perm, there exists a complete development hu

of the multi-redex (M, {u})[[v]] and a complete development hw of the multi-
redex (M, {w})[[u]], such that the paths u · hw and v · hu are coinitial, cofinal,
and induce the same residual relation [[u · hw]] = [[v · hu]]. Moreover, hu = u′ by
N-axioms I and Self . By definition, w ·u′ � u ·hw. It follows that the redex u is
extractible from the path f = w · g. This concludes our proof by induction. ��

Lemma 47. Suppose that f : M −→−→ N is a complete development of a multi-
redex (M, U) in an axiomatic nesting system (G, [[−]],/, ↑). Then, every path
more standard than f is a complete development of (M, U).

Proof. Suppose that a complete development of (M, U) factors as

M
f1−→−→ P

f−→−→ Q
f2−→−→ N

and that f � g. We show that the path f1 · g · f2 is also a complete development
of (M, U). By definition of a complete development, we may suppose without
loss of generality that the path f1 is empty. By definition of �, the paths f
and g are two cofinal complete development of a multi-redex (M, {u, v}), and
factor as f = v · u′ and g = u · hv where ¬(v / u), the redex u′ is the unique
residual of u after v and hv is a complete development of the residuals of v after
u. By definition of a complete development of (M, U), one ancestor of v′ before
u is element of U . By the N-axiom Ancestor, this ancestor is unique, and we
already have one candidate: the redex v. We conclude that the redex v is element
of U . By definition of �, the rewriting paths f and g induce the same residual
relation [[f ]] = [[g]]. We conclude that f1 · g · f2 is a complete development of the
multi-redex (M, U). ��

Lemma 48. Suppose that the rewriting path f : M −→−→ N is a complete devel-
opment of a multi-redex (M, U) in the axiomatic nesting system (G, [[−]],/, ↑).
Then,
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– every redex u extractible from the path f is element of U ,
– every projection of the path f by extraction of a redex u is a complete devel-

opment of the multi-redex (M, U)[[u]].

Proof. Immediate consequence of Lemma 47. ��

Theorem 5. By Definition 43, every axiomatic nesting system (G, [[−]],/, ↑)
defines an axiomatic rewriting system (G, �).

Proof. We establish that the 2-dimensional transition system (G, �) satisgies
the nine axioms of Section 2.

Axiom 1. Axiom shape is established in Lemma 44,
Axiom 2. Axiom ancestor follows from N-axiom Ancestor and Lemma 45,
Axiom 3. We prove Axiom reversibility. Suppose that f � g � h. By defini-
tion of �, there exists five redexes u, v, w, u′, v′ and a path h′ such that f = u ·v′
and g = v · u′ and h = w · h′, and u ↑ v and v ↑ w and ¬(u / v) and ¬(v / w).
By definition of f � g, the redex u′ is the complete development of the residuals
of u after v, thus a fortiori a residual of u after v. By definition of g � h, the
redex u′ is a residual of w after v. The equality u = w follows from N-axiom An-
cestor. Thus, h′ is a complete development of the residuals of v after u = w.
But, by definition of f � g and N-axiom I, the redex v′ is the unique residual of
v after u. Thus, h′ = v′ and we conclude Axiom reversibility with the equality
h = u · h′ = u · v′ = f .
Axiom 4. We prove Axiom irreversibility. Suppose that f � g and g =⇒ h.
By definition of f � g, the paths f and g are complete developments of a
multi-redex (M, {u, v}) with, say, the paths f and g starting by reducing v
and u respectively. The nesting relation u ≺ v follows easily from f � g. By
Lemma 47, and our hypothesis that g � h, the path h is a complete develop-
ment of (M, {u, v}). We prove that h starts by reducing the redex u. By definition
of g =⇒ h, there exists a sequence

g = h1
1=⇒ h2

1=⇒ · · ·hn
1=⇒ hn+1 = h

of complete development of (M, {u, v}) and an index 1 ≤ i ≤ n such that hi

starts by reducing the redex u, and hi+1 starts by reducing the redex v. This
means that hi and hi+1 factor as hi = u · w · h′ and hi+1 = v · hu · h′, where
u · w � v · hu. This contradicts u ≺ v. We conclude that the path h starts by
reducing u. Obviously, the complete developments f and h are cofinal and induce
the same residual relation [[f ]] = [[h]]. The relation f � h follows from that and
u / v. This proves Axiom irreversibility.
Axiom 5. We prove Axiom cube. Among its hypothesis, we have that v · u′ �
u · v1 · · · vn and that the redex wn+1 is residual of the redex w after the path
u · v1 · · · vn. By definition of v · u′ � u · v1 · · · vn, the redex wn+1 is also residual
of w after the path v · u′. By N-axiom Self , the redexes u, v, w are pairwise
compatible and different. Thus, the pair (M, {u, v, w}) defines a multi-redex.

We prove that ¬(u / w) and ¬(v / w). The first relation follows from the
hypothesis that u·w1 � w·hu. The second relation is established by case analysis,
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depending on whether u / v or ¬(u / v). In the first case, the relation ¬(v / w)
holds by transitivity of /, because ¬(u / w). In the second case, observe that
the permutation v · u′ � u · v1 · · · vn is reversible. We write it v · u′ � u · v1.
The relation ¬(v1 / w1) follows from the hypothesis that v1 · w2 � w1 · h1. By
¬(u / v) and ¬(u / w), and N-axiom IIa. the relation ¬(v / w) follows from
¬(v1 / w1).

We have just proved that ¬(u / w) and ¬(v / w). By Lemma 46, the
redex w is extractible from the two complete developments v · u′ · wn+1 and
u ·v1 · · · vn ·wn+1 of (M, {u, v, w}). In particular, there exists a redex w′ and two
paths hv and hu′ forming permutations u′ · wn+1 � w′ · hu′ and v · w′ � w · hv.
This proves half of Axiom cube.

There remains to prove that the paths hv · hu′ and hu · h1 · · ·hn are Lévy
equivalent. The two paths are projections by extraction of w of the complete
developments v · u′ · wn+1 and u · v1 · · · vn · wn+1 of (M, {u, v, w}). The Lévy
equivalence follows from Lemma 48. This concludes the proof of Axiom cube.
Axiom 6. We prove Axiom enclave. We recall its hypothesis: the irreversible
permutation v · u′ � u · v1 · · · vn and the permutation u′ · wn+1 � w′ · hu′ . The
relations u ↑ v and u ≺ v and u′ ↑ w′ and ¬(u′ / w′) follow from this. By
N-axiom III, the redex u : M −→ N does not create the redex w′. Thus, there
exists a redex outgoing from M with residual w′ after u. This redex is unique
by N-axiom Ancestor. We call it w.

