

Lecture Notes in Computer Science 3774
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gavin Bierman Christoph Koch (Eds.)

Database
Programming
Languages

10th International Symposium, DBPL 2005
Trondheim, Norway, August 28-29, 2005
Revised Selected Papers

13

Volume Editors

Gavin Bierman
Microsoft Research
JJ Thomson Avenue, Cambridge CB3 0FB, UK
E-mail: gmb@microsoft.com

Christoph Koch
Universität des Saarlandes
Lehrstuhl für Informationssysteme
Postfach 15 11 50, 66041 Saarbrücken, Germany
E-mail: koch@infosys.uni-sb.de

Library of Congress Control Number: 2005937142

CR Subject Classification (1998): H.2, H.3, E.2, D.3.3, H.4

ISSN 0302-9743
ISBN-10 3-540-30951-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30951-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11601524 06/3142 5 4 3 2 1 0

Preface

The 10th International Symposium on Database Programming Languages, DBPL
2005, was held in Trondheim, Norway in August 2005. DBPL 2005 was one of
11 meetings to be co-located with VLDB (the International Conference on Very
Large Data Bases).

DBPL continues to present the very best work at the intersection of database
and programming language research. DBPL 2005 accepted 17 papers out of a to-
tal of 63 submissions; an acceptance rate of 27%. Every submission was reviewed
by at least three members of the program committee. In addition, the program
committee sought the opinions of 51 additional referees, selected because of their
expertise on particular topics. The final selection of papers was made during the
last week of June. All authors of accepted papers submitted corrected versions,
which were collected in an informal proceedings and distributed to the attendees
of DBPL 2005. As is traditional for DBPL, this volume was produced after the
meeting and authors were able to make improvements to their papers following
discussions and feedback at the meeting.

The invited lecture at DBPL 2005 was given by Giuseppe Castagna enti-
tled “Patterns and Types for Querying XML Documents”; an extended version
of the lecture appears in this volume. Given the topic of this invited lecture,
we invited all attendees of the Third International XML Database Symposium
(XSym 2005), also co-located with VLDB, to attend. Continuing this collabo-
ration, we organized with the co-chairs of XSym 2005 a shared panel session
to close both meetings. The invited panel discussed “Whither XML, c. 2005?”
and consisted of experts on various aspects of XML: Gavin Bierman (Microsoft
Research), Peter Buneman (University of Edinburgh), Dana Florescu (Oracle),
H.V. Jagadish (University of Michigan) and Jayavel Shanmugasundaram (Cor-
nell University). We are grateful to the panel and the audience for a stimulating
and good-humored discussion.

We owe thanks to a large number of people for making DBPL 2005 such a
great success. First, we are grateful to the hard work and diligence of the 21
distinguished researchers who served on the program committee. We also thank
Peter Buneman, Georg Lausen and Dan Suciu, who offered us much assistance
and sound counsel. Svein Erik Bratsberg provided flawless local organization.
Chani Johnson gave us much help in mastering the subtleties of the Microsoft
Research Conference Management Tool. It was a great pleasure to organize a
shared panel and invited lecture with Ela Hunt and Zachary Ives; the co-chairs of
XSym 2005. Finally, we acknowledge the generous financial support of Microsoft
Research.

September 2005 Gavin Bierman and Christoph Koch

Organization

Program Co-chairs

Gavin Bierman Microsoft Research Cambridge, UK
Christoph Koch University of Saarland, Germany

Program Committee

Marcelo Arenas University of Toronto, Canada
Omar Benjelloun Stanford University, USA
Sara Cohen Technion, Israel
James Cheney University of Edinburgh, UK
Alin Deutsch University of California, San Diego, USA
Alain Frisch INRIA Rocquencourt, France
Philippa Gardner Imperial College, London, UK
Giorgio Ghelli University of Pisa, Italy
Torsten Grust University of Konstanz, Germany
Jan Hidders University of Antwerp, Belgium
Haruo Hosoya Tokyo University, Japan
Sergey Melnik Microsoft Research, USA
Tova Milo Tel Aviv University, Israel
Gerome Miklau University of Washington, USA
Frank Neven University of Limburg, Belgium
Alexandra Poulovassilis Birkbeck College, London, UK
Francesco Scarcello University of Calabria, Italy
Michael Schwartzbach BRICS, Denmark
Alan Schmitt INRIA Rhône-Alpes, France
Nicole Schweikardt Humboldt University, Berlin, Germany
David Toman University of Waterloo, Canada

Additional Referees

Fabrizio Angiulli
Alessandro Artale
Pablo Barcelo
Leo Bertossi
José Blakeley
Claus Brabrand
Gilad Bracha
Cristiano Calcagno
Dario Colazzo

William Cook
Giovanni Conforti
Thierry Coupaye
Nick Crasswell
Wlodzimierz Drabent
Wolfgang Faber
Nate Foster
Eric Fusy
Vladimir Gapeyev

VIII Organization

Gianluigi Greco
Kenji Hashimoto
Zhenjiang Hu
Giovambattista Ianni
Kazuhiro Inaba
Shinya Kawanaka
Christian Kirkegaard
Leonid Libkin
Andrei Lopatenko
Ioana Manolescu
Paolo Manghi
Wim Martens
Elio Masciari
Anders Møller
Keisuke Nakano
Nathaniel Nystrom
Atsushi Ohori

Dan Olteanu
Vanessa de Paula Braganholo
Andrea Pugliese
Mukund Raghavachari
Carlo Sartiani
Stefanie Scherzinger
Helmut Seidl
Jérôme Siméon
Cristina Sirangelo
Keishi Tajima
Jens Teubner
Stijn Vansummeren
Roel Vercammen
Philip Wadler
Geoffrey Washburn
Grant Weddell

Sponsoring Institution

Microsoft Research

Table of Contents

Patterns and Types for Querying XML Documents
Giuseppe Castagna . 1

Dual Syntax for XML Languages
Claus Brabrand, Anders Møller, Michael I. Schwartzbach 27

Exploiting Schemas in Data Synchronization
J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard,
Benjamin C. Pierce, Alan Schmitt . 42

Efficiently Enumerating Results of Keyword Search
Benny Kimelfeld, Yehoshua Sagiv . 58

Mapping Maintenance in XML P2P Databases
Dario Colazzo, Carlo Sartiani . 74

Inconsistency Tolerance in P2P Data Integration: An Epistemic Logic
Approach

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Riccardo Rosati . 90

XML Data Integration with Identification
Antonella Poggi, Serge Abiteboul . 106

Satisfiability of XPath Queries with Sibling Axes
Floris Geerts, Wenfei Fan . 122

XML Subtree Queries: Specification and Composition
Michael Benedikt, Irini Fundulaki . 138

On the Expressive Power of XQuery Fragments
Jan Hidders, Stefania Marrara, Jan Paredaens, Roel Vercammen 154

A Type Safe DOM API
Peter Thiemann . 169

Type-Based Optimization for Regular Patterns
Michael Y. Levin, Benjamin C. Pierce . 184

Efficient Memory Representation of XML Documents
Giorgio Busatto, Markus Lohrey, Sebastian Maneth 199

X Table of Contents

N-Ary Queries by Tree Automata
Joachim Niehren, Laurent Planque, Jean-Marc Talbot,
Sophie Tison . 217

Minimizing Tree Automata for Unranked Trees
Wim Martens, Joachim Niehren . 232

Dependency-Preserving Normalization of Relational and XML Data
Solmaz Kolahi . 247

Complexity and Approximation of Fixing Numerical Attributes in
Databases Under Integrity Constraints

Leopoldo Bertossi, Loreto Bravo, Enrico Franconi,
Andrei Lopatenko . 262

Consistent Query Answers on Numerical Databases Under Aggregate
Constraints

Sergio Flesca, Filippo Furfaro, Francesco Parisi . 279

Author Index . 295

Patterns and Types for Querying XML Documents

Giuseppe Castagna

CNRS, École Normale Supérieure de Paris, France

Abstract. Among various proposals for primitives for deconstructing XML data
two approaches seem to clearly stem from practice: path expressions, widely
adopted by the database community, and regular expression patterns, mainly de-
veloped and studied in the programming language community. We think that the
two approaches are complementary and should be both integrated in languages
for XML, and we see in that an opportunity of collaboration between the two
communities. With this aim, we give a presentation of regular expression pat-
terns and the type systems they are tightly coupled with. Although this article
advocates a construction promoted by the programming language community,
we will try to stress some characteristics that the database community, we hope,
may find interesting.

1 Introduction

Working on XML trees requires at least two different kinds of language primitives:
(i) deconstruction/extraction primitives (usually called patterns or templates) that pin-
point and capture subparts of the XML data, and (ii) iteration primitives, that iterate
over XML trees the process of extraction and transformation of data.

Concerning iteration primitives, there are many quite disparate proposals: in this
category one can find such different primitives as the FLWR (i.e., for-let-where-return)
expressions of XQuery [7], the ������ primitive of XDuce [40, 39], the �����	�
��
primitive of �Duce [4], the ������� primitive of Xtatic [31], the select-from-where of
Cω [6] and �QL [5], the select-where of Lorel [1] and loto-ql [51], while for other
languages, for instance XSLT [22], the iterator is hard-coded in the semantics itself of
the language.

Concerning deconstructing primitives, instead, the situation looks clearer since,
among various proposals (see the related work section later on), two different and
complementary solutions clearly stem from practice: path expressions (usually XPath
paths [21], but also the “dot” navigations of Cω or Lorel [1], caterpillar expressions [12]
and their “looping” extension [33]) and regular expression patterns [41].

Path expressions are navigational primitives that pinpoint where to capture data sub-
components. XML path expressions (and those of Cω and Lorel in particular) closely
resemble the homonimic primitives used by OQL [23] in the context of OODB query
languages, with the difference that instead of sets of objects they return sets or se-
quences of XML elements: more precisely all elements that can be reached by follow-
ing the paths at issue. These primitives are at the basis of standard languages such as
XSLT and XQuery.

More recently, a new kind of deconstruction primitive was proposed: regular expres-
sion patterns [41], which extends by regular expressions the pattern matching primitive

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 1–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 G. Castagna

as popularised by functional languages such as ML and Haskell. Regular expression
patterns were first introduced in the XDuce programming language and are becoming
more and more popular, since they are being adopted by such quite different languages
as �Duce [4] (a general purpose extension of the XDuce language) and its query lan-
guage �QL [5], Xtatic [31] (an extension of C#), Scala [54] (a general purpose Java-
like object-oriented language that compiles to Java bytecode), XHaskell [45] as well as
the extension of Haskell proposed by Broberg et al. [11].

The two kinds of primitives are not antagonist, but rather orthogonal and comple-
mentary. Path expressions implement a “vertical” exploration of data as they capture
elements that may be at different depths, while patterns perform a “horizontal” explo-
ration of data since they are able to perform finer grained decomposition on sequences
of elements. The two kinds of primitives are quite useful and they complement each
other nicely. Therefore, it would seem natural to integrate both of them in a query or
programming language for XML. In spite of this and of several theoretical works on
the topic (see the related work section), we are aware of just two running languages
in which both primitives are embedded (and, yet, loosely coupled): in �QL [5] it is
possible to write select-from-where expressions, where regular expression patterns are
applied in the from clause to sequences that are returned by XPath-like expressions (see
the example at the end of Section 2.3); Gapeyev and Pierce [32] show how it is possible
to use regular expression patterns with an all-matches semantics to encode a subset of
XPath and use this encoding to add XPath to the Xtatic programming language.

The reason for the lack of study of the integration of these two primitives may be
due to the fact that each of them is adopted by a different community: regular patterns
are almost confined to the programming language community while XPath expressions
are pervasive in the database community.

The goal of this lecture is to give a brief presentation of the regular pattern expres-
sions style together with the type system they are tightly coupled with, that is the se-
mantic subtyping-based type systems [19, 29]. We are not promoting the use of these
to the detriment of path expressions, since we think that the two approaches should be
integrated in the same language and we see in that a great opportunity of collaboration
between the database and the programming languages communities. Since the author
belongs to latter, this lecture tries to describe the pattern approach addressing some
points that, we hope, should be of interest to the database community as well. In par-
ticular, after a general overview of regular expression patterns and types (Section 2) in
which we show how to embed patterns in a select-from-where expression, we discuss
several usages of these semantic subtyping based patterns/types (henceforward, we will
often call them “semantic patterns/types”): how to use these patterns and types to give
informative error messages (Section 3.2), to dig out errors that are out of reach of pre-
vious type checker technologies (Section 3.3) and how the static information they give
can be used to define very efficient and highly optimised runtimes (Section 3.4); we
show that these patterns permit new logical query optimisations (Section 3.5) and can
be used as building blocks to allow the programmer to fine-grainedly define new iter-
ators on data (Section 3.6); finally, the techniques developed for the semantic patterns
and types can be used to define optimal data pruning and other optimisation techniques
(Section 3.7–3.8)

Patterns and Types for Querying XML Documents 3

Related Work. In this work we focus on data extraction primitives coming from the
practice of programming and query languages manipulating XML data. Thus, we re-
strict our attention to the primitives included in full-featured languages with a stable
community of users. There are however many other proposals in the literature for de-
constructing, extracting, and querying XML data.

First and foremost there are all the languages developed from logics for unranked
trees whose yardstick in term of expressiveness is the Monadic Second Order Logic.
The list here would be too long and we invite the interested reader to consult the excel-
lent overview by Leonid Libkin on the subject [44]. In this area we want to single out
the work on composition of monadic queries in [26], since it looks as a promising step
toward the integration of path and pattern primitives we are promoting in this work: we
will say more about it in the conclusion. A second work that we want to distinguish
is Neven and Schwentick’s ETL [49], where regular expressions over logical formulæ
allow both horizontal and vertical exploration of data; but, as the authors themselves re-
mark, the gap with a usable pattern language is very important, especially if one wants
to define non-unary queries typical of Hosoya’s regular expressions patterns.

Based on logics also are the query languages developed on or inspired to Ambient
Logic, a modal logic that can express spatial properties on unordered trees, as well as
to other spatial logics. The result is a very interesting mix of path-like and pattern-like
primitives (cf. the dot notation and the spatial formulæ with capture variables that can
be found in TQL) [24, 13, 16, 14, 15, 17].

In the query language research, we want to signal the work of Papakonstantinou and
Vianu [51] where the loto-ql query language is introduced. In loto-ql it is possible to
write ������ x ����� p, where p is a pattern in the form of tree which uses regular
expressions to navigate both horizontally and vertically in the input tree, and provides
bindings of x.

2 A Brief Introduction to Patterns and Types for XML

In this section we give a short survey of patterns and types for XML. We start with a pre-
sentation of pattern matching as it can be found in functional languages (Section 2.1),
followed by a description of “semantic” types and of pattern-based query primitives
(Section 2.2); a description of regular expression patterns for XML (Section 2.3) and
their formal definition (Section 2.4) follow, and few comments on iterators (Section 2.5)
close the section. Since we introduce early in this section new concepts and notations
that will be used in the rest of the article, we advise also the knowledgeable reader to
consult it.

2.1 Pattern Matching in Functional Languages

Pattern matching is used in functional languages as a convenient way to capture subparts
of non-functional1 values, by binding them to some variables. For instance, imagine that

1 We intend non-functional in a strict sense. So non-functional values are integer and boolean
constants, pair of values, record of values, etc., but not λ-abstractions. Similarly a non-
functional type is any type that is not an arrow type.

4 G. Castagna

e is an expression denoting a pair and that we want to bind to x and y respectively to
the first and second projection of e, so as to use them in some expression e′. Without
patterns this is usually done by two ��� expressions:

��� � � �����	e
 ��

��� � � �����	e
 �� e′

With patterns this can be obtained by a single let expression:

��� 	���
 � e �� e′

The pattern ����� simply reproduces the form of the expected result of e and variables
indicate the parts of the value that are to be captured: the value returned by e is matched
against the pattern and the result of this matching is a substitution; in the specific case, it
is the substitution that assigns the first projection of (the result of) e to x and the second
one to y.

If we are not interested in capturing all the parts that compose the result of e, then
we can use the wildcard “��” in correspondence of the parts we want to discard. For
instance, in order to capture just the first projection of e, we can use the following
pattern:

��� 	���
 � e �� ���

which returns the substitution that assigns the result of first(e) to x. In general, a pattern
has the form of a value in which some sub-occurrences are replaced by variables (these
correspond to parts that are to be captured) and other are replaced by “�” (these corre-
spond to parts that are to be discarded). A value is then matched against a pattern and if
they both have the same structure, then the matching operation returns the substitution
of the pattern variables by the corresponding occurrences of the value. If they do not
have the same structure the matching operation fails. Since a pattern may fail—and here
resides the power of pattern matching—it is interesting to try on the same value several
different patterns. This is usually done with a 	
��� expression, where several patterns,
separated by �, are tried in succession (according to a so-called “first match” policy).
For instance:

���� e ����

� 	�����
 �� ����

� �� �� �����

first checks whether e returns a pair in which case it returns ���, otherwise it returns
�
���. Note that, in some sense, matching is not very different from a type case. Ac-
tually, if we carefully define the syntax of our types, in particular if we use the same
syntax for constructing types and their values, then the 	
��� operation becomes a type
case: let us write �s�t� for the product type of the types s and t (instead of the more
common s× t or s∗ t notations) and use the wildcard “��” to denote the super-type of all
types (instead of the more common Top, �, or � symbols), then the match expression
above is indeed a type case (if the result of e is in the product type 	���
 —the type
of all products—, then return true else if it is of type top—all values have this type—,
then return false). We will see the advantages of such a notation later on, for the time

Patterns and Types for Querying XML Documents 5

being just notice that with such a syntactic convention for types and values, a pattern is
a (non-functional) type in which some variables may appear.

Remark 1. A pattern is just a non-functional type where some occurrences may be
variables.

The matching operation is very useful in the definition of functions, as it allows the
programmer to define them by cases on the input. For instance, imagine that we en-
code lists recursively à la lisp, that is, either by a nil element for the empty list, or
by pairs in which the left projection is the head and the right projection the tail of the
list. With our syntax for products and top this corresponds to the recursive definition
���� � ���� � 	
������: a list is either ���� (we use a back-quote to denote constants
so to syntactically distinguish them in patterns from variables) or the product of any
type and a list. We can now write a tail recursive function2 that computes the length of
a list3

�� ������ 		��������� �� ����

� 	���� � �� �� �

� 		

���� �� �� ������	������

which is declared (see Footnote 3 for notation) to be of type 	��������� �� ���, that is,
it takes a pair composed of a list and an integer and returns an integer. More precisely, it
takes the list of elements still to be counted and the number of elements already counted
(thus ������	���� computes the length of the list �). If the list is ����, then the function
returns the integer captured by the pattern variable �, otherwise it discards the head of
the list (by using a wildcard) and performs a recursive call on the tail, captured in �,
and on ���. Note that, as shown by the use of ‘nil in the first pattern, patterns can also
specify values. When a pattern contains a value v, then it matches only values in which
the value v occurs in the same position. Remark 1 is still valid even in the case that
values occur in patterns, since we can still consider a pattern as a type with variables:
it suffices to consider a value as being the denotation of the singleton type that contains
that value.

2 A function is tail recursive if all recursive calls in its definition occur at the end of its execu-
tion flow (more precisely, it is tail recursive if the result of every call is equal to result of its
recursive calls): this allows the compiler to optimise the execution of such functions, since it
then becomes useless to save and restore the state of recursive calls since the result will be
pushed on the top of the stack by the last recursive call.

3 We use two different syntaxes for functions. The usual notation is standard: for instance, the
identity function on integers will be written as �� ��	� ��������� � �. But if we want to
feed the arguments of a function directly to a pattern matching, then the name of the function
will be immediately followed by the type of the function itself. In this notation the identity for
integers is rather written as �� ��	��������� � �� �. This is the case for the function
length that follows, which could be equivalently defined as

��� ������ �	
����������
��� �
����� 	 ����
� ����� � �� �� �
� �������� �� �� �������������

6 G. Castagna

2.2 Union, Intersection, and Difference Types

In order to type-check ����� expressions, the type-checker must compute unions, in-
tersections, and differences (or, equivalently, negations) of types: let us denote these
operations by � for the union, � for the intersection, and � for the difference. The reason
why the type-checker needs to compute them can be better understood if we consider a
type as a set of values, more precisely as the set of values that have that type: t = {v | v
value of type t}4. For instance, the product of the singleton type �	
� and of the type
�	�, denoted by �	
���	��, will be the set of all pairs in which the first element is the
constant �	
� and the second element is an integer. Notice that we already implicitly did
such an hypothesis at the end of the previous section, when we considered a singleton
type as a type containing just one value.

As we did for types, it is possible to associate also patterns to sets of values (actually,
to types). Specifically, we associate to a pattern p the type ���p��� defined as the set of val-
ues for which the pattern does not fail: ���p��� = {v | v matches pattern p}. Since we use the
same syntax for type constructors and value constructors, it results quite straightforward
to compute ���p���: it is the type obtained from p by substituting “��” for all occurrences of
variables: the occurrences of values are now interpreted as the corresponding singleton
types.

Let us check whether the function ��	��� has the type �
����	��→�	� it declares
to have. The function is formed by two branches, each one corresponding to a differ-
ent pattern. To know the type of the first branch we need to know the set of values
(i.e., the type) that can be bound to n; the branch at issue will be selected and exe-
cuted only for values that are arguments of the function—so that are in �
����	��—
and that are accepted by the pattern of the branch—so that are in ����	
��	���� which
by definition is equal to �	
����—. Thus, these are the values in the intersection
�
����	����	
����. By distributing the intersection on products and noticing that
�
����	
�= �	
� and �	���= �	�, we deduce that the branch is executed for values in
�	
���	�� and thus n is (bound to values) of type �	�. The second branch returns a
result of type �	� (the result type declared for the function) provided that the recursive
call is well-typed. In order to verify it, we need once more to compute the set of values
for which the branch will be executed. These are the arguments of the function, minus
the values accepted by the first branch, and intersected with the set of values accepted
by the pattern of second branch, that is: �
����	����	
����� � �������. Again,
it is easy to see that this type is equal to ���
�����	�� and deduce that variable t is
of type �
�� and the variable n is of type �	�: since the arguments have the expected
types, then the application of the recursive call is well typed. The type of the result of
the whole function is the union of the types of the two branches: since both return in-
tegers the union is integer. Finally, notice also that the match is exhaustive, that is, for
every possible value that can be fed to the match, there exists at least one pattern that
matches it. This holds true because the set of all arguments of the the function (that is,
its domain) is contained in the union of the types accepted by the patterns.

4 Formally, we are not defining the types, we are giving their semantics. So a type “is interpreted
as” or “denotes” a set of values. We prefer not to enter in such a distinction here. See [19] for
a more formal introduction about these types.

Patterns and Types for Querying XML Documents 7

More generally, to deduce the type of an expression (for the sake of simplicity we
use a match expression with just two patterns)

����� e ���� p1��e1 	 p2��e2

one must: (i) deduce the type t of e, (ii) calculate the type t1 of e1 in function of the val-
ues in t����p1���, (iii) calculate the type t2 of e2 in function of the values in (t \���p1���)����p2���
and, finally, (iv) check whether the match is exhaustive that is, t ≤ ���p1��� |��� p2���: the type
of the expression is then the union t1�t2.

The example with ����� clearly shows that for a precise typing of the programs
the type-checker needs to compute unions, intersections, and differences of types. Of
course, the fact that the type-checker needs to compute unions, intersections, and nega-
tions of types does not mean that we need to introduce these operations in the syntax
of the types (namely, in the type system): they could be meta-operations whose us-
age is confined to the type-checker. This is for instance the choice of XDuce (or of
XQuery whose types borrow many features from XDuce’s ones), where only union
types are included in the type system (they are needed to define regular expression
types), while intersections and negations are meta-operations computed by the subtyp-
ing algorithm.

We defend a choice different from XDuce’s one and think that unions, intersections,
and differences must be present at type level since, we argue, having these type con-
structors in the type system is useful for programming5. This is particularly true for
programs that manipulate XML data—as we will see next— in particular if we com-
pletely embrace the “pattern as types” analogy of Remark 1. We have seen that in the
“pattern as types” viewpoint, the pattern ��	
��� is matched by all values that have
type ��	
���. This pattern is built from two very specific types: a singleton type and
the “

” type. In order to generalise the approach, instead of using in patterns just sin-
gleton and “

” types, let us build patterns using as building blocks generic types. So, to
give some examples, let us write patterns such as ����	�� which captures in � the first
projection of the matched value only if the second projection is an integer; if we want to
capture in � also the second projection, it suffices to use an intersection: ������	�� as
to match an intersection a value must match both patterns (the variable to capture and
�	� to check the type); if the second projection of the matched value is an integer, then
������	��������� will capture in � the first projection and in � the second projection,
otherwise both variables will capture the second projection.

We can then write the pattern �� � �����������	�������������� that captures in
� all cars that, if they are used have a guarantee (these properties being expressed by the
types ���, �����	���, and ����, the type ����� being equivalent to ¬¬¬����) and use it
to select the wanted items in a catalogue by a select-from-where expression. We have
seen at the very beginning of Section 2.1 that patterns can be used instead of variables
in let bindings. The idea underlying �QL [5] is to do the same with the bindings in the

5 From a theoretical point of view the XDuce’s choice is justified by the fact that XDuce types
are closed with respect to boolean operations. This is no longer true if, as in �Duce, one also
has function types. However, the point we defend here is that it is useful in practice to have all
the boolean operations in the syntax of types, even in the presence of such closure properties.

8 G. Castagna

���� clause of a select-from-where. So if ��������� denotes a sequence of items, then
we can select from it the cars that if used then have a guarantee, by

������ 	
���

	 � ������������������������ �� ���������

As customary, the select-from-where iterates on all elements of ���������; but instead
of capturing every element, it captures only those elements that match the pattern, and
then binds the pattern variables to their corresponding subparts. These variables are
then used in the select and in the subsequent “from” and “where” clauses to form the
result. In some sense, the use of patterns in the from clauses corresponds to a syntactic
way to force the classic logical optimisation of remounting projections, where here the
projection is on the values that match the pattern (we say more about it in Section 3.5).
The general form of the select-from-where we will consider here is then the one of
�QL, namely:

������ e
���

p �� e′�����p �� e′

����� e′′

where p are patterns, e′ expressions that denote sequences, and e′′ a boolean expression.
The select iterates on the e′ sequences capturing the variables in the patterns only for
the elements that match the respective pattern and satisfy the condition e′′. Note that the
usual select-from-where syntax as found in SQL is the special case of the above where
all the patterns are variables. The same of course holds true also for the FLWR expres-
sions of XQuery, which are nothing but a different syntax for the old select expression
(the let binding would appear in the e expression following the select).

The select-from-where expressions we just introduced is nothing but a query-
oriented syntax for list comprehensions [56], which are a convenient way to define a
new list in terms of another list. As discussed by Trinder and Wadler [55] a list com-
prehension is an expression of the form [e | p ← e′ ; c] where e is a list expression, p a
pattern, e′ a generic expression, and c a boolean condition; it defines the list obtained
by evaluating e′ in the environment produced by matching an element of the result of e
against p provided that in the same environment the condition c holds. It is clear that the
expression above is just a different syntax for ������ e′

���� p 	
 e ����� c, and that
the general case with several from clauses is obtained by nesting list comprehensions
in e′.

2.3 Regular Expression Patterns

If we want to use patterns also to manipulate XML data, then the simple and some-
how naive approach is to define XML patterns as XML values where capture variables
and wildcards may occur. To the best of our knowledge, this was first proposed in the
programming language community by XMλ [47] and in the database community by
XML-QL [25] (whose query primitive is a simpler version of the pattern-based select-
from-where introduced in the previous section). This corresponds to extend the classic
“patterns as values with variables (and wildcards)” analogy of functional languages to
XML data. However, in the previous sections we introduced a more expressive analogy,

Patterns and Types for Querying XML Documents 9

the one of “patterns as types with capture variables” as stated in Remark 1. Since val-
ues denote singleton types, then the latter analogy extends the former one, and so it is
in principle more expressive. The gain in expressiveness obtained by using the second
analogy becomes clear also in practice as soon as we deal with XML, since the types for
XML can be more richly combined than those of classic functional languages. Indeed,
XML types are usually defined by regular expressions. This can be best shown by using
the paradigmatic example of bibliographies expressed by using the �Duce (and �QL)
type syntax:

���� ��� � ����	
�����

���� ���� � ����� �����������	
����� ����������������� ��� �!�

���� ������ � �������	
"�#� $��#��

���� ������ � �������	
"�#� $��#��

���� ����� � ������	
�%&����

���� "�#� � ���#�	
�%&����

���� $��#� � �'��#�	
�%&����

���� ��� � � ���� �	
�%&����

The declarations above should not pose any problem to the reader familiar with XML,
DTD, and XML Schema. The type ��� classifies XML-trees rooted at tag ��� that
delimits a possibly empty list of books. These are elements with tag ����, an attribute
����, and containing a sequence formed exactly by one element title, followed by either
a non empty list of author elements, or a non empty list of editor elements, and ended
by an optional element price. Title elements are tagged by ����� and contain a sequence
of characters, that is, a string (in XML terminology “parsed character data”, PCDATA).
The other declarations have similar explanations.

We used the �Duce syntax (which slightly differs from the XDuce’s one for tags and
attributes) foremost because it is the syntax we are most familiar with, but also because
�Duce currently possesses the richest type and pattern algebras among the languages
that use regular expression patterns.

The declarations above give a rather complete presentation of �Duce types. There
are XML types, that are formed by a tag part and a sequence type (denoted by square
brackets). The content of a sequence type is described by a regular expression on types,
that is, by the juxtaposition, the application of , �, ! operators, and the union � of types.
Besides these types there also are all the type constructors we saw earlier in this section,
namely: (i) values which are considered singleton types, so for instance (����)��(is
the type that contains only the string (����)��(, (ii) intersection of types, denoted by
s*t that contains all the values that have both type s and type t, (iii) difference “+” of
types, so that ����� �����������+(,---(
����� ����������������� ��� �!� is the
type of all books not published in 1999, (iv) the “��” type, which is the type of all values
and is also noted ���, and its complement the �)��� type.

According to Remark 1, patterns are the above types enriched with capture variables.
With respect to XMλ’s approach of “patterns as values with capture variables”, this ap-
proach yields regular expression patterns. For instance, ����	
�.//������ is a pattern
that captures in . the sequence of all books of a bibliography. Indeed, the indicates
that the pattern .//���� must be applied to every element of the sequence delimited by
����	. When matched against an element, the pattern .//���� captures this element in

10 G. Castagna

the sequence �, provided that the element is of type ����6. Patterns can then be used in
match expressions:

����� 	
	�
� �
�� 	
	�� ���������� � �� �

This expression matches 	
	�
� against our pattern and returns � as result, thus it makes
nothing but stripping the 	
	� tag from 	
	�
�. Note that if we knew that 	
	�
�
has type �
	, then we could have used the pattern 	
	���������� (or, equivalently,
	
	������������), since we statically know that all elements have type ����.

Besides capture variables there is just one further difference between patterns and
types, namely the union operator �, which is commutative for types while it obeys a first
match policy in patterns. So for instance the following expression returns the sequence
of all books published in 1999:

����� 	
	�
� �
�� 	
	��� ����	��� ������� ����� � �� ��� �� �

Again, the pattern �����	��� ������� ���� � � � is applied to each ele-
ment of the sequence. This pattern first checks whether the element has the tag
	��� ������� �� whatever its sequence of elements is, and if such is the case it
captures it in �; otherwise it matches the element against the pattern “�”, which al-
ways succeeds without capturing anything (in this way it discards the element). Note
that, if we had instead used 	
	�� ����	��� ������� ����� � this pattern would
have succeeded only for bibliographies composed only by books published in 1999, and
failed otherwise.

As we said in the introduction, an extraction primitive must be coupled with iterator
primitives to apply the extraction all over the data. There are several kinds of iterators
in �Duce, but for the sake of the presentation we will use the one defined in the query
sub-language �QL, that is the select-from-where defined in the previous section. So,
for example, we can define a function that for each book in a sequence extracts all titles,
together with relative authors or editors.

!"� ��������� � �������� � � �#
��� ��"����$�%&
���$��� � �

'����� �!�������(��� !���

	���))�� (��#
��� �����"�����%&
����$ ��� �
� �

The function ������� takes a possibly empty sequence of books and returns a possibly
empty sequence of sequences that start by a title followed by a non-empty uniform
sequence of authors or editors. The operator !������ takes a sequence of sequences and
returns their concatenation, thus !�������(�� is nothing but the concatenation of the
sequences (and �. The select-from-where applies the pattern before the �� keyword to
each element of the sequence � and returns !�������(�� for every element matching
the pattern. In particular, the pattern captures the title in the sequence variable (, the
sequence of authors or editors in the sequence variable �, and uses “��” (the wildcard
that matches any set of attributes) to discard the ���� attribute. Had we wanted to return
a sequences of pairs (title,price), we would have written

6 The reader may have noticed that we used both �*t and ���t. The double semicolon indicates
that the variable � captures sequences of t elements: while the first � is of type t the second
one is of type � t��. Since inside regular expression patterns, variables capture sequences, then
only the latter can be used (see the formal syntax at the beginning of Section 2.4).

Patterns and Types for Querying XML Documents 11

��� �������	
� � ������� � �
������������� � �

������
���� ����

����� ���� � ����� !!� � ����� � �� �

where we used “�” instead of “��” to denote that variables capture single elements
rather than sequences (see Footnote 6).

Both examples show one of the advantages of using patterns, that is the ability to
capture different subparts of a sequence of elements (in the specific case the title and
the authors/editors) in a single pass of the sequence.

The select-from-where expression is enough to encode XPath-like navigation ex-
pressions. In �Duce/ �QL one can use the expression e�t, which is syntactic sugar for
�������
������ � ���� �! ����
���t"!��� �� e� and returns all children of type t
of elements of the sequence e. We can compose these expressions to obtain an XPath-
like expression. For instance, if ���� denotes a sequence of bibliographies (i.e., it is of
type �����), then ����#���#
$��%��"&'����� returns the sequence of all authors and
editors appearing in the bibliographies. In order to match more closely the semantics
of XPath, we will often write ����#����� ���!#
����%�� ���!"��'���� ���!�, since
this kind of expression checks only tags while, in principle, the previous path expres-
sion checks the whole type of the elements (not just the tag). As a matter of fact, by
using the static type of ����, �Duce compiles the first expression into the second one,
as we will explain in Section 3.4. Similarly, the expression e��id is syntactic sugar for
������ � ���� �! id�� ��� �� e, which returns all the values of the attribute id oc-
curring in the children of elements in e. One can combine select-from-where and path
expressions and write queries such as

������ ���� ����

����� (����)	**+)������� ���$��%��, ��������� �� ����#����

���� �� �#������
-����./)����(����)�

0%��� ���!��
�� �� 1**

which returns the sequence of last name elements of the authors of all the books in
���� published this year for which a list of authors is given, a price lower than 100
is specified, and the last name is different from "anonymous". The reader is invited to
verify that the query would be far more cumbersome if we had to write it either using
only patterns or, as it would be for XQuery, using only paths (in this latter case we also
would need many more nested loops). A pattern-based encoding of XPath completely
different from the one presented here has been proposed by Gapeyev and Pierce [32].

2.4 Pattern and Type Algebras

Patterns and types presented in the previous sections are summarised below:

Types

t ::= b | t�t | t�t | t�t | �t�t� | 	t �
t����
t�t | R� | &���(| $�(

Type regular expressions

R ::= t | R R | R�R | R� | R� | R�

12 G. Castagna

Patterns

p ::= x | t | p�p | p� p | �p�p� | � p ��p ��� ��p � p | 	r

Pattern regular expressions

r ::= p | x��r | r � r | r r | r� | r | r�

where b ranges over basic types, that is ����, ���, etc., as well as singleton types (de-
noted by values). As a matter of fact, most of the syntax above is just syntactic sugar.
These types and patterns can indeed be expressed in a much more compact system, com-
posed only the very simple constructors we started from: basic and product types and
their boolean combination. In this short section we will deal with more type-theoretic
aspects and give an outline of the fact that all the patterns and types above can be ex-
pressed in the system defined as follows.

Definition 1. A type is a possibly infinite term produced by the following grammar:

t ::= b | (t1,t2) | t1|||t2 | t1&&&t2 | ¬¬¬t | � | �
with two additional requirements:
1. (regularity) the term must be a regular tree (it has only a finite number of distinct

sub-terms);
2. (contractivity) every infinite branch must contain an infinite number of pair nodes

(t1,t2).
A pattern is a type in which (possibly infinitely many) occurrences of finitely many cap-
ture variables may appear anywhere provided that
1. no variable occurs under a negation,
2. patterns forming an intersection have distinct sets of occurring variables,
3. patterns forming an union have the same sets of occurring variables. �	

In the definition b ranges again overs basic types and � and � respectively repre-
sent the ��	�
 and ��
 types. The infiniteness of types/patterns accounts for recur-
sive types/patterns. Of course these types must be machine representable, therefore we
impose a condition of regularity (in practice, this means that we can define types by
recursive equations, using at most as many equations as distinct subtrees). The contrac-
tivity condition rules out meaningless terms such as X = ¬¬¬X (that is, an infinite unary
tree where all nodes are labelled by ¬¬¬). Both conditions are standard when dealing with
recursive types (e.g. see [2]). Also pretty standard are the conditions on the capture vari-
ables for patterns: it is meaningless to capture subparts that do not match (one rather
captures parts that match the negation); in intersections both patterns must be matched
so they have to assign distinct variables, while in union patterns just one pattern will
be matched so always the same variables must be assigned whichever alternatives is
chosen.

Definition 1 formalises the intuition given in Remark 1 and explains why in the in-
troduction we announced that patterns and types we were going to present were closely
connected.

These types and patterns (which are the semantic subtyping based ones hinted at in
the introduction) are enough to encode all the regular expression types and patterns we
used in Section 2.3 (actually, they can do much more than that): sequences can be en-
coded à la Lisp by pairs, pairs can also be used to encode XML types, while regular

Patterns and Types for Querying XML Documents 13

expression types are encoded by recursive patterns. For instance, if we do not consider
attributes, the type

���� ���� � �	���
����� ���������������� ������

can be encoded as Book = (‘book,(Title,X |Y)), X = (Author,X |(Price, ‘nil)|‘nil) and
Y = (Editor,Y |(Price, ‘nil)|‘nil), where ‘book and ‘nil are singleton (basic) types. More
details about the encoding, such as the use of non-linear capture variables to match se-
quences and the use of record patterns to match attributes, as well as the formal defini-
tion of pattern matching are given elsewhere [4].

The core syntax of the semantic types and patterns is very simple and this turns out
to be quite useful in the formal treatment of the system. The other characteristic that
makes life easier is that the boolean combinators on types are interpreted set theoreti-
cally: types are sets of values and intersection, union, and difference of types are inter-
preted as the corresponding operators on these sets (this is the essence of the semantic
subtyping approach). Although this simplifies significantly both the theoretical devel-
opment (types can be transformed by using the classical set-theoretic laws, e.g. De Mor-
gans’s, etc.) and the practice (e.g. for a programmer it is easier to understand subtyping
in terms of set containment, than in terms of an axiomatisation), the development of
the underlying theory is quite complex (see for instance [19, 37, 35, 34, 38, 30, 29, 39]).
Fortunately, this complexity is hidden from the programmer: all (s)he has to know is
that types are set of values and subtyping is set inclusion. Such theoretical complexity
is the counterpart of the expressiveness of the system; expressiveness that is manifest
in the simplicity of the query language: value constructors (constants, pairs, and XML
values), operators for basic types (e.g. arithmetic and boolean operators), the �������

operator, and the pattern-based select-from-where (i.e., list comprehensions) constitute
the complete definition of the �QL query language [5]. We are in the presence of few
primitives that permit to query complex data in XML format: of course the power comes
from the use of patterns in the select-from-where expressions.

2.5 Iterators

In the introduction we said that in order to manipulate XML data besides extraction
primitives we also need iterators. Therefore, let us spend a final word about them. In
the previous section we used just one iterator, the select-from-where expression. This
iterator is very simple but not very expressive: it cannot transform complex trees but just
query them (it returns sequences not whole trees) and it applies just one pattern to each
element of the scanned sequences (while we have seen that the power of pattern match-
ing resides in the possibility of trying several alternative patterns on the same element).
Of course, a select-from-where is meant to be so: it is a query primitive, not a trans-
formation primitive. Therefore it was designed to be simple and not very expressive
in order to be easily optimisable (see Section 3.5). But if we want to define concisely
more complex transformations, then the language has to provide more powerful built-in
operators. For instance, the �Duce language provides three different iterators: the ��

constructor, whose syntax is �� e !�� p1��e1� . . . � pn��en, which applies the spec-
ified matching alternatives to each element of the sequence e and returns the sequence
of results; the ����"��� constructor which acts like map but filters out elements that

14 G. Castagna

are not matched; the ���������� constructor which performs the same operation but
on trees, leaving unmatched subtrees unmodified. Of course, the same behaviour could
be obtained by programming these operators by using functions but, as we explain in
Section 3.6, we would not obtain the same precision of type checking as we obtain by
hard-coding them as primitive constructions of the language.

3 Eight Good Reasons to Use Regular Expression Patterns and
Types in Query Languages

As its title clearly states, in this section we try to advocate the use of regular expression
patterns and of the union, intersection, and negation types we introduced in the previous
section. A first reason to be interested in this approach is that its theoretical core is very
compact (which does not mean “simple”): we have seen that an expressive query lan-
guage can be simply obtained by adding list comprehensions to the types and patterns
of Definition 1. Rather than concentrating on the theoretical aspects, in the rest of this
work we will focus on more practical issues. We already said that we are not promoting
the use of regular expressions to the detriment of path expressions, but we would like
to invite the database and programming language community to share their skills to
find a suitable way to integrate the two mechanisms. Since the author belongs to latter
community this paper has described up to now the pattern approach and will now try to
address some points which, hopefully, should interest the database community as well:
we apologise in advance for the naiveties that might slip in such a démarche.

3.1 Classic Usage

The most obvious usages of the type system presented here are those typical of every
type system: e.g. static detection of type errors, partial correctness, and database schema
specification. In this respect, semantic types do not differ significantly from other type
systems and we will no spend much time on this aspect.

The only point that is worth noticing is that union, intersection, and difference types,
form quite a natural specification language to express schema constraints. This looks
particularly interesting from the database perspective, in particular for the definition of
different views. Notwithstanding that the specification of complex views requires com-
plex queries, union intersection and negation types constitute a powerful specification
language for simple views. Defining views by restriction or extension looks like a nat-
ural application of boolean combinators of types. To give a naive example define the
following types

�	
� ������� � ��� ������� ���� ����

�	
� ������� � ��� 	�������������

The first is the type of every element (whatever its tag and attributes are) that has at
least a child element of type �����, the second types every element (whatever its tag
and its content is) that has an attribute year equal to “2005”. We can then use the type
����� !�"�#�������$%�������$�� to specify a view of our bibliography con-
taining only those books published in 2005 that do not have a price element.

Patterns and Types for Querying XML Documents 15

3.2 Informative Error Messages

The use of boolean combinators for types is quite useful in producing informative error
messages at compile time. When type checking fails it is always because the type-
checker was expecting an expression of some type s and found instead an expression
of a type t that is not a subtype of s. Showing the two types s and t is not always
informative enough to help the programmer to find the error, especially in case of XML
data where s and t can be quite complex (just think of the type describing XHTML
documents). Thanks to boolean combinators of types we can compute the difference of
these two types, t�s, inductively generate a sample value belonging to this difference,
and return it to the programmer. This value is a witness that the program is ill-typed,
and the generation of just enough of the sample value to outline the error usually allows
the programmer to rapidly localise the problem.

To give a practical example of this fact, imagine we want to define a function that
returns the list of books of a given year, stripped of the Editors and Price elements.
Consider the following solution:

��� �������	�
� ���
 ���� � ����� ��������� �������� �

���� ����� ��
��� �������� � � �� �
��

����� ��
���� �������� ������	�
 !!�"� �� �����

#	
 ���!����� � ��

The idea is that for each book the pattern captures the year in �, the title in the sequence
variable �, and the sequence of authors in �. Then, the expression preceding the from
clauses rebuilds the book by concatenating the sequences stored in � and �, provided
that the year is the one specified at the argument of the function. The function above is
not well-typed and the �Duce compiler returns the following error message

flatten[t a]

The sample value at the end of the message shows at once the origin of the problem: the
expression ������� � � � outlined in the error message (i.e., the expression at chars
81-95) may return a sequence that contains just a title, but no author or editor. This
allows the programmer to understand that the problem is that � may denote the empty
sequence (the case in which a book specifies a list of editors) and, according to the
intended semantics of the program, make her/him correct the error by modifying either
the return type of the function (i.e., ������� ��
�$�
��%������ ���	�
�����), or
the pattern (typically, a pattern like ����� ��
���� ������� ������	�
" !��).

Of course in such a simple example the expected and inferred types would have
been informative enough: it is easy to see that the former type in the error message is
equivalent to ����� ����	�
 &'���
�" (
��)� while the latter is ����� ���	�
��

and hence to arrive to the same conclusion. But in practice types are seldom so simple
and from our experience in programming with�Duce we have found that sample values

16 G. Castagna

in error messages play an essential role in helping the programmer to rapidly spot where
bugs lie. We invite the reader to verify this claim by trying the �Duce online interpreter
at �������������.

3.3 Error Mining

Patterns and types are powerful enough to spot some subtle errors that elude current type
checking technology. Suppose we had programmed the function ������� of Section 2.3
as follows

��� �������	�
 ������
 � ������ 	���������������� � �

������ 	��������� ��� ���

 !� ""#� �

����� �

	 �����#$$� edtor#$$�� $$� � �� �

Note that despite the typo we outlined in bold in the program, the function above is
well-typed: no typing rule is violated and the pattern is not a useless one since it can
still match authors. However, all the books with editors would be filtered out from the
result. Since there are cases in which the pattern matches, a possible static emptiness
check of the result (as, for instance, recommended in Section 4, “Static Type Analysis”
subsection of the XQuery 1.0 and XPath 2.0 Formal Semantics7 of would not uncover
the error. Such an error can only be detected by examining the result and verifying that
no book with editors appear. This kind of error is not the exclusive resort of patterns,
but can happen also with paths. For instance, if we want to extract each title together
with the relative price, from our bibliographic collection !�!� we can write

!�!�% !� ""#$$%	 �����#$$� prize#$$�

which contains an error, as &���� occurs instead of &����. But since the result is not
always empty no warning is raised. Again, the error is hidden by the fact that the pattern
is partially correct: it does find some match, even if, locally, &����#$ never matches,
hence is incorrect. Once more, as price is optional, by looking at the query output,
when seeing only titles, we do not know whether prices are not present in that database
or something else went wrong.

These errors can be roughly characterised as the presence of dead code in extraction
primitives, that is, the presence of subcomponents (of the patterns or paths) that have no
chance to match data. The presence of such errors is very likely in writing programs that
process typed XML data, since programmers tend to specify only the part of the schema
that is strictly necessary to recover desired data. To that end they make extensive usage
of wildcards and alternations that are an important (but not exclusive) source of this
kind of errors.

The consequence of these errors is that some desired data may end up not contribut-
ing to partial and/or final results, without having the possibility of becoming aware of
this problem at compile time. So, this problem may be visible only by carefully ob-
serving the results of the programs. This makes error detection quite difficult and the
subsequent debugging very hard. And it is made even harder by the fact that, as argued

7 See ���������������	
���������������	�������������������� �	�������
!! ������.

Patterns and Types for Querying XML Documents 17

in [18], such errors are not just created by typos—as shown here—but they may be of
more conceptual nature.

It has been shown [18] that the errors of this kind can be formally characterised
and statically detected by using the set-theoretic operators of the types and patterns
we presented here. In particular given a type t and a pattern p, it is not difficult to
characterise the parts of p which are used for at least one value v in t (and hence the
dead parts that are never used). This is done by applying a rewriting system to the
pair (t, p) which decomposes the matching problem for each subcomponent of p, by
applying the set-theoretic properties of the semantic types and patterns. So for instance
(t, p1|||p2) is rewritten into (t, p1) and (t&&&¬¬¬��� p1���, p2); the set of sub-patterns of p that
may be used when matching values of type t is formed by all patterns p′ such that (t, p)
rewrites in zero or more steps into (t ′, p′) and t ′&&&��� p′��� = �.

Finally, the implementation of such a technique in the current type-checkers of,
among others, Xtatic, �Duce, and XDuce, does not produce any noticeable overhead,
since the rewriting can be performed by the normal type inference process itself. Further
details are available elsewhere [18].

3.4 Efficient Execution

The benefits of semantic patterns/types are not confined to the static aspects of XML
programming. On the contrary they are the key ingredient that makes languages as
�Duce and Xtatic outperform the fastest XML processors. The idea is quite simple:
by using the static type information and the set-theoretic properties of the semantic
patterns/types one can compile data queries (e.g. the patterns) so that they perform a
minimum number of checks. For instance, if we look in an XML tree for some given
tag and the type of the tree tells us that this tag cannot occur in the left subtree, then
we will skip the exploration of this subtree and explore only the right one. As a more
concrete example consider the following definitions (see Footnote 3 for notation)

���� � � ���	�
�

���� � � ��	�
�

��� ������ ��� �� ��� � � �� � � � �� �

The type � types all the XML trees where only the ��� tags occurs, the type � does the
same for ��, while the function ����� returns either 1 or 0 according to whether its
argument is of type � or �. A naive compilation schema would yield the following be-
haviour for the function: first check whether the first pattern matches the argument, by
checking that all the elements of the argument are ���; if this fails, try the second branch
and do all these tests again with ��. The argument may be run through completely sev-
eral times. There are many useless tests: since we statically know that the argument is
forcedly either of type � or of type �, then the check of the root tag is enough. It is thus
possible to use the static type information to compile pattern matching so that it not
only avoids backtracking but it also avoids checking whole parts of the matched value.
In practice ����� will be compiled as

��� ������ ��� �� ��� � ���� �� � � � �� �

18 G. Castagna

As a second example consider the query at the end of Section 2.3. By using the infor-
mation that ���� has static type ������, it will be compiled as:

����	
 ��� ���

��� ������������� �� �����
���� ����	��� � �� ���� ��!

��� �� � ����
�"��#����������$

%���� ��
���"�$ �� &��

While in both cases the solutions are easy to find, in general computing the optimal so-
lution requires fully exploiting intersections and differences of types. These are used to
reduce the problem of generating an optimal test to that of deciding to which summand
of a union of pairwise disjoint types the values of a given static type belong to. To find
the solution, the algorithm—whose description is outside the scope of this paper (see
the references below)—descends deep in the static type starting from its root and accu-
mulates enough information to stop the process as soon as possible. The information is
accumulated by generating at each step of the descent a new union of pairwise distinct
types, each type corresponding to a different branching of the decision procedure.

This algorithm was first defined and implemented for �Duce and it is outlined in [4]
(whose extended version contain a more detailed description). The tree-automata theory
underlying has been formally described [28] and generalised [30]. Levin and Pierce
have adapt this technique to Xtatic and extend it with heuristics (their work is included
in these proceedings [43]).

We just want to stress that this compilation schema is semantic with respect to types,
in the sense that the produced code does not depend on the syntax of the types that ap-
pear in patterns, but only on their interpretation as sets of values. Therefore there is no
need to simplify types—for instance by applying any of the many type equivalences—
before producing code, since such simplifications are all “internalised” in the compila-
tion schema itself.

The practical benefits of this compilation schema have been shown [5] by using
XMark [52] and the XQuery Use Cases [20] to benchmark �Duce/ �QL against
Qizx [27] and Qexo [9] two of most efficient XQuery processors (these are several
orders of magnitude faster than the reference implementation of XQuery, Galax [3]).
The results show that in main memory processing �QL is on the average noticeably
faster than Qizx and Qexo, especially when computing intensive queries such as joins.
Furthermore, since the execution times of �QL benchmarks always include the type-
checking phase, this also shows that the semantic types presented here are algorithmi-
cally tractable in practice.

3.5 Logical Optimisation of Pattern-Based Queries

We already remarked at the end of Section 2.2 that the usual select-from-where as found
in SQL and the for-expressions of XQuery are both special cases of our pattern-based
select-from-where expressions, in which all patterns are variables. Hence, all classic
logical optimisations defined for the former apply also to the pattern-based case. How-
ever, the use of patterns introduces a new class of pattern-specific optimisations [5]
that being orthogonal to the classical optimisations bring a further gain of performance.
These optimisations essentially try to transform the from clauses so as to capture in a

Patterns and Types for Querying XML Documents 19

single pattern as much information as possible. This can be obtained essentially in three
ways: (i) by merging into a single pattern two different patterns that work on a com-
mon sequence, (ii) by transforming parts of the where clauses into patterns, and (iii)
by transforming path expressions into nested pattern-based selections and then merging
the different selects before applying the previous optimisations. As an example consider

������ �����	
�� ���

� �� ����������	�� �

� ��
��������	�� �

� ��
���������	�� �

� ��
�������

���� �� � �����	������� ��! ����"��#�

which is a query written in a XQuery style (the from clauses use path expressions on
right of the �� keyword and single variables on its left), and that returns all the titles of
books published in 1990 whose price is “69.99” (this essentially is the query Q1 of the
XQuery Use Cases). After applying pattern-specific optimisations it will be transformed
into

������ �����	
�� ���

����	
�$$%���&� �� �����

����� �����"��#�	
 �'(���� ��) �����	������� � �� �

which is intuitively better performing since it computes less nested loops.
The benchmarks mentioned above [5] show that these pattern-specific optimisations

in most cases bring a gain in performance, and in no case degrading it.

3.6 Pattern Matches as Building Blocks for Iterators

In the introduction we said that in order to work with XML data one needs two different
primitives: deconstructors and iterators. Although patterns belong to the first class of
primitives, thanks to an idea of Haruo Hosoya, they are useful to define iterators, as
well. More precisely, they allow the programmer to define her/his own iterators. This
is very important in the context of XML processing for two reasons: (i) the complex
structure of data makes virtually impossible for a language to provide a set of iterators
covering, in a satisfactory way, all possible cases8 and (ii) an iterator programmed using
the existing primitives of the language would be far less precisely typed than the same
built-in operator and would thus require a massive usage of casting operations.

We have seen that by defining regular expressions over patterns we can perform data
extraction along sequences of elements. But patterns play a passive role with respect
to the elements of the sequence: they can capture (part of) them but do not compute
any transformation. Haruo Hosoya noticed that if instead of using patterns as basic
blocks of regular expressions one uses pattern matching branches of the form “p *	 e”,
then it is possible to define powerful iterators that he dubs filters [36] and that are in-
cluded in the recent versions of XDuce. The idea is that as regular expressions over

8 No formal expressiveness concern here: just programming experience where the need of a new
iterator that would fit and solve the current problem appears over and over.

20 G. Castagna

patterns describe the way the patterns are matched against the elements of a sequence,
in the same way regular expressions over match branches “p �� e” describe the way to
apply the transformation described by the branch to the elements of a sequence pro-
vided that they match p. For instance, the filter9 �������	
��� ��
����� applied to
�� � �� returns �� � ��, while �������	
�����
�� �
���������	
� ��� trans-
forms �� ����� ����� �� into �� ������ ������ ��. To show a filter in our paradig-
matic example consider the following �������� filter

���� ����� !�������"#$%�%�

���� %����� !������ �&� 	'���'�'�'���(���)�����

��� �������� �������

	 !������
 �� !������

� !���*���
 �� !������ �&� '�'�

� !�&�����
 �� !������ �&� '���'�

�
 ��
 ���

which transforms title elements to their French translation, author and editor elements
into “auteur” elements, and leaves other elements unchanged. This filter can then be
applied to the content of a book element to obtain new elements which will have type
!+��, ���� -���.������� %������ "��/��.

More generally, filters provide a unique mechanism to implement several primitives.
For instance, 0��/* e 1��* p1��e1 � . . . � pn��en is just syntactic sugar for the appli-
cation �������p1��e1 � . . . � pn��en���e��, while a filter such as ��������p1��e1

� . . . � pn��en����e� corresponds to the �������0 iterator of CDuce we hinted at
in Section 2.5. Filters can also encode the
�������0 iterator of Section 2.5 (this is a
little clumsier, since it requires the use of recursive filters). The typing of XDuce filters
is less precise than the one of map, transform and xtransform, but in exchange filters
can do more as they can process several elements at a time while map, transform and
xtransform can just process a single element per iteration (see [36] for details).

We already explained that the reason why we need to give the programmer
the possibility to define iterators is that built-in iterators cannot cover all possi-
ble cases and that iterations implemented via functions would not be typed pre-
cisely enough. To see why consider the filter �������� we defined before, and no-
tice that the type-checker must be able to deduce that when this filter is applied
to a sequence of type ������ 	%��*����2&������ "��/�3�, then the result has type
������ %������ "��/�3�, while when the same filter is applied to a sequence of type
�%��*��� 2&����� the type-checker must deduce a result type �%�������. This kind of
polymorphism goes beyond the possibilities of parametric polymorphism of, say, ML
or System F, which can be applied only to homogeneous lists. Here instead the result
type is obtained by performing an abstract execution of the iterator on the type of the in-
put. In practice, what the type-checker does is to execute the iterator on the DTD of the
input in order to precisely map the transformation of each element of the input tree in
the resulting output tree. This justifies the use of a specific syntax for defining iterators,
since this sub-language instructs the type-checker to perform this abstract execution,
makes it possible, and ensures its termination.

9 We use for filters a syntax slightly different from the one of XDuce.

Patterns and Types for Querying XML Documents 21

The expressive power of Hosoya’s filters is limited, as they rely on regular expres-
sions. The kind of processing that these filters permits is, roughly, that of the map oper-
ator in functional languages. But, for instance, they are not able to express the function
that reverses a list. Also, type inference is less precise than that of map, transform,
and xtransform, and it is further penalised in the presence of recursion. To obviate all
these problems Kim Nguyễn has proposed a more radical approach [50]. He proceeds
along the ideas of Haruo Hosoya and takes as basic building blocks the pattern match-
ing branches, but instead of building his filters by defining regular expressions on these
building blocks, Nguyễn’s filters are obtained by applying the grammar of Definition 1
to them. His filters are then regular trees generated by the following grammar:

f ::= e | p → f | (f , f) | f� f | f ; f

where e ranges over expressions and p over patterns. Their semantics is quite natural.
When a filter formed by just an expression is applied, then the expression is executed.
If the filter p → f is applied to e, then the filter f applied to e is executed in the envi-
ronment obtained by matching p against the result of e (failure of this matching makes
the whole filter fail); if (f1, f2) is applied to a pair, then each fi is applied to the cor-
responding element of the pair and the pair of the results is returned; the alternation
applies the first filter to the argument and if this fails it applies the second one; finally,
the sequencing applies the second filter to the result of the application of the first filter to
the argument. Note that with respect to the grammar in Definition 1, sequencing plays
the role of the intersection. Furthermore, as in Definition 1 there cannot be any capture
variable under a negation, so there is no negation filter in Nguyễn’s filters. A limited
form of recursion ensures the termination of the type-checking and of the execution of
Nguyễn’s filters.

As simple as they are, Nguyễn’s filters have many of the sought properties: they are
expressive enough to encode list reversal, while the encodings of map, transform, and
xtransform have same precise typing as in �Duce. The algorithmic properties of their
type system are (at the moment of writing) still a matter of study.

3.7 Type and Pattern-Based Data Pruning for Memory Usage Optimisation

XML data projection (or pruning) is one of the main optimisation techniques recently
adopted in the context of main-memory XML query-engines [46, 10]. The underlying
idea is very simple but useful at the same time. In short, given a query q over a docu-
ment d, subtrees of d not necessary for evaluating q are pruned, thus obtaining a smaller
document d′. Then q is executed over d′, hence avoiding the need to allocate and pro-
cess nodes that will never be reached by navigational specifications in q. As has been
shown [46, 10], in general, XML navigation specifications expressed in queries tend to
be very selective. Hence, significant improvements due to pruning can be actually ob-
tained, either in terms of query execution time or in term of memory usage (it is worth
observing that for main-memory XML query engines, very large documents can not be
queried without pruning).

The work we have described in Section 3.4 already provides optimal data pruning
for pattern matching. Even if the actual implementation relies on automata, we have
seen that it essentially consists in computing a set of equivalent minimal patterns. The

22 G. Castagna

“minimality” is given by the presence of “��” wildcards that denote parts of the data that
need not to be checked. It is clear that the set of the parts denoted by “��” and not in the
scope of any capture variable constitutes an optimal set of data to be pruned.

Of course, extending the technique developed for the compilation of patterns to gen-
eral and more complex queries (i.e. not just consisting of simple pattern matching)
requires further work. But this does not seems a far-reached objective: once more set-
theoretic operations should came to rescue, as the process should essentially reduce to
the computation of the intersections of the various optimal patterns met in the query,
and its distribution with respect to the data stored in secondary memory, so that to indi-
viduate its optimal pruning set.

3.8 Type-Based Query Optimisation

Let us conclude this overview by a somewhat vague but nevertheless important remark.
The type system presented in this work is very precise.

Concerning data description the XML components of Xtatic, XDuce, and �Duce’s
type systems are already more expressive than DTDs and XML Schemas. This holds
true from a formal point of view (see [48] for a formal taxonomy) but, above all, in
practice, too.10 For the practical aspect let us take a real life example and consider
the Internet Movie Database [42] whose XML Schema cab be found elsewhere [8]:
thanks to singleton types and boolean combinators, �Duce types can express integrity
constraints such as the fact that the ���� attribute of ���� elements can only be either
�	�
��� or �� �������, and that only in the former case the ���� element can contain
a ���������� element, and only in the latter case it can contain a ������ element.

But the real boost with these new types is when typing queries and transformations,
since semantic types are far more precise than the type-systems of current languages for
XML. We have already seen in Section 3.6 the stringent requirements for typing itera-
tors: the type-checker must be able to compute the precise modifications performed on
each element the iterator meets. For instance the system presented here will deduce for
������������������������� ����! the type "������ �������#�� ����#!!$% while,
at best, the corresponding XPath expression will be typed by the XQuery type system
as "��������������� ����!$%, which is far less precise. A further example of preci-
sion of the type system is the typing of pattern variables which is exact, in the sense
that the type inferred by the type-checker for a pattern variable is exactly the set of val-
ues that may be assigned to that variable at run-time. The precision of the type system
is also witnessed by the practice, since in languages that use these semantic types and
patterns, downward casts are essentially confined to external data, while internal data
(that is, data generated by the program) have sufficiently precise types that no cast is
needed. Such precision gives a lot of information about the queries at hand and, as in
the case of the pruning presented in the previous section, it should and could be possible
to use this information for the optimisation of secondary memory queries. DTDs and
XML Schemas have already been used to optimise access to XML data in secondary
storage (in particular they were used to map XML into relations, e.g., [8, 53]), but for

10 To tell the truth, some fancier aspects of XML Schema, such as integrity of IDREFs are not
captured. But this goes beyond the possibility of any static type system.

Patterns and Types for Querying XML Documents 23

semantic types/patterns this is a research direction that, as far as we know, has not yet
been explored.

4 Conclusion

With this presentation of regular patterns and types for XML we hope to have convinced
the reader that they constitute primitives worthy of consideration. To that end we de-
scribed various problems that can be solved with the help of regular patterns and types.
Apart from the interest of each problem, what really seems important is that regular pat-
terns and types constitute a unique and general framework to understand and solve such
a disparate disparate problems. Despite that, we do not believe that regular patterns are
the solution: as we said repeatedly, we think one should aim at a tight integration, or
even a unification, of path and pattern extraction primitives. We have discussed a query
language, �QL, and hinted at an object-oriented language, Xtatic, in which both prim-
itives coexist (even if one is defined in terms of the other), but the solutions proposed
for these languages are far from being satisfactory since the two primitives are essen-
tially disconnected. We aim at a deeper integration of the approaches in which, say, we
could build paths over patterns (so as to capture intermediate results) or define regular
expression patterns on paths (so as to perform pattern extractions at different depths) . . .
or maybe both. In this perspective the work on the composition of monadic queries [26]
that we cited in the related work section of the Introduction, looks quite promising. The
idea is simple and elegant and consists in concatenating monadic queries so that the set
of the nodes resulting from one query are the input nodes of the query that follows it.
Actually, the concatenation (noted by a dot and denoting composition) is not performed
among single queries but among unions and intersections of queries. This yields the
following composition formalism φ ::= q | q.φ | φ ∧ φ | φ ∨ φ (where q ranges
over particular monadic queries, called parametrised queries) that closely resembles to
a mix of paths and pattern primitives.

All these considerations concern the extraction primitives, but the need of mixing
horizontal and vertical navigation concerns iterators, as well. For instance, Hosoya’s
filters are inherently characterised by an horizontal behaviour: it is easier to use a
path to apply a filter at a given depth, than to program the latter recursively so that
it can autonomously perform the vertical navigation. Such a problem may be less felt
in Nguyễn’s filters, but we are afraid that using them to program a mix of vertical and
horizontal iterations would be out of reach of the average programmer.

As a matter of fact, this last consideration probably holds for patterns already: it
is true that it is easier to write a path than a pattern, and even if the use of the more
sophisticated features of XPath is not for the fainthearted programmer, nevertheless
simple queries are simpler in XPath. So if we want the use of regular expression patterns
to spread outside the community of functional programmers, it will be necessary to
find alternative ways to program them, for instance by developing QBE-style query
interfaces. This will be even more urgent for a formalism integrating both pattern and
path navigational primitives. It looks as a promising topic for future work.

Acknowledgements. I want to warmly thank Gavin Bierman for several suggestions
and for proof-reading the paper. Véronique Benzaken, Peter Buneman, Dario Colazzo,

24 G. Castagna

Cédric Miachon, Ioana Manolescu, and Matthieu Objois provided useful feedback on
this work. Part of it was prepared while I was visiting Microsoft Research in Cambridge
and it greatly benefited of the interesting discussions and stimulating environment that
I enjoyed during my stay. Thus let me warmly thank Microsoft Research for its support
and the MSR Cambridge Lab for its “unmatchable” hospitality. This work was partially
supported by the RNTL project "GraphDuce" and by the ACI project "Transformation
Languages for XML: Logics and Applications".

References

1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for
semistructured data. International Journal on Digital Libraries, 1(1):68–88, 1997.

2. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4), September 1993.

3. Bell-labs. Galax. ������������		
	���������	��� .
4. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose lan-

guage. In ICFP ’03, 8th ACM International Conference on Functional Programming, pages
51–63, Uppsala, Sweden, 2003. ACM Press.

5. V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for XML query
processing. In PADL 05, 7th International Symposium on Practical Aspects of Declarative
Languages, number 3350 in LNCS, pages 235–252. Springer, January 2005.

6. Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data access in Cω. In
Proc. of ECOOP ’2005, European Conference on Object-Oriented Programming, volume
3586 of Lecture Notes in Computer Science. Springer, 2005.

7. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon, and M. Ste-
fanescu. XQuery 1.0: An XML Query Language. W3C Working Draft, ��������������
��������������, May 2003.

8. P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Simeon. LegoDB: customizing
relational storage for XML documents. In VLDB ’02, 28th Int. Conference on Very Large
Databases, pages 1091–1094, 2002.

9. P. Bothner. Qexo - the GNU Kawa implementation of XQuery. ���������������

�������������������

10. Stéphane Bressan, Zoé Lacroix, Ying Guang Li, and Anna Maddalena. Prune the XML
before you search it: XML transformations for query optimization. DataX Workshop, 2004.

11. Niklas Broberg, Andreas Farre, and Josef Svenningsson. Regular expression patterns. In
ICFP ’04: 9th ACM SIGPLAN International Conference on Functional programming, pages
67–78, New York, NY, USA, 2004. ACM Press.

12. A. Brüggemann-Klein and D. Wood. Caterpillars, context, tree automata and tree pattern
matching. In Proceedings of DLT ’99: Foundations, Applications and Perspectives. World
Scientific Publishing Co., 2000.

13. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL ’05, 32nd
ACM Symposium on Principles of Programming Languages. ACM Press, 2005.

14. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In 29th Inter-
national Colloquium on Automata, Languages, and Programming, volume 2380 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

15. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In 6th In-
ternational Conference on Foundations of Software Science and Computational Structures,
volume 2620 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

Patterns and Types for Querying XML Documents 25

16. L. Cardelli and G. Ghelli. Tql: A query language for semistructured data based on the ambi-
ent logic. Mathematical Structures in Computer Science, 14:285–327, 2004.

17. Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for querying graphs.
In ICALP ’02, 29th International Colloquium on Automata, Languages and Programming,
pages 597–610. Springer-Verlag, 2002.

18. G. Castagna, D. Colazzo, and A. Frisch. Error mining for regular expression patterns. In
ICTCS 2005, Italian Conference on Theoretical Computer Science, number 3701 in Lecture
Notes in Computer Science. Springer, 2005.

19. G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proceedings
of PPDP ’05, the 7th ACM SIGPLAN International Symposium on Principles and Practice
of Declarative Programming, ACM Press (full version) and ICALP ’05, 32nd International
Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
n. 3580, Springer (summary), Lisboa, Portugal, 2005. Joint ICALP-PPDP keynote talk.

20. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML Query Use
Cases. Technical Report 20030822, World Wide Web Consortium, 2003.

21. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation, �������
��������	
���������, November 1999.

22. James Clark. XSL Transformations (XSLT). W3C Recommendation, �����������

����	
��������, November 1999.
23. Sophie Cluet. Designing OQL: allowing objects to be queried. Inf. Syst., 23(5):279–305,

1998.
24. G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. The query lan-

guage TQL. In Proc. of the 5th WebDB, Madison, Wisconsin, USA, pages 19–24, 2002.
25. A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. “XML-QL: A Query

Language for XML”. In WWW The Query Language Workshop (QL), 1998.
26. E. Filiot. Composition de requêtes monadiques dans les arbres. Master’s thesis, Master

Recherche de l’Université des Sciences et Technologies de Lille, 2005.
27. X. Franc. Qizx/open. ������������	������������� .
28. A. Frisch. Regular tree language recognition with static information. In Proc. IFIP Confer-

ence on Theoretical Computer Science (TCS), Toulouse, 2004. Kluwer.
29. A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In LICS ’02, 17th Annual

IEEE Symposium on Logic in Computer Science, pages 137–146. IEEE Computer Society
Press, 2002.

30. Alain Frisch. Théorie, conception et réalisation d’un langage de programmation fonctionnel
adapté à XML. PhD thesis, Université Paris 7, December 2004.

31. Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In ECOOP ’03, European
Conference on Object-Oriented Programming, 2003.

32. Vladimir Gapeyev and Benjamin C. Pierce. Paths into patterns. Technical Report MS-CIS-
04-25, University of Pennsylvania, October 2004.

33. E. Goris and M. Marx. Looping caterpillars. In LICS ’05, 20th Annual IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 2005.

34. H. Hosoya. Regular Expression Types for XML. PhD thesis, The University of Tokyo, 2001.
35. H. Hosoya. Regular expressions pattern matching: a simpler design. Unpublished

manuscript, February 2003.
36. H. Hosoya. Regular expression filters for XML. In Programming Languages Technologies

for XML (PLAN-X), 2004.
37. H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML. In POPL ’05,

32nd ACM Symposium on Principles of Programming Languages. ACM Press, 2005.
38. H. Hosoya and M. Murata. Validation and boolean operations for attribute-element con-

straints. In Programming Language Technologies for XML (PLAN-X), 2002.

26 G. Castagna

39. H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM Transactions
on Internet Technology, 3(2):117–148, 2003.

40. H. Hosoya and B.C. Pierce. XDuce: A typed XML processing language. In WebDB2000,
3rd International Workshop on the Web and Databases, 2000.

41. H. Hosoya and B.C. Pierce. Regular expression pattern matching for XML. In POPL ’01,
25th ACM Symposium on Principles of Programming Languages, 2001.

42. Internet Movie Database. �����������	
��.
43. Michael Y. Levin and Benjamin C. Pierce. Type-based optimization for regular patterns. In

DBPL ’05, Database Programming Languages, August 2005.
44. L. Libkin. Logics for unranked trees: an overview. In ICALP ’05, 32nd International Collo-

quium on Automata, Languages and Programming, number 3580 in LNCS. Springer, 2005.
45. K. Zhuo Ming Lu and M. Sulzmann. An implementation of subtyping among regular ex-

pression types. In Proc. of APLAS’04, volume 3302 of LNCS, pages 57–73. Springer, 2004.
46. Amélie Marian and Jérôme Siméon. Projecting XML elements. In 29th Int. Conference on

Very Large Databases (VLDB ’03), pages 213–224, 2003.
47. Erik Meijer and Mark Shields. XMλ: A functional language for constructing and manipulat-

ing XML documents. (Draft), 1999.
48. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-

guage theory. In Extreme Markup Languages, 2001.
49. F. Neven and T. Schwentick. Expressive and efficient pattern languages for tree-structured

data. In PODS ’00: 19th ACM Symposium on Principles of Database Dystems, pages 145–
156. ACM Press, 2000.

50. Kim Nguyễn. Une algèbre de filtrage pour le langage �Duce. DEA Programmation, Uni-
versité Paris 11, September 2004. Available at ����������	��	�����������	��� .

51. Yannis Papakonstantinou and Victor Vianu. Dtd inference for views of xml data. In PODS
’00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 35–46, New York, NY, USA, 2000. ACM Press.

52. Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu, and
Ralph Busse. XMark: A benchmark for XML data management. In Proceedings of the Int’l.
Conference on Very Large Database Management (VLDB), pages 974–985, 2002.

53. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt, and J. Naughton. Relational
databases for querying XML documents: Limitations and opportunities. In VLDB ’99, 25th
Int. Conference on Very Large Databases, pages 302–314, 1999.

54. M. Odersky et. al. An overview of the Scala programming language. Technical Re-
port IC/2004/64, École Polytechnique Fédérale de Lausanne, 2004. Latest version at
��������
��	���	
�.

55. P. Trinder and P. Wadler. Improving list comprehension database queries. In Proc. of TEN-
CON ’89, Bombay, India (November 1989), 186-192., 1989.

56. P. Wadler. List comprehensions. In The Implementation of Functional Program-
ming Languages by S. Peyton Jones (chapter 7). Prentice Hall, 1987. Available on-line at
�������������
�	��
������	
������������������������������������� .

Dual Syntax for XML Languages

Claus Brabrand, Anders Møller�, and Michael I. Schwartzbach

BRICS��, University of Aarhus, Denmark
{brabrand, amoeller, mis}@brics.dk

Abstract. XML is successful as a machine processable data interchange
format, but it is often too verbose for human use. For this reason, many
XML languages permit an alternative more legible non-XML syntax.
XSLT stylesheets are often used to convert from the XML syntax to the
alternative syntax; however, such transformations are not reversible since
no general tool exists to automatically parse the alternative syntax back
into XML.

We present XSugar, which makes it possible to manage dual syntax
for XML languages. An XSugar specification is built around a context-
free grammar that unifies the two syntaxes of a language. Given such
a specification, the XSugar tool can translate from alternative syntax
to XML and vice versa. Moreover, the tool statically checks that the
transformations are reversible and that all XML documents generated
from the alternative syntax are valid according to a given XML schema.

1 Introduction

XML has proven successful as a machine processable data interchange format.
There exist numerous APIs for processing XML data in general purpose pro-
gramming languages and also many specialized XML processing languages, such
as XSLT and XQuery. Realizing the benefits of using XML, an increasing number
of new languages, ranging from loosely structured document-oriented languages
to purely data-oriented ones, use an XML syntax. The XML format, however,
is verbose and not always ideal for human use. Yet, in many of these new lan-
guages, documents are intended to be read and written directly by humans. For
this reason, many languages have two syntaxes—an XML syntax intended for
machine processing and interchange, and an alternative non-XML syntax for
human use. This necessitates automated translation in one or both directions.

As a representative example, consider the language RELAX NG [8]. It is a
schema language for XML, but we are not interested in the semantics of RE-
LAX NG documents here, only in their syntax. The original language definition
specifies an XML syntax, and a later separate specification provides a compact
non-XML syntax [7]. A main goal of providing the non-XML syntax is to max-
imize readability. As an example (taken from the RELAX NG documentation),
� Supported by the Carlsberg Foundation contract number 04-0080.

�� Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 27–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 C. Brabrand, A. Møller, and M.I. Schwartzbach

consider the following tiny RELAX NG document written using the XML syn-
tax:

<element name="addressBook"
xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="card">

<element name="name">
<text/>

</element>
<element name="email">
<text/>

</element>
</element>

</zeroOrMore>
</element>

In the non-XML syntax, this document looks as follows:

element addressBook {
element card {
element name { text },
element email { text }

}*
}

The former can be manipulated by standard XML tools, whereas the latter is
more friendly towards human beings. The XML syntax may be formalized by an
XML schema language, such as DTD (or RELAX NG itself). The main structure
of the non-XML syntax may be formalized using, for example, EBNF.

With the two syntaxes in place, we need to be able to transform documents
between them. For RELAX NG, there are numerous implementations of such
converters. Converting from the XML syntax to the non-XML syntax, a common
approach is to use an XSLT stylesheet. In the other direction, there are no
obvious choices, so typically, one resorts to programming the conversion in a
general purpose programming language, for example Java or Python.

This raises a number of problems: The translations in the two directions are
made as two entirely different programs, often even using two different program-
ming languages. This requires lots of tedious programming. Also, it makes main-
tenance difficult in case the syntax evolves. Since the programming languages
being used are typically Turing complete (even XSLT is so), it is generally diffi-
cult to reason about their correctness. Specifically,

– there is no guarantee that the translations are reversible in the sense that
translating a document in one direction and then back again will result in
the original document (modulo whitespace or similar irrelevant details); and

– there is no guarantee that the translation into the XML syntax always pro-
duces documents that are valid according to a schema description.

Dual Syntax for XML Languages 29

These problems are not specific to the RELAX NG example. Similar situa-
tions occur for many other languages, however, RELAX NG is among the more
complicated ones.

To attack these problems, we first make an interesting observation: Consider-
ing the grammars for the two syntaxes (one given by an XML schema, the other
by an EBNF grammar), they commonly have a similar overall structure. The
variations mainly occur at the level of individual grammar productions where
the two syntaxes may vary in the order of production constituents, choices of lit-
erals, and whitespace and other ignorable parts. Notably, there are typically no
drastic reorganizations when converting one way or the other. In the remainder
of this paper, we exploit this in the design of XSugar, a system for managing
dual syntax of XML languages.

1.1 Contributions

Our contributions are the following:

– We describe the XSugar language and show how it can be used for concisely
specifying two-way translations between XML and non-XML syntax.

– We identify conditions for reversibility and outline an approach for conser-
vatively checking these conditions.

– Based on previous results on static analysis of XML transformations [5, 6, 12],
we show that it is possible to statically guarantee validity of output for the
translation to XML.

– Using a prototype implementation, we evaluate the approach on a number of
real-world examples: RELAX NG, XFlat [17], BibTeXML [11], and XSugar
itself.

We imagine various possible usage scenarios of XSugar: Non-XML languages
can easily be given an alternative XML syntax for enhancing data interchange;
XML-based languages may be given a more human readable non-XML syntax;
and, as in the case of RELAX NG, for languages where both syntaxes already
exist, XSugar may be used to concisely specify the relation between the two.

1.2 Related Work

Several other projects and technologies are aimed at providing alternative syntax
for XML languages. While they have overlapping goals with XSugar, none of
them simultaneously consider general two-way translations and static guarantees
of validity.

XSLT is often used for translating XML documents into other representations;
however, stylesheets are not reversible, so these representations cannot in general
be parsed back into XML.

The Presenting XML project [16] provides a domain-specific language for pro-
gramming transformations between XML and flat files. However, translations are
not reversible and, thus, two separate specifications must be maintained for a

30 C. Brabrand, A. Møller, and M.I. Schwartzbach

given dual syntax. The XFlat project [17] has largely the same approach as
XSugar, as it allows translations between flat file formats and XML, specified
by a single XFlat schema. However, it is restricted to files consisting of se-
quences of records, rather than general context-free syntax. Section 5.1 contains
a more detailed comparison. The PADS project [10] translates data into other
representations, including XML. It is focused on streams of data items, which
are described using a sophisticated calculus that include dependent types and
computations—thus going beyond context-free parsing. PADS also differs from
XSugar in that its translations are not automatically reversible. The paper [15]
presents a framework for programming reversible translations between two XML
languages, but does not consider the case of parsing or generating alternative
syntax.

Several projects, such as [9, 2, 13], suggest an alternative syntax for XML itself,
independently of any particular XML language. Such work is only superficially
similar to our work, since this alternative syntax is fixed while our is different for
each application domain. Program inversion [1] attacks reversibility in a general
context, but does not provide a solution to our particular problem.

2 The XSugar Language

We describe the XSugar language by a small example and then explain how to
translate between XML- and non-XML syntax based on an XSugar specification.

2.1 Example: Student Information

Assume that we have an XML representation of student information as described
by the following DTD:

<!ELEMENT students (student*)>
<!ELEMENT student (name,email)>
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>

All elements belong to the namespace http://studentsRus.org/. Additionally,
the values of name, email, and sid are required to satisfy some extra syntactic
requirements, which we describe later. A valid document is the following:

<students xmlns="http://studentsRus.org/">
<student sid="19701234">
<name>John Doe</name>
<email>john_doe@notmail.org</email>

</student>
<student sid="19785678">
<name>Jane Dow</name>
<email>dow@bmail.org</email>

</student>
</students>

Dual Syntax for XML Languages 31

There is also an alternative non-XML syntax for this document:

John Doe (john_doe@notmail.org) 19701234
Jane Dow (dow@bmail.org) 19785678

That is, each student corresponds to one line. The name is written first, then
the email address in parentheses, and finally the ID. Notice that the ordering of
the constituents differs from the XML version.

With XSugar, we can concisely specify the connection between the two
syntaxes:

xmlns = "http://studentsRus.org/" ;

Alpha = [a-zA-Z_] ;
Name = <Alpha>+(" "<Alpha>+)* ;
Email = <Alpha>+"@"<Alpha>+("."<Alpha>+)+ ;
Id = [0-9]{8} ;
NL = "\r"*"\n" ;

file : [persons p] = <students>[persons p]</students> ;

persons : [person p] [NL] [persons more] = _ [person p] _ [persons more];
: = _ ;

person : [Name name] _ ([Email email]) _ [Id id] =
<student sid=[Id id]> _

<name>[Name name]</name> _
<email>[Email email]</email> _

</student> ;

The first line declares the namespace associated with the empty prefix. The next
five lines define some regular expressions, which are used for describing syntactic
tokens. For example, Name matches one or more blocks of Alpha characters,
separated by space characters. The remaining lines define grammar productions,
each having the form

nonterminal : α = β ;

(If the nonterminal is omitted, the one from the preceding production is as-
sumed.) The α part is generally a sequence of items of the form [T name]
or [T], where T is either a nonterminal or a regular expression name, and
of literals such as (and) above. Additionally, the special character _ is used
for describing whitespace, which we return to later. The β part consists of an
XML template, which is a fragment of well-formed XML that may contain items
in place of attribute values (as sid=[Id id] in the example) and in element
content (as [Email email], for example). Also the nonterminal or regular ex-
pression name associated with a given item name must be the same in α and β.
We use the convention that regular expression names start with a capital letter,
and nonterminals start with a lower case letter. Special characters (such as =
and ;) can be escaped with a backslash notation or Unicode escapes as in Java.
XML character references can also be used in XML templates.

32 C. Brabrand, A. Møller, and M.I. Schwartzbach

Notice that if we ignore the β part in every production and the name part
in every item, an XSugar specification S is essentially an ordinary BNF-like
context-free grammar Sα (where the first occurring nonterminal is the start
nonterminal). This grammar specifies the non-XML syntax of the language.
Conversely, we obtain a grammar Sβ for the XML syntax by ignoring the α
parts. Notice that literals and unnamed items correspond to information that
has no counterpart in the opposite grammar. For both grammars, we require all
nonterminals to be productive. For later use, we assume that the productions in
S are implicitly indexed in order of occurrence.

As an extension of the notion of grammars presented above, we also allow
unordered productions: In a production where the delimiter :& appears in place
of :, the α part is unordered, meaning that it matches any permutation of the
constituents. We show a use of unordered productions in Section 5.4.

2.2 Transforming Via Unifying Syntax Trees

An XSugar specification S additionally defines a translation from the non-XML
syntax to the XML syntax and vice versa. This translation goes via a unifying
syntax tree (UST), which abstracts away the ordering of the constituents of
each grammar production and also ignores parts corresponding to literals and
unnamed items. More precisely, a UST is an unordered labeled tree of nodes
where each node is either a terminal node or a nonterminal node. A terminal
node is a leaf that is labeled with a string. A nonterminal node is labeled with
a nonterminal, each edge to a child node is labeled with an item name, and
every node has at most one outgoing edge with a given item name. Moreover,
every nonterminal node is labeled with an index, which we will need later. As an
example, the UST corresponding to the example student information document
is shown in Figure 1.

Assume that we want to transform a text x from the non-XML syntax to the
XML syntax. This is done in two steps: (1) we first parse the text x according
to Sα, yielding a UST u; (2) we then unparse u relative to Sβ yielding the
resulting XML document. The other direction—translating from XML syntax
to non-XML syntax—is symmetric. The processes of parsing and unparsing with
USTs are described in the following.

persons
p

John Doe

john_doe@notmail.org

19701234

person

p

persons

personsperson

Jane Dow

dow@bmail.org

19785678
name

email
id

more
email

more

file

 4

 4

 2

 1

2

 3

name id p

Fig. 1. UST for the student information document

Dual Syntax for XML Languages 33

Parsing. Given a text x and a grammar Si (where i is either α or β, depend-
ing on which direction we are translating), we construct the UST u as follows.
First, we run an ordinary context-free-grammar parser on x and Si, yielding
an ordinary parse tree t. (If Si is ambiguous, t is chosen arbitrarily among the
possibilities; we discuss ambiguity further in Section 3.) From this parse tree, we
construct the UST u as follows:

– Every parse tree node corresponding to a named regular expression item in
Si becomes a terminal node labeled with the corresponding string.

– Every parse tree node corresponding to a named nonterminal item in Si

becomes a nonterminal node. Its label is the nonterminal, and its index is
the index of the associated grammar production of the parse tree node. For
each named item in the production, a child edge with that name is made to
the UST node of the corresponding child node in the parse tree.

Note that all parse tree nodes corresponding to literals or unnamed items are
ignored in the construction.

The whitespace marker _ is implicitly defined as an abbreviation of the un-
named regular expression item [OPT_WHITESPACE]where OPT_WHITESPACE is the
regular expression [\t\r\n]* (that is, strings of whitespace characters). Simi-
larly, __ refers to WHITESPACE, which represents nonempty strings of whitespace.

In case x is an XML document and i = β, we initially normalize both x
and Sβ in a process that resembles XML canonicalization [3]: (1) whitespace
inside tags (but outside attribute values) is reduced to a minimum; (2) the
attributes in each start tag are sorted lexicographically and attribute values are
enclosed by double quotes; (3) the short form of empty elements is expanded (for
instance, <p/> becomes <p></p>); (4) character encoding is set to UTF-8; (5)
character and entity references are expanded where possible; (6) XML comments,
XML declarations, and DOCTYPEs are removed; and (7) in every start tag,
all namespace declarations that are used in the tag are inserted explicitly, and
prefixes are renamed to coincide with those chosen in S.

Unparsing. Given a UST u and an XSugar specification S where u has been
generated from either Sα or Sβ , we construct an ordinary parse tree t as a
concretization of u relative to Si as follows, starting at the root of u:

– A terminal node in u becomes a parse tree leaf node labeled with the same
string.

– A nonterminal node with index k becomes a parse tree node labeled with
the same nonterminal. For each component in the production with index
k in Si in order, a corresponding subtree is constructed depending on the
component kind:

– for a named item, the subtree is constructed recursively from the child
UST node with that name;

– for an unnamed regular expression item, the subtree is a leaf node labeled
with an arbitrary string matching the regular expression (for example, a
shortest one);

34 C. Brabrand, A. Møller, and M.I. Schwartzbach

UST

parsing unparsing

parsing

concretization

abstractionconcretization

abstraction

parse tree parse tree XMLtext

unparsing

Fig. 2. The transformation process

– for an unnamed nonterminal item, the subtree is chosen as an arbitrary
parse tree derivable from the corresponding nonterminal in Si; and

– for a literal, the subtree is a leaf node labeled with the literal string.

Notice that unnamed items are handled by picking arbitrary representatives.
This makes sense since such items describe information that only occurs in one
of the two syntaxes.

Once we have the parse tree t, the resulting text x is simply the concatenation
of the text in the leaves. One technical issue remains: We escape and unescape
special XML characters to ensure that, for example, the character < in non-XML
corresponds to < in XML.

Figure 2 shows the complete transformation process with parsing, abstraction,
concretization, and unparsing.

3 Reversibility

Having two syntaxes for a document poses a problem in that one would like to
maintain a document in only one of the two syntaxes. However, since the two
syntaxes are to represent the same logical information, the ideal solution would
be to be able to move freely between them without loss of information. This
imposes some static demands on XSugar specifications.

In order to achieve this goal, a specification needs to be reversible meaning
that a roundtrip to the other syntactic alternative and back should yield the
exact same document, modulo XML normalization. In practice, however, this
is too strong a property to work with due to ignorable information, such as
whitespace and comments, and unordered productions. For that reason, it is
convenient to work with a weaker reversibility property that takes such things
into account.

The notion of ignorable information is precisely what is captured by the un-
named items in an XSugar specification, which in this way explicitly annotates
certain information as ignorable. Such information is not to be recorded and
injected into the other syntactic alternative; as explained above the parser dis-
cards such information and the unparser in turn invents representatives. Simi-
larly, when unparsing an unordered production, the order is chosen as the one
provided in the XSugar specification.

