
N-Ary Queries by Tree Automata

Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and Sophie Tison

INRIA Futurs, LIFL, Lille, France
www.grappa.univ-lille3.fr/mostrare

Abstract. We investigate n-ary node selection queries in trees by successful runs
of tree automata. We show that run-based n-ary queries capture MSO, contribute
algorithms for enumerating answers of n-ary queries, and study the complexity
of the problem. We investigate the subclass of run-based n-ary queries by unam-
biguous tree automata.

Keywords: XML, databases, information extraction, logic, automata, types,
pattern.

1 Introduction

Node selection is the most widespread database querying problem in the context of
XML. Beside other applications, node selection is basic to XML transformation lan-
guages (Query, XSLT, XDuce, CDuce, tree transducer, etc [13, 7, 15]) and of interest
for Web information extraction (Lixto, Squirrel, etc [1, 12, 5]).

Monadic node selection queries in trees define sets of nodes, while n-ary node selec-
tion queries define sets of n-tuples of nodes. Binary queries, for instance, can be used
to select all pairs of products and prices in XML or HTML documents created from
the database of some company. Monadic queries have attracted most attention so far, in
particular those specified in the W3C standard XPath that is used by XQuery and XSLT,
or similar path based query languages [17]. Monadic Datalog yields attractive alterna-
tives for expressing monadic queries, in particular for visual Web information extraction
[11]. More general n-ary queries have been promoted by XML programming languages
with pattern matching such as XDuce and CDuce [13, 7]. Their patterns or types with
n capture variables specify n-ary node selection queries in trees.

Monadic second-order logic (MSO) is the classical language for defining regular
node selection queries in trees [21]. Every formula of MSO with n free node variables
specifies an n-ary query. MSO is highly expressive, succinct, and robust under many
wishful operations. Its usage, however, remains limited due to its high combined com-
plexity in query answering. Tree automata provide an equally expressive alternative,
according to Thatcher and Wright’s 1968 theorem [21]. They avoid the algorithmic
complexity of MSO at the cost of lower succinctness. N -ary queries are seen as lan-
guages of trees whose nodes are annotated by bit vectors of length n, which may be
recognizable by tree automata or not.

In this paper, we investigate the more recent approach of defining n-ary queries by
successful runs of tree automata [2, 13, 18, 10, 19]. Successful runs annotate all nodes
of a tree by states. Given a selection set of n-tuples of states, a successful run selects

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 217–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

www.grappa.univ-lille3.fr/mostrare

218 J. Niehren et al.

all those n-tuples of nodes that it annotates in the selection set. We study the two cases
of ranked and unranked trees. In the unranked case, essentially the same representation
formalism has been proposed previously by Berlea and Seidl [2], called n-ary queries
by forest grammars. In the ranked case, run-based n-ary queries have been proposed by
Hosoya and Pierce [13] in terms of pattern automata.

4

book 3

article 1
...

x x′
...

article 2
...

y y′
...

states = {1,2,3,4,x,y,x’,y’,all} final = {4}

book(all∗, 1, 2, all∗) → 3 (all∗, 4, all∗) → 4
3 ε→ 4

article(x, x′, all∗) → 1 article(y, y′, all∗) → 2

all ε→ x | x′ | y | y′ (all∗) → all∗

Fig. 1. Pattern as tree automata; matches correspond to successful runs

N -ary queries by tree pattern are most closely related to run-based queries by tree
automata [13]. This is illustrated by the example in Fig. 1. The nodes of the tree pattern
on the left become states of the automaton on the right. The root node of the pattern
becomes the unique final state. The only selecting n-tuple of automaton states is the
n-tuple of capture variables of the pattern. The rules of the automaton express the se-
mantics of the pattern. They can be inferred compositionally. Matches of the pattern
correspond to successful runs of the automaton.

In this paper, we prove the folk theorem that run-based n-ary queries capture MSO,
to our knowledge for the first time. We then present a deterministic algorithm that can
enumerate all answers of an n-ary query by an automaton A with selection set S ⊆
states(A)n in time O(|S| ∗ |A| ∗ |t|n). The combined complexity of run-based n-ary
queries is thus in deterministic polynomial time for fixed tuple size n. We also prove
that this is not the case if we do not bound the tuple size n.

We then investigate the querying power of unambiguous tree automata. Unambiguity
limits the amount of nondeterminism to at most one successful run per tree, which is
more permissive than imposing bottom-up or top-down determinism. Monadic queries
by unambiguous tree automata are of particular interest for query induction [5]. They
are known to capture the class of monadic MSO-definable queries (since they are the
IBAGs of [18]) in contrast to deterministic tree automata.

For the n-ary case, however, we prove that run-based queries by unambiguous au-
tomata are strictly less expressive than MSO. They capture only finite unions of Carte-
sian closed regular queries. This is the class of n-ary queries that can be defined by
disjunctions of conjunctions of MSO formulas with one free variable each. We can
compute representions of all query answers in time O(n ∗ |S| ∗ |A| ∗ |t|). Emptiness
is thereby decidable in polynomial time even for unbounded tuple size n. Finally, we
show that it is decidable whether an MSO defined query belongs to that restricted class.
We reduce this problem to testing the boundedness of the degree of ambiguity of tree
automata [20].

N-Ary Queries by Tree Automata 219

2 MSO Definable and Regular Queries

We develop our theory of n-ary queries for binary trees which will be sufficient to
deal with unranked trees (see Section 6). This section starts with Thatcher and Wright’s
theorem [21], slightly reformulated in terms of querying rather than recognition.