By definition of v · u′ � u · v1 · · · vn, the residual relation w[[v · u′]]wn+1 im-
plies that w[[v · v1 · · · vn]]wn+1. It follows from N-axiom Self that the three re-
dexes u, v, w are pairwise different and compatible, thus define a multi-redex
(M, {u, v, w}).

We prove that ¬(u / w) and ¬(v / w). The first relation follows from N-
axiom IIa. applied to the relations ¬(v / u) and ¬(u′ / w′). The second relation
follows from transitivity of / and ¬(u / w) and u / v.

By Lemma 46, it follows that the redex w is extractible from the complete
developments v ·u′ ·wn+1 and u ·v1 · · · vn ·wn+1 of the multi-redex (M, {u, v, w}).
Equivalently, both paths v·u′ and u·v1 · · · vn drag the redex wn+1 to the redex w.
This concludes the proof of Axiom enclave.
Axiom 7. We prove Axiom stability. By definition of u · v′ � v · u′ � u · v′,
the two redexes u : M −→ P and v : M −→ Q are compatible, and disjoint.
By N-axiom IV, either the redex w1 is not created by u, or the redex w1 is not
created by v.

Suppose for instance that w2 is not created by v. In that case, there exists a
redex w such that w[[v]]w2. Consequently, the redex w12 is residual of w after the
path v ·u′. By definition of u · v′ � v ·u′, the redex w12 is also residual of w after
u · v′. Thus, there exists a residual w′

1 of w after u, such that w′
1[[v

′]]w12. The
equality w1 = w′

1 follows from w1[[v′]]w12 and N-axiom Ancestor. We conclude
that w1 is not created by v, and residual of w after u. The case when w1 is not
created by u, is symmetric.

By N-axiom IIa. and v[[u]]v′, w[[u]]w1, the relation ¬(v / w) follows from
¬(v′ / w1) and ¬(u / v). The relation ¬(u / w) holds for symmetric reasons.
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Axiom stability follows easily.
Axiom 8. We prove Axiom reversible-stability. By Axiom stability, which
was established above, applied to the hypothesis of Axiom reversible-stability,
there exists a redex w such that

– u ↑ w, ¬(u / w), and w1 is the unique residual of w after v,
– v ↑ w, ¬(v / w), and w2 is the unique residual of w after u.

We prove that ¬(w / u) and ¬(w / v). Suppose for instance that w / u. By
N-axiom IIa. and u[[v]]u1 and w[[v]]w2, the relation w2 / u1 follows from this and
¬(v / w). This contradicts definition of w2 ·u12 � u1 ·w12. Thus, ¬(w / u), and
symmetrically ¬(w / v). Axiom reversible-stability follows from Lemma 46
applied alternatively to extract the redex u from the complete development
w · v2 · u12, and the redex v from the complete development w · u2 · v12.
Axiom 9. We prove Axiom termination using an argument found in [20].
Suppose that h1 is a complete development of a multi-redex (M, U). By N-
axiom FinDev and Lemma 48, there does not exist any infinite sequence of
extraction:

h1 ↘u1 h2 ↘u2 ... ↘ui−1 hi ↘ui hi+1...

where, for every i ≥ 1, the path hi+1 is a projection of the path hi by extraction
of the redex ui. Now, we prove that there does not exist any infinite sequence

f1 ↘u1 f2 ↘u2 ... ↘ui−1 fi ↘ui fi+1... (24)

starting from a path f1 : M1 −→−→ N . We proceed by induction on the length
of f1. Clearly, the property holds when f1 = idM1 . From now on, we suppose
that the path f1 factors as f1 = u · g1 composed of a redex u and a path g1 ¡
of length strictly smaller than the length of f1. Consider any infinite sequence
of the form (24). We prove that, for every index i ≥ 1, the path fi factors as
fi = hi · gφ(i) where

– hi is a complete development of the multi-redex (Mi, Ui) defined as:

(Mi, Ui) = (Mi, u[[u1 · · ·ui−1]]) = (M1, {u})[[u1]] · · · [[ui−1]]

– φ(i) is an index 1 ≤ φ(i) ≤ i defining a sequence of extraction starting
from g1:

g1 ↘v1 g2 ↘v2 . . . ↘vφ(i)−2 gφ(i)−1 ↘vφ(i)−1 gφ(i)

for a series of redexes v1, ..., vφ(i)−1.

Suppose that the property holds for a given index i ≥ 1, and let us prove
it for the next index i + 1. Consider the path fi = hi · gφ(i) and the redex ui.
Either the redex ui is extractible from hi, or there exists a redex vφ(i) extractible
from gi and dragged to ui by the path hi. In the first case, we define φ(i + 1)
as φ(i), and conclude that the path fi+1 factors as fi+1 = hi+1 · gφ(i+1), where
hi+1 is a projection of hi by extraction of ui; here, by Lemma 48, the path
hi+1 is a complete development of (Mi, Ui)[[ui]] = (Mi+1, Ui+1) because hi is
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a complete development of (Mi, Ui). In the second case, we define φ(i + 1) as
φ(i) + 1, and observe that the path fi+1 factors as fi+1 = hi+1 · gφ(i+1), where
hi · vφ(i) ↘ui hi+1 and gφ(i) ↘vφ(i) gφ(i+1); here, by Lemma 48, the path hi+1 is
a complete development of the multi-redex (Mi, {ui} ∪ Ui)[[ui]] = (Mi+1, Ui+1)
because hi · vφ(i) is a complete development of the multi-redex (Mi, {ui} ∪ Ui).
We conclude that the factorization property holds, for every index i ≥ 1.

The end of the proof follows easily. By induction hypothesis applied to g,
there exists an index j ≥ 1 such that φ(j + i) = φ(j), for every index i ≤ j.
Thus, the infinite sequence (24) induces an infinite sequence

hj ↘uj hj+1 ↘uj+1 . . . ↘uj+i−1 hj+i ↘uj+i hj+i+1 . . .

from the complete development hj of (Mj , Uj). This contradicts a preliminary
result deduced from N-axiom FinDev. It follows that there exists no infinite
sequence of the form (24) starting from f . This concludes our reasoning by
induction, and establishes Axiom termination. ��

7 Optional Hypothesis on Standardization

7.1 Epimorphisms wrt. ≡
In Lemma 17 of Section 3.1, we establish that every path is epi (=left-cancellable)
in the quotient category 2-cat(G, �)/ %. The same epiness property modulo
≡ instead of % has been established in [24, 18, 6] for the λ-calculus and any
(left-linear) term rewriting system. Quite interestingly, the redex v and Lévy
equivalence

M
v−→ N

u1−→ P ≡ M
v−→ N

u2−→ P

in the axiomatic rewriting system

P

M v ��

u
*)

u +*

�

�

N

u1
,+

u2-,P

v · u1 � u
v · u2 � u

illustrate that the epiness property modulo ≡ does not generalize to axiomatic
rewriting systems. However, an additional hypothesis may be added on (G, �)
to ensure epiness of morphisms in the category 2-cat(G, �)/≡.