Since the transformations are conducted in the same way for both syntaxes,
we only need to be able to check that (1) parsing/unparsing to and from ordinary
parse trees is bijective modulo ignorable information and unordered productions

Dual Syntax for XML Languages 35

and (2) abstraction/concretization to and from USTs is bijective modulo ignor-
able information.

The parsing/unparsing check is equivalent to deciding whether a context-free
grammar is ambiguous modulo ignorable constituents, which is of course unde-
cidable. However, we deal with this issue by relying on a static analysis based
on regular approximations of context-free grammars [4]. The analysis conserva-
tively approximates the decision problem in that if it says that a grammar is
unambiguous then this is indeed the case, but for certain grammars, the analy-
sis will be unable to give a definitive answer. This is reminiscent of the LR(k)
and LALR(k) ambiguity checks in Yacc/Bison, but with built-in support for
ignorable constituents and unordered productions. Unambiguity is, aside from
reversibility issues, a desirable property for a grammar, so that there can be no
misunderstandings as to how a string is interpreted by a parser.

As for the second check, recall that all UST tree nodes are annotated with
their production indices and all edges to subtrees are labeled with item names.
This means that we simply have to check that all named items are used exactly
once on the other side, so that no non-ignorable information is ever thrown away
by the abstraction.

4 Static Validation

Consider the typical situation where an XML language, described by some
schema formalism, has been given an alternative syntax. An obvious valida-
tion check is that the translations of alternative documents will always result in
valid XML documents.

XSugar performs a static analysis that conservatively approximates this check.
When the analysis reports success, it is guaranteed that syntactically correct
input always results in valid output.

The dual validation check only makes sense if the alternative syntax is already
described by a different context-free grammar. As shown in Section 5.2, this is
the case for RELAX NG, where the original grammar must be rewritten to
allow the XSugar translation. However, the inclusion test between context-free
grammars is of course undecidable, and we are not aware of useful approximation
algorithms.

We may also consider coverage checks, which for the XML to non-XML direc-
tion means that every XML document described by the external schema can be
parsed by the XSugar grammar. This is an interesting problem that at present
is left for future work. The dual coverage check is just the opposite inclusion
check between the two context-free grammars. Note that it will often be the
case that the alternative syntax is simply defined by the XSugar specification.
In that situation, both the non-XML to XML coverage checks and the XML to
non-XML validation checks become trivial.

Our static analysis is based on previous results [5, 6, 12], where the concept of
summary graph is used to model sets of XML documents. We have an algorithm
that is able statically to check that every document described by a summary

36 C. Brabrand, A. Møller, and M.I. Schwartzbach

[][]

<students>
 []
</sudents>

<student sid=[]>
 <name>[]</name>
 <email>[]</email>
</student>

[0−9]{8}

<Alpha>+(" "<Alpha>+)*

<Alpha>+"@"<Alpha>+("."<Alpha>+)+

Fig. 3. Summary graph for the student information example

graph is valid according to a DSD2 schema [14]. Through embeddings, this tech-
nique also works for DTD and XML Schema.

From an XSugar specification, it is simple to extract a summary graph that
describes all XML documents that can be generated by the β productions: Each
right-hand side becomes a summary graph node, items become gaps, and the
edges reflect the possible derivations of nonterminal and terminal items. For the
student information example, the resulting summary graph looks as shown in
Figure 3. The static validation is then performed by checking this summary graph
against the given XML schema [6]. This is further exemplified in Section 5.3.

5 Evaluation

We have implemented a fully functional prototype of the XSugar tool, which
is available for download from http://www.brics.dk/xsugar/. The underlying
parser is a variation of Earley’s algorithm that builds a UST directly without
the intermediate ordinary parse tree, has explicit support for regular expres-
sion items, and allows the unordered productions explained in Section 2.1. The
tool also performs the static validation described in Section 4, by means of the
summary graph validator component from the JWIG project [6].

In the following, we present a range of examples showing how XSugar may
be used for concrete XML languages. Each example highlights certain features
of the XSugar tool. The complete source of the these XSugar specifications are
available at the URL mentioned above, along with examples of input and output
documents.

5.1 XFlat

The XFlat system [17] allows translations between flat file formats and XML,
specified by a single XFlat schema. As an example, the translation between these
two formats

123456789,"Doe, John",100000.00
444556666,"Average, Joe",53000.00

Dual Syntax for XML Languages 37

<employees>
<employee>
<ssn>123456789</ssn><name>Doe, John</name><salary>100000.00</salary>
</employee>

<employee>
<ssn>444556666</ssn><name>Average, Joe</name><salary>53000.00</salary>

</employee>
</employees>

is specified by the following XFlat schema:

<XFlat Name="employees_schema" Description="Schema for CSV flat file">
<SequenceDef Name="employees" Description="employees flat file">
<RecordDef Name="employee" FieldSep="," RecSep="\N" MaxOccur="0">

<FieldDef Name="ssn" NullAllowed="No"
MinFieldLength="9" MaxFieldLength="11"
DataType="Integer" MinValue="0" QuotedValue="Yes"/>

<FieldDef Name="name" NullAllowed="No" QuotedValue="Yes"/>
<FieldDef Name="salary" NullAllowed="No"

DataType="Float" MinValue="0" QuotedValue="Yes"/>
</RecordDef>

</SequenceDef>
</XFlat>

Each such schema may systematically be translated into an equivalent XSugar
description, which for the above example looks as follows:

SSN = [0-9]{9,11} ;
Name1 = [^",]* ;
Name2 = [^"]* ;
Salary = [0-9]+("."[0-9]+)? ;

file : [employees es] = <employees> _ [employees es] _ </employees> ;

employees : [employee e] [employees es] = [employee e] _ [employees es];
: = ;

employee : [SSN x] , [name y] , [Salary z] \n =
<employee> _

<ssn> _ [SSN x] _ </ssn> _
<name> _ [name y] _ </name> _
<salary> _ [Salary z] _ </salary> _

</employee> ;

name : [Name1 y] = [Name1 y] ;
: \" [Name2 y] \" = [Name2 y] ;

The XSugar version differs from the XFlat version in one respect. The XFlat
translation from XML to flat file format is ambiguous, since quotes around fields

38 C. Brabrand, A. Møller, and M.I. Schwartzbach

are optional, unless the field value contains a comma. In our version, quotes are
only added when they are necessary.

In other respects, the XSugar tool is more general. First, it may handle
context-free syntax. Second, even in the niche of flat files, it may perform more
general translations. For example, an XSugar translator could parse up the first
and last names and swap their order within the field, which is not possible using
XFlat.

5.2 Relax NG

As mentioned in the introduction, the RELAX NG schema language allows an
alternative syntax, which may be captured by an XSugar specification. The α-
grammar is relatively close to the one given in the RELAX NG specification, but
some massaging was required to accommodate the local translations that XSugar
supports. For example, the official EBNF for the compact syntax contains the
following productions:

pattern ::= ...
| pattern ("," pattern)+
| pattern ("&" pattern)+
| pattern ("|" pattern)+
| pattern "?"
| pattern "*"
| pattern "+"

In the translation, maximal non-empty sequences of patterns separated by ,
must be enclosed by <group> tags, those separated by & by <interleave> tags,
and those separated by | by <choice> tags. Furthermore, the three operators
must satisfy an operator precedence hierarchy. This translation is only possible
in XSugar, if the grammar is made more explicit in the following manner:

pattern ::= cpattern
cpattern ::= gpattern "|" crestpattern

| gpattern
crestpattern ::= gpattern "|" crestpattern

| gpattern
gpattern ::= ipattern "," grestpattern

| ipattern
grestpattern ::= ipattern "," grestpattern

| ipattern
ipattern ::= upattern "&" irestpattern

| upattern
irestpattern ::= upattern "&" irestpattern

| upattern
upattern ::= bpattern

| bpattern "?"
| bpattern "*"
| bpattern "+"

bpattern ::= ...

Dual Syntax for XML Languages 39

Here, the operator precedences are expressed in the usual manner by introducing
extra nonterminals, and the grammar is further unfolded to allow us to distin-
guish between the first and the rest of maximal sequences. These techniques
may in general be necessary, but this particular example requires by far the
most complex unfoldings that we have yet encountered.

On the RELAX NG site, the translation from compact to ordinary syntax is
defined by an XSLT stylesheet of 894 lines. The inverse translation is defined
by a Python script of 1,478 lines. In all, that implementation stacks up to 2,372
lines of code, while the XSugar description is only 123 lines (a factor of 1:19). On
top of this succinctness, the XSugar solution is easier to maintain and delivers
all the safety guarantees discussed in Sections 3 and 4.

5.3 BibTeXML

The BibTeXML project [11] provides an XML-syntax for the popular BibTeX
bibliography format. The XML format is quite complex and is described in 400
lines of DTD notation. This dual syntax is also a larger example of an XSugar
specification, totaling 750 lines.

The example is noticeable in two respects. First, it involves some fairly detailed
parsing and translation. For example, a list of authors may be separated by the
word and, and first and last names may be written either directly or in reverse
order separated by commas. In the translation to XML, each author must be
enclosed by a separate author element and the names must be normalized. This
is obtained by the following dual syntax:
PART = ([^",{}&<>~ \n\t]+) & ~([Aa][Nn][Dd]) ;
AND = [Aa][Nn][Dd] ;

authors : [name n] = <bibxml:author> _ [name n] _ </bibxml:author> ;
: [name n] [AND] [authors as] =

<bibxml:author> _ [name n] _ </bibxml:author> _ [authors as] ;

name : [parts ps] = [parts ps] ;
: [parts last] _ , _ [parts first] = [parts first] __ [parts last];

parts : [PART p] = [PART p] ;
: { [PART p] } = [PART p] ;
: "~" = ;
: \n = " " ;
: [PART p] [parts ps] = [PART p] [parts ps] ;
: _ = ;

Second, a BibTeX file allows an arbitrary mix of fields, whereas the XML ver-
sion requires (for some reason) a specific order. This is a situation where the
unordered productions are useful:

ARTICLE = [Aa][Rr][Tt][Ii][Cc][Ll][Ee] ;
ID = [^ \n\t]+ ;

article : @[ARTICLE] _ { _ [ID id] _ , _ [articlefields fs] _ } =

40 C. Brabrand, A. Møller, and M.I. Schwartzbach

<bibxml:entry id=[ID id]>
<bibxml:article> _

[articlefields fs] _
</bibxml:article> _

</bibxml:entry> ;

articlefields :& [author author] [title title] [journal journal]
[year year] [volume volume] ... =
[author author] _ [title title] _ [journal journal] _
[year year] _ [volume volume] _ ... _ ;

Note that only the non-XML production is unordered in this case.
In both these situations, the BibTeX format is more liberal than the Bib-

TeXML format. Thus, the translation from BibTeXML to BibTeX will automat-
ically choose a normalized representation.

Static validation of the generated XML documents is for this substantial ex-
ample performed in 6 seconds (on a standard PC). The analysis discovered 4
true errors in the definition of the BiBTeX translation (despite our best efforts
at defining it correctly), which were subsequently corrected. No false errors were
reported.

5.4 XSugar

The final example applies XSugar to itself, by providing an XML syntax inspired
by XSLT. Apart from the amusement of self-application, this example demon-
strates the use of another feature. The production for the dual syntax for literal
XML elements looks as follows:

element : "<" _ [qname q] _ [attributes as] _ ">"
_ [xml x] _

"</" _ [qname q] _ ">" =
<xsg:element name=[qname q]> _
[attributes as] _ [xml x] _

</xsg:element> ;

We extend the XSugar language by allowing the identifier q to appear twice in the
rule for the non-XML syntax. When translating from XML to non-XML syntax,
the corresponding string is copied to the two locations, and in the other direction
the parser checks that the two USTs generate the same output (and picks either
one of them). This ability to match subterms for equality during parsing of
course means that we go beyond context-free languages, while maintaining the
functionality and guarantees of the XSugar tool. Yet, it is straightforward to
incorporate this extension in the implementation.

6 Conclusion

We have presented the XSugar system, which allows specification of languages
with dual syntax—one of which is XML-based—and provides translations in

Dual Syntax for XML Languages 41

both directions. Moreover, we have presented techniques for statically checking
reversibility of an XSugar specification and validity of the output in the direction
that generates XML. Finally, we have conducted a number of experiments by
applying the system to various existing languages with dual syntax. Of course,
XSugar does not support all imaginable transformations; however, all dual syn-
taxes that we have encountered fit into our model. We conclude that XSugar
provides sufficient expressiveness and useful static guarantees, and at the same
time allows concise specifications making it a practically useful system.

References

1. Sergei Abramov and Robert Glück. Principles of inverse computation and the
universal resolving algorithm. In The essence of computation: complexity, analysis,
transformation, pages 269–295. Springer-Verlag, 2002.

2. Nitesh Ambastha and Tahir Hashmi. Xqueeze, 2005. http://xqueeze. source-
forge.net/.

3. John Boyer. Canonical XML Version 1.0, March 2001. W3C Recommendation.
http://www.w3.org/TR/xml-c14n.

4. Claus Brabrand and Anders Møller. Analyzing ambiguity of context-free gram-
mars, 2005. In preparation.

5. Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static validation of
dynamically generated HTML. In Proc. ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’01, pages 221–231,
June 2001.

6. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875, November 2003.

7. James Clark. RELAX NG compact syntax, November 2002. OASIS.
http://relaxng.org/compact.html.

8. James Clark and Makoto Murata. RELAX NG specification, December 2001.
OASIS. http://www.oasis-open.org/committees/relax-ng/.

9. Clear Methods, Inc. ConciseXML, 2005. http://www.concisexml.org/.
10. Kathleen Fisher et al. PADS: Processing Arbitrary Data Streams, 2005.

http://www.padsproj.org/.
11. Vidar Bronken Gundersen and Zeger W. Hendrikse. BibTeXML, 2005.

http://bibtexml.sourceforge.net/.
12. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis

of XML transformations in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

13. Sean McGrath. XML processing with Python. Prentice Hall, 2000.
14. Anders Møller. Document Structure Description 2.0, December 2002. BRICS,

Department of Computer Science, University of Aarhus, Notes Series NS-02-7.
Available from http://www.brics.dk/DSD/.

15. Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. Bidirectionalising HaXML,
2005.

16. Daniel Parker. Presenting XML, 2005. http://presentingxml.sourceforge.net/.
17. Unidex Inc. XFlat, 2005. http://www.unidex.com/xflat.htm.

Exploiting Schemas in Data Synchronization

J. Nathan Foster1, Michael B. Greenwald2, Christian Kirkegaard3,
Benjamin C. Pierce1, and Alan Schmitt4

1 University of Pennsylvania
{jnfoster, bcpierce}@cis.upenn.edu

2 Bell Labs, Lucent Technologies
greenwald@lucent.com

3 BRICS, University of Aarhus
ck@brics.dk

4 INRIA Rhône-Alpes
Alan.Schmitt@polytechnique.org

Abstract. Increased reliance on optimistic data replication has led to
burgeoning interest in tools and frameworks for synchronizing discon-
nected updates to replicated data. We have implemented a generic syn-
chronization framework, called Harmony, that can be used to build state-
based synchronizers for a wide variety of tree-structured data formats. A
novel feature of this framework is that the synchronization process—in
particular, the recognition of conflicts—is driven by the schema of the
structures being synchronized. We formalize Harmony’s synchronization
algorithm, state a simple and intuitive specification, and illustrate how it
can be used to synchronize trees representing a variety of specific forms
of application data, including sets, records, and tuples.

1 Introduction

Optimistic replication strategies are attractive in a growing range of settings
where weak consistency guarantees can be accepted in return for higher avail-
ability and the ability to update data while disconnected. These uncoordinated
updates must later be synchronized (or reconciled) by automatically combining
non-conflicting updates while detecting and reporting conflicting updates.

Our long-term aim is to develop a generic framework that can be used to build
high-quality synchronizers for a wide variety of application data formats with
minimal effort. As a step toward this goal, we have designed and built a pro-
totype synchronization framework called Harmony, focusing on the important
special cases of unordered and rigidly ordered data (including sets, relations,
tuples, records, feature trees, etc.), with only limited support for list-structured
data such as structured documents. An instance of Harmony that synchronizes
multiple calendar formats (Palm Datebook, Unix ical, and iCalendar) has been
deployed within our group; we are currently developing Harmony instances for
bookmark data (handling the formats used by several common browsers, includ-
ing Mozilla, Safari, and Internet Explorer), address books, application preference
files, drawings, and bibliographic databases.

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 42–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploiting Schemas in Data Synchronization 43

The Harmony system has two main components: (1) a domain-specific pro-
gramming language for writing lenses—bi-directional transformations on trees—
which we use to convert low-level (and possibly heterogeneous) concrete data for-
mats into a high-level synchronization schema, and (2) a generic synchronization
algorithm, whose behavior is controlled by the synchronization schema.

The synchronization schema actually guides Harmony’s behavior in two ways.
First, by choosing an appropriate synchronization schema (and the lenses that
transform concrete structures into this form and back), users of Harmony can
control the alignment of the information being synchronized: the same concrete
format might be transformed to different synchronization schemas (for exam-
ple, making different choices of keys) to yield quite different synchronization
semantics; this process is illustrated in detail in Section 6. Second, during syn-
chronization, the synchronization schema is used to identify conflicts—situations
where changes in one replica must not be propagated to the other because the
resulting combined structure would be ill-formed.

Our language for lenses has been described in detail elsewhere [7]; in the
present paper, our focus is on the synchronization algorithm and the way it uses
schema information. The intuition behind this algorithm is simple: we try to
propagate changes from each replica to the other, validate the resulting trees
according to the expected schema, and signal a conflict if validation fails. How-
ever, this process is actually somewhat subtle: there may be many changes to
propagate from each replica to the others, leading to many possible choices of
where to signal conflicts (i.e., which subset of the changes to propagate). To en-
sure progress, we want synchronization to propagate as many changes as possible
while respecting the schema; at the same time, to avoid surprising users, we need
the results of synchronization to be predictable; for example, small variations in
the inputs should not produce large variations in the set of changes that are
propagated. A natural way of combining these design constraints is to demand
that the results of synchronization be maximal, in the sense that, if there is any
well-formed way to propagate a given change from one replica to the other that
does not violate schema constraints, then that change must be propagated.

Our main technical contribution is a simple one-pass, recursive tree-walking al-
gorithm that does indeed yield results that are maximal in this sense for schemas
satisfying a locality constraint called path consistency (a semantic variant of the
consistent element declaration condition in W3C Schema).

After establishing some notation in Section 2, we explore the design space
further, beginning in Section 3 with some simple synchronization examples. Sec-
tion 4 focuses on difficulties that arise in a schema-aware algorithm. Section 5
presents the algorithm itself. Section 6 illustrates the behavior of the algorithm
using a simple address book schema. Related work is discussed in Section 7.

2 Data Model

Internally, Harmony manipulates structured data in an extremely simple form:
unordered, edge-labeled trees; richer external formats such as XML are encoded

44 J.N. Foster et al.

in terms of unordered trees. We chose this simple data model on pragmatic
grounds: the reduction in the overall complexity of the Harmony system far
outweighs the cost of manipulating ordered data in encoded form.

We write N for the set of character strings and T for the set of unordered,
edge-labeled trees whose labels are drawn from N and where labels of the im-
mediate children of nodes are pairwise distinct. We draw trees sideways: in text,
each pair of curly braces denotes a tree node, and each “X �→ ...” denotes a child
labeled X—e.g.,

{
Pat �→111-1111, Chris �→222-2222

}
. When an edge leads to an

empty tree, we omit the final childless node—e.g., “111-1111” above actually
stands for “{111-1111 �→{}}.”

A tree can be viewed as a partial function from names to trees; we write
t(n) for the immediate subtree of t labeled with the name n and dom(t) for its
domain—i.e. the set of the names of its children. The concatenation operator,
· , is only defined for trees t and t′ with disjoint domains; t · t′ is the tree
mapping n to t(n) for n ∈ dom(t), to t′(n) for n ∈ dom(t′). When n /∈ dom(t),
we define t(n) to be ⊥, the “missing tree.” By convention, we take dom(⊥) = ∅.
To represent conflicts during synchronization, we enrich the set of trees with a
special pseudo-tree X , pronounced “conflict.” We define dom(X) = {nX}, where
nX is a special name that does not occur in ordinary trees. We write T⊥ for
T ∪ {⊥} and TX for the set of extended trees that may contain X as a subtree.

A path is a sequence of names. We write • for the empty path and p/q for
the concatenation of p and q; the set of all paths is written P . The projection
of t along a path p, written t(p), is defined in the obvious way: (1) t(•) = t,
(2) t(n/p) = (t(n))(p) if t �= X and n ∈ dom(t), (3) t(n/p) = ⊥ if t �= X and
n �∈ dom(t), and (4) t(p) = X if t = X .

A tree is included in another tree, written t � t′, iff any missing or conflicting
path in t′ is missing in t: ∀p ∈ P . (t′(p) = ⊥ ∨ t′(p) = X) =⇒ t(p) = ⊥.

Our synchronization algorithm is formulated using a semantic notion of
schemas—a schema S is a set of trees S ⊆ T . We write S⊥ for the set S∪{⊥}. In
Section 6 we also define a syntactic notion of schema that is used for describing
sets of trees in our implementation. However, the algorithm does not rely on this
particular notion of schema.

3 Basics

Harmony’s synchronization algorithm takes two1 replicas a, b ∈ T⊥ and a com-
mon ancestor o ∈ TX and yields new replicas in which all non-conflicting up-
dates are merged. Suppose that we have a tree representing a phone book, o ={
Pat �→111-1111, Chris �→222-2222

}
. Now suppose we make two replicas of this

structure, a and b and separately modify one phone number in each so that a ={
Pat �→111-1111, Chris �→888-8888

}
and b=

{
Pat �→999-9999, Chris �→222-2222

}
.

Synchronization takes these structures and produces structures a′ = b′ =

1 We focus on the two-replica case. Our algorithm generalizes straightforwardly to
synchronizing n replicas, but the more realistic case of a network of possibly discon-
nected replicas poses additional challenges (see [8] for our progress in this area).

Exploiting Schemas in Data Synchronization 45

{
Pat �→999-9999, Chris �→888-8888

}
that reflect all the changes in a and b with

respect to o.

Loose Coupling. Harmony is a state-based synchronizer: only the current states
of the replicas (plus the remembered state o) are supplied to the synchronizer,
rather than the sequence of operations that produced a and b from o. Harmony is
designed to require only loose coupling with applications: it manipulates applica-
tion data in external, on-disk representations such as XML trees. The advantage
of the loosely coupled (or state-based) approach is that we can use Harmony to
synchronize off-the-shelf applications that were implemented without replication
in mind. By contrast, many synchronizers manipulate a trace of the operations
that the application has performed on each replica, and propagate changes by
undoing and/or replaying operations. This approach requires tight coupling be-
tween the synchronizer and application programs.

Conflicts and Persistence. During synchronization, it is possible that some
of the changes made to the two replicas are in conflict and cannot be merged.
For example, suppose that, beginning from the same original o, we change
both Pat’s and Chris’s phone numbers in a and, in b, delete the record for
Chris entirely, yielding replicas a =

{
Pat �→123-4567, Chris �→888-8888

}
and

b =
{
Pat �→111-1111

}
. Clearly, there is no single phone book that incorporates

both changes to Chris: we have a conflict. At this point, we must choose between
two evils. On one hand, we can weaken users’ expectations for the persistence
of their changes to the replicas—i.e., we can decline to promise that synchro-
nization will never back out changes that have explicitly been made to either
replica. For example, here, we might back out the deletion of Chris: a′ = b′ ={
Pat �→123-4567, Chris �→888-8888

}
. The user would then be notified of the lost

changes and given the opportunity to re-apply them if desired. Alternatively, we
can keep persistence and instead give up convergence—i.e., we can allow the repli-
cas to remain different after synchronization, propagating just the non-conflicting
change to Pat’s phone number letting a′ =

{
Pat �→123-4567, Chris �→888-8888

}
and b′ =

{
Pat �→123-4567

}
, and notifying the user of the conflict.2 In Harmony,

we choose persistence and sacrifice convergence.

Local Alignment. Another fundamental consideration in the design of any syn-
chronizer is alignment—i.e., the mechanism that identifies which parts of each
replica represent “the same information” and should be synchronized with each
other. Synchronization algorithms can be broadly grouped into two categories,
according to whether they make alignment decisions locally or globally. Syn-
chronizers that use global heuristics for alignment—e.g., the popular Unix tool
diff3, Lindholm’s 3DM [12], the work of Chawathe et al [4], and FCDP [11]—
make a “best guess” about what operations the user performed on the replicas
by comparing the entire current states with the last common state. This works

2 An industrial-strength synchronization tool will not only notify the user of conflicts,
but may also assist in bringing the replicas back into agreement by providing graph-
ical views of the differences, applying special heuristics, etc. We omit discussion of
this part of the process, focusing on the synchronizer’s basic, “unattended” behavior.

46 J.N. Foster et al.

well in many cases (where the best guess is clear), but in boundary cases these
algorithms can make surprising decisions. To avoid these issues, our algorithm
employs a simple, local alignment strategy that associates the subtrees under
children with the same name with each other. The behavior of this scheme
should be easy for users to understand and predict. The cost of operating com-
pletely locally is that Harmony’s ability to deal with ordered data is limited, as
we discuss in Section 6. An important avenue for future work is hybridizing local
and global alignment techniques to combine their advantages.

Lenses. The local alignment scheme described above works well when the repli-
cas are represented in a format that naturally exposes the structure of the data
to be synchronized. For example, if the replicas represent address books, then a
good representation is as a bush where an appropriate key field, providing access
to each contact, is at the root level. The key fields, which uniquely identify a
contact, are often drawn from some underlying database:{

92373 �→{name �→
�
first �→Megan, last �→Smith

�
, home �→555-6666}

92374 �→
{
name �→{first �→Pat, last �→Jones} , home �→555-2222

} }

Using the alignment scheme described above, the effect during synchroniza-
tion will be that entries from the two replicas with the same UID are
synchronized with each other. Alternatively, if UIDs are not available, we
can synthesize a UID by lifting information out of each record—e.g., we
might concatenate the name data and use it as the top-level key field:{
Megan:Smith �→{home �→555-6666} , Pat:Jones �→{home �→555-2222}

}
.

It is unlikely, however, that the address book will be represented concretely
(e.g., as an XML document) using either of these formats. To bridge this gap, the
Harmony system includes a domain-specific language for writing bi-directional
transformations [7], which we call lenses. By passing each replica through a
lens, we can transform the replicas from concrete formats into appropriately
“pre-aligned” forms. After synchronization, our language guarantees that the
updated replicas are transformed back into the appropriate concrete formats
using the other side of the same lens (i.e., lenses can be thought of as view update
translators [2]). Lenses also facilitate synchronization of heterogeneous formats.
Since each replica is passed through a lens both before and after synchronization,
it does not much matter if the replicas are represented in the same format or
not. We can apply a different lens on each side to bring replicas stored using
different concrete representations into the same format for synchronization.

4 The Role of Schemas

We impose two core requirements on synchronization, which we call safety and
maximality and describe informally here (the long version has precise definitions).

Safety. The safety requirement encompasses four sanity checks: (1) a synchro-
nizer must not “back out” any changes made at a replica since the last synchro-
nization (because we favor persistence over convergence); (2) it should only copy

Exploiting Schemas in Data Synchronization 47

data from one replica to the other, never “make up” content on its own; (3) it
must halt at conflicting paths, leaving the replicas untouched below; (4), it must
produce results that belong to the same schema as the originals.

Schema Conflicts. Our algorithm (unlike other state-based synchronizers) is
designed to preserve structural invariants. As an example of how schema invari-
ants can be broken, consider a run of the algorithm sketched above where o ={
Pat �→{Phone �→

�
333-4444 �→{}

�
}
}
, a =

{
Pat �→{Phone �→

�
111-2222 �→{}

�
}
}
,

and b =
{
Pat �→{Phone �→

�
987-6543 �→{}

�
}
}
. The subtree labeled 333-4444 has

been deleted in both replicas, and remains so in both a′ and b′. The sub-
tree labeled 111-2222 has been created in a, so we can propagate the cre-
ation to b′; similarly, we can propagate the creation of 987-6543 to a′, yielding
a′ = b′ =

{
Pat �→{Phone �→

�
111-2222 �→{}, 987-6543 �→{}

�
}
}
. But this would be

wrong. Pat’s phone number was changed in different ways in the two replicas:
what’s wanted is a conflict. If the phonebook schema only allows a single number
per person, then the new replica is not well formed!

We avoid these situations by providing the schema as an input to the synchro-
nizer. The synchronizer signals a conflict (leaving its inputs unchanged) whenever
merging the changes at a particular point yields an ill-formed structure.

Locality and Schemas. Because alignment in our algorithm is local, we
cannot expect the algorithm to enforce global invariants expressed by arbitrary
schemas; we need a corresponding restriction to schemas that permits them
to express only local constraints on structure. As an example of a schema
that expresses a non-local invariant, consider the following set of trees:{
{},
{
n �→x, m �→x

}
,
{
n �→y, m �→y,

}
,
{
n �→{x, y} , m �→y

}
,
{
n �→x, m �→{x, y}

}}
.

Now consider synchronizing two replicas belonging to this set with respect to
an empty archive: o = {}, with a =

{
n �→x, m �→x

}
, and b =

{
n �→y, m �→y

}
. A

local algorithm that aligns each replica by name will recursively synchronize the
associated subtrees below n and m. However, it is not clear what schema to use
for these recursive calls, because the set of trees that can validly appear under
n depends on the subtree under m and vice versa. We might try the schema that
consists of all the trees that can appear under n (and m):

{
x, y,

{
x, y

}}
. With this

schema, the synchronizer computes the tree
{
x, y

}
for both n and m. However,

these trees cannot be assembled into a well-formed tree:
{
n �→{x, y} , m �→{x, y}

}
does not belong to the schema. The “most synchronized” well-formed results
are a′ =

{
n �→x, m �→{x, y}

}
and b′ =

{
n �→{x, y} , m �→y

}
, but there does not

seem to be any way to find them without backtracking.
The global invariant expressed by this schema—at most one of n or m may

have {x, y} as a subtree—cannot easily be preserved by a local algorithm. To
avoid such situations, we impose a restriction on schemas, path consistency, that
is analogous to the restriction on tree grammars embodied by W3C Schema.
Intuitively, a schema is path consistent if any subtree that appears at some path
in one tree can be validly “transplanted” to the same location in any other tree in
the schema. This restriction ensures that the sub-schema used to synchronize a
single child is consistent across the schema; i.e., the set of trees that may validly

48 J.N. Foster et al.

appear under a child only depends on the path from the root to the node and
does not depend on the presence (or absence) of other parts of the tree.

To define path consistency precisely, we need a little new notation. First, the
notion of projection at a path is extended pointwise to schemas—that is, for a
schema S ⊆ T and path p ∈ P , we have S(p) = {t(p) | t ∈ S ∧ t(p) �= ⊥}. Note
that the projection of a schema at any path is itself a schema.

Next, we define what it means to transplant a subtree from one tree to another
at a given path. Let t be a tree and p a path such that t(p) ∈ T . We define the
update of t at p with t′, written t[p �→ t′], inductively on the structure of p as:
t[• �→ t′] = t′, t[n/p �→ t′] =

{
n �→t(n)[p �→ t′], m �→t(m) | m ∈ dom(t) \ {n}

}
. A

schema S is path consistent if, whenever t and t′ are in S, it is the case that, for
every path p, the result of updating t along p with t′(p) is also in the schema.
Formally, a schema S is path consistent iff, for all t, t′ ∈ S and p ∈ P , we have
t(p) �= ⊥ ∧ t′(p) �= ⊥ =⇒ t[p �→ t′(p)] ∈ S.

Maximality. Of course, safety alone is too weak: an algorithm that returns both
replicas unchanged is trivially safe! We therefore say that a run of a synchronizer
is maximal just in case it propagates all the changes of every other safe run. Our
specification is that every run must be both safe and maximal.

This brings us to one final complication that arises in schema-aware syn-
chronization algorithms: on some inputs, there aren’t any safe, maximal runs
belonging to the schema. Consider a run of the synchronizer on input trees
o =

{
v
}
, a =

{
w, y, z

}
, and b =

{
w, x
}
, with respect to the schema{{

v
}

,
{
w, x
}

,
{
w, x, y

}
,
{
w, x, z

}
,
{
w, y, z

}
.
}

On the b side, there are three safe
results belonging to the schema,

{
w, x
}
,
{
w, x, y

}
, and

{
w, x, z

}
, but none is

maximal. Notice that, since
{
w, x, y, z

}
does not belong to the schema, we can-

not include both y and z in b′ (without backing out the addition of x). Indeed,
for every safe b′, there is a path p where b′(p) �= a′(p), but, for a different choice
of b′, the trees at that path are equal. To ensure that synchronization always
has a maximal result, we stipulate that a schema domain conflict occurs when-
ever propagating all of the (otherwise non-conflicting) additions and deletions of
children at a node yields an ill-formed result. On the above trees, our algorithm
yields a schema domain conflict at the root since it cannot add y and z to a′.

5 Algorithm

The synchronization algorithm is depicted in Figure 1. Its structure is as follows:
we first check for trivial cases (replicas being equal to each other or unmodified),
then we check for delete/create conflicts, and in the general case we recurse on
each child label and check for schema domain conflicts before returning the re-
sults. In practice, synchronization will be performed repeatedly, with additional
updates applied to one or both of the replicas between synchronizations. To
support this, the algorithm constructs a new archive. Its calculation is straight-
forward: we use the synchronized version at every path where the replicas agree
and insert a conflict marker X at paths where they conflict.

Exploiting Schemas in Data Synchronization 49

sync(S, o, a, b) =
if a = b then(a, a, b) – equal replicas: done
else if a = o then (b, b, b) – no change to a
else if b = o then (a, a, a) – no change to b
else if o = X then (o, a, b) – unresolved conflict
else if a = ⊥ and b � o then (a, a, a) – a deleted more than b
else if a = ⊥ and b �� o then (X , a, b) – delete/create conflict
else if b = ⊥ and a � o then (b, b, b) – b deleted more than a
else if b = ⊥ and a �� o then (X , a, b) – delete/create conflict
else – proceed recursively

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))
∀k ∈ dom(a) ∪ dom(b)

in if (dom(a′) �∈ doms(S)) or (dom(b′) �∈ doms(S))
then (X , a, b) – schema domain conflict
else (o′, a′, b′)

Fig. 1. Synchronization Algorithm

Formally, the algorithm takes as inputs a path-consistent schema S, an archive
o, and two current replicas a and b; it outputs a new archive o′ and two new
replicas a′ and b′. We require that both a and b belong to S⊥. The input archive
may contain the special conflict tree X . The algorithm also relies on one piece
of new notation: doms(S) stands for the domain-set of S, the set of all domains
of trees in S—i.e., doms(S) = {dom(t) | t ∈ S}.

In the case where a and b are identical, they are immediately returned, and the
new archive is set to their value. If one of the replicas is unchanged (equal to the
archive), then all the changes in the other replica can safely be propagated, so
we simply return three copies of it as the result replicas and archive. Otherwise,
both replicas have changed, in different ways. If one replica is missing, then
we check whether all the changes in the other replica are also deletions; if so,
we consider the larger deletion (throwing away the whole tree at this point) as
subsuming the smaller; otherwise, we have a delete/create conflict and we simply
return the original replicas.

Finally, in the general case, the algorithm recurses: for each k in the domain of
either current replica, we call sync with the corresponding subtrees, o(k), a(k),
and b(k) (any of which may be ⊥), and the sub-schema S(k); we collect up the
results of these calls to form new trees o′, a′, and b′. If either of the new replicas
is ill-formed (i.e., its domain is not in the domain-set of the schema), then we
have a schema domain conflict and the original replicas are returned unmodified.
Otherwise, the synchronized results are returned.

Theorem 1. Let S ⊆ T be a path-consistent schema. If a, b ∈ S⊥ and the run
sync(S, o, a, b) evaluates to o′, a′, b′, then the run is both safe and maximal.

50 J.N. Foster et al.

6 Case Study: Address Books

We now present a brief case study, illustrating how schemas can be used to
guide the behavior of our generic synchronizer on trees of realistic complexity.
The examples use an address book schema loosely based on the vCard standard.

Schemas. We begin with a concrete notation for writing schemas. Schemas are
given by mutually recursive equations of the form X = S, where S is generated
by the following grammar: S ::= {} | n[S] | !(F)[S] | *(F)[S] | S,S | S|S.

Here n ranges over names in N and F ranges over finite sets of names. The first
form of schema, {}, denotes the singleton set containing the empty tree; n[S]

denotes the set of trees with a single child named n where the subtree under
n is in S; the wildcard schema !(F)[S] denotes the set of trees with any single
child not in F, where the subtree under that child is in S; the other wildcard
schema, *(F)[S] denotes the set of trees with any number of children not in F

where the subtree under each child is in S. The set of trees described by S1|S2 is
the union of the sets described by S1 and S2, while S1,S2 denotes the set of trees
t1 · t2 where t1 belongs to S1 and t2 to S2. Note that, as trees are unordered, the
“,” operator is commutative (e.g., n[X],m[Y] and m[Y],n[X] are equivalent). We
abbreviate n[S]|{} as n?[S], and likewise !(∅)[S] as ![S] and *(∅)[S] as *[S].

All the schemas we write are path consistent. This can be checked syntac-
tically: if a name appears twice in a node, like m in m[X],n[Y]|m[X],o[Z], the
subschemas associated with each occurrence of the name are textually identical.

Address Book Schema. Here is a typical contact (the notation [t1; . . . ; tn],
which represents a list encoded as a tree, is explained below):

o =

⎧⎪⎪⎨
⎪⎪⎩
name �→{first �→Meg, other �→ [Liz; Jo], last �→Smith }
email �→

{
pref �→ms@c.edu, alts �→meg@s.com

}
home �→555-6666, work �→555-7777

org �→
{
orgname �→City U, orgunit �→CS Dept

}
⎫⎪⎪⎬
⎪⎪⎭

There are two sorts of contacts—“professional” contacts, which contain manda-
tory work phone and organization entries, plus, optionally, a home phone, and
“personal” ones, which have a mandatory home phone and, optionally, a work
phone and organization information. Contacts are not explicitly tagged with
their sort, so some contacts, like the one for Meg shown above, belong to both
sorts. Each contact also has fields representing name and email data. Both sorts
of contacts have natural schemas that reflects their record-like structures.

The schema C describes both sorts of contacts (using some sub-schemas
that we will define below): C = name[N],work[V],home?[V],org[O],email[E] |

name[N],work?[V],home[V],org?[O],email[E]. The trees appearing under the
home and work children represent simple string values—i.e., trees with a sin-
gle child leading to the empty tree; they belong to the V schema, V = ![{}].

The name edge leads to a tree with a record-like structure containing mandatory
first and last fields and an optional other field. The first and last fields lead
to values belonging to the V schema. The other field leads to a list of alternate
names such as middle names or nicknames, stored (for the sake of the example)

Exploiting Schemas in Data Synchronization 51

in some particular order. Because our actual trees are unordered, we use a stan-
dard “cons cell” representation to encode ordered lists: [t1; . . . ; tn] is encoded
as

{
head �→t1 , tail �→{. . . �→

�
head �→tn , tail �→nil

�
. . .}
}

. Using this repre-
sentation of lists, the schema N is defined as N = first[V],other?[VL],last[V],

where VL describes lists of values: VL = head[V],tail[VL] | nil[{}]. The email
address data for a contact is either a single value, or a set of addresses with one
distinguished “preferred” address. The E schema describes these structures using
a union of a wildcard to represent single values (which excludes pref and alts to
ensure path consistency) and a record-like structure with fields pref and alts to
represent sets of addresses: E = !(pref, alts)[{}] | pref[V],alts[VS], where
VS = *[{}] describes the trees that may appear under alts—bushes with any
number of children where each child leads to the empty tree. These bushes are
a natural encoding of sets of values. Finally, organization information is repre-
sented by a structure with orgname and orgunit fields, each leading to a value,
as described by this schema: O = orgname[V],orgunit[V].

The Need For Schemas. To illustrate how and where schema conflicts can
occur, let us see what can go wrong when no schema information is used. We
consider four runs of the synchronizer using the universal schema Any = *[Any],

each showing a different way in which schema-ignorant synchronization can pro-
duce mangled results. In each case, the archive, o, is the tree shown above.

Suppose, first, that the a replica is obtained by deleting the work and org

children, making the entry personal, and that the b replica is obtained by deleting
the home child, making the entry professional:

a =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

name �→
{
first �→Meg
other �→ [Liz; Jo]
last �→Smith

}

email �→
{
pref �→ms@c.edu

alts �→meg@s.com

}
home �→555-6666

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

name �→
{
first �→Meg
other �→ [Liz; Jo]
last �→Smith

}

email �→
{
pref �→ms@c.edu

alts �→meg@s.com

}
work �→555-7777

org �→
{
orgname �→City U

orgunit �→CS Dept

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Although a and b are both valid address book contacts, the trees that result from
synchronizing them with respect to the Any schema are not, since they have the
structure neither of personal nor of professional contacts:

a′ = b′ =
{
name �→{first �→Meg, other �→ [Liz; Jo], last �→Smith }
email �→

{
pref �→ms@c.edu, alts �→meg@s.com,

} }
Now suppose that the replicas are obtained by updating the trees along the
path name/first, replacing Meg with Maggie in a and Megan in b. (From now on,
for the sake of brevity we only show the parts of the tree that are different
from o and elide the rest.) o(name/first) = Meg, a(name/first) = Maggie, and
b(name/first) = Megan. Synchronizing with respect to the Any schema yields re-
sults where both names appear under first: a′(name/first) = b′(name/first) ={
Maggie, Megan

}
. These results are ill-formed because they do not belong to the

V schema, which describes trees that have a single child.

52 J.N. Foster et al.

Next consider updates to the email information where the a replica replaces
the set of addresses in o with a single address, and b updates both pref and alts

children in b: o(email) =
{
pref �→ms@c.edu, alts �→meg@s.com

}
, a(email) ={

meg@s.com
}
, and b(email) =

{
pref �→meg.smith@cs.c.edu, alts �→ms@c.edu

}
.

Synchronizing these trees with respect to Any propagates the addition of the
edge labeled meg@s.com from a to b′ and yields conflicts on both pref and
alts children, since both have been deleted in a but modified in b. The re-
sults after synchronizing are thus: a′(email) = meg@s.com and b′(email) ={
meg@s.com, pref �→meg.smith@cs.c.edu, alts �→ms@c.edu

}
. The second result,

b′, is ill-formed because it contains three children, whereas all the trees in the
email schema E have either one or two children.

Next consider changes to the list of names along the path name/other.
Suppose that a removes both Liz and Jo, but b only removes Jo:
o(name/other) = [Liz; Jo], a(name/other) = [], and b(name/other) =
[Liz]. Comparing the a replica to o, both head and tail are deleted
and nil is newly added. Examining the b replica, the tree under head

is identical to corresponding tree in o but deleted from a. The tree un-
der tail is different from o but deleted from a. Collecting all of these
changes, the algorithm yields these results: a′(name/other) = nil and
b′(name/other) =

{
tail �→nil, nil

}
. Here again, the second result, b′, is

ill-formed: it has children tail and nil, which is not a valid encoding of a
list.

Situations like these—invalid records, multiple children where a single
value is expected, and mangled lists—provided the initial motivation for
equipping a straightforward “tree-merging” synchronization algorithm with
schema information. Fortunately, in all of these examples, the step that
breaks the structural invariant can be detected by a simple, local, do-
main test. In the first example, where the algorithm removed the home,
work, and org children, the algorithm tests if {name, email} is in doms(C).
Similarly, in the second example, where both replicas changed the first

name to a different value, the algorithm tests if {Maggie, Megan} is in
doms(V). In the example involving the tree under email, the algorithm
tests if the domain {meg@s.com, pref, alts} is in doms(E). Finally, in the
example where both replicas updated the list of other names, it tests
whether {tail, nil} is in doms(VL). All of these local tests fail and so
the synchronizer halts with a schema domain conflict at the appropriate
path in each case, ensuring that the results are valid according to the
schema.

Next we further explore the strengths (and weaknesses) of our algorithm by
studying its behavior on the structures used in address books.

Values. The simplest structures in our address books, string values, are repre-
sented as trees with a single child that leads to the empty tree and described by
![{}]. When we synchronize two non-missing trees using this schema, there are
three possible cases: (1) if either of a or b is identical to o then the algorithm
set the results equal to the other replica; (2) if a and b are identical to each

Exploiting Schemas in Data Synchronization 53

other but different to o then the algorithm preserves the equality; (3) if a and
b are both different from o and each other then the algorithm reaches a schema
domain conflict. That is, the algorithm enforces atomic updates to values.

Sets. Sets can be represented as bushes—nodes with many children, each la-
beled with the key of an element in the set— e.g., for sets of values, this structure
is described by the schema *[{}]. When synchronizing two sets of values, the
synchronization algorithm never reaches a schema conflict; it always produces a
valid result, combining the additions and deletions of values from a and b. For
example, given these three trees representing value sets: o =

{
meg@s.com

}
, a ={

ms@c.edu, meg.smith@cs.c.edu
}
, and b =

{
meg@s.com, meg.smith@cs.c.edu

}
The synchronizer propagates the deletion of meg@s.com and the addition of
two new children, ms@c.edu and meg.smith@cs.c.edu, yielding a′ = b′ ={
ms@c.edu, meg.smith@cs.c.edu

}
, as expected.

Records. Two sorts of record structures appear in the address book schema.
The simplest records, like the one for organization data (orgname[V],orgunit[V]),
have a fixed set of mandatory fields. Given two trees representing such records,
the synchronizer aligns the common fields, which are all guaranteed to be present,
and synchronizes the nested data one level down. It never reaches a schema
domain conflict at the root of a tree representing such a record. Other records,
which we call sparse, allow some variation in the names of their immediate
children. For example, the contact schema uses a sparse record to represent the
structure of each entry; some fields, like org, may be mandatory or optional
(depending on the presence of other fields). As we saw in the preceeding section,
on some inputs—namely, when the updates to the replicas cannot be combined
into a tree satisfying the constraint expressed by the sparse record schema—the
synchronizer yields a schema conflict but preserves the sparse record structure.

Lists. Lists present special challenges, because we would like the algorithm to
detect updates both to elements and to their relative position. On lists, our
local alignment strategy matches up list elements by absolute position, leading
to surprising results on some inputs. We illustrate the problem and propose a
more sophisticated encoding of lists that reduces the chances of confusion.

On many runs of the synchronizer, updates to lists can be successfully propa-
gated from one replica to the other. If either replica is identical to the archive, or
if each replica modifies a disjoint subset of the elements of the list (leaving the
list spine intact), then the synchronizer merges the changes successfully. There
are some inputs, however, where synchronizing lists using the local alignment
strategy and simple cons cell encoding produces strange results. Consider a run
on the following inputs: o = [Liz; Jo], a = [Jo] and b = [Liz; Joanna]. Consid-
ering the changes that were made to each list from a high-level—a removed the
head and b renamed the second element—the result calculated for b′ is surpris-
ing: [Jo; Joanna]. The algorithm does not recognize that Jo and Joanna should
be aligned. Instead, it aligns pieces of the list by absolute position, matching Jo

with Liz and nil with [Joanna].

54 J.N. Foster et al.

It is not surprising that our algorithm doesn’t have an intuitive behavior when
its inputs are lists. In general, detecting changes in relative position in a list
requires global reasoning but our algorithm is essentially local. In order to avoid
these problematic cases, we can use an alternative schema, which we call the
keyed list schema, for lists whose relative order matters. Rather than embedding
the elements under a spine of cons cells, one can lift up the value at each position
into the spine of the list. For example, in the extended encoding, the list a from
above is represented as the tree a =

{
Jo �→{head �→{}, tail �→nil}

}
3. The

schema for keyed lists of values is: KVL = !(nil)[head[{}],tail[KVL]] | nil.

During synchronization, elements of the list are identified by the value above
each cons cell; synchronization proceeds until a trivial case applies (unchanged
or identical replicas), or when the two replicas disagree on the domain of an
element, resulting in a schema domain conflict. In the problematic example,
the algorithm terminates with a conflict at the root. Keyed lists combine an
alternate representation of lists with an appropriate schema to ensure that the
local algorithm has reasonable (if conservative) behavior.

Conclusion. The examples in this section demonstrate that schemas are a
valuable addition to a synchronization algorithm: (1) we are guaranteed valid
results in situations where a schema-blind algorithm would yield mangled results;
(2) by selecting an appropriate encoding and schema for application data, we
can tune the behavior of the generic algorithm to work well with a variety of
structures. While building demos using our prototype implementation, we have
found that this works well with rigidly structured data (e.g., values and records)
and unstructured data (e.g., sets of values), but so far has limited utility when
used with ordered and semi-structured data (e.g., lists and documents). In the
future, we hope to extend our algorithm to better handle ordered data.

7 Related Work

In the taxonomy of optimistic replication strategies in the survey by Saito and
Shapiro [22], Harmony is a multi-master state-transfer system, recognizing sub-
objects and manually resolving conflicts. Harmony is further distinguished by
some distinctions not covered in that survey: it is generic, loosely coupled from
applications, able to synchronize heterogeneous representations, and is usable
both interactively and unsupervised. Supporting unsupervised runs (where Har-
mony does as much work as it can, and leaves conflicts for later) requires our
synchronizer’s behavior to be intuitive and easy to predict.

IceCube [10] is a generic operation-based reconciler that is parameterized
over a specific algebra of operations appropriate to the application data being
synchronized and by a set of syntactic/static and semantic/dynamic ordering
constraints on these operations. Molli et al [15], have also implemented a generic
operation-based reconciler, using the technique of operational transformation.

3 For keyed lists of values, we could drop the child head, which always maps to the
empty tree. However, we can also form keyed lists of arbitrary trees, not just values.

Exploiting Schemas in Data Synchronization 55

Their synchronizer is parameterized on transformation functions for all oper-
ations, which must obey certain conditions. Bengal [6] records operations to
avoid scanning the entire replica during update detection. Like Harmony, Ben-
gal is a loosely-coupled synchronizer. It can extend any commercial database
system that uses OLE/COM hooks to support optimistic replication. However,
it is not generic because it only supports databases, it is not heterogeneous be-
cause reconciliation can only occur between replicas of the same database, and
it requires users to write conflict resolvers if they want to avoid manually resolv-
ing conflicts. FCDP [11] is a generic, state-based reconciler parameterized by
ad-hoc translations from heterogeneous concrete representations to XML and
back again. There is no formal specification and reconciliation takes place at
“synchronization servers” that are assumed to be more powerful machines per-
manently connected to the network. FCDP fixes a specific semantics for ordered
lists—particularly suited for document editing. This interpretation may some-
times be problematic, as described in the long version of this paper. File system
synchronizers (such as [23, 16, 1, 18]) and PDA synchronizers (such as Palm’s
HotSync), are not generic, but they do generally share Harmony’s state-based
approach. An interesting exception is DARCS [21], a hybrid state-/operation-
based revision control system built on a “theory of patches.”

Harmony, unlike many reconcilers, does not guarantee convergence in the case
of conflicts. Systems such as Ficus [19], Rumor [9], Clique [20], Bengal [6], and
TAL/S5 [15] converge by making additional copies of primitive objects that con-
flict and renaming one of the copies. CVS embeds markers in the bodies of files
where conflicts occurred. In contrast, systems such as Harmony and IceCube [10]
do not reconcile objects affected by conflicting updates.

Harmony’s emphasis on schema-based pre-alignment is influenced by exam-
ples we have found in the context of data integration where heterogeneity is
a primary concern. Alignment, in the form of schema-mapping, has been fre-
quently used to good effect (c.f. [17, 14, 3, 5, 13]). The goal of alignment, there,
is to construct views over heterogeneous data, much as we transform concrete
views into abstract views with a shared schema to make alignment trivial for the
reconciler. Some synchronizers differ mainly in their treatment of alignment. For
example, the main difference between Unison [1] (which has almost trivial align-
ment) and CVS, is the comparative alignment strategy (based on the standard
Unix tool diff3) used by CVS. At this stage, Harmony’s core synchronization
algorithm is deliberately simplistic, particularly with respect to ordered data.
As we develop an understanding of how to integrate more sophisticated align-
ment algorithms in a generic and principled way, we hope to incorporate them
into Harmony. Of particular interest are diff3 and its XML based descendants:
Lindholm’s 3DM [12], the work of Chawathe et al [4], and FCDP [11].

Acknowledgements. The Harmony project was begun in collaboration with
Zhe Yang. Trevor Jim, Jonathan Moore, Owen Gunden, Malo Denielou, and
Stéphane Lescuyer have collaborated with us on many aspects of Harmony’s de-
sign and implementation. Conversations with Martin Hofmann, Zack Ives, Nitin
Khandelwal, Sanjeev Jhanna, Keshav Kunal, William Lovas, Kate Moore, Cyrus

56 J.N. Foster et al.

Najmabadi, Stephen Tse, Steve Zdancewic, and comments from the anonymous
referees helped sharpen our ideas. Harmony is supported by the National Science
Foundation under grant ITR-0113226, Principles and Practice of Synchroniza-
tion. Nathan Foster is also supported by an NSF GRF.

References

1. S. Balasubramaniam and B. C. Pierce. What is a file synchronizer? In Fourth
Annual ACM/IEEE International Conference on Mobile Computing and Network-
ing (MobiCom ’98), Oct. 1998. Full version available as Indiana University CSCI
technical report #507, April 1998.

2. F. Bancilhon and N. Spyratos. Update semantics of relational views. TODS,
6(4):557–575, 1981.

3. C. Beeri and T. Milo. Schemas for integration and translation of structured and
semi-structured data. In ICDT’99, 1999.

4. S. S. Chawathe, A. Rajamaran, H. Garcia-Molina, and J. Widom. Change detection
in hierarchically structured information. In Proceedings of the ACM SIGMOD
International Conference on the management of Data, pages 493–504, Montreal,
Quebec, 1996.

5. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In SIGMOD Conference, 2001.

6. T. Ekenstam, C. Matheny, P. L. Reiher, and G. J. Popek. The Bengal database
replication system. Distributed and Parallel Databases, 9(3):187–210, 2001.

7. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Com-
binators for bi-directional tree transformations: A linguistic approach to the view
update problem. In ACM SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), Long Beach, California, 2005.

8. M. B. Greenwald, S. Khanna, K. Kunal, B. C. Pierce, and A. Schmitt. Agreement
is quicker than domination: Conflict resolution for optimistically replicated data.
Submitted for publication; available electronically, 2005.

9. R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma, and G. J. Popek. Rumor:
Mobile data access through optimistic peer-to-peer replication. In Proceedings of
the ER ’98 Workshop on Mobile Data Access, pages 254–265, 1998.

10. A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube ap-
proach to the reconciliation of diverging replicas. In proceedings of the 20th an-
nual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC ’01), Aug. 26-29 2001. Newport, Rhode Island.

11. M. Lanham, A. Kang, J. Hammer, A. Helal, and J. Wilson. Format-independent
change detection and propoagation in support of mobile computing. In Proceedings
of the XVII Symposium on Databases (SBBD 2002), pages 27–41, October 14-17
2002. Gramado, Brazil.

12. T. Lindholm. XML three-way merge as a reconciliation engine for mobile data. In
Proceedings of MobiDE ’03, pages 93–97, September 19 2003. San Diego, CA.

13. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In The VLDB Journal, pages 49–58, 2001.

14. T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data
translation. In VLDB’98, 1998.

15. P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the transformational ap-
proach to build a safe and generic data synchronizer. In Proceedings of ACM Group
2003 Conference, November 9–12 2003. Sanibel Island, Florida.

Exploiting Schemas in Data Synchronization 57

16. T. W. Page, Jr., R. G. Guy, J. S. Heidemann, D. H. Ratner, P. L. Reiher, A. Goel,
G. H. Kuenning, and G. Popek. Perspectives on optimistically replicated peer-to-
peer filing. Software – Practice and Experience, 11(1), December 1997.

17. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

18. N. Ramsey and E. Csirmaz. An algebraic approach to file synchronization. In
Proceedings of the 8th European Software Engineering Conference, pages 175–185.
ACM Press, 2001.

19. P. L. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and G. J. Popek. Resolving
file conflicts in the ficus file system. In USENIX Summer Conference Proceedings,
pages 183–195, 1994.

20. B. Richard, D. M. Nioclais, and D. Chalon. Clique: a transparent, peer-to-peer
collaborative file sharing system. In Proceedings of the 4th international conference
on mobile data management (MDM ’03), Jan. 21-24 2003. Melbourne, Australia.

21. D. Roundy. The DARCS system, 2004. http://abridgegame.org/darcs/.
22. Y. Saito and M. Shapiro. Replication: Optimistic approaches. Technical Report

HPL-2002-33, HP Laboratories Palo Alto, Feb. 8 2002.
23. M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and

D. C. Steere. Coda: A highly available file system for a distributed workstation
environment. IEEE Transactions on Computers, C-39(4):447–459, Apr. 1990.

Efficiently Enumerating Results
of Keyword Search�

Benny Kimelfeld and Yehoshua Sagiv

The Selim and Rachel Benin School of Engineering and Computer Science,
The Hebrew University of Jerusalem,

Edmond J. Safra Campus,
Jerusalem 91904, Israel

Abstract. Various approaches for keyword search in different settings
(e.g., relational databases, XML and the Web) actually deal with the
problem of enumerating K-fragments. For a given set of keywords K, a
K-fragment is a subtree T of the given data graph, such that T contains
all the keywords of K and no proper subtree of T has this property. There
are three types of K-fragments: rooted, undirected and strong. This pa-
per describes the first provably efficient algorithms for enumerating K-
fragments. Specifically, for all three types of K-fragments, algorithms are
given for enumerating all K-fragments with polynomial delay. For rooted
K-fragments and acyclic data graphs, an algorithm is given for enumer-
ating with polynomial delay in the order of increasing weight (i.e., the
ranked order), assuming that K is of a fixed size. Finally, an efficient
algorithm is described for enumerating K-fragments in a heuristically
ranked order.

1 Introduction

The advent of the World-Wide Web and the proliferation of search engines
have transformed keyword search from a niche role to a major player in the
information-technology field. Modern database languages should have both
querying and searching capabilities. In recent years, different approaches for
developing such capabilities have been investigated.

DBXplorer [1], BANKS [2] and DISCOVER [6] are systems that implement
keyword search in relational databases. XKeyword [7] is an extension of the tech-
niques used in DISCOVER to keyword search in XML. The “backward search”
algorithm used in BANKS is improved in [10] to a “bidirectional search.” Key-
word search in a different context is discussed in [13], where the main idea is to
retrieve and organize Web pages by “information units.”

The above approaches to keyword search consider different settings and use
a variety of techniques. At the core, however, they all deal with similar graph
problems and solve them heuristically. While these heuristics may perform well
in practice, they either lack a clear upper bound or have an exponential upper

� This work was supported by the Israel Science Foundation (Grant No. 96/01).

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 58–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficiently Enumerating Results of Keyword Search 59

bound (even if there are only a few results). The goal of this paper is to provide
provably efficient algorithms (rather than heuristics) for solving the underlying
graph problems.

A formal framework for keyword search that captures all of the above ap-
proaches is presented in [11]. In this framework, data are represented as a graph
that has two types of nodes: structural nodes and keyword nodes. When search-
ing a data graph G for a set of keywords K, the results are K-fragments, where
each K-fragment is a subtree of G that contains the keywords of K and has
no proper subtree that also contains K. Actually, there are three types of K-
fragments: rooted (i.e., directed), undirected and strong, where the latter is an
undirected K-fragment, such that all its keyword nodes are leaves.

Typically, results of a keyword search are either strong K-fragments [1, 3, 5, 6,
7, 13] or rooted K-fragments [2, 10, 3]; in some cases [1, 3], however, undirected
K-fragments have to be enumerated. Some systems [1, 6, 7] use the schema to
extract (by increasing size) all the join expressions that may potentially yield
results and then evaluate these expressions over the database (but for a given
database, many of these expressions may generate no result at all). In other sys-
tems [2, 10, 13], the data graph is processed directly. In either case, an algorithm
for enumerating K-fragments is used. Usually, the goal is to enumerate results
by increasing size (or weight). For the sake of efficiency, some systems [2, 10, 13]
enumerate in an “almost” ranked order (but without any guarantee by how much
the actual order may deviate from the ranked order). However, even in these sys-
tems, an upper bound on the running time is either missing or exponential (even
if there is only a small number of K-fragments).

In this paper, we give efficient algorithms for enumerating K-fragments. Since
the output of an enumeration algorithm can be exponential in the size of the in-
put, we use the yardstick of enumeration with polynomial delay as an indication
of efficiency. We show that all rooted, undirected or strong K-fragments can be
enumerated with polynomial delay. We also consider the problem of enumerating
by increasing weight. Specifically, we show that if the size of K is fixed, then all
rooted K-fragments of an acyclic data graph can be enumerated by increasing
weight with polynomial delay. Note that a known NP-complete problem [4] im-
plies that this result can hold only if the size of K is assumed to be fixed. Making
this assumption is realistic and in line with the notion of data complexity [14],
which is commonly used for measuring the complexity of query evaluation.

In summary, the main contribution of this paper is in giving, for the first time,
provably efficient algorithms for enumeration problems that need to be solved
in many different settings of keyword search. These settings include relational
databases, XML and the Web.

This paper is organized as follows. Section 2 defines basic concepts and no-
tations. The notion of enumeration algorithms, their complexity measures, and
threaded enumerators are discussed in Section 3. Our algorithms are described
in Sections 4, 5 and 6. In Section 7, we present a heuristics for enumerating in
sorted order. We conclude and discuss future work in Section 8. Due to a lack
of space, proofs are not given, but they are available in [12].

60 B. Kimelfeld and Y. Sagiv

2 Preliminaries

2.1 Data Graphs

A data graph G consists of a set V(G) of nodes and a set E(G) of edges. There are
two types of nodes: structural nodes and keyword nodes (or keywords for short).
S(G) denotes the set of structural nodes and K(G) denotes the set of keyword
nodes. Unless explicitly stated otherwise, edges are directed, i.e., an edge is a pair
(n1, n2) of nodes. Keywords have only incoming edges, while structural nodes
may have both incoming and outgoing edges. Hence, no edge can connect two
keywords. These restrictions mean that E(G) ⊆ S(G)×V(G). The edges of a data
graph G may have weights. The weight function wG assigns a positive weight
wG(e) to every edge e ∈ E(G). The weight of the data graph G, denoted w(G),
is the sum of the weights of all the edges of G, i.e., w(G) =

∑
e∈E(G) wG(e).

A data graph is rooted if it contains some node r, such that every node of G is
reachable from r through a directed path. The node r is called a root of G. (Note
that a rooted data graph may have several roots.) A data graph is connected if
its underlying undirected graph is connected.

As an example, consider the data graph G1 depicted in Figure 1. (This data
graph represents a part of the Mondial1 XML database.) In this graph, filled
circles represent structural nodes and keywords are written in italic font. Note
that the structural nodes of G1 have labels, which are ignored in this paper. The
data graph G1 is rooted and the node labeled with continent is the only root.

We use two types of data trees. A rooted tree is a rooted data graph, such
that there is only one root and for every node u, there is a unique path from
the root to u. An undirected tree is a data graph that is connected and has no
cycles, when ignoring the directions of the edges.

G

continent

organization

name name

country

Netherlands

name

city

hq

govgov

Monarchy

Brussels

country

Belgium

1

Fig. 1. A data graph G1

1 http://www.dbis.informatik.uni-goettingen.de/Mondial/

Efficiently Enumerating Results of Keyword Search 61

We say that a data graph G′ is a subgraph of the data graph G, denoted
G′ ⊆ G, if V(G′) ⊆ V(G), E(G′) ⊆ E(G) and each edge in G′ has the same
weight in both G and G′. Rooted and undirected subtrees are special cases of
subgraphs.

For a data graph G and a subset U ⊆ V(G), we denote by G−U the induced
subgraph of G that consists of the nodes of V(G) \ U and all the edges of G
between these nodes. If u ∈ V(G), then we may write G−u instead of G−{ u }.

If G1 and G2 are subgraphs of G, we use G1 ∪G2 to denote the subgraph that
consists of all the nodes and edges that appear in either G1 or G2; that is, the
graph G′ that satisfies V(G′) = V(G1) ∪ V(G2) and E(G′) = E(G1) ∪ E(G2).

Given a data graph G, a subset U ⊆ V(G) and an edge e = (v, u) ∈ E(G), we
use U±e to denote the set (U \ { u }) ∪ { v }.

Given two nodes u and v in a data graph G, we use u �G v to denote that v
is reachable from u through a directed path in G.

A rooted (respectively, undirected) subtree T of a data graph G is reduced
w.r.t. a subset U of the nodes of G if T contains U , but no proper rooted
(respectively, undirected) subtree of T contains U .

2.2 Keyword Search

A query is simply a finite set K of keywords. Given a data graph G, a rooted
K-fragment (abbr. RKF) is a rooted subtree of G that is reduced w.r.t. K.
Similarly, an undirected K-fragment (abbr. UKF) is an undirected subtree of
G that is reduced w.r.t. K. A strong K-fragment (abbr. SKF) is a UKF, such
that all the keywords are leaves. Note that an RKF is also an SKF and an SKF
is also a UKF. Figure 2 shows three K-fragments of G1, where K is the query
{Belgium,Netherlands}. F3 is a UKF, F2 is an SKF and F1 is an RKF.

In some approaches to keyword search (e.g., [1, 5, 6, 7, 13]), the goal is to
solve the SKF problem, that is, to enumerate all SKFs for a given K. In other

Netherlands

F1

continentname
country country

name

Belgium Netherlands

F2

F3

name
country

city
country

Netherlands

name
hq
organization

Belgium

gov gov
countrycountry

namename

Belgium

Monarchy

Fig. 2. Fragments of G1

62 B. Kimelfeld and Y. Sagiv

approaches (e.g., [2, 10]), the goal is to solve the RKF problem. The UKF problem
arises in some cases [1, 3] that are different from keyword search as defined here.

3 Enumeration Algorithms

3.1 Threaded Enumerators

In order to construct efficient enumeration algorithms, we employ threaded enu-
merators that enable one algorithm to use the elements enumerated by another
algorithm (or even by itself, recursively) as soon as these elements are generated,
rather than waiting for termination.

Formally, an enumeration algorithm E generates, for a given input x, a se-
quence E1(x), . . . , EN(x)(x). Each element Ei(x) is produced by the operation
print(·). We say that E(x) enumerates the set S if {E1(x), . . . , EN(x)(x) } = S
and Ei(x) �= Ej(x) for all 1 ≤ i < j ≤ N(x).

Sometimes one enumeration algorithm E uses another enumeration algorithm
E′, or may even use itself recursively. An important property of an enumeration
algorithm is the ability to start generating elements as soon as possible. This
property is realized by employing threaded enumerators that enable E to use
each element generated by E′ when that element is created, rather than having
to wait until E′ finishes its enumeration. A specific threaded enumerator TE is
constructed by the command TE := new[E](x), where E is some enumeration
algorithm and x is an input for E. The elements E1(x), . . . , EN(x)(x) are enu-
merated by repeatedly executing the command next[TE]. The ith execution of
next[TE] generates the element Ei(x) if 1 ≤ i ≤ N(x); otherwise, if i > N(x),
the null element, denoted ⊥, is generated. We assume that ⊥ is not an element
in the output of E(x). An enumeration algorithm E, with input x, may use a
threaded enumerator recursively, i.e, a threaded enumerator for E(x′), where
x′ is usually different from x. Note that threaded enumerators are basically
coroutines and the operations print and next[] correspond to the traditional
operations exit and resume, respectively.

As an example, consider the pseudo code of the algorithm ReducedSub-
trees, presented in Figure 4. In Line 21, a threaded enumerator is constructed
for the algorithm RSExtensions (shown in Figure 5(a)). Line 18 is an example
of a recursive construction of a threaded enumerator.

3.2 Measuring the Complexity of Enumeration Algorithms

Polynomial time complexity is not a suitable yardstick of efficiency when an-
alyzing an enumeration algorithm, since the output size could be exponential
in the input size. In [9], several definitions of efficiency for enumeration algo-
rithms are discussed. The weakest definition is polynomial total time, that is,
the running time is polynomial in the combined size of the input and the out-
put. Two stronger definitions consider the time that is needed for generating the

Efficiently Enumerating Results of Keyword Search 63

a . . .

G

b

c

2

(a)

v

(1)

(2)

r v

(b)

Fig. 3. (a) A data graph G2 (b) Extensions: (1) by a directed simple path, and (2)
by a reduced subtree

ith element, after the first i−1 elements have already been created. Incremental
polynomial time means that the ith element is generated in time that is polyno-
mial in the combined size of the input and the first i−1 elements. The strongest
definition is polynomial delay, that is, the ith element is generated in time that
is polynomial only in the input size. For characterizing space efficiency, we use
two definitions. Note that the amount of space needed for writing the output
is ignored—only the space used for storing intermediate results is measured.
The usual definition is polynomial space, that is, the amount of space used by
the algorithm is polynomial in the input size. Linearly incremental polynomial
space means that the space needed for generating the first i elements is bounded
by i times a polynomial in the input size. Note that an enumeration algorithm
that runs with polynomial delay uses (at most) linearly incremental polynomial
space. All the algorithms in this paper, except for one version of the heuristics
of Section 7, run with polynomial delay. The algorithms of the next two sections
use polynomial space.

4 Enumerating Rooted K-Fragments

4.1 The Algorithm

In this section, we describe an algorithm for enumerating RKFs. Our algorithm
solves the more general problem of enumerating reduced subtrees. That is, given
a data graph G and a subset U ⊆ V(G), the algorithm enumerates, with polyno-
mial delay, the set RS(G, U) of all rooted subtrees of G that are reduced w.r.t. U .
Hence, to solve the RKF problem, we execute the algorithm with U = K, where
K is the given set of keywords.

64 B. Kimelfeld and Y. Sagiv

ReducedSubtrees(G,U)
1: if |U | = 1 then
2: print(G0), where V(G0) = U and E(G0) = ∅
3: exit
4: if RS(G,U) = ∅ then
5: exit
6: choose an arbitrary node u ∈ U
7: if ∀v ∈ U \ { u }, u ��G v then
8: W := {w | (w, u) is an edge of G and RS(G − u, U±(w,u)) �= ∅}
9: for all w ∈ W do

10: Uw := U±(w,u)

11: TE := new [ReducedSubtrees](G − u, Uw)
12: T := next[TE]
13: while T �=⊥ do
14: print(T ∪ (w, u))
15: T := next[TE]
16: else
17: let v ∈ U be a node s.t. u �= v and u �G v
18: TE1 := new [ReducedSubtrees](G,U \ { v })
19: T := next[TE1]
20: while T �=⊥ do
21: TE2 := new [RSExtensions](G, T, v)
22: T ′ := next[TE2]
23: while T ′ �=⊥ do
24: print(T ′)
25: T ′ := next[TE2]
26: T := next[TE1]

Fig. 4. Enumerating RS(G,U)

If U has only two nodes, the enumeration is done by a rather straightforward
algorithm, PairRS(G, u, v), that is given in Figure 5(b). The problem is more
difficult for larger sets of nodes, because for some subsets U ′ ⊆ U , the set
RS(G, U ′) might be much larger than the set RS(G, U). For example, for the
graph G2 of Figure 3(a), RS(G2, { a, b, c }) has only one subtree, whereas the
size of RS(G2, { a, b }) is exponential in the size of G2.

In the algorithm ReducedSubtrees(G, U) of Figure 4, every intermediate
result, obtained from the recursive calls in Lines 11 and 18, can be extended into
at least one distinct element of RS(G, U). Thus, the complexity is not worse
than polynomial total time. Next, we describe this algorithm in detail. In Lines
1–3, the algorithm ReducedSubtrees(G, U) terminates after printing a single
tree that has one node and no edges, if |U | = 1. In Lines 4–5, the algorithm
terminates if RS(G, U) is empty. Note that RS(G, U) = ∅ if and only if there is
no node w of G, such that all the nodes of U are reachable from w. An arbitrary
node u ∈ U is chosen in Line 6 and if the test of Line 7 is true, then u is a leaf in
every tree of RS(G, U). If so, Line 9 iterates over all nodes w, such that (w, u) is

Efficiently Enumerating Results of Keyword Search 65

an edge of G and RS(G − u, U±(w,u)) �= ∅. All the trees of RS(G − u, U±(w,u))
are enumerated in Lines 11–15. The edge (w, u) is added to each of these trees
and the result is printed in Line 14.

If the test of Line 7 is false, then Line 17 arbitrarily chooses a node v ∈ U
(v �= u) that is reachable from u. All the trees of RS(G, U \ { v }) are enu-
merated starting at Line 18. Each of these trees can be extended to a tree of
RS(G, U) in two different ways, as illustrated in Figure 3(b). For each T ∈
RS(G, U \ { v }), all extensions T ′ of T are enumerated starting at Line 21 by
calling RSExtensions(G, T , v). These extensions are printed in Line 24. Next,
we explain how RSExtensions(G, T , v) works.

Given a node v ∈ U and a subtree T ∈ RS(G, U \ { v }) having a root r, the
algorithm RSExtensions(G, T , v) of Figure 5(a) enumerates all subtrees T ′,
such that T ′ contains T and T ′ ∈ RS(G, U). In Lines 5–12, T is extended by
directed simple paths. Each path P is from a node u (u �= r) of T to v, and u is
the only node in both P and T . These paths are enumerated by the algorithm
Paths(G, u, v) of Figure 6. The extensions of T by these paths are printed in
Line 11. In Lines 13–19, T is extended by reduced subtrees T̂ of G, such that
each T̂ is reduced w.r.t. { r, v } and r is the only node in both T and T̂ . Note
that the root of the new tree is the root of T̂ . The trees T̂ are generated by the
algorithm PairRS(G, u, v) of Figure 5(b) that enumerates, for a given graph G
and two nodes u and v, all subtrees of G that are reduced w.r.t. { u, v }. The
extensions of T by the trees T̂ are printed in Line 18. The following theorem
shows the correctness of ReducedSubtrees; the proof is given in [12].

Theorem 1. Let G be a data graph and U be a subset of the nodes of G. The
algorithm ReducedSubtrees(G, U) enumerates RS(G, U).

Interestingly, the algorithm remains correct even if Line 6 and the test of
Line 7 are ignored, and only the else part (i.e., Lines 17–26) is executed in all
cases, where in Line 17 v can be any node in U . However, the complexity is
no longer polynomial total time, since the enumerator TE1 may generate trees
T that cannot be extended by RSExtensions(G, T , v). For example, consider
the graph G2 of Figure 3(a) and let U = { a, b, c }. If we choose v = c, then
all directed paths from a to b will be generated by TE1. However, none of these
paths can be extended to a subtree of RS(G2, U). If, on the other hand, only the
then part (i.e., Lines 8–15) is executed, then the algorithm will not be correct.

4.2 Complexity Analysis

To show that the algorithm ReducedSubtrees enumerates with polynomial
delay, we have to calculate the computation cost between successive print com-
mands. Formally, let E be an enumeration algorithm and suppose that E(x)
enumerates the sequence E1(x), . . . , EN (x). For 1 < i ≤ N , the ith interval
starts immediately after the printing of Ei−1(x) and ends with the printing of
Ei(x). The first interval starts at the beginning of the execution of E(x) and
ends with the printing of E1(x). The (N +1)st interval starts immediately after

66 B. Kimelfeld and Y. Sagiv

RSExtensions(G, T, v)
1: let r be the root of T
2: if v ∈ V(T) then
3: print(T)
4: exit
5: for all u ∈ V(T) \ { r } do
6: Ḡ := G − (V(T) \ { u })
7: if u �Ḡ v then
8: TE := new [Paths](Ḡ, u, v)
9: P := next[TE]

10: while P �=⊥ do
11: print(T ∪ P)
12: P := next[TE]
13: Gr := G − (V(T) \ { r })
14: if RS(Gr, { r, v }) �= ∅ then
15: TE := new [PairRS](Gr, r, v)
16: T̂ := next[TE]
17: while T̂ �=⊥ do
18: print(T ∪ T̂)
19: T̂ := next[TE]

(a)

PairRS(G, u, v)
1: if u = v then
2: print(G0), where V(G0) = U and

E(G0) = ∅
3: exit
4: if u �G v then
5: TE := new [Paths](G, u, v)
6: T := next[TE]
7: while T �=⊥ do
8: print(T)
9: T := next[TE]

10: W := {w ∈ V(G) | (w, u) ∈ E(G)∧
RS(G − u, { w, v }) �= ∅}

11: for all w ∈ W do
12: TE := new [PairRS](G−u, w, v)
13: T := next[TE]
14: while T �=⊥ do
15: print(T ∪ (w, u))
16: T := next[TE]

(b)

Fig. 5. (a) Enumerating subtree extensions (b) Enumerating RS(G, { u, v })

Paths(G, u, v)
1: if u = v then
2: let P the path containing u only
3: print(P)
4: exit
5: W := {w ∈ V(G) | w �G−u v and (u, w) ∈ E(G)}
6: for all w ∈ W do
7: TE := new [Paths](G − u, w, v)
8: P := next[TE]
9: while P �=⊥ do

10: print(P ∪ (u, w))
11: P := next[TE]

Fig. 6. Enumerating all simple paths from u to v

the printing of EN (x) and ends when the execution of E(x) terminates. The
ith delay of E(x) is the execution cost of the ith interval. The cost of each line
in the pseudo code of E, other than a next command, is defined as usual. If
E(x) uses a threaded enumerator TE ′ of E′(x′), the cost of the jth execution
of next[TE ′] is 1 + C, where C is the jth delay of E′(x′). (Note that this a
recursive definition.) The ith space usage of E(x) is the amount of space used

Efficiently Enumerating Results of Keyword Search 67

for printing the first i elements E1(x), . . . , Ei(x). Note that the (N + 1)st space
usage is equal to the total space used by E(x) from start to finish.

It is not easy to compute directly the ith delay of ReducedSubtrees, since
the threaded enumerators that are used recursively lead to complex recursive
equations. Therefore, for each enumeration algorithm involved in the execution
of ReducedSubtrees, we compute the basic ith delay that is defined as the cost
of the ith interval, assuming that each next command has a unit cost (instead
of the true cost of 1+C as described above). Moreover, we actually compute an
upper bound B that is greater than every basic ith delay of every enumeration
algorithm involved. It can be shown that O(|U | · |E(G)|) is such an upper bound.

An upper bound on the ith delay of ReducedSubtrees can be obtained
by multiplying B and the number of next commands in the ith interval of
ReducedSubtrees, including next commands of threaded enumerators that
are created recursively. It is not easy to show that the number of such next
commands is polynomial in the size of the input. For example, by removing the
non-emptiness tests (e.g., those in Lines 4 and 8 of Figure 4 and Line 14 of
Figure 5(a)), the algorithm remains correct but the number of next commands
is no longer polynomial. The complexity of ReducedSubtrees is summarized
in the following theorem and the detailed analysis is given in [12].

Theorem 2. Let K be a query of size k and G be a data graph with n nodes
and m edges. Consider the execution of ReducedSubtrees(G, K). Suppose that
F1, . . . , FN are the K-fragments that are printed and let |Fi| denote the number
of nodes in Fi. Then,

– The first delay is O (mk|F1|);
– For 1 < i ≤ N , the ith delay is O (mk(|Fi| + |Fi−1|));
– The (N + 1)st delay is O (mk|FN |); and
– The ith space usage is O (mn).

Corollary 1. The RKF problem can be solved with polynomial delay and poly-
nomial space.

A simple optimization that can be applied to the algorithm is to first remove
irrelevant nodes. A node v is considered irrelevant if either no keyword of K can
be reached from v or v cannot be reached from any node u, such that all the
keywords of K are reachable from u. We implemented the algorithm Reduced-
Subtrees and tested it on the data graph of the Mondial XML document (ID
references were replaced with edges). We found that usually the running time
was improved by an order of magnitude due to this optimization. Also note that
the space usage can be reduced to O(m) by implementing the algorithm so that
different threaded enumerators share data structures.

5 Enumerating Strong and Undirected K-Fragments

Enumerating SKFs is simpler than enumerating RKFs. It suffices to choose an
arbitrary keyword k ∈ K and recursively enumerate all the strong (K \ { k })-
fragments. Each strong (K\{ k })-fragment T is extended to a strong K-fragment

68 B. Kimelfeld and Y. Sagiv

by adding all simple undirected paths P , such that P starts at some structural
node u of T , ends at k and passes only through structural nodes that are not in T .
These paths are enumerated by an algorithm that is similar to Paths(G, u, v). In
order to enumerate UKFs, the algorithm for enumerating SKFs should be mod-
ified so that the generated paths may include, between u and k, both structural
and keyword nodes that are not in T (note that u itself may also be a keyword).
The complete algorithms for enumerating SKFs and UKFs are described in [12].

Theorem 3. The SKF and UKF problems can be solved with polynomial delay
and polynomial space.

The algorithms of this and the previous section can be easily parallelized by
assigning a processor to each threaded enumerator that executes a recursive call
for a smaller set of nodes (e.g., in Line 18 of ReducedSubtrees). The processor
that does the recursive call sends the results to the processor that generated that
call. The latter extends these results to fragments with one more keyword of K.
Note that there is no point in assigning a processor to each threaded enumerator
that is created in Line 11 of ReducedSubtrees, since the extension process
that follows this line can be done quickly (i.e., by adding just one edge).

6 Enumerating Rooted K-Fragments in Sorted Order

In this section, we present an efficient algorithm for enumerating RKFs by in-
creasing weight, assuming that the query is of a fixed size and the data graph
is acyclic. As in the unordered case, we solve this problem by solving the more
general problem of enumerating reduced subtrees by increasing weight. Thus,
the input is an acyclic data graph and a subset of nodes. Note that a related,
but simpler problem is that of enumerating the k shortest paths (e.g., [8]).

We use � to denote a topological order on the nodes of G. The maximal
element of a nonempty set W is denoted as max� W . Given the input G and U ,
the algorithm generates one or more reduced subtrees w.r.t. every set of nodes
W , such that |W | ≤ |U |, and stores them in the array T [W, i], where T [W, 1] is
the smallest, etc. Values are assigned to T [W, i] in sorted order, and the array
I[W] stores the largest i, such that the subtree T [W, i] has already been created.
If T [W, i] =⊥ (i ≥ 1), it means that the graph G has i − 1 subtrees that are
reduced w.r.t. W .

Consider an edge e entering max� W . A sorted sequence of reduced sub-
trees w.r.t. W can be obtained by adding e to each subtree T [W±e, i]. Let
{ T [W±e, i]∪e } denote this sequence. The complete sequence { T [W, i] } is gener-
ated by merging all the sequences { T [W±e, i]∪e } of edges e that enter max� W .
We use N [W, e] to denote the smallest j, such that the subtree T [W±e, j] ∪ e
has not yet been merged into the sequence T [W, i].

The algorithm is shown in Figure 7. Subtrees are assigned to T [W, i] in
Line 14 of Generate. It can be shown that i = I[W] + 1 whenever this line
is reached. Let e1, . . . , em be all the edges entering max� W . The reduced sub-
tree w.r.t. W that is assigned to T [W, i] is chosen in Line 13 and is a minimal

Efficiently Enumerating Results of Keyword Search 69

SortedRS(G,U)
1: Initialize(|U |)
2: i := 1
3: while T [U, i] �=⊥ do
4: print(T [U, i])
5: i := i + 1
6: Generate(U, i)

Initialize(K)
1: for all subsets W ⊆ V(G), where

1 ≤ |W | ≤ K, in the �s order do
2: I[W] := 0
3: u := max� W
4: for all edges e = (v, u) in G do
5: N [W, e] := 1
6: Generate(W,1)

NextSubtree(W,e)
1: l := N [W, e]
2: if T [W ±e, l] �=⊥ then
3: return T [W ±e, l] ∪ e
4: else
5: return ⊥

Generate(W, i)
1: if I[W] ≥ i then
2: return
3: if |W | = 1 then
4: T [W, 1] := T0, where V(T0) = W

and E(T0) = ∅
5: T [W, 2] :=⊥
6: I[W] = 2
7: return
8: u := max� W
9: if { v | (v, u) ∈ E(G) } = ∅ then

10: T [W, 1] :=⊥
11: I[W] := 1
12: return
13: let e = (v, u) ∈ E(G) be such that

w(NextSubtree(W, e)) is minimal
14: T [W, i] :=NextSubtree(W, e)
15: if NextSubtree(W,e) �=⊥ then
16: Generate(W ±e, N [W, e] + 1)
17: N [W, e] := N [W, e] + 1
18: I[W] := i

Fig. 7. Enumerating RS(G, U) by increasing weight

subtree among T [W±e1 ,N [W, e1]]∪ e1, . . . , T [W±em ,N [W, em]]∪ em, which are
obtained by calling NextSubtree. Clearly, all the subtrees T [W±ej ,N [W, ej]]
(1 ≤ j ≤ m) should have been generated before T [W, i]. For that reason, if
T [W±ek ,N [W, ek]] ∪ ek is the subtree that has just been assigned to T [W, i],
then in Line 16 the subtree T [W±ek ,N [W, ek] + 1] is generated. Note that
T [W±ek ,N [W, ek] + 1] =⊥ may hold after executing Line 16; it happens if
|RS(G, W±ek)| < N [W, ek] + 1. (Note that w(⊥) = ∞.) It is also possible that
T [W±ek ,N [W, ek]+ 1] may have already been created before executing Line 16;
hence, the test in Line 1 of Generate.

The enumeration algorithm SortedRS(G, U) starts by calling the algorithm
Initialize(|U |) in order to compute T [W, 1] for every nonempty subset W , such
that |W | ≤ |U |. The loop in Line 1 of Initialize traverses the sets W in the
�s order, where W1 �s W2 if max� W1 � max� W2. After initialization, the
subtrees T [U, i] are generated in sorted order. The algorithm terminates when
T [U, i] =⊥. The following theorem states the correctness of SortedRS. The
crux of the proof (given in [12]) is in showing that each of the arrays T , I, and
N holds the correct information described above.

Theorem 4. Let G be an acyclic data graph and U be a subset of the nodes of
G. SortedRS(G, U) enumerates RS(G, U) by increasing weight.

70 B. Kimelfeld and Y. Sagiv

Theorem 5. Let K be a query of size k and G be an acyclic data graph with n
nodes and m edges. In the execution of SortedRS(G, K),

– The first delay is O
(
mnk

)
;

– For i > 1, the ith delay is O(m);
– The ith space usage is O

(
nk+2 + in2

)
.

Corollary 2. If queries are of a fixed size and data graphs are acyclic, then the
sorted RKF problem can be solved with polynomial delay.

Note that in practice, for each set W , the array T [W, i] should be implemented
as a linked list. In addition, N [W, e] should store a pointer to the list T [W±e, i].
This does not change the running time and it limits the amount of space just to
the size of the subtrees that are actually explored for W .

7 A Heuristics for Sorted Enumerations

Usually, the goal is enumeration by increasing weight. There are two approaches
for achieving this goal. In [1, 6, 7], the enumeration is by increasing weight,
but the worst-case upper bound on the running time is (at best) exponential.
In [2, 10, 13], a heuristic approach is used to enumerate in an order that is likely
to be close to the sorted order. Note that there is no guarantee by how much the
actual order may deviate from the sorted order. The upper bound on the running
time is exponential [13] or not stated [2, 10]. In comparison, the algorithms of
Sections 4 and 5 imply that enumeration by increasing weight can be done in
polynomial total time (even if the size of the query is unbounded) simply by first
generating all the fragments and then sorting them. None of the current systems
achieves this worst-case upper bound.

Generating and then sorting would work well when there are not too many
results. Next, we outline an efficient heuristics (for queries of unbounded size)
that enumerates in an order that is likely to be close to the sorted order. The
general idea is to apply the algorithms of Sections 4 and 5 in a neighborhood
of the data graph around the keywords of K, starting with the neighborhood
comprising just the keywords of K and then enlarging this neighborhood in
stages.

The heuristics for building the successive neighborhoods is based on assigning
a cost C(n) to each node n and then adding the nodes, one at a time, in the
order of increasing cost. C(n) could be, for example, the sum of (or maximal
value among) the distances between n and the keywords of K. Alternatively,
C(n) could be a number that is at most twice the weight of a minimal undirected
subtree that contains all the keywords of K and n. Note that in either case, C(n)
can be computed efficiently.

For a given neighborhood, we should generate all the K-fragments that are
included in this neighborhood. However, in order to avoid generating the same
K-fragment for two distinct neighborhoods, we only generate the K-fragments
that contain v, where v is the most-recently added node. One way of doing it is

Efficiently Enumerating Results of Keyword Search 71

by applying directly the algorithms of Sections 4 and 5, and printing only those
K-fragments that contain the node v. This would result in an enumeration that
runs in incremental polynomial time. To realize enumeration with polynomial
delay, we should have algorithms that can enumerate, with polynomial delay,
K-fragments that contain a given node v /∈ K (note that v must be an interior
node). We can show that such algorithms exist for enumerating SKFs and UKFs.
For RKFs, we can show existence of such an algorithm if the data graph is acyclic;
for cyclic data graphs, no such algorithm exists, unless P=NP. The proof of these
results is beyond the scope of this paper.