Let Σ be a finite signature of binary function symbols f and constants a. A binary
tree t ∈ TΣ is a ground term over Σ. A node π of a tree t is a word in {1, 2}∗ that is the
relative address of some subtree starting from the root. We write nodes(t) for the set of
nodes of t. The empty word ε is the root of t. We write π · π′ for the concatenation of
the words π and π′. The node π · 1 of a tree t is the first child of the node π in t, while
π · 2 is its second child. A node is a leaf if it has no child, otherwise it is an inner node.
We will freely identify trees t over Σ with labeling functions of type t : nodes(t) → Σ,
such that for all a, f ∈ Σ, t1, t2 ∈ TΣ , and i · π ∈ {1, 2}∗ (where i is the word 1 or 2) :

a(ε) = a, f(t1, t2)(ε) = f, f(t1, t2)(i · π) = ti(π) if π ∈ nodes(ti)

Definition 1. Let n ∈ N. An n-ary query in binary trees over Σ is a function q that
maps trees t ∈ TΣ to sets of n-tuples of nodes, such that ∀t ∈ TΣ : q(t) ⊆ nodes(t)n.

Simple examples for monadic queries in binary trees over Σ are the functions leaf and
root that map trees t to the sets of their leaves resp. to the singleton {ε}. The binary
query first child relates nodes π to their first child π · 1 if it exists, while the query
next sibl relates first children π · 1 to their next sibling to the right π · 2. As another
example, we can query for all pairs (π, π′) in trees t such that the subtrees of t on below
of π and π′ are equal in structure. This last query can indeed be expressed by RAG’s
[18] but cannot be defined in MSO.

In MSO, binary trees t ∈ TΣ are seen as logical structures, whose domain is the set
nodes(t). Its signature consists of the binary relation symbols first child and next sibl
and the monadic relation symbols labelc for all c ∈ Σ. These symbols are interpreted
by the corresponding node relations of t.

first childt = {(π, π · 1) | π · 1 ∈ nodes(t)} labeltc = {π | t(π) = c}
next siblt = {(π · 1, π · 2) | π · 1 ∈ nodes(t)}

Let x, y, z range over an infinite set of first-order variables and p over an infinite set
of monadic second-order variables. Formulas φ of MSO have the following abstract
syntax, where c ∈ Σ:

φ ::= p(x) | first child(x, y) | next sibl(x, y) | labelc(x) | ¬φ | φ1 ∧ φ2 | ∀x.φ | ∀p.φ

A variable assignment α into a tree t maps first-order variables to nodes of t and second-
order variables to sets of nodes of t. We define the validity of formulas φ in trees t
under variable assignments α in the usual Tarskian manner, and write t, α |= φ in this
case. Formulas φ with n free first-order variables x1, ..., xn define n-ary queries, which
satisfy for all t ∈ TΣ :

qφ(x1,...,xn)(t) = {(α(x1), ..., α(xn)) | t, α |= φ}

220 J. Niehren et al.

Definition 2. An n-ary query is MSO definable if it is equal to some qφ(x1,...,xn).

An equivalent way of defining n-ary queries in MSO is by formulas φ with n free
second-order variables p1, ..., pn. For all t ∈ TΣ let:

qφ(p1,...,pn)(t) =
⋃

t,α|=φ

α(p1) × . . . × α(pn)

Lemma 1. An n-ary query is MSO definable iff it is equal to some qφ(p1,...,pn).

A tree automaton A for binary trees [9] over signature Σ consists of two finite sets
final(A) ⊆ states(A) and a set rules(A) with elements of the form a → p or f(p1, p2)
→ p where f ∈ Σ is a binary function symbol, a ∈ Σ a constant, and p, p1, p2 ∈
states(A).

A run r of a tree automaton A on a tree t is a mapping r : nodes(t) → states(A)
that associates states to nodes of t according to the rules of A. Equivalently, we can see
runs as trees labeled in states(A) such that nodes(r) = nodes(t). A run is successful if
it labels the root of the tree by a final state, i.e. if r(ε) ∈ final(A). We write runsA(t)
for the set of all runs of A on t and succ runsA(t) for the subset of successful runs. A
tree t is accepted by a tree automaton A if it permits a successful run by A. The tree
language L(A) recognized by an automaton A is the set of trees t accepted by A. A
tree language is regular if it is recognized by some tree automaton.

Queries can be viewed as tree languages. This perspective is close to that of
Thatcher and Wright, who view models t, α of MSO formulas as trees t annotated
by bit vectors encoding α. Sets of models become languages of annotated trees.

Let B = {0, 1} be the set of Booleans. A Boolean tree β is a binary tree whose
nodes are labeled by Booleans (here, Booleans serve both as binary function symbols
and as constants). As an auxilary notion for formalising compositions of trees with their
annotations, we define products of functions with the same domain. The product of m
functions gi : C → Di is the function g1 ∗ . . . ∗ gm : C → D1 × . . . × Dm such that

(g1 ∗ . . . ∗ gm)(c) = (g1(c), . . . , gm(c)) for all c ∈ C

Considering trees as functions, the product t1 ∗ . . . ∗ tm of m trees with the same
domain (but possibly different signatures) is the tree whose labeling function is the
product of labeling functions of t1, . . ., tn. A language L of annotated trees over Σ×B

n

corresponds to the following n-ary query:

qL(t) ={(π1, . . . , πn) | ∃β1, . . . , βn, t∗β1∗. . .∗βn ∈ L, β1(π1) = . . . = βn(πn) = 1}

Such languages identify queries uniquely, but conversely, the same query may be rep-
resented by many different languages.

Definition 3. An n-ary query in trees over Σ is regular iff it is equal to qL(A) for some
tree automaton A over Σ × B

n.

Theorem 1. ([21]). An n-ary query in trees is MSO definable iff it is regular.