Optional hypothesis (descendant). Two redexes u′ and u′′ are equal when
they are involved in permutations v · u′ � u · f and v · u′′ � u · g, where u, v are
redexes and f, g are paths.
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Diagrammatically,

M

v

��

u

%%
Q

u′

��

⇒ P

f.-N

and

M

v

��

u

%%
Q′

u′′

��

⇒ P

g
.-

N ′

⇒ u′ = u′′

Obviously, hypothesis descendant holds in every axiomatic rewriting system
derived from an axiomatic nesting system, see Definition 43. Thus, Lemma 49
generalizes the property of epiness modulo ≡ established in [24, 18, 6] for the
λ-calculus and term rewriting systems.

Lemma 49 (epi wrt. ≡). Suppose that f : M −→−→ P and g1, g2 : P −→−→ N
are three paths in an axiomatic rewriting system (G, �) and that (G, �) satisfies
hypothesis descendant. Then,

f · g1 ≡ f · g2 ⇒ g1 ≡ g2

Proof. By induction on the length of the standard path h of f ·g1 (and of f ·g2.)
Let u be the first redex computed in h. We conclude by induction hypothesis
when u is extractible from f . Otherwise, there exist a redex v1 extractible from g1
and a redex v2 extractible from g2, such that f drags v1 and v2 to the redex u.
By hypothesis descendant, the two redexes v1 and v2 are the same redex v.
We write f ′, h1 and h2 for arbitrary results of the extractions f · v ↘u f ′ and
g1 ↘v h1 and g2 ↘v h2. Equivalence f ′ · h1 ≡ f ′ · h2 follows from Lemma 12
(preservation of extraction), and definition of u as the first redex of a standard
path of f · g1 and f · g2. Equivalence h1 ≡ h2 follows from this equivalence and
our induction hypothesis. The series of equivalence

g1 ≡ v · h1 ≡ v · h2 ≡ g2

concludes the proof by induction. ��

7.2 Monomorphisms wrt. �
A well-known example in [24] shows that β-rewriting paths are not necessarily
mono (=right-cancellable) modulo Lévy equivalence ≡. The example is the β-
redex w in the Lévy permutation equivalence

I(Ia) u−→ Ia
w−→ a ≡ I(Ia) v−→ Ia

w−→ a

The example may be adapted to show that β-rewriting paths are not necessarily
mono modulo %-equivalence in the λ-calculus equipped with the argument-order
on β-redexes, in the following way:

(λx.(λy.y)x)a u−→ (λy.y)a w−→ a ♦ (λx.(λy.y)x)a v−→ (λx.x)a w−→ a
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In contrast, we show that rewriting paths are mono modulo % in every axiomatic
rewriting system satisfying the additional property reversible-shape. It follows
that monoicity modulo % holds in almost every rewriting system, in particular
in the λ-calculus equipped with the tree-order or the left-order on β-redexes, as
well as on Petri nets and term rewriting systems.

Optional hypothesis (reversible shape). Two redexes v and v′ are different
when they are involved in a reversible permutation u · v ♦ u′ · v′.

Lemma 50 (epi-mono wrt. %). Suppose that f : M −→−→ P and g1, g2 :
P −→−→ Q and h : Q −→−→ N are four paths in an axiomatic rewriting system
(G, �) satisfying hypothesis reversible-shape. Then,

f · g1 · h % f · g2 · h ⇒ g1 % g2

Proof. Immediate consequence of Lemma 15 for right-cancellation and Lemma 17
for left-cancellation. ��

7.3 A Simpler Structure of Starts

The structure of starts described in Lemma 16 (Section 3.1) appears to be sur-
prisingly more complicated than the structure of stops described in Lemma 15.
However, a much simpler characterization of starts is possible in any axiomatic
rewriting system (G, �) satisfying the additional hypothesis reversible-cube
formulated below. The new characterization of starts appears in Lemma 51.
Note that the property is satisfied by the λ-calculus and more generally by any
axiomatic rewriting system derived from an axiomatic nesting system. On the
other hand, it is not satisfied by the axiomatic rewriting system defined on order
sequentializations, and defined at the endof Section 8.

Optional hypothesis (reversible cube). We ask that every diagram

u2

��

v ��

u

��
♦♦

w���

�����

u1

��
v1 ��

w1
		
	

��		
	 w12

��
�

���
��

v12
��

♦

where u, v, u1, v1 and w, w1, w12, u2, v12 are redexes forming the reversible per-
mutations

v · u1 ♦ u · v1 u · w1 ♦ w · u2 v1 · w12 ♦ w1 · v12
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may be completed as a diagram

u2

��

v2 ��

♦

u12

��

v ��

u

��
♦♦

w���

�����

u1

��

w2			

��			

v1 ��

w1
		
	

��		
	 w12

��
�

���
��

♦

v12
��

♦

v2 ��

u2

��

♦ u12

��
v12

��

where w2, v2, u12 are three redexes forming reversible permutations

v · w2 ♦ w · v2 u1 · w12 ♦ w2 · u12 v2 · u12 ♦ u2 · v12

Lemma 51 (simpler structure of starts). Suppose that u1 · · ·un : M −→−→
N is a path in an axiomatic rewriting system (G, �) satisfying hypothesis
reversible-cube. Then, a redex u : M −→ P starts the path u1 · · ·un : M −→−→
N if and only there exists an index 1 ≤ i ≤ n and a path v1 · · · vi−1 such that
the path u1 · · ·ui−1 followed by the redex ui permutes reversibly to the redex u
followed by the path v1 · · · vi−1.

Proof. Suppose that a path f followed by a redex v permutes reversibly to a
redex u followed by a path g. Hypothesis reversible-cube implies that for every
path f ′ % f , there exists a path g′ % g such that the path f ′ followed by the
redex v permutes reversibly to the redex u followed by the path g′. The lemma
follows immediately from this, and Lemma 16. ��

8 Examples and Open Problems

Asynchronous transition systems. Asynchronous transition systems ex-
tend both non-deterministic transition systems, and Mazurkiewicz trace lan-
guages. They were introduced independently in [4] and [39], see also [33].