8 Conclusion and Related Work

Different systems for keyword search [1, 2, 10, 6, 7, 13] essentially solve the prob-
lem of enumerating K-fragments. We have identified three types of K-fragments
(i.e., RKFs, SKFs and UKFs) and there are four types of enumerations (as il-
lustrated in Figure 8): unsorted, heuristically sorted, approximately sorted and
sorted. Three of these types are discussed in this paper. The fourth type, namely
enumeration in an approximate order, is defined in [11]. The most desirable type
is enumeration in sorted order and, in this paper, we have given an algorithm
that does it with polynomial delay provided that the data graph is acyclic and
the K-fragments are rooted. An efficient enumeration in sorted order is possi-
ble, however, only if queries have a fixed size. The most efficient enumeration
algorithms are those that enumerate in an arbitrary order. In this paper, we
have given algorithms for enumerating all three types of K-fragments with poly-
nomial delay when the order of the results is not important. Note that by first
enumerating and then sorting, it follows that enumeration in sorted order can be
done in polynomial total time (without assuming that queries have a fixed size).
We have also shown how our algorithms for enumerating in an arbitrary order
can be the basis for developing efficient algorithms that enumerate in a heuristic
order, that is, an order that is likely to be close to the sorted order, but with-
out any guarantee. Our algorithms for enumerating in a heuristic order run with
polynomial delay, except for the case of enumerating RKFs of a cyclic data graph
where the algorithm runs in incremental polynomial time. In comparison, some
of the existing systems [6, 7, 1] have implemented algorithms that enumerate in
sorted order while other systems [2, 10, 13] have implemented algorithms that

Desirability
Approximately Sorted

Heuristically Sorted

Unsorted

Sorted

Efficiency

Fig. 8. Efficiency vs. Sorted-Order Tradeoff

72 B. Kimelfeld and Y. Sagiv

enumerate in a heuristic order. All these algorithms require exponential time in
the worst case (i.e., they are not in polynomial total time) even if queries have
a fixed size.

The results of this paper can be extended in two ways. First, for queries of
a fixed size, all types of K-fragments can be enumerated by increasing weight
with polynomial delay; however, for RKFs the polynomial delay is not as good
as the polynomial delay of the algorithm SortedRS of Section 6, which applies
only to acyclic data graphs. The second extension is enumeration in an approxi-
mate order [11], which can be done with polynomial delay even if queries are of
unbounded size. A brief overview of these extensions, including running times,
is given in [11]; the full details will be described in a future paper. Note that
the heuristics of Section 7 does not satisfy the notion of an approximate order,
but it yields better delays than those of the algorithms for enumerating in an
approximate order.

In this paper, results of keyword search are subtrees that connect the given
keywords. In [3], results are sets of semantically related nodes that contain the
keywords. These two approaches are different, because the existence of a se-
mantic relationship between some nodes entails more than just connectivity.
However, as shown in [3], the algorithms of this paper can be used for finding
semantically related nodes and, in some cases, they are even more efficient than
other approaches for finding such nodes.

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: enabling keyword search over
relational databases. In SIGMOD Conference, page 627, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In ICDE, pages 431–440,
2002.

[3] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Interconnection semantics for
keyword search in xml. In CIKM, 2005.

[4] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing
Steiner minimal trees. SIAM Journal on Applied Mathematics, 32:835–859, 1977.

[5] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword
search over relational databases. In HDMS, 2003.

[6] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational
databases. In VLDB, pages 670–681, 2002.

[7] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In ICDE, pages 367–378, 2003.

[8] V. M. Jiménez and A. Marzal. Computing the K shortest paths: A new algorithm
and an experimental comparison. In Algorithm Engineering, pages 15–29, 1999.

[9] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all max-
imal independent sets. Information Processing Letters, 27:119–123, March 1988.

[10] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karam-
belkar. Bidirectional expansion for keyword search on graph databases. In VLDB,
pages 505–516, 2005.

[11] B. Kimelfeld and Y. Sagiv. Efficient engines for keyword proximity search. In
WebDB, pages 67–72, 2005.

Efficiently Enumerating Results of Keyword Search 73

[12] B. Kimelfeld and Y. Sagiv. Efficiently enumerating results of keyword search, 2005.
Available at Kimelfeld’s home page (http://www.cs.huji.ac.il/~bennyk/).

[13] W. S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Retrieving and organizing Web
pages by “information unit”. In WWW, pages 230–244, 2001.

[14] M. Y. Vardi. The complexity of relational query languages (extended abstract).
In STOC, pages 137–146, 1982.

Mapping Maintenance in XML P2P Databases�

Dario Colazzo1 and Carlo Sartiani2

1 LRI - Université Paris Sud - France
dario.colazzo@lri.fr

2 Dipartimento di Informatica - Università di Pisa - Italy
sartiani@di.unipi.it

Abstract. Unstructured p2p database systems are usually characterized by the
presence of schema mappings among peers. In these systems, the detection of
corrupted mappings is a key problem. A corrupted mapping fails in matching the
target or the source schema, hence it is not able to transform data conforming to
a schema Si into data conforming to a schema Sj , nor it can be used for effective
query reformulation.

This paper describes a novel technique for maintaining mappings in XML p2p
databases, based on a semantic notion of mapping correctness.

1 Introduction

The peer-to-peer computational model (p2p) is nowadays massively used for sharing
and querying data dispersed over the Internet. Peer-to-peer data sharing systems can be
classified in two main categories. Structured p2p systems [1] [2] distribute data across
the network according to a hash function, so to form a distributed hash table (DHT); sys-
tems in this class allows for a fast retrieval of data (O(logn), where n is the number of
peers in the system), at the price of very limited query capabilities (key lookup queries
and, in some systems, range queries). Unstructured systems, instead, leave peers free
to manage their own data, and feature rich query languages like, for instance, XQuery
[3]. Queries are executed by flooding the network and traversing the whole system.

Most unstructured p2p database systems (see [4], [5], and [6] for instance) are char-
acterized by the presence of schema mappings among peers. A schema mapping (e.g.,
a set of Datalog rules) describes how to translate data conforming to a source schema
Si into data conforming to a target schema Sj (or to a projection of Sj), and it can be
used to reformulate, according to the Global As View (GAV) and Local As View (LAV)
paradigms [7, 8], queries on Si into queries over Sj , and vice versa. Schema mappings,
hence, allow the system to retrieve data that are semantically similar but described by
different schemas.

A main problem in mapping-based systems is the maintenance of schema mappings,
and, in particular, the detection of corrupted mappings. A corrupted mapping fails in
matching the target or the source schema, hence it is not able to transform data conform-
ing to a source schema Si into data conforming to the target schema Sj . The presence

� Dario Colazzo was funded by the RNTL-GraphDuce project and by the ACI project “Trans-
formation Languages for XML: Logics and Applications”. Carlo Sartiani was funded by the
FIRB GRID.IT project and by Microsoft Corporation under the BigTop project.

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 74–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mapping Maintenance in XML P2P Databases 75

of such mappings can affect query processing: since queries are processed by flooding
the network and by repeatedly applying reformulation steps, a corrupted mapping may
make the data of some peers unreachable; moreover, optimization techniques based on
mapping pre-combination can be vanished by the presence of corrupted mappings.

Nowadays, mapping maintenance is performed manually by the site administrator,
and quick responses to sudden mapping corruptions are not possible. To the best of our
knowledge, the only proposed technique for automatically maintaining mappings, in
the context of XML p2p database systems, has been described in [9]. This technique
is based on the use of a type system capable of checking the correctness of a query,
in a XQuery-like language [10], wrt a schema, i.e., if the structural requirements of
the query are matched by the schema. By relying on this type system, a distributed
type-checking algorithm verifies that, at each reformulation step, the transformed query
matches the target schema, and, if an error is raised, informs the source of the target
peers that there is an error in the mapping.

The technique described in [9] has two main drawbacks. First, it is not complete,
since wrong rules that are not used for reformulating a given query cannot be discov-
ered. Second, the algorithm requires that a query were reformulated by the system be-
fore detecting a possible error in the mapping; this implies that the algorithm cannot
directly check for mapping correctness, but, instead, it checks for the correctness of
a mapping wrt a given reformulation algorithm. Hence, mapping correctness is not a
query-independent, semantics-based property, but is strongly related to the properties
of the reformulation algorithm.

Our Contribution. This paper describes a novel technique for maintaining mappings
in XML p2p database systems. As for [9], the technique relies on a type system for
an XML query language: while in [9] we exploited the type system to check for the
correctness of a query wrt a given schema, in the spirit of [10], in this paper we develop a
slightly different type system focused on type inference. The main idea is to compare the
inferred type of each mapping query with the target schema, so to verify the adherence
of the mapping to this schema.

Unlike [9], the proposed technique is independent from queries, does not require
a prior query reformulation, and it is complete, i.e., any error in a mapping will be
discovered.

The paper proposes a semantic notion of mapping correctness based on a
simulation-like form of type projection. Type projection brings the essence of the rela-
tional projection to XML, and it can be safely reduced to standard type-checking among
weakened types, as shown in Section 5. To minimize false-negatives, we provide quite
precise type inference techniques, inspired by those proposed in [10].

The proposed technique can be used in unstructured p2p database systems as well as
in structured systems, like [11], that combine the DHT paradigm with mappings.

Paper Outline. The paper is structured as follows. Section 2 describes a reference sce-
nario for our technique, and briefly introduce the system model and the query language.
Section 3, then, defines our notions of mapping validity (no wrong rules wrt the source
schema) and mapping correctness (no wrong rules wrt the target schema). Section 4
describes the type system we use for inferring query types. Section 5, next, shows how
the definitions of Section 3 can be turned in an operational technique with the assistance

76 D. Colazzo and C. Sartiani

of our type system. Section 6, then, discusses some related work. In Section 7, finally,
we draw our conclusions.

2 Motivating Scenario

We describe our technique by referring to a sample XML p2p database system inspired
by Piazza [4]. The system is composed of a dynamic set of peers, capable of executing
queries on XML data, and connected through sparse point-to-point schema mappings.

Each peer publishes some XML data (db), that may be empty, in which case the peer
only submits queries to the system. Furthermore, each peer has two distinct schema
descriptions. The first one, U (the peer schema), describes how local data are organized.
The second one, V (the peer view), is a view over U , and has a twofold role. First, it
works as input interface for the peer, so that queries sent to peer pi should respect pi

view of the world. Second, it describes the peer view of the world, i.e., the virtual view
against which queries are posed: each peer poses queries against its peer view, since it
assumes that the outer world adopts this schema.

The peer schema and the peer view are connected through a schema mapping (in
the following we will use the expression “schema mapping” to denote any mapping
between types). The mapping can be defined according to the Global As View (GAV)
approach, or to the Local As View (LAV) approach. Our approach is based on GAV
mappings, where the target schema is described in terms of the source schema; nev-
ertheless, this approach applies to LAV mappings too, since, as noted in [12], a LAV
mapping from pi to pj can be interpreted as a GAV mapping from pj to pi.

In addition to (possibly empty) data and schema information, each peer contains a
set, possibly a singleton, of peer mappings {mij}j . A peer mapping mij from peer pi

to peer pj is a set of queries that show how to translate data belonging to the view of pi

(Vi) into data conforming to a projection of the view of pj (Vj).
Mapping queries are expressed in the same query language used for posing general

queries: this language, called µXQ, is roughly equivalent to the FLWR core of XQuery,
and will be described in Section 3. These mappings link peers together, and form a
sparse graph; queries are then executed by exploring the transitive closure of such
mappings.

Systems conforming to this architecture rely on schema mappings to process and
execute queries. The correctness of the query answering process for a given query de-
pends on the properties of the reformulation algorithm as well as on the correctness of
the mappings involved in the transformation: indeed, if the mapping fails in matching
the target schema, the transformed query will probably fail as well.

The evolution of the system, namely the connection of new nodes and the discon-
nection of existing nodes, as well as the changes in peer data and schemas, can dramat-
ically affect the quality of schema mappings and, in particular, lead to the corruption
of existing mappings. This will reflect on query answering and on existing optimiza-
tion techniques for p2p systems, such as the mapping composition approach described
in [13].

The following Example illustrates the basic concepts of the query language, provides
an intuition of the mapping correctness notion (described in Section 3), and shows how
mapping incorrectness can reflect on query answering.

Mapping Maintenance in XML P2P Databases 77

Paris Melbourne

AucklandNew YorkPisa

Fig. 1. Bibliographic p2p network

Example 1. Consider a bibliographic data sharing system, whose topology is shown in
Figure 1.

Assume that Pisa and New York use the following views.
PisaBib = bib[(Author)*]
Author = author[Name, Affiliation, Paper*]
Name = name[String]
Affiliation = affiliation[String]
Paper = paper[Title, Year]
Title = title[String]
Year = year[Integer]

NYBib = bib[(Article|Book)*]
Article = article[Author*,Title,Year, RefCode]
Author = author[String]
Title = title[String]
Year = year[Integer]
Book = book[Author*,Title,Year, RefCode]
RefCode = refCode[String]

Suppose now that Pisa uses the following queries to map its view into the view of New
York.
NYBibliography <-
Q1($input): for $y in $input/year return $y
Q2($input): for $t in $input/title return $t
Q3($input): for $p in $input//paper,

$t in $p/title
return article[Q2($p), Q1($p),

for $aut in $input/author,
$pap in $aut/paper
$title in $pap/title

where $title = $t
return author[$aut/name/text()]]

Q4($input): for $bib in /bib return bib[Q3($bib)]

This mapping transforms data conforming to a large fragment of the PisaBib
schema (only affiliation elements are discarded) into data conforming to a fraction
of the NYBib schema. This is a quite common situation in data integration and p2p
data sharing systems, since usually only a fraction of semantically related heteroge-
neous schemas can be reconciled. Since this mapping is not a function from PisaBib
to NYBib (it does not produce refCode elements), standard result analysis based on
subtyping cannot be used to check its correctness.

Consider query Q3 in the Pisa → NY mapping. The outer for clause iterates over
paper element, and binds the $p and $t variables to paper and title elements respec-

78 D. Colazzo and C. Sartiani

tively. The outer return clause produces the results of the query; in this case, a nested
query changing the nesting of author and paper elements is invoked. The correlation
of the nested query with the outer query is given by the inner where clause, which filters
the variable bindings of the inner query.

As it can be noted, this mapping is correct since it transforms a data instance con-
forming to PisaBib into a data instance conforming to a projection of NYBib.

Assume now that New York slightly changes its view: in particular, the site admin-
istrator changes the way author names are represented: instead of a simple author ele-
ment, information about author’s first name and second name is inserted into the author
element: Author = author[first[String],second[String]].

This change in the target schema makes the Pisa → NY mapping incorrect. Indeed, a
PisaBib data instance is transformed in a data instance having simple content author
elements, while the new New York view requires more complex author elements.

The incorrectness of the Pisa → NY schema mapping reflects on query answering.
Indeed, consider the query shown in Figure 2 (a). This query, submitted by a user in
Pisa, asks for all articles written by Mary F. Fernandez. The query is first executed
locally in Pisa. Then, the system reformulates the query so to match New York view;
this reformulation is performed by directly composing the query with the mapping from
Pisa to New York, relying again on standard algorithms for query unfolding [14, 13]1.

At the end of the reformulation process, the reformulated query, shown in Figure 2
(b), is then sent to the New York site. Unfortunately, the transformed query does not
match the new view of New York, so the Pisa user cannot gather results from the New
York site.

articles Fernandez[
for $aut in $bib/author,

$pap in $aut/paper,
$t in $pap/title,
$n in $aut/name

let $mf := ‘‘Mary F. Fernandez’’
where $n = $mf
return article[$t, $pap/year]

(a) Pisa user query

articles Fernandez[
for $a in $bib/article,

$aut in $a/author
let $mf := ‘‘Mary F. Fernandez’’
where $aut = $mf
return article[$a/title, $a/year]

(b) Transformed Pisa user query

Fig. 2. Reformulation of a user query

3 Mapping Validity and Correctness

In this Section we describe the notions of mapping validity (no wrong rules wrt the
source schema) and mapping correctness (no wrong rules wrt the target schema). These
notions are central to our approach, and allow for the definition of an operational check-
ing technique, as shown in Section 5.

1 We show a minimal transformed query, obtained by minimizing the original transformed query
and by deleting all redundant subqueries.

Mapping Maintenance in XML P2P Databases 79

To define mapping properties, we have to formally present the query language used
for expressing both user queries and mapping rules, as well as the type language used
for describing schemas and views.

3.1 Query Language

User queries and mapping rules are expressed in the µXQ query language [10], whose
grammar is shown in Table 1. µXQ is a minimal core language for XML data, roughly
equivalent to the FLWR core of XQuery. We impose two further restrictions wrt this
grammar: first, we forbid the navigation of the result of a nested query by the outer
query; second, we restrict the predicate language to the conjunction, disjunction, or
negation of variable comparisons. These restrictions, also present in Piazza, allow for
a better handling of errors at the price of a modest decrease in the expressive power of
the language.

The semantics of the language and the required auxiliary functions are shown in
Tables 2 and 3. There, ρ is a substitution assigning a forest to each free variable in the
query; also, dos is a shortcut for descendant-or-self. All the rest is self explicative.

Note that our data model is unordered, so that we consider a tree l[f1, f2] as equiv-
alent to l[f2, f1]. As in Piazza, this assumption is motivated by the non feasibility of
imposing a global document order over XML data dispersed over a p2p network.

Table 1. µXQ grammar

Q ::= () | b | l[Q] | Q, Q | x child :: NodeTest | x dos :: NodeTest
| for x in Q return Q | let x ::= Q return Q

| for x in Q where P return Q | let x ::= Q where P return Q
NodeTest ::= l | node() | text()

P ::= true | χ δ χ | empty(χ) | P or P | not P | (P)
χ ::= x | x

δ ::= = | <

Table 2. µXQ semantics

�b�ρ
�= b �x�ρ

�= ρ(x)
�x�ρ

�= ρ(x) �()�ρ
�= ()

�Q1, Q2�ρ
�= �Q1�ρ, �Q2�ρ �l[Q]�ρ

�= l[�Q�ρ]
�x child :: NodeTest�ρ

�= childr(�x�ρ) :: NodeTest

�x dos :: NodeTest�ρ
�= dos(�x�ρ) :: NodeTest

�let x ::= Q1 return Q2�ρ
�= �Q2�ρ,x�→�Q1�ρ

�for x in Q1 return Q2�ρ
�=
�

t∈trees(�Q1�ρ)�Q2�ρ,x�→t

�let x ::= Q1 where P return Q2�ρ
�= if P (ρ, x �→�Q1�ρ) then �Q2�ρ,x�→�Q1�ρ else ()

�for x in Q1 where P return Q2�ρ
�=
�

t∈trees(�Q1�ρ)(if P (ρ, x �→ t) then �Q2�ρ,x�→t else ())

80 D. Colazzo and C. Sartiani

Table 3. Auxiliary functions

dos(b) �= b childr(b) �= ()
dos(l[f]) �= l[f], dos(f) childr(l[f]) �= f

dos(()) �= () dos(f, f ′) �= dos(f), dos(f ′)
b :: l

�= () l[f] :: l
�= l[f]

() :: l
�= () (f, f ′) :: l

�= f :: l, f ′ :: l

m[f] :: l
�= () m �= l

b :: node() �= () () :: node() �= ()
m[f] :: node() �= m[f] (f, f ′) :: node() �= f :: node(), f ′ :: node()
b :: text() �= b () :: text() �= ()
m[f] :: text() �= () (f, f ′) :: text() �= f :: text(), f ′ :: text()

3.2 Type Language

We adopt, essentially, XDuce’s type language [15], with two exceptions. First, we ex-
clude (vertical) recursive types. This is motivated by the fact that FLWR queries are not
powerful enough to transform trees with arbitrary depth, hence we can restrict the type
language to types that describe trees with limited and finite depth. As we will see, this
restriction will allow us to introduce rather precise type-inference techniques, that will
minimize false negatives returned while checking for mapping correctness.

Second, we consider commutative product types. In other words, we do not assume
any order on sequence types, so that T , U ∼ U, T . This is motivated by the fact that
in distributed environments is almost impossible to reach a common agreement about
ordering, so some peer may assume that title elements precede author elements in the
document order, while other peers may assume the contrary. Hence, we must adopt
types that abstract from ordering. This aspect will affect the notions of type projection
as well.

Following XDuce notation, types are defined as follows:
Types T ::= () | B | l[T] | T, T | T | T | T∗
Base Type B ::= String

Here, () is the type for the empty sequence value; B denotes the type for base values
(without loss of generality, we only consider string base values); types T , U and T | U
are, respectively, product and union types, while T ∗ is the type for repetition. In the
following, an element type with empty content l[()] will always be abbreviated as l[].

Type semantics is standard: � � is the minimal function from types to sets of forests
that satisfies the following monotone equations:

�()� �= {()} �B�
�= {b | b is a string} �l[T]� �= {l[f] | f ∈�T �}

�T1 | T2�
�= �T1� ∪ �T2� �T1, T2�

�= {f1, f2 | fi ∈�Ti�} �T∗�
�= �T �∗

In the following we will use f : T as shortcut for f ∈ �T �. Type semantics induces the
following subtyping relation:

T < U ⇔def �T � ⊆ �U�

Mapping Maintenance in XML P2P Databases 81

3.3 Correctness of Schema Mappings

In this Section, we introduce and formalize our notion of mapping correctness. The
notion is semantic and is not related to any particular type system.

Definition 1 (Mapping). A mapping m from the peer view of pi to the peer view of pj

is a set of queries m = {qk}k on data (possibly) conforming to pi’s view and returning
data (possibly) conforming to pj’s view.

The previous definition states that a mapping is just a set of queries that may match
the source and/or the target schema. Unlike [16], where mappings must match both the
target and the source schema, we do not impose constraints on mappings. This allows
for capturing mappings that are imprecise or that become incorrect because of a change
in the system status.

The following definition introduces the notion of mapping validity.

Definition 2 (Mapping Validity). A mapping m = {qk}k from pi’s view to pj’s view
(Vi → Vj) is valid if and only if, for each query qk, qk is correct wrt Vi, in the sense
that, for each non-empty subquery q of qk, there exists a data instance d of Vi such that,
when evaluated on d, q will return a non-empty result.

Mapping validity implies that a valid mapping must be correct wrt the source schema,
i.e., it matches the structure and the constraints of the source schema. We adopt the
query correctness notion described in [18, 10] and [9]. Mapping validity2 allows for
identifying mappings that are obsolete, i.e., that contain rules referring to fragments of
the source schema that have been changed or deleted. From now on, we will assume
that each mapping is valid, and focus on the detection of errors wrt the target schema.

Definition 3 (Mapping Correctness). A mapping m = {qk}k from pi’s view to pj’s
view (Vi → Vj) is correct if and only if, for each query qk, for each data instance dh

conforming to Vi, there exists a data instance dl conforming to Vj , such that, qk(dh) �
dl, where � is defined as shown in Definition 4.

Definition 4 (Value Projection). The value projection relation � is the minimal rela-
tion such that:

() � f f1, f2 � f3, f4 if (f1 � f3 ∧ f2 � f4)
b1 � b2 f1 � f3 if ∃f2 : f1 � f2 ∧ f2 � f3

f � f, () l[f1] � l[f2] if f1 � f2

f1, f2 � f2, f1

The above definitions state that a mapping from Vi to Vj is correct if and only, for each
rule in the mapping, the result of each query on Vi is mapped, according to the � relation,
into a value conforming toVj. � is an injective simulation relation among values, inspired
by the projection operator of the relation data model. Intuitively, d1 � d2 if there exists
a subterm d3 in d2 such that d3 matches d1; this is very close (up to simulation) to the
relational projection, where r1 = πAr2 if r1 is equal to the fragment of r2 obtained by

2 Validity can be checked by algorithms proposed in [18][10][9]; these algorithms are polyno-
mial in most practical cases.

82 D. Colazzo and C. Sartiani

discarding non-A attributes. This notion of projection for XML trees is a generalization
of that introduced in [17], where leaf values are taken into account too.

Our correctness notion is semantic, in the sense that it depends on the semantics of
queries and types rather than on a set of type-checking rules; this implies that errors are
independent from the type-checking rules, so that our correctness notion can be adopted
in any context and with any type language.

4 Type System

Our type system is a variation of the type systems shown in [18][10][9]. While those
type systems focus on the detection of errors in a query wrt a source schema, this type
system focuses on type inference.

4.1 Judgments and Type Rules

To infer the output type of a µXQ query, we adopt rules, shown in Tables 4 and 5,
that prove judgments of the form Γ � Q : T , where the environment Γ provides
information about the types of Q free variables, while T is an upper bound for all
possible values returned by Q, when evaluated under a valid substitution, that is an
assignment of free variables that respects type constraint in Γ . Variable environments
and valid substitutions are defined below.

Variable Environments Γ ::= () | x : T , Γ | x : T , Γ

Table 4. Query Type Rules

(TYPEEMPTY)
WF(Γ � () : ())

Γ � () : ()

(TYPEATOMIC)
WF(Γ � b : B)

Γ � b : B

(TYPEVAR)
χ : T ∈ Γ WF(Γ � χ : T)

Γ � χ : T

(TYPEELEM)
Γ � Q : T

Γ � l[Q] : l[T]

(TYPEFOREST)
Γ � Qi : Ti i = 1, 2

Γ � Q1, Q2 : T1, T2

(TYPELETWHERESPLITTING)
Γ � Q1 : T1 Split(T1) = {A1, . . . , An}
Γ, x : Ai � P Γ, x : Ai � Q2 : Ui i = 1 . . . n

Γ � let x ::= Q1 where P return Q2 : U1 | . . . | Un | ()

(TYPEFORWHERE)
Γ � Q1 : T1 Γ � x in T1 → Q2 where P : T2

Γ � for x in Q1 where P return Q2 : T2 | ()

(TYPELETSPLITTING)
Γ � Q1 : T1 Split(T1) = {A1, . . . , An}
Γ, x : Ai � Q2 : Ui i = 1 . . . n

Γ � let x ::= Q1 return Q2 : U1 | . . . | Un

(TYPEFOR)
Γ � Q1 : T1

Γ � x in T1 → Q2 where true : T2

Γ � for x in Q1 return Q2 : T2

Mapping Maintenance in XML P2P Databases 83

Table 5. Query Type Rules: Rules for Iteration, Child and Dos

(TYPEINEMPTY)
WF(Γ � x in () → Q where P : ())

Γ � x in () → Q where P : ()

(TYPEINUNION)
Γ � x in Ti → Q where P : T ′

i i = 1, 2

Γ � x in T1 | T2 → Q where P : T ′
1 | T ′

2

(TYPEINTREE)
(T = m[T ′] ∨ T = B) Split(T) = {A1, . . . , An}
Γ, x : Ai � P Γ, x : Ai � Q : Ui i = 1 . . . n

Γ � x in T → Q where P : U1 | . . . | Un

(TYPEINCONC)
Γ � x in Ti → Q where P : T ′

i i = 1, 2

Γ � x in T1, T2 → Q where P : T ′
1, T

′
2

(TYPEINSTAR)
Γ � x in T → Q where P : U

Γ � x in T∗ → Q where P : U∗

(TYPECHILD)

WF(Γ � x child :: NodeTest : U)
x : T ∈ Γ ∧ (T = m[T ′′] ∨ T = B)
T ′ = if T = m[T ′′] then T ′′else ()
� T ′ :: NodeTest ⇒ U

Γ � x child :: NodeTest : U

(TYPEDOS)
WF(Γ � x dos :: NodeTest : U)
x : T ∈ Γ ∧ (T = m[T ′′] ∨ T = B)
{U1, . . . , Un} = Trees(T)
U ′ = (U1 | . . . | Un)∗
� U ′ :: NodeTest ⇒ U

Γ � x dos :: NodeTest : U

A variable environment Γ is well-formed if no variable is defined twice, and if every
for-variable x (i.e., a variable bound by a for clause) is associated to a tree type (l[T ′]
or B).

Definition 5 (Valid Substitutions R(Γ)). For any well-formed environment Γ , we de-
fine the set of valid substitutions wrt Γ as follows:

R(Γ) = {ρ | χ �→f ∈ ρ ⇒ (χ : T ∈ Γ ∧ f ∈ �T �)}

A first basis for a good level of precision is given by a particular technique we use to
infer types for for queries. Given a query for x in Q1 return Q2, in order to infer a
type for it, the rules first infer a type T1 for Q1, and then they simulate a sort of abstract
iteration over T1, in order to type the body Q2. This is done by means of the auxiliary
judgment Γ � x in T1 → Q2 : T2

3.
For example, if T1 = S1, S2, to type for x in Q1 return Q2 we recursively prove

Γ � x in Si → Q2 : S′
i, for i = 1, 2, and then combine the results to obtain

T2 = S′
1, S

′
2. The recursive process is still purely structural for union and * types, and

stops when a tree type is finally encountered.
Similar comments hold for queries with where conditions, where we use an auxiliary

judgment Γ � x in T → Q where P : T . Type correctness of where clauses is
proved by rules over judgments Γ � P which are quite standard (and omitted in this
abstract for reasons of space).

3 This technique was first formalized in [19], where no properties about the system were proved.

84 D. Colazzo and C. Sartiani

More in details, case analysis for iterations is performed by (TYPEIN) rules. In par-
ticular, termination is ensured by rule (TYPEINTREE), which stops the case-analysis,
since a tree type T =B or T =m[T ′] is reached, inserts the assumption x : T in Γ , starts
the analysis of the where condition P , and falls back to standard type-checking. Ob-
serve here that we use an operator Split(T); for the moment just assume that Split(T) =
{T }. Later we will modify this operator in order to improve precision of type inference.
Rule (TYPELETSPLITTING) is standard, since we are assuming that Split(T) = {T }.

Rule (TYPECHILD) requires the type of x to be a tree type m[T ′], and uses � T ′ ::
NodeTest ⇒ U to restrict the content type T ′ to the tree types with structure satisfying
NodeTest. Rules to prove judgments � T ′ :: NodeTest ⇒ U are straightforward, and
their meaning is stated in the following lemma.

Lemma 1 (Type Filtering Checking). For any T :

� T :: NodeTest ⇒ U ⇔ �U� = {f :: NodeTest | f ∈ �T �}

Rule (TYPEDOS) is similar, and is strictly inspired by the technique adopted in the
current W3C XQuery type system. Instead of using the content type T ′, it extracts all
the node types {U1, . . . , Un} that are reachable from T , using the function Trees(T)
defined later, and defines a new type U ′ = (U1 | . . . | Un)∗. U ′ is the type of any forest
that contains only nodes whose type is one of the Ui’s, hence is an appropriate type
for the forest of all descendants of a tree of type T . The type of x dos :: NodeTest is
obtained by restricting U ′ to the tree types with structure satisfying NodeTest.

We can now define the auxiliary function Trees(T):

Definition 6 (Subtrees Type Extraction).

Trees(()) �= ∅ Trees(T, U) �= Trees(T) ∪ Trees(U)
Trees(B) �= {B} Trees(T∗) �= Trees(T)
Trees(l[T]) �= {l[T]} ∪ Trees(T) Trees(T | U) �= Trees(T) ∪ Trees(U)

Lemma 2 (Soundness of DOS). For any T :

{U1, . . . , Un} = Trees(T) ∧ U = (U1 | . . . | Un)∗ ⇒ ∀f ∈ �T �. dos(f) ∈ �U�

4.2 Soundness of the Type System

We provisionally assumed that Split(T) = {T }, which results in a completely standard
LET-RETURN type rule. This is sufficient to obtain the canonical ‘soundness’ property
(Theorem 1): types are upper bounds for the set of all possible results.

Theorem 1 (Upper Bound). For any well-formed Γ and query Q:

Γ � Q : U ∧ ρ∈R(Γ) ⇒ �Q�ρ ∈ �U�

The proof of this theorem is essentially the same as the one given in [18] [10], since
considered XPath-like paths do not match the horizontal structure of sequences, so their
typing does not depend on ordering.

Mapping Maintenance in XML P2P Databases 85

This theorem is crucial to guarantee soundness of mapping correctness checking.
Indeed, if Q is a mapping from Si to Sj , and Γ � Q : U , then thanks to the above
theorem, we can compare U wrt Sj in order to verify whether the semantics of Q
conforms to Sj . In the next section we will formalize how this comparison can be done
in order to agree to the notion of mapping correctness (Definition 3).

The system cannot be made complete: as for any type system based on regular ex-
pression types, the presence of queries that may produce sets of trees that are not regular
languages makes completeness impossible. However, we will see later how the preci-
sion of the type system may be improved, and why more precision is desirable in our
context.

5 Correctness Checking

Definitions 3 and 4 describe our notion of mapping correctness, but they cannot directly
be used to check whether a mapping is correct or not. To obtain a constructive definition,
we need to switch from values to types.

Definition 7 (Type Projection). Given two type T1 and T2, we say that T1 is a projec-
tion of T2 (T1 � T2) if and only if: ∀d1 : T1 ∃d2 : T2.d1 � d2.

As for the value projection relation, the type projection relation is semantics, and
states that a type T1 is a projection of a type T2 if, for each data instance d1 conforming
to T1, there exists a data instance d2 conforming to T2 such that d1 is a projection of d2.

Type projection is quite different from standard subtyping, since it is based on the
idea that T1 � T2 if T1 matches a fragment of T2, while T1 < T2 implies that T1 is
more specific than T2.

To use type projection in mapping correctness checking, we must correlate type pro-
jection and mapping correctness. To this aim, we can rely on the result type of a query
as inferred by our type system, as shown in the following theorem.

Theorem 2 (Completeness of Type Projection). Given a mapping m = {qk}k from
Vi to Vj , m is correct if ∀qk. Γ � qk : T and T � Vj , where Γ is an environment
obtained from Vi.

The previous theorem states that, if one can establish a projection relation between
the inferred type and the target schema of a mapping, the correctness of the mapping is
proved.

The type projection relation is still not operational, since its definition involves a
universal quantification on the data instances of the source schema. To overcome this
problem and obtain a practical way of checking type projection, we introduce the no-
tion of type approximation. Type approximation weakens types by enriching base and
element types with a union with the empty sequence type; this allows one to relate
type projection to standard subtyping for unordered types, whose decidability has been
proved in [20].

5.1 Type Approximation

Type approximation is based on the idea of weakening types by introducing unions with
the empty sequence type.

86 D. Colazzo and C. Sartiani

Definition 8 (Type Approximation). Given a type U , we indicate with U� the type
obtained by U just by replacing each subexpression U ′, corresponding to a tree type
l[] or B, with U ′? (that is (U ′ | ())). Formally

()� �= () T | U� �= T � | U� l[T]� �= l[T �]?
B� �= B? T, U� �= T �, U� T∗� �= T �∗

It is easy to prove that T < T �. To prove the main results about type approximation,
we have to introduce the notion of contexts, whose grammar is shown below.

Contexts C ::= x | () | C, C | l[C] | b

A context is a partially specified forest, where variables indicate arbitrary forests. Vari-
ables are always assumed to be unique, and context instantiation is indicated as Cρ,
where ρ is a set of variable assignments x �→ f . We indicate with C() the forest ob-
tained by C by replacing each variable with the empty sequence.

If we indicate with f � f ′ the fact that the two forests are equal up to ordering
among children and values at leafs, we can state the following lemma.

Lemma 3. Given two forests f1 and f2, the following relation holds:

f1 � f2 ⇔ ∃C.∃ρ. C() � f1 ∧ f2 � Cρ

The following theorem correlates T � with T .

Theorem 3.
T � � T

Lemma 4. For each type U :

1. ∀f : U�. (f �= () ⇒ ∃C, ρ, f ′ : U. C() = f ∧ f ′ = Cρ)

2. ∀f : U, C, ρ. (f = Cρ ⇒ C() : U�)

3. ∀C. (C() �= () ∧ C() : U� ⇒ ∃f : U.∃ρ. f = Cρ)

The previous lemma serves to prove the following main theorem.

Theorem 4 (Type Projection as Sub-typing).

T � U ⇔ T < U�

The previous theorem states that type projection between T and U can be checked by
weakening U and, then, by checking for the existence of a subtyping relation between
T and U�. This theorem proves the decidability of type projection, since decidability
of subtyping for a superset of our type language has been proved in [20]. For what con-
cerns the complexity of type projection, we recently proved that, for our type language,
type projection can be checked in polynomial type, hence making our maintenance ap-
proach more effective.

Mapping Maintenance in XML P2P Databases 87

5.2 Improving Precision of Type Inference

As already observed, inferred types cannot precisely capture query semantics. How-
ever, there is some space for gaining more precision, which implies less false-negative
in checking mapping correctness. This is typical of every approach based on result anal-
ysis, including those of languages of the XDuce family.

As shown in [18][10], by tuning the operator Split(T), we may improve the precision
of the type system. Under the assumption Split(T) = {T }, the presented type system
is not precise enough when, for example, there are variables that occur more than once
(non-linear variables) and with a union type. For example, consider the (artificial) type
X = data[mbl[]+ | phn[]+], and the sequence query (x/mbl, x/phn). When x has
type X , this query yields either a sequence of elements mbl[] or a sequence of elements
phn[]. Instead, as in XQuery, our type system infers a type (mbl[]∗, phn[]∗), which also
contains sequences with both mbl[] and phn[] elements. If this type is compared with
(mbl[]∗ | phn[]∗), in order to check whether the query output conforms to this expected
type, the checking will fail thus producing a false negative.

We solve these problems by using in the rules a finer Split() function, which produces
more precise types. For example, if the input type X = data[mbl[]+ | phn[]+] is split
in the two types data[mbl[]+] and data[phn[]+], and, then, two separate analysis are
performed, we obtain the types data[mbl[]∗] and data[phn[]∗]. Then the query type is
the union of these two types, and thus a subtype of the previous expected type, thus
avoiding a false negative.

The definition of Split(T) is non-trivial in the presence of recursive types. In [18][10]
we propose a solution that works under a mild restrictions over the use of recursion.
Here, we propose the same definitions without making any restriction as recursive types
have already been excluded.

Definition 9 (Split(T)).

Split(()) �= {()} Split(T | U) �= Split(T) ∪ Split(U)
Split(B) �= {B} Split(l[T]) �= {l[A] | A ∈ Split(T)}
Split(U∗) �= {U∗} Split(T, U) �= {(A, B) | A ∈ Split(T) ∧ B ∈ Split(U)}

Splitting stops when a *-type is met. As shown in [10], this ensures acceptable com-
plexity for a very wide class of cases, while ensuring good precision at the same time,
as in schemas most union types are the form (T | U)∗, which are not split.

To have an idea of the precision that we gain by splitting, we have that a query Q
without where conditions always evaluates to (), under well-typed substitutions, if and
only if its inferred type is (); as shown in [10], this does not hold without splitting.
As a second example, the reader can run the rules over Example 1, and realize that the
inferred type is quite precise and is a projection of the target type.

To conclude, since we are considering non recursive types, we believe that an alter-
native typing for x dos :: NodeTest expressions, based on the abstract execution of the
descendant-or-self operator over the type bound to x, by possibly using splitting, may
further improve precision. We leave this issue as future work.

88 D. Colazzo and C. Sartiani

6 Related Work

To the best of our knowledge, the only alternative technique for detecting corrupted
mappings in XML p2p systems is the one described in [9]. We have already discussed
differences between the present approach and that work. Other works on p2p systems
[16] [5] do not address the problem of checking mapping correctness: they always as-
sume mappings to be correct, with a correctness notion very close to our semantic cor-
rectness. Starting from correct mappings, [16] proposes a correct and complete query
answering algorithm for p2p data integration systems.

Our type system is a variation of the type systems of [10] and [9], obtained by drop-
ping error-checking in favor of a better precision in type inference. In these works we
have already outlined advantages of these type systems wrt to the W3C XQuery type
system [21].

7 Conclusions and Future Work

This paper presented a novel technique for detecting corrupted mappings in XML p2p
data integration systems. This technique can be used in any context where a schema
mapping approach is used, and it is based on a semantic notion of mapping correctness,
unrelated to the query transformation algorithms being used. This form of correctness
works on the ability of a mapping to satisfy the target schema, and it is independent
from queries.

To check mapping correctness, we introduced a notion of type projection for XML
types. By reducing type projection to standard subtyping among weakened types, it
follows that type projection is decidable [20]. We recently proved that type projection
can be checked in polynomial time.

We proved that mapping correctness can be reduced to type projection between the
inferred result type of the mapping and the target schema, and showed that our approach
is complete, i.e., all errors will be detected. To decrease false negatives, we augment the
precision of type inference through type splitting.

Although this work is not in its infancy, much work remains to do as it forms the
basis for a massive future work. In particular, we plan, in the near future, to implement
this technique in a centralized, logical p2p system, so to verify its applicability in a
background maintenance activity. Finally, we plan to enrich our approach with some
form of self-healing technique, so to suggest to the user possible corrections for any
detected wrong mapping.

References

1. Dabek, F., Brunskill, E., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, I., Balakrishnan,
H.: Building peer-to-peer systems with chord, a distributed lookup service. In: HotOS.
(2001) 81–86

2. : (The FreePastry System. www.cs.rice.edu/cs/systems/pastry/freepastry/)
3. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0:

An XML Query Language. Technical report, World Wide Web Consortium (2003) W3C
Working Draft.

Mapping Maintenance in XML P2P Databases 89

4. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infrastructure for
semantic web applications. In: Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, Budapest, Hungary, 20-24 May 2003, ACM (2003) 556–567

5. Franconi, E., Kuper, G.M., Lopatenko, A., Zaihrayeu, I.: Queries and updates in the codb
peer to peer database system. In: VLDB. (2004) 1277–1280

6. Goasdoué, F., Rousset, M.C.: Answering queries using views: A krdb perspective for the
semantic web. ACM Trans. Internet Techn. 4 (2004) 255–288

7. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume I. Computer
Science Press (1988)

8. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume II. Computer
Science Press (1989)

9. Colazzo, D., Sartiani, C.: Typechecking Queries for Maintaining Schema Mappings in XML
P2P Databases. In: Proceedings of the 3th Workshop on Programming Language Technolo-
gies for XML (Plan-X), in conjunction with POPL 2005. (2005)

10. Colazzo, D., Ghelli, G., Manghi, P., Sartiani, C.: Types for Path Correctness of XML Queries.
In: Proceedings of the 2004 International Conference on Functional Programming (ICFP),
Snowbird, Utah, September 19-22, 2004. (2004)

11. Abiteboul, S., Manolescu, I., Preda, N.: Sharing Content in Structured P2P Networks. Tech-
nical report, INRIA (2005)

12. Tatarinov, I.: Semantic Data Sharing with a Peer Data Management System. PhD thesis,
University of Washington (2004)

13. Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-data management systems.
In: SIGMOD Conference. (2004) 539–550

14. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: VLDB. (2003)
572–583

15. Hosoya, H., Pierce, B.C.: XDuce: An XML Processing Language (1999) Preliminary Report.
16. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of peer-to-peer

data integration. In: PODS. (2004) 241–251
17. Marian, A., Siméon, J.: Projecting xml documents. In: VLDB. (2003) 213–224
18. Colazzo, D.: Path Correctness for XML Queries: Characterization and Static Type Checking.

PhD thesis, Dipartimento di Informatica, Università di Pisa (2004)
19. Fernandez, M., Siméon, J., Wadler, P.: A Semi-monad for Semi-structured Data. In: ICDT.

(2001) 263–300
20. Dal-Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. In Jones, N.D., Leroy,

X., eds.: POPL, ACM (2004) 135–146
21. Draper, D., Fankhauser, P., Fernandez, M., Malhotra, A., Rose, K., Rys, M., Siméon, J.,

Wadler, P.: XQuery 1.0 and XPath 2.0 Formal Semantics. Technical report, World Wide
Web Consortium (2005) W3C Working Draft.

22. Benzaken, V., Castagna, G., Frisch, A.: Cduce: an xml-centric general-purpose language. In:
ICFP. (2003) 51–63

Inconsistency Tolerance in P2P Data Integration:
An Epistemic Logic Approach

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, and Riccardo Rosati2

1 Faculty of Computer Science, Free University of Bolzano/Bozen,
Piazza Domenicani 3, I-39100 Bolzano, Italy

calvanese@inf.unibz.it
2 Dipartimento di Informatica e Sistemistica,

Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

{degiacomo, lembo, lenzerini, rosati}@dis.uniroma1.it

Abstract. We study peer-to-peer data integration, where each peer models an
autonomous system that exports data in terms of its own schema, and data in-
teroperation is achieved by means of mappings among the peer schemas, rather
than through a global schema. We propose a multi-modal epistemic semantics
based on the idea that each peer is conceived as a rational agent that exchanges
knowledge/belief with other peers, thus nicely modeling the modular structure of
the system. We then address the issue of dealing with possible inconsistencies,
and distinguish between two types of inconsistencies, called local and P2P, re-
spectively. We define a nonmonotonic extension of our logic that is able to reason
on the beliefs of peers under inconsistency tolerance. Tolerance to local inconsis-
tency essentially means that the presence of inconsistency within one peer does
not affect the consistency of the whole system. Tolerance to P2P inconsistency
means being able to resolve inconsistencies arising from the interaction between
peers. We study query answering and its data complexity in this setting, and we
present an algorithm that is sound and complete with respect to the proposed
semantics, and optimal with respect to worst-case complexity.

1 Introduction

In this paper we study data integration in a peer-to-peer (P2P) architecture. In a P2P data
integration system (P2PDIS), each peer is an autonomous information system providing
part of the overall information available from a distributed environment, and acts both
as a client and as a server. Information integration in these systems does not rely on
a single global view (as in traditional data integration [22]): instead, it is achieved by
establishing mappings between peers, and by exploiting such mappings to collect and
merge data from the various peers when answering user queries.

P2P data integration has been the subject of several investigations in the last years.
Recent papers focused on providing techniques for evolving from basic P2P net-
works supporting only file exchanges to more complex systems like schema-based
P2P networks, capable of supporting the exchange of structured contents. From pa-
pers like [19,4,18,10,16,27] the idea of peer data management emerges: every peer is

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 90–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inconsistency Tolerance in P2P Data Integration 91

characterized by a schema that represents the domain of interest from the peer per-
spective, and is equipped with mappings to other peers [25], each mapping providing a
semantic relationship between pairs of peers. Data integration in such systems is typi-
cally virtual: data stored in one peer is not replicated in other peers, and when a query
is posed to a peer, query processing is done by both looking at local data, and collect-
ing relevant data from other peers according to the mappings. Cycles in the mappings
pose challenging problems, and various proposals have been put forward to deal with
them. For example, in [10], an epistemic semantics is proposed that weakens the usual
first-order semantics of mappings, and allows for both a better modeling of the modular
structure of the system, and decidable (even polynomially tractable w.r.t. data complex-
ity) query answering. Some papers look at peer data management under the perspective
of exchanging data between peers. Peers are again interconnected by means of map-
pings, but in this case, the focus is on materializing the data flowing from one peer to
another [14,2].

In this paper we are interested in virtual P2P data integration, and thus we do not deal
with the issue of materializing exchanged data. In particular, we aim at addressing an
important problem that is still unexplored in P2P data integration, namely inconsistency
tolerance, i.e., how to deal with inconsistencies in the data stored by the peers.

The problem of dealing with inconsistency has been addressed in several research
projects both in the context of a single database, and in the context of traditional data
integration. This problem is closely related to the studies in belief revision and up-
date [1,15], which deal with the problem of integrating new information with previ-
ous knowledge. In the context of databases, the underlying theory takes the form of a
database schema, and the revision process focuses on data. Thus, research in this set-
ting often concentrates on specialized algorithmic and complexity results for this case.
The general goal is to provide informative answers even when a database that does not
satisfy its integrity constraints (see, for example, [3,8]). Most of these papers rely on
the notion of repair as introduced in [3]: a repair of a database is a new database that
satisfies the constraints in the schema, and minimally differs from the original one.

The above results are not specifically tailored to the case of different consistent
sources that are mutually inconsistent, which is the case of interest in data integration.
More recently, some papers (see, e.g., [9,6]) have tackled data inconsistency in a data
integration setting, where the basic idea is to apply the repairs to data retrieved from
the sources, again according to some minimality criteria. To the best of our knowledge,
the only paper that deals with inconsistencies in P2P architectures is [5]. That approach
is based on the notion of “solution” for a peer P , i.e., an instance for the peer database
schema that respects both the mappings and the trust relationships that P has with other
peers, and stays as close as possible to the available data in the system. This mechanism
characterizes how each peer locally repairs data collected from other peers. On the con-
verse, we provide here a formal semantics to the whole P2PDIS which does not rely on
a particular repairing strategy adopted by the peers.

In this paper we follow the approach of [10] and study its extension as follows:

– We want to stress the modularity of P2P architectures, i.e., the fact that each peer
is autonomous. To this end, we formalize a P2P data integration system in terms
of a multi-modal epistemic logic, namely K45n, where each peer is modeled as

92 D. Calvanese et al.

a rational agent that exchanges knowledge/belief with other peers. This is in line
with the idea of modeling a distributed information system in terms of multi-agent
modal logic [13]. Our formalization nicely models the modular structure of the
system, without resorting to any assumptions, such as acyclicity, on its topology.

– We want our semantics to be inconsistency tolerant in two ways. First, we want a
P2PDIS to be able to “isolate” peers that are locally inconsistent, i.e., that contain
inconsistent data. Second, we aim at a system that is tolerant to P2P inconsistency,
i.e., is able to repair inconsistent data coming from different peers. In order to deal
with both types of tolerance, we introduce a novel nonmonotonic epistemic logic,
called K45A

n , which extends K45n with nonmonotonic modal operators. Within
this logic, we represent a P2PDIS in which each locally inconsistent peer is iso-
lated, and each other peer on the one hand, believes its own data, and, on the other
hand, maximizes information coming from other peers, but without falling into
inconsistency.

– Finally, we aim at designing a distributed query answering algorithm in the line
of the one proposed in [10]. Indeed, we present an algorithm that is sound and
complete with respect to our K45A

n -formalization of P2PDISs, thus showing that
query answering is decidable. More precisely, under reasonable assumptions on the
reasoning capabilities of each peer, our algorithm works in coNP data complexity
(i.e., the complexity with respect to the size of the data at the peer sources). We also
observe that the problem is coNP-hard already for very simple peer theories, thus
showing that our technique is optimal with respect to worst-case complexity.

The paper is organized as follows. In Section 2 we introduce the P2PDIS frame-
work. In Section 3 we model the framework in terms of the multi-modal epistemic
logic K45n. In Section 4 we present K45A

n , and use it for handling inconsistency.
In Section 5 we provide a sound and complete query answering technique, and es-
tablish computational complexity of query answering. In Section 6 we conclude the
paper.

2 Framework

In our work, we use the framework for peer-to-peer (P2P) data integration presented
in [10], which is briefly described in this section.

We refer to a fixed, infinite, denumerable set Γ of constants. Such constants are
shared by all peers, and denote the data items managed by the P2PDIS. Moreover,
given a relational alphabet A, we denote with LA the set of function-free first-order
logic (FOL) formulas whose relation symbols are in A and whose constants are in Γ .

A P2P data integration system P = {P1, . . . , Pn} is constituted by a set of n peers.
Each peer Pi ∈ P (cf. [19]) is defined as a tuple Pi = (id , G, S, L, M,L), where:

– id is a symbol that identifies the peer Pi within P , called the identifier of Pi.
– G is the schema of Pi, which is a finite set of formulas of LAG (representing local

integrity constraints), where AG is a relational alphabet (disjoint from the other
alphabets in P) called the alphabet of Pi. We assume that the language LAG of
peer Pi includes the special sentence ⊥i that is false in every interpretation for

Inconsistency Tolerance in P2P Data Integration 93

LAG . Intuitively, the peer schema provides an intensional view of the information
managed by the peer.

– S is the (local) source schema of Pi, which is simply a finite relational alphabet
(again disjoint from the other alphabets in P), called the local alphabet of Pi.
Intuitively, the source schema describes the structure of the data sources of the peer
(possibly obtained by wrapping physical sources), i.e., the sources where the real
data managed by the peer are stored.

– L is a set of (local) mapping assertions between G and S. Each local mapping
assertion is an expression of the form cqS � cqG, where cqS and cqG are two
conjunctive queries of the same arity, respectively over the source schema S and
over the peer schema G. The local mapping assertions establish the connection be-
tween the elements of the source schema and those of the peer schema in Pi. In
particular, an assertion of the form cqS � cqG specifies that all the data satis-
fying the query cqS over the sources also satisfy the concept in the peer schema
represented by the query cqG. In the terminology used in data integration, the com-
bination of peer schema, source schema, and local mapping assertions constitutes a
GLAV data integration system [22] managing a set of sound data sources S defined
in terms of a (virtual) global schema G.

– M is a set of P2P mapping assertions, which specify the semantic relationships
that the peer Pi has with the other peers. Each assertion in M is an expression of
the form cq ′ � cq , where cq , called the head of the assertion, is a conjunctive
query over the peer (schema of) Pi, while cq ′, called the tail of the assertion, is a
conjunctive query of the same arity as cq over (the schema of) one of the other peers
in P . A P2P mapping assertion cq ′ � cq from peer Pj to peer Pi expresses the fact
that the Pj-concept represented by cq ′ is mapped to the Pi-concept represented by
cq . From an extensional point of view, the assertion specifies that every tuple that
can be retrieved from Pj by issuing query cq ′ satisfies cq in Pi. Observe that no
limitation is imposed on the topology of the whole set of P2P mapping assertions
in the system P , and hence, as in [10], the set of all P2P mappings may be cyclic.

– L is a relational query language specifying the class of queries that the peer Pi can
process. We assume that L is any fragment of FOL that accepts at least conjunctive
queries and the sentence ⊥i. We say that the queries in L are those accepted by
Pi. Notice that this implies that, for each P2P mapping assertion cq ′ � cq from
another peer Pj to peer Pi in M , we have that cq ′ is accepted by Pj .

An extension for a P2PDIS P = {P1, . . . , P2} is a set D = {D1, . . . , Dn}, where
each Di is an extension of the predicates in the local source schema of peer Pi.

A P2PDIS, together with an extension, is intended to be queried by external users. A
user enquires the whole system by accessing any peer P of P , and by issuing a query q
to P . The query q is processed by P if and only if q is expressed over the schema of P
and is accepted by P .

Example 1. Let us consider the P2PDIS in Figure 1, in which we have 4 peers P1, P2,
P3, and P4 (in the following, we assume that each peer Pi is identified by i).

The global schema of peer P1 is formed by a relation schema
Person1(name, livesIn, citizenship), where name is the key (we underline the key

94 D. Calvanese et al.

Citizen4(name, livesIn, citizenship)

S4(name, livesIn, citizenship)
("Joe", "Rome", "Italian")

Person3(name, livesIn, citizenship)
P1

Person1(name, livesIn, citizenship)

S1(name, livesIn)

("Joe", "Rome")

P2
Citizen2(name, birthDate, citizenship)

S2(name, birthDate, citizenship)
("Joe", "24/12/70", "Canadian")

P3

P4

Fig. 1. A P2P system

of a relation). P1 contains a local source S1(name, livesIn), mapped to the global view
by the assertion {x, y | S1(x, y)} � {x, y | ∃z. Person1(x, y, z)}. Moreover, it has a
P2P mapping assertion {x, z | ∃y. Citizen2(x, y, z)} � {x, z | ∃y. Person1(x, y, z)}
relating information in peer P2 to those in peer P1.

P2 has Citizen2(name, birthDate, citizenship) as global schema, and a local source
S2(name, birthDate, citizenship) mapped to the global schema through the local map-
ping {x, y, z | S2(x, y, z)} � {x, y, z | Citizen2(x, y, z)}. P2 has no P2P mappings.

P3 has Person3(name, livesIn, citizenship) as global schema, contains no local
sources, and has a P2P mapping {x, y, z | Person1(x, y, z)} � {x, y, z |
Person3(x, y, z)} with P1, and a P2P mapping {x, y, z | Citizen4(x, y, z)} �

{x, y, z | Person3(x, y, z)} with P4.
P4 has Citizen4(name, livesIn, citizenship) as global schema, and a local source

S4(name, livesIn, citizenship) mapped to the global schema through the local mapping
{x, y, z | S4(x, y, z)} � {x, y, z | Citizen4(x, y, z)}. P4 has no P2P mappings.

Finally, Figure 1 shows also an extension of the P2P data integration system,
which includes S1("Joe","Rome"), S2("Joe","24/12/70","Canadian"),
and S4("Joe","Rome","Italian").

3 Multi-modal Epistemic Formalization

In this section we present a logical formalization of P2PDISs of the kind described
above. Although one possible choice for formalizing such systems is classical first or-
der logic, it was argued in [10] that using epistemic logic brings several advantages.
However, while [10] resorted to epistemic logic with a single modal operator, here we
use a multi-modal epistemic logic, based on the premise that each peer in the system
can be seen as a rational agent. Furthermore, we move from the modal logic of knowl-
edge/belief S5 to the modal logic K45 [11,23]. More precisely, the formalization we
provide in this section, is based on K45n, the multi-modal version of K45 .

The language L(K45 n) of K45n is obtained from first-order logic by adding a set
K1, . . . ,Kn of modal operators, for the forming rule: if φ is a (possibly open) formula,
then also Kiφ is so, for 1 ≤ i ≤ n for a fixed n. In K45n, each modal operator is used
to formalize the epistemic state of a different agent. Informally, the formula Kiφ should

Inconsistency Tolerance in P2P Data Integration 95

be read as “φ is known to hold by the agent i”. In fact, in K45n, we do not have that
what is known by an agent must hold in the real world: the agent can have inaccurate
knowledge of what is true, i.e., believe something to be true although in reality it is
false. Often this kind of knowledge is referred to as belief. On the other hand, K45n

states that the agent has complete information on what it knows, i.e., if agent i knows φ
then it knows of knowing φ, and if agent i does not know φ, then it knows that it does
not know φ. In other words, the following assertions hold for every K45n formula φ:

Kiφ ⊃ Ki(Kiφ) known as the axiom schema 4
¬Kiφ ⊃ Ki(¬Kiφ) known as the axiom schema 5

To define the semantics of K45n, we start from first-order interpretations. In par-
ticular, we restrict our attention to first-order interpretations that share a fixed infinite
domain ∆. We further assume that for each domain element d ∈ ∆, we have a unique
constant cd ∈ Γ that denotes exactly d, and, vice versa, that every constant cd ∈ Γ
denotes exactly one domain element d ∈ ∆1.

Formulas of K45n are interpreted over K45n-structures. A K45n-structure is a
Kripke structure E of the form (W, {R1, . . . Rn}, V), where: W is a set whose ele-
ments are called possible worlds; V is a function assigning to each w ∈ W a first-order
interpretation V (w); and each Ri, called the accessibility relation for the modality Ki,
is a binary relation over W , with the following constraints:

if (w1, w2) ∈ Ri and (w2, w3) ∈ Ri then (w1, w3) ∈ Ri, i.e., Ri is transitive
if (w1, w2) ∈ Ri and (w1, w3) ∈ Ri then (w2, w3) ∈ Ri, i.e., Ri is euclidean

A K45n-interpretation is a pair (E, w), where E = (W, {R1, . . . Rn}, V) is a
K45n-structure, and w is a world in W . A sentence (i.e., a closed formula) φ is true in
an interpretation (E, w) (or, is true on world w ∈ W in E), written E, w |= φ iff:2

E, w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E, w |= φ1 ∧ φ2 iff E, w |= φ1 and E, w |= φ2
E, w |= ¬φ iff E, w �|= φ
E, w |= ∃x. ψ iff E, w |= ψx

c for some constant c
E, w |= Kiφ iff E, w′ |= φ for every w′ such that (w, w′) ∈ Ri

We say that a sentence φ is satisfiable if there exists a K45n-model for φ, i.e., a
K45n-interpretation E, w such that E, w |= φ, unsatisfiable otherwise. A model for a
set Σ of sentences is a model for every sentence in Σ. A sentence φ is logically implied
by a set Σ of sentences, written Σ |=K45n

φ, if and only if in every K45n-model E, w
of Σ, we have that E, w |= φ.

Notice that, since each accessibility relation of a K45n-structure is transitive and
Euclidean, all instances of axiom schemas 4 and 5 are satisfied in every K45n-
interpretation, whereas no instance of the axiom schema (Kiφ ⊃ φ) is so.

1 In other words, the constants in Γ act as standard names [23].
2 We have used ψx

c to denote the formula obtained from ψ by substituting each free occurrence
of the variable x with the constant c.

96 D. Calvanese et al.

Due to the characteristics mentioned above, K45n is well-suited to formalize
P2PDISs of the kind presented in Section 2. Let P = {P1, . . . , Pn} be a P2PDIS in
which each peer Pi has identifier i. For each peer Pi = (i, G, S, L, M,L) we define the
theory TK(Pi) in K45n as the union of the following sentences:

– Global schema G of Pi: for each sentence φ in G, we have

Kiφ

Observe that φ is a first-order sentence expressed in the alphabet of Pi, which is
disjoint from the alphabets of all the other peers in P .

– Local mapping assertions L between G and the local source schema S: for each
mapping assertion {x | ∃y. bodycqS

(x,y)} � {x | ∃z. bodycqG
(x, z)} in L, we

have
Ki(∀x. ∃y. bodycqS

(x,y) ⊃ ∃z. bodycqG
(x, z))

– P2P mapping assertions M : for each P2P mapping assertion {x |
∃y. bodycqj

(x,y)} � {x | ∃z. bodycqi
(x, z)} between the peer j and the peer

i in M , we have

∀x. Kj(∃y. bodycqj
(x,y)) ⊃ Ki(∃z. bodycqi

(x, z)) (1)

In words, this sentence specifies the following rule: for each tuple of values t,
if peer j knows the sentence ∃y. bodycqj

(t,y), then peer i knows the sentence
∃z. bodycqi

(t, z) holds.

We denote by TK(P) the theory corresponding to the P2PDIS P , i.e., TK(P) =⋃
i=1,...,n TK(Pi).

Example 2. We provide now the formalization of the P2PDIS of Example 1. The theory
TK(P1) modeling peer P1 is the conjunction of:

K1(∀x, y, y′, z, z′. Person1(x, y, z) ∧ Person1(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K1(∀x, y. S1(x, y) ⊃ ∃z. Person1(x, y, z))
∀x, z. K2(∃y. Citizen2(x, y, z)) ⊃ K1(∃y. Person1(x, y, z))

The theory TK(P2) modeling peer P2 is the conjunction of:

K2(∀x, y, y′, z, z′. Citizen2(x, y, z) ∧ Citizen2(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K2(∀x, y, z. S2(x, y, z) ⊃ Citizen2(x, y, z))

The theory TK(P3) modeling peer P3 is the conjunction of:

K3(∀x, y, y′, z, z′. Person3(x, y, z) ∧ Person3(x, y′, z′) ⊃ y = y′ ∧ z = z′)
∀x, y. K1(∃z. Person1(x, z, y)) ⊃ K3∃z. Person3(x, z, y)
∀x, y, z. K4(Citizen4(x, y, z)) ⊃ K3Person3(x, y, z)

The theory TK(P4) modeling peer P4 is the conjunction of:

K4(∀x, y, y′, z, z′. Citizen4(x, y, z) ∧ Citizen4(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K4(∀x, y, z. S4(x, y, z) ⊃ Citizen4(x, y, z))

Inconsistency Tolerance in P2P Data Integration 97

The extension D = {D1, . . . , Dn} of a P2PDIS P is modeled as a sentence consti-
tuted by the conjunction of all facts corresponding to the tuples stored in the sources,
i.e., DB(D) =

∧n
i=1 DB(Di) where DB(Di) = Ki(

∧
t∈rDi r(t)).

A client of the P2PDIS interacts with one of the peers, say peer Pi, posing a query
to it. A query q is an open formula q(x) with free variables x expressed in the language
accepted by the peer Pi (we recall that such a language is a subset of first-order logic).
The semantics of a query q ∈ L posed to a peer Pi = (i, G, S, L, M,L) of P with
respect to an extension D is defined as the set of tuples ANSK45n

(q, i,P ,D) = {t |
TK(P) ∪ DB(D) |=K45n

Kiq(t)}, where q(t) denotes the sentence obtained from
the open formula q(x) by replacing all occurrences of the free variables in x with the
corresponding constants in t.

Interestingly, our current formalization extends the one in [10] in two ways. First, we
have moved to multi-modal epistemic logic, so as to model each peer as an autonomous
agent. Second, we have moved from S5 to K45, hence dropping the assumption that
what is believed by an agent is actually true. These modifications set the stage for the
treatment of inconsistencies to be presented next.

4 Inconsistency Tolerance

We now modify our basic framework so as to be able to handle inconsistency. In partic-
ular, we want the P2PDIS to be inconsistency-tolerant in the following sense:

1. When a peer is locally inconsistent, i.e., data at the sources in Pi contradict, via the
local mapping, the peer schema, making the whole peer inconsistent, the P2PDIS
should be equivalent to the one obtained by eliminating the peer Pi from the system.
In other words, an inconsistent peer should be “isolated” from the other peers: in
this way, a local inconsistency does not affect the overall consistency (and meaning)
of the system. The choice of isolating locally inconsistent peers is motivated by the
modularity of P2PDISs pursued by our approach, in which each peer is considered
as a black box. Of course, the study of inconsistency might be also interesting in an
alternative setting not focused on modularity. However, this is outside the scope of
the present paper.

2. In the presence of P2P inconsistency, i.e., when in a peer Pi the data coming from
another peer Pj (through a P2P mapping) contradict the local data of Pi (or the data
coming to Pi from another peer Pk), the peer Pi should not reach an inconsistent
state: rather, it should discard a minimal amount of the data retrieved from the other
peers in order to preserve consistency.

We now formally state the above notions of local inconsistency and P2P inconsis-
tency. Let P = {P1, . . . , Pn} be a P2PDIS and D = {D1, . . . , Dn} be an extension D
for P . We say that:

– A peer Pi ∈ P is locally inconsistent wrt Di if T −
K (Pi) ∪ DB(Di) |=K45n

Ki⊥i,
where T −

K (Pi) is obtained from TK(Pi) by dropping the sentences formalizing the
P2P mappings (otherwise we say that Pi is locally consistent wrt Di).

– A peer Pi ∈ P is P2P inconsistent wrt D if Pi is locally consistent wrt Di and
TK(P) ∪ DB(D) |=K45n

Ki⊥i.

98 D. Calvanese et al.

As we said before, we aim at a formalization that makes our system inconsistency-
tolerant. It is immediate to see that no monotonic logic, e.g., K45n, is suited for this pur-
pose. Therefore, we now introduce a nonmonotonic variant of our logic, called K45A

n .

The Nonmonotonic Modal Logic K45A
n . The language L(K45A

n) is an exten-
sion of L(K45 n), obtained by adding to the first-order modal language a new set
of modal operators, A1, . . . ,An. The semantics of L(K45A

n) sentences is non-
monotonic, and is formally defined as follows. A K45A

n -structure E is a tuple
(W, {R1, . . . , Rn, Ra

1 , . . . , R
a
n}, V), where W is a set of worlds, each Ri and each

Ra
i are transitive and Euclidean binary relations over W , and V is a function map-

ping worlds to first-order interpretations. Therefore, with respect to K45n-structures,
K45A

n -structures have n additional accessibility relations Ra
1 , . . . , Ra

n. Such relations
account for the additional modal operators A1, . . . ,An.

The notion of truth of a K45A
n sentence in a world of a K45A

n -structure is analogous
to the notion given in Section 3 for K45n, with the addition of:

E, w |= Aiφ iff E, w′ |= φ for each w′ such that (w, w′) ∈ Ra
i

So far, the logic K45A
n does not appear as a significant extension of K45n: indeed,

according to the above notion of truth, the new modal operators Ai are treated just like
any Ki operator in K45n, so there is no apparent reason to distinguish the Ai’s opera-
tors from the Ki’s. Actually, the different meaning of the two sets of modal operators in
the logic K45A

n , as well as its nonmonotonicity, is due to the following notion of K45A
n -

model for a sentence φ, which makes use of a preference order over K45A
n -structures.

Let E = (W, {R1, . . . , Rn, Ra
1 , . . . , R

a
n}, V) and E′ = (W ′, {R′

1, . . . , R
′
n, Ra

1 ,
. . . , Ra

n}, V ′) be K45A
n -structures. We say that E′ is preferred to E if the following

conditions hold:

1. W ′ ⊇ W and V ′(w) = V (w) for every w ∈ W ,
2. R′

i ⊇ Ri, for all i ∈ {1, . . . , n},
3. there exist w1 ∈ W , w2 ∈ W ′, i ∈ {1, . . . , n} such that (w1, w2) ∈ R′

i − Ri and
there exists no w′ ∈ W such that (w1, w

′) ∈ Ri and V (w′) = V ′(w2).

Intuitively, E′ is preferred to E if E′ is a structure “larger” than E (conditions 1 and
2) and there exists a world w1 which is connected in E′ (through the relation R′

i) to
a larger set of possible worlds than in E (condition 3), which means that w1 in E has
“less objective knowledge” than in E′ with respect to the modality Ki. For instance,
it can be immediately verified that, if E′ is preferred to E, then, for each first-order
sentence φ and for each w ∈ W , if E′, w |= Kiφ then E, w |= Kiφ, but not vice-versa.

Let φ ∈ L(K45A
n), let E = (W, R1, . . . , Rn, Ra

1 , . . . , Ra
n, V) be a K45A

n -structure,
and let w ∈ W . (E, w) is a K45A

n -model for φ if the following conditions hold:

1. E, w |= φ;
2. Ri = Ra

i for each i ∈ {1, . . . , n};
3. there exists no K45A

n -structure E′ = (W ′, {R′
1, . . . , R

′
n, Ra

1 , . . . , Ra
n}, V ′) such

that E′ is preferred to E, and E′, w |= φ.

The notions of model of a set of sentences and of logical implication are defined in the
same way as in the case of K45n.

Inconsistency Tolerance in P2P Data Integration 99

The above semantics formalizes the idea of selecting K45A
n -structures that satisfy

two intuitive principles: (i) knowledge is minimal, which is realized through the notion
of preference between structures; and (ii) assumptions are justified by knowledge, which
is realized by the fact that, for each i, the meaning of the operators Ai and Ki is the
same, since Ri = Ra

i . Such semantic principles of minimal knowledge and justified
assumptions are well-known in nonmonotonic reasoning [24,26]. In particular, the logic
K45A

n can be seen as a first-order, multimodal generalization of [24].

Handling Local Inconsistency. To capture tolerance wrt local inconsistency, we need
to refine the epistemic formalization of P2P mapping assertions presented in Section 3
as follows: for each P2P mapping assertion of peer i in M , we replace in TK(Pi) the
sentence (1) with

∀x. ¬Aj⊥j ∧ Kj(∃y. bodycqj
(x,y)) ⊃ Ki(∃z. bodycqi

(x, z))

It is easy to see that, for a P2PDIS P without locally inconsistent peers, the new
formalization of P coincides with the formalization in the logic K45n.

On the other hand, the following theorem shows that, with the above change, the
P2PDIS is tolerant to local inconsistency, in the sense that it isolates the peers that are
locally inconsistent.

Theorem 1. Let P be a P2PDIS, let D be an extension for P , let Pi ∈ P be a
peer locally inconsistent wrt Di, and let P ′ = P − {Pi}. Then, for each query q
posed to a peer Pj ∈ P different from Pi, we have that ANSK45A

n
(q, j,P ,D) =

ANSK45A
n
(q, j,P ′,D).

Handling Both Local and P2P Inconsistency. We are now ready to formalize, in
K45A

n , P2PDISs that are inconsistency-tolerant wrt both local and P2P mappings.
Again, the K45A

n theory representing the P2PDIS P , denoted by TA(P), is similar
to the theory TK(P) defined in Section 3, but with an important difference on how to
formalize P2P mapping assertions. In particular, such a formalization is obtained by
replacing each sentence of the form (1) with

∀x. ¬Aj⊥j ∧ Kj(∃y. bodycqj
(x,y)) ∧ ¬Ai(¬∃z. bodycqi

(x, z)) ⊃ Ki(∃z. bodycqi
(x, z))

Informally, the above sentence specifies the following rule: for each tuple of val-
ues t, if peer j is consistent and knows the sentence∃y. bodycqj

(t,y), and the sen-
tence ∃z. bodycqi

(t, z) is consistent with what peer i knows, then peer i knows the
sentence ∃z. bodycqi

(t, z). In other words, information flows from peer j to peer i
through a P2P mapping assertion only if adding such information to peer i does not
give rise to a P2P inconsistency in peer i. More precisely, the meaning of the above
sentence in K45A

n is that exactly a maximal amount of information (i.e., a maximal set
of tuples) consistent with peer i flows from peer j to peer i through the P2P mapping
assertion.

The semantics ANSK45A
n
(q, i,P ,D) of a query q posed to a peer Pi of a P2PDIS

P wrt an extension D is defined as for K45n, except that now we have to take into
account the K45A

n formalization of the P . The following theorem shows that such a
formalization is a “conservative extension” of the one based on K45n, in the sense that,

100 D. Calvanese et al.

if no peer is locally inconsistent, and the data at the sources do not give rise to P2P
inconsistencies, then the semantics of queries is the same in the two logics.

Theorem 2. Let P be a P2PDIS and let D be an extension for P such that each peer in
P is neither locally inconsistent, nor P2P inconsistent wrt D. Then, for each peer Pi ∈
P and for each query q posed to Pi, ANSK45A

n
(q, i,P ,D) = ANSK45n

(q, i,P ,D).

Moreover, the following theorem shows that the new formalization enjoys one of the
basic properties for being tolerant to P2P inconsistency.

Theorem 3. Let P be a P2PDIS and let D be an extension for P . If Pi ∈ P is locally
consistent wrt Di, then TA(P) ∪ DB(D) �|=K45A

n
Ki⊥i.

Finally, we remark that the above semantics implies that: (i) when inconsistency
arises between local data and non-local data in a peer, i.e., when data coming from the
peer sources through the local mapping contradicts the data retrieved by a peer through
a P2P mapping, then the peer always prefers the local data. Formally, in this case there
is one K45A

n -model for the P2PDIS, which represents the situation in which non-local
data is discarded; (ii) when inconsistency arises between two different pieces of non-
local data, i.e., when a piece of data retrieved by a peer through a P2P mapping contra-
dicts another piece of data retrieved through the P2P mappings, then no preference is
made between these two pieces of information, in the sense that in this case there are
two K45A

n -models for the P2PDIS, each of which represents the situation in which one
of the two pieces of data is discarded.

Example 3. Consider the P2PDIS of Example 1. It is easy to see that P3
gets from P1 that Person3("Joe","Rome","Canadian") and from P4 that
Person3("Joe","Rome","Italian"), but since name is a key for Person3 this
would give rise to an inconsistency. As a result, we have two K45A

n models,
one in which Person3("Joe","Rome","Canadian") holds, and one in which
Person3("Joe","Rome","Italian") holds, and hence P3 does not know anymore
the citizenship of "Joe". However, P3 still knows that "Joe" lives in "Rome". In
other words, the query {x | ∃y. Person3("Joe", x, y)} returns {"Rome"}, while the
query {y | ∃x. Person3("Joe", x, y)} returns the empty set.

5 Query Processing

In this section we study query answering in a P2P setting. We present a distributed
algorithm for answering queries in a P2P system, we prove its termination, soundness
and completeness, and then we use it to provide the complexity characterization of
the query answering problem. The algorithm extends the one presented in [7] with the
capability in handling inconsistency in accordance to the P2P system formalization in
the multimodal logic K45A

n .

The Algorithm. The algorithm is based on two main functionalities, called user query
handler and peer query handler, that are described in Figure 2. Each peer must provide
such functionalities in order to answer a user query posed to any peer in the P2P system
P . Such functionalities are executed over an extension D of P .

Inconsistency Tolerance in P2P Data Integration 101

Algorithm P.user-query-handler, with P = (id , G, S, L, M, L)
Input: user query q ∈ L
Output: ANSK45A

n
(q, id , P , D)

begin
generate a new transaction id T ;
(DP , rq) := P.peer-query-handler(q, T);
return Eval(rq,DP);

end

Algorithm P.peer-query-handler
Input: query q ∈ L, transaction id T
Output: Datalog¬ program DP = (DPI ,DPE), query predicate rq in DPI

begin
(rq,DPI) := computePerfectRef(q, σ(P));
(⊥id ,DP ′

I) := computePerfectRef(⊥id , σ(P));
DPI = DPI ∪ DP ′

I ; DPE := ∅;
for each predicate r ∈ S ∪ AuxAlph(P) occurring in DPI do

if getTransaction(r, T) = notProcessed
then begin

setTransaction(r, T, processed);
if r ∈ S then DPE := DPE ∪ Ext(r,D);
else if isConsistent(π(r))
then begin

(DP ′, r′) := π(r).peer-query-handler(Q(r),T);
ρ := r(x) ← r′(x), not ⊥id ;
DPI := DPI ∪ ρ ∪ DP ′

I ;
DPE := DPE ∪ DP ′

E ;
end

end
return (DP , rq);

end

Fig. 2. Algorithms user-query-handler and peer-query-handler, executed over an extension D

Each user query q to the peer P is the input of the user query handler of P . Such
a module computes the set ANSK45A

n
(q,P ,D) by evaluating a suitable Datalog¬ pro-

gram, i.e., a Datalog program enriched with unstratified negation, which is returned by
the peer query handler of P . Roughly speaking, the module peer query handler refor-
mulates the query q in terms of a Datalog¬ program over the data sources of P , and
combines rules and facts thus obtained with the programs provided by consistent peers
connected to P that the module queries by calling their own peer query handler. A suit-
able rule (using negation in its body) is also added to the program to make data coming
from other peers contribute to answer computation only if they do not generate incon-
sistency within P (i.e., they do not contradict local data of the peer P or data coming
from another peer). Obviously, each queried peer can in turn propagate the computation
by invoking the peer query handlers of its neighborhoods. The association of the iden-
tifier of a transaction (started by the user query handler) to each peer query handler call
ensures termination of the process (even in the presence of cycles among peers).

102 D. Calvanese et al.

In the algorithms of Figure 2, DP denotes a Datalog¬ program constituted by a
set of rules DPI , and a set of facts DPE . The pair (rq ,DPI), denotes a Datalog¬

query, whereas Eval(rq,DP) indicates the evaluation of the predicate rq over the stable
models of the program DP [28]. Also, starting from P = (id , G, S, L, M,L) we define
a simplified peer σ(P) = (id , G, S ∪ AuxAlph(P), L ∪ LAuxAlph(P), ∅,L), where we
drop the P2P mapping assertions, and “simulate” their effects by adding the new source
symbols AuxAlph(P) (one for each assertion) and the new local mappings LAuxAlph(P)
involving them. In particular for a mapping cq ′ � cq from peer P ′ to P , we introduce
a new source relation r with a local mapping {x | r(x} � cq , and use the notation
Q(r) to denote cq ′ and π(r) to denote P ′ (see also [10] for further details).

The peer query handler makes use of a function computePerfectRef which, taken
as input a query q and σ(P), returns the perfect reformulation of q in σ(P), that is
a query qr such that, for each extension D of the source predicates S ∪ AuxAlph(P),
qD
r = {t | T (σ(P)) ∪ TD |= q(t)}, where T (σ(P)) is the first-order theory obtained

from TK(σ(P)) by dropping the modal operator in front of the assertions constructed
from G and L ∪ LAuxAlph(P) (see Section 3) and TD is used denote the set of facts
corresponding to D. In the terminology used in data integration, computePerfectRef
computes the query that returns the certain answers to the query q posed to the single
peer σ(P) wrt a source database D [22].

We assume that each peer P is able to compute the perfect reformulation in σ(P) of
any query q accepted by P . We also assume that such reformulation can be expressed
in Datalog¬, and call reformulation capable each peer that satisfies the above assump-
tions. Notable cases in which the above assumption holds can be found in the extensive
literature on data integration and data exchange (see, e.g., [20,12]).

The use of the functions getTransaction and setTransaction guarantees that a peer
query handler never processes the same mapping query twice in the same transaction,
whereas isConsistent(π(r)) is used to check if the peer π(r) is locally consistent. This
function is implemented by asking the query ⊥j to π(r), where j is the identifier of
π(r). Furthermore, Ext(r,D) denotes the set {r(t) | t ∈ rD}, i.e., the extension of r
in D. Finally, the rule ρ := r(x) ← r′(x), not ⊥id specifies that data coming from
the peer π(r) contribute to the answer to the query q only if they do not generate any
inconsistency in the peer P . Such a mechanism does the job since we include in the
program DPI the rules that define the predicate ⊥id by means of the function call
computePerfectRef(⊥id , σ(P)).

Termination and Correctness. Termination of the algorithm follows immediately from
the fact that, through the use of the transaction states of the procedures getTransaction
and setTransaction in P.peer-query-handler, each mapping query associated with a
predicate in AuxAlph(P) is processed at most once for each user query. Moreover, the
algorithm is sound and complete with respect to the K45A

n formalization of the P2P
system.

Theorem 4. Let P be a P2P system, P = (id , G, S, L, M,L) a peer in P , q ∈
L a query of arity n over P , and D an extension for P . Then, the execution of
P.user-query-handler(q) over D terminates, and a n-tuple t of constants in Γ is in
the set of returned answers if and only if t ∈ ANSK45A

n
(q, id ,P ,D).

Inconsistency Tolerance in P2P Data Integration 103

Complexity. Finally, we characterize the computational complexity of the problem of
query answering in our P2P data integration setting, with respect to the size of data
stored in the peers of P , i.e., the size of the extension D for P (data complexity). No-
tice that computing perfect reformulations through the algorithm computePerfectRef
does not depend on the data at the sources, therefore it does not affect data
complexity.

Theorem 5. Let P be a P2P system where each peer is reformulation capable. Let
P = (id , G, S, L, M,L) be a peer in P , D an extension for P , q ∈ L a query of arity
n over P , and t a n-tuple of constants in Γ . The problem of establishing whether t ∈
ANSK45A

n
(q, id ,P ,D) is in coNP in the size of D (i.e., in data complexity). Moreover,

it is coNP-hard in data complexity even in a setting where only key constraints are
allowed in peer schemas.

Proof (sketch). Membership in coNP follows from Theorem 4 and from the fact that
checking whether t ∈ Eval(rq,DP), where DP is a Datalog¬ program, is coNP-
complete in data complexity [17]. The hardness part can be proved by a reduction of
the three-colorability problem to our problem in the setting where only key constraints
are allowed in peer schemas. The proof follows the line used for establishing coNP-
hardness of query answering in the setting of a single inconsistent database in [8].

According to the above theorem, query answering in a P2PDIS under the K45A
n

semantics is decidable and our algorithm turns out to be optimal with respect to worst-
case data complexity. Notice that assuming that each peer is reformulation capable
strips off cases in which query answering is undecidable and guarantees its member-
ship in coNP. Obviously, with respect to [10], a computational complexity blow up in
query answering arises, which is the price that we have to pay to deal with inconsistent
data.

6 Conclusions

In this paper we have proposed a multi-modal nonmonotonic formalization for P2PDISs
which allowed us to properly model the modularity of a P2P system, localize local in-
consistency, and handle peers that may provide mutually inconsistent data. We have also
provided an algorithm for query processing in our setting that is sound and complete
with respect to the multi-modal semantics of the system, and have characterized the
computational complexity of the query answering problem. The results reported here
can be extended in several directions. First, we can remove the assumption that all peers
share a common alphabet of constants by making use of mapping tables [21]. Also, we
believe that preferences between peers can be smoothly integrated in our framework, in
the line of [5]. We aim also at extending the framework to the case in which each peer
in the system has its own strategy for resolving data inconsistency.

Acknowledgements. This research has been partially supported by the projects IN-
FOMIX (IST-2001-33570), and TONES (IST-007603) funded by the EU, and by the
project HYPER, funded by IBM through a Shared University Research Award Grant.
The authors wish to thank Luciano Serafini for precious comments about the paper.

104 D. Calvanese et al.

References

1. C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial
meet contraction and revision functions. J. of Symbolic Logic, 50:510–530, 1985.

2. M. Arenas, P. Barcelo, R. Fagin, and L. Libkin. Locally consistent transformations and query
answering in data exchange. In Proc. of PODS 2004, pages 229–240, 2004.

3. M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In Proc. of PODS’99, pages 68–79, 1999.

4. P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Za-
ihrayeu. Data management for peer-to-peer computing: A vision. In Proc. of WebDB 2002,
2002.

5. L. E. Bertossi and L. Bravo. Query answering in peer-to-peer data exchange systems. In In
Proc. of the EDBT Workshop on Peer-to-Peer Computing and Databases (P2P&DB 2004),
pages 476–485, 2004.

6. L. Bravo and L. Bertossi. Logic programming for consistently querying data integration
systems. In Proc. of IJCAI 2003, pages 10–15, 2003.

7. A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under integrity
constraints. Information Systems, 29:147–163, 2004.

8. A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In Proc. of PODS 2003, pages 260–271, 2003.

9. A. Calı̀, D. Lembo, and R. Rosati. Query rewriting and answering under constraints in data
integration systems. In Proc. of IJCAI 2003, pages 16–21, 2003.

10. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations of peer-to-
peer data integration. In Proc. of PODS 2004, pages 241–251, 2004.

11. B. F. Chellas. Modal Logic: An introduction. Cambridge University Press, 1980.
12. O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive query plans for data integration.

J. of Logic Programming, 43(1):49–73, 2000.
13. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. The MIT

Press, 1995.
14. R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: Getting to the core. In Proc. of

PODS 2003, pages 90–101, 2003.
15. R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases. In Proc.

of PODS’83, pages 352–365, 1983.
16. E. Franconi, G. Kuper, A. Lopatenko, and L. Serafini. A robust logical and computational

characterisation of peer-to-peer database systems. In Proc. of the VLDB International Work-
shop On Databases, Information Systems and Peer-to-Peer Computing, 2003.

17. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of the 5th Logic Programming Symposium, pages 1070–1080. The MIT Press, 1988.

18. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do for peer-to-
peer? In Proc. of WebDB 2001, 2001.

19. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data management
systems. In Proc. of ICDE 2003, pages 505–516, 2003.

20. A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294,
2001.

21. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. In Proc. of ACM SIGMOD, pages 325–336, 2003.

22. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages
233–246, 2002.

Inconsistency Tolerance in P2P Data Integration 105

23. H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. The MIT Press, 2001.
24. V. Lifschitz. Minimal belief and negation as failure. Artificial Intelligence, 70:53–72, 1994.
25. J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy. Representing and reasoning

about mappings between domain models. In Proc. of AAAI 2002, pages 80–86, 2002.
26. R. Rosati. Reasoning about minimal belief and negation as failure. J. of Artificial Intelligence

Research, 11:277–300, 1999.
27. I. Tatarinov and A. Halevy. Efficient query reformulation in peer data management. In Proc.

of ACM SIGMOD, 2004.
28. J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1. Computer

Science Press, 1988.

XML Data Integration with Identification

Antonella Poggi1,2 and Serge Abiteboul1

1 INRIA Futurs - Parc Club Orsay-University,
4 rue Jean Monod, F-91893 Orsay Cedex, France

Name.Surname@inria.fr
2 Dipartimento di Informatica e Sistemistica “Antonio Ruberti”,

Università di Roma “La Sapienza” - Via Salaria 113, I-00198 Roma, Italy
surname@dis.uniroma1.it

Abstract. Data integration is the problem of combining data residing at different
sources, and providing the user with a virtual view, called global schema, which
is independent from the model and the physical origin of the sources. Whereas
many data integration systems and theoretical works have been proposed for rela-
tional data, not much investigation has been focused yet on XML data integration.
Our goal is therefore to address some of its related issues. In particular, we high-
light two major issues that emerge in the XML context: (i) the global schema may
be characterized by a set of constraints, expressed by means of a DTD and XML
integrity constraints, (ii) the concept of node identity requires to introduce seman-
tic criteria to identify nodes coming from different sources. We propose a formal
framework for XML data integration systems based on an expressive XML global
schema, a set of XML data sources and a set of mappings specified by means of
a simple tree language. Then, we define an identification function that aims at
globally identifying nodes coming from different sources. Finally, we propose
algorithms to answer queries under different assumptions for the mappings.

1 Introduction

Data integration is the problem of combining data residing at different sources, and
providing the user with a virtual view, called global schema, which is independent from
the model and the physical origin of the sources. Users query the global schema, while
the system carries out the task of suitably accessing different sources and assembling
the data retrieved at each source into the final answer to the query. Whereas many
data integration systems [8, 10] and theoretical works [9, 6, 12] have been proposed for
relational data, not much investigation has been focused yet on XML data integration.
Our goal is therefore to address some of its related issues. In particular, we highlight
two major issues that emerge in the XML context: (i) the global schema may be cha-
racterized by a set of constraints, expressed by means of a DTD and XML integrity
constraints, (ii) the concept of node identity requires to introduce semantic criteria to
identify nodes coming from different sources. The latter is similar to the well-studied
problem of identifying objects in mediators systems [11]. However, it requires some
particular solution in the context of XML data integration.

As for relational data, in order to answer a query posed over the global schema, the
system needs the specification of the relationship between the sources and the global

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 106–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XML Data Integration with Identification 107

schema, which is called mapping. Different approaches have been proposed to spe-
cify mappings. We chose here to focus on the Local-As-View (LAV) approach, which
consists in characterizing the information content of the sources in terms of the global
schema. An important property of mappings concerns the accuracy of the source with
respect to the corresponding view. If a source provides only a subset of the data ac-
cessible from the global schema throw the corresponding view, then, we say that the
mapping is sound. Otherwise, if the source provides exactly the corresponding view,
we say that the mapping is exact. It is well-known that this case is more difficult to deal
with. The main contributions of our work are as follows.

– First, we propose a formal framework for XML data integration systems based on
(i) a global schema specified by means of a set of (simplified) DTD and a set of
XML integrity constraints as defined in [5], (ii) a source schema specified by means
of DTDs, and (iii) a set of LAV mappings specified by means of prefix-selection-
query language that is inspired from the query language defined in [1].

– Second, we define an identification function, that aims at globally identifying nodes
coming from different sources. As already mentioned, the need for this function is
motivated by the concept of node identity.

– Finally, we address the query answering problem in the XML data integration set-
ting. In particular, given the strong connection with query answering with incom-
plete information, we propose an approach that is reminiscent of such a context. We
provide three algorithms to answer queries under the assumptions of sound, exact
and mixed mappings, and study their complexity.