N-Ary Queries by Tree Automata 221

MSO formulas φ(p1, . . . , pn) define languages of trees over Σ × B
n representing the

query qφ(p1,...,pn). Different formulas may define different languages for the same
query. Which formula or language to choose to define n-ary queries will turn out to
be crucial for what follows.

Given sets S′ ⊆ S, we define a characteristic function cS′ : S → B so that cS′(s) ↔
s ∈ S′ for all s ∈ S. Every subset P ⊆ nodes(t) defines a characteristic function cP

that we identified with the Boolean trees whose labeling function is cP . This tree has
the same nodes as t. Formulas φ(p1, . . . , pn) define a language of annotated trees over
the signature Σ × B

n: Lφ(p1,...,pn) = {t ∗ cα(p1) ∗ . . . ∗ cα(pn) | t, α |= φ(p1, . . . , pn)}.

Lemma 2. An MSO-formula and the language of annotated trees encoding its models
define the same query: qφ(p1,...,pn) = qLφ(p1,...,pn) .

Similarly, we can define Lφ(x1,...,xn) by considering all first-order variables xi as sin-
gleton valued second-order variables. We call trees t ∗ β1 ∗ . . . ∗ βn ∈ Lφ(x1,...,xn)
canonical, since each of them identifies precisely one tuple of qφ(x1,...,xn)(t), i.e., all
sets β−1

i (1) are singletons for 1 ≤ i ≤ n.

3 Run-Based Queries

Boolean annotations of trees are not necessary to define queries by trees automata. Al-
ternatively, one can use successful runs of tree automata to annotate trees by states, and
then select from these state annotations. The idea is that automata states are properties
of nodes, which can be verified for nodes by successful runs.

An existential run-based n-ary query q∃A,S in binary trees over Σ is given by a tree
automaton A over Σ and a set S ⊆ states(A)n of so called selection tuples. It selects
all those tuples of nodes (π1, . . . , πn) in a tree t that are assigned to a selection tuple by
some successful run of A on t:

q∃A,S(t) = {(π1, . . . , πn) | ∃r ∈ succ runsA(t), (r(π1), . . . , r(πn)) ∈ S}

Existential run-based n-ary queries were proposed by Neven and Van den Bussche [18]
in the framework of attribute grammars (these can be seen as tree automata whose
states are vectors of attribute values). Their BAG’s correspond to our monadic case,
while their RAG’s are more expressive than our n-ary case. Existential run-based n-ary
queries in binary trees (with a first match semantics) were proposed by Hosoya and
Pierce [13]1. Seidl and Berlea [2] define run-based n-ary queries for unranked trees (by
forest grammars), and present an query answering algorithm for the binary case.

It is known from [18] that monadic existential run-based queries capture the class of
monadic MSO definable queries. The analogous result for n-ary existential run-based
queries might be expected. It holds indeed as we will prove in Theorem 2.

An example is given in Fig. 2. We consider the binary query that selects pairs of a-
leave and next-sibling b-leaves, over the signature Σ = {f, a, b}. We define this query
by the automaton A2 with states(A2) = {1, 2, ∗, y} that will produce successful runs

1 They use successful runs implicitly when defining the semantics of their pattern automata.
Node selection is defined by pattern variables that are kept distinct from automata states.

222 J. Niehren et al.

f,y

f,y

a,1 b,2

f,*

a,* b,*

f,y

f,*

a,* b,*

f,y

a,1 b,2

Fig. 2. Selecting pairs of a-leaves and next-sibling b-leaves: q∃
A2,{(a,b)}

of the form of Figure 2. The query is represented by q∃A2,{(1,2)}. The automaton A2 will
assign state 1 to selected a-leaves and state 2 to the corresponding next-sibling b-leaves.
The final state y will be assigned to all common ancestors of the selected pair of leaves:
final(A2) = {y}. State ∗ can be assigned to all other nodes. Every successful run of
the automaton A2 will select a single pair of nodes. The following rules verify these
properties:

a→1 b→2 f(∗, ∗)→∗ f(1, 2)→y
a→∗ b→∗ f(y, ∗)→y f(∗, y)→y

This example illustrates the trick: different selected tuples are selected in different runs
so that their components cannot be mixed up.

Theorem 2. Existential run-based n-ary queries capture precisely the class of MSO-
definable n-ary queries.

Sketch of proof. On the one hand, we can easily describe successful runs of tree au-
tomata in MSO. Existential run-based queries are thus definable in MSO. Let us prove
now that every regular query is equal to some existential run-based query. Let qL(A)
be a regular n-ary query for some tree automaton A over Σ × B

n. We compute an au-
tomaton proj(A) over Σ by projecting Booleans from the labels into states. Let states
(proj(A)) = states(A)×B

n, final(proj(A)) = final(A)×B
n. The rules of proj(A)

are generated by the following schema for all a, f ∈ Σ, p1, p2, p ∈ states(A) and
b, bi, b

1
i , b

2
i ∈ B where 1 ≤ i ≤ n:

(a, b1, ..., bn)→p ∈ rules(A)
a→(p, b1, ..., bn) ∈ rules(proj(A))

(f, b1, ..., bn)(p1, p2)→q ∈ rules(A)
f((p1, b

1
1, ...b

n
1), (p2, b

1
2, ..., b

n
2))→(p, b1, ..., bn) ∈ rules(proj(A))

We define the selection set S ⊆ states(proj(A))n by S = Q1 × ... × Qn such that
for all 1 ≤ i ≤ n: Qi = {(q, b1, ..., bn) ∈ states(proj(A)) | bi = 1}. It remains to
prove that qL(A) = q∃proj(A),S. This follows from that for any term t ∗ β1 ∗ ... ∗ βn

over Σ × B
n: runsproj(A)(t) = {r ∗ β1 ∗ ... ∗ βn | r ∈ runsA(t ∗ β1 ∗ ... ∗ βn)} and

succ runsproj(A)(t) = {r ∗ β1 ∗ ... ∗ βn | r ∈ succ runsA(t ∗ β1 ∗ ... ∗ βn)}.