An asynchronous transition system T is a quintuple T = (S, i, E, I,Tran)
where

– S is a set of states with initial state i,
– E is a set of events,
– Tran ⊂ S × L× S is the transition relation,
– I ⊂ E × E is an irreflexive, symmetric relation called the independence

relation.

Every asynchronous transition system is supposed to satisfy four axioms:

1. parsimony: ∀e ∈ E, ∃(s, s′) ∈ S × S, (s, e, s′) ∈ Tran,
2. determinacy: ∀(s, e, s′), (s, e, s′′) ∈ Tran, s′ = s′′,
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3. independence: ∀(s, e1, s1), (s, e2, s2) ∈ Tran,

e1Ie2 ⇒ ∃s′, (s1, e2, s
′) ∈ Tran and (s2, e1, s

′) ∈ Tran

4. together: ∀(s, e2, s2), (s2, e1, s
′) ∈ Tran,

e1Ie2 ⇒ ∃s1, (s, e1, s1) ∈ Tran and (s1, e2, s
′) ∈ Tran

Every asynchronous transition system T defines an axiomatic rewriting system
(GT , �T ), as follows:

– the graph GT has states as vertices and transitions (s, e, s′) as arrows,
– two paths f and g are related as f �T g, precisely when there exist four

transitions (s, e1, s1), (s, e2, s2), (s1, e2, s
′), (s2, e1, s

′) in Tran, such that
• f = (s, e2, s2) · (s2, e1, s

′),
• g = (s, e1, s1) · (s1, e2, s

′),
• the two events e1 and e2 are independent: e1Ie2.

We check that the standardization axioms hold in (GT , �T ). Axiom shape fol-
lows from anti-reflexivity of the independence relation. Observe that every per-
mutation f �T g is reversible: it coexists with a permutation g �T f . The three
Axioms irreversibility, enclave and termination follow from this, as well as
the equivalence between Axiom stability and Axiom reversible-stability. We
establish now the four Axioms ancestor, reversibility, cube and reversible-
stability. The property (2) of determinacy has two remarkable consequences
in every asynchronous transition system T :

f ♦T g and f ♦T h ⇒ g = h.

f ♦T g♦T h ⇒ f = h.

The two Axioms ancestor and reversibility follow from the first and second
assertions, respectively. By definition of the permutation relation �T , the three
events e1, e2, e3 are pairwise independent:

e1Ie2 e2Ie3 e1Ie3.

in every diagram

e1

��

s
e2 ��

e1

��
♦T♦T

e3





/.





s2

e1

��
s1 e2 ��

e3
��
�

  ��
�

s12

e3








0/






s13 e2
��

♦T

s123

or

s23

e1

��

s
e2 ��

e1

��
♦T

s2

e1

��

e3���

10���

s1 e2 ��

e3
		
	

��		
	

s12

e3
��

�

21�
��

♦T

s13 e2
��

♦T

s123
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So, it follows from the properties (2) and (4) of determinacy together with
the properties of the asynchronous transition system T , that the two diagrams
above may be completed as:

s3

e1

��

e2 ��

♦T

s23

e1

��

s e2 ��

e1
��

♦T♦T

e3




/.




s2

e1
��

e3'''

��'''

s1 e2 ��

e3
(((

''(((

s12

e3


""


♦T

s13 e2
��

♦T

s123

s3
e2 ��

e1

��

♦T

s23

e1

��
s13 e2

�� s123

Axioms cube and reversible-stability follow immediately. It is also nearly
immediate that (GT , �T ) enjoys the additional hypothesis descendant,
reversible-shape and reversible-cube formulated in Section 7.

Remark: We have just proved the axiomatics (and the additional hypothe-
sis) without ever using properties (1) and (3) of the asynchronous transition
system T .

Remark: The standardization theorem is not really informative in (GT , �T ) be-
cause every permutation being reversible, all paths are standard. However, the
axiomatics itself ensures that every asynchronous system satisfies the stability
theorem stated in [30] which describes the structure of its successful runs.

Petri Nets. The theory of Petri nets illustrates nicely the notion of asyn-
chronous transition system. A Petri net is a quintuple N = (C, j, F,pre,post)
where

– C is a set of conditions,
– j is a particular marking of N , called the initial marking, where a marking

of N is defined as a multi-set of conditions,
– F is a set of firings,
– pre,post are two functions associating to every firing e ∈ F the nonempty

markings pre(e) and post(e), called respectively the pre-condition and post-
condition of e.

An asynchronous transition system TN = (S, i, E, I,Tran) is associated to every
Petri net N in the following way, see [33]:

– S is the set of markings of N ,
– i is the marking j ∈ S,
– E is the set F of firings,
– Tran is the set of triples (p, e, q) such that p = p00pre(e) and q = p00post(e)

for a marking p0, where 0 is the multi-set addition.
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– I relates two firings e1, e2 ∈ F precisely when pre(e1) ∩ pre(e2) and
post(e1) ∩ post(e2) are empty multi-sets.

The axiomatic rewriting system (GN , �N) associated to the asynchronous tran-
sition system TN may be described directly, as follows. Its transition system GN

has the markings of N as vertices, and the triples

(p0 0 pre(e), e, p0 0 post(e)) = (p, e, q)

as edges p −→ q. The permutation relation �N relates two paths u · v′ � v · u′

precisely when:

1. u and v are edges u = (p, e1, p1) and v = (p, e2, p2),
2. u′ and v′ are edges u′ = (p2, e1, p

′) and v′ = (p1, e2, p
′),

3. pre(e1) ∩ pre(e2) and post(e1) ∩ post(e2) are empty multi-sets.

Bubble sort. The standardization procedure may be viewed as a generalization
of the bubble sort algorithm, in which the order is not given globally but locally.
Define G as the graph with a unique vertex M and, for every natural number i ∈
N, an edge [i] : M −→ M . Let � be the least relation on paths such that

[j] · [i] � [i] · [j]

when i < j. All the standardization axioms introduced in Section 2 are imme-
diate on (G, �) — except Axiom enclave which follows from the transitivity
of the order on natural numbers. The standardization theorem of (G, �) states
that every sequence of natural numbers [j1] · · · [jk] may be reordered by local
permutations into an increasing sequence [i1] · · · [ik] — and that this reordering
is unique, since all the permutations of (G, �) are irreversible.