The paper is organized as follows. In Section 2, we illustrate XML data integration and
some of its related issues by an example. In Section 3, we present the data model and the
query language used in the paper. Then, the formal framework for XML data integration
is introduced in Section 4, where we define the identification function. In Section 5, we
introduce query answering and propose different algorithms to answer queries under the
assumption of sound, exact and mixed mappings. Section 6 concludes the paper with a
discussion about future works and XML data integration open issues.

Related Work. The only XML data integration system we are aware of, that takes into
account integrity constraints, is the one presented in [3]. The authors propose the gram-
mar AIG to specify the integration of data coming from different relational sources in a
document that conforms to a DTD and satisfies a set of integrity constraints. However, in
their work (i) mappings follow the Global-As-View (GAV) approach which has a more
procedural flavor, since it characterizes the information content of the global schema in
terms of the sources, (ii) the sources are relational, and (iii) whenever the retrieved data
does not satisfy a constraint, the query evaluation is aborted. Closer to our work is the
investigation of [2], which concerns XML data exchange. In this setting, the aim is to
materialize an instance of a target schema, given an instance of a source schema, where
both schemas are specified by means of DTDs. In particular, they address consistency
and query answering over the target schema. However, our work considers multiple
sources, whereas in data exchange the source is unique. More interestingly, no integrity
constraints can be expressed over their target schema and their query language allows
only for the extraction of tuples, whereas our query language extracts trees.

108 A. Poggi and S. Abiteboul

2 XML Data Integration by Example

In this section, we illustrate by an example XML data integration.
Suppose that an hospital offers access to information about patients and their

treatments. Information is stored in XML documents managed in different offices of
the hospital, whereas users (e.g. statisticians), because of privacy and security reasons,
have access to a global DTD SG that has the following form:

SG :
<!ELEMENT hospital (patient+, treatment+)>
<!ELEMENT patient (SSN, name, cure*, bill?)>
<!ELEMENT treatment (trID, procedure?)>
<!ELEMENT procedure (treatment+)>

Following a common approach for XML data, we will consider XML documents as
unordered trees, with nodes labeled with elements names. The above DTD says that the
document contains data about patients and hospital treatments, where a cure is nothing
but a treatment id. Moreover, a set of keys and foreign key constraints are specified
over the global schema. In particular, we know that two patients cannot have the same
social security number SSN, that two treatments cannot have the same number trID
and that all the prescribed cures have to appear among the treatments of the hospital.
Such constraints correspond respectively to two key constraints and one foreign key
constraint. Finally, assume that the sources consist in the following two documents, D1
and D2, with the following DTDs. Mappings tell us that D1 contains patients with a
name and a social security number lower than 100000, and D2 contains patients that
paid a bill and were prescribed at least one dangerous cure (we assume that these have
numbers smaller than 35).

D1 :

<hospital>
<patient>

<name>Parker</name>
<SSN>55577</SSN>

</patient>
<patient>

<name>Rossi</name>
<SSN>20903</SSN>

</patient>
</hospital>

S1 : <!ELEMENT hospital (patient*)>
<!ELEMENT patient (name, SSN)>

D2 :

<hospital>
<patient>

<SSN>55577</SSN>
</patient>

</hospital>

S2 : <!ELEMENT hospital (patient*)>
<!ELEMENT patient (SSN)>

Suppose now that the user asks for the following queries:

1. Find the name and the SSN for all patients having a name and a SSN, that paid a
bill and that were prescribed at least one cure.

2. Does the hospital offer dangerous treatments?

Typically, in data integration systems, the goal is to find the certain answers, e.g. the
answers that are returned by all data trees that satisfy the global schema and conform to
the data at the sources. By adapting data integration terminology [9] to our setting, we
call them legal data trees. A crucial point here is that legal data trees can be constructed

XML Data Integration with Identification 109

by merging the source trees. We therefore need to identify nodes that should be merged,
using the constraints of the global schema. Note, however, that data retrieved may not
satisfy these constraints. In particular, there are two kinds of constraints violation. Data
may be incomplete, i.e. it may violate constraints by not providing all data required
according to the schema. Or, data retrieved may be inconsistent, i.e. it may violate
constraints by providing two elements that are ”semantically” the same but cannot be
merged without violating key constraints. In this paper, we will address the problem of
answering queries in the presence of incomplete data, while we will assume that data
does not violate key constraints. Coming back to the example, it is easy to see that
the sources are consistent. Thus, the global schema constraints specification allows to
answer Query 1 by returning the patient with name ”Parker” and social security number
”55577”, since thanks to the key constraint we know that there cannot be two patients
with the same SSN. Note that Query 2 can also be answered with certainty. Mappings
let us actually infer that the patient named ”Parker” was prescribed a dangerous cure. In
addition, thanks to the foreign key constraint, we know that every cure that is prescribed
to some patient is provided by the hospital.

We conclude the section by highlighting the impact of the assumption of having
sound/exact mappings. Suppose that no constraints were expressed over the global
schema. Under the exact mapping assumption, by inspecting the data sources, it is pos-
sible to conclude that there is only one way to merge data sources and satisfy the schema
constraints. Indeed, since every patient has a name and a SSN number, we can deduce
that all patients in D2 with a SSN lower than 100000 belong also to D1. Therefore the
answer to Query 1 would be the same as in the presence of constraints, whereas no an-
swer would be returned to Query 2, since no information is given on that portion of the
global schema. On the other hand, under the assumption of sound mappings, since in
the absence of constraints there could be two patients with the same SSN, both queries
would return empty answers.

3 Data Model and Query Language

In this section we introduce our data model and query language, inspired from [1].

Data Trees and Prefixes. XML documents are represented as labeled unordered trees,
called data trees. Given an infinite set N of nodes, a finite set Σ of element names
(labels), and a domain Γ = Γ ′ ∪ {0} for the data values, a (data) tree T over Σ is a
quadruple T = 〈t, λ, ν〉, where:

– t is a finite rooted tree (possibly empty) with nodes from N ;
– λ, called the labeling function, associates a label in Σ to each node in t; and
– ν, the data mapping, assigns a value in Γ to each node in t.

We call datanodes those nodes n of t such that ν(n) �= 0. Note that 0 is a special data
value that represents the empty value.

A prefix of T = 〈t, λ, ν〉 is a data tree T ′ = 〈t′, λ′, ν′〉, written T ′ ≤ T , such that
there exists a homomorphism h from (all) the nodes of t′ to (some of) the nodes of t
such that h is recursively defined as follows:

110 A. Poggi and S. Abiteboul

– if n′ is the root of t′ then h(n′) is defined and it is the root of t; we say that h
preserves the root;

– for every node n′′ that is a child of n′ in t′, such that h(n′) is defined, h(n′′) is
defined and it is a child of h(n′) in t; thus h preserves the parent-child relationships;

– for every node n′ in t′ such that h(n′) is defined, λ(h(n′)) = λ′(n′); thus h pre-
serves the labeling;

– for every node n′ in t′ such that h(n′) is defined and ν(n′) �= 0, ν(h(n′)) = ν′(n′);
thus h preserves the data mapping if and only if it maps a datanode.

Note that the empty tree, i.e. the tree that does not contain any node, denoted T∅, is a
prefix of all data trees. Moreover, if T ′ ≤ T and T ≤ T ′, then we say that T and T ′ are
isomorphic, written T � T ′. Finally, we introduce the intersection of two data trees.
Given two data trees T1 and T2, their intersection, denoted T ′ = T1 ∩ T2, is such that:
(i) T ′ ≤ T1, T

′ ≤ T2, and (ii) for all T ′′ not isomorphic to T ′, if T ′′ ≤ T1 and T ′′ ≤ T2,
then T ′′ ≤ T ′, i.e. T ′ is the maximal prefix of both T1 and T2.

Proposition 1. The intersection of two data trees is unique up to tree isomorphism.

hospital

name

patientpatient treatment

Rossi

name

20903

SSNSSN

55577 32

cure

11

cure

32

trID

Parker

treatment

11

trID

(a) Data tree T1

hospital

name

patientpatient treatment

Rossi

name

55577

SSNSSN

55577 25

cure

2000

bill

25

trID

Parker

(b) Data tree T2

hospital

name

patientpatient treatment

Rossi

nameSSNSSN

55577

cure trID

Parker

(c) Intersection T1 ∩ T2

hospital

name

patient treatment

SSN procedurecure bill

+

?
*

?

+

trID

(d) Tree type

Fig. 1. Data Model

Example 1. The data trees T1 and T2, resp. in Fig. 1(a) and 1(b), represent data about
patients and treatments of an hospital. Note that only data values different from 0 are
represented and are circled. In Fig. 1(c) we show the intersection T1 ∩ T2. It is easy to
verify that it is the maximal prefix of both T1 and T2.

Tree Type. We call tree type over an alphabet Σ a simplified version of DTDs that can
be represented as a triple 〈Στ , r, µ〉, where Στ is a set of labels, i.e. Στ ⊆ Σ, r ∈ Στ

is a special label denoting the root, and µ associates to each label a ∈ Στ a multiplicity
atoms µ(a) representing the type of a, i.e. the set of labels allowed for children of
nodes labeled a, together with some multiplicity constraints. More precisely, µ(a) is an
expression aω1

1 ...aωk

k , where ai are distinct labels in Σ, ωi ∈ {∗, +, ?, 1}, for i = 1, ...k.
Given an alphabet Σ, we say that a data tree T over Σ satisfies a tree type S =

〈Στ , r, µ〉 over Σ, noted T |= S, if and only if: (i) the root of T has label r, and (ii) for

XML Data Integration with Identification 111

every node n of T such that λ(n) = a, if µ(a) = aω1
1 ...aωk

k , then all the children of n
have labels in {a1..ak} and the number of children labeled ai is restricted as follows:

– if ωi = 1, then exactly one child of n is labeled with ai;
– if ωi =?, then at most one child of n is labeled with ai;
– if ωi = +, then at least one child of n is labeled with ai;
– if ωi = ∗, then no restrictions are imposed on the children of n labeled with ai.

Given a tree type, we call collection a label a such that there is an occurrence of either
a∗

i or a+
i in µ(a), for some ai ∈ Σ. Moreover ai is called member of the collection a.

Unary Keys and Foreign Keys. Given a tree type S = 〈Στ , r, µ〉, we recall and adapt
to our framework the definition of (absolute) unary keys and foreign keys from [5, 4]:

– Keys are assertions of the form: a.k → a, where a ∈ Στ and k1 ∈ µ(a). The
semantics of keys is the following. Given a tree T satisfying S, T |= a.k → a
if and only if there does not exist two nodes n, n′ of T labeled a such that their
respective unique children labeled k have the same data value.

– Foreign keys are assertions of the form: a.ha ⊆ b.kb, where kb is a key for b,
a ∈ Στ and hω

a ∈ µ(a) for some ω. In this paper, we consider in particular uniquely
localizable foreign keys, by imposing that b is such that there is a unique label path
r, l1, .., ls, b from the root to any node labeled b, where for i = 1, .., s, li is not the
member of any collection. The semantics of foreign keys is the following. Given a
tree T satisfying S, T |= a.ha ⊆ b.kb if and only if for every node n of T labeled
ha that is a child of a node labeled a, there exists a node n′ labeled kb, child of a
node p′ labeled b, such that n and n′ carry the same value (that is a key fo p′).

Schema Satisfaction. Given a tree type SG , a set of keys ΦK and a set of foreign keys
ΦFK , we call schema a triple G = 〈SG , ΦK , ΦFK〉. Moreover, we say that a tree T
satisfies the schema G if and only if T |= SG , T |= ΦK and T |= ΦFK .

Example 2. The DTD SG from Section 2 corresponds to the tree type, represented
graphically in Fig. 1(d), where r =hospital and µ can be specified as follows:

hospital → patient+ treatment+

patient → SSID name cure∗ bill?

treatment → trID procedure?

Note that patient and treatment are both elements of the same collection hospital. The
following sets of constraints express those mentioned in Section 2:

ΦK : {patient.SSN → patient;
treatment.trID → treatment}

ΦF K : {patient.cure ⊆ treatment.trID}

The tree of Fig. 1(a) satisfies the schema G = 〈SG , ΦK , ΦFK〉, whereas the tree of
Fig. 1(b) does not since it contains two patients with the same SSN.

Prefix-Selection Queries. Intuitively, prefix-selection queries (shortly referred as ps-
queries) browse the input tree down to a certain depth starting from the root, by reading

112 A. Poggi and S. Abiteboul

nodes with specified element names and possibly with data values satisfying selection
conditions. Existential subtree patterns can also be expressed. When evaluated over a
data tree T , a boolean ps-query checks for the existence of a certain tree pattern in T .
A ps-query that is not boolean returns the minimal tree that is isomorphic to the set of
all the nodes involved in the pattern, that are selected by the query.

Formally, a ps-query q over an alphabet Σ is a quadruple 〈t, λ, cond, sel〉 where:

– t is a rooted tree;
– λ associates to each node a label in Σ, where sibling nodes have distinct labels.
– cond is a partial function that associates to each node in t a condition c that is a

boolean formula of the form p0b0p1b1...pm−1bm−1pm, where pi are predicates
to be applied to datanodes values and bj are boolean operators for i = 0..m, m ≥ 0
and j = 0..m − 1; for example, if Γ ′ = Q, then predicates that can be applied to
datanodes values have the form op v, where op ∈ {=, �=,≤,≥, <, >} and v ∈ Q;

– sel is a total function that assigns to each node in t a boolean value such that if
sel(n) = false then sel(n′) = false, for every children n′ of n; intuitively, sel
indicates whether a node is selected by the query, with the constraint that whenever
n is not selected, then all the nodes of the subtree rooted at n cannot be selected.

We call boolean ps-query a query q = 〈t, λ, cond, sel〉 such that selq(rq) = false,
where rq is the root label of tq .

We next formalize the notion of answer to a ps-query using the auxiliary concepts
of valuation and query valuation image. Given a query q = 〈tq, λq, condq, selq〉 and a
data tree T = 〈t, λ, ν〉, a valuation γ from q to T is a homomorphism from the nodes
of tq to the nodes of t preserving the root, the parent-child relationships, the labeling
and such that: for every nq ∈ tq, if condq(nq) is defined then ν(γ(nq)) is a datanode,
i.e. ν(γ(nq)) �= 0, and ν(γ(nq)) satisfies condq(nq). The valuation image I of q posed
over T is the subset of nodes of T that are in the image of some valuation. We call
positive subset P (I) of I the subset of I such that for every n ∈ P (I), there exists a
valuation γ such that selq(γ−1(n)) = true. Intuitively, P (I) represents the subset of
nodes of I that are selected by q.

We now define the semantics of an answer to a ps-query q posed over T , denoted as
q(T). If the valuation image of q posed over T is empty, then q(T) = false. Otherwise,
q(T) is a data tree such that (i) q(T) is isomorphic to P (I) and (ii) there does not exist a
data tree T ′, not isomorphic to q(T), such that T ′ ≤ q(T) and T ′ is isomorphic to P (I)
(i.e. q(T) is the minimal tree that is isomorphic to P (I)). Note that if P (I) is empty,
then q(T) is the empty tree, i.e. q(T) = T∅. This case occurs when q is boolean and it
returns true.

Proposition 2. Given a ps-query q and a data tree T over Σ, the answer q(T) is unique
(up to tree isomorphism). Moreover, if q(T) �= false, then q(T) is the minimal prefix of
T such that there exists a homomorphism h from P (I) to q(T) preserving parent-child
relationships among nodes, labeling and data mapping.

Example 3. Consider the queries in Fig. 2(a) and 2(c) posed over the tree of Fig. 1(a).
They select respectively (i) the name and the SSN of patients having a SSN smaller
than 100000, (ii) the SSN of patients that paid a bill and were prescribed at least one

XML Data Integration with Identification 113

hospital

patient

name

<100000

SSN

(a) Ps-query M1

hospital

Parker

name

patientpatient

Rossi

name

20903

SSNSSN

55577

(b) Answer to M1

hospital

patient

cure·35SSN bill

(c) Ps-query M2

hospital

patient

SSN

55577

(d) Answer to M2

Fig. 2. Querying a data tree

dangerous cure (i.e. a cure with id lower than 35). The answers to the queries are given
in Fig. 2(b) and 2(d). Note that we graphically represent an existential subtree pattern
in a query by underlying the label of its root.

4 Data Integration Framework

In this section we first formally define a data integration system. Then we start dis-
cussing query answering by introducing an identification function.

4.1 Formal Definition

An XML data integration system I can be characterized by a triple 〈G,S,M〉, where:

– The XML global schema G = 〈SG , ΦK , ΦFK〉 is expressed in terms of a tree type
SG = 〈Στ , r, µ〉, a set ΦK of key constraints and a set ΦFK of uniquely localiz-
able foreign keys. We assume that at most one key constraint is expressed for each
element (e.g. ΦK are primary keys [5]);

– S is a set of source schemas S = {S1, S2, ..., Sm}, where Si is a tree type, i =
1, ..., m; note that dealing with such kind a sources is not restrictive since we can
assume that suitable wrappers are available that present the sources in this format;

– M is the set of (LAV) mappings between G and S, one for each data source Si in
S; they are expressions of the form: (Si, Mi, asi), for i = 1, ..., m, where asi ∈
{sound, exact} and Mi is a ps-query (not boolean) that is coherent with Si, i.e. for
every Di satisfying Si, there exists T such that Di ≤ T and Mi(T) � Di.

Example 4. Consider the data integration system I = 〈G,S,M〉 that corresponds to
the one discussed in Section 2. The global schema G = 〈SG , ΦK , ΦFK〉 is the one of the
Example 2. The source schema is S = {S1, S2}, where S1, S2 correspond to the DTDs
of Section 2. Finally, the mapping M is a set of expressions of the form: (Si, Mi, asi),
for i = 1, 2, where Mi’s are those of Fig. 2(a) and Fig. 2(c) and asi ∈ {sound, exact}.

Given a set of data sources D = {D1, ..., Dm} that conform to S = {S1, ..., Sm}
(i.e. Di |= Si, i = 1, ..., m), the semantics of a data integration system consists of all
the legal data trees that conform to the schema G and satisfy the mappings M. More
precisely, we have the following:

114 A. Poggi and S. Abiteboul

sem(I,D) = {T |T |= SG , T |= ΦK , T |= ΦFK ,
∀i = 1, ...m, Di ≤ Mi(T) if asi = sound

Di � Mi(T) if asi = exact}
According to the above definition, it may happen that no legal data tree exists that
belongs to sem(I,D). In this case, the setting is inconsistent. This may happen for the
following reasons.

– The global schema specification may be inconsistent, i.e. there may not exist any
tree that satisfies both SG and the set of constraints. It was shown in [5], that in the
case of a general DTD, the problem is decidable and its complexity is NP-complete.

– A mapping may be trivially inconsistent, i.e. for every tree T that satisfies the global
schema, Mi(T) = T∅. It is possible to check whether a mapping is trivially incon-
sistent by verifying that, given the global schema SG = 〈Στ , r, µ〉 and a mapping
(Si, Mi, asi) ∈ M, with Mi = 〈tqi , λqi , condqi , selqi〉, we have that for every
n ∈ tqi : (i) if n is the root of tqi , then λqi(n) = r, (ii) if λqi(n) = a, all children
ni of n have distinct labels among those in µ(a). This check is clearly polynomial.

– There may be an empty mapping, i.e. given a source Di, there might not exist any
data tree T such that Mi(T) ≤ Di. This problem is also decidable. A PTIME
algorithm would consist in building from Mi the query M ′

i that results by ignoring
the existential subtree patterns of Mi, and then checking whether M ′

i(Di) � Di.
– Finally, there may occur some inconsistencies among data sources and G. In our

example this would happen if two sources contain patients with the same SSN but
different names.

In what follows, we will assume to deal with consistent data integration systems (note
that decidability of data integration consistency problem is an open problem).

4.2 Query Answering with Identification

The main task of a data integration system is obviously to answer queries. Following
the classical approach, we define a certain answer to a ps-query q posed over a data
integration system I = 〈G,S,M〉 w.r.t. to a set of data sources D, as follows:

qI,D =
⋂

T∈sem(I,D)

q(T)

i.e. qI,D is the intersection of the answers to q over all legal data trees w.r.t. I.

Theorem 1. Given a set of sources D, a consistent data integration system I =
〈G,S,M〉 and a ps-query q, qI,D is the maximal data tree that is a prefix of q(T),
for every legal data tree T w.r.t. to I.

Remark. The certain answer to a query q posed over a data integration system I w.r.t.
to a set of data sources D is a data tree T such that there may not exist any T ′ such
that q(T ′) = T . This is not surprising since by the previous theorem we have that the
certain answer is the maximal prefix of the answers to q over all legal data trees, which
only means that for every legal data tree T ′′, T is a prefix of the answer q(T ′′).

XML Data Integration with Identification 115

To illustrate identification, let us observe the following. Suppose that no existential
tree patterns were expressed in any mapping and that node ids were available that were
shared among data sources. Then computing the certain answer would basically con-
sists in merging the data sources, adding nodes to satisfy the constraints, querying the
resulting tree and returning the ”certain” prefix of the answer. Following this intuition,
we possibly extend each data source Di by a data source D′

i = 〈t′i, λ′
i, ν

′
i〉 that is ob-

tained from Di by adding nodes whose presence can be inferred in every legal data tree
from the mapping specification (Si, Mi, asi), where asi ∈ {sound, complete}. These
nodes correspond to existential tree patterns nodes in Mi. More precisely, for each leaf
n ∈ Di = 〈ti, λi, νi〉 labeled aj , we consider the node nq of tq such that there exists a
valuation γ from tq to Di with γ(nq) = n (note that this node exists and is unique since
we assumed that Mi is coherent with Si and mappings are neither trivially inconsistent,
nor empty). If mq is a child of nq such that selq(mq) = false, then we recursively
proceed as follows. For every node m′

q in the subtree rooted at mq , a node m is added
in Di = 〈ti, λi, νi〉 such that we can extend γ by defining γ(m′

q) = m, where:

– m is child of the node n of t′i such that γ−1(n) is defined and it is the parent of m′
q;

– λ′
i(m) = λq(mq);

– if condq(mq) is defined, then ν′
i(m) = vs where vs is a fresh Skolem constant such

that condq(mq) is satisfied.

Next, we define the Identification function whose aim is to obtain from each extended
data source D′

i a new data source, called identified data source, whose nodes have
global ids that depend on G, such that two nodes have the same global id only if they
are merged in every legal data tree. In order to introduce the identification, we start by
recursively defining the domain N I of global ids:

– ε ∈ N I ;
– if n ∈ N I , then n.ai[.γi] ∈ N I , where ai ∈ Σ and γi is an optional value in

Γ̄ = Γ ∪ VS , where VS is a set of Skolem constants.

Finally, Id(D) is obtained by recursively associating to each node n in D′
i = 〈t′i, λ′

i, ν
′
i〉

a global id idn in N I :

– if n is the root of t′i, then idn = ε;
– if n labeled aj is child of a node p labeled a, idn = idp.aj [.γ] where γ is an

optional value appearing if:
• either there exists aj .k → aj ∈ ΦK ; then if n has a child m labeled k, then

γ = ν(m), otherwise γ = vs where vs is a fresh constant in VS ;
• or a

ωj

j ∈ µ(a), where ωj ∈ {+, ∗}; then γ = vs, with vs fresh constant in VS.

Note that, by an abuse of notation, we denote Id(Di) the data source obtained by first
extending the original data source and then identifying nodes as described. Id(Di) is
such that all its nodes have a global id. If idn does not contain any Skolem constant, we
say that n is uniquely identified. In the following example, we illustrate identification.

Example 5. Given the data integration system of Example 4 and the source D1 given
in Fig. 2(d), Id(D1) is represented in Fig. 3, where the labels of nodes added by the

116 A. Poggi and S. Abiteboul

name cure bill

hospital

patient

SSN

55577

id
0
=

id
1
.cure.

2id
1
.SSN id

1
.billid

1
.name

id
1
=id

0
.patient.55577

Fig. 3. Identified tree Id(D)

identification are boxed, the global ids are marked in bold and γi represent Skolem
constants in VS , for i = 1, 2. Note that all nodes are uniquely identified, except for the
node labeled cure. Moreover, γ1 represents a data value lower than 35.

By identifying data sources, clearly, two nodes are assigned the same global id only
if they are merged in every legal data tree. Moreover, the data sources extension does
not modify the sources content that is mapped to every legal data tree. It therefore does
not affect certain answers. Indeed, it is straightforward to prove the following theorem.

Theorem 2. Given a set of data sources D and a data integration system I =
〈G,S,M〉, the following holds:

qI,D =
⋂

T∈sem(I,D) q(T) =
⋂

T∈sem(I,Id(D)) q(T).

From now on, the previous theorem will let us consider sem(I, Id(D)) rather than
sem(I,D).

5 Query Answering Algorithms

In this section, we provide three algorithms that use identification to answer ps-queries
over I, under the assumption of sound, exact and mixed mappings. All proposed al-
gorithms follow an approach that is typical in the presence of incomplete information.
This is not surprising since it is well-known [6] that LAV data integration query answer-
ing is strongly related to the problem of querying an incomplete database. Indeed, data
sources provide only partial information on legal data trees. Thus, our algorithms are
all based on the idea of constructing a weak representation system T [7], to represent
all legal trees (i.e. sem(T) = sem(I, Id(D))), such that for each T and each ps-query
q there exists a representation q(T) such that

⋂
{T |T ∈ sem(q(T))} =

⋂
{q(T)|T ∈

sem(T)}. It follows that the complexity is given by (i) the complexity of computing
T, (ii) the complexity of constructing q(T), and (iii) the complexity of computing the
intersection of answers represented by q(T).

5.1 Query Answering Under Sound Mappings

Before introducing the algorithm for query answering, we highlight that, as mentioned
earlier, it is based on the idea of building a weak representation system T. Because of

XML Data Integration with Identification 117

lack of space, instead of introducing formally T, we intuitively present it as a special
tree with values in Γ̄ . In particular, T may have Skolems as data values that are con-
strained to satisfy conditions similar to those expressed by ps-queries (note that this
may happen, for example, when nodes are added in order to satisfy existential subtree
patterns in the mappings, or a constraint of the schema). The valuation of a query q over
T has to be modified accordingly. In particular, q(T) may contain Skolem constants for
data values, since it has to be equivalent to T from the point of view of certain answers
to q.

Given a query q, a system I and a set of sources D = {D1, ..., Dm}, our algorithm
for query answering under the assumption of sound mappings proceeds as follows.

1. We compute Id(D) w.r.t. to G and obtain a data tree with global ids and with data
values in Γ̄ . However, this tree may contain nodes that are semantically equivalent,
i.e. they represent the same node in every legal data tree, but have different node
identifiers. In particular, this may happen when Id(Di) and Id(Dj) contain resp.
nodes ni, nj labeled a uniquely identified by the same id idn and nodes mi, mj , la-
beled b, resp. children of ni, nj , that are identified with different global ids, whereas
according to SG , nodes labeled a should have at most one child labeled b. To sim-
plify, suppose that they are not datanodes. If at least one among mi, mj , say mi,
is not uniquely identified, then the sources are consistent and we say that mi, mj

can be unified, by replacing the global id of ni with the id of nj . We then obtain
the retrieved global data tree w.r.t. to D, denoted ret(I,D). It is possible to prove
that if the setting is consistent, then ret(I,D) is such that ret(I,D) ≤ T , for every
legal data tree T .

2. We compute the representation system T = 〈t∗, λ∗, ν∗〉 for all legal data trees,
by adding nodes to ret(I,D) in order to satisfy G. More precisely, we proceed by
applying the following rules:
(a) For each p labeled a, if aωi

i ∈ µ(a) where ωi ∈ {1, +} and n′ has not any child
labeled ai, then we add to T the child n of p, with λ∗(n) = ai and ν∗(n) = 0.
If ai.k → ai ∈ ΦK or ωi = +, then idn = idp.ai.γs where γs is a fresh
constant from Vs, otherwise idn = idp.ai.

(b) For each ma labeled ha, child of na labeled a, if a.ha ⊆ b.kb ∈ ΦFK , and
there is not any node labeled b with key value ν(ma), then we add a set of
nodes, one node n′ for each label l that occurs from the root to the parent
of the node labeled b in SG , where λ∗(n′) = l and ν∗(n′) = 0, so that the
tree satisfies the global schema. Note that since the foreign key constraints are
uniquely localizable, all these nodes are uniquely identified and therefore their
global ids depend only on G. Suppose that p is the last node that is added, and
that its global id is idp. Then we add the node nb child of p, with global id
idnb = idp.ν(ma) and such that λ∗(nb) = b and ν∗(nb) = 0. Moreover, we
add the child mb of nb, with global id idmb = idnb .kb such that λ∗(mb) = kb

and ν∗(mb) = ν(ma).
Intuitively, this step corresponds to computing the well-known technique of the
Chase over ret(I,D). Since the Chase may not stop and lead to an infinite data
tree, we proceeds as long as the algorithm adds nodes (that are required by the
schema) that have either the form idn = idp.a or the form idn = idp.a.γs where

118 A. Poggi and S. Abiteboul

a ∈ Στ , γs ∈ Vs is a Skolem constant and there is not any node with global id
idn = idp.a.γ′

s where γ′
s ∈ Vs, γ′

s �= γs.
3. We compute q(T) and return its certain prefix T̄ = 〈t̄, λ̄, ν̄〉. Note in particular that

for every n in q(T) such that ν∗(n) is a Skolem, we set ν̄(n) = 0.

Claim. Given a consistent data integration system, the above algorithm terminates.

Theorem 3. Given a consistent data integration system I with sound mappings, a set
of sources and a ps-query q, qI,D = T̄ , where T̄ is computed as above.

Complexity. Let us discuss the computational complexity of the above algorithm. In
particular, we focus on data complexity, which refers to the size of the set of data sources
D. It is easy to see that the construction of the data tree T is polynomial in the size of
D. Moreover, the size of T is polynomial. Then, since the construction of q(T) is
polynomial in the size of T, we have that our algorithm is PTIME.

5.2 Query Answering Under Exact Mappings

Suppose now that mappings are exact. As for the representation of legal data trees, we
can use incomplete trees of [1], known to be a strong representation system for ps-
queries. However, we have to deal with three major differences w.r.t. [1]. The first is
that persistent node ids are not available in our setting. As for global ids obtained by first
identifying the sources and then computing possible unifications, there still may occur
two nodes with different global ids that represent the same node in every legal data tree.
Recall the example from the end of Section 2. Let us call n1, n2 the two nodes labeled
patient belonging to D1, n3 the node with the same label belonging to D2. Without
keys, n1, n2, n3 would be assigned different global ids. However, as already discussed,
under exact mappings, we can conclude that n1 and n3 are the same in every legal tree.
Thus, in order to correctly identify source nodes, view definitions should also be taken
into account. Of course, this would notably increase the query answering complexity.

Therefore, we introduce the Visible Keys Restriction (VKR) for I:

– For every element a, member of a collection of SG , there exists a.k → a ∈ ΦK .
– For every view Mi such that (Si, Mi, exact) ∈ M, Mi is such that whenever it

selects an element with a key, it also selects its key.

This ensures that all nodes can be uniquely identified. Then, by identifying the sources,
we reduce our setting to the case of [1] where global ids play the role of persistent ids.

The second major difference w.r.t. [1] is the ps-query language. In this paper, we
extend ps-queries of [1] in order to make them express existential subtree patterns. It is
possible to prove that such an extension maintains all the good properties of ps-queries.
In particular, incomplete trees (whose construction is accordingly modified) are still a
strong representation system for our query language.

The third major difference w.r.t. [1] is the presence of foreign keys. Intuitively, we
introduce additional sources that contain the data required to satisfy foreign keys. More
precisely, given a foreign key a.ha ⊆ b.kb ∈ ΦFK , for each sequence of labels from the
root to nodes labeled ha in Id(D), we introduce a source Dm+j containing all nodes
ma in Id(D) labeled ha characterized by that sequence of labels, together with their

XML Data Integration with Identification 119

ancestors. Moreover, the source will contain all the nodes from the root to nodes nb, mb

with respective labels b, kb, such that for each node ma there is a node nb with key
value ν(mb) = ν(ma). Note that, after identification, under the assumption of uniquely
localizable foreign keys, all the ancestors of nodes labeled b are uniquely identified.

Under VKR assumption, the algorithm with exact mappings proceeds as follows.

1. We compute Id(D).
2. To guarantee the satisfaction of foreign key constraints, for every a.ha ⊆ b.kb ∈

ΦFK and for every different sequence of labels from the root to nodes n ∈ Id(D)
labeled a, we build a data source and the corresponding view definition as described
above. We call Dm+1, ...Dm+k the new data sources. Then we add the correspond-
ing exact mappings to M, for every j = m + 1, ...m + k.

3. We compute the incomplete tree Ti s.t. sem(Ti) = {T |Mi(T) � Id(Di)}, for
i = 1, .., m and Tj s.t. sem(Tj) = {T |Mj(T) � Id(Dj)}, for j = m+1, .., m+k.

4. We compute the incomplete tree T′ such that sem(T′) =
⋂

i∈{1,..,m+k} sem(Ti).
5. In order to take into account the tree type SG , we compute the incomplete tree T

such that sem(T) = sem(T′) ∩ sem(SG).
6. We query the incomplete tree T and obtain the representation q(T).

Theorem 4. Given a consistent I = 〈G,S,M〉, with M all exact, a set of sources
D for I and a ps-query q, under the VKR assumption, qI,D =

⋂
{T |T ∈ sem(q(T))}.

Complexity. In [1], it was shown that computing q(T) is PTIME in data complexity.
Moreover, checking whether T̄ is a certain prefix of q(T) is PTIME in the size of q(T),
itself PTIME. We strongly conjecture that checking whether T̄ is the maximal certain
prefix is also PTIME. On the other hand, it was also shown in [1] that the problem of
deciding whether T̄ is a certain prefix of q(T) is NP-complete in the sequence of ps-
queries. We therefore conjecture that checking whether T̄ is a certain answer of q over
I is NP-complete in the number of data sources.

5.3 Query Answering Under Mixed Mappings

We now present an algorithm to answer queries under sound and/or exact mappings.
Suppose that a different color Ci is associated to each source Di characterized by a
sound mapping. The idea is to reduce the query answering algorithm under mixed map-
pings to query answering with exact mappings. Suppose that we have a collection of
nodes labeled ai in SG and a source Di provides some sound information about this
collection. We can abstractly consider Di as the source providing exactly the nodes
with label ai and color Ci. This requires to add the information about the color to each
node of the collection. Then, under the VKR assumption, we are able to answer queries.

1. We compute the extended tree type ŜG = 〈Σ̂τ , r, µ̂〉 by modifying SG so that Σ̂T =
ΣT ∪ C, and µ̂ is defined as follows:

∀a ∈ Σ̂, µ̂(a) =
{

µ(a)C∗ if a is a member of some collection of SG
µ(a) otherwise

120 A. Poggi and S. Abiteboul

2. For every sound mapping, we build M̂i = 〈t̂i, λ̂i, ˆcondi, ˆseli〉 by modifying Mi =
〈ti, λi, condi, seli〉 so that for every node n ∈ ti such that λ̂i(n) = a, where
a is a member of some collection in SG , n has a child m labeled C, such that

ˆcondi(m) = ” = Ci”, where Ci is the color of Di.
3. For every data source Di with color Ci, characterized by a sound mapping, we build

the data source D̂i = 〈t̂i, λ̂i, ν̂i〉 by adding to every node n ∈ Di, labeled with a
member of a collection, a child data node m labeled with C such that ν̂i(m) = Ci.

4. We apply the algorithm described in the previous section and obtain the incomplete
tree T̂. Then we query it and obtain the representation q(T̂).

Theorem 5. Given a consistent I = 〈G,S,M〉, with M mixed, a set of sources D for
I and a ps-query q, under the VKR assumption, qI,D =

⋂
{T |T ∈ sem(q(T̂))}.

Complexity. Obviously, the complexity is the same as in the previous case.

6 Discussion and Future Works

We have presented a formal framework for XML data integration, based on an ex-
pressive global schema specified by means of a simplified DTD and XML keys and
foreign keys. We have shown how to address the issue of identifying nodes coming
from different sources. Then, we have proposed query answering algorithms assuming
that mappings are sound and/or exact. It turns out that under sound mappings assump-
tion, we are able to answer queries in polynomial time in data complexity. In the exact
case, in order to limit the complexity, we have introduced an extra condition, namely
the Visible Key Restriction (VKR). We strongly conjecture that, under this assumption,
the query answering problem is NP in the number of views. This apparent loss allows
to gain very much in terms of expressivity of the representation system that we use to
answer queries. In particular, we may ask for possible answers. We may also extract a
precise description about missing information as shown in [1]. This information may
be used to guide our system in finding additional data sources to answer queries. More-
over, we showed how to incorporate information about the data origin. This may be
very useful to optimize query answering. In fact, our algorithms are all naive, in that
they proceed by first constructing a representation of all legal data trees and then by
querying it. The next step is to propose more efficient algorithms that do not need to
build such representation but only the portion of interest with respect to the query.

In the future, we plan to follow several other research directions. In particular,
we will study more carefully the complexity of query answering in the exact case.
Then, we plan to consider more expressive query languages for the specification of the
mappings as well as for querying the system. An orthogonal issue would concern data
sources inconsistencies. To this aim, repair techniques for XML data would be required.

Acknowledgements. We are very grateful to Maurizio Lenzerini and Diego Calvanese
for the helpful discussions that lead to the revision of the first draft, to Ioana Manolescu
and Bogdan Cautis for having helped us by carefully reading the paper and giving pre-
cious feedbacks, and to Luc Segoufin for many interesting discussions about the topic.
Finally we would also like to thank the referees for several very useful comments.

XML Data Integration with Identification 121

References

1. S. Abiteboul, L. Segoufin, and V. Vianu. Representing and querying xml with incomplete
information. In Proc. of ACM PODS, 2001.

2. M. Arenas and L. Libkin. Xml data exchange: Consistency and query answering. In Proc.
of ACM PODS, 2005. To Appear.

3. M. Benedikt, C. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both Types and Con-
straints in Data Integration. In Proc. of ACM SIGMOD, 2003.

4. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. In Proc. of the Int.
WWW Conf., pages 201–210, 2001.

5. W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of DTDs. J. ACM,
49(3):368–406, 2002.

6. A.Y. Halevy. Answering queries using views: A survey. Very Large Database J., 10(4):270–
294, 2001.

7. J. Imielinski and W. Lipski. Incomplete information in relational databases. JACM, 31(4),
1984.

8. T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The information manifold. In C. Knoblock
and A. Levy, editors, Information Gathering from Heterogeneous, Distributed Environments,
Stanford University, Stanford, California, 1995.

9. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of ACM PODS, 2002.
10. C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. D. Ullman, and

M. Valiveti. Capability based mediation in TSIMMIS. In Proc. of ACM SIGMOD, 1998.
11. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator sys-

tems. In Proc. of VLDB, 1996.
12. Jeffrey D. Ullman. Information integration using logical views. In Proc. of Intl. Conf. on

Database Theory, 1997.

Satisfiability of XPath Queries with Sibling Axes

Floris Geerts1 and Wenfei Fan2

1 Hasselt University and University of Edinburgh
2 University of Edinburgh and Bell Laboratories

Abstract. We study the satisfiability problem for XPath fragments sup-
porting the following-sibling and preceding-sibling axes. Although this
problem was recently studied for XPath fragments without sibling axes,
little is known about the impact of the sibling axes on the satisfiability
analysis. To this end we revisit the satisfiability problem for a variety
of XPath fragments with sibling axes, in the presence of DTDs, in the
absence of DTDs, and under various restricted DTDs. In these settings
we establish complexity bounds ranging from NLOGSPACE to undecid-
able. Our main conclusion is that in many cases, the presence of sibling
axes complicates the satisfiability analysis. Indeed, we show that there
are XPath satisfiability problems that are in PTIME and PSPACE in the
absence of sibling axes, but that become NP-hard and EXPTIME-hard,
respectively, when sibling axes are used instead of the corresponding
vertical modalities (e.g., the wildcard and the descendant axis).

1 Introduction

We revisit the satisfiability problem for XPath [7] in the presence of DTDs. It is
the problem to determine, given an XPath query Q and a DTD D, whether or
not there exists an XML document T such that T conforms to D and satisfies
Q, i.e., the set Q(T) of nodes of T selected by Q is nonempty.

The prevalent use of XPath highlights the need for the satisfiability analysis
of XPath queries. Indeed, XPath has been commonly used in specifying XML
constraints (e.g., [6, 9, 27]), queries (e.g., XSLT, XQuery), updates (e.g., [26]),
and access control (e.g., [10]). In many applications both XPath expressions and
DTDs are present. The static satisfiability analysis of XPath addresses the in-
teraction between XPath and DTDs, and is useful in query optimization, update
manipulation and reasoning about XML access control, among other things. An
alternative to the static analysis would be a dynamic approach. As an exam-
ple, consider an access-control policy S defined in terms of a DTD and XPath
queries, which is to prevent disclosure of XML documents to unauthorized users
by validating that the documents “satisfy” S. One could simply attempt to vali-
date a document with respect to S at run-time. This, however, would not tell us
whether repeated failures are due to inconsistency between the XPath queries
and the DTD, or problems with the documents.

The satisfiability problem has been studied for a large number of XPath frag-
ments [2, 13, 15, 17], in the presence and in the absence of DTDs. The previ-
ous work has mostly focused on XPath queries with only vertical modalities

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 122–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Satisfiability of XPath Queries with Sibling Axes 123

such as child, parent, descendant and ancestor axes (referred to “↓, ↑, ↓∗, ↑∗”,
respectively). However, XML data is ordered and it is often desirable to ac-
cess this order using XPath. Indeed, consider an XML document storing items
bought by customers over a period of time. The items are grouped under cus-
tomers and appear according to their date of acquisition. In order to detect
customer behavior over time, one needs to be able to pose queries involving or-
der. Therefore, it is common to find XPath queries that need sideways traversal
via horizontal modalities such as (immediate) right-sibling and left-sibling axes
(denoted by “→,→∗,←,←∗”, respectively). It is natural to ask whether the
presence of sibling axes simplifies or complicates the satisfiability analysis. For
example, consider a fragment X (↓, []) that supports wildcard (↓) and qualifiers
([]) and characterizes well-studied tree pattern queries [1, 2, 28, 29]. One would
want to know whether the satisfiability analysis becomes easier or harder for
X (→, []) (resp. X (←, [])), the horizontal counterpart of X (↓, []) by substitut-
ing → (resp. ←) for ↓. The complexity of the satisfiability analysis is not yet
known for a variety of XPath fragments with sibling axes.

Related to the satisfiability analysis is the containment problem, which is to
determine, given two XPath queries Q1, Q2 and a DTD D, whether or not for
all XML documents T that conform to D, Q1(T) is contained in Q2(T). While
there has also been a host of work on the containment analysis [8, 17, 19, 22, 29],
the previous results cannot answer the questions of the satisfiability analysis.
Indeed, as already observed by [2], the lower bounds for the containment analysis
are often much higher than its satisfiability counterpart. Worse still, to our
knowledge there has not been a full treatment of the containment problem for
various fragments with the sibling axes or XPath negation.

Main Results. To this end we investigate the satisfiability problem for a variety
of XPath fragments with sibling axes, in the following settings:

– XPath fragments: with or without recursion axis (e.g., →∗,←∗, ↓∗, ↑∗), qual-
ifiers ([]), data-value joins (denoted by =), and negation (¬);

– DTDs: in the presence of DTDs vs. in the absence of DTDs; fixed DTDs
vs. arbitrary DTDs; and restricted DTDs with or without DTD recursion,
disjunction, and Kleene star in element type definitions.

We establish lower and upper bounds for the satisfiability analysis in these set-
tings, which range from NLOGSPACE to undecidable. We also explore the im-
pact of sibling axes on the analysis. We show that in the absence of XPath qual-
ifiers, the presence of sibling axes does not complicate the satisfiability analysis.
In contrast, in the presence of qualifiers, sibling axes make the analysis harder.
Indeed, we show the following. (a) The satisfiability problem for X (→, []) is
NP-hard under fixed, disjunction-free DTDs, whereas it is in PTIME for its
vertical counterpart X (↓, []) in the same setting [2]. (b) It is EXPTIME-hard
for X (↑,→,∪, [],¬)), a fragment with upward and sibling axes and negation
but without recursion; in contrast, it is in PSPACE for the vertical counterpart
X (↓, ↑,∪, [],¬)) [2]. (c) Under non-recursive and fixed DTDs and in the ab-
sence of DTDs, it is still unknown [2] whether or not the satisfiability problem is

124 F. Geerts and W. Fan

decidable for X (↓, ↓∗, ↑, ↑∗,∪, [],¬, =), a fragment with negation, data-value
joins and all the vertical axes. In contrast, the problem is undecidable when
sibling axes are introduced; indeed, it is undecidable for X (↑,←,→,→∗,∪, [],
=,¬) in the same settings.

In addition to the complexity bounds for the satisfiability problems, we also
explore the connection between vertical and horizontal axes and the connec-
tion between the satisfiability and containment analysis, establishing first lower
bound results for the containment analysis of XPath fragments with sibling axes.

These results help us understand the interaction between different XPath
axes, as well as their interaction with various DTD constructs. Taken together,
these results and the previous work [2, 13, 15, 17] provide a detailed treatment
of the satisfiability analysis for a large number of XPath fragments commonly
found in practice, in a variety of DTD settings.

Related Work. The satisfiability problem has been studied in [2, 13, 15, 17].
Complexity bounds were provided in [2] for various XPath fragment under a va-
riety of DTDs. However, no sibling axes were considered there. Our results in this
paper complement and extend the results of [2]. The main focus of [17] is about
extensions of XPath, and it provided EXPTIME (lower and upper) bounds on
equivalence for an extension of XPath in the presence of DTDs, which implies
an EXPTIME bound for our fragment with all the axes and negation but with-
out data-value joins. We will show in Section 4.3 that the EXPTIME-hardness
already holds for a subclass of the fragment without recursion axes. The XPath
queries considered in [15] are basically tree patterns with node equality, inequal-
ity and limited use of data joins; neither negation nor sibling axes were considered
there; furthermore, DTDs were restricted to be non-recursive disjunction-free
in [15]. In the absence of DTDs, [13] studied the satisfiability problem for XPath
without negation and data-value joins. From the results of [2], we already know
that these bounds do not hold in the presence of DTDs. In particular, [13] gave
PTIME bounds for XPath fragments with qualifiers, sibling axes, upward axes,
and a root test in the absence of DTDs. We show that in the presence of DTDs,
the problem is NP-hard, and we give PTIME bounds in the absence of qualifiers,
and in the presence of sibling, upward axes and DTDs.

There has also been work on the containment problem for XPath fragments
in the absence and in the presence of DTDs [8, 17, 19, 22, 29]. Most of the work
(except [22, 17]) only studied fragments without upward axes, sibling axes, data-
value joins and negation. The negation defined in [22] is quite different from the
general XPath negation operator. See [25] for a recent survey. As shown in [2],
the complexity bounds for the containment analysis are typically much higher
than its satisfiability counterpart in the absence of negation. In the presence of
negation, the connection between the containment analysis and its satisfiability
counterpart was explored in [2] and will be further discussed in Section 5.

Other active areas of XPath research include the expressive power of
XPath (e.g., [3, 12, 16, 17, 18, 20, 21]) and query rewriting and minimization
(e.g., [1, 9, 11, 23, 28]). While XPath satisfiability is not the focus in those

Satisfiability of XPath Queries with Sibling Axes 125

areas, the satisfiability analysis is useful for XPath rewriting, minimization and
optimization.

Organization. Section 2 reviews DTDs and defines XPath fragments. Section 3
explores the connection between sibling and vertical axes. Section 4 studies the
satisfiability problem for XPath fragments with sibling axes, followed by the
containment analysis in Section 5. Section 6 summarizes the main results of the
paper. All proofs can be found in the full paper.

2 Preliminaries

In this section we first review DTDs [5] and describe the XPath [7] fragments
considered in this paper. We then state the satisfiability problem in the presence
of DTDs and address its connection with the counterpart in the absence of DTDs.

2.1 DTDs

Without loss of generality, we represent a Document Type Definition (DTD [5])
D as (Ele, Att, P, R, r), where (1) Ele is a finite set of element types, ranged
over by A, B, . . .; (2) r is a distinguished type in Ele, called the root type;
(3) P is a function that defines the element types: for each A in Ele, P (A)
is a regular expression over Ele; we refer to A → P (A) as the production of
A; (4) Att is a finite set of attribute names, ranged over by a, b, . . .; and (5) R
defines the attributes: for each A in Ele, R(A) is a subset of Att.

A DTD D = (Ele, Att, P, R, r) is said to be disjunction-free if for any ele-
ment type A ∈ Ele, P (A) does not contain disjunction ‘+’. It is called no-star
if for any A ∈ Ele, P (A) does not contain the Kleene star ‘∗’ (this should not
be confused with star-free regular expressions). It is recursive if the dependency
graph of D, which contains an edge (A, B) iff B is in P (A), has a cycle.

An XML document is typically modeled as a (finite) node-labeled tree [5],
with nodes additionally annotated with values for attributes. We refer to this
as an XML tree. An XML tree T satisfies (or conforms to) a DTD D =
(Ele, Att, P, R, r), denoted by T |= D, if (1) the root of T is labeled with
r; (2) each node n in T is labeled with an Ele type A, called an A element ; the
label of n is denoted by lab(n); (3) each A element has a list of children such
that their labels are a word in the regular language defined by P (A); and (4) for
each A in Ele and each a ∈ R(A), each A element n has a unique a attribute
value, denoted by n.a. We call T an XML tree of D if T |= D.

Example 1. Consider a DTD D1 = (Ele, Att, P, R, r) defined as

Ele = {r, X, A, B}.
P : r → X∗, X → (A, B∗)∗

Att = ∅, R(X) = R(T) = R(F) = ∅.
It is non-recursive and disjunction-free. An XML tree of D1 is shown at the left
in Fig. 1.

126 F. Geerts and W. Fan

r

X

A B

X

A B B B A

X

A B B B B A

r

X

Y

X Y

X

Y X

Y

X

Y X

Y

Y Y

Fig. 1. XML trees of the DTDs D1 (left) and D2 (right) given in Example 1

Another DTD D2 = (Ele, Att, P, R, r) is defined as

Ele = {r, X, Y }.
P : r → X, Y , X → Y, X + ε, Y → X, Y + ε
Att = ∅, R(X) = R(T) = R(F) = ∅.

It is recursive and no-star. An XML tree of D2 is shown at the right in Fig. 1.

Note that a DTD D may not have any XML tree T such that T |= D. This is
because some element type A in D is non-terminating, i.e., there exists no finite
subtree rooted at an A element that satisfies D. Fortunately, one can determine
whether this is the case for any element type of D in O(|D|) time, where |D| is
the size of D [14]. In the remainder of the paper we will assume that all element
types in a DTD are terminating. This does not affect any of our results.

2.2 XPath Fragments

Over an XML tree, an XPath query specifies the selection of nodes in the tree.
Assume a (possibly infinite) alphabet Σ of labels. The largest fragment of XPath
studied in this paper, denoted by X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [], =,¬), is
defined syntactically as follows:

p ::= ε | A | ↓ | ↓∗ | ↑ | ↑∗ | → | →∗

| ← | ←∗ | p/p | p ∪ p | p[q],

where ε and A denote the empty path (the self-axis) and a label in Σ (the child-
axis); ‘↓’ and ‘↓∗’ stand for the wildcard (child) and the descendant-or-self-axis,
while ↑ and ↑∗ denote the parent-axis and ancestor-or-self-axis, respectively;
‘→∗’ (resp. ‘←∗’) is the following-sibling (resp. preceding-sibling) axis, and ‘→’
(resp. ‘←’) denotes the immediate right sibling (reps. the immediate left sibling);
‘/’ and ‘∪’ stand for concatenation and union, respectively; and finally, q in p[q]
is called a qualifier and is defined by:

q ::= p | lab() = A | p/@a op c | p/@a op p’/@b

| q1 ∧ q2 | q1 ∨ q2 | ¬q,

where p is as defined above, A is a label in Σ, op is either ‘=’ or ‘�=’ (referred
to as data-value joins), a, b stand for attributes, c is a constant (string value),
and ∧,∨,¬ stand for and (conjunction), or (disjunction) and not (negation),
respectively.

Satisfiability of XPath Queries with Sibling Axes 127

It is worth mentioning that while XPath [7] does not explicitly define ‘←,→’,
these operators are definable in terms of the preceding-sibling and following-
sibling axes, together with position(), as follows:

← = ←∗[position() = 1], → = →∗[position() = 1].

A query p in X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [], =,¬) over an XML tree T is
interpreted as a binary predicate on the nodes of T , while a qualifier is interpreted
as a unary predicate. More specifically, for any node n in T , T satisfies p at n
iff T |= ∃n′ p(n, n′), where T |= p(n, n′) and the associated version for qualifiers,
T |= q(n), are defined inductively on the structure of p, q, as follows:

1. if p = ε, then n = n′;
2. if p = l, then n′ is a child of n, and is labeled l;
3. if p = ↓, then n′ is a child of n, regardless of its label;
4. if p = ↓∗, then n′ is either n or a descendant of n;
5. if p = ↑, then n′ is the parent of n;
6. if p = ↑∗, then n′ is either n or an ancestor of n;
7. if p = →, then n′ is the immediate right sibling of n.
8. if p = →∗, then n′ is either n or a right sibling of n.
9. if p = ←, then n′ is the immediate left sibling of n.

10. if p = ←∗, then n′ is either n or a left sibling of n.
11. if p = p1/p2, then there exists a node v in T such that T |= p1(n, v)∧p2(v, n′);
12. if p = p1 ∪ p2, then T |= p1(n, n′) ∨ p2(n, n′);
13. if p = p1[q], then T |= p1(n, n′) and T |= q(n′), where q is a unary predicate

of the following cases:
(a) q is p2: then T |= ∃n′′ p2(n′, n′′);
(b) q is lab() = A: then the label of n′ is A;
(c) q is p2/@a op ‘c’: then T |= ∃n1 (p2(n′, n1) ∧ n1.a op ‘c’), where n1.a

denotes the value of the a attribute of n1; that is, there exists a node n1
in T such that T |= p2(n′, n1), n1 has attribute a and n1.a op ‘c’;

(d) q is p2/@a op p′2/@b: then T satisfies the existential formula: T |=
∃n1 ∃n2 (p2(n′, n1) ∧ p′2(n

′, n2) ∧ n1.a op n2.b);
(e) q is q1 ∧ q2: then T |= (q1(n′) ∧ q2(n′));
(f) q is q1 ∨ q2: then T |= (q1(n′) ∨ q2(n′));
(g) q is ¬q′: then T �|= q′(n′); for instance, if q is ¬p2, then T |=

∀n′′ ¬p2(n′, n′′).

Here n is referred to as the context node. If T |= p(n, n′) then we say that n′

is reachable from n via p. We use n[[p]] to denote the set of all the nodes reached
from n via p, i.e., n[[p]] = {n′ | n′ ∈ T , T |= p(n, n′)}.

We investigate various fragments of X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [], =,¬).
We denote a fragment X by listing the operators supported by X : the presence
or absence of negation ‘¬’, data-value joins ‘=, �=’, upward traversal ‘↑’ (’↑∗’),
sideways traversal ‘←’ (’←∗’) and ‘→’ (’→∗’), wildcard ‘↓’, recursive axis ‘↓∗, ↑∗,
←∗’, and ’→∗’, qualifiers ‘[]’, and union and disjunction ‘ ∪’. The concatenation
operator ‘/’ is included in all fragments by default.

128 F. Geerts and W. Fan

Example 2. Consider the XML tree T of D2 shown in Fig. 1, and the following
XPath queries. (a) Over T , ↓∗[↓/→[lab() = X]] is to find all the nodes in T
that have child whose right sibling is labeled X . This query is in the fragment
X (↓, ↓∗,→, []). (b) Posed on T , ↓∗[¬↓∗[X/→[lab() = Y]]] is to find all the nodes
in T that have no descendant which has children X and Y in this order. This
query is in X (↓, ↓∗,→, [],¬). (c) Over the XML tree T1 of D1 shown in Fig. 1,
↓∗[A/→/→∗[lab() = A] ∧ ¬(B/→/→∗[lab() = B]/→/→∗[lab() = B])] is to find
all the nodes that have at least two A children but at most three B children. It
is in X (↓, ↓∗,→,→∗, [],¬).

2.3 The Satisfiability Problem

We say that an XML tree T satisfies a query p, denoted by T |= p, iff T |=
∃n p(r, n), where r is the root of T . In other words, r[[p]] �= ∅. We focus on the
satisfiability of XPath queries applied to the root of T . The complexity results
of this paper remain intact for arbitrary context nodes.

We study the satisfiability problem for XPath queries considered together
with a DTD. That is the problem to determine whether a given XPath query
p and a DTD D are satisfiable by an XML tree. We say that an XML tree T
satisfies p and D, denoted by T |= (p, D), if T |= p and T |= D. If such a T
exists, we say that (p, D) is satisfiable.

Formally, for a fragment X of XPath we define the XPath satisfiability problem
SAT(X) as follows:

PROBLEM: SAT(X)
INPUT: A DTD D, an XPath query p in X .
QUESTION: Is there an XML document T such that T |= (p, D)?

We are also interested in the complexity of the satisfiability analysis in the
query size alone. The satisfiability problem for a fragment X in the absence of
DTDs is the problem of determining, given any query p in X , whether or not
there is an XML tree T such that T |= p. As shown in [2], this problem is a
special case of SAT(X), when DTDs D are restricted to have a certain syntactic
form. Since such DTDs can be computed in low polynomial of the size of the
input queries, all the lower bounds for SAT(X) established in this paper, except
Proposition 6, also hold in the absence of DTDs.

3 Horizontal Versus Vertical Traversal

In this section we study the basic properties of XPath fragments with sibling
axes, and explore the connection between these fragments and the corresponding
fragments without sibling axes.

Increase in Expressive Power. We first show that the sibling axes do add
expressive power to fragments without horizontal modalities.

Satisfiability of XPath Queries with Sibling Axes 129

Proposition 1. The sibling axes are not expressible in X (↓, ↓∗, ↑, ↑∗,∪, [], =,
¬), our largest fragment with only vertical axes.

Proof. Consider an XPath query Q = A/→, and two XML trees T1 and T2,
where T1 consists of a root with two A children, and T2 has a root with three A
children. Over T1 and T2, Q is to find all A children of the root except the very
first one. One can verify that Q is not expressible in X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬),
in which T1 and T2 are not distinguishable. Similarly for ←,→∗ and ←∗.

We say that an XPath fragment X has the finite model property if for any
query p in X , if p is satisfiable by a (possibly infinite) tree, then there exists a
finite tree that satisfies p. An XPath fragment X has the small model property
if there exists a recursive function f such that for each p ∈ X , if p is satisfiable,
then p has a finite model of size at most f(|p|), where |p| is the size of p.

As another evidence for the increase of expressive power, observe that the
fragment X (→, [],¬) does not have the finite model property. Indeed, the query
ε[A ∧ ¬A[¬→[lab() = A]]] does not have the finite model. Thus we have:

Proposition 2. The satisfiability problem for any fragment that subsumes
X (→, [],¬) does not have the finite model property, in the presence of DTDs
and in the absence of DTDs.

In contrast, [2] has shown the following: (a) X (↓, ↑,∪, [],¬) has the small
model property in the presence of DTDs and in the absence of DTDs, and
(b) X (↓, ↓∗, ↑, ↑∗,∪, [],¬) has the small model property over non-recursive DTDs.
This shows that the sibling axes may complicate the satisfiability analysis.

DTD Coding. We next show that certain DTDs can be encoded in terms of a
qualifier in X (↓, ↓∗,→, [],¬). Recall the following from [2]: a normalized DTD
restricts its productions A → α such that α is of the following forms:

α ::= ε | B1, . . . , Bn | B1 + · · · + Bn | B∗

where Bi is a type in Ele. It was shown there that any DTD can be “normalized”
in linear time, and moreover, for any XPath fragment with ∪ and ↓ and without
sibling axes, the normalization has no impact on the complexity bounds of its
satisfiability analysis. Below we further show that we can actually encode a
normalized DTD in terms of XPath qualifiers in X (↓, ↓∗,→, [],¬).

Proposition 3. A normalized DTD D can be expressed as a qualifier qD in any
XPath fragment that subsumes X (↓, ↓∗,→, [],¬). That is, for any query Q in
a fragment that subsumes X (↓, ↓∗,→, [],¬), (Q, D) is satisfiable iff ε[qD]/Q is
satisfiable in the absence of DTDs.

Proof. We show that for any A in the set Ele of the element types of a nor-
malized DTD, the production A → P (A) can expressed as a qualifier QA in
X (↓, ↓∗,→, [],¬), by induction on the structure of P (A). Putting these together,
we obtain a single qualifier qD = ε[

∧
A∈Ele QA] at the root.

130 F. Geerts and W. Fan

As an immediate result, for any XPath fragment X (↓, ↓∗,→,→∗, [],¬, . . .),
its satisfiability analysis in the presence of normalized DTDs is equivalent to its
counterpart in the absence of DTDs.

In contrast, below we show that normalized DTDs are not expressible in
fragments without sibling axes. Indeed, it was shown in [2] that without sibling
axes, the lower bounds for XPath satisfiability analysis in the presence of DTDs
typically do not carry over to the counterpart in the absence of DTDs, although
the analysis without DTDs is a special case of its counterpart with DTDs.

Proposition 4. A normalized DTD D cannot be expressed as a qualifier qD in
X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬).

Proof. One can verify that two different DTDs D1 and D2 are not distinguish-
able by any XPath query in X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬), where D1 has a single
production r → A, A, and D2 consists of a single production r → A, A, A.

Encoding Horizontal Traversal in Terms of Vertical Modalities. Let
X (→,→∗, [], . . .) be any class of XPath queries that allows ‘→,→∗’ and quali-
fiers. Let X ∗(↓, ↑,∪, [], . . .) be a variation of X (→,→∗, [], . . .) by (a) supporting
↓, ↑, and ∪, (b) supporting the general Kleene closure defined by β∗, where β
is a simple path A1[q1]/ . . . /Ak[qn], where Ai is a label and [qi] is a Boolean
combination of simple label testing qualifiers (of the form lab() = A), and (c)
discarding any queries with ‘→,→∗’. Note that X ∗(↓, ↑,∪, [], . . .) is far more
restrictive than the regular XPath fragment introduced and studied in [17].

Proposition 5. For any class X (→,→∗, [], . . .) of XPath queries, there ex-
ists a PTIME computable function N from DTDs to DTDs, and there ex-
ists a PTIME computable function f from queries in X (→,→∗, [], . . .) to
queries in X ∗(↓, ↑,∪, [], . . .) such that, for any DTD D and any XPath query
p ∈ X (→,→∗, [], . . .), there exists an XML tree T such that T |= (p, D) iff there
exists an XML tree T ′ such that T ′ |= (f(p), N(D)).

Proof. The mapping N is based on the canonical binary encoding of instances
of the input D, which introduces new labels. Then f can be defined such that
it traverses “descendants” and “siblings” by visiting left subtrees and right sub-
trees in the binary trees, respectively. The query translation requires the use of
↓, ↑,∪, [] and simple paths of the form A1[q1]/ . . . /Ak[qn] as described above.

This tells us that, upon the availability of upper bounds for conditional and
regular XPath fragments [17] without siblings, the bounds can carry over to our
fragments with sibling axes.

4 Complexity of XPath Satisfiability with Sibling Axes

In this section we study the satisfiability problem for various XPath fragments
with sibling axes, and contrast the complexity bounds with their counterparts

Satisfiability of XPath Queries with Sibling Axes 131

for the corresponding fragments without sibling axes. To understand the im-
pact of different XPath modalities on the satisfiability analysis, we start with
a simple fragment X (↓, ↓∗,→,→∗,∪), and then extend the fragment gradually
by adding qualifiers, data-value joins, and negation one by one. To study the
interaction between XPath modalities and DTD constructs, we also consider the
analysis under DTDs restricted to have certain constructs and in the absence
of DTDs.

4.1 XPath Fragments Without Qualifiers

Without sibling axes, the absence of qualifiers simplifies the satisfiability analy-
sis [2]. Below we show that it is also the case for XPath fragments with siblings.

Proposition 6. SAT(X (↓∗)) is NLOGSPACE-hard in the presence of DTDs.

Proof. This can be verified by LOGSPACE reduction from directed graph con-
nectivity with specified source and target, which is NLOGSPACE-hard [24].

In the absence of DTDs, all queries in X (↓, ↓∗,∪) are always satisfiable [2].

Theorem 1. Both SAT(X (↓, ↓∗,→,→∗,∪)) and SAT(X (↓, ↓∗,←,←∗,∪)) are
NLOGSPACE-complete in the presence of DTDs.

Proof. We provide a NLOGSPACE algorithm for checking the satisfiability of
(Q, D) for an input DTD D and query Q ∈ X (↓, ↓∗,→,→∗,∪) (resp. ←,←∗).
The key idea is to code vertical navigation using a query graph GQ of Q and
horizontal moves using NFAs of the regular expressions in D. This only requires
us to store triplets (q, v, A) at each step, where q is a NFA state, v is node in
GQ and A is a label. This only needs LOGSPACE.

Recall that SAT(X (↓, ↓∗,∪)) is in PTIME [2], which contains NLOGSPACE.
Thus Theorem 1 tells us that in the absence of qualifiers, the addition of sibling
axes does not complicate the satisfiability analysis. As another evidence:

Theorem 2. SAT(X (→,←)) is in PTIME in the presence of DTDs.

In contrast, SAT(X (↓, ↑)) is NP-hard [2]. The difference between X (↓, ↑) and
X (→,←) is that while a query in X (↓, ↑) can constrain the subtree of a node by
moving downward and upward repeatedly in the subtree, queries in X (→,←) are
not able to do it: as soon as the navigation moves down in a tree, it cannot move
back to the same node. Leveraging this we are able to develop a PTIME algo-
rithm, based on dynamic programming, for deciding the satisfiability of (Q, D)
for a given DTD D and query Q ∈ X (→,←).

From these we can see that XPath queries with sibling axes are quite well
behaved in the absence of qualifiers.

132 F. Geerts and W. Fan

4.2 Positive XPath Queries with Qualifiers

We now consider positive XPath fragments, i.e., fragments supporting qualifiers
but not including negation (¬). Positive fragments are contained in positive
existential two-variable first-order logic over trees, with binary predicates child,
descendant, and sibling [17]. It is known that qualifiers make the satisfiability
analysis harder for XPath fragments without siblings [2]. We show that this is
also the case when sibling axes are considered instead of vertical modalities.

Theorem 3. The satisfiability problem for the following fragments is NP-hard:

1. SAT(X ([])) under nonrecursive DTDs;
2. SAT(X (→, [])) and SAT(X (←, [])) under fixed, disjunctive-free and nonre-

cursive DTDs;
3. SAT(X (→,∪, [])) and SAT(X (←,∪, [])) in the absence of DTDs.

Proof. These can be verified by reduction from the 3SAT problem, which is
NP-complete (cf. [24]).

Here by fixed DTDs we mean that the input to the satisfiability analysis
consists of only a query rather than both a query and a DTD, and the XML
trees considered are required to conform to a predefined DTD.

Contrast these with the following results in [2]. (a) SAT(X (↓, [])) is NP-
hard under normalized DTDs. Here we improve that result by showing that
SAT(X ([])) is already intractable under (not necessarily normalized) DTDs.
(b) While SAT(X (↓, [])) is NP-complete for arbitrary DTDs, but it is in PTIME
when DTDs are restricted to be disjunction-free. In contrast, Theorem 3 shows
that it is no longer the case when ↓ is replaced by → or ←. (c) In the absence
of DTDs, SAT(X (↓,∪, [])) is in PTIME, as opposed to Theorem 3. Thus sibling
axes complicate the satisfiability analysis in the presence of qualifiers.

Recall that SAT(X (↓, ↓∗, ↑, ↑∗,∪, [], =)) is in NP [2]. The result below shows
that the addition of the sibling axes does not increase the upper bound.

Theorem 4. SAT(X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [], =)) is in NP.

Proof. It suffices to show that SAT(X ∗(↓, ↓∗, ↑, ↑∗,∪, [], =)) is in NP by Proposi-
tion 5. A NP decision algorithm is then provided for this fragment, by extending
the NP algorithm for SAT(X (↓, ↓∗, ↑, ↑∗,∪, [], =)) developed in [2].

4.3 XPath Fragments with Negation

In contrast to positive XPath fragments, negation introduces universal quanti-
fiers and complicates the satisfiability analysis without sibling axes [2]. We show
that in the presence of sibling axes the situation is also bad, and may be worse.

It is known that SAT(X (↓, [],¬)) is PSPACE-hard in the presence of DTDs
[2]. We show that the lower bound remains intact if we substitute → (resp. ←)
for ↓ in the fragment, even when the DTDs are restricted or left out.

Satisfiability of XPath Queries with Sibling Axes 133

Theorem 5. SAT(X (→, [],¬)) and SAT(X (←, [],¬)) are PSPACE-hard in the
following settings: (1) under non-recursive and no-star DTDs; and (2) in the
absence of DTDs.

Proof. The lower bounds can be proved by reduction from 3QSAT, a well-known
PSPACE-complete problem (cf. [24]).

Theorem 6. SAT(X (↓, ↑,←,←∗,→,→∗,∪, [],¬)) is PSPACE-complete under
no-star DTDs.

Proof. The upper bound can be verified by reduction to SAT(X (↓, [],¬)), based
on a variation of the proof of Proposition 5.

It is known [17] that SAT(X (↓, ↓∗,∪, [],¬)) is EXPTIME-hard and that
SAT(X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [],¬)) is in EXPTIME. We now show that
we already have the EXPTIME hardness in the presence of neither recursion in
XPath nor recursion in DTDs.

Theorem 7. SAT(X (↑,→, [],¬)) is EXPTIME-hard under fixed, nonrecursive
and disjunction-free DTDs.

This can be verified by reduction from the two-player game of corridor tiling,
which is EXPTIME-complete (cf. [4]). To see why the result holds, observe the
following. One can encode a certain recursive DTD D1 in terms of a “flattened”
DTD D2, and based on this a mapping N can be defined from XML trees of D1
to XML trees of D2 via “unnesting”; furthermore, there is a mapping f such that
for certain queries Q in X (↓, ↓∗,∪, [],¬), f(Q) is in X (↑,→, [],¬) and moreover,
if Q is satisfiable by an XML tree T of D1, then f(Q) is satisfiable by N(T). In
N(T), the child, parent and right sibling axes suffice to access certain elements
that are deep in T . From this it follows that a reduction from the two-player
game of corridor tiling to SAT(X (↓, ↓∗,∪, [],¬)) can be coded in terms of a
query in X (↑,→, [],¬) and a fixed, nonrecursive DTD as described above. This
explains why the EXPTIME lower bounds is robust in the absence of XPath
and DTD recursions, and demonstrates the power of sibling axes.

4.4 XPath Fragments with Negation and Data Values

Finally, we investigate the satisfiability analysis for XPath fragments with data-
value joins, negation and sibling axes. As observed in [2], the interaction between
data-value joins and negation is already intricate in the absence of sibling axes.
Indeed, SAT(X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬)) is undecidable in presence of fixed recur-
sive DTDs [2]. However, it is not yet known whether or not the undecidability
result still holds (a) under non-recursive DTDs, (b) under fixed DTDs, and
(c) in the absence of DTDs. In contrast, we next show that in the presence of
sibling axes but without vertical XPath recursion ↓∗ and ↑∗, the problem remains
undecidable in all the settings mentioned above.

134 F. Geerts and W. Fan

Theorem 8. SAT(X (↑,←,→,→∗,∪, [], =,¬)) is undecidable in any of the fol-
lowing setting: (1) under non-recursive, fixed and disjunction-free DTDs; and
(2) in the absence of DTDs.

The undecidability result can be verified by reduction from the halting prob-
lem for two-register machines, which is known to be undecidable (see, e.g., [4]).
The proof extends the undecidability proof of [2] for SAT(X (↓, ↓∗, ↑, ↑∗, [], =,¬)
under fixed recursive DTDs, by “flattening” DTDs in the same way as mentioned
above. The proof leverages the following observation: by means of XPath quali-
fiers with →,→∗,← and ↑, (a) DTD linear recursion introduced by productions
of the form A → A + ε can be coded with productions of the form A → B∗;
(b) disjunction in a DTD can also be coded in terms of the use of Kleene star.
This allows us to get rid of linear recursion and disjunction required by the
undecidability proof of [2], and again shows the expressive power of sibling axes.

5 The Containment Analysis for XPath with Siblings

In this section we present a few lower bounds for the containment analysis of
XPath fragments with sibling axes, by exploring the connection between the con-
tainment analysis and its satisfiability counterpart, and by using the complexity
results for the satisfiability analysis given in the last section.

The containment problem for a fragment X in the presence of DTDs, denoted
by CNT(X), is the problem to determine, given any queries Q1, Q2 ∈ X and a
DTD D, whether or not for any XML tree T of D, r[[Q1]] ⊆ r[[Q2]], where r is
the root of T . If this holds then we say that Q1 ⊆ Q2 under D.

It is easy to see that for any fragment X , SAT(X) is reducible to the
complement of CNT(X). Recall that for a complexity class K, coK stands for
{P̄ | P ∈ K}.

Proposition 7. [2] For any class X of XPath queries, if CNT(X) is in K for
some complexity class K, then SAT(X) is in coK. Conversely, if SAT(X) is K-
hard, then CNT(X) is coK-hard.

From this and Theorems 3, 5, 7 and 8 it immediately follows:

Corollary 1. For the containment problem,

1. CNT(X (→, [])) and CNT(X (←, [])) are coNP-hard under fixed, disjunction-
free and nonrecursive DTDs;

2. CNT(X (→,∪, [])) and CNT(X (←,∪, [])) are coNP-hard in the absence of
DTDs;

3. CNT(X (→, [],¬)) and CNT(X (←, [],¬)) are PSPACE-hard (a) under non-
recursive and no-star DTDs, and (b) in the absence of DTDs;

4. CNT(X (↑,→, [],¬)) is EXPTIME-hard under fixed, disjunction-free and
nonrecursive DTDs;

5. CNT(X (↑,←,→,→∗,∪, [], =,¬)) is undecidable (a) under non-recursive,
disjunction-free and fixed DTDs, and (b) in the absence of DTDs.

Satisfiability of XPath Queries with Sibling Axes 135

These are among the first lower bound results for the containment problem
for XPath fragments with sibling axes. Indeed, the only other result that we
are aware of is the EXPTIME lower bound given by [17] for CNT(X (↓, ↓∗,∪, [],
¬)). Corollary 1 strengthens that result by showing that CNT(X (↑,→, [],¬)) is
already EXPTIME-hard under restricted DTDs.

As observed in [2], the upper bound for SAT(X) is often much lower than
its counterpart for CNT(X). However, for certain fragments X without sibling
axes, SAT(X) and CNT(X) actually coincide. These include the following: (a)
the class X(bl, [],¬) of Boolean queries, i.e., queries of the form ε[q], in any class
X (. . . , [],¬) with negation and qualifiers; and (b) any class containing negation
and closed under the inverse operator that is defined as a simple extension of
inverse(↓) = ↑, inverse(↓∗) = ↑∗, inverse(↑) = ↓ and inverse(↑∗) = ↓∗.

We next show that this result of [2] carries over to XPath fragments with sib-
ling axes, by extending (a) the class X(bl, [],¬) by including Boolean queries
with sibling axes; (b) the definition of inverse such that inverse(←) = →,
inverse(←∗) = →∗, inverse(→) = ←, inverse(→∗) = ←∗.

Proposition 8. For any class X(bl, [],¬) of Boolean queries, CNT(X(bl, [],¬)) is
reducible in constant time to the complement of SAT(X(bl, [],¬)). For any class
X with negation and closed under inverse, CNT(X) is reducible in linear time to
the complement of SAT(X).

6 Conclusions

We have established complexity bounds for a number of XPath fragments with
sibling axes, in the presence of DTDs, in the absence of DTDs, and under various
restricted DTDs. The main results of the paper are summarized in Table 1. As
immediate corollaries of these results, we have also provided several lower bounds

Table 1. The complexity of SAT(X) for various fragments X under different DTDs

NLOGSPACE
-comp.

X (↓, ↓∗, →, →∗, ∪), X (↓, ↓∗, ←, ←∗, ∪)
any DTDs

nonrec. DTDs
PTIME X (←, →) any DTD
NP-hard X ([]) nonrec DTDs
NP-hard X (←, []), X (→, []) fixed, ‘+’-free, nonrec DTDs
NP-hard X (←, ∪, []), X (→, ∪, []) no DTDs
NP-comp. X (↓, ↓∗, ↑, ↑∗, ←, ←∗, →, →∗, ∪, [], =) any DTD

PSPACE-hard X (→, [], ¬), X (←, [], ¬)
nonrec, no-star DTDs

no DTDs
PSPACE-comp. X (↓, ↑, ←, ←∗, →, →∗, ∪, [], ¬) no-star DTDs
EXPTIME-hard X (↑, ←, [], ¬) fixed, ‘+’-free, nonrec. DTDs

undecidable X (↑, ←, →, →∗, ∪, [], ¬, =)
fixed, ‘+’-free, nonrec DTDs

no DTDs

136 F. Geerts and W. Fan

for the containment problem for XPath queries. Our main conclusion is that
while sibling axes do not complicate the satisfiability analysis in the absence of
qualifiers, they do make our lives harder in the presence of qualifiers.

To the best of our knowledge, the results of this paper are among the first
results for the satisfiability and containment analyses of XPath fragments with
sibling axes. They are complementary to the recent study on the satisfiability
problem for XPath fragments without sibling axes [2]. They are useful not only
for XML query and update optimization, but also for the static analysis of
inference control for XML security, among other things.

There is naturally much more to be done. One open problem is to close
the complexity gaps. For example, we do not know yet whether SAT(X ([]))
is still intractable under fixed and disjunction-free DTDs, and whether or not
SAT(X (→, [],¬)) is in PSPACE under arbitrary DTDs. Another topic for future
work is to study the satisfiability problem for XPath in the presence of XML
Schema, which typically consists of both a type (a specialized DTD) and a set of
XML constraints. This setting was considered in [8] for the containment analysis.

Acknowledgment. The authors would like to thank Frank Neven for giving
the proof idea for Theorem 1. Wenfei Fan is supported in part by EPSRC
GR/S63205/01, EPSRC GR/T27433/01 and NSFC 60228006. Floris Geerts is
postdoctoral researcher of the FWO Vlaanderen and is supported in part by
EPSRC GR/S63205/01.

References

1. S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivistava. Minimization of tree
pattern queries. In SIGMOD, 2001.

2. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
In PODS, 2005.

3. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
In ICDT, 2003.

4. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer,
1997.

5. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0. W3C Recommendation, Feb 1998. http://www.w3.org/TR/REC-xml.

6. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. Computer
Networks, 39(5):473–487, 2002.

7. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
Nov. 1999.

8. A. Deutsch and V. Tannen. Containment for classes of XPath expressions under
integrity constraints. In KRDB, 2001.

9. A. Deutsch and V. Tannen. Reformulation of XML queries and constraints. In
ICDT, 2003.

10. W. Fan, C. Chan, and M. Garofalakis. Secure XML querying with security views.
In SIGMOD, 2004.

11. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In VLDB, 2002.

Satisfiability of XPath Queries with Sibling Axes 137

12. G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. In PODS,
2004.

13. J. Hidders. Satisfiability of XPath expressions. In DBPL, 2003.
14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation (2nd Edition). Addison Wesley, 2000.
15. L. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On testing satisfiability of

tree pattern queries. In VLDB, 2004.
16. L. Libkin. Logics over unranked trees: an overview. In ICALP, 2005.
17. M. Marx. XPath with conditional axis relations. In EDBT, 2004.
18. M. Marx. First order paths in ordered trees. In ICDT, pages 114–128, 2005.
19. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.

JACM, 51(1):2–45, 2004.
20. M. Murata. Extended path expressions for XML. In PODS, 2001.
21. F. Neven and T. Schwentick. Expressive and efficient languages for tree-structured

data. In PODS, 2000.
22. F. Neven and T. Schwentick. XPath containment in the presence of disjunction,

DTDs, and variables. In ICDT, 2003.
23. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. In XMLDM,

2002.
24. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
25. T. Schwentick. Xpath query containment. SIGMOD Rec., 33(1):101–109, 2004.
26. G. Sur, J. Hammer, and J. Siméon. An XQuery-based language for processing

updates in XML. In PLAN-X, 2004.
27. H. Thompson et al. XML Schema. W3C Recommendation, Oct. 2004. http://www.

w3.org/TR/xmlschema1.
28. P. T. Wood. Minimising simple XPath expressions. In WebDB, 2001.
29. P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT,

2003.

XML Subtree Queries: Specification
and Composition

Michael Benedikt and Irini Fundulaki

Bell Labs, Lucent Technologies, USA

Abstract. A frequent task encountered in XML processing is to fil-
ter an input document to produce a subdocument; that is, a document
whose root-to-leaf paths are root-to-leaf paths of the original document
and which inherits the tree structure of the original document. These
are what we mean by subtree queries, and while they are similar to
XPath filters, they cannot be naturally specified either in XPath or in
XQuery. Special-purpose subtree query languages provide a natural id-
iom for specifying this class of queries, but both composition and evalu-
ation are problematic. In this paper we show that for natural fragments
of XPath, the resulting subtree query languages are closed under compo-
sition. This closure property allows a sequence of subtree queries to be
rewritten as a single subtree query, which can then be evaluated either by
a subtree-query specific evaluator or via translation to XQuery. We pro-
vide a set of composition algorithms for each common XPath fragment
and discuss their complexity.

1 Introduction

In many aspects of data and document processing, one requires queries that
describe a subdocument (subtree) of the document on which the queries are eval-
uated. For instance, a data integration application might describe a view of mul-
tiple (virtual) XML documents into a single document by specifying subtrees
of the documents of each source to be merged; an access-control view might be
imposed on top of this, filtering out part of the resulting integrated document for
access control purposes, while an end-user query may ask for yet another subtree
of the filtered view. The ultimate result delivered to the end-user is logically the
composition of the three queries.

Motivation: Consider a source document D for the XMark [16] schema illus-
trated in Fig. 1 and suppose that a subscriber to this dataset is only permitted
to see the subtree of the original document that includes information about the
European region. This view is the result of query Q1, which evaluates the XPath
expression /site/regions/europe and closes the result set upwards and down-
wards. The result of this subtree query on document D is given in Fig. 1 (where
the returned nodes are marked in grey).

One group of users in the subscribing company is permitted to see only the
data about (i) the items that are not associated with a quantity, and (ii) the

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 138–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XML Subtree Queries: Specification and Composition 139

item

quantity location descr

item

quantity location descr

item

quantity location descr

1 2 3Greece France United Statestext parlist parlist

holly walk ..

text

fragment pamper ..

text

pamper new ...

listitem listitem

site

regions

europe namerica

item

quantity location descr

item

quantity location descr

item

quantity location description

1 2 3Greece France United Statestext parlist parlist

holly walk ..

text

fragment pamper ..

text

pamper new ...

listitem listitem

site

regions

europe namerica

Fig. 1. XMark Document D and the subtree associated with Q1 for D

locations of items. This subdocument is returned by query Q2 that takes all
nodes above or below the result of XPath expression: //item[not(quantity)] |
//item/location. Finally, an end-user wants to obtain the subtree that contains
the items that have either a location or a description. This subdocument is
returned by evaluating query Q3, which takes the result of XPath expression
//item[location | descr] and closes the result set upwards and downwards.

For this family of queries, XQuery does not give a natural syntax. In fact,
XQuery does not, strictly speaking, allow the expression of subtree queries at
all, since in an XQuery result fresh node identifiers will always be generated.
Fig. 2 shows an XQuery expression that would mimic the subtree query Q2,
matching the intended result up to the renaming of node identifiers. Observe
that, even allowing a result that is correct only “up to node identifiers”, the
translation of XPath expressions used to specify subtree queries to the XQuery
representation of these subtree queries is not straightforward: in the presence of
union, we need to retain the order of the elements from the original document in
the output result, while a naive translation of the subtree query would result in
different parts of different components of the union being contiguously ordered in
the result. The complexity of the translation escalates for subtree queries based
on XPath with negation, upward axes and union.

It is fairly clear that one does not wish to write XQuery representations of
subtree queries directly. An obvious solution is to use the XPath expressions
themselves as the user syntax. The subtree query language is thus parameterized
by a fragment of XPath and converts an XPath nodeset query into a subtree
query that “filters” the input document by the XPath expression to return a
subdocument.

Subtree queries can be evaluated via conversion on top of an arbitrary XQuery
or XSLT processor. However, this “evaluation via translation” is unsatisfactory
in terms of query performance. Since subtree queries are analogous to XPath
expressions, it is natural that they be evaluated using processing techniques
similar to those used for XPath. In a generated XQuery expression as in Fig. 2,
however, the subtree nature of the query is hidden and cannot be exploited by
the XQuery processor.

The problem is compounded when one composes subtree queries. Suppose one
wishes to perform a user query like Q3 on a chain of views given by queries Q2

140 M. Benedikt and I. Fundulaki

for $a in doc(′xmark.xml′)/site[regions[europe[item[self :: ∗[not(quantity)] |
self :: ∗[quantity][location]]]]] return

< site >
{ for $b in $a/regions[europe[item[self :: ∗[not(quantity)] |

self :: ∗[quantity][location]]]] return
< regions >

{for cinb/europe[item[self :: ∗[not(quantity)]| self :: ∗[quantity][location]]]return
< europe >

{ for $d in $c/(child :: ∗[self : item[not(quantity)]],
child :: ∗[self :: item[quantity][location]]) return

if ($d[self :: item[not(quantity)]]) then $d else
if ($d[self :: item[quantity][location]]) then
< item > { for $e in $d/location return $e } < /item > else 1} }

< /europe > }
< /regions > }

< /site >

Fig. 2. XQuery representation for Q2

and Q1. For efficiency and security reasons, one might wish to send the com-
posed query Q3 ◦ Q2 ◦ Q1 to the source, instead of evaluating the queries within
the application or middleware. Following the “XQuery-translation approach” to
subtree queries outlined above, one would compose by translating each Qi to an
XQuery expression, use XQuery’s composition operator to obtain the composed
query, and evaluate with a general-purpose XQuery engine. But now the fact
that this composition is actually another subtree query is completely buried.
What we require, then, is a composition algorithm that works directly on the
XPath surface syntax of these subtree queries, generating a new subtree query
within the same language. The resulting queries could be evaluated either via a
special-purpose evaluator, or via translation to XQuery.

In this work, we deal with composition algorithms for subtree queries based
on fragments of XPath 1.0 [6]. We show that for natural fragments of XPath, the
resulting subtree query languages are closed under composition, and present the
associated composition algorithms. In [2] we present experimental evidence that
these composition algorithms provide benefits both when the composed queries
are evaluated with a special-purpose subtree query engine, and also when they
are translated to XQuery and evaluated with an off-the-shelf XQuery proces-
sor. Unlike for XQuery, composition algorithms for subtree queries are non-
trivial – indeed we will show that for some choices of the XPath fragment, the
corresponding subtree query language is not closed under composition at all.
This is because our subtree query languages have no explicit composition op-
erator; furthermore, since the XPath fragments we deal with are variable-free,
the standard method of composition by means of variable introduction and pro-
jection is not available1. Our algorithms make heavy use of both the subtree

1 Note that we do not deal with the compositionality of XPath location paths on the
same document, but of the corresponding subtree queries.

XML Subtree Queries: Specification and Composition 141

nature of the queries and the restrictions imposed by the different XPath frag-
ments.

Summarizing, the main contribution of the paper is a set of composition algo-
rithms for each variant of the subtree query language (depending on the XPath
fragment), which allow us to compose subtree queries to form new subtree queries
in the same language, and also allow the composition of a subtree query with an
XPath user query.

Although we study here a particular XPath-based subtree query language,
we believe our composition algorithms should be applicable to other contexts in
which XPath is used implicitly or explicitly to define subdocuments of documents
(e.g. [1, 5]).

Organization: Section 2 presents the framework for subtree queries and the
fragments of XPath we will focus on. Section 3 presents the composition algo-
rithms and discusses complexity results. Finally we conclude in Section 4.

Related Work: Subtree queries cannot be expressed faithfully in XQuery, but
they can be expressed in various XML update language proposals [17]; indeed,
our work can be thought of roughly as giving special-purpose composition and
evaluation algorithms for the “delete-only” subset of these languages. We know
of no work dealing with the problem of efficiently composing declarative XML
updates. Our framework for subtree queries was first introduced in [8]. In [15, 14]
a very restricted family of these queries was studied in the context of the Bell
Labs GUPster project. [14] presents translation methods for subtree queries
(from this restricted family) to XQuery queries and XSLT programs.

Our work on composition stems partially from an earlier study of closure prop-
erties of XPath [4]. That work studies closure under intersection for XPath using
the standard nodeset semantics – the emphasis is on proving/disproving closure
not on algorithms or complexity bounds. In this work we deal with composition
for the corresponding subtree query languages, and give effective algorithms,
upper bounds, and lower bounds. Although composition is quite different from
intersection (e.g. composition is not commutative), we believe that the basic
ideas here can be used to give effective algorithms and bounds for the intersec-
tion problem as well. To our knowledge, composition algorithms for XQuery have
been considered only in [7], where an algorithm is given for a much broader frag-
ment of XQuery. It is not presented stand-alone, but in conjunction with query
generation in a publishing setting. The algorithm of [7] would not preserve
the XPath-based sublanguages we give here. Not only are these sublanguages
easier to analyze and optimize than general XQuery, they are also much eas-
ier to evaluate – since our subtree queries are based on XPath 1.0, they can
be evaluated with linear time combined complexity [9]. Even in the presence
of data value comparisons, languages based on XPath 1.0 have low evaluation
complexity [10]. The fact that XPath 1.0 is variable-free leads to the low com-
plexity, but also makes the composition problem much more difficult than for
XPath 2.0.