Universal run-based n-ary queries quantify universally rather than existentially over
successful runs. Universal n-ary queries were first introduced by Neven and Van den
Bussche [18] in the framework of attribute grammars (universal BAGs and RAGs). In
the monadic case, they are used by Frick, Grohe, and Koch [10].

q∀A,S(t) = {(π1, . . . , πn) | ∀r ∈ succ runsA(t), (r(π1), . . . , r(πn)) ∈ S}

N-Ary Queries by Tree Automata 223

Theorem 3. Existential and universal queries have the same expressiveness.

This theorem has been proved for the monadic case [18] on basis of the two phase
querying answering algorithm, which fails for the n-ary case. As we show here, the
theorem generalizes to the n-ary case nevertheless.

Proof. We define the complement qc of a query q such that for all trees t ∈ TΣ ,
qc(t) = nodes(t)n \ q(t). Existential queries are regular and thus MSO-definable, so
their complements are MSO-definable, thus regular, and thus definable by existential
run-based queries, too (Theorems 1 and 2). Furthermore, the definitions of existential
and universal queries are dual modulo complementation, i.e., for every tree automaton
A with selection tuples S ⊆ states(A)n, q∀A,S = (q∃A,states(A)n\S)c.

As complements of existential queries are existential, it follows that universal
queries are existential too. Vice versa, let q be an existential query. So qc is equal to
q∃A,S for some A, S. Hence, q = q∀A,states(A)n\S , i.e., q can be represented by a univer-
sal query.

4 Query Answering

We consider the problems of enumerating all solutions or up to k solutions of run-based
queries in a given tree t.

Proposition 1. We can compute an existential run-based n-ary query q∃A,S(t) in deter-
ministic time O(|S| ∗ |A| ∗ |t|n) and hence in polynomial time for fixed n.

Proof. The naive algorithm were to guess an n-tuple of nodes and test it for membership
to q∃A,S(t). By a deterministic algorithm this requires time O(|S| ∗ |A| ∗ |t|n+1), so
we need less naive algorithm. The idea of our algorithm is to guess a selection tuple
(p1, . . . , pn) ∈ S and a tuple (π1, . . . , πn−1) ∈ nodes(t)n−1 and to compute the last
remaining node by answering a monadic query depending on the previous choices. Let
t
p1,...,pn−1
π1,...,πn−1 be the tree over Σ ∪ (Σ×states(A)) obtained from t by annotating the node

labels of πi by pi for all 1 ≤ i ≤ n − 1.
Let B(A) be the tree automaton with signature Σ∪(Σ×states(A)) that operates like

A except that maps all annotated nodes to their annotation. We define states(B(A)) as
states(A), final(B(A)) as final(A) and rules(B(A)) by:

rules(B(A)) = rules(A) ∪ {(a, p)→p | a→p ∈ rules(A)}
∪ {(f, p)(p1, p2)→p | f(p1, p2)→p ∈ rules(A)}

We can now compute q∃A,S(t) on basis of the following representation:

q∃A,S(t) = {(π1, ..., πn−1, π) | (p1, . . . , pn) ∈ S, π ∈ q∃B(A),{pn}(t
p1,...,pn−1
π1,...,πn−1

)}

We have to answer |S| ∗ |t|n−1 monadic queries of the form q∃B(A),{pn}(t
p1,...,pn−1
π1,...,πn−1)

each of which requires linear time O(|B(A)| ∗ |t|). Note that the size of |B(A)| is 2|A|.
Thus, the overall deterministic time complexity is O(|S| ∗ |A| ∗ |t|n).

224 J. Niehren et al.

The duality of existential and universal queries q∀A,S = (q∃A,states(A)n\S)c yields an
analogous polynomial time complexity bound for answering universal n-ary queries
q∀A,S(t) with fixed tuple size n by O((|states(A)|n − |S|) ∗ |A| ∗ |t|n).

Proposition 2. The emptiness problem of n-ary queries q∃A,S(t) = ∅ is NP-complete
for unbounded n, i.e., if n belongs to the input of the problem, as well as the automaton
A, the selection set S ⊆ states(A), and the tree t.

Proof. The problem is clearly in NP: it suffices to guess a labeling of t by states of A
and a selection tuple s from S; one can then check in O(|A| ∗ |t|) whether this labeling
is a successful run and that each component of s labels at least one node in this run.
Now, we give a polynomial reduction of CNF satisfiability into our problem. The idea
is to associate with a given CNF formula φ a word w (which can be viewed as a unary
tree) over the alphabet {x, a, n, p} of the form xl11l12...l1n...xlk1lk2...lkn, where n is
the number of clauses of φ and k the number of Boolean variables. A part xli1...lin
means that the i-th variable appears positively in the j-th clause if lij = p, negatively
if lij = n and does not appear if lij = a. Then, we give the following rules for an
automaton A with states {0, 1} ∪ {sb

i , u
b
i | b ∈ {0, 1}, 1 ≤ i ≤ n} :