Hierarchical transition systems. Here, we subsume the two previous exam-
ples of asynchronous transition systems, and of bubble sort on natural numbers,
into what we call a hierarchical transition system. The idea is to order events
in an asynchronous transition system (typically firings in a Petri net) with a
precedence relation / satisfying a weak transitivity condition.

A hierarchical transition system is a quintuple T = (S, i, E,/, Tran) where

– S is a set of states with initial state i,
– E is a set of events,
– Tran ⊂ S × L× S is a transition relation,
– / ⊂ E × E is a reflexive relation called the precedence relation.

The independence relation I is defined as

eIe′ ⇐⇒ ¬(e / e′) and ¬(e′ / e) (25)

The strict precedence relation ≺ is defined as

e ≺ e′ ⇐⇒ e / e′ and ¬(e′ / e)
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Every hierarchical transition system is supposed to satisfy three axioms:

1. determinacy: ∀(s, e, s′), (s, e, s′′) ∈ Tran, s′ = s′′,
2. independence: ∀(s, e2, s2), (s2, e1, s

′) ∈ Tran,

¬(e2 / e1) ⇒ ∃s1, (s, e1, s1) ∈ Tran and (s1, e2, s
′) ∈ Tran

3. weak transitivity: ∀(e, e′, e′′) ∈ E × E × E,

e ≺ e′ / e′′ ⇒ e / e′′.

Hierarchical transition systems extend usual asynchronous transition systems,
since every asynchronous transition system T = (S, i, E, I,Tran) may be seen as
the hierarchical transition system V (T ) = (S, i, E,/V (T ), Tran) with precedence
relation /V (T ) defined as:

∀(e, e′) ∈ E × E, e /V (T ) e′ ⇐⇒ ¬(eIe′)

Here, weak transitivity of /V (T ) follows from symmetricity. Now, we associate
to every hierarchical transition system T = (S, i, E,/, Tran) the following AxRS
(GT , �T ):

– whose transition system GT has states as vertices and transitions (s, e, s′) as
arrows,

– whose permutation relation �T relates two paths f and g as f �T g, precisely
when f = (s, e2, s2) · (s2, e1, s

′), g = (s, e1, s1) · (s1, e2, s
′) and the two events

e1 and e2 satisfy ¬(e2 / e1).

In particular: the permutation f �T g is reversible iff e1Ie2 and irreversible
iff e1 ≺ e2. We claim that (GT , �T ) is an axiomatic rewriting system. All the
standardization axioms hold in (GT , �T ) for the same reasons as in the case of
asynchronous transition systems — except for Axiom enclave, which follows
from the weak transitivity of the precedence relation /.

This enables to state a standardization theorem for every hierarchical transi-
tion system T . A particularly interesting case is when the precedence relation /
is a partial order. In that case, the standard paths of (GT , �T ) may be charac-
terized as the sequences of transition:

s1
e1−→ e2−→ · · · en−1−→ sn

in which there exists no pair of indices 1 ≤ i < j ≤ n such that ej ≺ ei (Hint:
use the characterization lemma, Lemma 19). Thus, the standardization theorem
states that every sequence of transitions in T

s1
e1−→ e2−→ · · · en−1−→ sn

may be reorganised, after a series of permutations �T , into such an ordered
sequence, and that this sequence is unique, modulo permutation of independent
events.
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We illustrate our point that weak transitivity of / is necessary to establish
standardization. Consider the pseudo hierarchical transition system T with one
state s, three events a, b, c, and the following precedence relation /

a / b b / c c / a

The relation / is not weakly transitive, and consequently, the uniqueness prop-
erty fails: the sequence

s
c−→ s

b−→ s
a−→ s

may be standardized as any of the two transition paths

s
b−→ s

c−→ s
a−→ s and s

c−→ s
a−→ s

b−→ s

which are not equal modulo permutation of independent events (the indepen-
dence relation is empty in T .)

Erasing transition systems. We mention only briefly that it is possible to
enrich hierarchical transition systems with a notion of erasure between events.
Start from a hierarchical transition system (S, i, E,/, Tran) and equip it with
a binary relation K on events, called the erasing relation, chosen among the
subrelations of ≺. Then, replace property (2) of hierarchical transition systems,
by the two axioms:

1. K-erasure: ∀(s, e2, s2), (s2, e1, s
′) ∈ Tran,

e1Ke2 and ¬(e2 / e1) ⇒ (s, e1, s
′) ∈ Tran

2. K-permutation: ∀(s, e2, s2), (s2, e1, s
′) ∈ Tran,

¬(e1Ke2) and ¬(e2 / e1) ⇒ ∃s1, (s, e1, s1) ∈ Tran and (s1, e2, s
′) ∈ Tran

This defines what we call an erasing transition system T = (S, i, E,/, K, Tran).
The definition of the AxRS (GT , �T ) associated to T proceeds as in the case of
hierarchical transition system, except that permutations of the form

p

⇐Te1

��

e2 �� p1

e1

��
p′

idp′
p′

are considered when e1Ke2. The standardization axioms hold in (GT , �T ) for
the same reasons as in the hierarchical case.

Term Rewriting Systems. The reader interested in term rewriting systems
will find an introduction to the subject in [21, 19, 2, 11] and a comprehensive
study of standardization in [35]. Here, we recall only that
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1. a term rewriting system is a pair Σ = (F , {ρ1, ..., ρn}) where F is the signa-
ture of an algebra and every ρi is a rewriting rule on this algebra.

2. a rewriting rule ρ : L → R is a pair of open terms of the algebra such that
every variable in R also occurs in L,

3. a redex in Σ is a quadruple (M, o, ρ, σ) where M is a term, o is an occurrence
of M , ρ is a rewriting rule L → R of the system and σ is a valuation of the
variables appearing in L, such the term M decomposes as M = C[Lσ]o for
some context C[−]o with unique hole [−] at occurrence o. Notation: we write
u : M −→ N for N = C[Rσ]o.

4. If the variable x occurs k ≥ 1 times in L, every redex v in a term σ(x)
corresponds to k redexes v1, ..., vk in the term M = C[Lσ]o. We say that
u = (M, o, ρ, σ) nests each of the redexes vi; and that it nests the redex v
linearly when k = 1,

5. We say that two redexes u : M −→ P and v : M −→ Q are disjoint when
their occurrences in M are non comparable w.r.t the prefix order.

6. a rewriting rule L → R is left-linear when L does not contain two occurrences
of the same variable. In that case, the only possibility for a redex to nest
another redex, is to nest it linearly.