142 M. Benedikt and I. Fundulaki

2 XPath-Based Subtree Queries

XPath: Subtree queries are based on XPath expressions, which describe the
nodes in the input document we wish to retain in the output. XPath expressions
are built up from an infinite set of labels (tags, names) Σ. The fragments of
XPath2 studied in this paper are all contained in the fragment denoted by X ↑

r, [],¬
that is syntactically defined as:

p ::= ε | ∅ | l | ∗ | // | .. | ..∗ | p/p | p | p | p[q]

where ε, ∅, l in the production rules above denote the empty path (‘.’ in XPath),
the empty set, and a name in Σ, respectively; ‘|’ and ‘/’ stand for union and
concatenation, ‘∗’ and ‘..’ for the child-axis and parent-axis, ‘//’ and ‘..∗’ for the
descendant-or-self-axis and ancestor-or-self-axis3, respectively; and finally, q in
p[q] is called a qualifier and defined by:

q ::= p | label = l | q and q′ | not(q)

where p is an X ↑
r, [],¬ expression and l is a name in Σ. All of the semantics of

these expressions are as usual in XPath (see, for example, [18, 6]).

XPath Fragments: We use the following notations for subclasses of the XPath
fragment X ↑

r, [],¬: all the fragments will include the subscript ‘[]’, to indicate that
the subclass allows qualifiers, where qualifiers always include q ::= p | label = l.

Subscript ‘r’ indicates support for recursion in the fragment (the descendant-
or-self ‘//’ and ancestor-or-self ‘..∗’ axes), superscript ‘↑’ denotes the support
for upward modality (the parent ‘..’ and the ancestor-or-self ‘..∗’ axes in the
case of subscript r) while the subscript ‘¬’ indicates that filters allow negation.

Thus the smallest class we consider is X[], which has only the child axis
and does not allow negation in filters. The classes Xr, [], X ↑

[], X[],¬ extend this
basic fragment with the descendant and the parent axes, and negation in filters,
respectively. Above these, we have the fragments Xr, [],¬ X ↑

r, [], and X ↑
[],¬ which

combine two of the three features. The relationship of these fragments is shown
in the left diagram of Fig. 3.

In [4] it is shown that X[] and X ↑
[] return the same node-sets when evaluated

on the root of a tree (root equivalence, which we will always use here by default).
It is also shown there that Xr, [] and X ↑

r, [] are equally expressive. By similar
means it can be shown that upward navigation can be removed from X ↑

[],¬, to
obtain an equivalent expression in X[],¬: this is discussed further in Section 3.4.
Thus, up to expressive equivalence, the fragments appear in the right diagram
in Fig. 3. In the figure, the fragments shown at the same vertex are equally
2 For syntactic convenience we permit nesting of unions in expressions, which is for-

bidden in XPath 1.0; in XPath 1.0 this would be simulated by rewriting these nested
unions as top level ones.

3 We introduce the notation ‘..∗’ for the ancestor-or-self axis here in the absence of an
abbreviated syntax for this in XPath 1.0.

XML Subtree Queries: Specification and Composition 143

X[]

X ↑[]

X ↑r,[]

X r,[]

X [],¬

X r,[],¬

X ↑[], ¬

X ↑r,[],¬

X[] , X ↑[]

X r, [] , X ↑r, [] X ↑[], ¬ , X [],¬

X ↑ r, [], ¬

X r, [], ¬

Fig. 3. XPath fragments (left) and their relationship based on their expressive power
(right)

expressive. If an arrow connects two fragments F1 and F2, then F1 is strictly less
expressive than F2.

Semantics of Subtree Queries: We present here a framework for turning
XPath queries into subtree queries. Under the subtree semantics, the result of
the evaluation of an XPath expression q on a document D is document q(D)
(subdocument of D) obtained as follows:

1. evaluate q using the usual XPath semantics;
2. for each node n obtained from step 1, get its descendant and ancestor nodes

up to the root node of D;
3. finally, construct q(D) by removing all nodes of D that are not in the set of

nodes obtained from the previous step.

Note that the resulting document q(D) is a subdocument of D whose root-to-leaf
paths are a subset of the set of root-to-leaf paths of D and which inherits the
tree structure of D.

Subtree Query Notation: For two subdocuments D1 and D2 of D, D1 |D D2
is the subdocument whose nodes (edges) are the union of the nodes (edges) in
D1 and D2.

From this point on, when we write an XPath expression in this paper, we will
by default consider it as returning a document, using the subtree semantics. The
reader can thus think of subtree queries as particularly simple XML queries, with
a concise syntax. When we want to make clear whether an XPath expression E
is to be considered under the standard XPath semantics we write 〈E〉, and under
the subtree semantics we write %E&. Similarly, we write 〈E〉(D) to denote the
result of evaluating E under the XPath semantics and %E&(D) to denote the
result of evaluating E on document D under the subtree semantics.

3 Composing Subtree Queries

For any XPath fragment F used to define the subtree queries, the subtree compo-
sition problem for that fragment can be defined as follows: given two expressions

144 M. Benedikt and I. Fundulaki

E1 and E2 in F , find a single subtree query E′ such that for any document D it
holds that:

%E′&(D) = %E1&(%E2&(D))

From this point on, we refer to expression E1 as the outer query and E2 as the
inner query (the former is evaluated on the result of the evaluation of the latter),
and use E1 ◦ E2 to denote the function satisfying the definition above.

Thus there is a variant of this problem for each XPath fragment; indeed, there
are many XPath fragments where no such E′ exists for such queries. Closure un-
der composition fails for tree patterns (see below); it also fails for XPath with
ancestor and descendant axes, but without qualifiers. Our goal is to give effi-
cient algorithms that solve the composition problems for important fragments
of XPath. We begin with a composition algorithm for tree patterns in Sec-
tion 3.1, extend this to unions of tree patterns in Section 3.2, and to Xr, [],¬
in Section 3.3. In Section 3.4 we show how these techniques extend to fragments
in our diagram with upward axes. A related problem is the composition of an
XPath query with a subtree query in which the outer query E1 and the desired
E′ are both interpreted under XPath semantics. The algorithms presented here
discuss the composition of subtree queries. We leave the simple extension to the
composition of XPath queries with subtree queries for the full paper.

3.1 Subtree Composition for Tree Patterns

As a step towards a composition algorithm for subtree queries based on XPath
without negation, we begin with a composition algorithm for tree patterns. The
algorithm is based on finding homomorphisms of the outer query into the inner
query (as done in query containment algorithms for conjunctive queries).

Tree Patterns: A tree pattern is a tree with labels on nodes and edges. Nodes
are labeled by names of Σ. Edges are either child edges labeled with ∗, or descen-
dant edges, labeled with //. There is also a set of selected nodes which denote
the nodes returned by the pattern. A special case are the unary tree patterns
(see [4, 3]) that have a single selected node. A general tree pattern Q is eval-
uated as follows: for each match of one of the patterns in Q, we return any of
the nodes labeled as the selected node. Tree patterns return nodesets, and can
be translated into XPath queries in Xr, []. Thus we can consider them under the
subtree semantics as well. For two patterns P1 and P2, we write %P1& = %P2& to
mean these are equivalent under the subtree semantics.

We now note that tree patterns are not closed under composition: if one con-
siders the tree patterns E1=//listitem and E2=//parlist, then it is easy to see
that there is no tree pattern E′ for which %E′&(D) = %E1&(%E2&(D)). Closure
under composition can be obtained by adding top-level union. A union of tree
patterns is a set of tree patterns, and similarly a union of unary tree patterns
is a set of unary tree patterns. Such a query returns the union of the result
of its component patterns. In [4] it is shown that unions of tree patterns with

XML Subtree Queries: Specification and Composition 145

descendant edges have exactly the same expressiveness as the XPath fragment
Xr, [] consisting of expressions built up with descendant and child axes, while
the XPath fragment X[] is equivalent to tree patterns with only child edges. Our
next goal will be to give a composition algorithm for unions of tree patterns (and
hence for Xr, [] and X[]).

We say that a unary tree pattern is a path pattern if all its nodes are linear-
ordered by the edge relation of the pattern and where the selected node is not
necessarily a leaf node. Path patterns P have the property that for all unary
tree patterns Q1, Q2, and for any document D:

%P &(%Q1 | Q2&(D)) = %P &(%Q1&(D)) |D %P &(%Q2&(D))

The equality follows because, according to subtree semantics, for some instance
D, if the witness of the selected node of P is in Qi(D), then so are the witnesses
of its ancestors and descendants in P . We will see that this gives a particularly
simple algorithm for the composition of a path pattern P with a unary tree
pattern Q.

Embeddings: Given a tree pattern Q, an expansion of Q is an extension Q′ of
the pattern with additional nodes, which must be either a) adjacent wildcard
nodes as descendants of selected nodes or b) additional wildcard nodes inserted
between two nodes, ancestors of selected nodes, that were connected in Q with
a descendant edge. We refer to the nodes in Q′ − Q as expansion nodes.

A pattern embedding from a path pattern P to a unary tree pattern Q is a
mapping m from all the nodes in P to some expansion Q′ of Q, where 1) the
range of m includes all the expansion nodes of Q′ 2) m preserves child edge
relationships from P to Q′, maps nodes related by descendant edges in P to
transitively related nodes in Q′, and maps the root of P to the root of Q′ 3)
the label of node n in P is consistent with that of m(n) (i.e. either they match,
or the label of either n or m(n) is the wildcard) 4) all nodes in the range must
be comparable to a selected node (i.e. be either ancestors or descendants of the
selected node).

Given m, P and Q, let m(P, Q) be the tree pattern obtained from Q′ by
adding, for every expansion node k in Q′ that is a wildcard such that m(n) = k,
the label of n. The selected node of m(P, Q) is (a) the selected node in Q, if m(n)
is an ancestor of the selected node in Q′, or (b) m(n), if m(n) is a child wildcard
expansion node in Q′. In the presence of a DTD, we can optimize using DTD-
based pruning: we can check whether any parent/child or ancestor/descendant
edge in m(P, Q) contradicts the dependency graph of the DTD (which can be
pre-computed), and discard m(P, Q) from the result if there is such a clash.

Example 1. Consider the unary tree pattern Q4 = /site/regions//item[quantity]
and the path pattern Q1 = /site/regions/europe given previously (they are both
shown as tree patterns in Fig. 4). A double line signifies a descendant edge, a single
line a child edge and the selected nodes are starred. To calculate the embedding
from Q1 to Q4, we expand Q4 to Q′

4 (given in Fig. 4). The dotted lines between the

146 M. Benedikt and I. Fundulaki

site

regions

europe*

site

regions

item*

quantity

Q4Q1

site

regions

europe*

site

regions

*

item*

Q1 Q4’

quantity

site

regions

europe

item*

quantity

Pattern m(Q1,Q4)

Fig. 4. Path pattern Q1 and unary tree pattern Q4 (left), the expansion Q′
4 of Q4 and

the embedding of Q1 into Q4 (middle) and the pattern m(Q1, Q4) (right)

nodes of Q1 and Q′
4 show the embedding from Q1 into Q4. The pattern m(Q1, Q4)

obtained from the embedding of the path pattern Q1 into the unary tree pattern
Q4 is illustrated in Fig. 4.

Lemma 1. Let P be a path pattern and Q =
⋃

Qi be a union of unary tree
patterns Qi. For any document D and node n in %P &(%Q&(D)), there is some
pattern embedding m from P to Q and node n′ returned by m(P, Q), such that n
is either an ancestor or descendant of n′ in D. In particular P ◦ Q is the union
of m(P, Q) over all pattern embeddings m.

In the case where neither P nor Q contain descendant axes there is at most
one embedding m of P to each Qi which can be found in time linear in |P | +
|Qi| by proceeding top-down in parallel in P and Qi, where in Qi we proceed
down the path towards the selected node. We can be more efficient by noting
that to find embeddings of P into Qi, we care only about the query nodes in
the path to the selected node of Qi. Hence we can abstract away the subtrees
outside of this path (i.e. the filters associated with the nodes), and leave them as
additional annotations on the nodes of Qi, to be used only after the embedding
is found.

The algorithm runs in time bounded by the size of the number of embed-
dings of the outer query into the inner query. This number is exponential in
the worst case (e.g. bounded by min(2|outer|2|inner|

, (2|inner|)|outer|), since the
embeddings are order-preserving). The following result shows that a blow-up is
unavoidable:

Proposition 1. For queries I and O, let F (I, O) denote the minimum size of
a tree pattern query expressing the composition O ◦ I, and let f(n) denote the
maximum of F (I, O) over I and O of size at most n. Then f(n) ∈ Ω(2	n/2
).

The proof is by considering the composition of outer query E1 =
//A1// . . . //An and inner query E2 = //B1// . . . //Bn where the Ai and Bj

are tags. It is easy to see that a tree pattern contained in E1 ◦ E2 can represent
only one interleaving of the B’s and A’s, hence a composition must include a
distinct pattern for each interleaving, and there are more than 2n of these. Note
that if n′ is the size of the queries, then n = n′/2.

XML Subtree Queries: Specification and Composition 147

3.2 Subtree Composition for Positive XPath

For P a general unary tree pattern, and Q =
⋃

Qi, one needs to deal with the
fact that distinct paths in P may be witnessed in distinct Qi. Hence we find
it convenient to first calculate the possible fusings of the inner query and then
look at embeddings into these fused patterns. The fusings of the inner queries
are represented as tree patterns with multiple selected nodes (recall that these
are interpreted semantically in the subtree languages by taking all root-to-leaf
paths through any of the selected nodes).

Example 2. Consider the union of tree patterns q = q1 | q2 (inner query) below
and the unary tree pattern p =/site/regions/europe/item[location]/descr/text.

q1 = /site/regions/europe/item[quantity]/location
q2 = /site/regions/europe/item/descr

One can observe that distinct paths in p are witnessed in distinct qi’s: location
sub-elements of item elements are returned by q1 and descr sub-elements are
returned by q2. The queries obtained by fusing q1 and q2 are:

qa =/site/(regions/europe/item[quantity]/location |regions/europe/item/descr)
qb = /site/regions/(europe/item[quantity]/location | europe/item/descr)
qc = /site/regions/europe/(item[quantity]/location | item/descr)
qd = /site/regions/europe/item[quantity]/(location | descr)

In general, a fusing of tree patterns P1 . . . Pn is determined by an equivalence
relation E on the underlying nodes in expansions P ′

1 . . . P ′
n of the patterns, such

that equivalent nodes have consistent labels, every equivalence class contains a
node in some Pi, and such that: if for two nodes n and n′ it holds that nEn′,
then the parent of n is E-equivalent to the parent of n′. The corresponding fusing
is obtained by identifying equivalent nodes and arranging node and edge labels
via the strictest node and edge relation represented in the equivalence class. The
selected nodes are the equivalence classes of selected nodes in any P ′

i . It can be
shown that the conditions above guarantee that the resulting quotient structure
is a tree pattern. The fusings between two patterns can be enumerated using a
top-down algorithm that finds all matches for the siblings of the root of one tree
with descendants of the root in another tree, and then recursively searches for
matches of the subtrees of these siblings. This can be extended to multiple pat-
terns by using the equation Fusings(F1 | F) =

⋃
P∈Fusings(F) Fusings(F1, P).

We can trim the number of fusings by restricting to those that correspond to
some embedding of root-to-leaf paths from the outer query into nodes of the in-
ner query. Each such embedding generates an equivalence relation on the inner
query, by considering which nodes are mapped to by the same element of the
outer query.

The last restriction shows that when the outer query is a single tree pattern,
the size of the output of the composition algorithm can be bounded by the
number of functions taking root-to-leaf paths in the outer query to nodes in an

148 M. Benedikt and I. Fundulaki

expansion of the inner query. This in turn is bounded by (2|inner|)|outer|. In the
case that the outer query is a union of tree patterns with multiple components,
note that %(O1|O2) ◦ I&(D) = %(O1 ◦ I)&(D) |D %(O2 ◦ I)&(D), so we can treat
each component of the outer query separately. For a union of tree patterns Q,
let br(Q) be the number of trees in Q and l(Q) be the maximum size of any tree
in Q. The argument above shows that a composition can be produced in time
at most br(O)(2|I|)l(O). Again a worst-case exponential lower bound in output
size holds (using the same example as in Proposition 1).

From the algorithm above, we can get composition closure for X[] and Xr, [],
since each XPath query in these fragments can be translated into a union of tree
patterns. However, the translation to tree patterns itself requires an exponential
blow-up, since our X[] and Xr, [] allow the ’|’ (union) operator to be nested
arbitrarily (in contrast to XPath 1.0, where union is permitted only at top-
level). One can give modifications of these embedding algorithms that work
directly on X[] and Xr, [], and give only a single-exponential blow-up; we omit
these variations for space reasons and explain only the corresponding bounds. We
redefine br and l, and extend them to filters, using br(E1 | E2) = br(E1)+br(E2),
br(E1/E2) = max{E1, E2}, l(E1 | E2) = max{l(E1), l(E2)},l(E1/E2) = l(E1)+
l(E2). br and l are both preserved in filter steps and are equal to 1 for step
expressions. For filters, ∧ and ∨ are handled analogously to ’|’ and ’/’ above.
Then the number of embeddings from Xr, [] expression O into Xr, [] expression I

in this more general sense is again bounded by br(O)(2|I|)l(O), and so this gives
a bound on the running time of an embedding-based algorithm for X[] and Xr, []

as well.

3.3 Extending to Fragments with Negation

When we turn towards fragments with negation, we again have to deal with the
fact that the outer query can interact with different components of the inner
query. Consider for example the outer query Q3 and the inner query Q2:

Q3 = //item[location | descr] Q2 = //item[not(quantity)] | //item/location

both first presented in Section 1. One can observe that information about item
elements requested by the outer query Q3 can be found in both subqueries of the
inner query Q2. However, in this case we can make use of negation to rewrite
the inner query in such a way that different components of a union are “dis-
joint”, and hence that all parts of a match lie in the same component. Once this
normalization is done, we will have a straightforward inductive approach, with
more succinct output. The fact that the algorithm for fragments with negation
is simpler is not surprising, since generally we expect that the addition of more
features to the language will make composition easier, while potentially making
the composed queries harder to optimize.

Normalization Step: We define first the notion of strongly disjoint queries
that we will use in the following in order to perform the normalization step.

XML Subtree Queries: Specification and Composition 149

Two XPath queries q and q′ are said to be strongly disjoint if for any document
D, for any nodes n returned by q and n′ returned by q′ on D, the root-to-
leaf paths to n and n′ meet only at the root. An XPath expression E is said
to be in separable normal form (SNF) if for every subexpression of E of the
form E1 | . . . | En, the Ei are pairwise strongly disjoint. Normalization is done
by taking a subexpression E1 | E2 | . . . | En and breaking up any leading
filters into boolean combinations to ensure that the filters are either disjoint
or identical, grouping together expressions with the same filter, and recursing
on the remaining subexpression. The significance of strong disjointness is the
following simple lemma:

Lemma 2. Suppose E1 and E2 are in separable normal form and P, E1, E2 are
in the fragment Xr, [],¬. Then, for all documents D it holds that:

%P &(%E1 | E2&(D)) = %P &(%E1&(D)) |D %P &(%E2&(D))

Using this we get a simple algorithm for composing any subtree query in the
fragment Xr, [],¬ with any E in separable normal form. The algorithm is shown
in Fig. 5, making use of an auxiliary function used for filters.

Example 3. Consider the outer query Q3 and the inner query Q2 given previ-
ously. When the inner query is translated into separable normal form, we obtain:

Q′
2 = //item([not(quantity)]/(ε | location) | [quantity]/location)

The query resulting from the application of the inductive algorithm, the appli-
cation of the simplification rules from [4] (E/∅ = ∅, E | ∅ = E and E | E = E)
and the final composed query are shown in Fig. 6.

The example above shows that our algorithms rely on post-processing using
some basic simplification rules. Currently we use the rules from [4].

An important feature of the algorithm is that it runs in polynomial time in
the size of the queries, under the assumption of normalization (for un-normalized
queries, there is a provable exponential blow-up as before). Furthermore, it does
not require normalization of the outer query, only the inner one. Another key
advantage of this algorithm is that it can be easily extended to deal with data
value equality and inequality: we have to add an extra case to handle filters
E1 = E2 or E1 �= E2 to the auxiliary function given in Fig. 5, and these are
handled by a trivial recursive call. Indeed, one can show that there are subtree
queries using data value equality but no negation, whose composition requires
negation to be expressed.

3.4 Composition for Fragments with Upward Axes

We now discuss how these algorithms extend to the remaining fragments
in Fig. 3. For P, Q ∈ X ↑

[], one approach is to first apply the algorithms of [4, 13]
to remove upward qualifiers, and then proceed as for X[]. Similarly, by removing
upward axes from X ↑

r, [] and applying the embedding algorithm for Xr, [], we get

150 M. Benedikt and I. Fundulaki

function ◦ind(O:Xr, [],¬, I : Xr, [],¬ in SNF)
returns Xr, [],¬ expression
[1] switch O
[2] case O1|O2 return(◦ind(O1, I) | ◦ind (O2, I))
[3] case [F]/O2 return([◦f (F, I)]/ ◦ind (O2, I))
[4] case A/O2

[5] switch I
[6] case I1|I2 return (◦ind(O, I1) | ◦ind (O, I2))
[7] case [F]/I2 return ([F]/ ◦ind (O, I2))
[8] case ∅ return (∅)
[9] case ε return (O)
[10] case A/I2 return (A/ ◦ind (O2, I2))
[11] case B/I2, B �= A return (∅)
[12] case //I2 return ((A/ ◦ind (O2, //I2)) | ◦ind (O, I2))
[13] end switch
[14] case //O2

[15] switch I
[16] case I1|I2 return (◦ind(O, I1) | ◦ind (O, I2))
[17] case [F]/I2 return ([F]/ ◦ind (O, I2))
[18] case ∅ return (∅)
[19] case ε return (O)
[20] case A/I2 return (A/ ◦ind (O, I2) | ◦ind (O2, I))
[21] case //I2 return (//(◦ind(I,O2)| ◦ind (O, I2)))
[22] end switch
[23] case ε return(I)
[24] case ∅ return(∅)
[25] end switch

end

function ◦f (F : Xr, [],¬ filter, I : Xr, [],¬ query in SNF)
returns X ↑

r, [],¬
[1] switch F
[2] case ¬F1 return(¬ ◦f (F1, I)
[3] case F1 op F2, op ∈ {and, |} return(◦f (F1, I) op ◦f (F2, I))
[4] case E return (◦ind(E, I))
[5] end switch

end

Fig. 5. Inductive Algorithm and Inductive Filter Composition

an algorithm for X ↑
r, []. For X ↑

[],¬, one can also remove upward axes (although
this is not stated explicitly in [13, 4]). Indeed, a simple inductive algorithm can
compute from a X ↑

[],¬ query Q a query Q′ that is equivalent to Q in every con-
text (not just the root), such that Q′ is a union of queries either of the form
[F0]/../[F1]/. . . /../[Fn]/En, where Fi are filters in X[],¬ and Ei is an expression
in X[],¬, or of the form [F]/E. When one restricts to applying Q′ at the root,
the components of the union of the first form can be eliminated.

XML Subtree Queries: Specification and Composition 151

We refer to these as “eliminate-first algorithms’, since they eliminate up-
ward axes before composing, producing a composed query with no upward
axes. Although the upward-axis removal algorithms of [4, 13] themselves re-
quire an exponential blow-up, they produce from a query Q a new query Q′

without upward axes such that l(Q′) = l(Q) and br(Q′) < 2br(Q). Combin-
ing these bounds with the upper bounds on the number of embeddings, we see
that the output of eliminate-first composition algorithms has size bounded by
2br(O)(2 · 2|I|)l(O) = 2br(O)2(|I|+1)l(O), single-exponential in both inputs.

Result of the inductive algorithm:
Q3 ◦ Q2 = //item [([not(quantity)]/(descr | ∅) | [quantity]/∅) |

([not(quantity)]/(location | location) | [quantity]/location)]

Application of the simplification rules:
Q3 ◦ Q2=//item[[not(quantity)]/descr | ([not(quantity)]/location | [quantity]/location)]

Composed Query:
Q3 ◦ Q2 = //item [[not(quantity)]/descr | [not(quantity)]/location] |

//item[quantity]/location

Fig. 6. Queries resulting from the application of the inductive algorithm and the sim-
plification rules

An alternative is to compose queries first, and then (if possible, and if desired)
remove upward axes from the result. Somewhat surprisingly, if one simply wants
to perform composition for fragments with upward axes, one can do so in poly-
nomial time. We show this for the largest XPath fragment, X ↑

r, [],¬, leaving the
details for other fragments for the full paper. Note that X ↑

r, [],¬ does not elimi-
nate upward axes (consider, for example, the query asking for all location nodes
that have only item nodes as ancestors), so only an eliminate-first algorithm is
not applicable here. The polynomial time method for composing subtree queries
uses a trick from [12]. One can simply take the outer query and “pre-test” each
node to see if satisfies the inner query. Officially, for each query Q, let Qr be the
query obtained from changing occurrences of /R to the equivalent ∗/[label = R],
and then reversing each of the axes in Q that do not occur within a filter. Let
INQ be the query Qr[not(..)]. Clearly, the filter [INQ] returns true exactly when
a node is in the result of the XPath expression Q. If we take Q to be the inner
query, and we add the filter [(//|..∗)[INQ]] to each step of the outer query, we
are checking whether nodes witnessed in the outer query are actually in the re-
sult of the inner query. Hence the result is the composition. In the case where
the outer query has only downward axes, we need only add these filters to the
leaves of the syntax tree. Similar algorithms are available for fragments without
negation; for example, in the case of X ↑

[], a root test not(..) is unnecessary, since
one can test statically whether a path leads back to the root by just “counting
steps”. For X ↑

[] and X ↑
r, [] one can combine this PTIME algorithm with upward-

axis removal, obtaining a composed query with no upward axes in exponential
time.

152 M. Benedikt and I. Fundulaki

These last composition algorithms are only useful when significant optimiza-
tion is in place in the query evaluation engine; the resulting composed query
clearly includes an enormous amount of upward and downward navigation, even
when the initial queries lack upward axes completely. We are still developing
optimization rules for fragments with upward axes and negation; However, to
the extent that special-purpose optimizers are developed for X ↑

r, [],¬, compos-
ing while staying within this fragment can be helpful. This example also serves
to emphasize that closure under composition becomes easier as the fragment
becomes larger. Taking the algorithms altogether, what we have shown is the
following:

Theorem 1 (Composition Closure). Let F be any of the XPath fragments
in Fig. 3, or either of the XPath fragment X ↑

r, [],¬ Xr, [],¬ extended with data
value equality. Then for any Q and Q′ in F there is Q′′ ∈ F such that for every
document D it holds that:

%Q&(%Q′&(D)) = %Q′′&(D)

In addition for every such Q, Q′ ∈ F we can get Q′′ ∈ F such that
〈Q〉(%Q′&(D)) = 〈Q′′〉(D)

4 Conclusion

In this paper we discussed the specification and composition of subtree queries
for common fragments of XPath. We provided composition algorithms for each
of the resulting subtree languages and showed that these languages are closed
under composition. Despite the complexity of the composition algorithms, ex-
periments in [2] show that we can have important benefits over XQuery trivial
composition (when the composed subtree query is translated into an XQuery
expression and evaluated with an off-the-shelf XQuery evaluator). The composi-
tion algorithms presented in this paper are used in the Incognito access control
system being developed at Bell Laboratories. Incognito uses the Vortex rules
engine [11] to resolve user context information and applies the composition al-
gorithms to compose user queries with access control views (all of these being
subtree queries) to compute the authorized user query that will be evaluated
against XML documents.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
Documents with Distribution and Replication. In SIGMOD, 2003.

2. B. Alexe, M. Benedikt, and I. Fundulaki. Specification, Composition and Evalua-
tion of XML Subtree Queries. Technical report, Bell Laboratories, 2005. Available
at http://db.bell-labs.com/user/fundulaki/.

3. S. Amer-Yahia, S. Cho, L. V. Lakshamanan, and D. Srivastava. Minimization of
Tree Pattern Queries. In SIGMOD, 2001.

XML Subtree Queries: Specification and Composition 153

4. M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath Fragments.
Theoretical Computer Science, 2003.

5. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents.
TISSEC, 5(3):290–331, 2002.

6. J. Clark et. al. (eds.). XML Path Language (XPath) 1.0. W3C Recommendation,
1999. http://www.w3c.org/TR/xpath.

7. M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W.-C. Tan. SilkRoute:
A framework for publishing relational data in XML . TODS, 27(4):438–493, 2002.

8. I. Fundulaki, G. Giraud, D. Lieuwen, N. Onose, N. Pombourq, and A. Sahuguet.
Share your data, keep your secrets. In SIGMOD, 2004. (Demonstration Track).

9. G. Gottlob and C. Koch. Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction. In PODS, 2002.

10. G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath
Queries. In VLDB, 2002.

11. R. Hull, B. Kumar, and D. Lieuwen. Towards Federated Policy Management. In
Int’l Workshop on Policies for Distributed Systems and Networks, 2003.

12. M. Marx. XPath with conditional axis relations. In EDBT, 2004.
13. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. XMDM,

2002.
14. A. Sahuguet and B. Alexe. Sub-document queries over XML with XSquirrel. In

WWW, 2005.
15. A. Sahuguet, B. Alexe, I. Fundulaki, P. Lalilgand, A. Shikfa, and A. Arnail. User

Profile Management in Converged Networks. In CIDR, 2005.
16. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark:

a benchmark for XML Data Management. In VLDB, 2002.
17. I. Tatarinov, Z. Ives, A.Y. Halevy, and D.S. Weld. Updating XML. In SIGMOD,

2001.
18. P. Wadler. Two Semantics for XPath. Technical report, Bell Laboratories, 2000.

Technical Memorandum.

On the Expressive Power of XQuery Fragments

Jan Hidders1, Stefania Marrara2, Jan Paredaens1, and Roel Vercammen1,�

1 University of Antwerp, Dept. Math and Computer Science,
Middelheimlaan 1, BE-2020 Antwerp, Belgium

2 Universitá degli Studi di Milano, Dipartimento di Tecnologie dell’Informazione,
Via Bramante 65, I-26013 Crema (CR), Italy

Abstract. XQuery is known to be a powerful XML query language with
many bells and whistles. For many common queries we do not need all
the expressive power of XQuery. We investigate the effect of omitting
certain features of XQuery on the expressive power of the language. We
start from a simple base fragment which can be extended by several
optional features being aggregation functions such as count and sum, se-
quence generation, node construction, position information in for loops,
and recursion. In this way we obtain 64 different XQuery fragments which
can be divided into 17 different equivalence classes such that two frag-
ments can express the same functions iff they are in the same equivalence
class. Moreover, we investigate the relationships between these equiva-
lence classes.

1 Introduction

XQuery [2], the W3C standard query language for XML, is a very powerful
query language which is known to be Turing Complete [8]. As the language
in its entirety is too powerful and complex for many queries, there is a need
to investigate the different properties of frequently used fragments. Most ex-
isting theoretical work focuses on XPath, a rather limited subset of XQuery.
For example, Benedikt, Fan, and Kuper studied structural properties of XPath
fragments [1], the computational complexity of query evaluation for a number
of XPath fragments was investigated by Gottlob, Koch, and Pichler in [4], and
Marx increased the expressive power of XPath by extending it in order to be
first order complete. It was not until recently that similar efforts were made for
XQuery: Koch studies the computational complexity of nonrecursive XQuery [9],
Vansummeren looks into the well-definedness problem for XQuery fragments [13]
and the expressive power of the node construction in XQuery is studied in [10].
In this paper we will investigate the expressive power of XQuery fragments in a
similar fashion as was done for the relational algebra [12] and SQL [11]. In order
to do this, we establish some interesting properties for these fragments. We start
from a small base fragment in which we can express many commonly used fea-
tures such as some built-in functions, arithmetic, boolean operators, node and
� Roel Vercammen is supported by IWT – Institute for the Encouragement of Inno-

vation by Science and Technology Flanders, grant number 31581.

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 154–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Expressive Power of XQuery Fragments 155

value comparisons, path expressions, simple for-loops and XPath set operations.
This base fragment can be extended by a number of features that are likely to
increase the expressive power such as recursion, aggregate functions, sequence
generators, node constructors, and position information. The central question
is which features of XQuery are really necessary in these fragments and which
ones are only syntactic sugar, simplifying queries that were already expressible
without this feature. Our most expressive fragment corresponds to LiXQuery [5],
which is conjectured to be as expressive as XQuery.

This paper is organized as follows. Section 2 introduces the syntax and the
semantics of the different XQuery fragments that we are going to analyze. In
Section 3 we present some expressibility results for these fragments and in Sec-
tion 4 we show some properties that hold for some of the fragments. These
results are combined in Section 5, where we partition the set of fragments into
classes of fragments with the same expressive power. Finally, Section 6 outlines
the conclusions of our work.

2 XQuery Fragments

This section formally introduces the XQuery fragments for which we study the
expressive power in this paper. We will use LiXQuery [5] as a formal foundation,
which is a light-weight sublanguage of XQuery, fully downwards compatible with
XQuery. The syntax of each of the XQuery fragments is defined in Subsection 2.1.
In Subsection 2.2 we briefly describe the semantics of a query.

2.1 Syntax

The syntax of the fragment XQ is shown in Figure 1, by rules [1-19] 1. This
syntax is an abstract syntax 2. The XQuery fragment XQ contains simple arith-
metic, path expressions, “for” clauses (without “at”), the “if” test, “let” vari-
able bindings, the existential semantics for comparison, typeswitches and some
built-in functions. Adding non-recursive function definitions to XQ would clearly
not augment the expressive power of XQ. We use 6 attributes for fragments: C,
S, at, ctr, to and R (cf. Figure 2 for the syntax of the attributed fragments).
The fragment XQR denotes XQ augmented with (recursive) functions defini-
tions, XQC is XQ plus the “count” function, XQS denotes the inclusion of the
“sum” function, XQat includes the “at” clause in a for expression, XQctr indi-
cates the inclusion of the node constructors, and finally the XQto denotes the
sequence generator “to”. The fragment XQ can be attributed by a set of these
attributes. In this way, we obtain 64 fragments of XQuery. The aim of this paper
is to investigate and to compare the expressive power of these fragments. With
XQ∗ we denote the fragment XQR,to,ctr

C,S,at expressed by rules [1-26]. Following
auxiliary definitions will be used throughout the paper:
1 Note that expressions which are not allowed in a fragment definition must be con-

sidered as not occurring in the right hand side of a production rule. As an example
FunCall and Count do not occur in rule [2] for XQ.

2 It assumes that extra brackets and precedence rules are added for disambiguation.

156 J. Hidders et al.

Definition 1. The language L(XF) of an XQuery fragment XF is the (infinite)
set of all expressions that can be generated by the grammar rules for this fragment
with 〈Query〉 as start symbol. The set Φ is the set of all 64 XQuery fragments
defined in Figure 2.

Similar to LiXQuery, we ignore static typing and do not consider namespaces3,
comments, processing instructions, and entities. There are some features left out
from LiXQuery in the definition of XQ∗, such as the union, the filter expression,
the functions “position()” and “last()”, and the parent step (“..”), but they
can easily been simulated in XQ∗ (see the details in [6]). From these considera-
tions, we can claim that XQ∗ has the same expressive power as LiXQuery.

2.2 Semantics

We will now introduce the semantics of our XQuery fragments which is the
same as that of LiXQuery and downwards compatible with the XQuery Formal
Semantics[3].

Expressions are evaluated against an XML store which contains XML frag-
ments created as intermediate results, and all the web documents4. First we need
some definitions of sets for the formal specification of the LiXQuery semantics.
The set A is the set of all atomic values, V is the set of all nodes, S ⊆ A is the
set of all strings, and N ⊆ S is the set of strings that may be used as tag names.

Definition 2. An XML Store is a 6-tuple St = (V, E, <, ν, σ, δ) where V =
V d ∪ V e ∪ V a ∪ V t is a finite countable set of nodes (V ⊆ V) consisting of the
pairwise disjoint sets of document nodes V d, element nodes V e, attribute nodes
V a, and text nodes V t; (V, E) is a forest (with nodes V and directed edges E); if
(m, n) ∈ E then we say that n is a child of m; < is the sibling order for the trees
in (V, E); ν : V e ∪ V a → N labels the element and attribute nodes with their
node name; σ : V a ∪ V t → S labels attribute and text nodes with their string
value; δ : S → V d is a partial function that associates with a URI or a file name,
a document node. It is called the document function. This function represents all
the URIs of the Web and all the names of the files, together with the documents
they contain. We suppose that all the documents are in the store.

Moreover, for each store, each document node is the root of a tree and contains
exactly one child, which is an element node; attribute nodes and text nodes do
not have any children; in the <-order attribute children precede the element and
text children; two sibling text nodes are separated by at least one non-text sibling
node; for all text nodes nt of V t holds σ(nt) �= “”; all attribute children of a
common node have a different name.

The set ST is the set of all (valid) XML Stores.

3 In types and built-in functions, such as “xs:integer”, the “xs:” part indicates a
namespace. Although we do not handle namespaces we use them here to be compat-
ible with XQuery.

4 This assumption models correctly the formal semantics since each time a “doc”
function is called for the same document, the same document node is returned.

On the Expressive Power of XQuery Fragments 157

[1] 〈Query〉 → (〈FunDecl〉“;”)∗〈Expr〉
[2] 〈Expr〉 → 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 |

〈AndOr〉 | 〈ValCmp〉 | 〈NodeCmp〉 | 〈AddExpr〉 | 〈MultExpr〉 |
〈Step〉 | 〈Path〉 | 〈Literal〉 | 〈EmpSeq〉 | 〈Constr〉 | 〈TypeSw〉 |
〈FunCall〉 | 〈Count〉 | 〈Sum〉

[3] 〈Var〉 → “$”〈Name〉
[4] 〈Literal〉 → 〈String〉 | 〈Integer〉
[5] 〈EmpSeq〉 → “()”
[6] 〈BuiltIn〉 → “doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “string(”〈Expr〉“)” |

“xs:integer(”〈Expr〉“)” | “root(”〈Expr〉“)” |
“concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” |
“not(”〈Expr〉“)” | “distinct-values(” 〈Expr〉 “)”

[7] 〈IfExpr〉 → “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉
[8] 〈ForExpr〉 → “for”〈Var〉(〈AtExpr〉)? “in”〈Expr〉 “return”〈Expr〉
[9] 〈LetExpr〉 → “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉
[10] 〈Concat〉 → 〈Expr〉“,”〈Expr〉
[11] 〈AndOr〉 → 〈Expr〉(“and” | “or”)〈Expr〉
[12] 〈ValCmp〉 → 〈Expr〉(“=” | “<”)〈Expr〉
[13] 〈NodeCmp〉 → 〈Expr〉(“is” | “<<”) 〈Expr〉
[14] 〈AddExpr〉 → 〈Expr〉 (“+” | “-”) 〈Expr〉
[15] 〈MultExpr〉 → 〈Expr〉 (“*” | “idiv”) 〈Expr〉
[16] 〈Step〉 → “.” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”
[17] 〈Path〉 → 〈Expr〉(“/” | “//”)〈Expr〉
[18] 〈TypeSw〉 → “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+

“default” “return”〈Expr〉
[19] 〈Type〉 → “xs:boolean” | “xs:integer” | “xs:string” | “element()” |

“attribute()” | “text()” | “document-node()”
[20] 〈Count〉 → “count(” 〈Expr〉 “)”
[21] 〈Sum〉 → “sum(” 〈Expr〉 “)”
[22] 〈AtExpr〉 → “at” 〈Var〉
[23] 〈SeqGen〉 → 〈Expr〉 “to” 〈Expr〉
[24] 〈FunCall〉 → 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”
[25] 〈FunDecl〉 → “declare” “function” 〈Name〉 “(” (〈Var〉 (“,” 〈Var〉)∗)? “)”

“{” 〈Expr〉 “}”
[26] 〈Constr〉 → “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

“attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” |
“text”“{”〈Expr〉“}” | “document”“{”〈Expr〉“}”

Fig. 1. Syntax for XQ∗ queries and expressions

XQ [1-19]
C + [20]
S + [21]
at + [22]
to + [23]
R + [24-25]
ctr + [26]

Fig. 2. Definition of XQuery fragments

158 J. Hidders et al.

We now give an example to illustrate this definition. In both this example
and the rest of the paper, we will use the function ξ, which maps a sequence

ne
1

ne
2

ne
3

nt
4

ne
5

nt
6

ne
7

nt
8

Fig. 3. XML tree of Exam-
ple 1

of items and a store to its serialization, as defined
in [7].

Example 1. Let St = (V, E, <, ν,σ, δ) be an XML store
that is shown in Figure 3.

– The set of nodes V consists of V e = {ne
1, n

e
2, n

e
3, n

e
5,

ne
7}, V t = {nt

4, n
t
6, n

t
8}, V d = V a = ∅.

– The set of edges is E = {(ne
1, n

e
2), (ne

1, n
e
7), (ne

2, n
e
3),

(ne
2, n

e
5), (ne

3, n
t
4), (ne

5, n
t
6), (ne

7, n
t
8)}.

– The order relation < is defined by ne
2 < ne

7, n
e
3 < ne

5.
– Furthermore ν(ne

1) =“a”, ν(ne
2) = ν(ne

7) =“b”,
ν(ne

3) = ν(ne
5) =“c”, and σ(nt

4) = “t1”, σ(nt
6) =

“t2”, σ(nt
8) = “t3” 5.

In this example ξ(ne
1, St) = “<a><c>t1</c><c>t2</c>t3” is the

serialization of the node ne
1.

For the evaluation of queries we do not only need an XML store, but also an
environment, which contains information about functions, variable bindings, the
context sequence, and the context item. This environment is defined as follows:

Definition 3 (Environment). An environment of an XML store St is a 4-
tuple En = (a,b,v,x) where a : N → N ∗ is a partial function that maps a
function name to its formal arguments (it is used in rule [1,24,25]); b : N →
L(XQ∗) maps a function name to the body of the function (it is also used in
rules [1,24,25]); v : N → (V ∪A)∗ maps variable names to their values; x which
is undefined or an item of St and indicates the context item (it is used in rule
[16,17]).

Let XF ∈ Φ be an XQuery fragment. The set of XF -environments(EN [XF])
is the set of all environments for which it holds that ∀f ∈ rng(b) : f ∈ L(XF).

If En is an environment, n a name, and y an item then we let En[v(n) �→ y]
denote the environment that is equal to En except that the function v maps n
to y. We write St, En � e ⇒ (St′, v) to denote that the evaluation of expression
e against the XML store St and environment En of St may result in the new
XML store St′ and a result sequence v, where v can only contain nodes of St′

and atomic values. The semantics of XQ∗ expressions is defined by means of
reasoning rules, following the notation detailed in [5].

We define the expressive power of an XQuery fragment as the set of XQuery
functions that can be expressed in this fragment. XQuery functions are defined
as partial multivalued functions that map a store and a variable assignment over
that store to a new store and a result sequence over this result store. We assume
that the result store does not contain nodes that are no longer reachable, since
such nodes can be safely garbage collected. More precisely, the garbage collection
is defined as follows:
5 We do not mention here the documents on the Web and on files.

On the Expressive Power of XQuery Fragments 159

Definition 4 (Garbage Collection). Garbage Collection (Γs) maps a store
St and a sequence s to a new store St′ by removing all trees from St for which
the root node is not in rng(δ) and for which no node of the tree is in s.

We now define the notion of XQuery function as follows:

Definition 5 (XQuery Function). The XQuery function corresponding to an
expression e is {((St,v), (Γv(St′), v)) | St, (φ, φ,v,⊥) � e ⇒ (St′, v)}. An ele-
ment of this set is called an evaluation pair. If two expressions e1 and e2 have
the same corresponding XQuery functions then they are said to be equivalent,
denoted as e1 ∼ e2.

This measure of expressive power can be justified by the XQuery Processing
Model[3]. There it is possible to set variables in an initial environment. Moreover,
the serialization of the result sequence is optional and an XQuery query can be
embedded into another processing environment.

3 Expressibility Results

Adding extra features to XQuery fragments does not always extend the set of
XQuery functions expressible in the fragment. In this section we will show how
to simulate certain features in fragments that, syntactically, do not include this
feature.

Lemma 1. The “count” operator can be expressed in XQat.

Proof. It is clear that “max(e1)” and “empty(e1)” can be expressed in XQ.
Hence the following expression is equivalent to “count(e1)”:

let $v := max(for $i at $pos in e1 return $pos)
return
if (empty($v)) then 0 else $v

Lemma 2. The “count” operator can be expressed in XQS.

Proof. Following XQS expression is equivalent to “count(e1)”:
sum(for $i in e1 return 1)

Lemma 3. The “to” operator can be expressed in XQR.

Proof. We can define a recursive function “to” such that “e1 to e2” is equiv-
alent to “to(e1, e2)” as follows:
declare function to($i ,$j) {
if ($j < $i) then () else (to($i, $j - 1), $j)

};

Lemma 4. The “sum” operator can be expressed in XQto
C .

160 J. Hidders et al.

Proof. Following XQto
C expression is equivalent to “sum(e1)”:

count(
for $i in e1 return
for $j in (1 to $i) return 1)

Lemma 5. The “count” operator can be expressed in XQctr,R.

Proof. We can define a recursive function “count-nodes” such that “count(e1)”
is equivalent to following XQctr,R expression:
count-nodes(
for $e in e1 return element {"e"} {()}

)

This expression generates as many new nodes as there are items in the input
e1 and then applies a newly defined function “count-nodes” to this sequence,
which counts the number of distinct nodes in a sequence. This can be done by
decreasing the input sequence of the function call to “count-nodes” by exactly
one node in each recursion step, which is possible since all items in the input
sequence of “count-nodes” have a different node identity and hence we can
remove each step the first node (in document order) of the newly created nodes.
Note that, since the count operator returns only atomic values, none of the newly
created nodes that were used to count the number of items in the sequence is
reachable after applying garbage collection.

Lemma 6. The “at” clause in a for expression can be expressed in XQctr
C .

Proof. The proof is based on the idea that it is possible to transform sequence
order into document order by creating new nodes as children of a common parent
such that the new nodes will contain all information of each item in the sequence
and they are in the same order as the items in the original sequence. It can be
shown that we can in XQctr

C express the (non-recursive) functions “pos” and
“atpos”, which respectively give the position of a node in a document-ordered
sequence and returns a node at a certain position in such sequence. If we can
define XQctr

C functions “encode” and “decode” (to make sure that we do not
lose any information in creating a new node for an item in the result sequence of
the “in” clause) then the following XQctr

C expression is equivalent to the XQctr
C,at

expression “for $x at $pos in e1 return e2” (where e1 and e2 are XQctr
C

expressions):

let $seq := e1 return

let $newseq := encode($seq) return

for $x in $newseq

return (

let $pos := pos($x, $newseq) return

let $x := decode($x, $seq)

return e2)

On the Expressive Power of XQuery Fragments 161

Since the result sequence of e1, $seq, is used both in the “in” clause of the
for expression and as actual parameter for the “decode” function, we have to
assign this result to a new variable, otherwise by simple substitution a node
construction that is done in e1 would be evaluated more than once. Further-
more the expression e2 is guaranteed to have the right values for the variables
“$x” and “$pos” iff the function “decode” behaves as desired. We assume that
e2 does not use variables “$seq” and “$newseq”, since they are used in the
simulation6.

We now take a closer look at how to define the functions “decode” and
“encode”. The function “encode” needs to create a new sequence in which we
simulate all items by creating a new node for each item. By adding these nodes
as children of a newly constructed element (named “newseq”) we ensure that
the original sequence order is reflected in the document order for the newly con-
structed sequence. Atomic values are simulated by putting their value as text
node in an element which denotes the type of atomic value. Encoding nodes can-
not be done by making a copy of them, since this would discard all information
we have about the node identity. Therefore we store for a node all information
we need to retrieve the node later using the function “decode”. We do this
by storing the root of the node and the position where the node is located in
the descendant-or-self list of its root node. We assume that we can define the
(non-recursive) XQctr

C functions “pos” (which we already assumed earlier in
this proof), and “atpos” (to find the nth node in a sequence of nodes ordered
by document order).

Note that none of the previous functions used recursion. Hence we do not
actually need functions since we could inline the function definitions in the ex-
pressions. Hence the simulation of the “at” clause can be written in XQctr

C .
Furthermore there is no newly created node in the result sequence of the simu-
lation, so all newly created nodes are garbage collected and hence “at” can be
expressed in XQctr

C .

4 Properties of the Fragments

The previous section provided some expressibility results. In this section we
prove that certain fragments do not have certain properties, hence they have
different degrees of expressive power. For most of the lemmas we do not have
enough space here to present the complete proofs. We refer the reader for these
proofs to our technical report [6].

The first two properties just claim that there are fragments in which it is not
possible to distinguish between sequences with the same set or bag represen-
tation. To formalize this notion we define set-equivalence and bag-equivalence
between evironments and between sequences. In this definition Set (Bag) maps
a sequence to the set (bag) of its items.

6 This issue can of course easily be solved by choosing two unused variables to replace
these variables.

162 J. Hidders et al.

Definition 6. Consider a store St and two environments En = (a,b,v,x) and
En′ = (a′,b′,v′,x′) over the store St. We call En and En′ set-equivalent iff it
holds that a = a′, b = b′, dom(v) = dom(v′) and ∀s ∈ dom(v) : Set(v(s)) =
Set(v′(s)), and finally x = x′.

The environments En and En′ are called bag-equivalent iff they are set-
equivalent and it holds that ∀s ∈ dom(v) :Bag(v(s)) = Bag(v′(s))

Lemma 7. Let St be a store, En, En′ ∈ EN [XQR] two set-equivalent XQR

environments, and e an expression in XQR. If the result of e is defined for both
En and En′, then for each sequence r and r′ for which it holds that St, En �
e ⇒ (St, r) and St, En′ � e ⇒ (St, r′)7, it also holds that Set(r) = Set(r′).

Proof. (Sketch). This lemma can be proven by induction on the query syntax
tree in which each node corresponds to a construct of rules [3−18, 24] in Figure 1.

Lemma 8. The fragment XQC does not have the property of Lemma 7.

Proof. If we consider an environment En ∈ EN [XQR], then En1 = En[v(“seq”)
�→ 〈1, 1〉] and En2 = En[v(“seq”) �→ 〈1〉] are two set-equivalent XQR environ-
ments. The expression “count($seq)” returns 〈2〉 in the evaluation against En1
and 〈1〉 against En2.

Lemma 9. Let St be a store, En, En′ ∈ EN [XQR
C] two bag-equivalent XQR

C

environments and e be an expression in XQR
C. If the result of e is defined for

both En and En′, then for each sequence r and r′ for which it holds that St, En �
e ⇒ (St, r) and St, En′ � e ⇒ (St, r′), it also holds that Bag(r) = Bag(r′).

Proof. For all XQR expressions we can show similar to the proof of Lemma 7
that evaluations against bag-equivalent environments result in bag-equivalent
result sequences.

Lemma 10. The fragment XQat does not have the property of Lemma 9.

Proof. If we consider an environment En ∈ EN [XQR
C], then En1 = En[v(“seq”)

�→ 〈1, 2〉] and En2 = En[v(“seq”) �→ 〈2, 1〉] are two bag-equivalent XQR
C envi-

ronments, but the evaluation of the expression

for $i at $pos in $seq
return if ($pos=1) then $i else ()

returns 〈1〉 when evaluated against environment En1 and 〈2〉 when evaluated
against En2.

The maximum size of the output for all queries in certain XQuery fragments
can be identified as being bounded by a class of functions w.r.t. the input size.
For proving the inexpressibility results related to the output size, we introduce
following notions for the maximal input and output size for both sequences and
items:
7 Since e does not contain node constructors in its subexpressions, it is easy to see

that all subexpressions are evaluated against the same store St and that the result
store of all these subexpressions will also be St.

On the Expressive Power of XQuery Fragments 163

Definition 7 (Auxiliary Notations). Let St = (V, E, <, ν, σ, δ) be a store,
En = (a,b,v,x) an environment over St and s a sequence over St. The set of
atomic values in a sequence s is defined as As = Set(s) ∩ A, the set of atomic
values in a store St is ASt = (rng(ν) ∪ rng(σ)) ∩ A, while the set of atomic
values in the environment En is AEn =

⋃
s∈rng(v) As.

The size ∆forest
St is the size of the forest in St, i.e., ∆forest

St = |V | and ∆tree
St

is the size of the largest tree of the forest in St, i.e., ∆tree
St = max(

⋃
n1∈V {c|c =

|{n2|(n1, n2) ∈ E∗}|})8.
The function size maps an atomic value to the number of cells needed to

represent this item on the tape of a Turing Machine.

Definition 8 (Largest Sequence/Item Sizes). Consider the evaluation pair
((St, En), (St′′, v)) of a query e, where St = (V, E, <, ν, σ, δ), En = (a,b,v,x),
and Γ (St′′, {v}) = St′ = (V ′, E′, <′, ν′, σ′, δ′). The largest input sequence size is
defined as ds

I = max({|s| |s ∈ rng(v)} ∪ {∆tree
St }). The largest input item size is

di
I = max({size(a)|a ∈ (ASt ∪AEn)}∪{'log(∆forest

St +1)(}). The largest output
sequence size is ds

O = max({|v|, ∆tree
St′). Finally, the largest output item size is

di
O = max({size(a)|a ∈ (ASt′ ∪ Av)} ∪ {'log(∆forest

St′ + 1)(}).

In the definition of the largest sequence sizes we include the size of the largest
tree in the store, since one can generate such a sequence by using the descendant-
or-self axis. Note that in the definition of the largest item sizes the first set of
the union contains all sizes needed to represent the atomic values that occur
in the store (or environment) and the second set contains only one value which
indicates how much space we need to represent a pointer to a node in the store.
Furthermore, we consider in the definition the maximal size for the entire store
(including the entire web). This is a theoretical simplification, but it does not
have an influence on the input/output size results: if we have to show that the
result of a certain evaluation has an upper bound f(n) where n is the input
size, then we have to show that this upper bound holds for all input stores and
hence also for the “minimal input store”, i.e., the store that only contains these
input nodes that are actually accessed during the evaluation. Furthermore, the
inclusion of the nodes of the output store in the output size is allowed for two
reasons. The first reason is that all upper bound functions that we use in our
lemmas are at least linear functions and the input nodes that occur in the output
store just add a linear factor to the upper bound function. The second reason
is that the nodes of the output store that do not occur in the input store have
to be reachable by nodes in the result sequence since for each fragment applied
garbage collection.

The following inexpressibility results use the observation that the maximum
item and/or sequence output size can be bounded by a certain class of functions
in terms of the input size.

Lemma 11. For each evaluation St, En � e ⇒ (St′, v) where e ∈ L(XQctr,to)
and En ∈ EN [XQctr,to] it holds that di

O ≤ p(di
I) for some polynomial p.

8 E∗ denotes the reflexive and transitive closure of E.

164 J. Hidders et al.

Proof. (Sketch) For each polynomial p that has IN or IN2 as its domain there
always exists an increasing polynomial p′ such that p′ is an upper bound for
p. Therefore we assume all functions that are used as an upper bound in this
and following proofs to be increasing functions. We then prove the lemma by
induction on the size of the abstract syntax tree of the query q. In this tree the
nodes correspond to the 〈Expr〉 non-terminal of the XQctr,to grammar and as
a consequence each node corresponds to a construct of rules [3 − 18, 23, 26] in
Figure 1, so we prove the induction step for each of these rules.

Lemma 12. The fragment XQC does not have the property of Lemma 11.

Proof. If we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈1, . . . , 1〉)},⊥), and the expression e = “count($input)” where the
length of the sequence bound to variable $input equals k, then the evaluation
St0, En � e ⇒ (St′, v) has largest input item size di

I = 1 and output item size
di

O = 'log(k + 1)(.

Lemma 13. For each evaluation St, En � e ⇒ (St′, v) where e ∈ L(XQctr
at,S)

and En ∈ EN [XQctr
at,S] it holds that ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) for

some polynomials p1 and p2.

Proof. (Sketch) This lemma can be proven by induction on the size of the
abstract syntax tree of the query q. In this syntax tree the nodes correspond
to the 〈Expr〉 non-terminal of the XQctr

at,S grammar and as a consequence each
node corresponds to a construct of rules [3 − 18, 21, 26] in Figure 1.

Lemma 14. The fragment XQto does not have the property of Lemma 13.

Proof. If we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈k〉)},⊥), and the expression e = “1 to $input”, then the evalua-
tion St0, En � e ⇒ (St′, v) has maximal input sequence size ds

I = O(log(k)) and
maximal output sequence size ds

O = O(k log(k)).

Lemma 15. For each evaluation St, En � e ⇒ (St′, v) where e ∈ L(XQctr,to
at)

and En ∈ EN [XQctr,to
at] it holds that ds

O ≤ p1(ds
I , 2

di
I) and di

O ≤ p2(log(ds
I), d

i
I)

for some polynomials p1 and p2.

Proof. (Sketch) Similar to the proof of Lemma 13 this lemma can be proven
by induction on the query syntax tree. We already know that for all XQctr

at ex-
pressions there is a polynomial relation between the largest input sequence/item
sizes and the largest output sequence/item sizes. Furtermore, the “to” expres-
sion can construct a sequence of size, at worst, O(2di

I) with values that need
at most O(di

I) space. As a consequence is can easily be seen that all XQctr,to
at

expressions have output sizes within the bounds specified by this lemma when
evaluated against an XQctr,to

at environment.

On the Expressive Power of XQuery Fragments 165

Lemma 16. The fragment XQR does not have the property of Lemma 15.

Proof. (Sketch) Clearly there are expressions in XQR that do not have this
property. Indeed, there are expressions that can be simulated in the fragment,
such as the power function, that can potentially have largest input item size
di

I = 'log(k+1)(, largest input sequence size ds
I = 1 and largest output sequence

size O(kk).

Finally, we show that the number of possible output values is polynomially
bounded by the largest input sequence size and the size of the set of possbile
atomic values in the input store and environment.

Definition 9 (Possible Results). Consider an expression e, a (finite) alphabet
Σ ⊂ A and a number S. The set Res of possible results for evaluations of e
constrained by Σ and S is defined as the set of all pairs (St′, v) for which it
holds that there exists an evaluation St, En � e ⇒ (St′, v) (with En in the same
fragment as e) such that for this evaluation ds

I ≤ S and ASt ∪ AEn ⊆ Σ.

In other words, given an expression e, an alphabet Σ and a number S, the
set Res contains all possible outputs of the evaluations of e restricted to Σ and
S. We will now show that the number of (different) atomic values in this set is
polynomially bounded by S and the size of Σ.

Lemma 17. Consider a (finite) alphabet Σ ⊂ A and a number S. If N =
|Σ| then for each XQctr

at expression e it holds that if Res is the set of pos-
sible results for evaluations of e constrained by Σ and S, then the number
of atomic values in the possible outputs is polynomially bounded as follows:∣∣∣⋃(St′,v)∈Res(A

St′ ∪ Av)
∣∣∣ ≤ p(N, S) for some polynomial p

Proof. This lemma can be proven by induction on the query syntax tree where
each expression corresponds to the 〈Expr〉 non-terminal of the XQat grammar
and as a consequence each node corresponds to a construct of rules [3 − 18, 22]
of Figure 1.

Lemma 18. The fragment XQat,S does not have the property of Lemma 17.

Proof. Consider the alphabet Σ = {1, 2, 4, . . . , 2n−1} and S = n. Since “$x” can
contain any combination of elements of Σ, the result of the sum can be any
number between 1 and 2n − 1. However, there exists no polynomial p such that
for each n it holds that 2n − 1 ≤ p(n, n). Hence we know that we cannot express
the sum in XQat.

5 Expressive Power of the Fragments

As we have shown in the two previous sections, some LiXQuery features can be
simulated in some fragments that do not contain them and some can not. We
will now study the relationships between all 64 fragments in terms of expressive
power. In order to be able to compare fragments, we first have to define what
“equivalent” and “more expressive” means for XQuery fragments.

166 J. Hidders et al.

Definition 10 (Equivalent Fragments). Recall that Φ is the set of 64 XQuery
fragments as defined in Figure 2. Consider two XQuery fragments XF1, XF2
∈ Φ.

– XF1 * XF2 ⇐⇒ ∀e1 ∈ L(XF1) : ∃e2 ∈ L(XF2) : e1 ∼ e2
(XF1 can simulate XF2)

– XF1 ≡ XF2 ⇐⇒ ((XF1 * XF2) ∧ (XF2 * XF1))
(XF1 is equivalent to XF2)

– XF1 - XF2 ⇐⇒ ((XF1 * XF2) ∧ (XF1 �≡ XF2))
(XF1 is more expressive than XF2)

In this definition, the relation * is a partial order on Φ, and ≡ is an equivalence
relation on Φ. We use these relations to investigate the relationships between all
XQuery fragments defined in Section 2. We show that the equivalence relation ≡
partitions Φ (containing 64 fragments) into 17 equivalence classes. In Figure 4 we
show these 17 equivalence classes and their relationships. Each node of the graph
represents an equivalence class, i.e., a class of XQuery fragments with the same
expressive power. The white and grey nodes represent classes with and without
node construction, respectively. Each edge is directed from a more expressive
class C1 to a less expressive one C2 and points out that each fragment in C1 is

XQ

XQat

XQat,C

XQC
XQS

XQC,S

XQat,S

XQat,C,S

XQto

XQto
C

XQto
S

XQto
C,S

XQto
at. . .

XQto
at,C,S

XQR

XQR,to

XQR
C

XQR
S. . .

XQR,to
C,S

XQR
at. . .

XQR,to
at,C,S

XQctr

XQctr
C

XQctr
at

XQctr
at,C

XQctr
S. . .

XQctr
at,C,S

XQctr,to

XQctr,to
at

XQctr,to
C. . .

XQctr,to
at,C,S

XQctr,R

. . .

XQctr,R,to
at,C,S

S to R

C

at

Fig. 4. Equivalence classes of XQuery fragments

On the Expressive Power of XQuery Fragments 167

more expressive than all fragments of C2 (i.e., ∀XF1 ∈ C1, XF2 ∈ C2 : XF1 -
XF2).

Theorem 1. For the graph in Figure 4 and for all fragments XF1, XF2 ∈ Φ it
holds that

– XF1 ≡ XF2 ⇐⇒ XF1 and XF2 are within the same node
– XF1 - XF2 ⇐⇒ there is a directed path from the node containing XF1 to

the node containing XF2

Proof. (Sketch) Informally, the dotted borders in Figure 4 divide the set of
fragments (Φ) in two parts: one in which the attribute that labels the border
can be expressed and one in which this attribute cannot be expressed. The arrows
that cross the borders all go in one direction, i.e., from the set of fragments where
you can express a certain construct to the the set where you cannot express it.
We call the set of fragments that can simulate the construct the right-hand side
of the border and the other set the left-hand side of the border. The correctness
of the dotted borders can be proven by showing that you can express something
in the least expressive fragment of the right-hand side that you cannot express
in the most expressive fragment of the left-hand side. In order to prove this, we
need the lemmas of Section 3 and 4. All previous results can now be combined
to complete the proof:

– If XF1 and XF2 are in the same node then it follows that they are equivalent:
This can easily be shown by the lemmas from Section 3.

– If XF1 and XF2 are equivalent then they occur in the same node:
Suppose that XF1 and XF2 are not in the same node. There are two pos-
sibilities: if one of the two fragments contains a node constructor (suppose
XF1) and the other (XF2) does not then you obviously cannot simulate
the node construction in XF2. Else it follows from the figure that they are
seperated by a dotted border and hence we know that there is something in
one fragment that you cannot express in the other fragment, so XF1 �≡ XF2.

– If there is a directed path from the node containing XF1 to the node con-
taining XF2 then we know that XF1 * XF2 and since XF1 and XF2 appear
in a different node they are not equivalent, so XF1 - XF2:
This follows from the fact that there is a fragment XF ′

1 equivalent to XF1
and XF ′

2 equivalent to XF2 such that L(XF ′
2) ⊆ L(XF ′

1).
– If XF1 - XF2 then there is a directed path from the node containing XF1

to the node containing XF2:
Suppose that XF1 - XF2 and there is no directed path from XF1 to XF2.
Then either there is a directed path from XF2 to XF1 such that XF2 - XF1
and hence XF1 �- XF2 or there is no directed path at all between the nodes
of both fragments. In this case we know by inspecting Figure 4 that there
are (at least) two borders seperating the nodes of both fragments where for
the first border XF1 is in the more expressive set of fragments and for the
second border XF2 is in the more expressive set of fragments. Hence XF1
and XF2 are incomparable so XF1 �- XF2.

168 J. Hidders et al.

6 Conclusion

We investigated the expressive power of XQuery fragments in order to outline
which features really add expressive power and which ones simplify queries al-
ready expressible. The main results of this paper outline that, using six attributes
(count, sum, to, at, ctr and recursion), we can define 64 XQuery fragments, which
can be divided into 17 equivalence classes, i.e., classes including fragments with
the same expressive power. We proved the 17 equivalence classes are really dif-
ferent and own a different degree of expressive power.

References

1. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
In ICDT 2003, pages 79–95, 2003.

2. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML query language. W3C Working Draft, 2005. Available at
http://www.w3.org/TR/xquery/.

3. D. Draper, P. Frankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics. W3C
Working Draft, 2005. Available at http://www.w3.org/TR/xquery-semantics/.

4. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In PODS 2003, pages 179–190, 2003.

5. J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A light but formal
introduction to XQuery. In XSym 2004, pages 5–20, 2004.

6. J. Hidders, J. Paredaens, R. Vercammen, and S. Marrara. Expressive power of
recursion and aggregates in XQuery. Technical Report TR2005-05, University of
Antwerp, 2005. Available at http://www.adrem.ua.ac.be/pub/TR2005-05.pdf.

7. M. Kay, N. Walsh, and H. Zongaro. XSLT 2.0 and XQuery 1.0 serializa-
tion. W3C Working Draft, 2005. Available at http://www.w3.org/TR/xslt-
xquery-serialization.

8. S. Kepser. A simple proof of the Turing-completeness of XSLT and XQuery. In
T. Usdin, editor, Extreme Markup Languages 2004. IDEAlliance, 2004. Available
at http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01/
EML2004Kepser01.html

9. C. Koch. On the complexity of nonrecursive XQuery and functional query lan-
guages on complex values. In PODS 2005, pages 84–97, 2005.

10. W. Le Page, J. Hidders, P. Michiels, J. Paredaens, and R. Vercammen. On the
expressive power of node construction in XQuery. In WebDB 2005, pages 85–90,
2005. Available at http://webdb2005.uhasselt.be/webdb05 eproceedings.pdf.

11. L. Libkin. Expressive power of SQL. Theoretical Computer Science, 296(3):379–
404, 2003.

12. J. Paredaens. On the expressive power of the relational algebra. Information
Processing Letters, 7(2):107–111, 1978.

13. S. Vansummeren. Deciding well-definedness of XQuery fragments. In PODS 2005,
pages 37–48, 2005.

A Type Safe DOM API

Peter Thiemann

Universität Freiburg
http://www.informatik.uni-freiburg.de/~thiemann

Abstract. DOM (Document Object Model) is the W3C recommenda-
tion for an API for manipulating XML documents. The API is stated
in terms of a language neutral IDL with normative bindings given for
Java and ECMAScript. The type system underlying the DOM API is
a simple object-based one which relies entirely on interfaces and inter-
face extension. However, this simplicity is deceiving because the DOM
architects implicitly impose a large number of constraints which are only
stated informally. The long list of exceptions that some DOM methods
may raise witnesses these constraints.

The present work defines a refinement of Java’s type system which
makes most of these constraints accessible and thus checkable to the
compiler. Technically, we graft a polymorphic annotation system on top
of the host language’s types and propagate the annotations using ideas
borrowed from affine type systems. We provide a type soundness proof
with respect to an operational semantics of a Java core language.

1 Introduction

DOM is the standard API for traversing and manipulating XML documents[10].
It has implementations (bindings) for a number of object-based languages, like
Java, C++, ECMAScript, just to name a few. In particular, its ECMAScript
binding is widely used in the context of client-side Web scripting, where all
changes of the visual appearance of a Web page are effected by DOM methods.
The same combination (ECMAScript+DOM) also provides animated graphical
content via the scalable vector graphics (SVG[1]) standard.

Problems with DOM. Although DOM consists solely of a collection of in-
terfaces and the standard explicitly states that no particular implementation is
implied, it is clear that its designers had a particular memory model in mind.
This memory model consists mainly of objects that implement the so-called
Node interface and other interfaces derived from it, like Document, Element,
Attr, Text, and so on. The methods and fields of these interfaces imply that
the manipulated nodes maintain various references among them. To understand
these references first requires a look at the big picture.

The representation of a document is essentially a tree of nodes, where the
tree structure is supported with an ordered list of references from parent node
to child node. The root of this tree is a Document node which may contain at
most one node representing the document type and at most one reference to the
node representing the root element of the XML document (and two other items

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 169–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 P. Thiemann

which we ignore for brevity). Since the document type attached to a Document
node may have an impact on the treatment of element and attribute nodes, the
creation of each node takes place in the context of a document node, the node
maintains a reference to its document node, and the operations refuse to mix
up nodes from different documents. However, nodes may exist without being
connected to a root element to enable the construction of document fragments.
The parentNode field of the Node interface, an up-reference in the document
tree, indicates whether a node is disconnected. Further references point to the
previous and the next sibling of the node in the context of its parent node.

The network of references enables non-recursive traversals of the tree but
the presence of e.g. the parentNode implies that child nodes (and attribute
nodes, which are slightly different) may not be shared among multiple parents.
This restriction turns out to be fairly subtle because some operations (e.g.,
appendChild) tacitly reparent a node. This behavior can lead to surprising re-
sults for the unwary programmer1. It’s not quite understandable why the DOM
architects have opted against a cheap dynamic check for the presence of a par-
ent when they are insisting on a much more expensive check for the absence of
loops in the node structure: appendChild may raise a HIERARCHY_REQUEST_ERR,
which is “raised [. . .] if the node to append is one of this node’s ancestors or this
node itself [. . .]”. In addition, the omission of the childhood check is inconsistent
with the operations that deal with attributes: e.g., setAttributeNode raises an
INUSE_ATTRIBUTE_ERR if the attribute node is already attached to an element.

Last but not least, although operations like appendChild accept an arbitrary
Node argument as the child node to add, not all combinations of parent and child
are accepted and invalid combinations give rise to a HIERARCHY_REQUEST_ERR.
The standard defines the valid combinations in Section 1.1.1.

Overview. DOM imposes a number of non-obvious and non-trivial invariants
which are not captured by the types in the interfaces. These invariants make
DOM hard to use for programmers and incur a cost for checking the invariants
at runtime. The present work demonstrates in Sec.2 what a strongly typed DOM
API that guarantees the invariants statically could look like by working
through a series of examples. Sec.3 defines the language DOMJava and formal-
izes its type system which supports all features demonstrated in the examples.
Thus a DOMJava compiler can track these DOM invariants statically and reject
ill-behaved programs right away. Sec.4 and 5 complete the formal underpinnings
of DOMJava by defining an operational semantics and providing a type sound-
ness proof. Sec.6 discusses some related work and Sec.7 concludes.

2 Towards a Typed DOM API

This section examines a sequence of code examples that illustrate the hidden as-
sumptions of the DOM interfaces. To show that types can capture runtime errors
1 In fact, the JDOM API (see http://www.jdom.org) has a separate operation to

detach nodes from the parents and only allows attaching orphaned nodes to a new
parent.

A Type Safe DOM API 171

from both DOM and JDOM, the paper considers a slightly modified DOM which
disallows implicit reparenting of child nodes. To simplify the formal development
we only consider a representative selection of DOM run-time errors.

2.1 Attribute Ownership

The first example deals with ownership of attributes.

void highlight (Document doc, Element el1, Element el2) {
Attr attr = doc.createAttribute ("class");
attr.value = "highlight";
el1.setAttributeNode (attr);
el2.setAttributeNode (attr); // runtime error

}

The operation highlight attempts to attach a single attribute node to two el-
ement nodes, el1 and el2. It relies on two DOM operations:

Attr createAttribute (String) which belongs to the Document interface and
Attr setAttributeNode (Attr) which belongs to the Element interface. It re-
turns the replaced attribute if the Element had a like-named attribute before.

Running the code gives rise to an INUSE_ATTRIBUTE_ERR exception. Our pro-
posed type system detects this problem statically if the initial type assumptions
contain the following

∀δ, κ. (N〈Attr, δ,O,R〉) [N〈Document, δ, κ,R〉] createAttribute(String name)
∀δ, κ, φ. (N〈Attr, δ,O,R〉) [N〈Element, δ, κ, φ〉] setAttributeNode(N〈Attr, δ,O,R〉)

There are three differences compared to the above Java signatures of the two
methods. First, all DOM types are subsumed in a single N type with special
annotations that convey information about the actual type (like Attr, Element,
and Document), their use, and their kinship, second, the method signatures are
universally quantified over annotations, and third, the type explicitly mentions
the receiver object in square brackets to be able to reason about its annotated
type. Stripping these three extensions leaves exactly the original Java signatures
of the methods.

The DOM type N〈di , d, k, f〉 consists of a DOM interface name di, a document
identifier d (a variable δ in the example), a kinship status k (variable κ in the
example), and a father information f (also present as variable φ). The kinship
status may be either orphaned (O) or parented (P), and the father information
may either indicate that no father is available (R)2 or it may refer to an explicit
father (F(f)). Here, O, P, and R are type constants of suitable kind and F is a
type constructor.

2 The R comes from the document root object which has no father node, but attributes
do not have father nodes, either.

172 P. Thiemann

The important point about the kinship annotation is that the “orphaned”
status is an affine property. It means that the property may be discarded but
not be duplicated. In effect, whenever there is more than one reference to an
object in scope, then at most one may have the “orphaned” status.

In the example, the createAttribute creates a new Attr object in status
“orphaned”. However, this object is used twice in the local scope. Hence, only
one of the invocations of setAttributeNode can be well typed because the other
will receive the Attr object in status “parented”.

Our type system enforces this restriction by having each operation declare
the state in which it expects its operands (“orphaned” in this case). Whenever
a variable has more than one uses, the type system splits its annotations so that
the first use gets exactly what it expects (if that is possible) and the remaining
uses have to split the leftover annotation among them. In the example, attr
starts off with type N〈Attr, δ,O,R〉. The method invocation on el1 expects
attr in this type and changes the type of attr for the rest of the program to
N〈Attr, δ,P,R〉 (because O splits into O and P). Now the method invocation
on el2 fails to type check because it expects an argument in O state but gets
one in P state: P splits only into P and P.

To make the example well-typed, the Attr object must be cloned before it
is handed to the second invocation of setAttributeNode, using the operation
Node.cloneNode of the following type

∀δ, κ, φ, φ′, γ. (N〈γ, δ,O, φ′〉) [N〈γ, δ, κ, φ〉] cloneNode(Bool deep)

el1.setAttributeNode (attr);
el2.setAttributeNode (attr.cloneNode(false)); // accepted

The type of cloneNode goes beyond the offerings of Java. It relies on bounded
polymorphism to restrict the actual type of the receiver to the interface Node
while retaining the actual type of the object for the result type. A design closer
to Java would require a cast operation that retains the type annotations.

The inferred signature of the highlight operation reflects that the two ele-
ments must belong to the same document δ:

∀δ, κ, κ1, κ2, φ1, φ2. highlight(N〈Document, δ, κ,R〉 doc,
N〈Element, δ, κ1, φ1〉 el1, N〈Element, δ, κ2, φ2〉 el2)

This typing relies on the fact that all operations that create a new document
have a generative type, that is, each invocation of such an operation has a result
type different from all other invocations. Generative types are introduced by a
binder νδ abstracting over the document identity δ. The ν binder behaves similar
to an existential but provides the stronger guarantee that every two abstracted
identities are different. Here is the type of the operation for creating a document,
for illustration:

∀φ.νδ. (N〈Document, δ,O,R〉) [DOMImplementation]
createDocument(String, String, N〈DocumentType, δ,O, φ〉)

A Type Safe DOM API 173

2.2 Parent-Child Relations

This subsection concerns the enforcement of the parent-child relationship and
the avoidance of cyclic references in the document structure. The key operation
considered attaches a node as the last child to another node and returns the new
child node as its result.

∀δ, κ, φ, γp, γc. (γp, γc) ∈ ParentChild ⇒
(N〈γc, δ,P,F(φ)〉) [N〈γp, δ, κ, φ〉] appendChild(N〈γc, δ,O,F(φ)〉)

The appendChild operation relies on a binary predicate ParentChild that
characterizes the possible parent-child relationships: a parent of type γp only
accepts a child of type γc if (γp, γc) ∈ ParentChild. The DOM specification
defines this relation in Section 1.1.1.

Now, let’s try to append an element el to itself to create a cyclic reference.
The ParentChild relation does not stop us from doing so because (Element,
Element) ∈ ParentChild. However, the construction of a type for el runs into
a problem. When used as the receiver of the operation, the type must have the
form N〈Element, δ, κ, φ〉, for some δ, κ, and φ. As the argument of the operation,
however, the type must be N〈Element, δ,O,F(φ)〉. These two demands are con-
tradictory because there is no (finite) instantiation for φ such that φ = F(φ).
Hence, the type checker rejects the term el.appendChild (el).

2.3 The Rest of the Story

So far we have covered direct uses of the DOM API. However, any user-defined
object may carry DOM nodes in its fields and the methods of the object may
refer to these DOM nodes. Thus, a method invocation may change the receiver’s
type annotation which in turn may make certain methods impossible to call.

In the following code, an object of class A contains a DOM attribute in a field
and there is a method that attaches the attribute to an element.

class A {
Attr anAttr;
A (Document d, String name, String value) {

anAttr = d.createAttribute (name);
anAttr.value = value;

}
void attach (Element el) {

el.setAttributeNode (anAttr);
}

}

As it stands, the method attach should be called at most once on every object
of class A and the attribute contained in the field should belong to the same
document as the element passed to attach. Here is a failing attempt to make
the signature of attach reflect these restrictions

∀δ, κ, φ. void [A] attach(N〈Element, δ, κ, φ〉 el)

174 P. Thiemann

This type signature cannot enforce the desired restrictions because the type
A is not sufficiently informative. The solution is to augment the type A with
information about the fields that contain DOM-relevant types analogous to a
record type. As it turns out, the record type is only necessary for reading the
field because it may change over time. For class A the (initial) type boils down
to A {anAttr : N〈Attr, δ,O,R〉} yielding the following signature

∀δ, κ, φ. void [A {anAttr : N〈Attr, δ,O,R〉}] attach(N〈Element, δ, κ, φ〉 el)

Why does this type prevent a program from invoking attach twice in a row?
Again, the affine treatment of the O annotation causes the type A {anAttr :
N〈Attr, δ,O,R〉} to split into one reference with the same type and another
with P in place of the O annotation. The definition of environment splitting
below will make this notion precise.

Types are now permitted to be recursive as long as the recursion crosses at
least one record boundary. Recursive instantiations of the fatherhood variables,
φ, remain verboten.

3 The Language DOMJava

DOMJava is a variant of ClassicJava[6] specialized to tracking properties of
the DOM API. To simplify the exposition (and following other work on Java’s
foundations [6, 9]) it concentrates on classes and the expression language while
omitting control structures in favor of recursive method calls. It also omits inher-
itance in favor of interfaces because interfaces seem to be of prime importance
in DOM programming and a further simplification of the formal model ensues.

DOMJava infers extra type annotations for a type correct ClassicJava
program (without inheritance). The definition of DOMJava’s syntax in Fig. 1
indicates these inferred annotations as well as nonterminals that solely generate
annotations by underlining. There are five main additions.

– Class types are enriched with a record of field types.
– The type of a DOM object N〈di , d, k, f〉 has annotations that determine the

target interface, di , the document, d, that the object belongs to, the kinship
status, k, of the object (parented P or orphaned O), and, f , the degree of
kinship.

– The type of a method includes the type of the receiver object. This way,
method types can refer to the annotation of the receiver’s type.

– The type of a method may be universally quantified over the DOM type
annotations and over class names (in case of a method in an interface). In
addition, a method may introduce new document identities by using the
binding notation νδ∗ and its type may include a variety of constraints.

– Constraints can be equalities on kinship indicators k, conditional depending
on such an equality, and predicates Q on class names (including subtyping,
interface implementation, and the ParentChild relationship).

A Type Safe DOM API 175

P ::= defn∗ e
defn ::= class cl { field∗ meth∗ } | interface i extends i∗ { field∗ meth∗ }
field ::= t fd
cl ::= a class name

fd ::= a field name
md ::= a method name
di ::= γ | a DOM interface name
d ::= δ | a document identifier
k ::= κ | P | O
f ::= φ | R | F(f) | f + f

t ::= cl { field∗ } | N〈di , d, k, f〉
meth ::= pre methsig { body }
methsig ::= t [t] md ((t var)∗)
pre ::= νδ∗.∀δ∗ κ∗ φ∗ γ∗.C ⇒
C ::= k = k | k = k ⇒ C | Q di∗ | C ∧ C | True
Q ::= a predicate name
body ::= e | abstract
e ::= new cl | var | null | e.fd | e.fd = e | e.md(e∗) | let var = e in e
A ::= ∅ | A, var : t

Fig. 1. Syntax of DOMJava

Four judgments (defined in Fig.2) govern the typing of DOMJava.

– � P a well-formed program
– P �d defn a well-formed class or interface definition
– P, C, ∆, A �e e : t an expression e that has type t in the context of program

P , constraints C, document identities ∆, and type assumptions A
– P, C, ∆, t �m methsig { e } checks a method body for consistency with its

signature methsig.

Further judgments cover the extraction of method signatures from the program
text (Fig.3), splitting of environments and types (Fig.4), and subtyping (Fig.5).

We will not repeat the explanation of the parts of the formal system that come
from ClassicJava (for example, the definitions of all the premises of the � P
rule, which are mostly intuitively clear) and refer the reader to the respective
literature [6].

Instead, we concentrate on the novel aspects. The first of these aspects is the
affine typing for kinship indicator (P or O) of the DOM objects. An orphaned
DOM object can be used once in orphaned mode (in an operation that assigns it
a parent) and many times in parented mode. Enforcing this restriction requires
splitting judgments for environments and types: The judgment C � A ≺ A1; A2
splits environment A into environments A1 and A2 so that each type annotation
in A is split appropriately. Each typing rule with more than one antecedent
applies splitting judgments to distribute the environments to the antecedents.
The core rule (Fig.4) splits an O type into an O type and a P type, whereas a

176 P. Thiemann

Expressions

class cl { field∗ meth∗ } ∈ P

P, C, ∅, A �e new cl : cl { field∗ }
A(var) = t

P, C, ∅, A �e var : t

P, C, ∅, A �e null : t

P, C, ∆, A �e e : cl {. . . t fd . . . }
P, C, ∆, A �e e.fd : t

class cl { field∗ meth∗ } ∈ P t′ fd ∈ field∗

P, C, ∆1, A1 �e e : cl {field∗} P, C, ∆2, A2 �e e′ : t′

C � A ≺ A1; A2 � ∆ ≺ ∆1; ∆2

P, C, ∆, A �e e.fd = e′ : t′

C � A ≺ A0; A′
1 C � A′

1 ≺ A1; A′
2 . . . C � A′

p−1 ≺ Ap−1; Ap

� ∆ ≺ ∆0; ∆′
1 . . . ∆′

p ≺ ∆p; δ′∗

P, C, ∆0, A0 �e e0 : t′
0 (∀j) P, C, ∆j , Aj �e ej : t′

j

t′
0,md �P νδ′∗∀δ∗ κ∗ φ∗ γ∗.C′ ⇒ t [t0] md (t1 var1 . . . tn varn)

S = [δ∗ �→ d∗, κ∗ �→ k∗, φ∗ �→ f∗, γ∗ �→ cl∗] t′
j = S(tj) t′

0 = S(t0) C � S(C′)
P, C, ∆, A �e e0.md(e1, . . . , ep) : S(t)

C � A ≺ A1; A2 � ∆ ≺ ∆1; ∆2

P, C, ∆1, A1 �e e1 : t1
P, C, ∆2, A2, var : t1 �e e2 : t2

P, C, ∆, A �e let var = e1 in e2 : t2

P, C, ∆, A �e e : t1 C � t1 ≤ t2
P, C, ∆, A �e e : t2

Methods, definitions, and programs

P, C, ∆, [this : t0, var1 : t1, . . . , varn : tn] �e e : t

P, C, ∆, t0 �m t [t0] md (t1 var1 . . . tn varn) { e }
(∀j) P, Cj , ∆j , cl {field∗} �m methsigj { bodyj }

(∀j) methj = νδ′∗
j ∀δ∗

j κ∗
j φ∗

j γ∗
j .Cj ⇒ methsigj { bodyj }

δ∗
j κ∗

j φ∗
j γ∗

j = fv(Cj ⇒ methsigj) \ ∆j δ′∗
j = fv(Cj ⇒ methsigj) ∩ ∆j

meth∗ = meth1 . . .methm

P �d class cl { field∗ meth∗ }
field∗ = ε meth∗ = meth1 . . .methm

(∀j) methj = prej methsigj { abstract }
P �d interface di extends di∗ { field∗ meth∗ }

ClassesOnce(P) MethodsOncePerClass(P) FieldOncePerClass(P)
InterfacesOnce(P) InterfacesAbstract(P) MethodOncePerInterface(P)

CompleteInterface(P) WellFoundedInterfaces(P) ClassFieldsOK(P)
ClassMethodsOK(P) InterfaceMethodsOK(P)

P = defn1 . . . defnm e (∀j) P �d defnj P, C, ∆, ∅ �e e : t

� P

Fig. 2. Typing rules

A Type Safe DOM API 177

class cl { field∗ meth∗ } ∈ P
meth∗ � (νδ′∗)(∀δ∗ κ∗ φ∗ γ∗)C ⇒ t [t0] md ((t var)∗) { e′ }
cl {· · · }, md �P νδ′∗∀δ∗ κ∗ φ∗ γ∗.C ⇒ t [t0] md ((t var)∗)

interface di extends di∗ { field∗ meth∗ } ∈ P
meth∗ � (νδ′∗)∀δ∗ κ∗ φ∗ γ∗.C ⇒ t [t0] md ((t var)∗) { abstract }
N〈di , d, k, f〉,md �P νδ′∗∀δ∗ κ∗ φ∗ γ∗.C ⇒ t [t0] md ((t var)∗)

interface di extends di∗ di ′ di∗ { field∗ meth∗ } ∈ P md /∈ meth∗

N〈di ′, d, k, f〉, md �P pre methsig
N〈di , d, k, f〉,md �P pre methsig

Fig. 3. Auxiliary judgments

� ∆ ≺ ∆; ∅ � ∆′′ ≺ ∆; ∆′ δ′ /∈ ∆′′

� ∆′′, δ′ ≺ ∆; ∆′, δ′

C � ∅ ≺ ∅; ∅ C � A ≺ A1; A2 C � t ≺ t1; t2
C � A, x : t ≺ A1, x : t1; A2, x : t2

C � (k1 = O ⇒ k = O ∧ k2 = P) ∧ (k2 = O ⇒ k = O ∧ k1 = P)
C � (k = P ⇔ k1 = P ∧ k2 = P)

C � N〈di , d, k, f〉 ≺ N〈di , d, k1, f〉; N〈di , d, k2, f〉
(∀j) C � tj ≺ t1j ; t

2
j

C � cl {. . . fdj : tj . . . } ≺ cl {. . . fdj : t1j . . . }; cl {. . . fdj : t2j . . . }

Fig. 4. Environment splitting rules

C � X ≤ X C ∧ A ≤ B � A ≤ B C � O ≤ k

C � f1 ≤ f2

C � F(f1) ≤ F(f2)
C � f ≤ f1

C � f ≤ f1 + f2

C � f1 ≤ f C � f2 ≤ f

C � f1 + f2 ≤ f

C � di1 ≤ di2 d1 = d2 C � k1 ≤ k2 C � f1 ≤ f2

C � N〈di1, d1, k1, f1〉 ≤ N〈di2, d2, k2, f2〉
C � cl ≤ cl ′ (∀j) C � tj ≤ t′

j

C � cl {fdj : tj} ≤ cl ′ {fd ′
j : t′

j}

Fig. 5. Subtyping rules for judgment C � A ≤ B

P type is just duplicated. The remaining rules propagate this behavior to class
types and type environments.

The second aspect is subtyping. The relation between O and P is one source
because every O-typed object can be used as P-typed. Interface extension is
another source of subtyping, which is also present in ClassicJava. The final
source is the degree of kinship f . The kinship degree of a node is either R
indicating the document root node, F(f ′) indicating that it has a parent of
degree f ′, or f ′+f ′′ indicating that there is a choice of different parents resulting
in degrees f ′ or f ′′. Essentially, the kinship degree indicates a set of paths to

178 P. Thiemann

the document root node with + being the union operator. The union operator
induces subtyping in the usual way. Note that covariant subtyping is sufficient
because the assignment operation always uses the declared type annotations of
an object’s field, not the current type annotations.

The third aspect is tracking the identity of document nodes. The system
assumes that a program only manipulates a finite number of documents. The
limitation is that one program expression cannot be the source for multiple
document identities. The ∆ component is a list of document identities which is
assembled from the leaves of the expression. The join judgment for ∆ (in Fig.4)
ensures that a document identity occurs at most once in a type derivation.

4 Semantics

Following the lead of ClassicJava, we define a small-step operational semantics
for DOMJava. The definition in Fig.6 employs evaluation contexts [4].

Hence, the semantics is specified by a transition relation on configurations,
where a configuration is a pair of an expression and a state. The relation is
indexed by the program P to run. As in ClassicJava, values are either null
or store locations. A valid store location points to the description (cl ,F) of an
object consisting of the object’s class name cl (or its interface name if it is a
DOM object) and a field map F which maps field names to values.