x → 0 x → 1 x() → 0 x() → 1
a(b) → ub

1 a(sb
j) → ub

j+1 a(ub
j) → ub

j+1
n(0) → s0

1 n(s0
j) → s0

j+1 n(u0
j) → s0

j+1
n(1) → u1

1 n(s1
j) → u1

j+1 n(u1
j) → u1

j+1
p(0) → u0

1 p(s0
j) → u0

j+1 p(u0
j) → u0

j+1
p(1) → s1

1 p(s1
j) → s1

j+1 p(u1
j) → s1

j+1

where “ ” denotes any state, b ∈ {0, 1} and 1 ≤ j ≤ n. We accept all runs. Then
the selection set is defined as S1×...×Sn, with Si = {sb

i | 0 ≤ b ≤ 1}. As the size
of the word is (n + 1) ∗ k and the size of the automaton is in O(n), the reduction is
polynomial. There is a correspondence between runs of the automaton on w and truth
assignments, and a run will be selecting iff the corresponding assignment satisfies all
the clauses. The idea is to assign true (1) or false (0) value to a variable (represented
by the x symbol) and to select all following clauses satisfied by the assignment. For
example, if we consider ψ = (x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ x2, then x p p a x n a p x a p a
is its encoding, and 1 s1

1 s1
2 u1

3 1 u1
1 u1

2 s1
3 1 u1

1 s1
2 u1

3 is a run selecting some n-tuples.
So, ψ is satisfiable if and only if q∃A,S(w) = ∅.

5 Queries by Unambiguous Tree Automata

We next study run-based n-ary queries by unambiguous tree automata. This is a sub-
class of tree automata with a restricted amount of nondeterminism.

A tree automaton A is (bottom-up) deterministic if no two of its rules have the same
left hand sides. It is unambiguous if no tree permits more than one successful run by the
automaton. Deterministic tree automata are clearly unambiguous, while unambiguous
automata may be nondeterministic; they have multiple runs on the same tree of which
at most one is successful.

N-Ary Queries by Tree Automata 225

f, y

f, y a, ∗

a, 1 a, ∗

f, ∗

f, ∗ a, ∗

a, ∗ a, ∗

Fig. 3. Selecting left most leaves:q∃
A3,{1}. Only the left run of A3 is successful.

Definition 4. We call an n-ary query unambiguous (resp. deterministic) if it has the
form q∃A,S for some unambiguous (resp. deterministic) tree automaton A.

Nondeterministic tree automata can recognize all regular language, but they an not de-
fine all MSO-definable queries in run-based fashion. A simple counter example is the
monadic query that selects the left-most leaf in binary trees over Σ = {f, a}. It can be
defined in run-based fashion as q∃A3

, {1} by automaton A3 which licences the runs in
Fig. 3. Successful runs of A3 label left most leaves by 1 and all others by ∗. They map
ancestors of left most leaves to y and all other inner nodes to ∗. The final states are y
and 1. This is done by the following states and rules:

states(A3) = {1, ∗, y}
final(A3) = {1, y}

a → 1 f(1, ∗) → y f(y, ∗) → y
a → ∗ f(∗, ∗) → ∗

Automaton A3 is not bottom-up deterministic, but unambiguous. Nondeterminism is
needed in order to distinguish left most leaves from all others. When processing bottom-
up, the automaton has to inspect the context, in order to decide whether a leaf is left-
most. So it needs to guess this property for all leaves and then verify the correctness of
the guesses later on. Correctness is proved by successful runs.

Proposition 3. ([18, 3]) All monadic MSO-definable queries are unambiguous.

Proof. We present a sketch of a proof based on Thatcher and Wright’s theorem plus
projection. Let φ(x) be MSO formula with one free variable x, which defines a monadic
query in binary trees over Σ. We can express the same query by the following MSO
formula with one free set variable p:

greatestφ(p) = ∀x.p(x) ↔ φ(x)

This formula requires to collect all possible values for x satisfying φ in p, so that p de-
notes the greatest of set containing nodes selected by φ(x). By Thatcher and Wright’s
Theorem 1 there exists a bottom-up deterministic tree automaton A that recognizes
the tree language Lgreatestφ(p), which contains all Σ × B trees encoding models of
greatestφ(p). The projection automaton proj(A) of A to Σ is unambiguous. To see
this, note that the language of A is functional: for every Σ-tree t there exists at most
one Boolean tree β such that t × β ∈ L(A). This holds since the value of β is deter-
mined by the result of the query by φ(x) on t. By determinism of A there is at most
one successful run r ∈ succ runsA(t × β). Hence, there is at most one successful run
r × β ∈ succ runsproj(A)(t). Furthermore qL(A) = qproj(A),states(A)×{1}.

226 J. Niehren et al.

Proposition 4. Every deterministic monadic MSO defined query can be transformed
effectively into a run-based query q∃B,S by a deterministic automaton B.

Proof. We proceed as in the proof of Proposition 3. Let A be a deterministic automaton
recognizing Lgreatestφ(p) and proj(A) is Σ-projection. We know that proj(A) is unam-
biguous and that it can express the query by φ(x). Furthermore, it can be checked that
this automaton is deterministic after deleting unproductive states iff the query is deter-
ministic.

5.1 Efficiency and Expressiveness

We call an n-ary query Cartesian closed if it is a Cartesian product of monadic queries.
If A is unambiguous then we can represent n-ary queries q∃A,S as a finite unions of
Cartesian closed queries:

q∃A,S =
⋃

(p1,...,pn)∈S

q∃A,{p1} × . . . × q∃A,{pn}

This holds, since all components of a tuple will be selected in the same successful run.
We can use this representation of the answer set to enumerate answers of unambiguous
queries on demand.

Proposition 5. The emptyness probem q∃A,S(t) = ∅ can be solved in time O(n ∗ |S| ∗
|A| ∗ |t|).