The transition system GΣ of the rewriting system Σ has the terms M of the
algebra as vertices and the redexes u : M −→ N induced by the system as
edges. The relation � on path in GΣ is the least relation such that:

1. v · u′ �Σ u · v′ when the redexes u = (M, o1, ρ1, σ1) : M −→ P and v =
(M, o2, ρ2, σ2) : M −→ Q are disjoint and u′ = (Q, o1, ρ1, σ1) and v′ =
(P, o2, ρ2, σ2),

2. v·u′ �Σ u·f when u = (M, o1, ρ1, σ1) : M −→ P nests v = (M, o1; o, ρ2, σ2) :
M −→ Q linearly, u′ = (Q, o1, ρ1, σ1) : Q −→ N and f : P −→ N is the
complete development of the copies of v through u (see [21, 18, 27, 22] for a
formal definition of complete developments and copies).

In order to prove that (GΣ , �Σ) satisfies the standardization axioms, we me-
diate through an axiomatic nesting system (GΣ , [[−]]Σ ,/Σ, ↑Σ) and the ten N-
axioms of Section 6. Our diagrammatic standardization theorem 2 will generalize
the results of [18, 6] to possibly non-left-linear term rewriting systems.

The main point to clarify is: how shall the usual compatibility, nesting and resid-
ual relations be extended from left-linear to general term rewriting systems? There
is a constraint: that the resulting axiomatic nesting system (GΣ , [[−]]Σ ,/Σ, ↑Σ)
generates the axiomatic rewriting system (GΣ , �Σ) defined hereabove. The defi-
nition follows immediately. Two coinitial redexes u and v are compatible, what we
write u ↑Σ v, when

– the redexes u and v are disjoint,
– or when the redex u nests the redex v linearly,
– or when the redex v nests the redex u linearly.

We define the relation [[−]]Σ . When u and v are not compatible, the redex u has
simply no residual after v (in particular, u[[u]]Σ is empty). When u and v are
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compatible, the definition of the residuals of u after v proceeds as in left-linear
rewriting systems:

– when the redexes u and v : M −→ N are disjoint, or when u nests v lin-
early, then u = (M, o1, ρ1, σ1) has the redex u′ = (N, o1, ρ1, σ

′
1) with same

occurrence in N as residual.
– when the redex v = (M, o2, ρ2 = L −→ R, σ2) nests the redex u linearly, then

the redex u has a residual u′ after v for each occurrence of the variable x in
R — where x is the variable substituted in L by the term σ2(x) containing
the redex u.

Finally, we write u /Σ v when the redex u nests the redex v linearly. Obviously,
the axiomatic rewriting system (GΣ , �Σ) derives from the resulting axiomatic
rewriting system, by Definition 43. Moreover, each of the ten N-axioms are nearly
immediate: N-axioms Finite, Compat, Ancestor, Self are obvious, while N-
axioms FinDev and Perm generalize the well-known finite development lemma
for left-linear term rewriting systems, established in [18, 20, 3, 27]. The four re-
maining N-axioms I, II, III and IV are also immediate.

Remark: Consider the term F (A, A) in the non left-linear rewriting system Σ:

F (x, x) −→ G(x) A −→ B

Intuitively, there should be a permutation:

F (A, A)
A1 ��

F

��

F (B, A)
A2 �� F (B, B)

F

��
G(A) A �� G(B)

(26)

oriented as follows: A1 · A2 · F =⇒ F · A. However, in our presentation, we
replace the permutation by a critical pair (= a hole) between the two redexes
F (A, A) −→ G(A) and F (A, A) −→ F (B, A). This is one limit of our current
axiomatic theory: we do not know how to integrate permutations like (26) in our
standardization framework. The 2-categorical approach of Section 5 is likely to
provide a solution, at least because it replaces the Axiom shape by the more
flexible notion of partial injection [α].

λ-calculus [tree-nesting order]. We have already established in Section 2,
at least informally, that the nine standardization axioms hold for this λ-calculus,
and its associated 2-dimensional transition system (Gλ, �tree). It is worth observ-
ing that the axiomatic nesting system (Gλ, [[−]]λ,/tree, ↑λ) satisfies moreover the
ten N-axioms of Section 6. This follows on one part from traditional results on
β-redexes and residuals appearing in [24, 3], and on the other part, from ele-
mentary arguments on the dynamics of β-reduction which establish together the
N-axioms I, II, III and IV. By Theorem 5, this provides another way to prove
that (Gλ, �tree) satisfies the 2-dimensional axiomatics of Section 2.
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λ-calculus [left order]. It is interesting to examine the reasons why the
axiomatic nesting system associated to the λ-calculus and its left-order /left
satisfies the N-axioms formulated in Section 6. Six of the ten N-axioms do not
mention the nesting order, and were thus already discussed in the previous para-
graph. The four remaining axioms are N-axioms I, II, III and IV. The two N-
axiom I and IV are easy to check. N-axiom IV for instance follows from the fact
that the order /left is total, and thus, that there exists no reversible permuta-
tions in the system. The two remaining N-axioms II and III are less obvious to
establish. However, both of them hold inherently for the reason that in a λ-term
PQ, no computation in Q may induce (by creation or residual) a β-redex above
the λ-term P . This fundamental property of the λ-calculus is precisely the reason
for the left-orientation of this calculus, discussed at length in the introduction
of this article.

In that specific case, the diagrammatic standardization theorem repeats the
traditional leftmost-outermost standardization theorem established in [24, 20, 3].
Since there exists no reversible permutation, the equivalence relation % modulo
reversible permutation coincides with the equality. This explains why the stan-
dard path g of a path f is unique in that case — and not just unique modulo.

λ-calculus [argument order]. In contrast to the two orders /tree and /left,
this particular order on β-redexes does not fall into the scope of our previous
axiomatic presented in [13] for the following reason. An axiom requires that
whenever two β-redexes u and v have respective residuals u′ and v′ after β-
reduction of a coinitial β-redex w, then:

(u′ /arg v′ ⇒ u /arg v) or (w /arg u and w /arg v). (27)

The axiom states that a redex w may only alter the relative positions of re-
dexes u and v when the two redexes are under the redex w. The argument-
order /arg does not satisfy this property in general, typically when the β-
redex w : (λx.M)P substitutes its argument P containing the β-redex v inside
the argument of a β-redex u in the function (λx.M). This is illustrated by the
three coinitial β-redexes u, v and w:

(λw.w)((λv.v)a) (λv.v)a

(λw.(λu.u)w)((λv.v)a) w ��

v

��

u

��

(λu.u)((λv.v)a)

v′

��

u′

��

(λw.(λu.u)w)a (λu.u)a

It is not difficult to see that Property (27) is not satisfied, since:

– the β-redexes u is not in the argument of the β-redex w: thus, ¬(w /arg u).
– the β-redex v is not in the argument of the β-redex u: thus, ¬(u /arg v),
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– after β-contraction of the β-redex w, the residual v′ of the β-redex v appears
in the argument of the residual u′ of the β-redex u: thus, u′ /arg v′.