Evaluation contexts and evaluation steps are slightly simplified with respect
to ClassicJava in that they do not cater for inheritance. They specify a left-
to-right call-by-value evaluation strategy and initialize fields of new objects to
null. The rule for method invocation replaces the invocation with the method
body after substituting the parameter values for the formal parameters.

The rules for the DOM operations are novel. They only define the behavior up
to the modifications in the ownerDocument and parentNode fields and leave the
rest unspecified. For example, createAttribute(v) creates a new attribute node
with v determining the attribute name. The node is attached to the document
that created it and it does not have a parent3. The call �1.setAttributeNode(�2)
attaches the attribute node �2 to the element node �1 unless the attribute is
already bound to a different element. In addition, both nodes must have the
same ownerDocument4.

5 Type Soundness

The construction of the type soundness proof proceeds in the standard way [15].
First, the typing for expressions must be extended to a typing of configurations.

P, C, ∆, A �e e : t ∆, A �s σ
P, C, ∆, A �c e, σ : t

3 For simplicity, we pretend that attributes use the parentNode field to indicate their
owning element. In fact, they use a separate ownerElement field.

4 The real specification returns the previous attribute node for the same name if such
a node exists.

A Type Safe DOM API 179

−→P ∈Transition = P(Exp × Store)
σ ∈Store = Loc → (ClassName × FieldMap)
F ∈FieldMap = FieldName → Value
v ∈Value = {null} ∪ Loc
e ∈Exp set of expressions
cl ∈ClassName set of class names
fd ∈FieldName set of field names
	 ∈Loc set of locations; infinite subset of the expression variables

which is never used in source programs

Evaluation contexts

E ::= [] | E.fd | E.fd = e | v.fd = E | E.md(e∗) | v.md(v∗Ee∗) | let var = E in e

Evaluation steps

E[new cl], σ −→P E[], σ[�→ (cl , F)]
	 /∈ dom(σ), F = [fd1 �→ null, . . . , fdm �→ null], class cl { field∗ meth∗ } ∈ P,
field∗ = t1 fd1 . . . tm fdm

E[.fd], σ −→P E[v], σ
	 ∈ dom(σ), σ() = (cl , F), fd ∈ dom(F), v = F(fd)

E[.fd = v], σ −→P E[v], σ[�→ (cl , F [fd �→ v])]
	 ∈ dom(σ), σ() = (cl , F), fd ∈ dom(F)

E[.md(v1, . . . , vm)], σ −→P E[e[var1 �→ v1, . . . , varm �→ vm]], σ
	 ∈ dom(σ), 	 �→ (cl , F), class cl { field∗ meth∗ } ∈ P,
pre t [t0] md (t1 var1 . . . tm varm) { e } ∈ meth∗

E[let var = v in e], σ −→P E[e[var �→ v]], σ

Evaluation of selected DOM operations (only the essential aspects)

E[.createAttribute(v)], σ −→P E[′], σ[′ �→ (Attr, F ′)]
σ() = (Document, F), 	′ /∈ dom(σ),F ′=[ownerDocument�→ 	, parentNode �→ null, . . .]
E[1.setAttributeNode(2)], σ −→P E[null], σ[1 �→ (Element, F ′

1), 	2 �→ (Attr, F ′
2)]

σ(1) = (Element, F1), σ(2) = (Attr, F2), F2(parentNode) = null,
F1(ownerDocument) = F2(ownerDocument), F ′

1 = F1[attributes �→ . . .],
F ′

2 = F2[parentNode �→ 	1]
E[.cloneNode(v)], σ −→P E[′], σ[′ �→ (di , F ′)]

	′ /∈ dom(σ),σ() = (di , F), F ′ = F [parentNode = null]
E[.createDocument(v1, v2, v3)], σ −→P E[′], σ[′ �→ (Document, F)]

	′ /∈ dom(σ),F = [ownerDocument = null, parentNode = null, . . .]
E[1.appendChild(2)], σ −→P E[2], σ[1 �→ (dip, F ′

1), 	2 �→ (dic, F ′
2)]

σ(1) = (dip, F1), σ(2) = (dic, F2), F2(parentNode) = null,
(dip, dic) ∈ ParentChild, σ �|= 	1 � 	2, F1(ownerDocument) = F2(ownerDocument),

F ′
1 = F1[children �→ . . .], F ′

2 = F2[parentNode �→ 	1]

Definition of the descendant relation σ |= 	1 � 	2: in store σ, 	1 is a descendant of 	2

σ |= 	 � 	
σ(0) = (di , F0) F0(parentNode) = 	1 σ |= 	1 � 	2

σ |= 	0 � 	2

Fig. 6. Transition relation

180 P. Thiemann

This rule says that a configuration is well-typed at type t if it consists of an
expression that is well-typed at type t and a consistent store. A store is consistent
with respect to document pointers ∆ and a type environment A (see judgment
∆, A �s σ in Fig.7) if the type markers for documents are unique (judgment
∆, A �u) and if each store location contains an object of the type indicated
by A. The latter is checked with the judgments ∆, A, σ �l � : t (for locations)
and ∆, A, σ �v v : t (for values). The value judgment trivially accepts the null
pointer for any type. Otherwise it checks the location and its expected type
against the assumption in A and then checks the location’s contents against its
type with ∆, A, σ �l � : t. For an object of a user-defined class, the class map
F must be defined on the field names mentioned in the type, the field values
must be null or defined references in the store, and they must have the types
indicated in the augmented class type (as in ClassicJava[6]).

The novel part is the consistency rule for an object with a DOM interface
type N〈di , d, k, f〉. These objects must have references to a parentNode and an
ownerDocument both of which have to be consistent with what the type says
about them. Consistency means that the ownerDocument must be a document
object with a suitable annotation (it must be a root object and it must not have
its parentNode set). The parentNode can be any Node object with the same
ownerDocument. If the f annotation in the object’s type indicates a root object
(f = R) then it must not have an owner (a requirement for Document objects).
If the k annotation indicates an orphaned node (k = O) then there must not be
a parent. In addition, the f annotation must be consistent with the path from
the current node to the document root as indicated by the judgment σ �f f ∼ �.

The definition of the latter judgment proceeds upwards along the parentNode
pointers. Intuitively, f characterizes the path from the current node to the root
node of the document. If f = R then the location must match a Document object,
if f = F(f ′) then any node matches provided that its parentNode matches f ′.
If f = f1 + f2, then the current node has to match f1 or f2. If there is no path
to the root, yet, then the null pointer thus encountered matches any path.

Lemma 1 (Type Preservation). Suppose that � P and P, C, ∆, A �c e, σ : t
with fv(e) ⊆ Loc and e, σ −→P e′, σ′.

Then there are some ∆′, A′ such that P, C, ∆′, A′ �c e′, σ′ and fv(e′) ⊆ Loc.

The progress lemma states that an expression is either a value, reduces, or
attempts to dereference a null pointer. In particular, it is not possible that one
of the DOM operations gets stuck because its preconditions are not fulfilled.

Lemma 2 (Progress). Suppose that � P and P, C, ∆, A �c e, σ : t with fv(e) ⊆
Loc and C satisfied.

Then exactly one of the following alternatives applies.

– e is a value,
– e, σ −→P e′, σ′,
– e = E[null.fd]

A Type Safe DOM API 181

dom(σ) ⊆ dom(A) (∀	 ∈ dom(σ)) ∆, A,σ �l 	 : A() ∆, A �u

∆, A �s σ

∆, ∅ �u
∆, A �u δ /∈ ∆

(∆, δ), A[�→ N〈Document, δ,k, f〉] �u

∆, A �u t �= Document . . .

∆, A[var �→ t] �u

∆, A, σ �v null : t
A() = t ∆, A,σ �l 	 : t

∆, A, σ �v 	 : t

σ() = (cl , F) dom(F) = {fd1, . . . , fdm} ran(F) ⊆ {null} ∪ dom(σ)
(∀j) ∆, A,σ �v F(fdj) : tj

∆, A, σ �l 	 : cl {t1 fd1 . . . tm fdm}
σ() = (di ′, F) di ′ ≤ di

dom(F) ⊇ {parentNode, ownerDocument} ran(F) ⊆ {null} ∪ dom(σ)
∆, A, σ �v F(ownerDocument) : N〈Document, δ,O,R〉

∆, A,σ �v F(parentNode) : N〈Node, δ, k′, f ′〉
f = R ⇔ F(ownerDocument) = null

k = O ⇒ F(parentNode) = null
δ /∈ ∆ σ �f f ∼ 	

∆, A,σ �l 	 : N〈di , d, k, f〉

σ �f f ∼ null
σ �f f1 ∼ 	

σ �f f1 + f2 ∼ 	

σ �f f2 ∼ 	

σ �f f1 + f2 ∼ 	

σ(l) = (Document, F)
σ �f R ∼ 	

σ(l) = (di , F) σ �f f ∼ F(parentNode)
σ �f F(f) ∼ 	

Fig. 7. Typing for stores and locations

– e = E[null.fd = v]
– e = E[null.md(v1, . . . , vm)].
Type preservation and progress combine to type soundness result as usual.

Theorem 1 (Type Soundness). Suppose that P, C, ∆, ∅ � e, ∅ : t. Then there
are three possible outcomes.

– For each e′, σ′ such that e, ∅ −→∗
P e′, σ′ there is some e′, σ′ −→P e′′, σ′′.

– There exists a value v such that e, ∅ −→∗
P v, σ′.

– e, ∅ −→∗
P e′, σ′ such that either e′ = E[null.fd], e′ = E[null.fd = v], or

e′ = E[null.md(v1, . . . , vm)].

6 Related Work

DOMJava draws on three areas, Java semantics, type-based program analysis,
and linear types. Each of these areas has extensive literature and space does not
permit more than a cursory glance at each of them.

Java Semantics. The first models for Java semantics were built to investigate
Java’s type soundness[3]. Later models were built to provide formal grounds
for extensions of Java with generics (Featherweight Java [9]) or with mixins

182 P. Thiemann

(ClassicJava[6]). A further contender is Middleweight Java [2] which attempts
to stay more faithful to Java’s original syntax.

DOMJava is inspired by ClassicJava for two reasons. First, unlike Feath-
erweight Java, ClassicJava models object mutation, which is essential because
the DOM standard makes extensive use of it. Second, ClassicJava is a sim-
pler framework than Middleweight Java because the latter is geared to provide
a formal basis for region analysis of the full Java language through a type and
effect system [8]. This additional complexity would distract from the core issues
of this work.

Type-Based Program Analysis. The PPA textbook [12] gives a very good
overview of different program analysis techniques and type-based ones in partic-
ular. One main technique is analysis via a type and effect system. This technique
has a long history primarily in the area of functional programming [11] and has
recently gained interest in the object-oriented programming community [8, 13].
The latter work [13] analyzes Java programs using method signatures that also
include the type of the receiver object and that also quantify over type annota-
tions. However, DOMJava does not have an effect system, but a type system
with some affine annotations.

Resource and Shape Analysis. Substructural type systems can model resource
usage as indicated by Walker’s overview article [14]. Linear types have recently
gained interest in program analysis of systems code (e.g., [5]) because they are
well suited to tracking state changes. Similar notions are used in shape analysis
(e.g., [7]).

7 Conclusion

The paper provides a first step towards providing a DOM API with strong
guarantees. It mainly lays out the tools required, but leaves a lot to be done.

To obtain a simpler system, DOMJava omits some runtime errors of the
DOM API which could be handled with similar methods. The remaining errors
are either too hard to track with sufficient precision or too vaguely specified.

There are several objectives for further work. We already extended the sys-
tem to cover inheritance in an attempt to create a general type annotation
framework for Java. The most important part of our ongoing work is the devel-
opment of a type inference algorithm for DOMJava and an implementation of a
prototype. This task is nontrivial because the algorithm must find a finite repre-
sentation for recursive object types—which requires some approximation—and
ideally it should handle polymorphic recursion in terms of the annotations. Cov-
ering generics would be a worthwhile extension as well as an improved treatment
of containers.

Acknowledgment. The reviewers have provided a wealth of interesting sug-
gestions. Unfortunately, time and space constraints did not permit addressing
all of them in this revision.

A Type Safe DOM API 183

References

1. Scalable vector graphics (SVG) 1.1 specification. http://www.w3.org/TR/SVG11/,
January 2003.

2. Gavin M. Bierman, Matthew J. Parkinson, and Andrew M. Pitts. An imperative
core calculus for Java and Java with effects. Technical Report 563, University of
Cambridge Computer Laboratory, April 2003.

3. Sophia Drossopoulou and Susan Eisenbach. Java is type safe—probably. In Mehmet
Aksit and Satoshi Matsuoka, editors, ECOOP’97—Object-Oriented Programming,
11th European Conference, number 1241 in Lecture Notes in Computer Science,
pages 389–418, Jyväskylä, Finland, June 1997. Springer-Verlag.

4. Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 10(2):235–271, 1992.

5. Cormac Flanagan, Stephen Freund, and Shaz Qadeer. Exploiting purity for atom-
icity. IEEE Transactions on Software Engineering, 31(4), April 2005.

6. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syntax and Semantics of
Java, number 1523 in Lecture Notes in Computer Science, pages 241–269. Springer-
Verlag, 1999.

7. Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? a
shape analysis for heap-directed pointers in C. In Proceedings of the 1996 ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 1–15, St.
Petersburg, FL, USA, January 1996. ACM Press.

8. Aaron Greenhouse and John Boyland. An object-oriented effects system. In Rachid
Guerraoui, editor, ECOOP ’99 — Object-Oriented Programming 13th European
Conference, Lisbon Portugal, number 1628 in Lecture Notes in Computer Science,
pages 205–229, New York, NY, June 1999. Springer-Verlag.

9. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, May 2001.

10. Philippe Le Hégaret, Ray Whitmer, and Lauren Wood. W3C document object
model. http://www.w3.org/DOM/, August 2003.

11. John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Proc. 15th
Annual ACM Symposium on Principles of Programming Languages, pages 47–57,
San Diego, California, January 1988. ACM Press.

12. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Verlag, 1999.

13. Christian Skalka. Trace effects and object orientation. In Proceedings of the ACM
Conference on Principles and Practice of Declarative Programming, Lisbon, Por-
tugal, July 2005.

14. David Walker. Substructural type systems. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 1. MIT Press, 2005.

15. Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

Type-Based Optimization for Regular Patterns

Michael Y. Levin1 and Benjamin C. Pierce2

1 Microsoft Center for Software Excellence
2 University of Pennsylvania

Abstract. Pattern matching mechanisms based on regular expressions
feature in a number of recent languages for processing XML. The flex-
ibility of these mechanisms demands novel approaches to the familiar
problems of pattern-match compilation—how to minimize the number
of tests performed during pattern matching while keeping the size of the
output code small.

We describe semantic compilation methods in which we use the
schema of the value flowing into a pattern matching expression to gen-
erate efficient target code. We start by discussing a pragmatic algorithm
used currently in the compiler of Xtatic and report some preliminary
performance results. For a more fundamental analysis, we define an op-
timality criterion of “no useless tests” and show that it is not satisfied
by Xtatic’s algorithm. We constructively demonstrate that the prob-
lem of generating optimal pattern matching code is decidable for finite
(non-recursive) patterns.

1 Introduction

A number of recent designs descended from the XDuce language of Hosoya,
Pierce, and Vouillon [12, 11] have showed how to use document format speci-
fication languages such DTD, XML Schema, and Relax NG both statically for
type-checking XML processing code and dynamically for evaluation of XML
structures. At the core of these languages is the notion of regular patterns, a
powerful and convenient mechanism for dynamic inspection of XML values.

A significant challenge in compiling languages with regular patterns is under-
standing how to translate regular pattern matching expressions into a low-level
target language efficiently and compactly. One powerful class of techniques that
can help achieve this goal relies on using static type information to generate op-
timized pattern matching code. The work described here aims to integrate type-
based optimization techniques with the high-performance, but type-insensitive,
compilation methods described in our previous paper [13]. The ideas developed
in this paper are used in the compiler for Xtatic—an object-oriented language
with regular types and regular pattern matching [7].

Consider the regular pattern Any,a[], which matches sequences composed
of an arbitrary prefix (matching Any) followed by an a-tagged element with
empty contents (matching a[].) This pattern can be compiled to some low-level
iteration construct such as a loop or a recursive procedure that skips all of its
elements until the last and then checks whether the tag of the last element is
a and its contents is empty. This will correctly implement the behavior of the

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 184–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Type-Based Optimization for Regular Patterns 185

given pattern for any input value. However, suppose we know that the input
values always belong to the type a[],(a[]|b[]); i.e., they are two-element
sequences whose first element is tagged by a and has empty contents and whose
second element is tagged by either a or b and also has empty contents. Knowing
this, we can implement the original pattern more efficiently. First, there is no
longer any need for an iteration construct, since the input sequence is known to
contain exactly two elements: we can simply skip the first element and examine
the second. Furthermore, it is unnecessary to check whether the contents of the
second element is empty, since this is prescribed by the input type.

Our contributions are as follows:

– In Sections 3 and 4, we present the efficient type-based compilation algo-
rithm used in our implementation of Xtatic and some preliminary mea-
surements that demonstrate the algorithm’s effectiveness (compared with
Xtatic’s previous, type-insensitive compilation method).

– In Section 5, we introduce and justify an optimality criterion that lets us
formally compare the efficiency of pattern matching code in target language
programs. In Section 6, we demonstrate that optimal compilation is pos-
sible, in principle, for matching problems with non-recursive patterns, by
presenting a refinement of Xtatic’s algorithm that produces optimal target
code for this case. We also briefly discuss its generalization to the case with
recursive patterns. (The refined algorithm is too inefficient for use in a real
compiler; finding a lower bound on the complexity of optimal compilation is
left as future work.)

Section 7 discusses related work, in particular the non-uniform automata [4] used
in Frisch’s implementation of CDuce [1].

2 Background

A value is either the empty sequence () or a non-empty sequence of elements,
a1[v1] . . . ak[vk], each consisting of a label and a nested child value. In the
rest of the paper, it will be convenient to view values as binary trees. The empty
sequence value () corresponds to the empty binary tree ε. A non-empty sequence
value a[v1],v2 corresponds to the labeled binary tree a(t1, t2) whose root label
and left and right subtrees correspond to the label of the first element, the child
value of the first element, and the rest of the sequence respectively.

We use environments mapping variables to values. We write E[v1/x, v2/y] to
denote an environment mapping x to v1 and y to v2 and agreeing with E on all
other variables and E\y to denote an environment which is undefined on y and
otherwise equal to E.

An annotated value can be of the form ε∗ or a∗(v1, v2) where v1 and v2 are
annotated subvalues, l is an element label, and ∗ ∈ {+,−}. We say that a value
is annotated consistently, if for every node of the form a−(v1, v2), both v1 and v2
have all their nodes annotated by −. A value is fully traversed if all its nodes are
annotated by +. (The intuition is that + labels mark nodes that are examined

186 M.Y. Levin and B.C. Pierce

while evaluating some pattern match.) The erasure of an annotated value v
written |v| is an ordinary value of the same structure with all the annotations
eliminated.

Let v1 and v2 be consistently annotated values. We say that v1 is less traversed
than v2, written v1 ≤ v2, if |v1| = |v2| and, for any node in v1 labeled by +,
the corresponding node in v2 is also labeled by +. We say that v1 is strictly less
traversed than v2, written v1 < v2, if v1 ≤ v2 and v1 �= v2.

An annotated value environment is a mapping from variable names to anno-
tated values. An environment is fully traversed if its range contains only fully
traversed values. The erasure operation on annotated value environments |E|
producing an ordinary environment is defined pointwise. The < and ≤ relations
on annotated values are extended point-wise to annotated environments.

Regular patterns are described by the following grammar:

p ::= () | a[p] | p1, p2 | p1|p2 | p∗ | Any | X

These denote the empty sequence pattern, a labeled element pattern, sequential
composition, union, repetition, wild-card, and a pattern variable. Pattern vari-
ables are introduced by top-level, mutually recursive declarations of the form
def X = p. Top-level declarations induce a function def that maps variables to
the associated patterns (e.g. the above declaration implies def(X) = p.)

In this paper, we use the term regular types synonymously with regular pat-
terns. In a full-blown source language, regular patterns may also contain vari-
ables used to extract fragments of the input value. Here, for simplicity, we
omit patterns with variable binding and identify regular types and regular
patterns.

The source language used in our examples has primitives for building val-
ues, function calls, and match expressions. A match expression consists of an
input expression and a list of clauses, each consisting of a pattern and a corre-
sponding right-hand-side expression. The input expression evaluates to a value
that is then matched against each of the patterns in turn; the first clause with
a matching pattern is selected, and its right hand side is evaluated. The type
checker ensures that the clauses of a match expression are exhaustive; i.e., at
least one of the patterns in the list of clauses is guaranteed to match the input
value.

To illustrate how pattern matching is compiled, we employ a target language
all of whose constructs except the pattern matching ones are identical to the
corresponding constructs of the source language. Pattern matching is realized
by a case construct which has the same form as the match construct of the
source language except that patterns can only be of two kinds: (), matching
the empty sequence, and a[x],y, matching a sequence starting with an element
tagged by a and binding the contents of the first element to x and the sequence of
the remaining elements to y. If the tag of the first element need not be examined
during the rest of pattern matching, it can be replaced by ˜; if the contents of a
variable need not be examined, it may be replaced by the wild card .

Matching automata [13] are a formal model of target language code that gives
us a convenient framework for reasoning about the properties of pattern match

Type-Based Optimization for Regular Patterns 187

translations. The function of a matching automaton is to accept a given an-
notated value and output an integer result depending on its shape. Matching
automata are heavily used in the accompanying technical report [14], where we
give full details of our constructions. However, since there is not enough space
here to discuss matching automata in detail, we prefer to elide them completely,
instead using expressions in the target language (which are isomorphic to match-
ing automata in a certain “normalized” form that is the target of the compilation
process).

3 Xtatic Pattern Compiler

This section presents an efficient type-based compilation algorithm that is used
in the current Xtatic compiler. The goal of the compiler is to construct a
target language program that implements pattern matching in a given match
expression.

The algorithm manipulates a data structure that is a generalization of sets of
patterns. In it, patterns are arranged into a matrix whose rows and columns are
associated with results and variables respectively. More formally, a configuration
consists of a tuple of distinct variables <x1,. . . ,xn> and a set of tuples {(p11, . . . ,
p1n, j1), . . . , (pm1, . . . , pmn, jm)} each associating a collection of patterns to a
result. A configuration can be depicted as follows:

x1 . . . xn

p11 . . . p1n j1
. . .

pm1 . . . pmn jm

The algorithm starts with an initial configuration containing the patterns of the
match expression intersected with the input type. From this point on, the input
type is not taken into account. Figures 1(c) and 1(f) are examples of initial
configurations for the source programs shown in (a) and (b).

A configuration describes the work that must still be done before the outcome
of pattern matching can be determined. The variables contain subtrees that have
yet to be examined. Pattern matching will succeed with the result given at the
end of some row if all of the row’s patterns match the subtrees stored in the
corresponding variables.

When faced with a configuration, the compiler has a choice of which subtree
(i.e., which column) to examine next. We use the following heuristic. Let P be a
set of patterns. A partition of P into a number of subsets is disjoint if for any two
patterns p1,p2 ∈ P, if p1 ∩ p2 �= ∅, then both p1 and p2 are in the same subset.
We say that the branching factor of a column is the number of subsets in the
largest disjoint partition of the column’s patterns. The maximal branching factor
heuristic then tells us to select the column with the largest branching factor.
The motivation behind this heuristic is to arrive at single-result configurations
as fast as possible. Such configurations need no further pattern matching, since
the result has already been determined.

188 M.Y. Levin and B.C. Pierce

fun f(T1 x) : Any =
match x with
| Any, a[] → 1
| Any → 2

fun f(T2 x) : Any =
match x with
| a[b[]],a[Any] → 1
| a[Any] → 2

(a) (b)

x
a[],a[] 1

a[],(a[]|b[]) 2

x y
() a[] 1
() a[]|b[] 2

y
a[] 1

a[]|b[] 2

x
a[b[]],a[Any] 1

a[Any] 2

x y
b[] a[Any] 1
Any () 2

(c) (d) (e) (f) (g)

fun f(T1 x) : Any =
case x of
| a[x],y →
case y of
| a[x],y → 1
| b[x],y → 2

fun f(T2 x) : Any =
case x of
| a[x],y →
case y of
| a[x],y → 1
| () → 2

(h) (i)

Fig. 1. Two source programs (a, b); configurations used in code generation (c - g); and
the obtained target programs (h, i). Input types are: T1 = a[],(a[]|b[]) and T2 =
(a[b[]],a[Any]) | a[Any].

There are several simplification techniques for configurations. We have men-
tioned one already: a single-result configuration need not be expanded any fur-
ther. Another involves removing a column all of whose patterns are equivalent.
Because of exhaustiveness, the corresponding subtree necessarily matches all of
the column’s patterns, and, therefore, no run-time tests are needed.

Figure 1 shows two examples. In the first one, the initial configuration (c)
contains patterns matching non-empty a-labeled trees. From this configuration,
the compiler generates the pattern a[x],y of the outer case and proceeds to the
next configuration (d). The first column of this configuration is then eliminated
by the simplification technique described above. The resulting configuration (e)
is used to generated the clauses of the inner case. In the second example, we get
to employ the maximal branching heuristic for configuration (g). The branching
factor of its first column is one, since its patterns are overlapping; the branching
factor of the second column, on the other hand, is two. Hence, the inner case
in Figure 1(i) examines y rather than x.

For some examples the heuristic approach falls short of optimality (both infor-
mally and in the precise sense defined in Section 5). Consider this configuration:

x y z
a[] a[] a[]|b[] 1

a[]|b[] b[] a[]|b[] 2
a[]|b[] a[]|b[] b[] 3

Type-Based Optimization for Regular Patterns 189

As we will see in Section 6, it is more beneficial to examine the y and z columns
before examining the x column. The heuristic method defined above, however,
considers all three columns equal, since they all have a branching factor of 1. So,
the heuristic algorithm can potentially generate a suboptimal target code.

Our experience shows that the maximal branching factor heuristic results in
high-quality target code for most source programs.

4 Performance Experiments

To give a sense of the impact of type-based optimization, we compare the per-
formance of three Xtatic programs with and without type-based optimization.
The first, addrbook, is a small 60 line application that filters an address book
and converts the result into a phone book format. The default input for this
program is a 31Kb file containing 1,000 address records. We iterate the process-
ing part of the program 10 times to obtain stable results. The second program,
cwn, converts raw XML newsgroup data into a formatted HTML presentation.
The source program contains 400 lines of code; the default input is a 7.7Kb file
with seven newsgroup articles. This program is also iterated 10 times. The third
program, bibtex, is a 700 line program that reads a bibtex file formatted as
XML, filters and sorts its contents, and outputs the result as an HTML page.
The default input for bibtex is a 560Kb file with approximately 1,500 bibtex
entries. This processing step of this program is run only once.

Note that Xtatic’s compiler is quite efficient even when its type-based opti-
mization is turned off. It employs a variety of other optimizations that go a long
way toward producing efficient code. In fact, a previous version of Xtatic’s
compiler that did not have type-based optimization compared favorably with
several other XML processing languages [6].

Figure 2 displays our measurements. Table (a) lists sizes of the output pro-
grams in terms of the number of nodes in their ASTs. Table (b) contains running
times of the programs for the default input as well as duplicated inputs whose
sizes are factors 2, 3, 4, and 5 of the default input’s size. Both size and run-
ning time measurements are listed for the case when the program was compiled
without (“no tb”) and with (“tb”) type-based optimization as described above.

addrbook cwn bibtex
no tb tb no tb tb no tb tb
710 569 19200 17600 35300 26800

addrbook cwn bibtex
no tb tb no tb tb no tb tb

n = 1 13 12 300 290 3100 900
n = 2 17 16 420 390 4000 1900
n = 3 23 21 660 510 4900 2900
n = 4 31 28 640 590 11500 4000
n = 5 39 35 770 690 27400 20300

(a) (b)

Fig. 2. Size (a) and speed in ms (b) of three source programs with and without type-
based optimization; n is a size factor w.r.t. the default input size

190 M.Y. Levin and B.C. Pierce

Overall, these examples illustrate a steady benefit of type-based optimization.
It gives us a 10% to 25% improvement in the size of the target program and a
similar—or in case of bibtex even more dramatic—improvement in the running
time. Let us take a closer look at these examples individually.

The addrbook program demonstrates a modest improvement in size and speed
when compiled with type-based optimization. Just using simple configuration
optimizations, the Xtatic compiler generates a fairly efficient output code for
this program. The only benefit of type-based analysis in this example is the
ability to infer extra information about the first sub-element of every input record
and use it to skip it without checking. This is precisely what accounts for the
better measurements when addrbook is compiled with type-based optimization.

In the case of cwn, type-based optimization matters less. The only difference
of any significance occurs in a function that performs a character-for-character
traversal of its input in order to locate a particular substring. Either a match is
found in the beginning of the input or the first character is skipped and the same
process is repeated from the next character. Since the input type to this function
is pcdata—a sequence of character-labeled elements without attributes—there
is no need to check for the absence of attributes in every element.

The bibtex program gives us the most revealing example of the benefits of
type-based optimization. Most of the improvement arises from a function do xml
that examines the current entry in a bibtex document and determines its type.
There are fourteen kinds of bibtex entries each described by a complex regular
type; do xml contains a dispatch function that branches to different subtasks
depending on the kind of the current entry or falls through if none is matched.

Because of this default fall-through case in the match expression, a naive
compilation strategy that does not take the input type into account results in
a huge target program that meticulously checks whether the structure of the
current element completely matches one of the bibtex entry types. Using the
input type information, however, the compiler realizes that, since only valid
entry elements can be given as arguments to do xml, and since each entry type
has a distinct outer label, checking that outer label is sufficient to determine the
type of the entry.

5 Optimality Criterion

We now turn to a formal discussion of what it means for one target program (or
matching automaton) to be better than another one.

Ideally, we would like to perform the minimal number of tests for any input
value. Figure 3 demonstrates that this is not always possible. The source pro-
gram shown in Figure 3(a) contains a match expression with three clauses. The
clause patterns match sequences starting from a-labeled elements. To determine
the outcome, the pattern matcher can first investigate the contents of the first
element—as in Figure 3(b)—or else look at the rest of the sequence—as in Fig-
ure 3(c). In the former case, two tests are required to determine results 1 and 2,
but only one test to determine result 3. In the latter case, it takes two tests to

Type-Based Optimization for Regular Patterns 191

fun f(T x) : Any =
match x with
| a[b[]], c[] → 1
| a[b[]], d[] → 2
| a[d[]], c[] → 3

fun f(T x) : Any =
case x of
| ~[y], z →
case y of
| b[_], _ →
case z of
| c[_], _ → 1
else 2

else 3

fun f(T x) : Any =
case x of
| ~[y], z →
case z of
| c[_], _ →
case y of
| b[_], _ → 1
else 3

else 2

(a) (b) (c)

Fig. 3. Perfect optimality is unreachable: a source program (a) with input type T =
a[b[]],c[] | a[b[]],d[] | a[d[]],c[]; a target program that is fast for the third
case (b); a target program that is fast for the second case (c)

determine outcomes 1 and 3 and one to determine result 2. It is not possible for
any target language pattern matcher to be as fast as the first program for the
input matching the third clause and as fast as the second program for the input
matching the second clause.

Consequently, we must settle for near-optimality and, for any pattern match-
ing task, try to build a matcher that is not clearly bested by any other but may
not be necessarily the best one.

Definition 1. Target program M1 is said to be more efficient than target program
M2 if, for any annotated input value v1 accepted by M2, there exists a less
traversed annotated value v2 accepted by M1 with the same result. We say that
M1 is strictly more efficient than M2 if it is more efficient and there exists an
annotated value that is accepted by M1 but not M2.

Consider the example in Figure 4. It shows a source program and two possi-
ble translations into the target language. The target program in Figure 4(b) is
suboptimal. It tests the right subtree of the input value, and, regardless of the
result, inspects the left subtree as well. The program in Figure 4(c) is better—it
never inspects the right subtree. This program is more efficient than the sub-
optimal one since, for any annotated value accepted by the latter, the former
accepts a less traversed value producing the same result. It is strictly more effi-
cient since, for example, a+(b−(ε−, ε−), c+(ε−, ε−)) is accepted by it but not by
the suboptimal program.

Note that the proposed measure of optimality does not precisely reflect the
amount of work performed by a target program. Consider Figure 5, which shows
a source program and two ways of compiling it to the target language. Target
program (b) starts by inspecting the right subtree of the input; if it finds a c
leaf, it can select the first match clause; otherwise, it checks whether the root of
left subtree is labeled by b, and selects the first or the second clause depending
on that. Target program (c) checks only the left subtree: if its root is b-labeled,
it selects the first clause; otherwise the second. The latter program performs

192 M.Y. Levin and B.C. Pierce

fun f(T x) : Any =
match x with
| a[a[]], b[]|c[] → 1
| a[b[]], c[] → 2
| a[c[]], b[] → 3

fun f(T x) : Any =
case x of
| ~[y],z →
case z of
| b[_],_ →
case y of
| a[_],_ → 1
| c[_],_ → 3

| c[_],_ →
case y of
| a[_],_ → 1
| b[_],_ → 2

fun f(T x) : Any =
case x of
| ~[y],_ →
case y of
| a[_],_ → 1
| b[_],_ → 2
| c[_],_ → 3

(a) (b) (c)

Fig. 4. An illustration of optimality criterion: a source program (a) with input type
T = (a[a[]], b[]|c[]) | a[b[]],c[] | a[c[]],b[]; a suboptimal target program
(b); an optimal target program (c)

fun f(T x) : Any =
match x with
| a[b[Any],Any],
a[Any] → 1

| a[Any],a[b[d[]]]
→ 2

fun f(T x) : Any =
case x of
| ~[y],z →
case z of
| ~[w],_ →
case w of
| c[_],_ → 1
else
case y of
| b[_],_ → 1
else 2

fun f(T x) : Any =
case x of
| ~[y],_ →
case y of
| b[_],_ → 1
else 2

(a) (b) (c)

Fig. 5. Optimality criterion limitation: a source program (a); with input type T =
(a[b[]], a[b[c[]]]) | (a[Any], a[b[d[]]]); an optimal target program (b); a bet-
ter optimal target program (c)

fewer than or the same number of node tests as the former for any input. It is
not, however, any more efficient according to our definition since, for the values
matching a[Any], a[b[c[]]], program (b) completely skips the left subtree,
while program (c) inspects its root node.

A more precise measure of optimality would involve counting the number of
node tests performed by a target program regardless of where in the input value
they occur. According to such a measure, program (c) of Figure 5 would be
more efficient than program (b). It is difficult, however, to reason about this
kind of a measure. For instance, performing various boolean operations such as
intersection and difference on regular patterns does not shed any light on how

Type-Based Optimization for Regular Patterns 193

many node tests may be necessary to match a value against them. We leave
investigation of this kind of optimality measures for future work.

6 Optimal Compilation for Finite Patterns

We now show how the algorithm described in Section 3 can be made optimal for
non-recursive patterns by describing a better method of selecting the expansion
column. Consider the following configuration with two columns and three results.

y z
a[Any] Any 1
Any Any,c[] 2

c[],Any Any 3

Would it be better to test the contents of y or z? Testing y is sufficient to
determine the outcome: depending on whether its root node is labeled by a, b,
or c, the answer is 1, 2, or 3 respectively. We say that the first column determines
all three results. The second column determines only result 2: if the root node
of the value stored in z is labeled by c, we can conclude 2; if it is labeled by b,
however, we cannot determine the result without testing the contents of y.

It would seem that testing y first would result in more efficient pattern match-
ing, but, in fact, neither column is preferable as far as the optimality measure
proposed above is concerned. The reason that expanding on the first column
does not lead to a more efficient target program than expanding on the second
is that the latter target program can output 2 without considering the con-
tents of y at all. We say that neither column is a better distinguisher than the
other.

If, however, the first row pattern in the second column were changed from
b[] to b[]|c[], then the second column would not determine any result and,
in that case, testing y first would be more efficient. The first column in this
case would be a better distinguisher than the second column. (Figure 4 shows
the two target programs that correspond to choosing y or z for the initial
inspection.)

Sometimes, no single column determines any result. Consider the following
configuration.

y z
a[] a[] 1

a[]|b[] b[] 2
b[] a[]|b[] 3

It is not possible to arrive at the result by testing the contents of either column
alone. Of course, testing the contents of both y and z is sufficient to find the
answer. In this case, it does not matter which column is tested first. So, as in
the previous example, neither column is a better distinguisher than the other.

194 M.Y. Levin and B.C. Pierce

The following example shows that even when no column alone determines any
result, it is still possible for some column to be better than another. Consider
this configuration.

C =

x y z
a[] a[] a[]|b[] 1

a[]|b[] b[] a[]|b[] 2
a[]|b[] a[]|b[] b[] 3

As in the previous example, testing any of the three columns alone is not suf-
ficient to determine any result. Unlike the previous example, however, it does
matter which variable we test first. In particular, it can be shown that testing z
or y first is more beneficial than testing x first. (See the accompanying technical
report [14].)

For this configuration, we say that both y and z are better distinguishers than
x. We would like to have a formal criterion that allows us to determine whether
one column is a better distinguisher than another. Furthermore, we would like
this criterion to be semantic so that we can find an optimally distinguishing
column without generating and comparing all possible target programs that can
arise from the current configuration.

We will satisfy the above concerns as follows. First, we will introduce decision
trees, which have the same semantics as target programs but are higher level.
We will define what it means for one decision tree to be strictly more efficient
than another. Then, after establishing a correspondence between decision trees
and configurations, we will derive the notion of an optimal expansion column.

Definition 2. A decision tree is a tree whose nodes
∨

are labeled by variables,
whose edges are labeled by regular types, and whose leaves are sets of integer
results. A path from the root to a leaf may not contain duplicate variables. We
say that an environment E is accepted by a decision tree t with result j, written
E ∈ t ⇒ j, if there exists a path x1

p1→ x2
p2→ . . . xk

pk→ J from the root to a
leaf, where x1 . . . xk are the variables labeling nodes of the path starting from
the root, p1 . . . pk are the regular types labeling the edges of the path, and J is
the leaf result set, such that j ∈ J and E(xi) ∈ pi for all i ∈ {1 . . . k}.

One decision tree is strictly more efficient than another if it accepts any
environment by testing a subset of the variables that must be tested by the
other decision tree to accept the same environment.

Definition 3. A decision tree t1 is strictly more efficient than an equivalent de-
cision tree t2 if, for any path x1

p1→ x2
p2→ . . . xk

pk→ J in t2, there exists a path
y1

q1→ y2
q2→ . . . ym

qm→ J in t1 such that, for any i ∈ {1 . . .m}, there exists
j ∈ {1 . . . k} with yi = xj and qi = pj , and, furthermore, there exists a t2 path
for which the corresponding t1 path is strictly shorter.

A configuration can give rise to a finite number of decision trees. To help
identify the set of all decision trees corresponding to a configuration, we first
introduce an auxiliary notion of a partition of a set of regular types.

Type-Based Optimization for Regular Patterns 195

Definition 4. Let T be an input regular type and S = {p1 . . . pm} a set of regular
types such that T is a subtype of p1 ∪ . . . ∪ pm. A partition of S is a set of
mutually disjoint regular types {t1 . . . tk} such that T ∩ (p1 ∪ . . . ∪ pm) is a
subtype of t1 ∪ . . . ∪ tk and, for any i ∈ {1 . . . k} and j ∈ {1 . . .m}, if ti ∩ pj is
non-empty, then ti is a subtype of pj.

The idea is to use the elements of a partition to indicate which of the original
patterns match a given input value. For example, {a[], b[]} is a partition for the
input type T = a[]|b[] and the collection of patterns S = {a[],b[],a[]|b[]}.
If a value v is in a[], then it is in the first and third but not in the second patterns
of S; if v is in b[], then it is in the second and third but not in the first patterns
of S.

A partition of S with respect to T can be obtained by taking all the non-
empty types of the form T ∩ p′1 ∩ . . .∩ p′m where each p′i is either pi or T \pi. We
say that this is the minimal partition of S with respect to T .

Definition 5. A decision tree t is said to correspond to a configuration C if two
conditions hold: 1) edges from a node x are labeled by regular types each of which
is a union of some types from the minimal partition of C’s column corresponding
to x; and 2) t and C are semantically equivalent.

Given a configuration C, it is possible—albeit very time consuming—to gen-
erate all decision trees that satisfy the first condition. It is then easy to check
whether any such decision tree is semantically equivalent to C. Combining these
two steps, we can obtain an algorithm that produces all of C’s decision trees.

Definition 6. Let C be a configuration and c one of C’s columns associated with
variable x. This column is said to be an optimal distinguisher if there exists a
decision tree corresponding to C whose root is labeled by x such that there does
not exist a strictly more efficient decision tree corresponding to C.

Figure 6 shows a configuration discussed earlier and two optimal decision
trees corresponding to it. The columns associated with z and y are both optimal
distinguishers for this configuration.

Since the compilation algorithm introduced above can be viewed as an instan-
tiation of the type-insensitive algorithm presented in our previous paper [13]—
here the method of selecting expansion columns is specified while there it was
left unspecified—the same correctness and termination arguments can be carried
over for the algorithm of this paper. Additionally, we can show that the column
selection principle introduced above ensures generation of optimal matching au-
tomata.

Lemma 1. Let C be a configuration over finite regular types. Let M be a target
program generated from C according to the above algorithm. Then there is no
target program that is equivalent to C and strictly more efficient than M .

A corollary of this lemma is a monotonicity property that states that for any
matching problem, given a more specific input type, our compilation algorithm
generates a target program that is not worse than the one it generates for the
same matching problem with a less specific input type.

196 M.Y. Levin and B.C. Pierce

x y z
a[] a[] a[]|b[] 1

a[]|b[] b[] a[]|b[] 2
a[]|b[] a[]|b[] b[] 3

(a)

b[]

a[]

b[]

a[]

b[]

a[]

b[]a[]

2

y

x

z

z

1

1,3

2,3

3

a[]

a[]

b[]

a[]

b[]

b[]

a[]b[]

2

z

y

x

y

1

1,3

1

2,3

(b) (c)

Fig. 6. A configuration (a) and two optimal corresponding decision trees (b) and (c)

The algorithm described here works only for finite patterns; for recursive
patterns, it can go into an infinite loop, since expansion may not necessarily
yield “smaller” configurations as compilation progresses. The full version [14]
describes how to generalize the algorithm to the case with recursive patterns.
To do this, we must address several issues: first, we demonstrate that using
the input type is beneficial for reducing the number of function calls in the
generated program; second, we point out that deciding when exactly to generate
function calls can make a substantial difference in the efficiency of the resulting
target program. We conclude with an observation that it is impossible to achieve
optimality, as it is defined here, in the presence of recursive patterns.

7 Related Work

Frisch was the first to publish a description of a type-based optimization ap-
proach for a language with regular pattern matching [4]. His algorithm is based
on a special kind of tree automata called non-uniform automata. Like matching
automata, non-uniform automata incorporate the notion of “results” of pattern
matching (i.e., a match yields a value, not just success or failure). Also, like
matching automata, non-uniform automata support sequential traversal of sub-
trees. This makes it possible to construct a deterministic non-uniform automaton
for any regular language. Unlike matching automata, non-uniform automata im-
pose a left to right traversal of the input value. Whereas it is possible for a
matching automaton to scan a fragment of the left subtree, continue on with a
fragment of the right, come back to the left and so on, a non-uniform automaton
must traverse the left subtree fully before moving on to the right subtree.

Frisch proposes an algorithm that uses type propagation. His algorithm differs
from the tree automaton simplification algorithm in that it must traverse several

Type-Based Optimization for Regular Patterns 197

patterns simultaneously (whereas the latter handles one pattern at a time) and
generate result sets that will be used in the transitions of the constructed automa-
ton. Frisch’s algorithm does not always achieve optimality. In particular, it gener-
ates an automaton that tries to learn as much information from the left subtree as
possible, even if this information will not be needed in further pattern matching.

In his dissertation [5], Frisch presents a more flexible form of non-uniform au-
tomata that allow arbitrary, rather than strictly left-to-right, order of traversal.
There is no formal discussion of optimality however.

Outside of the XDuce family, a lot of work has been done in the area of
XPath query optimization. Several subsets of XPath have been considered.
Wood describes a polynomial algorithm for finding a unique minimal XPath
query that is equivalent to the given query [15]. The minimization problem is
solved for the set of all documents regardless of their schema. When the schema
is taken into account, the problem is coNP-hard. Flesca, Furfaro, and Masciari
consider a wider subset of XPath and show that the minimization problem for
it is also coNP-hard [2]. They then identify an subset of their subset for which
an ad-hoc polynomial minimization is possible.

Genevès and Vion-Dury describe a logic-based XPath optimization frame-
work [8] in which a collection of rewrite rules is used to transform a query in a
subset of XPath into a more efficient, but not necessarily optimal, form.

Optimizing full XPath has also been investigated. Gottlob, Koch, and Pichler
observe that many XPath evaluation engines are exponential in the worst case.
They propose an algorithm that works for full XPath and that is guaranteed to
process queries in polynomial time and space. Furthermore, they define a useful
subset of XPath for which processing time and space are reduced to quadratic
and linear respectively [9, 10]. Fokoue [3] describes a type-based optimization
technique for XPath queries. The idea is to evaluate a given query on the schema
of the input value obtaining as a result some valuable information that can be
used to simplify the query.

At this point, we hesitate to draw deeper analogies between the above XPath-
related work and our type-based optimization algorithm since the nature of
XPath pattern matching is quite different from that of regular pattern matching.

Acknowledgements

We thank Alain Frisch, Haruo Hosoya, and DBPL reviewers for conversations
and comments that resulted in numerous improvements to this work.

References

1. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose
language. In ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), Uppsala, Sweden, pages 51–63, 2003.

2. S. Flesca, F. Furfaro, and E. Masciari. On the minimization of xpath queries. In
VLDB, pages 153–164, 2003.

198 M.Y. Levin and B.C. Pierce

3. A. Fokoue. Improving the performance of XPath query engines on large collections
of XML data, 2002.

4. A. Frisch. Regular tree language recognition with static information. In Workshop
on Programming Language Technologies for XML (PLAN-X), Jan. 2004.

5. A. Frisch. Théorie, conception et réalisation d’un langage adapté á XML. PhD
thesis, Ecole Normale Supérieure, Paris, Paris, France, 2004.

6. V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. XML goes native: Run-
time representations for Xtatic. In 14th International Conference on Compiler
Construction, Apr. 2005.

7. V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. The Xtatic experience.
In Workshop on Programming Language Technologies for XML (PLAN-X), Jan.
2005. University of Pennsylvania Technical Report MS-CIS-04-24, Oct 2004.

8. P. Genevès and J.-Y. Vion-Dury. Logic-based XPath optimization. In International
ACM Symposium on Document Engineering, 2004.

9. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing xpath
queries. In VLDB, pages 95–106, 2002.

10. G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation: Improving time and
space efficiency, 2003.

11. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology, 3(2):117–148, May 2003.

12. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. ACM
Transactions on Programming Languages and Systems (TOPLAS), 27(1):46–90,
Jan. 2005. Preliminary version in ICFP 2000.

13. M. Y. Levin. Compiling regular patterns. In ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), Uppsala, Sweden, 2003.

14. M. Y. Levin and B. C. Pierce. Type-based optimization for regular patterns.
Technical Report MS-CIS-05-13, University of Pennsylvania, June 2005.

15. P. T. Wood. Minimising simple xpath expressions. In WebDB, pages 13–18, 2001.

Efficient Memory Representation of XML Documents

Giorgio Busatto1, Markus Lohrey2, and Sebastian Maneth3,�

1 Department für Informatik, Universität Oldenburg, Germany
giorgio.busatto@informatik.uni-oldenburg.de

2 FMI, Universität Stuttgart, Germany
lohrey@informatik.uni-stuttgart.de

3 Faculté I & C, EPFL, Switzerland
sebastian.maneth@epfl.ch

Abstract. Implementations that load XML documents and give access to them
via, e.g., the DOM, suffer from huge memory demands: the space needed to load
an XML document is usually many times larger than the size of the document. A
considerable amount of memory is needed to store the tree structure of the XML
document. Here a technique is presented that allows to represent the tree structure
of an XML document in an efficient way. The representation exploits the high reg-
ularity in XML documents by “compressing” their tree structure; the latter means
to detect and remove repetitions of tree patterns. The functionality of basic tree
operations, like traversal along edges, is preserved in the compressed representa-
tion. This allows to directly execute queries (and in particular, bulk operations)
without prior decompression. For certain tasks like validation against an XML
type or checking equality of documents, the representation allows for provably
more efficient algorithms than those running on conventional representations.

1 Introduction

There are many scenarios in which trees are processed by computer programs. Often it
is useful to keep a representation of the tree in main memory in order to retain fast ac-
cess. If the trees to be stored are very large, then it is important to use a memory efficient
representation. A recent, most prominent example of large trees are XML documents
which are sequential representations of ordered (unranked) trees, and an example ap-
plication which requires to materialize (part of) the document in main memory is the
evaluation of XML queries. The latter is typically done using one of the existing XML
data models, e.g., the DOM. Benchmarks show that a DOM representation in main
memory is 4–5 times larger than the original XML file. This can be understood as fol-
lows: a node of the form <a/> needs 4 bytes in XML; but as a tree node it needs at
least 16 bytes: a name pointer, plus three node pointers to the parent, the first child, and
the next sibling (see, e.g., Chapter 8 of [20]). There are some improvements leading to
more compact representations, e.g., Galax [9] uses only 3–4 times more main memory
than the size of the file. Another, more memory efficient data model for XML is that
of a binary tree. As shown in [21], the known XML query languages can be readily
evaluated on the binary tree model.

� Present address: National ICT Australia Ltd sebastian.maneth@nicta.com.au

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 199–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 G. Busatto, M. Lohrey, and S. Maneth

In this paper, we concentrate on the problem of representing binary trees in a space
efficient way, so that the functionality of the basic tree operations (such as the traversal
along edges) are preserved. Instead of compression, this is often called “data optimiza-
tion” [14]. Our technique is a generalization of the well-known sharing of common
subtrees. The latter means to determine during a bottom-up phase, using a hash table,
whether the current subtree has occurred already, and if so to represent it by a pointer to
its previous occurrence. In this way the minimal unique DAG (directed acyclic graph)
of the tree is obtained in amortized linear time. For common XML documents the min-
imal DAG is about 1/10 of the size of the original tree [3]. Our representation is based
on sharing of common subgraphs of a tree. The resulting sizes are 1/2–1/3 of the size
of the minimal DAG. To our knowledge, this is the most efficient pointer-based tree
representation that is currently available. At the same time, the complexity of querying,
e.g. using XQuery, stays the same as for DAGs [18]. We therefore believe that our rep-
resentation is better suited for in-memory storage of XML documents, than DAG-based
representations.

Of course, an XML document consists of more things than just tree nodes: a node
may have attributes, and a leaf may have character data. Both type of values we keep
in string buffers. When traversing the XML tree, we keep information on how many
nodes before (in document order) the current one (i) have attributes and (ii) how many
have character data. These numbers determine for a node the correct indices into the
attribute and data value buffers, respectively. With this in mind, it is straightforward
to implement a DOM proxy for our representations. Note that attribute and character
values can be stored more space efficiently using standard techniques [1]. The XML
file compression tool XMill [17] separates data values into containers and compresses
them individually using standard methods. The result is stored together with the tree
structure. It is likely that compressing the tree structure by the technique presented here
will further improve XMill’s compression ratios.

S → c

........................��

...

...

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

...

....

....

....

....

....

....

....

....

....

....

....

.

....

....

....

....

....

....

....

....

....

....

....

.

d c d C

CCCC
1

2

pat

S → B(B(C))

B(y1) → c(C, d(C, y1))
C → c(A, A) C → c(A, A)
A → a A → a

Fig. 1. Regular and cf tree grammars generating {t}

We now describe our representation in more detail. Consider the tree c(c(a, a), c(a,
a)), or, in XML <c><c><a/><a/></c><c><a/><a/></c></c>. It consists of
seven nodes and six edges. The minimal DAG for this tree has three nodes u, v, w and
four edges (‘first-child’ and ‘second-child’ edges from u to v and from v to w). The
minimal DAG can also be seen as the minimal regular tree grammar that generates the
tree [19]: the shared nodes correspond to nonterminals of the grammar. For example, the
above DAG is generated by the regular tree grammar with productions S → c(V, V),

Efficient Memory Representation of XML Documents 201

V → c(W, W), and W → a. A generalization of sharing of subtrees is the sharing
of arbitrary patterns, i.e., connected subgraphs of a tree. In a graph model it leads to
the well-known notion of sharing graphs which are graphs with special “begin-sharing”
and “end-sharing” edges, called fan-ins and fan-outs [15]. Since fan-in/out pairs can
be nested, this structure allows to represent a tree in double-exponentially smaller size.
In contrast, a DAG is at most exponentially smaller than the tree it represents. A shar-
ing graph can be seen as a context-free (cf) tree grammar [19]. In a cf tree grammar
nonterminals can appear inside of an intermediate tree (as opposed to at the leaves in
the regular case); formal parameters y1, y2, . . . are used in productions in order to in-
dicate where to glue the subtrees of the nonterminal which is being replaced. Finding
the smallest sharing graph for a given tree is equivalent to finding the smallest cf tree
grammar that generates the tree. Unfortunately, the latter problem is NP-hard: already
finding the smallest cf (string) grammar for a given string is NP-complete [16]. The first
main result of this paper is a linear time algorithm that finds a small cf tree grammar
for a given tree. On common XML documents the algorithm performs well, obtain-
ing grammars that are 1.5-2 times smaller than the minimal DAGs. As an example,
consider the tree t = c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a))))) which has 18
edges. The minimal DAG, written as tree grammar, can be seen on the left of Fig. 1.
It is the initial input to our algorithm “BPLEX” which tries to transform the grammar
into a smaller cf tree grammar. It does so by going bottom-up through the right-hand
sides of productions, looking for multiple (non-overlapping) occurrences of patterns.
In our example, the tree pattern pat (consisting of two nodes labeled c and d and their
left children labeled C) appears twice in the right-hand side of the first production. A
pattern p in a tree can conveniently be represented by a tree tp with formal parameters
y1, . . . , yr at leaves: simply add to tp all children of nodes of p (and the edges), and
label the jth such node (in preorder) by yj . Thus, tpat = c(C, d(C, y1)). This tree be-
comes the right-hand side of a new nonterminal B and the right-hand side of the first
production becomes B(B(C)). The resulting minimal cf tree grammar is shown on the
right of Fig. 1.

The BPLEX algorithm is presented in Section 3. In Section 4 we discuss the appli-
cation of BPLEX to XML documents and present experimental results. In Section 6 we
study two problems for our tree grammars G that are important for XML documents:
(1) to validate against an XML type and (2) to test equivalence. In fact, we consider
both of these problems for so called “straight-line” (for short, SL) context-free tree
grammars, which are grammars that are guaranteed to generate at most one tree; the
“straight-line” notion is well-known from string grammars (see, e.g., [25, 26]). Since
BPLEX generates “SLT grammars” of a more restricted form (additionally: linear in the
parameters) we also consider problems (1) and (2) for this restricted case. It is shown
that for an XML type T , represented by a (deterministic) bottom-up tree automaton,
we can test whether or not the tree represented by G has type T in time O(am × |G|),
where m is the maximal number of parameters of the nonterminals of G and a is the
size of the automaton. Running a tree automaton is similar to evaluating a query; in [3]
it was shown that a ‘Core XPath query’ Q can be evaluated on an XML document rep-
resented by its minimal DAG D in time O(2|Q| × |D|). Next it is proved that testing
the equivalence of two SL cf tree grammars can be done in polynomial space w.r.t. the

202 G. Busatto, M. Lohrey, and S. Maneth

sum of sizes of the two grammars, and, if the grammars are linear (“SLT”) then even in
polynomial time w.r.t. their sizes.

2 Preliminaries

For k ∈ N, the set {1, . . . , k} is denoted by [k]. A finite set Σ together with a mapping
rank : Σ → N is called a ranked alphabet. The set of all (ordered, rooted, ranked) trees
over Σ is denoted by TΣ . For a set A, TΣ(A) is the set of all trees over Σ∪A, where all
elements of A have rank 0. We fix a set of parameters Y = {y1, y2, . . . } and, for k ≥ 0,
Yk = {y1, . . . , yk}. For a ranked tree t, V (t) denotes its set of nodes and E(t) its set of
edges. Each node in V (t) can be represented by a sequence u of integers describing the
path from the root of t to the desired node (Dewey notation), the node itself is denoted
by tu; for example, 1.1.1 denotes the left-most leaf of the tree t from the Introduction
(labeled a). The label at node u is denoted t[u] and the subtree rooted at u is denoted
t/u. For symbols a1, . . . , an of rank zero and trees t1, . . . , tn, [a1 ← t1, . . . , an ← tn]
denotes the substitution of replacing each leaf labeled ai by the tree ti, 1 ≤ i ≤ n.

Context-free (cf) tree grammars are a natural generalization of cf grammars to trees
(see, e.g., Section 15 in [13]). A cf tree grammar G consists of ranked alphabets N and
Σ of nonterminal and terminal symbols, respectively, of a start symbol (of rank zero),
and of a finite set of productions of the form A(y1, . . . , yk) → t. The right-hand side t
of a production of the nonterminal A is a tree over nonterminal and terminal symbols
and over the parameters in Yk which may appear at leaves, where k is the rank of A, i.e.,
t ∈ TN∪Σ(Yk). Sentential forms are trees s, s′ in TN∪Σ and s ⇒G s′ if s′ is obtained
from s by replacing a subtree A(s1, . . . , sk) by the tree t[y1 ← s1, . . . , yk ← sk] where
t is the right-hand side of an A-production. Thus, the parameters are used to indicate
where to glue the subtrees of a nonterminal, when applying a production to it. The
language generated by G is {s ∈ TΣ | S ⇒∗

G s}. Note that a parameter can cause
copying (if it appears more than once in a rhs) or deletion (if it does not appear). For
example, the cf tree grammar with productions S → A(a), A(y1) → A(c(y1, y1)),
A(y1) → y1 generates the language of all full binary trees over the binary symbol c and
the constant symbol a.

A cf tree grammar is regular if all nonterminals have rank 0. It is straight-line (for
short, SL) if each nonterminal A has exactly one production (with right-hand side de-
noted rhs(A)) and the nonterminals can be ordered as A1, . . . , An in such a way that
rhs(Ai) has no occurrences of Aj for j ≤ i (such an order is called “SL order”). Thus,
an SL cf tree grammar can be defined by a tuple (N, Σ, rhs) where N is ordered and
rhs is a mapping from N to right-hand sides. A cf tree grammar is linear if for every
production A(y1, . . . , yk) → t, each parameter yi occurs at most once in t.

In the sequel we use SLT grammar to stand for “SL linear cf tree grammar”.

3 The BPLEX Algorithm

Grammar-based tree compression means to find a small grammar that generates a given
tree. The size of such a grammar can be considerably smaller than the size of the tree,
depending on the grammar formalism chosen. For example, finding the smallest regular

Efficient Memory Representation of XML Documents 203

tree grammar that generates a given tree t can be done in (amortized) linear time, and the
resulting grammar is isomorphic to the minimal DAG of the tree. The minimal regular
tree grammar Gt is also straight-line (any grammar that generates exactly one element
can be turned into an SL grammar). The initial input to our compression algorithm
BPLEX is the grammar Gt: BPLEX takes an arbitrary SL regular tree grammar as
input and outputs a (smaller) SLT grammar. As mentioned in the Introduction, moving
from regular to cf tree grammars corresponds to generalizing the sharing of common
subtrees to the sharing of arbitrary tree patterns (connected subgraphs of a tree).

The basic idea of the algorithm is to find tree patterns that appear more than once in
the input grammar (in a non-overlapping way), and to replace them by new nonterminals
that generate the corresponding patterns. We call this technique multiplexing because
multiple occurrences of the replaced patterns are represented only once in the output.
The order in which the algorithm scans the nodes in the right-hand sides of the input
grammar corresponds to scanning the generated tree bottom up; for this reason, the
algorithm is called BPLEX (for bottom-up multiplexing).

BPLEX (see Fig. 2) takes as input an SL regular tree grammar G and three parame-
ters specifying (1) the maximum number KN of nodes and productions that are exam-
ined when computing patterns matching at a given node, (2) the maximum size KS of a
new pattern, and (3) the maximum rank KR of a new pattern. If A1, . . . , Al are the non-
terminals of G (in SL order) and G is an SLT grammar containing these nonterminals,
then <l

G indicates the ordering over all nodes of rhsG(A1),. . . , rhsG(Al) obtained by
scanning rhsG(Al) through rhsG(A1), each in postorder, and z is the current position

procedure BPLEX(G: grammar, KN : int, KS : int, KR: int): grammar
begin

Al := last symbol in the SL ordering of G
z := leftmost leaf of rhsG(Al)
while true do

repM := RepM(G, z, KN)
newM := NewM(G, z, KN , KS, KR)
if newM �= ∅ or repM �= ∅ then

m := max(newM, repM)
if m ∈ repM then

G := G[m ← A], with rhsG(A) = pm

else
k := rank(pm)
A := fresh(G, k)
G := add(G, A(y1, . . . , yk) → pm)
G := G[m, cm ← A]

fi
elseif ∃w ∈ V l

G : z <l
G w then z := next(<l

G, z)
else break
fi

od
return G

end BPLEX

Fig. 2. The BPLEX algorithm

204 G. Busatto, M. Lohrey, and S. Maneth

with respect to this ordering. At each step, BPLEX computes a set of repeated matches
by comparing the patterns occurring at z with the right-hand sides of the last KN pro-
ductions of G with index greater than l, and a set of new matches by finding pairs of
non-overlapping occurrences of patterns at z and at the KN most recently visited nodes
(thus exploiting the well-known idea of a sliding window that appears e.g. in many im-
plementations of the LZ77 compression scheme, cf. the discussion in Section 7). If at
least one match is found, BPLEX performs the sharing that provides the highest size
reduction for the grammar, it moves to the next node otherwise. If there is no next node,
then it returns the current SLT grammar.

We now examine the algorithm in detail. We describe the progress of the computation
through a sequence of configurations (G1, z1), . . . , (Gh, zh) where, for each i ∈ [h],
Gi is an SLT grammar generating the uncompressed tree, and zi is an address (see
below) denoting the node that is examined during the i-th iteration (the current node).
G1 = G is the input to the algorithm; Gh is the output. For i ∈ [h], grammar Gi has
nonterminals A1, . . . , Ali , with l1 = l and, for i > 1, either li = li−1 or li = li−1 + 1
and Ali = fresh(Gi−1, k) for some k > 0. By fresh(G, k) we denote a nonterminal of
rank k that does not occur in G. Given i ∈ [h] and a grammar Gi, scanning the nodes
of rhsGi(Al) through rhsGi(A1) in postorder induces a total order <l

Gi
on the set of

nodes V l
Gi

=
⋃

j∈[l] V (rhsGi(Aj)). For i ∈ [h] and j ∈ [l], a node in V (rhsGi(Aj)) is
denoted by the address z = (j, u), where u is the path to that node in the tree rhsGi(Aj).
If z is a node in V l

Gi
that is not the root of rhsGi(A1), then next(<l

Gi
, z) is the node

following z in the order <l
Gi

. The starting address z1 is the left-most leaf of rhsG1(Al)
and the final address zh = (1, ε) is the root of rhsGh

(A1).
A tree pattern can be described by a tree with parameters at leaves (parameters denote

connected subtrees that are not part of the pattern). Formally, a (tree) pattern p (of rank
k) is a tree in which each y ∈ Yk occurs exactly once. Given a tree t and a node u of
t, the pattern p matches t in u if there are trees t1, . . . , tk and a pattern p′ isomorphic
to p such that t/u = p′Θ where Θ is the substitution [y1 ← t1, . . . , yk ← tk]. The pair
(p′, Θ) is called a match of p (in t) at u. Given a match m, pm denotes the corresponding
pattern. Two matches (p′, Θ′), (p′′, Θ′′), are overlapping if p′ and p′′ have at least one
common node. Two matches m′ = (p′, [y1 ← t′1, . . . , yk ← t′k]), m′′ = (p′′, [y1 ←
t′′1 , . . . , yk ← t′′k]) of the same pattern p are maximal if, for all i ∈ [k], t′i[ε] �= t′′i [ε]
(intuitively: there is no possibility to extend m′, m′′ to matches of some larger common
pattern). Given a grammar G with nonterminals A1, . . . , Ah and j ∈ [h], a pattern p
matches G in z = (j, u) if p matches rhsG(Aj) in u; if m = (p′, Θ) is the match of p
in z = (j, u), then z is the address of m in G.

The replacement of patterns is defined as follows. Let G be an SLT grammar, p
a pattern of rank k with a corresponding production A(y1, . . . , yk) → p in G, and
m = (p′, [y1 ← t1, . . . , yk ← tk]) a match of p in the right-hand side of some other
production of G. The match m is replaced by A by replacing the subtree rooted at the
root of p′ and with the tree A(t1, . . . , tk). The resulting grammar is denoted by G[m ←
A]. Similarly, for two non-overlapping matches m1, m2 of p in G, G[m1, m2 ← A] is
the grammar obtained from G by replacing each match m1 and m2 by A.

We now discuss how the size of an SLT grammar changes when occurrences of a
tree pattern are replaced by a nonterminal that generates the pattern. The size of a tree

Efficient Memory Representation of XML Documents 205

(without parameters) is its number of edges. Since the SLT grammars that are generated
by BPLEX have the property that all k parameters of a nonterminal appear exactly once
in the right-hand side of its rule, and in the order y1, y2, . . . , yk, we do not need to
explicitly represent the parameters as nodes of the tree. Hence, we do not count the
edges to parameters; thus in general, for a tree t, size(t) is defined as |E(t)| − |Ey(t)|
where Ey(t) are the edges to parameters in t. For a tree grammar G, size(G) is the sum
of sizes of the right-hand sides of the productions of G. Clearly, size(G)−size(G[m ←
A]) = size(p) and size(G) − size(G[m1, m2 ← A]) = 2 × size(p). If prod is not in
G already then the size of the grammar add(G, prod) obtained by adding prod to G is
size(G) + size(rhs(prod)).

Let us turn our attention to the computation of pattern sets. At stage i, BPLEX com-
putes the set RepM(Gi, zi, KN) of all matches in zi of patterns that are isomorphic to
some right-hand side rhsGi(Aj) for l < j ≤ li, li − j < KN . This computation con-
siders at most KN productions of index greater than l. Note that one can check whether
p = rhsGi(Aj) matches Gi in zi in at most size(p) ≤ KS steps by comparing the two
trees top-down and binding parameters of p to descendants of zi. The total cost of com-
puting RepM(Gi, zi, KN) is bounded by KN × KS because (see below) a production
with index j > l has size at most KS .

BPLEX also computes the set NewM(Gi, zi, KN , KS , KR) of all matches in zi such
that, for each m ∈ NewM(Gi, zi, KN , KS, KR), we have

– there exists a (non-overlapping) companion match cm of the same pattern in some
node w among the last KN nodes preceding zi in the order <l

Gi
;

– 0 < size(pm) ≤ KS and, if size(pm) < KS , then either (1) m and cm are maximal,
or (2) m and cm can only be extended to larger matches that overlap;

– the rank of pm is at most KR.

The set NewM(Gi, zi, KN , KS , KR) can be computed by comparing top-down the tree
rooted at zi with trees rooted at nodes preceding zi. Since the computation stops when-
ever it encounters a pattern that is larger than KS , the cost of computing NewM(Gi, zi,
KN , KS , KR) is bounded by KN × KS .

BPLEX chooses a match m ∈ RepM(Gi, zi, KN) ∪ NewM(Gi, zi, KN , KS , KR)
with maximal size, denoted by max(repM, newM). If m ∈ RepM(Gi, zi, KN), then
the match is replaced by the right-hand side of the corresponding production. If m ∈
NewM(Gi, zi, KN , KS, KR), BPLEX adds a production A → pm to the grammar,
with A = fresh(Gi, rank(pm)), and replaces the matches m, cm by A. In both cases,
the size of the grammar is reduced by size(pm). If no matches are found, BPLEX tries
to move the address zi to the next node with respect to the order <l

Gi
. The linearity of

BPLEX derives from the fact that, for an input grammar G, the loop cannot be executed
more than 2 × |G| times (each run through the loop either moves the address forward
or reduces the size of the grammar), and from the fact that the sets RepM(Gi, zi, KN)
and NewM(Gi, zi, KN , KS, KR) can be computed in constant time. Note that each
nonterminal in the output grammar has rank at most KR (see also Section 6). Finally,
note that the indices of nonterminals in the generated grammars do not reflect the SL
order; in the examples we have renamed nonterminals to indicate an SL order.

We now illustrate the computation of BPLEX on the regular tree grammar on the
left of Fig. 1. BPLEX does not perform any sharing in the third and second production;

206 G. Busatto, M. Lohrey, and S. Maneth

S → E(E(C)) C → c(A, A)
E(y1) → c(C, D(y1)) A → a
D(y1) → d(C, y1)

Fig. 3. Cf tree grammar generating {c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a)))))}

it then scans the first production. When the highest d is encountered (address (1, 2))
a match m of pattern d(C, y1) is found, together with a companion cm matching in
(1, 2.2.2). This has size 1 and is chosen for replacement. The new nonterminal D of
rank 1 is added to the grammar together with production D(y1)
→ d(C, y1), and the two matches are replaced so that the first production becomes
S → c(C, D(c(C, D(C)))). The new pattern rhs(D) does not match the new grammar
in z = (1, 2) and no pairs of new matches are found either. Therefore z is changed
to the root of the S production (z = (1, ε)). Here, the right-hand side of D does not
match, while the maximal pattern c(C, D(y1)) matches in (1, ε) and in (1, 2.1). There-
fore a new nonterminal E of rank 1 is added together with the production E(y1) →
c(C, D(y1)), and the matches are replaced by E, producing the output grammar shown
in Fig. 3.Both this grammar and the cf tree grammar on the right of Fig. 1 have size
7. Note that BPLEX has not detected pattern p = c(C, d(C, y1)) appearing in Fig. 1,
because the smaller pattern d(C, y1) is replaced before p has been scanned completely.

4 XML Compression Using BPLEX

In this section we explain how BPLEX can be used to generate a small representation
of the tree structure of an XML document. This tree structure can be conveniently mod-
eled as unranked or binary tree. While BPLEX performs (almost) equally well in both
models, this is not the case for the minimal DAG.

An XML document is a sequential representation of a nested list structure. As men-
tioned in the Introduction, there are different data models for XML, which vary in their
sizes. For example, DOM trees contain bidirectional pointers between a node and its
children, its parent node, and its direct left and right sibling; the resulting size is ap-
proximately 4-5 times more than the size of the original XML document. Another data
model are (ordered) unranked trees which are like DOM trees, but without pointers be-
tween siblings. As an example, consider the following XML document skeleton (i.e.,
without data values).

<agenda>
<person><name/><street/></person>
. . .
<person><name/><street/></person>

⎫⎬
⎭5 times

</agenda>

An (ordered) unranked tree representation of this XML document consists of a root
node labeled agenda which has associated with it an array of five pointers, each to
a node labeled person which in turn has an array of two pointers to nodes labeled
name and street, respectively. For each pointer to a child node we can additionally

Efficient Memory Representation of XML Documents 207

also keep the inverse pointer from the child to its parent node. This doubles the number
of pointers in the representation. Our investigations are independent of this choice: we
always count in number of edges (these numbers have to be multiplied by the imple-
mentation cost of an edge, which possibly involves the cost of two pointers). The size
of the unranked tree representation of the above XML document is 15 edges.

street0

person1

name2

street0

agenda1

person

name2

street0

person

name2

street0

person

name2

street0

person

name2

Fig. 4. Binary tree representation of an unranked tree

The BPLEX algorithm works on (ranked) trees; it is well-known that every unranked
tree can be turned into a binary ranked tree without changing the number of edges:
delete all edges to non-first children, and add a (second child) edge from any node
to its next sibling. Note that a leaf (resp. the last sibling) in the unranked tree has no
left (resp. no right) child edge in the binary tree representation; this is denoted by the
superscript 2 (resp. 1), and by 0 for a last sibling leaf. In Fig. 4 the binary represen-
tation of the unranked tree for the XML document above is shown (with second child
edges of person-nodes drawn horizontally). As before, we first turn a (ranked) tree into
its minimal DAG, represented as a regular tree grammar, and then apply BPLEX to
the grammar. In our example, the corresponding regular tree grammar has the three
productions S → agenda1(person(A, person(A, person(A, person(A, person1(A)))))),
A → name2(B), B → street0 and its size is 11. Consider the S-production of this gram-
mar. Its right-hand side contains four occurrences of the pattern p = person(A, y1).
Thus, given a production C(y1) → person(A, y1), each of the occurrences can be re-
placed by the nonterminal C. However, there is one further occurrence of a similar
pattern p′ = person1(A), which can be obtained by removing the parameter y1 from
the pattern p. Note that, since A is a first child in p, removing y1 changes person into
person1. In general, we allow a nonterminal K of rank m to appear with any rank
0 ≤ r ≤ m in the right-hand sides of productions, provided it is indicated which pa-
rameters are to be deleted; in the implementation, missing parameters are marked by a
special “empty tree marker”. With this “overloading” semantics of productions in mind,
BPLEX turns the above regular tree grammar into:

S → agenda1(C(D(D))) A → name2(B)
D(y1) → C(C(y1)) B → street0

C(y1) → person(A, y1)

In this grammar, the D-production generates copies along a path of the binary tree.
Repeated applications of such copying productions cause exponential size increase. In
this way, the size of the input grammar can, in certain cases, be reduced exponentially.
Consider our example, but now with 10000 person entries (thus, a binary tree with

208 G. Busatto, M. Lohrey, and S. Maneth

30000 edges). The corresponding minimal regular tree grammar G10000 has size 20001
while BPLEX outputs the following grammar of size 20:

S → agenda1(A8(A5(A4(A3(A1(A1))))))
A1(y1) → A2(A2(y1))
A2(y1) → A3(A3(y1))

...
A12(y1) → A13(A13(y1))
A13(y1) → person(A14, y1)
A14 → name2(A15)
A15 → street0

In this grammar, the symbol A13 generates the tree person(name(street, y1)). More
generally, for j = 1, . . . , 13, Aj generates a chain with 213−j occurrences of this pattern
and one parameter y1 at the end of the chain. It is easy to see that S generates the correct
tree with 10000 person entries.

Unranked DAGs with Multiplicities. Before presenting experimental results with
BPLEX, we discuss its relation to another tree compression method that has been ap-
plied to XML. Recall that we applied BPLEX to the minimal regular tree grammar of
a binary tree representation of an unranked tree. An unranked tree has itself a unique
minimal DAG (minimal regular tree grammar) which can be obtained in the same way
as for ranked trees. However, the size of the minimal DAG of an unranked tree can be
different from the one of the minimal DAG of its binary representation! In most cases
the minimal unranked DAG is smaller than the binary one. The reason is that chains
of second child edges in the binary tree become sibling subtrees in the unranked tree.
To see this, consider the binary tree in Fig 4. Clearly, its minimal DAG has only one
copy of the subtree name2(street) and hence has only 11 edges. On the other hand,
the minimal DAG of the corresponding unranked tree has only one copy of the subtree
person(name, street) and therefore has only 7 edges. As an example of a binary tree
with a minimal DAG that is smaller than the one of the corresponding unranked tree,
consider the unranked tree tu = u(p(x, b, c, b, c), p(y, b, c, b, c), p(z, b, c, b, c)). Its min-
imal unranked DAG has 18 edges, but the minimal binary DAG has only 12, because
only one copy of the subtree b2(c2(b2(c0))) appears.

In fact, the size of the minimal DAG representation can even be further reduced by
using “multiplicity” counters for consecutive equal subtrees [3]. Then the DAG for the
unranked tree of the agenda-example can be represented using only 3 edges, or equiv-
alently, by an (unranked) regular tree grammar with multiplicity counters and produc-
tions

A → agenda([5]P), P → person(name, street).

Of course, multiplicity counters take up space, but following Koch et al. this space is
neglected (similar to the fact that we do not count edges to parameters in cf tree gram-
mars, see Section 3). Thus, BPLEX produces the grammar dsiplayed on the previous
page, which is smaller (size 6) than the minimal DAG of the unranked tree (size 7),
but such a minimal DAG has a smaller representation (size 3) when multiplicity coun-
ters are added. From now on, we call this DAG representation for an unranked tree its

Efficient Memory Representation of XML Documents 209

mDAG (minimal DAG with multiplicities). Such representation can easily be turned
into a regular tree grammar with the same size that generates the binary representation
of the original unranked tree. This grammar also contains multiplicity counters at nodes,
which are expanded to chains of nodes. We implemented a version of BPLEX which
works on such grammars (and does not change the multiplicity counters). As it turns
out, only in a few cases we obtained small improvements over BPLEX on the binary
regular tree grammar corresponding to the minimal DAG. Thus, the advantage of coun-
ters is compensated for, by the ability of BPLEX to exponentially compress chains of
nodes. On a few files, the minimal binary DAG was even smaller than the mDAG, due
to similar chains as in the tree tu of above; cf. in Tab. 1 the two catalog files and the file
NCBI gene.chr1.

5 Experimental Results

We implemented BPLEX in C using gcc and the Expat XML parsing library (see
http://expat.sourceforge.net/). See http://bplex.sourceforge.net/ for a preliminary ver-
sion of BPLEX. Our experiments were done on a Pentium 3Ghz running Linux. We
tested BPLEX on three different sets of XML documents. The first one contains docu-
ments used in [3]: SwissProt (protein data), DBLP (a bibliographic database), Treebank
(a linguistic database), and 1998statistics (baseball statistics). The second set contains
XML documents generated by XBench [29], and the third contains documents from the
Japanese Single Nucleotide Polymorphism database (see http://snp.ims.u-tokyo.ac.jp).

Table 1 shows for each document the size of its tree structure (in number of edges)
together with the sizes in three different representations. The minimal unranked DAG
(with multiplicities) is consistently smaller than the minimal binary DAG. The smallest
sizes are generated by BPLEX, ranging between 0.1% and 21% of the original tree
structure; they were obtained by running BPLEX with large input parameters (window

Table 1. BPLEX in highest compression mode. All sizes are in number of edges.

input file size of tree min. binary min. unranked BPLEX
in #edges DAG size mDAG size output size

SwissProt (457,4 MB) 10,903,568 1,437,445 13.2% 1,100,648 10.1% 311,328 2.9%
DBLP (103.6 MB) 2,611,931 533,183 20.4% 222,754 8.5% 115,902 4.4%
Treebank (55.8 MB) 2,447,727 1,454,494 59.4% 1,301,688 53.2% 519,542 21.2%
1998statistics (657 KB) 28,306 2,403 8.5% 726 2.6% 410 1.4%
catalog-02 (104M) 2,240,231 52,392 2.3% 32,267 1.4% 26,774 1.2%
catalog-01 (11M) 225,194 6,990 3.1% 8,503 2.8% 3,817 1.7%
dictionary-02 (104M) 2,731,764 681,130 24.9% 441,322 16.2% 160,329 5.9%
dictionary-01 (11M) 277,072 77,554 28.0% 46,993 17.0% 20,150 7.3%
JST snp.chr1 (36M) 655,946 40,663 6.2% 25,047 2.3% 12,858 1.8%
JST gene.chr1 (11M) 216,401 14,606 6.7% 5,658 2.6% 4,000 1.8%
NCBI snp.chr1 (190M) 3,642,225 809,394 22.2% 15 <0.1% 59 <0.1%
NCBI gene.chr1 (24M) 360,350 14,356 4.0% 11,767 3.3% 7,160 2.0%
medline 0378 (123M) 2,790,421 629,853 22.6% 695,505 24.9% 132,733 4.8%

210 G. Busatto, M. Lohrey, and S. Maneth

size 30.000, maximal pattern size 20, maximal rank 10). Only late we were informed
by the authors of [3] that their DAG compression does not perform well on the medical
bibliographies of medline; note, this is the only example in the table for which a binary
DAG is slightly smaller than the mDAG. As seen in the last entry of the table, BPLEX
performs surprisingly well on medline.

We also implemented a version of BPLEX that runs on unranked trees, instead of
binary trees. The results are not shown in the table, because, roughly, they are the same
as BPLEX on binary encodings. This means that tree compression by BPLEX is not
sensible to un-/rankedness of the input. This is interesting, because, as shown in the
previous section, this is not true for tree compression by DAGs.

Claim. BPLEX is unsensible to unrankedness/bin.-encoding of input.

Performance. Recall from Fig. 2 the three parameters of BPLEX: the window size
KN , the maximal rank KR of a pattern, and the maximal size KS of a pattern. Our
experiments show that the algorithm performs well with small values of KR and KS and
that values above 5 and 10 respectively do not increase compression anymore. The main
factor for good compression is the window size. BPLEX achieves best compression
with a window size of > 100; values above 20, 000 do not change compression. Our
current implementation runs slow on large window sizes, requiring several hours to
obtain the results shown in Tab. 1. This is mainly due to the way in which matches
of patterns are found and recorded; the part of the program should be improved in
the future. Interestingly, even with a small window size, BPLEX already compresses
considerably better than binary DAGs and unranked mDAGs. If we use KN = KR =
KS = 3 then all our examples compress in less than one minute; compression rates
are SwissProt 4.1%, Treebank 34%, and dictionary-01 12%. It remains to test on a real
machine the impact of our compression wrt the total memory consumption for an XML
document in main memory.

6 Algorithms on SLT Grammars

SLT grammars are well suited to efficiently represent XML documents. Consider now
a grammar in memory which represents a large XML document. How can we process
the XML tree, without decompressing the grammar? Any read access like, e.g., reading
the label of the root node, or moving along an edge from one node to another, can
be realized on the grammar representation with an additional per-step overhead of at
most the size h of the grammar [19]. Additionally, a stack of height at most h must be
maintained at all times. Thus, the price to be payed for having a small representation
that can be accessed without decompression, is a slow down for each read operation.
For some special applications, however, it is possible to eliminate the slow-down, or to
even achieve speed ups. In this section we investigate such applications.

XML Type Validation. The first application we consider is XML type validation: an
XML document represented by an SL cf tree grammar should be validated against an
XML type. There are several formalisms for describing XML types, with varying ex-
pressiveness, e.g., DTDs, XML Schema, or RELAX NG. All of these can conveniently

Efficient Memory Representation of XML Documents 211

be modeled by the regular tree languages [23], a classical concept well known from
formal language theory [13]. Our first result states that XML type checking can be
done in time linear in the size of the grammar G, if the maximal number of parame-
ters m is fixed. The involved constant depends on the size of the XML type definition,
and on the maximal number m of parameters of the nonterminals in G; in fact, m ap-
pears as an exponent. In BPLEX, m is controlled by the input parameter KR. Practical
experiments show that small values of m already achieve competitive compression ra-
tios; in fact, we observed that for all the files shown in Tab. 1 taking KR bigger than
10 does not improve the compression anymore. It can therefore be assumed that m is
very small with respect to the size of G. As formal model for regular tree languages
we use (deterministic bottom-up finite) tree automata. Such an automaton can be de-
fined by a tuple A = (Q, Σ, {δσ}σ∈Σ , F) where Q is a finite set of states, Σ is a
ranked alphabet, δσ : Qk → Q for σ ∈ Σ of rank k, and F ⊆ Q is a set of final
states. The transition function δ of A is extended to trees over Σ in the usual way:
δ(σ(t1, . . . , tk)) = δσ(δ(t1), . . . , δ(tk)) for σ ∈ Σ of rank k and t1, . . . , tk ∈ TΣ . The
language accepted by A is {s ∈ TΣ | δ(s) ∈ F}.

Theorem 1. Given an SL cf tree grammar G and a tree automaton B it can be checked
whether L(G) ∩ L(B) = ∅ in worst case time O(sm × |G|), where s is the number of
states of B and m is the maximal number of parameters of nonterminals of G.

The proof of Theorem 1 can be found in the Appendix. Note that in [18] it is shown
already that the problem of Theorem 1 is PSPACE-complete. The intention of the proof
above was to present a more efficient algorithm. Note further that in order to use The-
orem 1 in the context of XML types, the corresponding type definition has to first be
transformed into a (deterministic bottom-up finite) tree automaton. If the type is given
as DTD or as XML Schema, then the transformation into a deterministic tree automa-
ton can be done in time linear in the size of the representation; the reason is that these
formalisms are deterministic: there is only one rule per nonterminal, and the regular ex-
pressions which are used in right-hand sides are also deterministic (which implies that
the corresponding Glushkov automaton is deterministic and can be constructed in time
linear in the size of the expression). Hence, the algorithm of the proof of Theorem 1
is highly practical for DTDs and XML Schemas. For RELAX NG (which employs full
regular tree languages) it might be less practical, because the size of the correspond-
ing deterministic tree automaton can be exponential in the size of the representation r.
However, if the SL cf tree grammar is linear (=SLT, which it is, if it was produced by
BPLEX), then Theorem 1 can be extended to the case that the automaton B is nonde-
terministic: the ΨA are now functions from Qk to 2Q, where k is the rank of A; they are
computed by checking for every state p and states p1, . . . , pk of B whether there is a
run on rhs(An)[y1 ← p1, . . . , yk ← pk] arriving in p. Thus the problem can be solved
in time O(sm+1 × |G|).

Equality Test. Consider two SL cf tree grammars G1 and G2. Is it possible to test
whether both G1 and G2 generate the same tree t, without fully uncompressing the
grammars, i.e., without deriving the tree t? More precisely, we are interested in the time
complexity of testing equivalence of G1 and G2.

212 G. Busatto, M. Lohrey, and S. Maneth

In the string case, i.e., if G1, G2 are SL cf string grammars, then the problem can be
solved in polynomial time with respect to the sum of the sizes of G1 and G2 [25]. The
proof relies on the fact that, for an SL cf string grammar G (in Chomsky nf) of size n,
the length of the string derivable from a nonterminal of G is ≤ 2n, and therefore can be
stored in n bits. Since basic operations (comparing, addition, subtraction, multiplica-
tion, etc.) on such numbers work in polynomial time with respect to n, we can compute
in polynomial time the length of the word generated by any nonterminal of G. Since in
the tree case this property does not hold anymore (because the size of t generated by an
SL cf tree grammar of size n can be 22n

) it looks unlikely that the equivalence problem
can also be solved by an algorithm running in polynomial time. In fact, we do not know
whether such an algorithm exists. The following theorem shows that the problem can
be solved using polynomial space, and hence in exponential time. On the other hand, if
the grammars G1, G2 are linear, then they can be transformed into SL cf string gram-
mars generating a depth-first left-to-right traversal of the corresponding tree; then, the
result of [25] can be used to show that in this case testing equivalence can be done in
polynomial time. The proof of Theorem 2 can be found in the Appendix.

Theorem 2. Testing equivalence of two SL cf tree grammars G1 and G2 can be done
in PSPACE, and in polynomial time if G1 and G2 are linear.

7 Related Work

There are succinct pointer-less representations of trees, see, e.g., [14]. In this way, an
n-node tree can be represented by 2n + o(n) bits, while allowing O(1) time for most
read operations on a tree [12]. In the context of XML, pointer-less tree representations
can, e.g., be found in XPRESS [22]: label paths in an XML document are encoded by
real number intervals following an arithmetic encoding; this allows to run path queries
directly on the compressed instance. This method is typically applied directly to XML
documents on the file system. While XPRESS has smaller query evaluation times than
other systems working on compressed XML files (like, e.g., XGrind [28]), it is unclear
how well it compares to other approaches (like ours) when documents are loaded into
memory. It is also possible to use strings to represent XML trees in memory [30]; their
experiments show that this offers good compression, while still being able to query ef-
ficiently the representation. XQueC uses a queriable XML representation that is based
on compression of data values [1]. An advanced implementation which basically uses
DAG sharing together with compression of data values is presented in [8]; their re-
sults are convincing, which strengthens belief in our approach, because replacing DAG
sharing by SLT grammars should immediately improve their system.

Consider now the problem of finding the smallest cf string grammar for a given
string. This problem is NP-complete and various approximation algorithms have been
studied [16]. In particular, the size of the smallest cf grammar is lower bounded by
the size of the smallest LZ77 representation of the string (when the size of the sliding
window is unbounded) [4, 27]. The question arises whether a similar result holds in
the tree case. But for trees it is unclear how an efficient LZ77 representation would
look like. The problem is how to specify tree prefixes that have appeared before [7].
In [27] a technique to decrease the size of an SL cf grammar is presented; the idea is

Efficient Memory Representation of XML Documents 213

to change the grammar in such a way that its derivation trees become balanced trees,
in the sense of AVL trees. This technique gives good compression ratios, when applied
to an SL cf grammar obtained from the minimal LZ77 representation of the string.
Even though there is no obvious way to extend LZ77 to trees, it might be possible
to apply the technique of [27] to SL cf tree grammars. Another variation of Lempel-
Ziv compression, known as LZ78, can more readily be extended to trees. For LZ78 on
strings, new patterns are composed by adding a letter to already existing patterns. A
pattern is specified as a pair (i, a) where i is the index of a previous pattern and a is
a letter; the case i = 0 represents the one-letter pattern a. In this scheme the string
abbbaabbabbb is compressed to (0, a)(0, b)(2, b)(1, a)(3, a)(3, b). Thus, the pair (2, b)
is the concatenation bb of b (the second pattern) and b, and similarly (3, a) represents
bba. The LZ78 encoding has a natural interpretation as an SL cf string grammar (see
e.g. [16]). LZ78 can be extended to trees by using a dictionary of tree patterns where,
during a top-down scan of the input tree, new patterns are obtained from existing ones
by appending subpatterns at parameter positions; in the simplest case, only a one-node
subpattern is appended. Such a technique is presented in [5]; other variations, each using
a different method for extending the patterns, are presented in [6]. In [5] no experimental
results are provided. In [6] the proposed algorithms are applied to term compression,
and the best performance is a size reduction to about 50% of the original. It remains to
be investigated how these techniques perform on XML documents.