Proof. We compute the above representation of q∃A,S(t). For all (p1, . . . , pn) ∈ S we
compute q∃A,{pi} and check whether at least one of them is empty. We thus have to
compute O(n ∗ |S|) answers to monadic queries each of them in time O(|A| ∗ |t|).
Alltogether this requires time O(n ∗ |S| ∗ |A| ∗ |t|).

We can thus decide the emptyness of unambiguous n-ary queries in polynomial time
even for unbounded n. This is in contrast to more general run-based n-ary queries by
tree automata (Proposition 2).

Theorem 4. Unambiguous n-ary queries capture the class of finite unions of Cartesian
closed regular n-ary queries.

Proof. We have already seen one direction. Next note that Cartesian closed regular
queries are unambiguous. Indeed regular monadic queries are unambiguous by Propo-
sition 3 and Cartesian products of unambiguous queries are clearly unambiguous too.
It remains to prove that finite unions of unambiguous queries are unambiguous. Let
q = ∪k

j=1q
∃
Ai,Si

be such a union. Let us first assume that all Ai are strictly unambiguous
in that they permit precisely one successful run per tree. We then define an unambiguous
automaton A as the product of the Ai’s such that final(A) = final(A1)×. . .×final(Ak).
Let proji(p) be the i−th component of a state p of A. We let the selection set S to be
the set of all tuples (p1, . . . , pn) ∈ states(A)n for which there exists i ∈ {1, . . . , k}
such that (proji(p1), . . . , proji(pn)) ∈ Si. Thus, q = q∃A,S.

N-Ary Queries by Tree Automata 227

Finally, note that any unambiguous tree automata Ai can be made strictly unam-
biguous: let Āi be the deterministic automaton accepting the trees not accepted by Ai;
assuming Ai and Āi have disjoint sets of states, we define A′

i as Ai∪Āi. This automaton
A′

i is strictly unambiguous and moreover, q∃A′
i,Si

= q∃Ai,Si
.

Proposition 6. A query is unambiguous iff it can be expressed by a Boolean combina-
tion (disjunction, conjunction and negation) of monadic MSO formulas.

Proof. Using that regular and MSO-definable monadic queries coincide, by Theorem
4, an unambiguous n-ary query can be represented as a finite disjunction of formulas of
the form φ1(x1)∧. . .∧φn(xn), the φi’s being monadic MSO formulas. Conversely, any
Boolean combination of monadic MSO formulas can be turned into a finite disjunction
of conjunction of monadic MSO formulas, and thus be represented as a finite union of
Cartesian products of monadic regular queries.

5.2 Faithful MSO Formulas

Unambiguity of a query will rely on existence of a faithful formula defining it, where
faithful formulae are defined by:

Definition 5. Let φ be a MSO formula with n free second-order variables p1, ..., pn.

– φ is k−faithful if supt∈TΣ
|{(α(p1), ..., α(pn)) | t, α |= φ}| ≤ k.

– φ is faithful if it is k−faithful for some k.

Proposition 7. φ is faithful iff it is equivalent to a finite disjunction of 1−faithful for-
mulae.

Proof. More precisely, we prove that φ is k−faithful iff it is a finite disjunction of k
1−faithful formulae. A finite disjunction of k 1−faithful formulae is clearly k−faithful.
Conversely let φ be a k−faithful formula. First, let us recall that the lexicographic order-
ing over n−uples is MSO definable by lex(x1,xn, y1, ..., yn) =def ∨n

k=1(∧k−1
i=1 xi =

yi ∧ xk < yk)
Now, let us define a total ordering on n−uples of sets of nodes by

le(p1, ..., pn, q1, ...qn) =def ∧n
i=1pi = qi ∨ ∃x1, ..., xn ∧n

i=1 pi(xi) ∧ ∨n
i=1¬qi(xi) ∧

∀y1, ..., yn lex(y1,yn, x1, ..., xn) → ∧n
i=1[pi(yi) ↔ ∧n

i=1qi(yi)].

Last, we define a family of 1−faithful formulae φi, 1 ≤ i ≤ k by:

φi(p1, ..., pn) =def φ(p1, ..., pn) ∧ ∧i−1
j=1¬φj(p1, ..., pn) ∧

∀q1, ..., qn(φ(q1, ..., qn) ∧ (∧i−1
j=1¬φj(q1, ..., qn)) → le(p1, ..., pn, q1, ...qn))

It is easy to check that the φi are 1−faithful and, as φ is k−faithful, φ is equivalent
to ∨k

i=1φi.

228 J. Niehren et al.

Proposition 8. A regular n-ary query is

1. Cartesian closed iff it can be defined by some 1−faithful formula.
2. unambiguous iff it can be defined by some faithful formula.

Proof. Let q a regular Cartesian closed query defined by φ. Let us define φi(x) by
∃x1, ..., xi−1, xi+1, ..., xn, φ(x1, ..., xi−1, x, xi+1, ..., xn). Then q can be defined by
the 1−faithful formula ∀x ∧n

i=1 (pi(x) ↔ φi(x))
Conversely, if q is defined by a 1−faithful formula, q is clearly Cartesian closed.
The rest of the proposition is then directly obtained by Proposition 7 and Theorem

4. Furthermore, as proofs of Proposition 7 and Theorem 4 are effective, given a query
q defined by a formula φ and knowing that φ is faithful, we can effectively construct
(A, S) computing the query q, with A unambiguous.

5.3 Deciding Unambiguity of Queries

We show in this section that one can decide whether a regular n-ary query is unam-
biguous, or equivalently by Theorem 4 whether the query is a finite union of Cartesian
closed regular queries. Note that this property is close to independence of variables in
constraint databases [14, 8]; however here we consider an infinite collection of finite
tree structures, instead of one fixed structure.