It took us a lot of time to realize after [13] that Property (27) can be weakened
and replaced by the N-axiom IIb. formulated in Section 6, without breaking the
standardization theorem. We recall that the N-axiom IIb. states that in the
earlier situation:

(u′ /arg v′ ⇒ u /arg v) or w /arg v.

In other words, it is possible for a redex w above a redex v to position one of
its residuals v′ under a redex u not nested by the redex w. This is precisely what
happens in our example. So, this weaker property and the nine other N-axioms
are satisfied by the axiomatic nesting system (Gλ,/arg, [[−]]λ, ↑λ). Thus, contrary
to what happened in [13], our axiomatics does not discriminate between the
three different partial orders /tree, /left and /arg on the β-redexes in λ-terms.
Consequently, the argument-order /arg induces a well-behaved standardization
theorem on the λ-calculus — just like the tree-order/tree and the left-order/left.

λ-calculus [call-by-value]. A value of the λ-calculus is defined either as
a variable or as a λ-term of the form λx.M . G. Plotkin introduces in [38] the
call-by-value λ-calculus, whose unique βv-reduction (λx.M)V → M [V/x] is the
β-rule restricted to value arguments V . It is not difficult to show that the λv-
calculus — interpreted as an axiomatic nesting system — satisfies the ten N-
axioms formulated in Section 6. The resulting standardization theorem, which
is non-trivial to prove directly on the syntax, leads to Plotkin’s formalization of
Landin’s SECD machine, see [12] for instance.

Explicit substitutions. The usual β-reduction (λx.M)P −→ M [P/x] copies
its argument P as many times as the variable x occurs in M . This is fine theoret-
ically, but inefficient if one wants to implement β-reduction in a computer. Thus,
in most implementations of the λ-calculus, the argument P is not substituted,
but stored in a closure and applied only when necessary. Unfortunately, the al-
ternative evaluation mechanism complicates the task of checking the correctness
of the implementation, by translating it back to the λ-calculus.

So, the λσ-calculus was introduced in [1] to bridge the λ-calculus and its im-
plementations. In the λσ-calculus, substitutions are explicit, they can be delayed
and stored just like closures. This enables to factorize many translations from
abstract machines to the λ-calculus, see [15].

Abstract Machine
translation �� λσ-calculus

interpretation �� λ-calculus

Formally, the λσ-calculus contains two classes of objects: terms and substitu-
tions. Terms are written in the de Bruijn notation.

terms a ::= 1 | ab | λa | a[s]
substitutions s ::= id | ↑ | a · s | s ◦ t
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Beta (λa)b → a[b · id]

App (ab)[s] → a[s]b[s] V arId 1[id] → 1
Abs (λa)[s] → λ(a[1 · (s ◦ ↑)]) V arCons 1[a.s] → a
Clos a[s][t] → a[s ◦ t] IdL id ◦ s → s
Map (a · s) ◦ t → a[t] · (s ◦ t) ShiftId ↑ ◦ id → ↑
Ass (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3) ShiftCons ↑ ◦ (a · s) → s

Fig. 6. The 11 rules of the λσ-calculus

Ten rules (called the σ-rules) describe how substitutions should be delayed, prop-
agated, composed and performed. An eleventh rule of the calculus, the Beta rule,
mimicks the β-rule of the λ-calculus, see Figure 6.

This makes the λσ-calculus a fibered rewriting system with underlying ba-
sis the λ-calculus. The σ-calculus is strongly normalizing and confluent. Thus,
every (closed) λσ-term may be interpreted as the λ-term σ(a) obtained by σ-
normalization. The fiber FM indexed by the λ-term M contains all λσ-terms
a interpreted as σ(a) = M . It is possible to extend the interpretation from
terms to computations, and to project every λσ-rewriting path a −→ b to a
β-rewriting path σ(a) −→ σ(b) (modulo equivalence % though). Properties of
the interpretation are studied thoroughly in [14, 9, 40, 28].

The λσ-calculus is kind of hybrid between deterministic and non-deterministic
rewriting systems. As a fibered system over the λ-calculus, it satisfies many prop-
erties of conflict-free rewriting systems, like confluence. At the same time, with
eleven rules and eleven critical pairs (see Figure 7) the λσ-calculus is an elaborate
instance of a calculus with conflicts. Besides, to add some spice, its evaluation
mechanism may behave counter-intuitively, as witnessed by the author’s non-
termination example of a simply-typed λσ-term, presented in [26].

For all these reasons, the λσ-calculus has been our training partner since the
early days of the axiomatic theory. Many fundamental ideas of the theory (e.g.
factorization, stability) originate from the meticulous analysis of its evaluation
mechanism. Of course, like every term rewriting system, the λσ-calculus defines
an axiomatic rewriting system. As such, it satisfies the standardization theo-
rem established in the article, as well as the factorization and stability theorems
established in later articles [29, 30]. We believe that this series of structure the-
orems play the same regulating role for the λσ-calculus as the Church-Rosser
property plays traditionnaly for the λ-calculus. For instance, we were able to
formulate and establish in this way a normalization theorem for the needed
strategies of the λσ-calculus, see [28].