In [10] it was shown that evaluation of Core XPath queries on DAGs is PSPACE
complete. Recently we have shown that this result can be extended to linear SL cf tree
grammars; this means that, while achieving better compression than DAGs by using
BPLEX, the complexity of evaluating a Core XPath still remains the same for outputs
of BPLEX as it is for DAGs.

8 Conclusions and Future Work

lA linear time algorithm was presented that transforms a given tree into a small SLT
grammar. The algorithm can be used to “compress” the tree structure of an XML doc-
ument into a highly efficient memory representation. The representation preserves the
basic tree operations and can be accessed via DOM (using an appropriate proxy). On
average, the size of a compressed instance is one half of the size of the minimal unique
DAG of the tree, which in turn is about 1/10 of the size of the original tree [3]. Some
problems can, under certain conditions, even be solved more efficiently on the com-
pressed instances than on conventional tree presentations; in particular we considered
(1) validation against XML types and (2) testing equality of documents. In [18] we con-
sidered XQuery evaluation. It remains to implement these ideas and test how well they
behave on practical queries. To further increase memory efficiency, our representation
could be combined with a (mild) compression of data values (e.g., similar to the one
of [1]). It is also possible to directly keep results of queries in compressed format; this
idea has been considered for DAG compression and a fragment of XQuery [2]. It also
has been considered for compression by SLT grammars, and macro tree transducers as
query formalism [19]. It is not difficult to change BPLEX to take arbitrary SL cf tree
grammars as input; in this way it might be possible to achieve further compression by
running BPLEX on its on output.

214 G. Busatto, M. Lohrey, and S. Maneth

Several recent programming languages allow to process XML documents via pat-
tern matching constructs. Such constructs are compiled into automata which carry out
the matching in the document. It seems straightforward to extend this compilation to
automata which directly work on SLT grammars. In this way an efficient XML query
evaluator is obtained because XQueries and XSLTs can be translated to pattern match-
ing statements. In this context, other optimization might become important (e.g. lazy
sequences [11]).

We would like to test how our technique can be used for XML file compression.
Maybe the performance of existing compressors, like XMill, can be further improved
by using BPLEX for the compression of tree structure.

References

1. A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, and A. Pugliese. XQueC:
Pushing queries to compressed XML data. In Proc. VLDB, pages 1065–1068, 2003.

2. P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing and query-
ing large XML repositories. To appear in Proc. ICDE, 2005.

3. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In Proc. VLDB,
pages 141–152, 2003.

4. M. Charikar et.al. Approximating the smallest grammar: Kolmogorov complexity in natural
models. In Proc. STOC’02, pages 792–801. ACM Press, 2002.

5. S. Chen and J. H. Reif. Efficient lossless compression of trees and graphs. In Proc. DCC’96,
page 428. IEEE Computer Society Press, 1996.

6. J. R. Cheney. First-order term compression: techniques and applications. Master’s thesis,
Carnegie Mellon University, August 1998.

7. J. R. Cheney. Personal communication. 2004.
8. J. Cheng and W. Ng. XQzip: Querying compressed xml using structural indexing. In Proc.

EDBT, pages 219–236, 2004.
9. M. F. Fernandez, J. Siméon, B. Choi, A. Marian, and G. Sur. Implementing xquery 1.0: The

galax experience. In Proc. VLDB, pages 1077–1080, 2003.
10. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees (extended abstract).

In Proc. LICS, pages 188–197. IEEE, 2003.
11. V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. XML goes native: Run-time repre-

sentations for Xtatic. To appear in Proc. CC., 2005.
12. R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries. In

Proc. SODA, pages 1–10, 2004.
13. F. Gécseg and M. Steinby. Tree languages. In Handbook of Formal Languages, Volume 3,

chapter 1. Springer-Verlag, 1997.
14. J. Katajainen and E. Mäkinen. Tree compression and optimization with applications. Intern.

J. of Foundations of Comput. Sci., 1:425–447, 1990.
15. J. Lamping. An algorithm for optimal lambda calculus reductions. In Proc. POPL’1990,

pages 16–30. ACM Press, 1990.
16. E. Lehman and A. Shelat. Approximation algorithms for grammar-based compression. In

Proc. SODA, pages 205–212. SIAM Press, 2002.
17. H. Liefke and D. Suciu. XMill: An efficient compressor for XML data. In W. Chen et. al.,

editor, Proc. SIGMOD, pages 153–164. ACM, 2000.
18. M. Lohrey and S. Maneth. Tree automata on compressed trees. Submitted manuscript, 2005.
19. S. Maneth and G. Busatto. Tree transducers and tree compressions. In Proc. FOSSACS’04,

volume 2987 of LNCS, pages 363–377. Springer-Verlag, 2004.

Efficient Memory Representation of XML Documents 215

20. D. Megginson. Imperfect XML: Rants, Raves, Tips, and Tricks ... from an Insider. Addison-
Wesley, 2004.

21. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comp. Syst. Sci.,
66:66–97, 2003.

22. J. Min, M. Park, and C. Chung. XPRESS: A queriable compression for XML data. In Proc.
SIGMOD, pages 122–133. ACM Press, 2003.

23. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-
guage theory. In Proc. Extreme Markup Languages, 2000.

24. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, New York, 1994.
25. W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc.

ESA’94, volume 855 of LNCS, pages 460–470. Springer-Verlag, 1994.
26. W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM 1999, volume

1725 of LNCS, pages 48–65. Springer-Verlag, 1999.
27. W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based

compression. Theoret. Comput. Sci., 302:211–222, 2002.
28. P. M. Tolani and J. R. Hartisa. XGRIND: A query-friendly XML compressor. In Proc. ICDE

2002, pages 225–234. IEEE Computer Society, 2002.
29. B. B. Yao, M. T. Özsu, and N. Khandelwal. XBench benchmark and performance testing of

XML DBMSs. In Proc. ECDE 2004, pages 621–633. IEEE Computer Society, 2004.
30. N. Zhang, V. Kacholia, and M. T. Özsu. A succinct physical storage scheme for efficient

evaluation of path queries in XML. In Proc. ICDE, pages 54–65, 2004.

Appendix

Proof of Theorem 1. Let G = (N, Σ, rhs) with N = {A1, . . . , An} and B =
(Q, Σ, δ, F). We assume that G is reduced, i.e., each nonterminal is used in a (suc-
cessful) derivation of G. We now run the tree automaton B on the right-hand sides of
G. If we do this bottom-up, starting with the right-hand side rhs(An), then for the pa-
rameters in rhs(An) we have to try all possibilities of states, obtaining a finite function
ΨAn from Qk to Q, where k is the rank of An. This function is now used as transition
for An, when running B on right-hand sides rhs(Am) with m < n. In this way, for
each nonterminal of rank k, |Q|k many values of Ψ are computed. Hence, in total at
most sm × |G| computations steps are needed.

This number can be greatly decreased by going top-down in a ‘lazy’ manner through
G, starting with rhs(A1). Note though, that the price for the improvement is the neces-
sity to maintain recursive calls. Consider the run of B on rhs(A1). If B arrives at a non-
terminal Ai (i > 1) of rank k, in states q1, . . . , qk, then we issue a recursive call to com-
pute ΨAi(q1, . . . , ql). Such a call means to substitute qj for yj , 1 ≤ j ≤ k in rhs(Ai)
and then to run B on this tree. During the run further recursive calls may be generated.
Clearly, in the worst case again at most sm × |G| computations are needed. On aver-
age, however, the top-down procedure is far more efficient than the above bottom-up
algorithm. �	

Proof of Theorem 2. Let G1 = ({A1, . . . , Am}, Σ, rhs1) and G2 = ({B1, . . . , Bn},
Σ, rhs2) be SL cf tree grammars. By Savitch’s Theorem (see, e.g., [24]) and the com-
plement closure of PSPACE, it suffices to give a nondeterministic algorithm that tests
inequivalence. Roughly speaking, the algorithm guesses corresponding paths in the

216 G. Busatto, M. Lohrey, and S. Maneth

DAGS d1 and d2, generated by G1 and G2 respectively, and accepts if the labels of
the corresponding nodes are different. The DAG di (for i = 1, 2) is obtained from
Gi by identifying all nodes in a right-hand side that are labeled with the same param-
eter. The key issue is now that a node in di can be represented in polynomial space
w.r.t. the size of Gi. This representation is discussed in the end of [19]. It consists of
a sequence (i1, u1), (i2, u2) . . . , (ip, up) where i1 = 1, i1 < · · · < ip are indices in
{1, . . . , m}, and for 1 ≤ ν < p, uν is a node in rhs1(Aiν) with label Aiν+1 ; moreover
rhs1(Aip)[up] ∈ Σ. The first pair (1, u1) denotes that we start a derivation of G1 with
the right-hand side of A1 and node u1 marked; the next pair (i2, u2) means u1 is labeled
Ai2 and that we apply its production with u2 marked, etc. Since up is terminal, the se-
quence represents a derivation of a node of d1. Given such a sequence h representing a
node u of d1 it is straightforward to construct a sequence h′ representing the i-th child
ui of u in d1 [19]. Note that any such sequence has length < n. The algorithm starts
with two empty sequences. It then generates the sequences h1, h2 representing the root
nodes of d1, d2, respectively. If their labels are different we accept. Otherwise, we guess
a child number i and move down to the i-th child, resulting in h′

1, h
′
2. If the correspond-

ing labels are different we accept, etc. If there is no child number (we are at a leaf) we
reject.

Now let G1, G2 be linear. This means that for any nonterminal A of G1, G2, of
rank k, the tree A(y1, . . . , yk) derives to a tree t over Σ ∪ Yk in which yj occurs
at most once, 1 ≤ j ≤ k. In fact, it is straightforward to change the grammars in
such a way that (1) every yj occurs exactly once in t and (2) the order of the param-
eters in t (going depth-first left-to-right) is y1, . . . , yk. The idea is now to construct
cf string grammars H1, H2 which generate depth-first left-to-right traversals of t1 and
t2, respectively. Let i ∈ {1, 2}. For every nonterminal X of Gi of rank k > 0 let
X0,1, X1,2, . . . , Xk−1,k, Xk,0 be new nonterminals of Hi, and for every σ ∈ Σ of rank
k > 0 let σ0,1, σ1,2, . . . , σk−1,k, σk,0 be new terminals of Hi. Nonterminals and ter-
minals of rank zero are taken over to Hi. The right-hand side of the nonterminal A0,1
is the traversal starting at the root of the right-hand side of A (indicated by the index
0) up to the first parameter y1 in the right-hand side of A (indicated by the parame-
ter 1); The right-hand side of Aν,ν+1 is the traversal starting at the parameter yν in
the right-hand side of A up to the parameter yν+1. Similarly, a terminal symbol g2,3
means that g was entered coming from its second child and was exited by moving to its
third child. It should be clear how to construct the productions of Hi. As an example,
consider the tree grammar production A(y1, y2, y3) → B(g(y1, a, b), h(B(y2, y3)))
and the nonterminal A1,2 of the constructed string grammar; its production is A1,2 →
g1,2 a g2,3 b g3,0 B1,2 h0,1 B0,1. Clearly, t1 = t2 if and only if the string w1 generated
by H1 equals w2 (gen. by H2). Moreover, H1, H2 are SL cf string grammars of poly-
nomial size w.r.t. G1, G2, respectively. By the result of [25], testing w1 = w2 can be
done in polynomial time w.r.t. the sizes of H1, H2. �	

N-Ary Queries by Tree Automata

Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and Sophie Tison

INRIA Futurs, LIFL, Lille, France
www.grappa.univ-lille3.fr/mostrare

Abstract. We investigate n-ary node selection queries in trees by successful runs
of tree automata. We show that run-based n-ary queries capture MSO, contribute
algorithms for enumerating answers of n-ary queries, and study the complexity
of the problem. We investigate the subclass of run-based n-ary queries by unam-
biguous tree automata.

Keywords: XML, databases, information extraction, logic, automata, types,
pattern.

1 Introduction

Node selection is the most widespread database querying problem in the context of
XML. Beside other applications, node selection is basic to XML transformation lan-
guages (Query, XSLT, XDuce, CDuce, tree transducer, etc [13, 7, 15]) and of interest
for Web information extraction (Lixto, Squirrel, etc [1, 12, 5]).

Monadic node selection queries in trees define sets of nodes, while n-ary node selec-
tion queries define sets of n-tuples of nodes. Binary queries, for instance, can be used
to select all pairs of products and prices in XML or HTML documents created from
the database of some company. Monadic queries have attracted most attention so far, in
particular those specified in the W3C standard XPath that is used by XQuery and XSLT,
or similar path based query languages [17]. Monadic Datalog yields attractive alterna-
tives for expressing monadic queries, in particular for visual Web information extraction
[11]. More general n-ary queries have been promoted by XML programming languages
with pattern matching such as XDuce and CDuce [13, 7]. Their patterns or types with
n capture variables specify n-ary node selection queries in trees.

Monadic second-order logic (MSO) is the classical language for defining regular
node selection queries in trees [21]. Every formula of MSO with n free node variables
specifies an n-ary query. MSO is highly expressive, succinct, and robust under many
wishful operations. Its usage, however, remains limited due to its high combined com-
plexity in query answering. Tree automata provide an equally expressive alternative,
according to Thatcher and Wright’s 1968 theorem [21]. They avoid the algorithmic
complexity of MSO at the cost of lower succinctness. N -ary queries are seen as lan-
guages of trees whose nodes are annotated by bit vectors of length n, which may be
recognizable by tree automata or not.

In this paper, we investigate the more recent approach of defining n-ary queries by
successful runs of tree automata [2, 13, 18, 10, 19]. Successful runs annotate all nodes
of a tree by states. Given a selection set of n-tuples of states, a successful run selects

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 217–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 J. Niehren et al.

all those n-tuples of nodes that it annotates in the selection set. We study the two cases
of ranked and unranked trees. In the unranked case, essentially the same representation
formalism has been proposed previously by Berlea and Seidl [2], called n-ary queries
by forest grammars. In the ranked case, run-based n-ary queries have been proposed by
Hosoya and Pierce [13] in terms of pattern automata.

4

book 3

article 1

...

x x′
...

article 2

...

y y′
...

states = {1,2,3,4,x,y,x’,y’,all} final = {4}

book(all∗, 1, 2, all∗) → 3 (all∗, 4, all∗) → 4
3 ε→ 4

article(x, x′, all∗) → 1 article(y, y′, all∗) → 2

all ε→ x | x′ | y | y′ (all∗) → all∗

Fig. 1. Pattern as tree automata; matches correspond to successful runs

N -ary queries by tree pattern are most closely related to run-based queries by tree
automata [13]. This is illustrated by the example in Fig. 1. The nodes of the tree pattern
on the left become states of the automaton on the right. The root node of the pattern
becomes the unique final state. The only selecting n-tuple of automaton states is the
n-tuple of capture variables of the pattern. The rules of the automaton express the se-
mantics of the pattern. They can be inferred compositionally. Matches of the pattern
correspond to successful runs of the automaton.

In this paper, we prove the folk theorem that run-based n-ary queries capture MSO,
to our knowledge for the first time. We then present a deterministic algorithm that can
enumerate all answers of an n-ary query by an automaton A with selection set S ⊆
states(A)n in time O(|S| ∗ |A| ∗ |t|n). The combined complexity of run-based n-ary
queries is thus in deterministic polynomial time for fixed tuple size n. We also prove
that this is not the case if we do not bound the tuple size n.

We then investigate the querying power of unambiguous tree automata. Unambiguity
limits the amount of nondeterminism to at most one successful run per tree, which is
more permissive than imposing bottom-up or top-down determinism. Monadic queries
by unambiguous tree automata are of particular interest for query induction [5]. They
are known to capture the class of monadic MSO-definable queries (since they are the
IBAGs of [18]) in contrast to deterministic tree automata.

For the n-ary case, however, we prove that run-based queries by unambiguous au-
tomata are strictly less expressive than MSO. They capture only finite unions of Carte-
sian closed regular queries. This is the class of n-ary queries that can be defined by
disjunctions of conjunctions of MSO formulas with one free variable each. We can
compute representions of all query answers in time O(n ∗ |S| ∗ |A| ∗ |t|). Emptiness
is thereby decidable in polynomial time even for unbounded tuple size n. Finally, we
show that it is decidable whether an MSO defined query belongs to that restricted class.
We reduce this problem to testing the boundedness of the degree of ambiguity of tree
automata [20].

N-Ary Queries by Tree Automata 219

2 MSO Definable and Regular Queries

We develop our theory of n-ary queries for binary trees which will be sufficient to
deal with unranked trees (see Section 6). This section starts with Thatcher and Wright’s
theorem [21], slightly reformulated in terms of querying rather than recognition.

Let Σ be a finite signature of binary function symbols f and constants a. A binary
tree t ∈ TΣ is a ground term over Σ. A node π of a tree t is a word in {1, 2}∗ that is the
relative address of some subtree starting from the root. We write nodes(t) for the set of
nodes of t. The empty word ε is the root of t. We write π · π′ for the concatenation of
the words π and π′. The node π · 1 of a tree t is the first child of the node π in t, while
π · 2 is its second child. A node is a leaf if it has no child, otherwise it is an inner node.
We will freely identify trees t over Σ with labeling functions of type t : nodes(t) → Σ,
such that for all a, f ∈ Σ, t1, t2 ∈ TΣ , and i · π ∈ {1, 2}∗ (where i is the word 1 or 2) :

a(ε) = a, f(t1, t2)(ε) = f, f(t1, t2)(i · π) = ti(π) if π ∈ nodes(ti)

Definition 1. Let n ∈ N. An n-ary query in binary trees over Σ is a function q that
maps trees t ∈ TΣ to sets of n-tuples of nodes, such that ∀t ∈ TΣ : q(t) ⊆ nodes(t)n.

Simple examples for monadic queries in binary trees over Σ are the functions leaf and
root that map trees t to the sets of their leaves resp. to the singleton {ε}. The binary
query first child relates nodes π to their first child π · 1 if it exists, while the query
next sibl relates first children π · 1 to their next sibling to the right π · 2. As another
example, we can query for all pairs (π, π′) in trees t such that the subtrees of t on below
of π and π′ are equal in structure. This last query can indeed be expressed by RAG’s
[18] but cannot be defined in MSO.

In MSO, binary trees t ∈ TΣ are seen as logical structures, whose domain is the set
nodes(t). Its signature consists of the binary relation symbols first child and next sibl
and the monadic relation symbols labelc for all c ∈ Σ. These symbols are interpreted
by the corresponding node relations of t.

first childt = {(π, π · 1) | π · 1 ∈ nodes(t)} labeltc = {π | t(π) = c}
next siblt = {(π · 1, π · 2) | π · 1 ∈ nodes(t)}

Let x, y, z range over an infinite set of first-order variables and p over an infinite set
of monadic second-order variables. Formulas φ of MSO have the following abstract
syntax, where c ∈ Σ:

φ ::= p(x) | first child(x, y) | next sibl(x, y) | labelc(x) | ¬φ | φ1 ∧ φ2 | ∀x.φ | ∀p.φ

A variable assignment α into a tree t maps first-order variables to nodes of t and second-
order variables to sets of nodes of t. We define the validity of formulas φ in trees t
under variable assignments α in the usual Tarskian manner, and write t, α |= φ in this
case. Formulas φ with n free first-order variables x1, ..., xn define n-ary queries, which
satisfy for all t ∈ TΣ :

qφ(x1,...,xn)(t) = {(α(x1), ..., α(xn)) | t, α |= φ}

220 J. Niehren et al.

Definition 2. An n-ary query is MSO definable if it is equal to some qφ(x1,...,xn).

An equivalent way of defining n-ary queries in MSO is by formulas φ with n free
second-order variables p1, ..., pn. For all t ∈ TΣ let:

qφ(p1,...,pn)(t) =
⋃

t,α|=φ

α(p1) × . . . × α(pn)

Lemma 1. An n-ary query is MSO definable iff it is equal to some qφ(p1,...,pn).

A tree automaton A for binary trees [9] over signature Σ consists of two finite sets
final(A) ⊆ states(A) and a set rules(A) with elements of the form a → p or f(p1, p2)
→ p where f ∈ Σ is a binary function symbol, a ∈ Σ a constant, and p, p1, p2 ∈
states(A).

A run r of a tree automaton A on a tree t is a mapping r : nodes(t) → states(A)
that associates states to nodes of t according to the rules of A. Equivalently, we can see
runs as trees labeled in states(A) such that nodes(r) = nodes(t). A run is successful if
it labels the root of the tree by a final state, i.e. if r(ε) ∈ final(A). We write runsA(t)
for the set of all runs of A on t and succ runsA(t) for the subset of successful runs. A
tree t is accepted by a tree automaton A if it permits a successful run by A. The tree
language L(A) recognized by an automaton A is the set of trees t accepted by A. A
tree language is regular if it is recognized by some tree automaton.

Queries can be viewed as tree languages. This perspective is close to that of
Thatcher and Wright, who view models t, α of MSO formulas as trees t annotated
by bit vectors encoding α. Sets of models become languages of annotated trees.

Let B = {0, 1} be the set of Booleans. A Boolean tree β is a binary tree whose
nodes are labeled by Booleans (here, Booleans serve both as binary function symbols
and as constants). As an auxilary notion for formalising compositions of trees with their
annotations, we define products of functions with the same domain. The product of m
functions gi : C → Di is the function g1 ∗ . . . ∗ gm : C → D1 × . . . × Dm such that

(g1 ∗ . . . ∗ gm)(c) = (g1(c), . . . , gm(c)) for all c ∈ C

Considering trees as functions, the product t1 ∗ . . . ∗ tm of m trees with the same
domain (but possibly different signatures) is the tree whose labeling function is the
product of labeling functions of t1, . . ., tn. A language L of annotated trees over Σ×Bn

corresponds to the following n-ary query:

qL(t) ={(π1, . . . , πn) | ∃β1, . . . , βn, t∗β1∗. . .∗βn ∈ L, β1(π1) = . . . = βn(πn) = 1}

Such languages identify queries uniquely, but conversely, the same query may be rep-
resented by many different languages.

Definition 3. An n-ary query in trees over Σ is regular iff it is equal to qL(A) for some
tree automaton A over Σ × Bn.

Theorem 1. ([21]). An n-ary query in trees is MSO definable iff it is regular.

N-Ary Queries by Tree Automata 221

MSO formulas φ(p1, . . . , pn) define languages of trees over Σ × Bn representing the
query qφ(p1,...,pn). Different formulas may define different languages for the same
query. Which formula or language to choose to define n-ary queries will turn out to
be crucial for what follows.

Given sets S′ ⊆ S, we define a characteristic function cS′ : S → B so that cS′(s) ↔
s ∈ S′ for all s ∈ S. Every subset P ⊆ nodes(t) defines a characteristic function cP

that we identified with the Boolean trees whose labeling function is cP . This tree has
the same nodes as t. Formulas φ(p1, . . . , pn) define a language of annotated trees over
the signature Σ ×Bn: Lφ(p1,...,pn) = {t ∗ cα(p1) ∗ . . . ∗ cα(pn) | t, α |= φ(p1, . . . , pn)}.

Lemma 2. An MSO-formula and the language of annotated trees encoding its models
define the same query: qφ(p1,...,pn) = qLφ(p1,...,pn) .

Similarly, we can define Lφ(x1,...,xn) by considering all first-order variables xi as sin-
gleton valued second-order variables. We call trees t ∗ β1 ∗ . . . ∗ βn ∈ Lφ(x1,...,xn)
canonical, since each of them identifies precisely one tuple of qφ(x1,...,xn)(t), i.e., all
sets β−1

i (1) are singletons for 1 ≤ i ≤ n.

3 Run-Based Queries

Boolean annotations of trees are not necessary to define queries by trees automata. Al-
ternatively, one can use successful runs of tree automata to annotate trees by states, and
then select from these state annotations. The idea is that automata states are properties
of nodes, which can be verified for nodes by successful runs.

An existential run-based n-ary query q∃A,S in binary trees over Σ is given by a tree
automaton A over Σ and a set S ⊆ states(A)n of so called selection tuples. It selects
all those tuples of nodes (π1, . . . , πn) in a tree t that are assigned to a selection tuple by
some successful run of A on t:

q∃A,S(t) = {(π1, . . . , πn) | ∃r ∈ succ runsA(t), (r(π1), . . . , r(πn)) ∈ S}

Existential run-based n-ary queries were proposed by Neven and Van den Bussche [18]
in the framework of attribute grammars (these can be seen as tree automata whose
states are vectors of attribute values). Their BAG’s correspond to our monadic case,
while their RAG’s are more expressive than our n-ary case. Existential run-based n-ary
queries in binary trees (with a first match semantics) were proposed by Hosoya and
Pierce [13]1. Seidl and Berlea [2] define run-based n-ary queries for unranked trees (by
forest grammars), and present an query answering algorithm for the binary case.

It is known from [18] that monadic existential run-based queries capture the class of
monadic MSO definable queries. The analogous result for n-ary existential run-based
queries might be expected. It holds indeed as we will prove in Theorem 2.

An example is given in Fig. 2. We consider the binary query that selects pairs of a-
leave and next-sibling b-leaves, over the signature Σ = {f, a, b}. We define this query
by the automaton A2 with states(A2) = {1, 2, ∗, y} that will produce successful runs

1 They use successful runs implicitly when defining the semantics of their pattern automata.
Node selection is defined by pattern variables that are kept distinct from automata states.

222 J. Niehren et al.

f,y

f,y

a,1 b,2

f,*

a,* b,*

f,y

f,*

a,* b,*

f,y

a,1 b,2

Fig. 2. Selecting pairs of a-leaves and next-sibling b-leaves: q∃
A2,{(a,b)}

of the form of Figure 2. The query is represented by q∃A2,{(1,2)}. The automaton A2 will
assign state 1 to selected a-leaves and state 2 to the corresponding next-sibling b-leaves.
The final state y will be assigned to all common ancestors of the selected pair of leaves:
final(A2) = {y}. State ∗ can be assigned to all other nodes. Every successful run of
the automaton A2 will select a single pair of nodes. The following rules verify these
properties:

a→1 b→2 f(∗, ∗)→∗ f(1, 2)→y
a→∗ b→∗ f(y, ∗)→y f(∗, y)→y

This example illustrates the trick: different selected tuples are selected in different runs
so that their components cannot be mixed up.

Theorem 2. Existential run-based n-ary queries capture precisely the class of MSO-
definable n-ary queries.

Sketch of proof. On the one hand, we can easily describe successful runs of tree au-
tomata in MSO. Existential run-based queries are thus definable in MSO. Let us prove
now that every regular query is equal to some existential run-based query. Let qL(A)
be a regular n-ary query for some tree automaton A over Σ × Bn. We compute an au-
tomaton proj(A) over Σ by projecting Booleans from the labels into states. Let states
(proj(A)) = states(A)×Bn, final(proj(A)) = final(A)×Bn. The rules of proj(A)
are generated by the following schema for all a, f ∈ Σ, p1, p2, p ∈ states(A) and
b, bi, b

1
i , b

2
i ∈ B where 1 ≤ i ≤ n:

(a, b1, ..., bn)→p ∈ rules(A)
a→(p, b1, ..., bn) ∈ rules(proj(A))

(f, b1, ..., bn)(p1, p2)→q ∈ rules(A)
f((p1, b

1
1, ...b

n
1), (p2, b

1
2, ..., b

n
2))→(p, b1, ..., bn) ∈ rules(proj(A))

We define the selection set S ⊆ states(proj(A))n by S = Q1 × ... × Qn such that
for all 1 ≤ i ≤ n: Qi = {(q, b1, ..., bn) ∈ states(proj(A)) | bi = 1}. It remains to
prove that qL(A) = q∃proj(A),S . This follows from that for any term t ∗ β1 ∗ ... ∗ βn

over Σ × Bn: runsproj(A)(t) = {r ∗ β1 ∗ ... ∗ βn | r ∈ runsA(t ∗ β1 ∗ ... ∗ βn)} and
succ runsproj(A)(t) = {r ∗ β1 ∗ ... ∗ βn | r ∈ succ runsA(t ∗ β1 ∗ ... ∗ βn)}.

Universal run-based n-ary queries quantify universally rather than existentially over
successful runs. Universal n-ary queries were first introduced by Neven and Van den
Bussche [18] in the framework of attribute grammars (universal BAGs and RAGs). In
the monadic case, they are used by Frick, Grohe, and Koch [10].

q∀A,S(t) = {(π1, . . . , πn) | ∀r ∈ succ runsA(t), (r(π1), . . . , r(πn)) ∈ S}

N-Ary Queries by Tree Automata 223

Theorem 3. Existential and universal queries have the same expressiveness.

This theorem has been proved for the monadic case [18] on basis of the two phase
querying answering algorithm, which fails for the n-ary case. As we show here, the
theorem generalizes to the n-ary case nevertheless.

Proof. We define the complement qc of a query q such that for all trees t ∈ TΣ ,
qc(t) = nodes(t)n \ q(t). Existential queries are regular and thus MSO-definable, so
their complements are MSO-definable, thus regular, and thus definable by existential
run-based queries, too (Theorems 1 and 2). Furthermore, the definitions of existential
and universal queries are dual modulo complementation, i.e., for every tree automaton
A with selection tuples S ⊆ states(A)n, q∀A,S = (q∃A,states(A)n\S)c.

As complements of existential queries are existential, it follows that universal
queries are existential too. Vice versa, let q be an existential query. So qc is equal to
q∃A,S for some A, S. Hence, q = q∀A,states(A)n\S , i.e., q can be represented by a univer-
sal query.

4 Query Answering

We consider the problems of enumerating all solutions or up to k solutions of run-based
queries in a given tree t.

Proposition 1. We can compute an existential run-based n-ary query q∃A,S(t) in deter-
ministic time O(|S| ∗ |A| ∗ |t|n) and hence in polynomial time for fixed n.

Proof. The naive algorithm were to guess an n-tuple of nodes and test it for membership
to q∃A,S(t). By a deterministic algorithm this requires time O(|S| ∗ |A| ∗ |t|n+1), so
we need less naive algorithm. The idea of our algorithm is to guess a selection tuple
(p1, . . . , pn) ∈ S and a tuple (π1, . . . , πn−1) ∈ nodes(t)n−1 and to compute the last
remaining node by answering a monadic query depending on the previous choices. Let
t
p1,...,pn−1
π1,...,πn−1 be the tree over Σ ∪ (Σ×states(A)) obtained from t by annotating the node

labels of πi by pi for all 1 ≤ i ≤ n − 1.
Let B(A) be the tree automaton with signature Σ∪(Σ×states(A)) that operates like

A except that maps all annotated nodes to their annotation. We define states(B(A)) as
states(A), final(B(A)) as final(A) and rules(B(A)) by:

rules(B(A)) = rules(A) ∪ {(a, p)→p | a→p ∈ rules(A)}
∪ {(f, p)(p1, p2)→p | f(p1, p2)→p ∈ rules(A)}

We can now compute q∃A,S(t) on basis of the following representation:

q∃A,S(t) = {(π1, ..., πn−1, π) | (p1, . . . , pn) ∈ S, π ∈ q∃B(A),{pn}(t
p1,...,pn−1
π1,...,πn−1

)}

We have to answer |S| ∗ |t|n−1 monadic queries of the form q∃B(A),{pn}(t
p1,...,pn−1
π1,...,πn−1)

each of which requires linear time O(|B(A)| ∗ |t|). Note that the size of |B(A)| is 2|A|.
Thus, the overall deterministic time complexity is O(|S| ∗ |A| ∗ |t|n).

224 J. Niehren et al.

The duality of existential and universal queries q∀A,S = (q∃A,states(A)n\S)c yields an
analogous polynomial time complexity bound for answering universal n-ary queries
q∀A,S(t) with fixed tuple size n by O((|states(A)|n − |S|) ∗ |A| ∗ |t|n).

Proposition 2. The emptiness problem of n-ary queries q∃A,S(t) = ∅ is NP-complete
for unbounded n, i.e., if n belongs to the input of the problem, as well as the automaton
A, the selection set S ⊆ states(A), and the tree t.

Proof. The problem is clearly in NP: it suffices to guess a labeling of t by states of A
and a selection tuple s from S; one can then check in O(|A| ∗ |t|) whether this labeling
is a successful run and that each component of s labels at least one node in this run.
Now, we give a polynomial reduction of CNF satisfiability into our problem. The idea
is to associate with a given CNF formula φ a word w (which can be viewed as a unary
tree) over the alphabet {x, a, n, p} of the form xl11l12...l1n...xlk1lk2...lkn, where n is
the number of clauses of φ and k the number of Boolean variables. A part xli1...lin
means that the i-th variable appears positively in the j-th clause if lij = p, negatively
if lij = n and does not appear if lij = a. Then, we give the following rules for an
automaton A with states {0, 1} ∪ {sb

i , u
b
i | b ∈ {0, 1}, 1 ≤ i ≤ n} :

x → 0 x → 1 x() → 0 x() → 1
a(b) → ub

1 a(sb
j) → ub

j+1 a(ub
j) → ub

j+1
n(0) → s0

1 n(s0
j) → s0

j+1 n(u0
j) → s0

j+1
n(1) → u1

1 n(s1
j) → u1

j+1 n(u1
j) → u1

j+1
p(0) → u0

1 p(s0
j) → u0

j+1 p(u0
j) → u0

j+1
p(1) → s1

1 p(s1
j) → s1

j+1 p(u1
j) → s1

j+1

where “ ” denotes any state, b ∈ {0, 1} and 1 ≤ j ≤ n. We accept all runs. Then
the selection set is defined as S1×...×Sn, with Si = {sb

i | 0 ≤ b ≤ 1}. As the size
of the word is (n + 1) ∗ k and the size of the automaton is in O(n), the reduction is
polynomial. There is a correspondence between runs of the automaton on w and truth
assignments, and a run will be selecting iff the corresponding assignment satisfies all
the clauses. The idea is to assign true (1) or false (0) value to a variable (represented
by the x symbol) and to select all following clauses satisfied by the assignment. For
example, if we consider ψ = (x1 ∨¬x2) ∧ (x1 ∨ x3) ∧ x2, then x p p a x n a p x a p a
is its encoding, and 1 s1

1 s1
2 u1

3 1 u1
1 u1

2 s1
3 1 u1

1 s1
2 u1

3 is a run selecting some n-tuples.
So, ψ is satisfiable if and only if q∃A,S(w) �= ∅.

5 Queries by Unambiguous Tree Automata

We next study run-based n-ary queries by unambiguous tree automata. This is a sub-
class of tree automata with a restricted amount of nondeterminism.

A tree automaton A is (bottom-up) deterministic if no two of its rules have the same
left hand sides. It is unambiguous if no tree permits more than one successful run by the
automaton. Deterministic tree automata are clearly unambiguous, while unambiguous
automata may be nondeterministic; they have multiple runs on the same tree of which
at most one is successful.

N-Ary Queries by Tree Automata 225

f, y

f, y a, ∗

a, 1 a, ∗

f, ∗

f, ∗ a, ∗

a, ∗ a, ∗

Fig. 3. Selecting left most leaves:q∃
A3,{1}. Only the left run of A3 is successful.

Definition 4. We call an n-ary query unambiguous (resp. deterministic) if it has the
form q∃A,S for some unambiguous (resp. deterministic) tree automaton A.

Nondeterministic tree automata can recognize all regular language, but they an not de-
fine all MSO-definable queries in run-based fashion. A simple counter example is the
monadic query that selects the left-most leaf in binary trees over Σ = {f, a}. It can be
defined in run-based fashion as q∃A3

, {1} by automaton A3 which licences the runs in
Fig. 3. Successful runs of A3 label left most leaves by 1 and all others by ∗. They map
ancestors of left most leaves to y and all other inner nodes to ∗. The final states are y
and 1. This is done by the following states and rules:

states(A3) = {1, ∗, y}
final(A3) = {1, y}

a → 1 f(1, ∗) → y f(y, ∗) → y
a → ∗ f(∗, ∗) → ∗

Automaton A3 is not bottom-up deterministic, but unambiguous. Nondeterminism is
needed in order to distinguish left most leaves from all others. When processing bottom-
up, the automaton has to inspect the context, in order to decide whether a leaf is left-
most. So it needs to guess this property for all leaves and then verify the correctness of
the guesses later on. Correctness is proved by successful runs.

Proposition 3. ([18, 3]) All monadic MSO-definable queries are unambiguous.

Proof. We present a sketch of a proof based on Thatcher and Wright’s theorem plus
projection. Let φ(x) be MSO formula with one free variable x, which defines a monadic
query in binary trees over Σ. We can express the same query by the following MSO
formula with one free set variable p:

greatestφ(p) = ∀x.p(x) ↔ φ(x)

This formula requires to collect all possible values for x satisfying φ in p, so that p de-
notes the greatest of set containing nodes selected by φ(x). By Thatcher and Wright’s
Theorem 1 there exists a bottom-up deterministic tree automaton A that recognizes
the tree language Lgreatestφ(p), which contains all Σ × B trees encoding models of
greatestφ(p). The projection automaton proj(A) of A to Σ is unambiguous. To see
this, note that the language of A is functional: for every Σ-tree t there exists at most
one Boolean tree β such that t × β ∈ L(A). This holds since the value of β is deter-
mined by the result of the query by φ(x) on t. By determinism of A there is at most
one successful run r ∈ succ runsA(t × β). Hence, there is at most one successful run
r × β ∈ succ runsproj(A)(t). Furthermore qL(A) = qproj(A),states(A)×{1}.

226 J. Niehren et al.

Proposition 4. Every deterministic monadic MSO defined query can be transformed
effectively into a run-based query q∃B,S by a deterministic automaton B.

Proof. We proceed as in the proof of Proposition 3. Let A be a deterministic automaton
recognizing Lgreatestφ(p) and proj(A) is Σ-projection. We know that proj(A) is unam-
biguous and that it can express the query by φ(x). Furthermore, it can be checked that
this automaton is deterministic after deleting unproductive states iff the query is deter-
ministic.

5.1 Efficiency and Expressiveness

We call an n-ary query Cartesian closed if it is a Cartesian product of monadic queries.
If A is unambiguous then we can represent n-ary queries q∃A,S as a finite unions of
Cartesian closed queries:

q∃A,S =
⋃

(p1,...,pn)∈S

q∃A,{p1} × . . . × q∃A,{pn}

This holds, since all components of a tuple will be selected in the same successful run.
We can use this representation of the answer set to enumerate answers of unambiguous
queries on demand.

Proposition 5. The emptyness probem q∃A,S(t) = ∅ can be solved in time O(n ∗ |S| ∗
|A| ∗ |t|).

Proof. We compute the above representation of q∃A,S(t). For all (p1, . . . , pn) ∈ S we
compute q∃A,{pi} and check whether at least one of them is empty. We thus have to
compute O(n ∗ |S|) answers to monadic queries each of them in time O(|A| ∗ |t|).
Alltogether this requires time O(n ∗ |S| ∗ |A| ∗ |t|).

We can thus decide the emptyness of unambiguous n-ary queries in polynomial time
even for unbounded n. This is in contrast to more general run-based n-ary queries by
tree automata (Proposition 2).

Theorem 4. Unambiguous n-ary queries capture the class of finite unions of Cartesian
closed regular n-ary queries.

Proof. We have already seen one direction. Next note that Cartesian closed regular
queries are unambiguous. Indeed regular monadic queries are unambiguous by Propo-
sition 3 and Cartesian products of unambiguous queries are clearly unambiguous too.
It remains to prove that finite unions of unambiguous queries are unambiguous. Let
q = ∪k

j=1q
∃
Ai,Si

be such a union. Let us first assume that all Ai are strictly unambiguous
in that they permit precisely one successful run per tree. We then define an unambiguous
automaton A as the product of the Ai’s such that final(A) = final(A1)×. . .×final(Ak).
Let proji(p) be the i−th component of a state p of A. We let the selection set S to be
the set of all tuples (p1, . . . , pn) ∈ states(A)n for which there exists i ∈ {1, . . . , k}
such that (proji(p1), . . . , proji(pn)) ∈ Si. Thus, q = q∃A,S .

N-Ary Queries by Tree Automata 227

Finally, note that any unambiguous tree automata Ai can be made strictly unam-
biguous: let Āi be the deterministic automaton accepting the trees not accepted by Ai;
assuming Ai and Āi have disjoint sets of states, we define A′

i as Ai∪Āi. This automaton
A′

i is strictly unambiguous and moreover, q∃A′
i,Si

= q∃Ai,Si
.

Proposition 6. A query is unambiguous iff it can be expressed by a Boolean combina-
tion (disjunction, conjunction and negation) of monadic MSO formulas.

Proof. Using that regular and MSO-definable monadic queries coincide, by Theorem
4, an unambiguous n-ary query can be represented as a finite disjunction of formulas of
the form φ1(x1)∧. . .∧φn(xn), the φi’s being monadic MSO formulas. Conversely, any
Boolean combination of monadic MSO formulas can be turned into a finite disjunction
of conjunction of monadic MSO formulas, and thus be represented as a finite union of
Cartesian products of monadic regular queries.

5.2 Faithful MSO Formulas

Unambiguity of a query will rely on existence of a faithful formula defining it, where
faithful formulae are defined by:

Definition 5. Let φ be a MSO formula with n free second-order variables p1, ..., pn.

– φ is k−faithful if supt∈TΣ
|{(α(p1), ..., α(pn)) | t, α |= φ}| ≤ k.

– φ is faithful if it is k−faithful for some k.

Proposition 7. φ is faithful iff it is equivalent to a finite disjunction of 1−faithful for-
mulae.

Proof. More precisely, we prove that φ is k−faithful iff it is a finite disjunction of k
1−faithful formulae. A finite disjunction of k 1−faithful formulae is clearly k−faithful.
Conversely let φ be a k−faithful formula. First, let us recall that the lexicographic order-
ing over n−uples is MSO definable by lex(x1,xn, y1, ..., yn) =def ∨n

k=1(∧k−1
i=1 xi =

yi ∧ xk < yk)
Now, let us define a total ordering on n−uples of sets of nodes by

le(p1, ..., pn, q1, ...qn) =def ∧n
i=1pi = qi ∨ ∃x1, ..., xn ∧n

i=1 pi(xi) ∧ ∨n
i=1¬qi(xi) ∧

∀y1, ..., yn lex(y1,yn, x1, ..., xn) → ∧n
i=1[pi(yi) ↔ ∧n

i=1qi(yi)].

Last, we define a family of 1−faithful formulae φi, 1 ≤ i ≤ k by:

φi(p1, ..., pn) =def φ(p1, ..., pn) ∧ ∧i−1
j=1¬φj(p1, ..., pn) ∧

∀q1, ..., qn(φ(q1, ..., qn) ∧ (∧i−1
j=1¬φj(q1, ..., qn)) → le(p1, ..., pn, q1, ...qn))

It is easy to check that the φi are 1−faithful and, as φ is k−faithful, φ is equivalent
to ∨k

i=1φi.

228 J. Niehren et al.

Proposition 8. A regular n-ary query is

1. Cartesian closed iff it can be defined by some 1−faithful formula.
2. unambiguous iff it can be defined by some faithful formula.

Proof. Let q a regular Cartesian closed query defined by φ. Let us define φi(x) by
∃x1, ..., xi−1, xi+1, ..., xn, φ(x1, ..., xi−1, x, xi+1, ..., xn). Then q can be defined by
the 1−faithful formula ∀x ∧n

i=1 (pi(x) ↔ φi(x))
Conversely, if q is defined by a 1−faithful formula, q is clearly Cartesian closed.
The rest of the proposition is then directly obtained by Proposition 7 and Theorem

4. Furthermore, as proofs of Proposition 7 and Theorem 4 are effective, given a query
q defined by a formula φ and knowing that φ is faithful, we can effectively construct
(A, S) computing the query q, with A unambiguous.

5.3 Deciding Unambiguity of Queries

We show in this section that one can decide whether a regular n-ary query is unam-
biguous, or equivalently by Theorem 4 whether the query is a finite union of Cartesian
closed regular queries. Note that this property is close to independence of variables in
constraint databases [14, 8]; however here we consider an infinite collection of finite
tree structures, instead of one fixed structure.

Note that deciding whether a regular query is Cartesian closed is straightforward as it
can be defined in MSO. Similarly by using construction of Proposition 7, we can decide
k−faithfulness of a MSO formula, for a given k. However, deciding whether a regular
query is a finite union of Cartesian closed regular queries requires more sophisticated
techniques. First, given a query q, we construct a formula which is faithful iff q is
unambiguous. Second, we prove how to decide faithfulness of a formula.

Let q a query defined by the (MSO) formula φq(x1, . . . , xn). We will define φmax
q , a

MSO formula defining q with good compactness properties: it will be faithful as soon
as q can be defined by a faithful formula. Roughly speaking, given a tree t, t, α will
model φmax

q iff it is correct (α(p1) ∗ ... ∗ α(pn) is included in q(t)) and maximal (no
node can be added to one α(pi) while keeping correct). φmax

q (p1, . . . , pn) will be the
following formula:

∀x1 . . .∀xn (∧ipi(xi)) → φq(x1, . . . , xn)
∧i∀xi ¬pi(xi) → ∃x1 . . .∃xi−1∃xi+1 . . .∃xn ∧j �=i pj(xj) ∧ ¬φq(x1, . . . , xn)

Lemma 3. A query q is a finite union of Cartesian closed queries iff φmax
q is faithful.

Proof. By Proposition 8 we just have to prove that if the query q is a finite union of
Cartesian closed queries, then φmax

q is faithful. Let q be a finite union of Cartesian
closed queries. There exists some natural number k s.t. q = ∪k

j=1q
1
j × . . .× qn

j , each qi
j

being a monadic query.
Let t be a tree from TΣ . For each 1 ≤ i ≤ n, we define ≡i, an equivalence relation

on nodes(t) by π≡iπ
′ if for all (π1, ..., πi−1, πi+1, ..., πn), (π1, ..., πi−1, π, πi+1, ...,

πn) belongs to q(t) iff (π1, ..., πi−1, π
′, πi+1, ..., πn) belongs to q(t). This just means

that π and π′ are, in some sense, interchangeable in i-th position w.r.t. q. Then, let π

N-Ary Queries by Tree Automata 229

and π′ be two nodes. If for each 1 ≤ j ≤ k, π belongs to qi
j(t) iff π′ belongs to qi

j(t),
then π ≡i π′. This implies that ≡i is of finite index bounded by 2k.

Now let t and α such that t, α |= φmax
q . Let π be one node selected in the i-th

position, i.e. belonging to α(pi). Then, by maximality of φmax
q , if π ≡i π′ then π′

belongs also to α(pi). This implies that α(pi) is a union of equivalence classes for ≡i.
So, the cardinality of the set {(α(p1), ..., α(pn)) | t, α |= φmax

q } is upper-bounded

by 2n.2k

.
Let us note that if φmax

q is faithful as soon there is a faithful formula defining q, it
is non necessarly the “most faithful” one or the “less redundant” one. Indeed let us
suppose that q is defined by ∨2

i=1ri(x1)∧ si(x2) for some ri, si. q is clearly 2−faithful
whereas in φmax

q , valuation associated with (∧ri,∨si) or (∨ri,∧si) would be added.

Now, let q be a regular query (given by a tree automaton or a formula): first we
construct φmax

q and A a deterministic automaton recognizing the tree language over Σ×
Bn Lφmax

q (p1,...,pn). Then, we compute an automaton proj(A) as in Theorem 2. Clearly
the number of accepting runs on t in proj(A) is the cardinal of {(α(p1), ..., α(pn)) | t, α
|= φmax

q }.
A tree automaton A is said k-ambiguous if for any tree t ∈ TΣ , there exists at most

k accepting runs for t in A. The degree of ambiguity of an automaton A is bounded if
A is k-ambiguous for some natural number k.

So, by what precedes, q is unambiguous iff the degree of ambiguity of proj(A) is
bounded, which can be decided.

Theorem 5 (Seidl [20]). Whether the degree of ambiguity of a tree automaton is
bounded is decidable. Furthermore its degree of ambiguity can be computed.

As all contructions are effective, it provides a procedure for deciding ambiguity of q.
Furthermore, this gives a way to compute an unambiguous automaton computing q.
Indeed, by proposition 8, as soon as we know that φmax

q is faithful, we can compute,
from an automaton or a formula defining q, (B, S) with B an unambiguous automaton
s.t. q = q∃B,S .

Theorem 6. Ambiguity of a query q is decidable. Furthermore, when q is unambiguous,
(B, S) with B an unambiguous automaton s.t. q = q∃B,S can effectively be constructed.

Note that the construction of (B, S) could also be done by eliminating directly am-
biguity from proj(A) defined above. Indeed, let B be an automaton whose ambiguity
degree is at most k. We can build an automaton Bk simulating B on trees which have at
least k accepting runs in B (by making the product of k copies of B and checking the
k runs are different); as the degree of B is k, Bk will be unambiguous. Then, you can
build an unambiguous automaton Bk−1 simulating B on trees which have exactly k−1
accepting runs in B, by a similar construction and checking that the tree is not accepted
by Bk. By iterating the construction, you can build (Bi, Si)k

i=1, with Bi unambiguous
automata simulating B on trees which have exactly i accepting runs in B: q is the union
of the corresponding queries and by using effective closure under union, you can then
build an unambiguous automaton for q.

230 J. Niehren et al.

6 Querying Unranked Trees

Our results carry over to automata for unranked trees, in particular to the unranked
tree automata (UTAs) of Brüggemann, Klein, and Wood [4], where horizontal tree lan-
guages are represented by finite word automata.

An unranked tree is built from a set of constants a, b ∈ Σ by the abstract syntax
t ::= a(t1, . . . , tn) where n ≥ 0. A UTA H over Σ consists of a set states(H), a set
final(H) ⊆ states(H), and a set rules(H) of rules of the form a(A) → p where A is
finite word automaton with alphabet states(H) and p ∈ states(H). Runs of UTAs H
on unranked trees t are functions r : nodes(t) → states(H) defined as

t = a(t1, . . . , tn) ∀1 ≤ i ≤ n : ri ∈ runsH(ti)
a(A) → p ∈ rules(H) r1(ε) . . . rn(ε) ∈ L(A)

p(r1, . . . , rn) ∈ runsH(t)

Queries for the class of unranked trees over Σ are defined as before. The notion of
unambiguity (that is the existence of at most one run for a tree) carries over literally to
UTAs (in contrast to bottom-up determinism [16]). The same holds for the notions of
run-based queries by UTAs.

Theorem 7. Existential and universal n-ary queries by runs of unranked tree automata
capture MSO over unranked trees (comprising the next sibl-relation). Run-based
queries by unambiguous UTAs capture the class of finite unions of Cartesian closed
queries. This property is decidable.

We only give a sketch of the proof. The main idea is to convert queries by UTAs into
queries by stepwise tree automata [6] for which all results apply. Stepwise tree automata
over an unranked signature Σ are tree automata for binary trees with constants in Σ and
a single binary function symbol @. Stepwise tree automata can be understood as tree au-
tomata that operate on Currified binary encodings of unranked trees. The Currification
of a(b, c(d, e, f), g) for instance is the binary tree a@b@(c@d@e@f)@g .

Stepwise tree automata were proved to have two nice properties that yield a simple
proof of the theorem. 1) N-ary queries by UTAs can be translated to n-ary queries by
stepwise automata in linear time, and conversely in polynomial time. The back and forth
translations preserve unambiguity. 2) All presented results on run-based n-ary queries
for binary trees apply to stepwise tree automata.

Acknowledgements. Thanks to the anonymous referees for the reference to L. Libkin’s
work [14] and acknowledge discussions with F. Neven, W. Martens, and T. Schwentick.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with lixto. In
28th International Conference on Very Large Data Bases, pages 119–128, 2001.

2. A. Berlea and H. Seidl. Binary queries for document trees. Nordic Journal of Computing,
11(1):41–71, 2004.

N-Ary Queries by Tree Automata 231

3. R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic second
order logic and by attribute grammars. Journal of Comput. and Syst. Sci., 61(1):1–50, 2000.

4. A. Bruggemann-Klein, D. Wood, and M. Murata. Regular tree and regular hedge languages
over unranked alphabets: Version 1, Apr. 07 2001.

5. J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducer from completely
annotated examples. In 7th International Colloquium on Grammatical Inference, volume
3264 of Lecture Notes in Artificial Intelligence, pages 91–102. Springer Verlag, 2004.

6. J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise tree automata.
In 19th International Conference on Rewriting Techniques and Applications, volume 3091
of Lecture Notes in Computer Science, pages 105 – 118. Springer Verlag, 2004.

7. G. Castagna. Patterns and types for querying XML. In 10th International Symposium on
Database Programming Languages, Lecture Notes in Computer Science. Springer Verlag,
Aug. 2005.

8. J. Chomicki, D. Q. Goldin, and G. M. Kuper. Variable independence and aggregation closure.
In ACM Conference on Principle of Databases, pages 40–48, 1996.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications. Available on: http://www.grappa.univ-
lille3.fr/tata, 1997.

10. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees. In 18th IEEE
Symposium on Logic in Computer Science, pages 188–197, 2003.

11. G. Gottlob and C. Koch. Monadic queries over tree-structured data. In Proceedings of the
17th LICS, Lecture Notes in Computer Science, pages 189–202, Copenhagen, 2002.

12. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The Lixto data extraction
project - back and forth between theory and practice. In ACM Symposium on Principles of
Database Systems. ACM-Press, 2004.

13. H. Hosoya and B. Pierce. Regular expression pattern matching for xml. Journal of Functional
Programming, 6(13):961–1004, 2003.

14. L. Libkin. Variable independence for first-order definable constraints. ACM Transactions on
Computational Logics, 4(4):431–451, 2003.

15. S. Maneth, A. Berlea, T. Perst, and H. Seidl. Xml type checking with macro tree transducers.
In 24th ACM Symposium on Principles of Database Systems, pages 283–294, New York, NY,
USA, 2005. ACM-Press.

16. W. Martens and J. Niehren. Minimizing tree automata for unranked trees. In 10th Interna-
tional Symposium on Database Programming Languages, Lecture Notes in Computer Sci-
ence. Springer Verlag, Aug. 2005.

17. M. Marx. Conditional XPath, the first order complete XPath dialect. In Proceedings of the
symposium on Principles of database systems, pages 13–22, 2004.

18. F. Neven and J. V. D. Bussche. Expressiveness of structured document query languages based
on attribute grammars. Journal of the ACM, 49(1):56–100, 2002.

19. F. Neven and T. Schwentick. Query automata over finite trees. Theoretical Computer Science,
275(1-2):633–674, 2002.

20. H. Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527–542, 1989.

21. J. W. Thatcher and J. B. Wright. Generalized finite automata with an application to a decision
problem of second-order logic. Mathematical System Theory, 2:57–82, 1968.

Minimizing Tree Automata for Unranked Trees
[Extended Abstract]

Wim Martens1,� and Joachim Niehren2

1 Hasselt University and Transnational University of Limburg,
Agoralaan, gebouw D, B-3590 Diepenbeek, Belgium

wim.martens@uhasselt.be
2 INRIA Futurs, LIFL, Mostrare project, Lille, France

http://www.grappa.univ-lille3.fr/mostrare

Abstract. Automata for unranked trees form a foundation for XML
schemas, querying and pattern languages. We study the problem of effi-
ciently minimizing such automata. We start with the unranked tree au-
tomata (UTAs) that are standard in database theory, assuming bottom-
up determinism and that horizontal recursion is represented by deter-
ministic finite automata. We show that minimal UTAs in that class are
not unique and that minimization is np-hard. We then study more re-
cent automata classes that do allow for polynomial time minimization.
Among those, we show that bottom-up deterministic stepwise tree au-
tomata yield the most succinct representations.

1 Introduction

Finite automata for unranked trees constitute the theoretical basis for XML
schema languages [16] and are used in numerous areas of XML-related research,
such as path and pattern languages [17, 22] and XML querying [7, 18]. Research
on automata minimization therefore contributes to each of those fields.

In the context of XML schema languages, minimized schemas would im-
prove the running time on document validation, or on static tests involving the
schemas, such as typechecking of XML transformations [13, 26]. Minimal deter-
ministic automata for unranked tree languages play a prominent role in recent
approaches to query induction for Web information extraction [3]. The objec-
tive is to identify a tree automaton for a previously unknown target language
from given examples. Standard algorithms from grammatical inference [1, 8, 19]
such as RPNI always induce minimal deterministic automata. The smaller this
automaton is, the easier it can be inferred.

In this work we focus on the minimization of automata for unranked tree
languages, which is a fundamental problem to automata theory and recently
attracted some attention [6, 21]. The question is particularly relevant for classes
of deterministic automata, since minimization can be done both efficiently and
leads to unique canonical representatives of regular languages, as is well-known
� Corresponding author

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 232–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Minimizing Tree Automata for Unranked Trees 233

for string languages and ranked tree languages. It is also well-known that minimal
non-deterministic automata are neither unique, nor efficiently computable [9, 11].

The investigation of efficient minimization of deterministic automata for un-
ranked trees language started quite recently [6, 21]. The deterministic devices
considered there, however, differ from the standard deterministic automata in
database theory – the bottom-up deterministic unranked tree automata (UTAs)
of Brüggemann-Klein, Murata, and Wood [2]. In this paper, we investigate effi-
cient (i.e. ptime) minimization starting from such UTAs.

The transition relation of UTAs uses regular string languages over the states
of the automaton to express horizontal recursion. However, it is not specified how
these regular string languages should be represented. In practice, this is usually
done by finite automata or regular expressions. If we allow for non-deterministic
finite automata in bottom-up deterministic UTAs, then minimization becomes
pspace-hard. As we are interested in efficient minimization, we restrict the finite
subautomata in UTAs to be deterministic too. These DFAs impose left-to-right
deterministism in addition to bottom-up determinism.

In the first part of the paper, we will prove two surprising results for these
bottom-up and left-to-right deterministic UTAs. We present a counterexample
for the uniqueness of minimal UTAs that represent a given regular language. We
then prove that minimization becomes np-complete and thus unfeasible. Both
results are in strong contrast to what is known for bottom-up deterministic
automata in the ranked case. Our np-hardness proof refines the proof techniques
from [9, 11], showing np-hardness of minimization for classes of finite automata
with limited amount of non-determinism.

In the second part of the paper, we compare the sizes of minimal automata
for known automata classes that allow for efficient minimization. We show that
bottom-up deterministic stepwise tree automata [4] yield the most succinct rep-
resentations, both compared to the bottom-up deterministic parallel UTAs of
[6, 21], as well as with respect to bottom-up deterministic automata over the
standard first-child next-sibling encoding of regular tree languages (up to in-
version). The difference in representation size is quadratic in the first case and
exponential in the second case.

Finally we discuss a small minimization result for top-down deterministic tree
automata. This notion of top-down determinism is very similar to the notion
defined in [6] as it has exactly the same expressive power – but the question of
minimizing these automata was not treated.

2 Preliminaries

In this section we provide the necessary background on strings, trees and tree
automata.

2.1 Strings

For a finite set S, its size |S| is its number of elements. By N we denote the set
of natural numbers. We fix a finite alphabet Σ. When a ∈ Σ we also say that

234 W. Martens and J. Niehren

a is a Σ-symbol. A string w = a1 · · ·an is a finite sequence of Σ-symbols. We
denote the empty string by ε.

We assume familiarity with nondeterministic finite automata (NFAs), deter-
ministic finite automata (DFAs), unambiguous finite automata (UFAs) and reg-
ular expressions (REs). Given a fininte automaton or a regular expression A,
we sometimes freely identify A with the language L(A) it defines. The size of a
finite automaton or regular expression is the size of its state set, or its number
of symbols respectively. Let C be a class of representations of regular string lan-
guages (that is, NFAs, DFAs, UFAs, or REs). Then the minimization problem
for C is defined as follows: Given an A ∈ C and an integer m, does there exist
an A′ ∈ C such that A and A′ accept the same language and the size of A′ is
lesser than or equal to m. The containment and equivalence problems for C ask,
given A, B ∈ C whether L(A) ⊆ L(B) or L(A) = L(B) respectively. We recall
the following results from formal language theory:

Theorem 1 ([9, 24, 25]).

(1) Containment and equivalence of NFAs and REs is pspace-complete;
(2) Containment and equivalence of UTAs and DFAs is in ptime;
(3) Minimizing NFAs and REs is pspace-complete;
(4) Minimizing UFAs is np-complete;
(5) Minimizing DFAs is in ptime.

2.2 Unranked Trees

The set of unranked Σ-trees, denoted by T , is the smallest set of strings over Σ
and the parenthesis symbols ‘)’ and ‘(’ such that for each a ∈ Σ and w ∈ T ∗,
a(w) is in T . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where
each ti is a tree. The latter denotes the tree where the subtrees t1, . . . , tn are
attached to the root labeled a. We write a rather than a(). Note that there is
no a priori bound on the number of children of a node in a Σ-tree; such trees
are therefore unranked. In the following, whenever we say tree, we always mean
Σ-tree. A tree language is a set of trees.

For every tree t ∈ T , the set of nodes of t, denoted by Dom(t), is the subset
of N∗ defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn)
where each ti ∈ T , then Dom(t) = {ε} ∪

⋃n
i=1{iu | u ∈ Dom(ti)}. For every

u ∈ Dom(t), we denote by labt(u) the label of u in t.

2.3 Unranked Tree Automata

Definition 2 ([2]). An unranked tree automaton (UTA) is a tuple B = (Q, Σ,
δ, F), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is
a function δ : Q × Σ → 2(Q∗) such that δ(q, a) is a regular string language over
Q for every a ∈ Σ and q ∈ Q.

To simplify notation, we sometimes also write a(L) → q for δ(q, a) = L. A run
of B on a tree t is a labeling λ : Dom(t) → Q such that for every v ∈ Dom(t)

Minimizing Tree Automata for Unranked Trees 235

with n children we have that λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that when
v has no children, the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is accepting
iff the root is labeled with an accepting state, that is, λ(ε) ∈ F . A tree is accepted
if there is an accepting run. The set of all accepted trees is denoted by L(B)
and is called a regular tree language. A UTA is bottom-up deterministic if for all
q, q′ ∈ Q with q �= q′ and a ∈ Σ we have that δ(q, a) ∩ δ(q′, a) = ∅.

When defining the size of a UTA, we have to fix a representation of the
regular languages δ(q, a). As argued in the introduction, we represent δ(q, a)
by a DFA since non-deterministic representations immediately make the mini-
mization problem intractable (Theorem 1). We denote by DUTA the bottom-up
deterministic UTAs where the transitions δ(q, a) are represented by DFAs. As
DFAs are deterministic when reading a string from left to right, we also refer
to DUTAs as bottom-up left-to-right deterministic UTAs . The size of a DUTA
B = (Q, Σ, δ, F) is |Q| +

∑
(q,a) |δ(q, a)|, where |δ(q, a)| is the number of states

of the DFA accepting δ(q, a).
We mention the following basic result about DUTAs.

Theorem 3. Containment and equivalence of DUTAs is in ptime.

Proof (Sketch). Given two DUTAs, we can translate them in ptime into tree
automata over a known binary encoding of unranked trees, such as the first-child
next-sibling encoding. The canonical way to do this translates a DUTA into an
unambiguous tree automaton over binary trees. Due to the work of Seidl [23], we
can test containment and equivalence of these automata in ptime. �

To the best of our knowledge, it is not known whether the standard contain-
ment test works in ptime, since complementing a DUTA is not trivial (un-
less the DUTA is complete, then one just has to switch final and non-final
states).

2.4 Are DUTAs Deterministic?

We raise the question whether the computation of a DUTA is truly deterministic
or not. Informally, we assume that a computation of a DUTA proceeds in a
bottom-up manner, reads every node of a tree only once and remembers only one
state of an internal DFA while reading the states that are assigned to the children
of a certain node. We show in a small example that under these conditions, the
computation of a DUTA in fact still has a very limited form of non-determinism.
In the next section we show that this is exactly what makes minimization hard.

Let A be the DUTA with transition function

δ(qa, a) = δ(qb, b) = ε

δ(q1, r) = {qaqa} by 1 2 3
qa qa

δ(q2, r) = {qaqb} by 4 5 6
qa qb

236 W. Martens and J. Niehren

r

a a

(a)

r q1

a qa

1

a qa

32

(b)

r ·

a qa

4

a qa

·5

(c)

Fig. 1. A tree t, a successful run on t and a partially successful run on t

and final states {q1, q2}. This automaton accepts the language {r(aa), r(ab)}.
When computing a bottom-up run for the tree in Figure 1(a), the state qa will
be assigned to both a-labeled leafs. At that point, it remains to assign a state
to the r-labeled root. Here, we have the choice of starting to run the DFA for
δ(q1, r) or for δ(q2, r). In Figure 1(b), we show the run that we obtain by choosing
δ(q1, r) (in which we also annotated the internal states 1, 2 and 3 of δ(q1, r) in
italic), and Figure 1(c) shows the partial run that is obtained when choosing
δ(q2, r), which cannot be completed to a successful run. So even though there
is only one successful run, the computation of the run itself still has a limited
choice. Intuitively, this corresponds to an unambiguous rather than completely
deterministic automata model.

One could argue that this choice in the computation is implementation-
dependent. When implementing the automaton A, one could e.g. choose to sim-
ulate δ(q1, r) and δ(q2, r) in parallel. But then, one actually obtains a different
notion of UTAs, namely the parallel UTAs [6, 21] that we study in Section 4.4.

3 Minimizing UTAs

In this section we study the minimization problem on bottom-up left-to-right
deterministic UTAs. We show two unexpected negative results: Given a regular
tree language L, there does not exist an (up to isomorphism) unique minimal
DUTA that accepts L. The minimization problem for DUTAs even turns out to
be np-complete.

3.1 Minimal Automata are Not Unique

We show the non-uniqueness by an example. Consider the regular languages
L1, L2 and L3 defined by regular expressions (bbb)∗, b(bbbbbb)∗ and bb(bbbbbbbbb)∗

respectively. Note that L1, L2 and L3 are pairwise disjoint, and that the minimal
DFAs A1, A2 and A3 accepting L1, L2 and L3 have 3, 6 and 9 states respectively.
It is easy to verify that the minimal DFAs B1 and B2 accepting L1 ∪ L2 and
L1 ∪ L3 have 6 and 9 states respectively. Let L = L1 ∪ L2 ∪ L3 and consider the
tree language T := {r(a(w)) | w ∈ L}.

There exist two minimal DUTAs for T . The first one, N1 = (Q1, Σ, δ1, F1)
has accept state q0 and transition function

δ1(q0, r) = q1 + q2 δ1(q1, a) = B1 δ1(q2, a) = A3 δ1(b, b) = ε.

Minimizing Tree Automata for Unranked Trees 237

1 2 3

456

1 2 3 4 5

6789

(a)

1 2 3 4 5

6789

1 2 3

456

(b)

Fig. 2. Figure 2(a) contains the DFAs B1 and A3; and Figure 2(b) contains the DFAs
B2 and A2. All transition arrows read the symbol b.

The size of N1 is |Q1|+ |δ1(q0, r)|+ |B1|+ |A3|+ |δ1(b, b)| = 4+2+6+9+1 = 22.
The DFAs B1 and A3 are sketched in Figure 2(a). The other automaton, N2 =
(Q2, Σ, δ2, F2) has accept state q0 and transition function

δ2(q0, r) = q1 + q2 δ2(q1, a) = B2 δ2(q2, a) = A2 δ2(b, b) = ε.

The size of N2 is |Q2|+ |δ2(q0, r)|+ |B2|+ |A2|+ |δ2(b, b)| = 4+2+9+6+1 = 22.
The DFAs B2 and A2 are sketched in Figure 2(b).

Of course, there are other possibilities to write L = L1 ∪L2 ∪L3 as a disjoint
union of regular languages. The obvious combinations one can make with A1,
A2 and A3 lead to DUTAs of size 26 (using A1, A2 and A3), 28 (using (A2 ∪A3)
and A1) and 24 (one automaton for L).

We show that no other combination of splitting L into a union of regular
languages will result in a smaller DUTA accepting T . First, observe that any
DUTA defining T needs at least three states in its state set Q, since all trees
in T have depth three. However, as argued above, the minimum size of such a
DUTA with three states is 3+2+18+1 = 24. The only way to obtain a smaller
DUTA is then to define L as a union of DFAs, of which the sum of the number
of states is strictly smaller than 9 + 6 = 15. However, if we write L as a union
of DFAs, there must be at least one DFA D1 that accepts an infinite number
of strings in L2. It is easy to see that D1 has at least 6 states, as D1 may not
accept strings not in L. Analogously, we can argue that there must be at least
one DFA D2 that accepts an infinite number of strings in L3. If D1 = D2, it is
easy to see that D1 has at least 18 states. If D2 �= D1, then it is easy to see that
D2 has at least 9 states. Therefore, the above automata are indeed minimal for
T , and as Figure 2 shows, they are clearly not isomorphic.

3.2 Minimization Is np-Complete

The minimization problem for DUTAs is defined analogously as the minimization
problem for finite automata: Given a DUTA A and an integer m, decide whether

238 W. Martens and J. Niehren

there exists a DUTA B such that L(B) = L(A) and the size of B is lesser than
or equal to m.

As Section 3.1 illustrates, the problem of defining a regular string language as
a small disjoint union of DFAs lies at the heart of the minimization problem for
DUTAs. We call this problem general minimum disjoint union and define
it formally as follows: Given a DFA M and an integer �, do there exist DFAs
M1, . . . , Mn such that

(1) L(M) = L(M1) ∪ · · · ∪ L(Mn); and
(2) for every i �= j, L(Mi) ∩ L(Mj) = ∅; and
(3)

∑n
i=1 |Mi| ≤ �?

It can be shown that general minimum disjoint union is np-complete by a
reduction from vertex cover. Actually, general minimum disjoint union
is even np-complete when n = 2. The proof for this is not straightforward, and
technically the hardest proof in the paper, but the reduction is interesting in its
own right. The proof can be found in [15]. Although we do not go deeper on this
in the paper, variations of the reduction can actually be used to show that the
three open problems stated in the conclusion of [11] are np-complete [12].

Theorem 4. DUTA minimization is np-complete.

Proof (Sketch). The upper bound follows from Theorem 3. Given a DUTA A
and an integer m, the np algorithm simply guesses an automaton B of size at
most m and verfies in ptime whether it is equivalent to A.

For the lower bound, we do a reduction from general minimum disjoint
union. Given a DFA M = (QM , ΣM , δM , IM , FM) and integer �, we have to
construct a DUTA A and an integer m such that A has an equivalent DUTA
of size m iff M can be written as a disjoint union of DFAs for which the size
does not exceed �. Intuitively, we construct A such that it accepts the trees of
the form r(w), where the root node is labeled with a special symbol r and the
string w is in L(M). For the full proof, we refer to [15]. �

4 Solutions for Efficient Minimization

As we have shown, UTA minimization is unfeasible even when the horizontal
languages are represented by DFAs. The problem is raised when using multiple
rules for the same label, for recognizing these horizontal regular languages.

Three alternative notions of bottom-up deterministic tree automata for un-
ranked trees were proposed recently, each of them yielding a solution to the
problem. First, one can define notions of bottom-up determinism based on trans-
lations between unranked and ranked trees. Stepwise tree automata [4] are an
algebraic notion of automata for unranked trees which also correspond to au-
tomata over binary trees by means of such a translation. Alternatively, one can
use tree automata that operate on the standard encoding of unranked into binary
trees (see, e.g. [7]).

Minimizing Tree Automata for Unranked Trees 239

Finally, parallel UTAs (pUTAs) alter the rule format of UTAs and have been
independently proposed in [21] and [6]. All these automata yield notions of
bottom-up determinism which lead to unique minimal automata and polyno-
mial time minimization.

4.1 Automata on Binary Trees

We first treat the automata models which can also be defined on ranked trees.
We therefore recall the notion of a traditional tree automaton.

Definition 5. A (traditional) tree automaton (TA) for a binary signature is a
tuple A = (Q, Σ, δ, (Ia)a∈Σ , F) where Q is a finite set of states, the signature
Σ = Σ0 0 Σ2 consists of a finite set of constants Σ0 and finite set of binary
function symbols Σ2, F ⊆ Q is the set of final states, Ia ⊆ Q is a set of initial
states for every a ∈ Σ0, and δ is a function δ : Q×Q×Σ2 → 2Q mapping a pair
of states and a function symbol to a set of possible new states.

A run of A on a tree t is a labeling λ : Dom(t) → Q such that (i) for every
leaf node u, λ(u) ∈ Ilab(u); and (ii) for all inner nodes u, λ(u) ∈ δ(λ(u1), λ(u2),
lab(u)). A run is accepting iff the root is labeled with an accepting state, that
is, λ(ε) ∈ F . A tree is accepted if there is an accepting run on t.

A binary tree automaton is (bottom-up) deterministic if for all q, q′ ∈ Q and
a ∈ Σ, δ(q, q′, a) contains at most one element. To simplify notation for TAs, we
sometimes also write a → q and a(q, q′) → p to say that q ∈ Ia and p ∈ δ(q, q′, a)
respectively.

The size of a binary tree automaton A = (Q, Σ, δ, (Ia)a∈Σ, F) is the number
of elements in its state set Q. We denote the size of A by |A|.

4.2 Stepwise Tree Automata

Stepwise tree automata are an algebraic version of automata for unranked
trees [4]. For the algebraic perspective, we refer to that paper.

A stepwise tree automaton over an unranked signature Σ is a (traditional)
tree automaton over the binary signature Σ 0 {@} where all labels in Σ serve
as constants and @ is a binary function symbol.

One of the nicest features of stepwise tree automata is that they are traditional
tree automata, but can also run over unranked trees. Indeed, stepwisetree au-

initial states Ia = {5} Ib = {4}
rules @(5, 4) → 6 @(5, 5) → 6

@(6, 4) → 6 @(6, 5) → 6
final states {5, 6}

Fig. 3. A deterministic stepwise tree automaton for a((a|b)∗), equivalent to the pUTA
in Figure 5

240 W. Martens and J. Niehren

a 6

a 5

5

5

b 4

4

6 6

b 4

4

6

@ 6

@ 6

@ 6

a 5 a 5

b 4

b 4

Fig. 4. Runs of the stepwise automaton from Figure 3. To the left, on the unranked
tree and to the right, on its Curried binary encoding.

tomata can be understood as traditional tree automata that operate on Curried
binary encodings of unranked trees. Currying the unranked tree

plus(4, 5, plus(6, 7, 8))

for instance yields plus@4@5@(plus@6@7@8) which (if we assume left associa-
tivity) is the binary tree

@
(
@
(
@(plus, 4), 5

)
, @
(
@(@(plus, 6), 7), 8

))
,

but in infix notation. Figure 4 shows this correspondence. The italic states in the
left tree correspond exactly to the bold states in the run on its Curried encoding,
which is the tree on the right. On the unranked tree, the italic states can be seen
as the explicit computation of the tree automaton. For every node, the state in
bold is simply a copy of the rightmost italic state below. In Section 4.4, we show
a run of an equivalent parallel UTA in Figure 5. There, the correspondence
between the italic and the bold states is given by the output function of the
automaton.

Myhill-Nerode Property. The Myhill-Nerode theorem yields an up to iso-
morphism unique representation for minimal deterministic automata for regular
languages. The states of the minimal automaton correspond to the classes of the
congruence induced by the language.

The Myhill-Nerode theorem holds generally for algebraic automata notions
(see e.g. [5]) and thus for finite automata, standard tree automata [10, 27], and
stepwise tree automata [4]. Myhill-Nerode inspired theorems for automata on
unranked trees were shown for UTAs (Theorem G in [2]) and for parallel UTAs
[6], which we treat in Section 4.4. Remarkably, in the former case the theorem
does not lead to minimal automata and in the latter case the theorem uses two
quite particular equivalence relations instead of a single canonical congruence,
as in the ranked case. In this section, we formulate the Myhill-Nerode theorem,
such that it holds both for traditional tree automata and stepwise tree automata
interpreted over unranked trees.

In both cases, a context C is a function mapping trees to trees. In the case
of binary trees over Σ, a context can be represented by a binary tree over the
binary signature Σ0{•} that contains a single occurence of the hole marker • at

Minimizing Tree Automata for Unranked Trees 241

a leaf node. Context application C(t) to a tree t replaces the hole marker in C by
t. A context C for an unranked tree over Σ is a tree over the unranked signature
Σ0{•} that contains a single occurence of the hole marker, but this time possibly
labeling an internal node. Given a context C and a tree t = a(t1 · · · tn), we define
context application C(t) inductively as follows:

– •(t′1, · · · , t′m)(a(t1, · · · , tn)) = a(t1, · · · , tn, t′1, · · · , t′m)
– a(t′1, · · · , t′i, · · · , t′m)(t) = a(t′1, · · · , t′i(t), · · · , t′m) where t′i contains the •.

A congruence on trees is an equivalence relation ≡ that satisfies for every context
C: if t1 ≡ t2 then C(t1) ≡ C(t2). It is of finite index when there are only a finite
number of equivalence classes. Given a tree language L, we define the congruence
≡L induced by L through:

t1 ≡L t2 iff for every context C: C(t1) ∈ L ⇔ C(t2) ∈ L.

Theorem 6 (Myhill-Nerode). For any ranked or unranked tree language L
it holds that L is a regular tree language iff its congruence ≡L has finite index.
Furthermore, there exists an (up to isomorphism) unique minimal bottom-up
deterministic (stepwise) tree automaton for all regular languages L. The size of
this automaton is equal to the index of ≡L.

The proof of this theorem is immediate from the binary case [10]. It follows from
the observation that the contexts we define for unranked trees are obtained by
translating the contexts over binary trees through the inverse of the Curried
encoding. We note that this theorem was partially proven in [2] (Theorem G).
However, we feel that the present proof is simpler (as the theorem immediately
carries over from the ranked case) and also leads to minimal automata, which is
not the case in [2].

4.3 Standard Binary Encoding

Analogously as with stepwise tree automata, a tree automaton over the standard
first-child next-sibling encoding of a tree can be seen as working directly over
the unranked tree (see, e.g. [7]). In this encoding, an unranked tree is simply
viewed as a binary tree over the first-child and next-sibling relation. Whenever
a Σ-symbol has no left or no right child, a special symbol ⊥ is inserted.

As in Section 4.2, a Myhill-Nerode theorem for unranked trees can also be
obtained using the inverse of the standard first-child next-sibling encoding. How-
ever, in Section 5.1, we argue that the latter leads to exponentially more equiv-
alence classes, and hence, exponentially larger minimal automata.

4.4 Parallel UTAs

The problem with UTAs bottom-up left-to-right determinism is that it may force
the interpreter of the automaton to choose between several rules for the same
label. The obvious solution is to run all automata for the same label in parallel,
and thus unify them. This idea leads to the notion of parallel UTAs.

242 W. Martens and J. Niehren

δ(a) = (1|2)∗ by 5 6
1, 2

1,2

with o(5) = 1, o(6) = 3

δ(b) = ε by 4

with o(4) = 2

a 3

a 1
5

5

b 2
4

6 6

b 2
4

6

Fig. 5. A deterministic pUTA (Q, Σ, δ, {1, 3}, o) for a((a|b)∗), equivalent to the stepwise
tree automaton in Figure 3, and its run on a(abb), annotated in bold to the right of
the alphabet symbols. The runs of the internal DFAs are annotated in italic.

A parallel UTA (pUTA) is a tuple A = (Q, Σ, δ, F, o) which consists of a
finite set Q of states, a collection of horizontal regular languages δ(a) ⊆ Q∗

represented by a finite automaton for each a ∈ Σ, a set of final states F ⊆ Q,
and a collection of output functions o(a) for all a ∈ Σ that maps final states of
the finite automaton recognizing δ(a) to states in Q.

Let (Qa, Q, δa, Ia, Fa) be the finite automaton recognizing δ(a) for every a ∈
Σ. A run of A on a tree t is a labeling function λ : Dom(t) → Q that satisfies
for all nodes u ∈ Dom(t) with n children that λ(u) = o(a)(δ∗a(λ(u1) · · ·λ(un))),
where δ∗a is the homomorphic extension of δa to strings in Q∗. An example for a
pUTA is illustrated in Figure 5.

We call a pUTA deterministic if all subautomata for recognizing horizontal
languages δ(a) are DFAs. The class of deterministic pUTAs has unique minimal
automata and allows for efficient minimization [6, 21]. They can recognize all
regular languages, as shown by the following transformations.

Every deterministic pUTA A can be transformed into an equivalent DUTA
(Q, Σ, δ′, F) so that for every a ∈ Σ and q ∈ Q:

δ′(q, a) = (Qa, Q, δa, Ia, o(a)−1(q))

Conversely, any DUTA can be converted into an equivalent deterministic pUTA
but possibly at the cost of an exponential blow-up. The first step is to unify
the horizontal subautomata for the language ∪q∈Qδ(q, a) for every label a, by
constructing the product automaton (which can cause the exponential blow-up).
The output function o(a) maps every tuple in the product with a final state of
the automaton recognizing δ(q, a) to q.

5 Size Comparison

5.1 Stepwise vs Standard Binary Encoding

Let �t� denote the standard binary first-child next-sibling encoding of an un-
ranked Σ-tree t over Σ 0 {⊥}. Let t denote the tree obtained from t by re-
versing for every node its list of children. For instance, if t = a(b, c, d(e, f)),
then t = a(d(f, e)c, b). We extend these notations in the obvious way to tree
languages.

Minimizing Tree Automata for Unranked Trees 243

To be able to compare stepwise tree automata to tree automata over the
first-child next-sibling encoding, we need to study one of the two over these
reversed trees. The reason is that deterministic stepwise tree automata read the
children of a node from left to right whereas deterministic tree automata over the
standard encoding read them from right to left, which leads to an exponential
blow-up of the minimal size in both directions. The witness tree languages for
this claim are based on the languages L((a + b)na(a + b)∗)n∈N, which cause an
exponential blow-up for DFAs which read strings from right to left. Here we take
the standard encoding over the reversed trees.

Lemma 7. For all unranked trees t1, t2, if �t1� ≡�L� �t2� then t1 ≡L t2.

Proof (Sketch). This follows from the definitions of the encoding and the con-
texts: any context for a tree in the standard encoding can be obtained by trans-
lating a context in the Curried encoding. �

Proposition 8. The minimal bottom-up deterministic stepwise tree automaton
for an unranked regular language L is never larger than the minimal bottom-up
deterministic tree automaton for the inverted standard encoding �L�.

Proof. Due to the Myhill-Nerode Theorem 6 it is sufficient to compare the in-
dexes of the congruences ≡L and ≡�L�. By Lemma 7, if two trees are in different
equivalence classes of ≡L then their encodings will be different equivalent classes
of ≡�L�, i.e., the index of L smaller or equal than the index of �L�. �

Proposition 9. There exists an infinite class of languages (Li)i∈N such that
for every Li, the minimal bottom-up deterministic stepwise tree automaton for
Li is exponentially more succinct than the minimal bottom-up deterministic tree
automaton for the encoding �Li�.

Proof (Sketch). The proof is based on the fact that the smallest DFA for the
union of DFAs A1, . . . , An can be exponentially larger than the sum of the sizes
|A1| + · · · + |An|. �

5.2 Stepwise vs Parallel UTAs

We mention the following proposition without proof:

Proposition 10. Minimal deterministic stepwise tree automata are always
smaller or equal than minimal deterministic parallel UTAs for the same
language.

It is easy to see that translating a stepwise automaton to a pUTA gives at most
a quadratic blow-up. This upper bound is also tight:

Proposition 11. There exists an infinite class of languages (Li)i∈N such that
for every Li, the minimal bottom-up deterministic stepwise tree automaton is
quadratically more succinct than the minimal deterministic pUTA.

244 W. Martens and J. Niehren

Proof. The lemma holds for Ln = {a1(an), . . . , an(an)}. pUTAs need n dif-
ferent automata of size n to accept the string an, so their minimal size is
O(n2). Stepwise automata can share the state sets of these, so their minimal size
is O(n). �

6 Top-Down Deterministic UTAs

We briefly discuss a minimization result for top-down deterministic UTAs. Ac-
cording to the definition of Brüggemann-Klein, Murata and Wood, a UTA A =
(Q, Σ, δ, F) is top-down deterministic if for all q ∈ Q, a ∈ Σ, and n ≥ 0, δ(q, a)
contains at most one string of length n [2]. We show that a more expressive form
of top-down deteriminism still allows for (i) a ptime minimization algorithm
and (ii) uniqueness up to isomorphism of the minimal automaton. This notion
of top-down determinism not only allows to take into account the number of sib-
lings but also their labeling. It is very similar to the notion defined by Cristau,
Löding and Thomas [6].

To define the notion of top-down determinism, we assume that there is a
function f : Q → Σ that associates to each state the unique alphabet symbol it
can be assigned to in a run of the automaton. The idea from this function stems
from specialized DTDs [20], which are always provided by such a function. The
results in this section therefore directly carry over onto specialized DTDs. We
extend this function f in the obvious way to strings over Q.

The main motivation of this section lies in XML schema languages. Indeed,
the proposed notion of top-down determinism is strictly more powerful than the
notions of single-type and restrained competition specialized DTDs [16], which
correspond to the expressive power of XML Schema [28] and 1-pass preorder
typing [14] respectively. It is not hard to see that the proposed minimization
algorithm preserves the single-type and restrained competition properties and
hence, as a corollary, minimization of single-type and restrained competition
specialized DTDs (in which the internal regular languages are represented by
DFAs) is also in ptime.

We call a UTA A = (Q, Σ, δ, F) top-down deterministic if every language
defined by a DFA D representing δ(q, a) has the following property: if w and w′

in L(D) and f(w) = f(w′) then w = w′.

Theorem 12. Every top-down deterministic UTA can be minimized in ptime.
This minimal top-down deterministic UTA is unique up to isomorphism.

We briefly sketch the minimization algorithm. Let A = (Q, Σ, δ, F) be top-
down deterministic with mapping f : Q → Σ. Given a state q ∈ Q, we de-
note by L(A, q) the language accepted by (Q, Σ, δ, {q}). The following algorithm
minimizes A:

(1) Trim A, that is, remove all unreachable states from Q, and remove all q ∈ Q
for which L(A, q) = ∅, and their corresponding transitions.

Minimizing Tree Automata for Unranked Trees 245

(2) Test, for each qi and qj in Q, i �= j, whether L(A, qi) = L(A, qj). If L(A, qi) =
L(A, qj), then replace all occurrences of qj in the definition of δ by qi, remove
the transition δ(qj , f(qj)), and remove qj from Q.

(3) For each q ∈ Q, minimize the DFA representing δ(q, f(q)).

7 Conclusions

We have shown that the minimization problem for DUTAs (bottom-up deter-
ministic UTAs in which the languages in the transition function are represented
by DFAs) is np-complete. The reason behind this hardness result is that these
DUTAs are not truly deterministic. Indeed, DUTAs still allow to represent reg-
ular languages over states by a disjoint union of DFAs, as exemplified in Sec-
tion 3.1. Furthermore, the canonical translations of DUTAs over the known
ranked encodings result in unambiguous rather than deterministic binary tree
automata.

A second contibution of the paper is a comparison between several notions
of determinism for unranked tree automata. We compared three different no-
tions: parallel UTAs, which were defined independently in [6] and [21], stepwise
tree automata [4], and ranked tree automata over the first-child next-sibling
encoding. In general, the stepwise tree automata provide the smallest minimal
automata. Moreover, since they have a direct connection to traditional ranked
tree automata through an encoding based on currying, a ptime minimization
algorithm and a Myhill-Nerode theorem is immediate.

Acknowledgments

We thank Frank Neven and Thomas Schwentick for helpful discussions and com-
ments on a previous version of the paper.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

2. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

3. J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducers from
completely annotated examples. In ICGI 2004, pages 91–102, 2004.

4. J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise
tree automata. In RTA 2004, pages 105–118, 2004.

5. B. Courcelle. On recognizable sets and tree automata. In Resolution of equations
in algebraic structures, pages 93–126, 1989.

6. J. Cristau, C. Löding, and W. Thomas. Deterministic automata on unranked trees.
In FCT 2005, 2005. To Appear.

7. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees (extended
abstract). In LICS 2003, pages 188–197, 2003.

246 W. Martens and J. Niehren

8. E.M. Gold. Complexity of automaton identification from given data. Inform.
Control, 37:302–320, 1978.

9. T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on
Computing, 22(6):1117–1141, 1993.

10. D. Kozen. On the Myhill-Nerode theorem for trees Bulletin of the European
Association for Theoretical Computer Science, 147:170–173, 1992.

11. A. Malcher. Minimizing finite automata is computationally hard. Theoretical
Computer Science, 327(3):375–390, 2004.

12. W. Martens. On minimizing finite automata with very little non-determinism.
Manuscript, 2005.

13. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. In PODS 2004, pages 23–34, 2004.

14. W. Martens, F. Neven, and T. Schwentick. Which XML schemas admit 1-pass
preorder typing? In ICDT 2005, pages 68–82, 2005.

15. W. Martens and J. Niehren. Minimizing Tree Automata for Unranked Trees. Full
Version. http://www.uhasselt.be/wim.martens/pubs.html

16. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. ACM Transaction on Internet Technology,
5(4), 2005. To Appear.

17. F. Neven and T. Schwentick. Expressive and efficient pattern languages for tree-
structured data. In PODS 2000, pages 145–156, 2000.

18. F. Neven and T. Schwentick. Query automata on finite trees. Theoretical Computer
Science, 275:633–674, 2002.

19. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time.
In Pattern Recognition and Image Analysis, pages 49–61, 1992.

20. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
PODS 2000, pages 35–46. ACM Press, 2000.