Note that deciding whether a regular query is Cartesian closed is straightforward as it
can be defined in MSO. Similarly by using construction of Proposition 7, we can decide
k−faithfulness of a MSO formula, for a given k. However, deciding whether a regular
query is a finite union of Cartesian closed regular queries requires more sophisticated
techniques. First, given a query q, we construct a formula which is faithful iff q is
unambiguous. Second, we prove how to decide faithfulness of a formula.

Let q a query defined by the (MSO) formula φq(x1, . . . , xn). We will define φmax
q , a

MSO formula defining q with good compactness properties: it will be faithful as soon
as q can be defined by a faithful formula. Roughly speaking, given a tree t, t, α will
model φmax

q iff it is correct (α(p1) ∗ ... ∗ α(pn) is included in q(t)) and maximal (no
node can be added to one α(pi) while keeping correct). φmax

q (p1, . . . , pn) will be the
following formula:

∀x1 . . . ∀xn (∧ipi(xi)) → φq(x1, . . . , xn)
∧i∀xi ¬pi(xi) → ∃x1 . . . ∃xi−1∃xi+1 . . . ∃xn ∧j �=i pj(xj) ∧ ¬φq(x1, . . . , xn)

Lemma 3. A query q is a finite union of Cartesian closed queries iff φmax
q is faithful.

Proof. By Proposition 8 we just have to prove that if the query q is a finite union of
Cartesian closed queries, then φmax

q is faithful. Let q be a finite union of Cartesian
closed queries. There exists some natural number k s.t. q = ∪k

j=1q
1
j × . . .× qn

j , each qi
j

being a monadic query.
Let t be a tree from TΣ . For each 1 ≤ i ≤ n, we define ≡i, an equivalence relation

on nodes(t) by π≡iπ
′ if for all (π1, ..., πi−1, πi+1, ..., πn), (π1, ..., πi−1, π, πi+1, ...,

πn) belongs to q(t) iff (π1, ..., πi−1, π
′, πi+1, ..., πn) belongs to q(t). This just means

that π and π′ are, in some sense, interchangeable in i-th position w.r.t. q. Then, let π

N-Ary Queries by Tree Automata 229

and π′ be two nodes. If for each 1 ≤ j ≤ k, π belongs to qi
j(t) iff π′ belongs to qi

j(t),
then π ≡i π′. This implies that ≡i is of finite index bounded by 2k.

Now let t and α such that t, α |= φmax
q . Let π be one node selected in the i-th

position, i.e. belonging to α(pi). Then, by maximality of φmax
q , if π ≡i π′ then π′

belongs also to α(pi). This implies that α(pi) is a union of equivalence classes for ≡i.
So, the cardinality of the set {(α(p1), ..., α(pn)) | t, α |= φmax

q } is upper-bounded

by 2n.2k

.
Let us note that if φmax

q is faithful as soon there is a faithful formula defining q, it
is non necessarly the “most faithful” one or the “less redundant” one. Indeed let us
suppose that q is defined by ∨2

i=1ri(x1)∧ si(x2) for some ri, si. q is clearly 2−faithful
whereas in φmax

q , valuation associated with (∧ri, ∨si) or (∨ri, ∧si) would be added.

Now, let q be a regular query (given by a tree automaton or a formula): first we
construct φmax

q and A a deterministic automaton recognizing the tree language over Σ×
B

n Lφmax
q (p1,...,pn). Then, we compute an automaton proj(A) as in Theorem 2. Clearly

the number of accepting runs on t in proj(A) is the cardinal of {(α(p1), ..., α(pn)) | t, α
|= φmax

q }.
A tree automaton A is said k-ambiguous if for any tree t ∈ TΣ , there exists at most

k accepting runs for t in A. The degree of ambiguity of an automaton A is bounded if
A is k-ambiguous for some natural number k.

So, by what precedes, q is unambiguous iff the degree of ambiguity of proj(A) is
bounded, which can be decided.

Theorem 5 (Seidl [20]). Whether the degree of ambiguity of a tree automaton is
bounded is decidable. Furthermore its degree of ambiguity can be computed.

As all contructions are effective, it provides a procedure for deciding ambiguity of q.
Furthermore, this gives a way to compute an unambiguous automaton computing q.
Indeed, by proposition 8, as soon as we know that φmax

q is faithful, we can compute,
from an automaton or a formula defining q, (B, S) with B an unambiguous automaton
s.t. q = q∃B,S .

Theorem 6. Ambiguity of a query q is decidable. Furthermore, when q is unambiguous,
(B, S) with B an unambiguous automaton s.t. q = q∃B,S can effectively be constructed.

Note that the construction of (B, S) could also be done by eliminating directly am-
biguity from proj(A) defined above. Indeed, let B be an automaton whose ambiguity
degree is at most k. We can build an automaton Bk simulating B on trees which have at
least k accepting runs in B (by making the product of k copies of B and checking the
k runs are different); as the degree of B is k, Bk will be unambiguous. Then, you can
build an unambiguous automaton Bk−1 simulating B on trees which have exactly k−1
accepting runs in B, by a similar construction and checking that the tree is not accepted
by Bk. By iterating the construction, you can build (Bi, Si)k

i=1, with Bi unambiguous
automata simulating B on trees which have exactly i accepting runs in B: q is the union
of the corresponding queries and by using effective closure under union, you can then
build an unambiguous automaton for q.

230 J. Niehren et al.

6 Querying Unranked Trees

Our results carry over to automata for unranked trees, in particular to the unranked
tree automata (UTAs) of Brüggemann, Klein, and Wood [4], where horizontal tree lan-
guages are represented by finite word automata.