Dags. The definition of a rewriting system Σ on directed acyclic graphs (dags)
may be found in [8]. We interpret any dag rewriting system Σ as the following
axiomatic rewriting system (GΣ , �Σ). The graph GΣ has dags and redexes of Σ
as vertices and edges. Two paths f and g are related as f �Σ g in two cases only:
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App + Beta (λa)[s](b[s])
App← ((λa)b)[s] Beta−→ a[b · id][s]

Clos + App (ab)[s ◦ t] Clos← (ab)[s][t] App−→ (a[s](b[s]))[t]
Clos + Abs (λa)[s ◦ t] Clos← (λa)[s][t] Abs−→ (λ(a[1 · s ◦ ↑]))[t]
Clos + V arId 1[id ◦ s] Clos← 1[id][s] V arId−→ 1[s]

Clos + V arCons 1[(a · s) ◦ t] Clos← 1[a · s][t] V arCons−→ a[t]
Clos + Clos a[s][t ◦ t′] Clos← a[s][t][t′] Clos−→ a[s ◦ t][t′]

Ass + Map (a · s) ◦ (t ◦ t′) Ass← ((a · s) ◦ t) ◦ t′ Map−→ (a[t] · s ◦ t) ◦ t′

Ass + IdL id ◦ (s ◦ t) Ass← (id ◦ s) ◦ t
IdL−→ s ◦ t

Ass + ShiftId ↑ ◦ (id ◦ s) Ass← (↑ ◦ id) ◦ s
ShiftId−→ ↑ ◦ s

Ass + ShiftCons ↑ ◦ ((a · s) ◦ t) Ass← (↑ ◦ (a · s)) ◦ t
ShiftCons−→ s ◦ t

Ass + Ass (s ◦ s′) ◦ (t ◦ t′) Ass← ((s ◦ s′) ◦ t) ◦ t′ Ass−→ (s ◦ (s′ ◦ t)) ◦ t′

Fig. 7. The 11 critical pairs of the λσ-calculus

– the reversible case: f = v · u′ and g = u · v′, when u and v are different
compatible redexes, u′ is the unique residual of u after v, and v′ is the
unique residual of v after u.

– the irreversible case: f = v · u′ and g = u, when u and v are different
compatible redexes, u′ is the unique residual of u after v, and v does not
have any residual after v, or equivalently, v is erased by u.

The nine standardization axioms are not too difficult to establish on (GΣ , �Σ)
in the same way as for erasing transition systems, considered a few paragraphs
above.
Remark: In the case of a non-erasing dag rewriting system Σ, every rewriting
path is standard. This indicates that our current axiomatic description of dag
rewriting systems is not really satisfactory. Obviously, standardization should
consider redex occurrence instead of simply redex erasure. We still do not know
how to integrate such considerations in our standardization theory, see the dis-
cussion [27]. One solution may be to relax the notion of 2-dimensional normal
form (=standard path) in a way similar to B. Hilken when he relaxes the defini-
tion of 1-dimensional normal form, in order to characterize the βη-long normal
forms of simply-typed λ-calculus, see [16, 28] and the paragraph below.

λ-calculus [Eta-expansion]. B. Hilken considers the following permutation
in simply-typed λ-calculus with β-reduction and η-expansion, see [16]:

(λxA.fA→BxA)yA

β

32))
)))

)))
)))

)))
)))

)))
))

fA→ByA

η



����������������������
fA→ByA

(28)
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In this way, B. Hilken characterizes the βη-long normal forms as the λ-
terms M such that, for every rewriting path f : M −→−→ N , there exists a path
g : N −→−→ M such that f ·g : M −→−→ M is equivalent to idM : M −→−→ M modulo
permutation. This is one of the most interesting open problems of our Axiomatic
Rewriting Theory: despite much effort, we do not know yet how permutations
like (28) should be integrated in our diagrammatic theory.

Order sequentialization. Here, we illustrate the fact that axiomatic rewrit-
ing systems strictly generalize axiomatic nesting systems. We fix a set X , and
construct the transition system GX as follows:

– its vertices are the partial orders on the set X ,

– its edges ≤1−→≤2 are the quadruples (≤1, a, b,≤2) where (a, b) is a pair of
incomparable elements in the partial order (X,≤1), and the partial order ≤2
is defined as:

≤2 = ≤1 ∪ {(x, y) ∈ X ×X | x ≤1 a and b ≤1 y}

The 2-dimensional transition system (GX , �X) is then defined as follows. Its
irreversible permutations f �X g relate two paths

≤1

�X

(a,b) ��

(c,d)
��

≤2

(c,d)
��

≤3 id
≤3

when c ≤1 a and b ≤1 d. The reversible permutation relation ♦X relates two
paths

≤1

♦X

(a,b) ��

(c,d)
��

≤2

(c,d)
��

≤3
(c,d)

�� ≤4

when neither (c ≤1 a and b ≤1 d) nor (d ≤1 a and b ≤1 c).

It is easy to prove that the 2-dimensional transition system (GX , �X) defines
an axiomatic rewriting system, for every set X . The normal forms of this system
are the total orders on X . The interesting point is that the axiomatic rewriting
system (GX , �X) associated to X = {a, b, c} does not satisfy Axiom reversible-
cube formulated in Section 7.3 — and thus, cannot be expressed as an axiomatic
nesting system. Indeed, (GX , �X) contains the diagram
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(b < c)

(a,c)

��

(−) (a,b) ��

(a,c)
��

(b,c)****

43****

♦X♦X

(a < b)

(a,c)
��

(a < c) (a,b) ��

(b,c)
���

�

54���
� ♦X

(a < b, c)

(b,c)
+++

+

32++
++

(a, b < c) (a,b) �� (a < b < c)

By Lemma 45 and 46 any such diagram may be completed as a reversible cube
in an axiomatic rewriting system associated to an axiomatic nesting system.
However, this diagram cannot be completed in (GX , �X).

9 Conclusion

Axiomatic Rewriting Theory is the latest attempt since Abstract Rewriting The-
ory [32, 17, 21] to describe uniformly all existing rewriting systems — from Petri
nets to higher-order rewriting systems. The theory uncovers a series of diagram-
matic principles underlying the syntactic mechanisms of computation, and re-
duces in this way the endemic variety of syntax to a uniform geometry of causal-
ity. In about a decade, the theory has bridged the gap with category theory
and denotational semantics, and solved several difficult problems of Rewriting
Theory:

– a normalization theorem for needed strategies in the λσ-calculus, a λ-calculus
with explicit substitutions, has been formulated and established in [28],

– a factorization theorem separating functorially the useful part of a rewriting
path from the junk has been established in [29],

– an algebraic characterization of head-reductions in rewriting systems with
critical pairs has been formulated in [30]. A syntactic characterization of
head-reductions has been also formulated in the case of the λσ-calculus [28].

This series of results demonstrates that a purely diagrammatic approach to
Rewriting Theory is possible and fruitful. It also opens a series of interesting
research directions, at the frontier of Rewriting Theory and Higher-Dimensional
Categories, see for instance [23] and [31]. More specifically, we would like to
capture properly the causal principles underlying Rewriting Systems like the λ-
calculus with β-reduction and η-expansion, the non left-linear term rewriting
systems, or the directed acyclic graph rewriting systems. We are inclined to
think that the diagrammatic language has something singular and innovative to
articulate on these traditional topics of Rewriting Theory.
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Thèse de Doctorat d’Etat, Université Paris VII, 1979.
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