An unranked tree is built from a set of constants a, b ∈ Σ by the abstract syntax
t ::= a(t1, . . . , tn) where n ≥ 0. A UTA H over Σ consists of a set states(H), a set
final(H) ⊆ states(H), and a set rules(H) of rules of the form a(A) → p where A is
finite word automaton with alphabet states(H) and p ∈ states(H). Runs of UTAs H
on unranked trees t are functions r : nodes(t) → states(H) defined as

t = a(t1, . . . , tn) ∀1 ≤ i ≤ n : ri ∈ runsH(ti)
a(A) → p ∈ rules(H) r1(ε) . . . rn(ε) ∈ L(A)

p(r1, . . . , rn) ∈ runsH(t)

Queries for the class of unranked trees over Σ are defined as before. The notion of
unambiguity (that is the existence of at most one run for a tree) carries over literally to
UTAs (in contrast to bottom-up determinism [16]). The same holds for the notions of
run-based queries by UTAs.

Theorem 7. Existential and universal n-ary queries by runs of unranked tree automata
capture MSO over unranked trees (comprising the next sibl-relation). Run-based
queries by unambiguous UTAs capture the class of finite unions of Cartesian closed
queries. This property is decidable.

We only give a sketch of the proof. The main idea is to convert queries by UTAs into
queries by stepwise tree automata [6] for which all results apply. Stepwise tree automata
over an unranked signature Σ are tree automata for binary trees with constants in Σ and
a single binary function symbol @. Stepwise tree automata can be understood as tree au-
tomata that operate on Currified binary encodings of unranked trees. The Currification
of a(b, c(d, e, f), g) for instance is the binary tree a@b@(c@d@e@f)@g .

Stepwise tree automata were proved to have two nice properties that yield a simple
proof of the theorem. 1) N-ary queries by UTAs can be translated to n-ary queries by
stepwise automata in linear time, and conversely in polynomial time. The back and forth
translations preserve unambiguity. 2) All presented results on run-based n-ary queries
for binary trees apply to stepwise tree automata.

Acknowledgements. Thanks to the anonymous referees for the reference to L. Libkin’s
work [14] and acknowledge discussions with F. Neven, W. Martens, and T. Schwentick.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with lixto. In
28th International Conference on Very Large Data Bases, pages 119–128, 2001.

2. A. Berlea and H. Seidl. Binary queries for document trees. Nordic Journal of Computing,
11(1):41–71, 2004.

N-Ary Queries by Tree Automata 231

3. R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic second
order logic and by attribute grammars. Journal of Comput. and Syst. Sci., 61(1):1–50, 2000.

4. A. Bruggemann-Klein, D. Wood, and M. Murata. Regular tree and regular hedge languages
over unranked alphabets: Version 1, Apr. 07 2001.

5. J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducer from completely
annotated examples. In 7th International Colloquium on Grammatical Inference, volume
3264 of Lecture Notes in Artificial Intelligence, pages 91–102. Springer Verlag, 2004.

6. J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise tree automata.
In 19th International Conference on Rewriting Techniques and Applications, volume 3091
of Lecture Notes in Computer Science, pages 105 – 118. Springer Verlag, 2004.

7. G. Castagna. Patterns and types for querying XML. In 10th International Symposium on
Database Programming Languages, Lecture Notes in Computer Science. Springer Verlag,
Aug. 2005.

8. J. Chomicki, D. Q. Goldin, and G. M. Kuper. Variable independence and aggregation closure.
In ACM Conference on Principle of Databases, pages 40–48, 1996.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications. Available on: http://www.grappa.univ-
lille3.fr/tata, 1997.

10. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees. In 18th IEEE
Symposium on Logic in Computer Science, pages 188–197, 2003.

11. G. Gottlob and C. Koch. Monadic queries over tree-structured data. In Proceedings of the
17th LICS, Lecture Notes in Computer Science, pages 189–202, Copenhagen, 2002.

12. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The Lixto data extraction
project - back and forth between theory and practice. In ACM Symposium on Principles of
Database Systems. ACM-Press, 2004.

13. H. Hosoya and B. Pierce. Regular expression pattern matching for xml. Journal of Functional
Programming, 6(13):961–1004, 2003.

14. L. Libkin. Variable independence for first-order definable constraints. ACM Transactions on
Computational Logics, 4(4):431–451, 2003.

15. S. Maneth, A. Berlea, T. Perst, and H. Seidl. Xml type checking with macro tree transducers.
In 24th ACM Symposium on Principles of Database Systems, pages 283–294, New York, NY,
USA, 2005. ACM-Press.

16. W. Martens and J. Niehren. Minimizing tree automata for unranked trees. In 10th Interna-
tional Symposium on Database Programming Languages, Lecture Notes in Computer Sci-
ence. Springer Verlag, Aug. 2005.

17. M. Marx. Conditional XPath, the first order complete XPath dialect. In Proceedings of the
symposium on Principles of database systems, pages 13–22, 2004.

18. F. Neven and J. V. D. Bussche. Expressiveness of structured document query languages based
on attribute grammars. Journal of the ACM, 49(1):56–100, 2002.

19. F. Neven and T. Schwentick. Query automata over finite trees. Theoretical Computer Science,
275(1-2):633–674, 2002.

20. H. Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527–542, 1989.

21. J. W. Thatcher and J. B. Wright. Generalized finite automata with an application to a decision
problem of second-order logic. Mathematical System Theory, 2:57–82, 1968.

	Introduction
	MSO Definable and Regular Queries
	Run-Based Queries
	Query Answering
	Queries by Unambiguous Tree Automata
	Efficiency and Expressiveness
	FaithfulMSO Formulas
	Deciding Unambiguity of Queries

	Querying Unranked Trees
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