21. S. Raeymaekers and M. Bruynooghe. Minimization of finite unranked tree au-
tomata. Manuscript, 2004.

22. T. Schwentick. XPath query containment. Sigmod Record, 33(2):101–109, 2004.
23. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-

ing, 19(3):424–437, 1990.
24. R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems

for unambiguous regular expressions, regular grammars and finite automata. SIAM
Journal on Computing, 14(3):598–611, 1985.

25. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In STOC 1973, pages 1–9, 1973.

26. D. Suciu. Typechecking for semistructured data. In DBPL 2001, pages 1–20, 2001.
27. J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an appli-

cation to a decision problem of second-order logic. Mathematical Systems Theory,
2(1):57–81, 1968.

28. World Wide Web Consortium. XML Schema http://www.w3.org/XML/Schema

Dependency-Preserving Normalization
of Relational and XML Data

Solmaz Kolahi

Department of Computer Science, University of Toronto
solmaz@cs.toronto.edu

Abstract. Having a database design that avoids redundant information
and update anomalies is the main goal of normalization techniques. Ide-
ally, data as well as constraints should be preserved. However, this is not
always achievable: while BCNF eliminates all redundancies, it may not
preserve constraints, and 3NF, which achieves dependency preservation,
may not always eliminate all redundancies.

Our first goal is to investigate how much redundancy 3NF tolerates
in order to achieve dependency preservation. We apply an information-
theoretic measure and show that only prime attributes admit redundant
information in 3NF, but their information content may be arbitrarily
low.

Then we study the possibility of achieving both redundancy elimi-
nation and dependency preservation by a hierarchical representation of
relational data in XML. We provide a characterization of cases when an
XML normal form called XNF guarantees both.

Finally, we deal with dependency preservation in XML and show that
like in the relational case, normalizing XML documents to achieve non-
redundant data can result in losing constraints. By modifying the def-
inition of XNF, we define another normal form for XML documents,
X3NF, that generalizes 3NF for the case of XML and achieves depen-
dency preservation.

1 Introduction

Database design for relational data is defined as coming up with a “good” way
of grouping the attributes of interest into tables, yielding a database schema [1].
Here “good” refers to schemas that prevent the database from storing anomalies.
The notion of normalization has a key role in design theory and is a well-studied
subject (refer to [5] for a survey). Given a database schema together with a set
of dependencies defined over the attributes, normalization is the act of refining
the schema into a “better” schema, considering three criteria: preserving the
data, preserving the dependencies, and eliminating redundancy. In this paper,
we focus on the last two criteria: how do we represent data to have minimum
redundancy while preserving all the dependencies?

Normalization algorithms that produce schemas in BCNF guarantee to elim-
inate the possibility of redundancy. However, for some relational specifications

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 247–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

248 S. Kolahi

it is not possible to achieve dependency-preserving BCNF relations. Normaliz-
ing into 3NF relations is guaranteed to be dependency-preserving; finding the
price that we have to pay for this preservation, in terms of redundancy, is the
first contribution of this paper. We apply a recently-introduced information-
theoretic measure [4] to see where in a database and how much the normal form
3NF allows redundancy. We show that in a database instance of a 3NF schema,
only positions corresponding to prime attributes (members of candidate keys)
admit redundant information, but their information content may be arbitrarily
low.

Then we study the possibility of achieving both redundancy elimination and
dependency preservation by a hierarchical representation of relational data in
XML. A paper [17] that addresses a similar problem shows that any arbitrary
mapping of a relation into a hierarchical XML document is redundancy-free if
and only if the relation is in BCNF. However, the authors do not provide a char-
acterization of cases when a redundancy-free XML document is obtainable from
non-BCNF relational data. As our second contribution, we provide a PTIME
algorithm that given a relational schema and a set of functional dependencies
defined over it, decides if there is a corresponding dependency-preserving XML
representation, which does not allow redundant information, and outputs such
an XML specification if there is any. There are also papers [8, 14] that address
the problem of constraint-preserving transformations from XML to relational
databases, which is not a subject of interest in this paper.

To do the above transformation, we need to study the design principles of XML
documents as well. Defining dependency constraints over the schemas of XML
documents, such as DTDs, has been a subject of interest over the past years.
The semantics of key constraints [6, 7], foreign keys and inclusion constraints [10,
11, 12, 2], and functional dependencies [3, 16, 18, 15, 13, 19] and their inference,
consistency, and complexity issues have been studied. The normalization of XML
documents has also been addressed in three papers [3, 9, 19]. All of them define
similar normal forms for XML that do not allow redundancy with respect to a
set of dependency constraints. However, the concept of dependency preservation
is not addressed in any of the proposed XML normalization techniques.

In this paper, we deal with the concept of dependency preservation in nor-
malization of XML documents. Then by modifying the normal form XNF [3], we
present another normal form X3NF that generalizes 3NF for the case of XML.
This is our last contribution.

The rest of this paper is organized as follows: Section 2 reviews some ba-
sic concepts of relational and XML design theory. In Section 3 we apply an
information-theoretic measure of information content to 3NF. In Section 4 we
show how to represent relational data in dependency-preserving XML docu-
ments that have no redundancy. We introduce the normal form X3NF for XML
documents in Section 5, and in Section 6 we bring concluding remarks and
ideas of future research. Due to space limitations, most of the proofs are omit-
ted in the paper but are available in the appendix, which can be found at:
http://www.cs.toronto.edu/∼solmaz/docs/dbpl05appendix.pdf.

Dependency-Preserving Normalization of Relational and XML Data 249

2 Preliminaries

2.1 Relational Databases and Normal Forms

A relational specification (R, Σ) consists of an m-ary relational schema R and a
set of integrity constraints Σ defined over R, where m is the number of attributes
associated with R denoted as sort(R). An instance I of (R, Σ), written as I ∈
inst(R, Σ), is a finite set of m-tuples such that I satisfies the constraints in Σ.

In this paper, we focus on functional dependencies (FDs) and assume that
all of the constraints in Σ are of the form X → Y , where X, Y ⊆ sort(R). An
instance I satisfies X → Y iff for every two tuples t1, t2 ∈ I, t1[X] = t2[X]
implies t1[Y] = t2[Y]. A relational specification (R, Σ) is in BCNF iff for every
nontrivial FD X → Y ∈ Σ, we have X → sort(R) ∈ Σ+ (X is a key), where Σ+

is the set of all the FDs implied by Σ. A candidate key is a key whose proper
subsets are not keys. Specification (R, Σ) is in 3NF iff for every nontrivial FD
X → A, X is a key, or A is a member of a candidate key (A is prime).

Given (R, Σ), there are known algorithms that decompose the schema into
(R1, Σ1), . . . , (Rn, Σn), such that

⋃
i∈[1,n] sort(Ri) = sort(R), and for each i ∈

[1, n], sort(Ri) �= ∅, Σi = πRi(Σ+), and (Ri, Σi) is in BCNF (or 3NF). BCNF
decompositions guarantee to produce relations that do not store any redundant
data, while 3NF decompositions may not produce non-redundant relations, but
they guarantee to preserve all the FDs, i.e. Σ is equivalent to

⋃
i∈[1,n] Σi.

2.2 XML Documents and Normal Forms

DTDs and XML Trees. For a formal definition of a DTD, assume that we
have the following disjoint sets: El of element names, Att of attribute names,
which start with the symbol @, Str of possible values of string-valued attributes.

A DTD (Document Type Definition) D is defined to be D = (E, A, P, R, r),
where E ⊆ El is a finite set of element types, A ⊆ Att is a finite set of attributes,
P is a set of rules τ → Pτ for each τ ∈ E, where Pτ is a regular expression over
E − {r}, R assigns a subset of A to each element τ ∈ E, and r ∈ E is the root.

An XML tree is a finite rooted directed tree T = (N, G), where N is the set
of nodes, and G is the set of edges, together with a labeling function λ : N → El
and an attribute function ρ@ : N → Str for each @a ∈ Att. We say tree T
conforms to DTD D = (E, A, P, R, r), written as T |= D, if the root of T is
labeled r, and for every x ∈ N with λ(x) = a, the word λ(x1) . . . λ(xn) is in the
language defined by Pa where x1, . . . , xn are children of x in order, @l ∈ R(a)
iff the function ρ@ is defined on x.

Functional Dependencies for XML. Given a DTD D = (E, A, P, R, r), an
element path q is a word in the language E∗, and an attribute path is a word of
the form q.@l, where q ∈ E∗ and @l ∈ A. An element path q is consistent with
D if there is a tree T |= D that contains a node reachable by q; if the nodes
reachable by q have attribute @l, then the attribute path q.@l is consistent with

250 S. Kolahi

D. The set of all paths consistent with a DTD D is denoted by paths(D). The
last element type that occurs on a path q is called last(q).

Given an XML tree T = (N, G) such that T |= D, a tree tuple [3] is a subtree
of T rooted at r containing at most one occurrence of every path. Intuitively,
the set of all tree tuples in T forms a relational representation of T . Formally, a
tree tuple is a mapping t : paths(D) → N ∪Str∪{⊥} such that if for an element
path q whose last letter is a, we have t(q) �= ⊥, then t(q) ∈ N and λ(t(q)) = a;
if q′ is a prefix of q, then t(q′) �= ⊥ and t(q′) lies on the path from the root to
t(q) in T ; if @l is defined for t(q) and its value is v ∈ Str, then t(q.@l) = v.

A functional dependency over a DTD D [3] is an expression of the form
{q1, . . . , qn} → q, where q, q1, . . . , qn ∈ paths(D). A tree T satisfies an FD
{q1, . . . , qn} → q if for any two tree tuples t1, t2 in T , whenever t1(qi) = t2(qi) �=
⊥ for all i ∈ [1, n], then t1(q) = t2(q).

XNF: An XML Normal Form. Given a DTD D and a set Σ of FDs over
D, (D, Σ)+ is the set of all FDs implied by (D, Σ). An FD is called trivial
if it belongs to (D, ∅)+. We say that (D, Σ) is in XML Normal Form (XNF)
[3] if for every nontrivial FD X → q.@l in (D, Σ)+, the FD X → q is also in
(D, Σ)+. This normal form generalizes BCNF for XML documents and disallows
any redundancy caused by FDs in the document.

3 Relational Third Normal Form Revisited

The amount of information provided by each cell of a relational database with
respect to a set of integrity constraints can be determined using an information-
theoretic measure that has been introduced recently [4]. Using this measure, it
is known that the information content of every cell in an instance of a BCNF
relational schema is maximum.

In this section, we characterize the relational 3NF using this measure and show
that in an instance of a relational schema in 3NF, only for the cells corresponding
to prime attributes the information content can be less than maximum, meaning
that they store redundant information. However, the redundancy of such cells can
be arbitrarily high. This is the price that we have to pay in 3NF decompositions
to guarantee preservation of FDs.

3.1 Information-Theoretic Measure of Information Content

Here, we briefly review the information-theoretic measure that will be used in
the rest of this section and refer the reader to [4] for more details. Intuitively,
INFI(p|Σ) measures the average information provided by position p with respect
to constraints Σ, given all possible ways of removing values in the instance I.

Let R be a relational schema, Σ a set of constraints, and I ∈ inst(R, Σ). The
set of positions in I, Pos(I), is defined as {(R, t, A) | t ∈ I and A ∈ sort(R)}.
Let n = |Pos(I)|, and suppose each position in Pos(I) is assigned a unique
number p ∈ [1, n]. When the active domain of instance I is contained in [1, k], the

Dependency-Preserving Normalization of Relational and XML Data 251

information content of a position p ∈ Pos(I) with respect to the set of constraints
Σ, written as INFk

I (p|Σ), is informally defined as follows. Let X ⊆ Pos(I)−{p}.
Suppose the values in those positions are lost, and someone restores them from
the set [1, k]; we measure how much information this gives us about the value
of p, by computing an entropy of a certain distribution. Then INFk

I (p|Σ) is the
average of such entropy over all sets X ⊆ Pos(I) − {p}.

To define the measure more formally, let Ω(I, p) be the set of 2n−1 vectors
(a1, . . . , ap−1, ap+1, . . . , an) such that for every i ∈ [1, n] − {p} ai is either a
variable vi or the value in the i-th position of I. Given a vector ā ∈ Ω(I, p), the
conditional entropy P (a|ā) characterizes how likely a is to occur in position p,
if some values are removed from I according to the tuple ā. Let I(a,ā) be a table
obtained from I by putting a in position p and ai in position i for i �= p. Then
SAT k

Σ(I(a,ā)) is defined as the set of all substitutions σ : ā → [1, k] such that
σ(I(a,ā)) |= Σ. The probability P (a|ā) is defined as:

P (a|ā) =
|SAT k

Σ(I(a,ā))|∑
b∈[1,k] |SAT k

Σ(I(b,ā))|
.

The measure of the amount of information in position p is then defined as:

INFk
I (p|Σ) =

∑
ā∈Ω(I,p)

⎛
⎝P (ā)

∑
a∈[1,k]

P (a|ā) log
1

P (a|ā)

⎞
⎠ ,

where P (ā) = 1/2n−1 since we consider a uniform distribution on Ω(I, p). For
the case of infinite domain, the measure INFI(p|Σ) is defined as:

lim
k→∞

INFk
I (p|Σ)

log k
.

This measure of information content can be used to distinguish a good design
from a bad one. A database specification (R, Σ) is defined as well-designed if
for every I ∈ inst(R, Σ) and every p ∈ Pos(I), INFI(p|Σ) = 1; this means
every position of every instance should have the maximum information. It is
also known that if (R, Σ) is in BCNF or 4NF, then it is well-designed.

3.2 Characterizing 3NF

We now apply the criterion of being well-designed to relational third normal
form. We want to know where and to what extent 3NF allows a database to
store redundant information.

The following theorem shows that only positions corresponding to prime at-
tributes can store redundant information. Then using an example, we will see
that 3NF does not impose an upper bound for this redundancy.

Theorem 1. Let Σ be a set of FDs over a relational schema R. The specification
(R, Σ) is in 3NF if and only if for every I ∈ inst(R, Σ) and p = (R, t, A) in
Pos(I), INFI(p|Σ) < 1 implies A is a prime attribute.

252 S. Kolahi

A B B1 . . . Bm

1 1 1 . . . 1
1 2 1 . . . 1
1 3 1 . . . 1
1 4 1 . . . 1
...

...
...

...

1 |tup| 1 . . . 1

Fig. 1. A database instance

Example 1. Consider the database instance shown in Fig. 1, which is an in-
stance of (R, Σ), where R = (A, B, B1, . . . , Bm), Σ = {AB → B1 . . .Bm, B1 →
A, . . . , Bm → A}, and the domain of each attribute is �. It is easy to see that
(R, Σ) is in 3NF. Let p denote the position of the gray cell in the instance. If
we lose this value, there are many other tuples that can help restore it consid-
ering the FDs. Our goal is to measure the amount of information that this cell
provides and see if this amount can be arbitrarily close to zero.

Claim. The information content of position p in Example 1 can be obtained by
the following equation:

INFI(p|Σ) =
m∑

i=0

(
m
i

)
(1 + 2−i)|tup|−1

2|tup|+m−1 .

It can be seen that by choosing the number of attributes (dependencies) and
number of tuples big enough, we could make the information content of position
p in Example 1 arbitrarily small. Therefore, we have:

Theorem 2. For every ε ∈ (0, 1], there exists a relational schema R, a set of
FDs Σ over R, an instance I ∈ inst(R, Σ), and position p ∈ Pos(I) such that
(R, Σ) is in 3NF, and INFI(p|Σ) < ε.

Proof. Consider again position p of the database instance of Fig. 1 and the
constraints of Example 1. The following inequalities show that for INFI(p|Σ) to
be less than ε, it is enough to have m > − log2 ε + 1 and |tup| > log3/4 ε/2 + 1:

m∑
i=0

(
m
i

)
(1 + 2−i)|tup|−1

2|tup|+m−1 < ε.

2|tup|−1 +
m∑

i=1

(
m

i

)
(1 +

1
2
)|tup|−1 < 2|tup|+m−1ε.

2|tup|−1 + 2m(1 +
1
2
)|tup|−1 < 2|tup|+m−1ε.

22|tup|−2 + 2m3|tup|−1

2|tup|−1 < 2|tup|+m−1ε.

Dependency-Preserving Normalization of Relational and XML Data 253

(
1
2
)m + (

3
4
)|tup|−1 < ε.

m > − log2 ε + 1 , |tup| > log3/4 ε/2 + 1.

4 Dependency-Preserving Redundancy-Free Conversion
of Relational Data into XML Documents

In designing relational databases, relations are sometimes decomposed to avoid
redundancies and update anomalies. Losslessness, dependency preservation, and
redundancy elimination are the three desired properties for each decomposition.
However, it is not always possible to achieve all the three: while BCNF decom-
position eliminates all redundancies, it may not preserve dependencies, and 3NF
decomposition, which achieves dependency preservation, may produce relations
that store data with high degrees of redundancy, as we have seen in Section 3.

In this section, we want to show that for some relational specifications, it
is possible to produce an FD-preserving XML representation, which is in XNF
and hence avoids redundancies and update anomalies. This way we can take
advantage of good properties of BCNF and 3NF that are not achievable together
in relational representation.

Example 2. Consider the relational schema R(A, B, C), with FDs F = {AB →
C and C → B}. This is a classical example of a relational schema that does not
have any FD-preserving BCNF decomposition. We can however convert it into
a DTD D = (E, A, P, R, r) and a set of FDs Σ such that (D, Σ) does not allow
redundant data:

– E = {r, A, B, C}.
– A = {@a, @b, @c}.
– P (r) = B∗, P (B) = A∗, P (A) = C∗, P (C) = ε.
– R(r) = ∅, R(A) = {@a}, R(B) = {@b}, R(C) = {@c}.
– Σ = {r.B.@b → r.B,

{r.B, r.B.A.@a} → r.B.A,
{r.B.A, r.B.A.C.@c} → r.A.B.C,
{r.B.A.@a, r.B.@b} → r.B.A.C.@c,
r.B.A.C.@c → r.B.@b}.

This conversion is visualized in Fig. 2. Note that the first three FDs are the
result of the nested structure of the document. The second FD for example
means that given a B element, a value of attribute @a uniquely determines one
of the children, which is an A element. The last two FDs are the translations of
relational FDs in F . From the set of FDs Σ, we can easily infer the following
two FDs: {r.B.A.@a, r.B.@b} → r.B.A.C and r.B.A.C.@c → r.B. Thus, (D, Σ)
is in normal form XNF and hence does not allow redundancy.

In the above example, the correct hierarchical ordering of elements in the DTD
makes it possible to have an XML representation in XNF from a non-BCNF re-
lation. Since for each relational FD there is a path in the DTD containing all the

254 S. Kolahi

(C)

(A)

(B) 1 2

1

1 2

3

2

12

1

A B C

1 1 1

1 2 2

2 1 1

3 2 2 A A @b A A @b

B B

r

1 2

@a @a @a @aC C C C
1 2 1 3

@c @c @c @c
1 1 2 2

Fig. 2. Conversion of relational data into a redundancy-free XML document

participating attributes, the representation is also FD-preserving. We now for-
mally define this hierarchical translation for an arbitrary relational specification
and investigate the conditions that a relational specification needs to satisfy in
order to have an XML representation in XNF.

Definition 1. (Hierarchical Translation of Relational Schema) Let R =
(A1, . . . , Am) be a relational schema and F be a set of FDs defined over it. We
define DTD D = (E, A, P, R, r) and the set of XML FDs Σ as a hierarchical
translation of (R,F) as follows:

– E = {τ1, . . . , τm} ∪ {r}; each element τi corresponds to a relational attribute
Ai ∈ R.

– A(r) = ∅ and for i ∈ [1, m], A(τi) = @li; each element has an attribute to
store a value.

– Elements in E form an ordering τπ1 , . . . , τπm such that P (r) = τ∗
π1

, P (τπm) =
ε, and for every i ∈ [1, m), P (τπi) = τ∗

πi+1
.

– The FD r.τπ1 .@lπ1 → τπ1 is in Σ. Also for each i ∈ [2, m], there is an FD
{p, p.τπi .@lπi} → p.τπi in Σ, where p is the path from the root to the parent
of τπi .

– For every FD X1 → X2 ∈ F , there is a corresponding FD S1 → S2 ∈ Σ,
such that for every attribute Ai in X1 (X2), there is a path p.τi.@li in S1
(S2), where τi corresponds to Ai and p is the path from the root to the parent
of τi.

Let R = (A1, . . . , Am) be a relational schema, F a set of FDs over R, and
(D, Σ) a hierarchical translation of (R,F). Then:

Theorem 3. The XML specification (D, Σ) is in XNF iff for every FD X →
p.@l ∈ (D, Σ)+ and every prefix q of path p, it is the case that X → q.@m ∈
(D, Σ)+, where R(last(q)) = {@m}.

Corollary 1. (R,F) has a redundancy-free XML representation iff we can put
the attributes of R in order Aπ1 , . . . , Aπm such that for every nontrivial FD
X → Aπi ∈ F+ and every j < i, the FD X → Aπj is also in F+.

Dependency-Preserving Normalization of Relational and XML Data 255

Example 3. Consider the following functional dependencies over the relational
schema R = (A, B, C, D, F):

ABCD → F
FD → A
FC → B

Since none of the FDs FC → A or FD → B hold, we cannot put the attributes in
the desired order, and the schema does not have an XNF hierarchical translation.

Let Fmin = {X1 → A1, . . . , Xk → Ak} denote the minimal cover of the FDs
over the relational schema R. In order to find the appropriate order of attributes,
we shall first compute the intersection of the closures of all Xi’s (i ∈ [1, k]). If the
intersection is empty, there is no XML representation for this relational schema
in XNF. If not, we output the attributes in the intersection in an arbitrary order
as the first elements of the ordering. We remove from Fmin the FDs whose right-
hand sides are already in the output. Then we repeat computing the intersection
of closures with the remaining FDs until there is no FD left or all the attributes
are in the output. This procedure is described in Algorithm 1.

Some relational specifications do not satisfy the condition of Corollary 1.
However, there might be an FD-preserving decomposition of them such that
each of the decomposed schemas can be hierarchically translated into an XML
specification in XNF. Suppose (D1, Σ1), . . . , (Dn, Σn) are the XML translations
of the decomposed relations as described above. We can combine all the DTDs
into a single DTD by concatenating all the regular expressions assigned to their
roots and assign the resulting expression to the new root. Then we have to take
the union of element types, attributes, and FDs. Note that we assume the sets
of element types are disjoint. This can be seen in the following example and is
formally described in Section 4.1.

Example 4. Consider the following functional dependencies over the relational
schema R = (A, B, C, D, F):

ABC → DF
DC → A
F → B

Consider a dependency-preserving decomposition for this schema as follows:
R1 = (A, B, C, D) with FDs DC → A, ABC → D, and R2 = (A, B, C, F) with
FDs F → B, ABC → F . A possible XML specification in XNF would include
DTD D = (E, A, P, R, r) as follows. The set of FDs Σ, omitted here, consists of
the FDs resulting from the hierarchical translation and the FDs corresponding
to the relational FDs. It can be easily verified that (D, Σ) is in XNF.

– E = {r, A, B, C, D, F, A′, B′, C′}.
– A = {@a, @b, @c, @d, @f}.
– P (r) = A∗B′∗, P (A) = B∗, P (B) = C∗, P (C) = D∗,

P (D) = ε, P (B′) = A′∗, P (A′) = C′∗, P (C′) = F ∗, P (F) = ε.

256 S. Kolahi

– R(r) = ∅, R(A) = R(A′) = {@a}, R(B) = R(B′) = {@b},
R(C) = R(C′) = {@c}, R(D) = {@d}, R(F) = {@f}.

Note that the original 3NF schema does not have a hierarchical translation in
XNF since none of DC → B or F → A hold, so the decomposition is necessary.

Input: Relational schema R and set of FDs F .
Output: Either (D, Σ) in XNF or “No XNF Representation”.

Initialize (D, Σ) with only a root r ;
Compute Fmin as a minimal cover of F ;
Decompose (R, Fmin) into lossless 3NF (R1, F1), . . . , (Rn, Fn) based on Fmin ;
for i := 1 to n do

if there is no FD in Fi then
Oi := an arbitrary order of attributes in Ri;

else
Compute Xj+

i for all FD Xj
i → Aj

i in Fi ;
X := attributes in Ri ;
while X �= ∅ do

if no FD in Fi has an attribute in X on the right-hand side then
Y := X ;

else

Y :=
��

A
j
i
∈X

Xj+
i

�
∩ X ;

if Y = ∅ then
return “No XNF Representation” ;

else
Append attributes in Y to the ordering Oi ;
X := X − Y ;

(D, Σ) := attach ((D, Σ), Oi, Fi) ;
return (D, Σ) ;

Algorithm 1. FD-preserving translation of relational data into redundancy-free
XML documents

So far we have considered a special way of converting relational data into
a tree-like XML document, namely hierarchical translation. When there is no
redundancy-free hierarchical XML representation for a relational specification
(R,F), one might think of other ways of translating (R,F) into an XML spec-
ification (D, Σ), such that (D, Σ) is in XNF and hence does not allow redun-
dancy. Here we claim that in this case even a more general approach, named
semi-hierarchical translation, does not help. In this approach each element type
can represent more than one relational attribute.

Example 5. A semi-hierarchical representation of relational schema of Example 2
consists of DTD D = (E, A, P, R, r) and a set of FDs Σ as follows:

– E = {r, AB, C}.
– A = {@a, @b, @c}.

Dependency-Preserving Normalization of Relational and XML Data 257

– P (r) = AB∗, P (AB) = C∗, P (C) = ε.
– R(r) = ∅, R(AB) = {@a, @b}, R(C) = {@c}.
– Σ = {{r.AB.@a, r.AB.@b} → r.AB,

{r.AB, r.AB.C.@c} → r.AB.C,
{r.AB.@a, r.AB.@b} → r.AB.C.@c,
r.AB.C.@c → r.AB.@b}.

Theorem 4. A relational specification (R,F) has a redundancy-free hierarchical
translation iff it has a redundancy-free semi-hierarchical translation.

In other words, checking the conditions of Corollary 1 is enough to know
whether or not a relational specification has a non-redundant semi-hierarchical
XML representation. Since we believe that semi-hierarchical translation is the
most natural way of representing relational data in XML documents, we inter-
changeably use the general term “XML representation” and the term “hierar-
chical translation” throughout this paper.

4.1 Algorithm

Given a relational specification (R,F), Algorithm 1 decides, in polynomial time
in the size of (R,F), whether there is a redundancy-free XML representation for
it and produces an XML specification (D, Σ) if there is one.

First, the minimal cover of the FD set is computed. Then a 3NF decomposition
is done based on the minimal cover. This decomposition has to be FD-preserving
and lossless, so we may add a relation containing attributes of a candidate key.
The algorithm then finds the right ordering of attributes for each decomposed
relation as described previously. Once an ordering is found, it should be attached
to the DTD that is being constructed incrementally. This is done by the opera-
tor attach, which given an XML specification (D, Σ), an ordering of relational
attributes Oi and a set of FDs Fi over it, updates (D, Σ) by performing the
following steps:

– For each j ∈ [1, |Oi|], create a fresh element type τj corresponding to jth
attribute in Oi and a fresh attribute name @lj. Then assign R(τj) := {@lj}.

– Update P (r) := P (r).τ∗
1 , and for each j ∈ [1, |Oi|), assign P (τj) := τ∗

j+1.
Assign P (τ|Oi|) := ε.

– Add to Σ the FDs r.τ1.@l1 → r.τ1 and {p, p.τj.@lj} → p.τj for each j ∈
(1, |Oi|], where p is the path from the root to the parent of τj .

– Translate each FD in Fi into an XML FD by finding the corresponding DTD
elements and add it to Σ.

5 XML Third Normal Form

Given an XML specification (D, Σ), there is a decomposition algorithm [3] that
produces a lossless specification (D′, Σ′) in XNF. This decomposition sometimes
results in losing some of the FDs as shown in Example 6. In this section we show

258 S. Kolahi

that in fact for some (D, Σ), it is not possible to have an FD-preserving XNF
decomposition. Then we introduce another normal form for XML documents,
X3NF, that generalizes relational 3NF for XML.

5.1 Losing FDs in XNF Decomposition

Example 6. Consider the XML document in Fig. 3 that describes a company
database. This document satisfies the following constraint: any two clients with
the same postal code value must have the same city value. This can be expressed
with the following XML FD:

company.branch.clients.client.@postal code →
company.branch.clients.client.@city.

(1)

Since the value of postal code does not identify a node corresponding to a client
element, this document does not satisfy XNF and stores redundant information
caused by the FD. To avoid this, the normalization technique suggests to split the
information of cities and postal codes by creating a new element type city info.
The restructured version of the document that reflects this decomposition is
shown in Fig. 4.

 " mr201"
 @type @bid
 " marketing"

branch

 client

@name @postal_code @city @name @postal_code @city @name @postal_code @city @name @postal_code @city
"cl1" "cl2" "Toronto" "M4Y 2R5" "M4Y 2R5" "Toronto" "K1A 0H9" "K2B 1S5" "Ottawa" "Ottawa"

 client client client

 clients clients

company

 @type @bid

branch

 "ad005" "admin"

"cl3" "cl4"

Fig. 3. An XML document containing redundant information

Now assume there is another constraint in the original document of Fig. 3: if
two clients are in the same city and require a certain type of service, they are
handled by the same branch; written as:

{company.branch.clients.client.@city, company.branch.@type} →
company.branch.

(2)

By splitting the cities information in the restructured document of Fig. 4, we
actually break the nesting of the element branch and the attribute @city, so this
functional dependency no longer holds over the new document.

The above example shows that the XNF decomposition algorithm [3] is not
dependency-preserving. We have also seen that using Algorithm 1, we cannot
give an FD-preserving XML representation in XNF for some relational spec-
ifications, like the one in Example 3. In general, the concept of dependency

Dependency-Preserving Normalization of Relational and XML Data 259

"M4Y 2R5"
@val

"K1A 0H9" "K2B 1S5"
@val @val client client client client

company

city_info branch branch city_info

"Ottawa"
@city code code @city

"Toronto"
code clients

 " mr201"
 @type @bid
 " marketing"

 clients @type @bid
 " ad005" "admin"

"M4Y 2R5"
@name @postal_code @name @postal_code

"cl1" "M4Y 2R5"
@name @postal_code

"cl2" "K1A 0H9"
@name @postal_code

"K2B 1S5" "cl3" "cl4"

Fig. 4. A redundancy-free XML document

preservation seems to be more involved for the case of XML due to the fact that
the implication problem of FDs is not even known to be decidable in presence
of DTDs. However, these observations can lead us to the conjecture that like
its relational counterpart, BCNF, the normal form XNF cannot be achieved for
some XML specifications without losing some FDs. To prove that this conjecture
is in fact true, we consider a DTD representation for the relational schema of
Example 3 and show that if there is a decomposition (or restructured version)
of this representation that satisfies XNF, then some of the FDs are lost or some
spurious FDs are imposed1.Thus:

Theorem 5. There are XML specifications (D, Σ), for which there is no
dependency-preserving XNF decomposition.

5.2 X3NF

In order to avoid the problem of losing FDs in XNF decomposition, we now
define another normal form that accepts redundancy to some extent and gener-
alizes the relational 3NF for XML documents.

Let D be a DTD and Σ a set of FDs defined over it. Then:

Definition 2. (Prime Attribute Path) Attribute path p.@l ∈ paths(D) is
called prime if there is a nontrivial FD S′ → p′ ∈ (D, Σ)+ such that p.@l ∈ S′,
p′ is an element path, and S′ is minimal (S′ − {p.@l} → p′ �∈ (D, Σ)+).

Definition 3. (X3NF) (D, Σ) is in XML third normal form (X3NF) iff for
every nontrivial FD S → p.@l ∈ (D, Σ)+, the FD S → p is also in (D, Σ)+, or
p.@l is prime.

Example 7. Consider the document of Fig. 3 and FDs (1) and (2) that it satisfies.
The conditions of X3NF are not violated by FD (1) since the attribute path
company.branch.clients.client.@city is on the left-hand side of FD (2), whose
right-hand side is an element path.
1 For more details, please refer to the appendix available at:http://www.cs.toronto.
edu/∼solmaz/docs/dbpl05appendix.pdf .

260 S. Kolahi

5.3 3NF and X3NF

There is an easy way to map a relational schema R = (A1, . . . , Am) and FDs F
over it into a DTD DR = (E, A, P, R, r) and a set of XML FDs ΣF [3]:

– E = {r, G}.
– A = {@a1, . . . ,@am}.
– P (r) = G∗ and P (G) = ε.
– R(r) = ∅, R(G) = {@a1, . . . ,@am}.
– For each FD Ai1 . . . Aik

→ Ai ∈ F , {r.G.@ai1 , . . . , r.G.@aik
} → r.G.@ai is

in Σ.
– {r.G.@a1, . . . , r.G.@am} → r.G is in Σ.

Proposition 1. Given a relational schema R = (A1, . . . , Am) and FDs F over
R, (R,F) is in 3NF (BCNF) iff (DR, ΣF) is in X3NF (XNF).

There is another way of mapping relational data into XML documents, which
was introduced as hierarchical translation in Section 4. We have seen that by
choosing the right order of attributes, we can produce an XML specification in
XNF from a relational specification that might not even be in 3NF. The following
proposition says if the relational schema is already in 3NF (or BCNF), we can
produce an XML specification in X3NF (or XNF) by putting the relational
attributes in any arbitrary order.

Proposition 2. Let (R,F) be a relational specification in 3NF (BCNF) and
(D, Σ) be a hierarchical translation of it obtained from an arbitrary ordering of
attributes in R. Then (D, Σ) is in X3NF (XNF).

6 Conclusions

We looked at the problem of designing dependency-preserving XML documents.
We showed that for some relational specifications, for which there is no FD-
preserving BCNF decomposition, it is possible to have a dependency-preserving
XML design that is in normal form XNF [3] and hence eliminates all redundan-
cies. This can be done by a hierarchical mapping of relational attributes to XML
elements defined by a DTD. This transformation of data was justified by show-
ing the fact that to guarantee dependency preservation, relational 3NF allows
high degrees of redundancy in positions of database that store values for prime
attributes. This was shown using an information-theoretic measure [4].

For some XML specifications however, there is no dependency-preserving XNF
decomposition. By modifying the definition of XNF, we proposed a new normal
form, X3NF, that generalizes 3NF and allows redundancy to some extent.

A formal definition of dependency preservation for XML using DTD paths
is the next step. Then we plan to prove that applying XNF decomposition al-
gorithm [3], with the new definition of anomalous FDs as the ones that violate
X3NF, never results in losing an FD.

Dependency-Preserving Normalization of Relational and XML Data 261

Acknowledgments. The author is very grateful to Leonid Libkin for his great
advices and helpful comments.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. M. Arenas, W. Fan, and L. Libkin. On Verifying Consistency of XML Specifica-
tions. In PODS’02, pages 259–270.

3. M. Arenas and L. Libkin. A Normal Form for XML Documents. In PODS’02, pages
85–96.

4. M. Arenas and L. Libkin. An Information-Theoretic Approach to Normal Forms
for Relational and XML Data. J. ACM, 52(2): 246–283, ACM Press, 2005.

5. C. Beeri, P. A. Bernstein, and N. Goodman. A Sophisticate’s Introduction to
Database Normalization Theory. In VLDB’78, pages 113–124.

6. P. Buneman, S. Davidson, W. Fan, C. S. Hara, and W. Tan. Reasoning about Keys
for XML. Inf. Syst., 28(8): 1037–1063, 2003.

7. P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. Tan. Keys for XML. In
WWW’01, pages 201–210.

8. Y. Chen, S. Davidson, C. Hara, and Y. Zheng. RRXS: Redundancy Reducing XML
Storage in Relations. In VLDB’03, pages 189–200.

9. D. W. Embley and W. Yin Mok. Developing XML Documents with Guaranteed
“Good” Properties. In ER’01, pages 426–441.

10. W. Fan, G. M. Kuper, and J. Siméon. A Unified Constraint Model for XML. In
WWW’01, pages 179–190.

11. W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of DTDs.
In PODS’01, pages 114–125.

12. W. Fan and J. Siméon. Integrity Constraints for XML. In PODS’00, pages 23–34.
13. S. Hartmann and S. Link. More Functional Dependencies for XML. In ADBIS’03,

pages 355–369.
14. D. Lee and W. W. Chu. Constraints-Preserving Transformation from XML Docu-

ment Type Definition to Relational Schema. In ER’00, pages 323–338.
15. M. Lee, T. Wang Ling, and W. Lup Low. Designing Functional Dependencies for

XML. In EDBT’02, pages 124–141.
16. M. Vincent and J. Liu. Functional Dependencies for XML. In APWEB’03, pages

22–34.
17. M. W. Vincent, J. Liu, and C. Liu. Redundancy Free Mappings from Relations to

XML. In WAIM’04, pages 346–356.
18. M. W. Vincent, J. Liu, and C. Liu. Strong Functional Dependencies and Their

Application to Normal Forms in XML. ACM TODS, 29(3): 445–462, ACM Press,
2004.

19. J. Wang and R. W. Topor. Removing XML Data Redundancies Using Functional
and Equality-Generating Dependencies. In Australian Database Conference, pages
65–74, 2005.

Complexity and Approximation of Fixing
Numerical Attributes in Databases Under

Integrity Constraints�

Leopoldo Bertossi1, Loreto Bravo1,
Enrico Franconi2, and Andrei Lopatenko2,��

1 Carleton University, School of Computer Science, Ottawa, Canada
{bertossi, lbravo}@scs.carleton.ca

2 Free University of Bozen–Bolzano, Faculty of Computer Science, Italy
{franconi, lopatenko}@inf.unibz.it

Abstract. Consistent query answering is the problem of computing the
answers from a database that are consistent with respect to certain
integrity constraints that the database as a whole may fail to satisfy.
Those answers are characterized as those that are invariant under min-
imal forms of restoring the consistency of the database. In this context,
we study the problem of repairing databases by fixing integer numeri-
cal values at the attribute level with respect to denial and aggregation
constraints. We introduce a quantitative definition of database fix, and
investigate the complexity of several decision and optimization prob-
lems, including DFP, i.e. the existence of fixes within a given distance
from the original instance, and CQA, i.e. deciding consistency of answers
to aggregate conjunctive queries under different semantics. We provide
sharp complexity bounds, identify relevant tractable cases; and introduce
approximation algorithms for some of those that are intractable. More
specifically, we obtain results like undecidability of existence of fixes for
aggregation constraints; MAXSNP-hardness of DFP, but a good approx-
imation algorithm for a relevant special case; and intractability but good
approximation for CQA for aggregate queries for one database atom de-
nials (plus built-ins).

1 Introduction

Integrity constraints (ICs) are used to impose semantics on a database with the
purpose ofmaking the database an accuratemodel of an applicationdomain.Data-
base management systems or application programs enforce the satisfaction of the
ICs by rejecting undesirable updates or executing additional compensating ac-
tions. However, there aremany situationswhere we need to interactwith databases
that are inconsistent in the sense that they do not satisfy certain desirable ICs. In
this context, an important problem in database research consists in characterizing
� Dedicated to the memory of Alberto Mendelzon. Our research on this topic started

with conversations between Loreto Bravo and him. Alberto was always generous
with his time, advice and ideas; our community is already missing him very much.

�� Also: University of Manchester, Department of Computer Science, UK.

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 262–278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complexity and Approximation of Fixing Numerical Attributes 263

and retrieving consistent data from inconsistent databases [4], in particular con-
sistent answers to queries. From the logical point of view, consistently answering a
query posed to an inconsistent database amounts to evaluating the truth of a for-
mula against a particular class of first-order structures [2], as opposed to the usual
process of truth evaluation in a single structure (the relational database).

Certain database applications, like census, demographic, financial, and ex-
perimental data, contain quantitative data, usually associated to nominal or
qualitative data, e.g. number of children associated to a household identification
code (or address); or measurements associated to a sample identification code.
Usually this kind of data contains errors or mistakes with respect to certain se-
mantic constraints. For example, a census form for a particular household may
be considered incorrect if the number of children exceeds 20; or if the age of a
parent is less than 10. These restrictions can be expressed with denial integrity
constraints, that prevent some attributes from taking certain values [11]. Other
restrictions may be expressed with aggregation ICs, e.g. the maximum concen-
tration of certain toxin in a sample may not exceed a certain specified amount; or
the number of married men and married women must be the same. Inconsisten-
cies in numerical data can be resolved by changing individual attribute values,
while keeping values in the keys, e.g. without changing the household code, the
number of children is decreased considering the admissible values.

We consider the problem of fixing integer numerical data wrt certain con-
straints while (a) keeping the values for the attributes in the keys of the rela-
tions, and (b) minimizing the quantitative global distance between the original
and modified instances. Since the problem may admit several global solutions,
each of them involving possibly many individual changes, we are interested in
characterizing and computing data and properties that remain invariant under
any of these fixing processes. We concentrate on denial and aggregation con-
straints; and conjunctive queries, with or without aggregation.

Database repairs have been studied in the context of consistent query an-
swering (CQA), i.e. the process of obtaining the answers to a query that are
consistent wrt a given set of ICs [2] (c.f. [4] for a survey). There, consistent data
is characterized as invariant under all minimal forms of restoring consistency, i.e.
as data that is present in all minimally repaired versions of the original instance
(the repairs). Thus, an answer to a query is consistent if it can be obtained as
a standard answer to the query from every possible repair. In most of the re-
search on CQA, a repair is a new instance that satisfies the given ICs, but differs
from the original instance by a minimal set, under set inclusion, of (completely)
deleted or inserted tuples. Changing the value of a particular attribute can be
modelled as a deletion followed by an insertion, but this may not correspond
to a minimal repair. However, in certain applications it may make more sense
to correct (update) numerical values only in certain attributes. This requires a
new definition of repair that considers: (a) the quantitative nature of individual
changes, (b) the association of the numerical values to other key values; and (c)
a quantitative distance between database instances.

264 L. Bertossi et al.

Example 1. Consider a network traffic
database D that stores flow measure-
ments of links in a network. This net-
work has two types of links, labelled 0
and 1, with maximum capacities 1000

Traffic Time Link Type Flow
1.1 a 0 1100
1.1 b 1 900
1.3 b 1 850

and 1500, resp. Database D is inconsistent wrt this IC. Under the tuple and
set oriented semantics of repairs [2], there is a unique repair, namely deleting
tuple Traffic(1.1, a, 0, 1100). However, we have two options that may make more
sense than deleting the flow measurement, namely updating the violating tu-
ple to Traffic(1.1, a, 0, 1000) or to Traffic(1.1, a, 1, 1100); satisfying an implicit
requirement that the numbers should not change too much. �
Update-based repairs for restoring consistency are studied in [25]; where chang-
ing values in attributes in a tuple is made a primitive repair action; and semantic
and computational problems around CQA are analyzed from this perspective.
However, peculiarities of changing numerical attributes are not considered, and
more importantly, the distance between databases instances used in [25, 26] is
based on set-theoretic homomorphisms, but not quantitative, as in this paper.
In [25] the repaired instances are called fixes, a term that we keep here (instead
of repairs), because our basic repair actions are also changes of (numerical) at-
tribute values. In this paper we consider fixable attributes that take integer
values and the quadratic, Euclidean distance L2 between database instances.
Specific fixes and approximations may be different under other distance func-
tions, e.g. the “city distance” L1 (the sum of absolute differences), but the general
(in)tractability and approximation results remain. However, moving to the case
of real numbers will certainly bring new issues that require different approaches;
they are left for ongoing and future research. Actually it would be natural to
investigate them in the richer context of constraint databases [18].

The problem of attribute-based correction of census data forms is addressed
in [11] using disjunctive logic programs with stable model semantics. Several
underlying and implicit assumptions that are necessary for that approach to
work are made explicit and used here, extending the semantic framework of [11].

We provide semantic foundations for fixes that are based on changes on numer-
ical attributes in the presence of key dependencies and wrt denial and aggregate
ICs, while keeping the numerical distance to the original database to a minimum.
This framework introduces new challenging decision and optimization problems,
and many algorithmic and complexity theoretic issues. We concentrate in par-
ticular on the “Database Fix Problem” (DFP), of determining the existence of
a fix at a distance not bigger than a given bound, in particular considering the
problems of construction and verification of such a fix. These problems are highly
relevant for large inconsistent databases. For example, solving DFP can help us
find the minimum distance from a fix to the original instance; information that
can be used to prune impossible branches in the process of materialization of a
fix. The CQA problem of deciding the consistency of query answers is studied wrt
decidability, complexity, and approximation under several alternative semantics.

We prove that DFP and CQA become undecidable in the presence of aggre-
gation constraints. However, DFP is NP-complete for linear denials, which are

Complexity and Approximation of Fixing Numerical Attributes 265

enough to capture census like applications. CQA belongs to ΠP
2 and becomes

∆P
2 -hard, but for a relevant class of denials we get tractability of CQA to non ag-

gregate queries, which is again lost with aggregate queries. Wrt approximation,
we prove that DFP is MAXSNP-hard in general, and for a relevant subclass of
denials we provide an approximation within a constant factor that depends on
the number of atoms in them. All the algorithmic and complexity results, unless
otherwise stated, refer to data complexity [1], i.e. to the size of the database
that here includes a binary representation for numbers. For complexity theoretic
definitions and classical results we refer to [21].

This paper is structured as follows. Section 2 introduces basic definitions.
Sections 3 presents the notion of database fix, several notions of consistent answer
to a query; and some relevant decision problems. Section 4 investigates their
complexity. In Section 5 approximations for the problem of finding the minimum
distance to a fix are studied, obtaining negative results for the general case, but
good approximation for the class of local denial constraints. Section 6 investigates
tractability of CQA for conjunctive queries and denial constraints containing one
database atom plus built-ins. Section 7 presents some conclusions and refers to
related work. Proofs and other auxiliary, technical results can be found in [5].

2 Preliminaries

Consider a relational schema Σ = (U ,R,B,A), with domain U that includes Z1,
R a set of database predicates, B a set of built-in predicates, and A a set of
attributes. A database instance is a finite collection D of database tuples, i.e. of
ground atoms P (c̄), with P ∈ R and c̄ a tuple of constants in U . There is a set
F ⊆ A of all the fixable attributes, those that take values in Z and are allowed
to be fixed. Attributes outside F are called rigid. F need not contain all the
numerical attributes, that is we may also have rigid numerical attributes.

We also have a set K of key constraints expressing that relations R ∈ R have
a primary key KR, KR ⊆ (A � F). Later on (c.f. Definition 2), we will assume
that K is satisfied both by the initial instance D, denoted D |= K, and its fixes.
Since F ∩KR = ∅, values in key attributes cannot be changed in a fixing process;
so the constraints in K are hard. In addition, there may be a separate set IC of
flexible ICs that may be violated, and it is the job of a fix to restore consistency
wrt them (while still satisfying K).

A linear denial constraint [18] has the form ∀x̄¬(A1 ∧ . . . ∧ Am), where the
Ai are database atoms (i.e. with predicate in R), or built-in atoms of the form
xθc, where x is a variable, c is a constant and θ ∈ {=, �=, <, >, ≤, ≥}, or x = y.
If x �= y is allowed, we call them extended linear denials.

Example 2. The following are linear denials (we replace ∧ by a comma): (a)
No customer is younger than 21: ∀Id , Age, Income,Status¬(Customer(Id ,Age,
Income, Status),Age < 21). (b) No customer with income less than 60000 has
“silver” status: ∀Id ,Age, Income,Status¬(Customer(Id ,Age, Income,Status),

1 With simple denial constraints, numbers can be restricted to, e.g. N or {0, 1}.

266 L. Bertossi et al.

Income < 60000,Status = silver). (c) The constraints in Example 1, e.g. ∀T ,L,
Type,Flow¬(Traffic(T , L, Type,Flow), Type = 0, Flow > 1000). �
We consider aggregation constraints (ACs) [23] and aggregate queries with sum,
count, average. Filtering ACs impose conditions on the tuples over which ag-
gregation is applied, e.g. sum(A1 : A2 = 3) > 5 is a sum over A1 of tuples
with A2 = 3. Multi-attribute ACs allow arithmetical combinations of attributes
as arguments for sum, e.g. sum(A1 + A2) > 5 and sum(A1 × A2) > 100. If
an AC has attributes from more than one relation, it is multi-relation, e.g.
sumR1(A1) = sumR2(A1), otherwise it is single-relation.

An aggregate conjunctive query has the form q(x1, . . . xm; agg(z)) ← B(x1,
. . . , xm, z, y1, . . . , yn), where agg is an aggregation function and its non-aggregate
matrix (NAM) given by q′(x1, . . . xm) ← B(x1, . . . , xm, z, y1, . . . , yn) is a usual
first-order (FO) conjunctive query with built-in atoms, such that the aggregation
attribute z does not appear among the xi. Here we use the set semantics. An
aggregate conjunctive query is cyclic (acyclic) if its NAM is cyclic (acyclic) [1].

Example 3. q(x, y, sum(z)) ← R(x, y), Q(y, z, w), w �= 3 is an aggregate conjunc-
tive query, with aggregation attribute z. Each answer (x, y) to its NAM, i.e. to
q(x, y) ← R(x, y), Q(y, z, w), w �= 3, is expanded to (x, y, sum(z)) as an answer
to the aggregate query. sum(z) is the sum of all the values for z having a w, such
that (x, y, z, w) makes R(x, y), Q(y, z, w), w �= 3 true. In the database instance
D = {R(1, 2), R(2, 3), Q(2, 5, 9), Q(2, 6, 7), Q(3, 1, 1), Q(3, 1, 5), Q(3, 8, 3)} the
answer set for the aggregate query is {(1, 2, 5 + 6), (2, 3, 1 + 1)}. �
An aggregate comparison query is a sentence of the form q(agg(z)), agg(z)θk,
where q(agg(z)) is the head of a scalar aggregate conjunctive query (with no free
variables), θ is a comparison operator, and k is an integer number. For example,
the following is an aggregate comparison query asking whether the aggregated
value obtained via q(sum(z)) is bigger than 5: Q : q(sum(z)), sum(z) > 5, with
q(sum(z)) ← R(x, y), Q(y, z, w), w �= 3.

3 Least Squares Fixes

When we update numerical values to restore consistency, it is desirable to make
the smallest overall variation of the original values, while considering the relative
relevance or specific scale of each of the fixable attributes. Since the original
instance and a fix will share the same key values (c.f. Definition 2), we can use
them to compute variations in the numerical values. For a tuple k̄ of values for
the key KR of relation R in an instance D, t̄(k̄, R, D) denotes the unique tuple
t̄ in relation R in instance D whose key value is k̄. To each attribute A ∈ F a
fixed numerical weight α

A
is assigned.

Definition 1. For instances D and D ′ over schema Σ with the same set val (KR)
of tuples of key values for each relation R ∈ R, their square distance is

∆ᾱ(D ,D ′) =
∑

R∈R,A∈F
k̄∈val(KR)

α
A
(π

A
(t̄(k̄, R, D)) − π

A
(t̄(k̄, R, D′)))2,

where π
A

is the projection on attribute A and ᾱ = (α
A
)A∈F . �

Complexity and Approximation of Fixing Numerical Attributes 267

Definition 2. For an instance D, a set of fixable attributes F , a set of key
dependencies K, such that D |= K, and a set of flexible ICs IC: A fix for D wrt
IC is an instance D′ such that: (a) D′ has the same schema and domain as D;
(b) D′ has the same values as D in the attributes in A � F ; (c) D′ |= K; and
(d) D′ |= IC. A least squares fix (LS-fix) for D is a fix D′ that minimizes the
square distance ∆ᾱ(D, D′) over all the instances that satisfy (a) - (d). �

In general we are interested in LS-fixes, but (non-necessarily minimal) fixes will
be useful auxiliary instances.
Example 4. (example 1 cont.) R = {Traffic}, A = {T ime, Link, Type, F low},
KTraffic = {T ime, Link}, F = {Type, F low}, with weights ᾱ = (10−5, 1),
resp. For original instance D, val (KTraffic) = {(1.1, a), (1.1, b), (1.3, b)}, t̄((1.1, a),
Traffic, D) = (1.1, a, 0, 1100), etc. Fixes are D1 = {(1.1, a, 0, 1000), (1.1, b, 1, 900),
(1.3, b, 1, 850)} and D2 = {(1.1, a, 1, 1100), (1.1, b, 1, 900), (1.3, b, 1, 850)}, with
distances ∆ᾱ(D, D1) = 1002 × 10−5 = 10−1 and ∆ᾱ(D, D2) = 12 × 1, resp.
Therefore, D1 is the only LS-fix. �
The coefficients α

A
can be chosen in many different ways depending on factors

like relative relevance of attributes, actual distribution of data, measurement
scales, etc. In the rest of this paper we will assume, for simplification, that
αA = 1 for all A ∈ F and ∆ᾱ(D ,D ′) will be simply denoted by ∆(D ,D ′).

Example 5. The database D has relations Client(ID , A,M), with key ID , at-
tributes A for age and M for amount of money; and Buy(ID , I ,P), with key
{ID , I}, I for items, and P for prices. We have denials IC1 : ∀ID , P, A, M¬
(Buy(ID , I, P),Client(ID , A, M), A < 18, P > 25) and IC2 : ∀ID , A, M¬(
Client(ID , A, M), A < 18, M > 50), requiring that people younger than 18 can-
D: Client ID A M

1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

not spend more than 25 on one item
nor spend more than 50 in the store.
We added an extra column in the ta-
bles with a label for each tuple. IC1 is
violated by {t1,t4} and {t1,t5}; and IC2
by {t1} and {t2}. We have two LS-fixes
(the modified version of tuple t1 is t′1,

D′: D′′:Client’ ID A M
1 15 50 t′

1

2 16 50 t2
′

3 60 900 t3
Buy’ ID I P

1 CD 25 t4
′

1 DVD 25 t5
′

3 DVD 40 t6

Client” ID A M
1 18 52 t1

′′

2 16 50 t2
′′

3 60 900 t3
Buy” ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

etc.), with distances ∆(D, D′) = 22 + 12 + 22 + 12 = 10, and ∆(D, D′′) =
32 + 12 = 10. We can see that a global fix may not be the result of applying
“local” minimal fixes to tuples. �

268 L. Bertossi et al.

The built-in atoms in linear denials determine a solution space for fixes as an
intersection of semi-spaces, and LS-fixes can be found at its “borders” (c.f. pre-
vious example and Proposition A.1 in [5]). It is easy to construct examples with
an exponential number of fixes. For the kind of fixes and ICs we are considering,
it is possible that no fix exists, in contrast to [2, 3], where, if the set of ICs is
consistent as a set of logical sentences, a fix for a database always exist.

Example 6. R(X, Y) has key X and fixable Y . IC1 = {∀X1X2Y ¬(R(X1, Y),
R(X2, Y), X1 = 1, X2 = 2), ∀X1X2Y ¬(R(X1, Y), R(X2, Y), X1 = 1, X2 = 3),
∀X1X2Y ¬(R(X1, Y), R(X2, Y),X1 =2,X2 =3), ∀XY ¬(R(X, Y), Y >3), ∀XY ¬(
R(X, Y), Y < 2)} is consistent. The first three ICs force Y to be different in
every tuple. The last two ICs require 2 ≤ Y ≤ 3. The inconsistent database
R = {(1,−1), (2, 1), (3, 5)} has no fix. Now, for IC2 with ∀X, Y ¬(R(X, Y),
Y > 1) and sum(Y) = 10, any database with less than 10 tuples has no fixes. �
Proposition 1. If D has a fix wrt IC, then it also has an LS-fix wrt IC. �

4 Decidability and Complexity

In applications where fixes are based on changes of numerical values, computing
concrete fixes is a relevant problem. In databases containing census forms, cor-
recting the latter before doing statistical processing is a common problem [11].
In databases with experimental samples, we can fix certain erroneous quantities
as specified by linear ICs. In these cases, the fixes are relevant objects to com-
pute explicitly, which contrasts with CQA [2], where the main motivation for
introducing repairs is to formally characterize the notion of a consistent answer
to a query as an answer that remains under all possible repairs. In consequence,
we now consider some decision problems related to existence and verification of
LS-fixes, and to CQA under different semantics.

Definition 3. For an instance D and a set IC of ICs:
(a) Fix (D, IC) := {D′ | D′ is an LS-fix of D wrt IC}, the fix checking problem.
(b) Fix (IC) := {(D, D′) | D′ ∈ Fix (D, IC)}.
(c) NE (IC) := {D | Fix (D, IC) �= ∅}, for non-empty set of fixes, i.e. the problem
of checking existence of LS-fixes.
(d) NE := {(D, IC) | Fix (D, IC) �= ∅}.
(e) DFP(IC) := {(D, k)| there is D′ ∈ F ix(D, IC) with ∆(D, D′) ≤ k}, the
database fix problem, i.e. the problem of checking existence of LS-fixes within
a given positive distance k.
(f) DFOP(IC) is the optimization problem of finding the minimum distance from
an LS-fix wrt IC to a given input instance. �

Definition 4. Let D be a database, IC a set ICs, and Q a conjunctive query2.
(a) A ground tuple t̄ is a consistent answer to Q(x̄) under the: (a1) skeptical
semantics if for every D′ ∈ Fix (D, IC), D′ |= Q(t̄). (a2) brave semantics if there
2 Whenever we say just “conjunctive query” we understand it is a non aggregate

query.

Complexity and Approximation of Fixing Numerical Attributes 269

exists D′ ∈ Fix (D, IC) with D′ |= Q(t̄). (a3) majority semantics if |{D′ | D′ ∈
Fix (D, IC) and D′ |= Q(t̄)}| > |{D′ | D′ ∈ Fix (D, IC) and D′ �|= Q(t̄)}|.
(b) That t̄ is a consistent answer to Q in D under semantics S is denoted by D |=S
Q[t̄]. If Q is ground and D |=S Q, we say that yes is a consistent answer, meaning
that Q is true in the fixes of D according to semantics S. CA(Q, D, IC,S) is the
set of consistent answers to Q in D wrt IC under semantics S. For ground Q, if
CA(Q, D, IC,S) �= {yes}, CA(Q, D, IC,S) := {no}.
(c) CQA(Q, IC,S) := {(D, t̄) | t̄ ∈ CA(Q, D, IC,S)} is the decision problem of
consistent query answering, of checking consistent answers. �
Proposition 2. NE (IC) can be reduced in polynomial time to the complements
of CQA(False, IC, Skeptical) and CQA(True, IC,Majority), where False,True
are ground queries that are always false, resp. true. �
In Proposition 2, it suffices for queries False,True to be false, resp. true, in all
instances that share the key values with the input database. Then, they can
be represented by ∃Y R(c̄, Y), where c̄ are not (for False), or are (for True) key
values in the original instance.

Theorem 1. Under extended linear denials and complex, filtering, multi-attri-
bute, single-relation, aggregation constraints, the problems NE of existence of
LS-fixes, and CQA under skeptical or majority semantics are undecidable. �
The result about NE can be proved by reduction from the undecidable Hilbert’s
problem on solvability of diophantine equations. For CQA, apply Proposition
2. Here we have the original database and the set of ICs as input parameters.
In the following we will be interested in data complexity, when only the input
database varies and the set of ICs is fixed [1].

Theorem 2. For a fixed set IC of linear denials: (a) Deciding if for an instance
D there is an instance D′ (with the same key values as D) that satisfies IC with
∆(D, D′) ≤ k, with positive integer k that is part of the input, is in NP . (b)
DFP(IC) is NP-complete. (c.f. Definition 3(e)) �
By Proposition 1, there is a fix for D wrt IC at a distance ≤ k iff there is an LS-fix
at a distance ≤ k. Part (b) of Theorem 2 follows from part (a) and a reduction
of Vertex Cover to DFP(IC0), for a fixed set of denials IC0. By Theorem 2(a),
if there is a fix at a distance ≤ k, the minimum distance to D for a fix can be
found by binary search in log(k) steps. Actually, if an LS-fix exists, its square
distance to D is polynomially bounded by the size of D (c.f. proof of Theorem 3
in [5]). Since D and a fix have the same number of tuples, only the size of their
values in a fix matter, and they are constrained by a fixed set of linear denials
and the condition of minimality.
Theorem 3. For a fixed set IC of extended linear denials: (a) The problem
NE (IC) of deciding if an instance has an LS-fix wrt IC is NP -complete, and (b)
CQA under the skeptical and the majority semantics is coNP -hard. �
For hardness in (a), (b) in Theorem 3, linear denials are good enough. Member-
ship in (a) can be obtained for any fixed finite set of extended denials. Part (b)
follows from part (a). The latter uses a reduction from 3-Colorability.

270 L. Bertossi et al.

Theorem 4. For a fixed set IC of extended linear denials: (a) The problem
Fix (IC) of checking if an instance is an LS-fix is coNP -complete, and (b) CQA
under skeptical semantics is in ΠP

2 , and, for ground atomic queries, ∆P
2 -hard. �

Part (a) uses 3SAT. Hardness in (b) is obtained by reduction from a ∆P
2 -complete

decision version of the problem of searching for the lexicographically Maximum
3-Satisfying Assignment (M3SA): Decide if the last variable takes value 1 in it
[17–Theo. 3.4]. Linear denials suffice. Now, by reduction from the Vertex Cover
Problem, we obtain.

Theorem 5. For aggregate comparison queries using sum, CQA under linear
denials and brave semantics is coNP -hard. �

5 Approximation for the Database Fix Problem

We consider the problem of finding a good approximation for the general opti-
mization problem DFOP(IC).

Proposition 3. For a fixed set of linear denials IC, DFOP(IC) is MAXSNP-
hard. �
This result is obtained by establishing an L-reduction to DFOP(IC) from the
MAXSNP-complete [22, 21] B-Minimum Vertex Cover Problem, i.e. the vertex
cover minimization problem for graphs of bounded degree [16–Chapter 10]. As
an immediate consequence, we obtain that DFOP(IC) cannot be uniformly ap-
proximated within arbitrarily small constant factors [21].

Corollary 1. Unless P = NP , there is no Polynomial Time Approximation
Schema for DFOP . �
This negative result does not preclude the possibility of finding an efficient al-
gorithm for approximation within a constant factor for DFOP . Actually, in the
following we do this for a restricted but still useful class of denial constraints.

5.1 Local Denials

Definition 5. A set of linear denials IC is local if: (a) Attributes participating
in equality atoms between attributes or in joins are all rigid; (b) There is a
built-in atom with a fixable attribute in each element of IC; (c) No attribute A
appears in IC both in comparisons of the form A < c1 and A > c2.3 �

In Example 5, IC is local. In Example 6, IC1 is not local. Local constraints have
the property that by doing local fixes, no new inconsistencies are generated,
and there is always an LS-fix wrt to them (c.f. Proposition A.2 in [5]). Locality
is a sufficient, but not necessary condition for existence of LS-fixes as can be
seen from the database {P (a, 2)}, with the first attribute as a key and non-local
denials ¬(P (x, y), y < 3),¬(P (x, y), y > 5), that has the LS-fix {P (a, 3)}.
3 To check condition (c), x ≤ c, x ≥ c, x �= c have to be expressed using <, >, e.g.

x ≤ c by x < c + 1.

Complexity and Approximation of Fixing Numerical Attributes 271

Proposition 4. For the class of local denials, DFP is NP-complete, and DFOP
is MAXSNP-hard. �

This proposition tells us that the problem of finding good approximations in the
case of local denials is still relevant.

Definition 6. A set I of database tuples from D is a violation set for ic ∈ IC
if I �|= ic, and for every I ′ � I, I ′ |= ic. I(D, ic, t) denotes the set of violation
sets for ic that contain tuple t. �

A violation set I for ic is a minimal set of tuples that simultaneously participate
in the violation of ic.

Definition 7. Given an instance D and ICs IC, a local fix for t ∈ D, is a
tuple t′ with: (a) the same values for the rigid attributes as t; (b) S(t, t′) :=
{I | there is ic ∈ IC, I ∈ I(D, ic, t) and ((I � {t}) ∪ {t′}) |= ic} �= ∅; and
(c) there is no tuple t′′ that simultaneously satisfies (a), S(t, t′′) = S(t, t′), and
∆({t}, {t′′}) ≤ ∆({t}, {t′}), where ∆ denotes quadratic distance. �

S(t, t′) contains the violation sets that include t and are solved by replacing t′ for
t. A local fix t′ solves some of the violations due to t and minimizes the distance
to t.

5.2 Database Fix Problem as a Set Cover Problem

For a fixed set IC of local denials, we can solve an instance of DFOP by trans-
forming it into an instance of the Minimum Weighted Set Cover Optimization
Problem (MWSCP). This problem is MAXSNP-hard [20, 21], and its general ap-
proximation algorithms are within a logarithmic factor [20, 9]. By concentrating
on local denials, we will be able to generate a version of the MWSCP that can
be approximated within a constant factor (c.f. Section 5.3).

Definition 8. For a database D and a set IC of local denials, G(D, IC) = (T , H)
denotes the conflict hypergraph for D wrt IC [8], which has in the set T of
vertices the database tuples, and in the set H of hyperedges, the violation sets
for elements ic ∈ IC. �
Hyperedges in H can be labelled with the corresponding ic, so that different
hyperedges may contain the same tuples. Now we build an instance ofMWSCP.

Definition 9. For a database D and a set IC of local denials, the instance
(U,S, w) for theMWSCP, where U is the underlying set, S is the set collection,
and w is the weight function, is given by: (a) U := H , the set of hyperedges of
G(D, IC). (b) S contains the S(t, t′), where t′ is a local fix for a tuple t ∈ D. (c)
w(S(t, t′)) := ∆({t}, {t′}). �
It can be proved that the S(t, t′) in this construction are non empty, and that
S covers U (c.f. Proposition A.2 in [5]).

If for the instance (U,S, w) of MWSCP we find a minimum weight cover C, we
could think of constructing a fix by replacing each inconsistent tuple t ∈ D by a

272 L. Bertossi et al.

local fix t′ with S(t, t′) ∈ C. The problem is that there might be more than one
t′ and the key dependencies would not be respected. Fortunately, this problem
can be circumvented.

Definition 10. Let C be a cover for instance (U,S, w) of the MWSCP associ-
ated to D, IC. (a) C� is obtained from C as follows: For each tuple t with local
fixes t1, . . . , tn, n > 1, such that S(t, ti) ∈ C, replace in C all the S(t, ti) by a
single S(t, t�), where t� is such that S(t, t�) =

⋃n
i=1 S(t, ti). (b) D(C) is the

database instance obtained from D by replacing t by t′ if S(t, t′) ∈ C�. �
It holds (c.f. Proposition A.3 in [5]) that such an S(t, t�) ∈ S exists in part (a)
of Definition 10. Notice that there, tuple t could have other S(t, t′) outside C.
Now we can show that the reduction to MWSCP keeps the value of the objective
function.
Proposition 5. If C is an optimal cover for instance (U,S, w) of the MWSCP
associated to D, IC, then D(C) is an LS-fix of D wrt IC, and ∆(D, D(C)) =
w(C) = w(C∗). �

Proposition 6. For every LS-fix D′ of D wrt a set of local denials IC, there
exists an optimal cover C for the associated instance (U,S, w) of the MWSCP ,
such that D′ = D(C). �
Proposition 7. The transformation of DFOP into MWSCP , and the construc-
tion of database instance D(C) from a cover C for (U,S, w) can be done in
polynomial time in the size of D. �
We have established that the transformation of DFOP into MWSCP is an L-
reduction [21]. Proposition 7 proves, in particular, that the number of violation
sets S(t, t′) is polynomially bounded by the size of the original database D.

Example 7. (example 5 continued) We illustrate the reduction from DFOP to
MWSCP . The violation sets are {t1,t4} and {t1,t5} for IC 1 and {t1} and {t2} for
IC 2. The figure shows the hypergraph. For the MWSCP instance, we need the
local fixes. Tuple t1 has two local fixes t′1 = (1, 15, 50), that solves the violation
set {t1} of IC2 (hyperedge B), and t′′1 = (1, 18, 52), that solves the violation sets
{t1, t4} and {t1, t5} of IC 1, and {t1} of IC 2 (hyperedges A,B, C), with weights
4 and 9, resp. t2, t4 and t5 have one local fix each corresponding to: (2, 16, 50),
(1,CD , 25) and (1,DVD, 25), resp. The consistent tuple t3 has no local fix.

The MWSCP instance is shown in the table, where the elements are rows and
the sets (e.g. S1 = S(t1, t′1)), columns. An entry 1 means that the set contains

Set S1 S2 S3 S4 S5

Local Fix t1’ t1” t2’ t4’ t5’
Weight 4 9 1 4 1
Hyperedge A 0 1 0 1 0
Hyperedge B 1 1 0 0 0
Hyperedge C 0 1 0 0 1
Hyperedge D 0 0 1 0 0

Complexity and Approximation of Fixing Numerical Attributes 273

the corresponding element; and a 0, otherwise. There are two minimal covers,
both with weight 10: C1 = {S2, S3} and C2 = {S1, S3, S4, S5}. D(C1) and D(C2)
are the two fixes for this problem. �

If we apply the transformation to Example 6, that had non-local set of ICs and
no repairs, we will find that instance D(C), for C a set cover, can be constructed
as above, but it does not satisfy the flexible ICs, because changing inconsis-
tent tuples by their local fixes solves only the initial inconsistencies, but new
inconsistencies are introduced.

5.3 Approximation Via Set Cover Optimization

Now that we have transformed the database fix problem into a weighted set cover
problem, we can apply approximation algorithms for the latter. We know, for
example, that using a greedy algorithm, MWSCP can be approximated within a
factor log(N), where N is the size of the underlying set U [9]. The approximation
algorithm returns not only an approximation ŵ to the optimal weight wo, but
also a -non necessarily optimal- cover Ĉ for problem (U,S, w). As in Definition
10, Ĉ can be used to generate via (Ĉ)�, a fix D(Ĉ) for D that may not be LS-
minimal.

Example 8. (examples 5 and 7 continued) We show how to to compute a solution
to this particular instance of DFOP using the greedy approximation algorithm
for MWSCP presented in [9]. We start with Ĉ := ∅, S0

i := Si; and we add to C the
Si such that S0

i has the maximum contribution ratio |S0
i |/w(S0

i). The alternatives
are |S1|/w(S1) = 1/4, |S2|/w(S2) = 3/9, |S3|/w(S3) = 1, |S4|/w(S4) = 1/4 and
|S5|/w(S5) = 1. The ratio is maximum for S3 and S5, so we can add any of them
to Ĉ. If we choose the first, we get Ĉ = {S3}. Now we compute the S1

i := S0
i �S0

3 ,
and choose again an Si for Ĉ such that S1

i maximizes the contribution ratio. Now
S5 is added to Ĉ, because S1

5 gives the maximum. By repeating this process until
we get all the elements of U covered, i.e. all the Sk

i become empty at some
iteration point k, we finally obtain Ĉ = {S3, S5, S1, S4}. In this case Ĉ is an
optimal cover and therefore, D(Ĉ) is exactly an LS-fix, namely D′ in Example 5.
Since this is an approximation algorithm, in other examples the cover obtained
might not be optimal. �

Proposition 8. Given database instance D with local ICs IC, the database
instance D(Ĉ) obtained from the approximate cover Ĉ is a fix and it holds
∆(D, D(Ĉ)) ≤ log(N) × ∆(D, D′), where D′ is any LS-fix of D wrt IC and
N is the number of of violation sets for D wrt IC. �

In consequence, for any set IC of local denials, we have a polynomial time ap-
proximation algorithm that solves DFOP(IC) within an O(log(N)) factor, where
N is the number of violation sets for D wrt IC. As mentioned before, this number
N , the number of hyperedges in G, is polynomially bounded by |D| (c.f. Propo-
sition 7). N may be small if the number of inconsistencies or the number of
database atoms in the ICs are small, which is likely the case in real applications.

274 L. Bertossi et al.

However, in our case we can get even better approximations via a cover Ĉ
obtained with an approximation algorithms for the special case of the MWSCP
where the number of occurrences of an element of U in elements of S is bounded
by a constant. For this case of the MWSCP there are approximations within a
constant factor based on “linear relaxation” [16–Chapter 3]. This is clearly the
case in our application, being m × |F| × |IC | a constant bound (independent
from |D|) on the frequency of the elements, where m is the maximum number
of database atoms in an IC.

Theorem 6. There is an approximation algorithm that, for a given database
instance D with local ICs IC, returns a fix D(Ĉ) such that ∆(D, D(Ĉ)) ≤ c ×
∆(D, D′), where c is a constant and D′ is any LS-fix of D. �

6 One Atoms Denials and Conjunctive Queries

In this section we concentrate on the common case of one database atom denials
(1AD), i.e. of the form ∀¬(A, B), where atom A has a predicate in R, and B
is a conjunction of built-in atoms. They capture range constraints; and census
data is usually stored in single relation schemas [11].

For 1ADs, we can identify tractable cases for CQA under LS-fixes by reduction
to CQA for (tuple and set-theoretic) repairs of the form introduced in [2] for key
constraints. This is because each violation set (c.f. Definition 6) contains one
tuple, maybe with several local fixes, but all sharing the same key values; and
then the problem consists in choosing one from different tuples with the same key
values (c.f. proof in [5] of Theorem 7). The transformation preserves consistent
answers to both ground and open queries.

The “classical” -tuple and set oriented- repair problem as introduced in [2]
has been studied in detail for functional dependencies in [8, 12]. In particular, for
tractability of CQA in our setting, we can use results and algorithms obtained
in [12] for the classical framework.

The join graph G(Q) [12] of a conjunctive query Q is a directed graph, whose
vertices are the database atoms in Q. There is an arc from L to L′ if L �= L′

and there is a variable w that occurs at the position of a non-key attribute in L
and also occurs in L′. Furthermore, there is a self-loop at L if there is a variable
that occurs at the position of a non-key attribute in L, and at least twice in L.

When Q does not have repeated relations symbols, we write Q ∈ CTree if G(Q)
is a forest and every non-key to key join of Q is full i.e. involves the whole key.
Classical CQA is tractable for queries in CTree [12].

Theorem 7. For a fixed set of 1ADs and queries in CTree , consistent query
answering under LS-fixes is in PTIME . �

We may define that a aggregate conjunctive query belongs to CTree if its un-
derlying non-aggregate conjunctive query, i.e. its NAM (c.f. Section 2) belongs
to CTree . Even for 1ADs, with simple comparison aggregate queries with sum,
tractability is lost under the brave semantics.

Complexity and Approximation of Fixing Numerical Attributes 275

Proposition 9. For a fixed set of 1ADs, and for aggregate queries that are in
CTree or acyclic, CQA is NP-hard under the brave semantics. �
For queries Q returning numerical values, which is common in our framework,
it is natural to use the range semantics for CQA, introduced in [3] for scalar
aggregate queries and functional dependencies under classical repairs. Under this
semantics, a consistent answer is the pair consisting of the min-max and max-
min answers, i.e. the supremum and the infimum, resp., of the set of answers to
Q obtained from LS-fixes. The CQA decision problems under range semantics
consist in determining if a numerical query Q, e.g. an aggregate query, has its
answer ≤ k1 in every fix (min-max case), or ≥ k2 in every fix (max-min case).

Theorem 8. For each of the aggregate functions sum, count distinct, and aver-
age, there is a fixed set of 1ADs and a fixed aggregate acyclic conjunctive query,
such that CQA under the range semantics is NP -hard. �
For the three aggregate functions one 1AD suffices. The results for count distinct
and average are obtained by reduction from MAXSAT [21] and 3SAT , resp. For
sum, we use a reduction from the Independent Set Problem with bounded degree
3 [14]. The general Independent Set Problem has bad approximation properties
[16–Chapter 10]. The Bounded Degree Independent Set has efficient approxima-
tions within a constant factor that depends on the degree [15].

Theorem 9. For any set of 1ADs and conjunctive query with sum over a non-
negative attribute, there is a polynomial time approximation algorithm with a
constant factor for CQA under min-max range semantics. �

The factor in this theorem depends upon the ICs and the query, but not on the
size of the database. The acyclicity of the query is not required. The algorithm
is based on a reduction of our problem to satisfying a subsystem with maximum
weight of a system of weighted algebraic equations over the Galois field with two
elements GF [2] (a generalization of problems in [13, 24]), for which a polynomial
time approximation similar to the one for MAXSAT can be given [24].

7 Conclusions

We have shown that fixing numerical values in databases poses many new com-
putational challenges that had not been addressed before in the context of
consistent query answering. These problems are particularly relevant in census
like applications, where the problem of data editing is a common and difficult
task (c.f. http://www.unece.org/stats/documents/2005.05.sde.htm). Also
our concentration on aggregate queries is particularly relevant for this kind of
statistical applications. In this paper we have just started to investigate some
of the many problems that appear in this context, and several extensions are
in development. We concentrated on integer numerical values, which provide a
useful and challenging domain. Considering real numbers in fixable attributes
opens many new issues, requires different approaches; and is a subject of ongoing
research.

276 L. Bertossi et al.

The framework established in this paper could be applied to qualitative at-
tributes with an implicit linear order given by the application. The result we
have presented for fixable attributes that are all equally relevant (α

A
= 1 in

Definitions 1 and 2) should carry over without much difficulty to the general
case of arbitrary weighted fixes. We have developed (but not reported here) ex-
tensions to our approach that consider minimum distribution variation LS-fixes
that keep the overall statistical properties of the database. We have also devel-
oped optimizations of the approximation algorithm presented in Section 5; and
its implementation and experiments are ongoing efforts. More research on the
impact of aggregation constraints on LS-fixes is needed.

Of course, if instead of the L2 distance, the L1 distance is used, we may
get for the same database a different set of (now L1) fixes. The actual approx-
imations obtained in this paper change too. However, the general complexity
and approximability results should remain. They basically depend on the fact
that distance functions are non-negative, additive wrt attributes and tuples,
computable in polynomial time, and monotonically increasing. Another possible
semantics could consider an epsilon of error in the distance in such a way that
if, for example, the distance of a fix is 5 and the distance to another fix is 5.001,
we could take both of them as (minimal) LS-fixes.

Other open problems refer to cases of polynomial complexity for linear de-
nials with more that one database atom; approximation algorithms for the
DFOP for non-local cases; and approximations to CQA for other aggregate
queries.

For related work, we refer to the literature on consistent query answering (c.f.
[4] for a survey and references). Papers [25] and [11] are the closest to our work,
because changes in attribute values are basic repair actions, but the peculiar-
ities of numerical values and quantitative distances between databases are not
investigated. Under the set-theoretic, tuple-based semantics, [8, 7, 12] report on
complexity issues for conjunctive queries, functional dependencies and foreign
key constraints. A majority semantics was studied in [19] for database merging.
Quite recent papers, but under semantics different than ours, report research
on fixing numerical values under aggregation constraints [10]; and heuristic con-
struction of repairs based on attribute values changes [6].

Acknowledgments. Research supported by NSERC, CITO/IBM-CAS Student
Internship Program, and EU projects: Sewasie, Knowledge Web, and Interop. L.
Bertossi is Faculty Fellow of IBM Center for Advanced Studies (Toronto Lab.).

References

[1] Abiteboul, S., Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

[2] Arenas, M, Bertossi, L. and Chomicki, J. Consistent Query Answers in Incon-
sistent Databases. In Proc. ACM Symposium on Principles of Database Systems
(PODS 99), 1999, pp. 68-79.

Complexity and Approximation of Fixing Numerical Attributes 277

[3] Arenas, M, Bertossi, L. and Chomicki, J., He, X., Raghavan, V., and Spinrad,
J. Scalar aggregation in inconsistent databases. Theoretical Computer Science,
2003, 296:405–434.

[4] Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. In
Logics for Emerging Applications of Databases, J. Chomicki, G. Saake and R. van
der Meyden (eds.), Springer, 2003.

[5] Bertossi, L., Bravo, L., Franconi, E. and Lopatenko, A. Fixing Numerical At-
tributes Under Integrity Constraints. Corr Archiv paper cs.DB/0503032; March
15, 2005.

[6] Bohannon, P., Michael, F., Fan, F. and Rastogi, R. A Cost-Based Model and
Effective Heuristic for Repairing Constraints by Value Modification. In Proc. ACM
International Conference on Management of Data (SIGMOD 05), 2005, pp. 143-
154.

[7] Cali, A., Lembo, D., Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. ACM Symposium
on Principles of Database Systems (PODS 03), 2003, pp. 260-271.

[8] Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Information and Computation, 2005, 197(1-2):90-121.

[9] Chvatal, V. A Greedy Heuristic for the Set Covering Problem. Mathematics of
Operations Research, 1979, 4:233-235.

[10] Flesca, S., Furfaro, F. and Parisi, F. Consistent Query Answers on Numerical
Databases under Aggregate Constraints. In Proc. Tenth International Symposium
on Database Programming Languages (DBPL 05), 2005.

[11] Franconi, E., Laureti Palma, A., Leone, N., Perri, S. and Scarcello, F. Census
Data Repair: a Challenging Application of Disjunctive Logic Programming. In
Proc. Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 01).
Springer LNCS 2250, 2001, pp. 561-578.

[12] Fuxman, A. and Miller, R. First-Order Query Rewriting for Inconsistent
Databases. In Proc. International Conference on Database Theory (ICDT 05),
Springer LNCS 3363, 2004, pp. 337-354.

[13] Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[14] Garey, M., Johnson, D. and Stockmeyer, L. Some Simplified NP-Complete Graph
Problems. Theoretical Computer Science, 1976, 1(3):237-267.

[15] Halldorsson, M. and Radhakrishnan, J. Greed is Good: Approximating Indepen-
dent Sets in Sparse and Bounded-degree Graphs. In Proc. ACM Symposium on
Theory of Computing (SToC 94), 1994, pp. 439-448.

[16] Hochbaum, D.(ed.) Approximation Algorithms for NP-Hard Problems. PWS,
1997.

[17] Krentel, M. The Complexity of Optimization Problems. J. Computer and Systems
Sciences, 1988, 36:490-509.

[18] Kuper, G., Libkin, L. and Paredaens, J.(eds.) Constraint Databases. Springer,
2000.

[19] Lin, J. and Mendelzon, A.O. Merging Databases under Constraints. International
Journal of Cooperative Information Systems, 1996, 7(1):55-76.

[20] Lund, C. and Yannakakis, M. On the Hardness of Approximating Minimization
Problems. J. of the Association for Computing Machinery, 1994, 45(5):960-981.

[21] Papadimitriou, Ch.Computational Complexity. Addison-Wesley, 1994.
[22] Papadimitriou, Ch. and Yannakakis, M. Optimization, Approximation and Com-

plexity Classes. J. Computer and Systems Sciences, 1991, 43:425-440.

278 L. Bertossi et al.

[23] Ross, K., Srivastava, D., Stuckey, P., and Sudarshan, S.. Foundations of Aggre-
gation Constraints. Theoretical Computer Science, 1998, 193(1-2):149–179.

[24] Vazirani, V. Approximation Algorithms. Springer, 2001.
[25] Wijsen, J. Condensed Representation of Database Repairs for Consistent Query

Answering. In Proc. International Conference on Database Theory (ICDT 03),
Springer LNCS 2572, 2003, pp. 378-393.

[26] Wijsen, J. Making More Out of an Inconsistent Database. In Proc. East-European
Conference on Advances in Databases and Information Systems (ADBIS 04),
Springer LNCS 3255, 2004, pp. 291-305.

Consistent Query Answers on Numerical
Databases Under Aggregate Constraints

Sergio Flesca, Filippo Furfaro, and Francesco Parisi

DEIS - Università della Calabria,
Via Bucci - 87036 Rende (CS) ITALY

Fax: +39 0984 494713
{flesca, furfaro, parisi}@si.deis.unical.it

Abstract. The problem of extracting consistent information from re-
lational databases violating integrity constraints on numerical data is
addressed. In particular, aggregate constraints defined as linear inequal-
ities on aggregate-sum queries on input data are considered. The notion
of repair as consistent set of updates at attribute-value level is exploited,
and the characterization of several data-complexity issues related to re-
pairing data and computing consistent query answers is provided.

1 Introduction

Research has deeply investigated several issues related to the use of integrity
constraints on relational databases. In this context, a great deal of attention has
been devoted to the problem of extracting reliable information from databases
containing pieces of information inconsistent w.r.t. some integrity constraints.
All previous works in this area deal with “classical” forms of constraint (such as
keys, foreign keys, functional dependencies), and propose different strategies for
updating inconsistent data reasonably, in order to make it consistent by means of
minimal changes. Indeed these kinds of constraint often do not suffice to manage
data consistency, as they cannot be used to define algebraic relations between
stored values. In fact, this issue frequently occurs in several scenarios, such as
scientific databases, statistical databases, and data warehouses, where numerical
values of tuples are derivable by aggregating values stored in other tuples.

In this work we focus our attention on databases where stored data violates
a set of aggregate constraints, i.e. integrity constraints defined on aggregate val-
ues extracted from the database. These constraints are defined on numerical
attributes (such as sales prices, costs, etc.) which represent measure values and
are not intrinsically involved in other forms of constraints.

Example 1. Table 1 represents a two-years cash budget for a firm, that is a
summary of cash flows (receipts, disbursements, and cash balances) over the
specified periods. Values ‘det ’, ‘aggr ’ and ‘drv ’ in column Type stand for detail,
aggregate and derived, respectively. In particular, an item of the table is aggregate
if it is obtained by aggregating items of type detail of the same section, whereas

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 279–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

280 S. Flesca, F. Furfaro, and F. Parisi

Table 1. A cash budget

Year Section Subsection Type Value

2003 Receipts beginning cash drv 20
2003 Receipts cash sales det 100
2003 Receipts receivables det 120
2003 Receipts total cash receipts aggr 250
2003 Disbursements payment of accounts det 120
2003 Disbursements capital expenditure det 0
2003 Disbursements long-term financing det 40
2003 Disbursements total disbursements aggr 160
2003 Balance net cash inflow drv 60
2003 Balance ending cash balance drv 80

2004 Receipts beginning cash drv 80
2004 Receipts cash sales det 100
2004 Receipts receivables det 100
2004 Receipts total cash receipts aggr 200
2004 Disbursements payment of accounts det 130
2004 Disbursements capital expenditure det 40
2004 Disbursements long-term financing det 20
2004 Disbursements total disbursements aggr 190
2004 Balance net cash inflow drv 10
2004 Balance ending cash balance drv 90

a derived item is an item whose value can be computed using the values of other
items of any type and belonging to any section.

A cash budget must satisfy the following integrity constraints:

1. for each section and year, the sum of the values of all detail items must be
equal to the value of the aggregate item of the same section and year;

2. for each year, the net cash inflow must be equal to the difference between
total cash receipts and total disbursements;

3. for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash balance.

Table 1 was acquired by means of an OCR tool from two paper documents,
reporting the cash budget for 2003 and 2004. The original paper document was
consistent, but some symbol recognition errors occurred during the digitizing
phase, as constraints 1) and 2) are not satisfied on the acquired data for year
2003, that is:

i) in section Receipts, the aggregate value of total cash receipts is not equal to
the sum of detail values of the same section.

ii) the value of net cash inflow is not to equal the difference between total cash
receipts and total disbursements.

Consistent Query Answers on Numerical Databases 281

In order to exploit the digital version of the cash budget, a fundamental issue
is to define a reasonable strategy for locating OCR errors, and then “repairing”
the acquired data to extract reliable information. �	

Most of well-known techniques for repairing data violating either key con-
straints or functional dependencies accomplish this task by performing deletions
and insertions of tuples. Indeed this approach is not suitable for contexts anal-
ogous to that of Example 1, that is of data acquired by OCR tools from paper
documents. For instance, repairing Table 1 by either adding or removing rows
means hypothesizing that the OCR tool either jumped a row or “invented” it
when acquiring the source paper document, which is rather unrealistic. The same
issue arises in other scenarios dealing with numerical data representing pieces of
information acquired automatically, such as sensor networks. In a sensor network
with error-free communication channels, no reading generated by sensors can be
lost, thus repairing the database by adding new readings (as well as removing
collected ones) is of no sense. In this kind of scenario, the most natural approach
to data repairing is updating directly the numerical data: this means working at
attribute-level, rather than at tuple-level. For instance, in the case of Example 1,
we can reasonably assume that inconsistencies of digitized data are due to sym-
bol recognition errors, and thus trying to re-construct actual data values is well
founded. Likewise, in the case of sensor readings violating aggregate constraints,
we can hypothesize that inconsistency is due to some trouble occurred at a sen-
sor while generating some reading, thus repairing data by modifying readings
instead of deleting (or inserting) them is justified.

1.1 Related Work

First theoretical approaches to the problem of dealing with incomplete and in-
consistent information date back to 80s, but these works mainly focus on issues
related to the semantics of incompleteness [14]. The problem of extracting re-
liable information from inconsistent data was first addressed in [1], where an
extension of relational algebra (namely flexible algebra) was proposed to eval-
uate queries on data inconsistent w.r.t. key constraints (i.e. tuples having the
same values for key attributes, but conflicting values for other attributes). The
first proof-theoretic notion of consistent query answer was introduced in [9], ex-
pressing the idea that tuples involved in an integrity violation should not be
considered in the evaluation of consistent query answering. In [2] a different no-
tion of consistent answer was introduced, based on the notion of repair : a repair
of an inconsistent database D is a database D′ satisfying the given integrity con-
straints and which is minimally different from D. Thus, the consistent answer of
a query q posed on D is the answer which is in every result of q on each repair
D′. In particular, in [2] the authors show that, for restricted classes of queries
and constraints, consistent answers can be evaluated without computing repairs,
but by looking only at the specified constraints and rewriting the original query
q into a query q′ such that the answer of q′ on D is equal to the consistent
answer of q on D. Based on the notions of repair and consistent query answer

282 S. Flesca, F. Furfaro, and F. Parisi

introduced in [2], several works investigated more expressive classes of queries
and constraints. In [3] extended disjunctive logic programs with exceptions were
used for the computation of repairs, and in [4] the evaluation of aggregate queries
on inconsistent data was investigated. A further generalization was proposed in
[13], where the authors defined a technique based on the rewriting of constraints
into extended disjunctive rules with two different forms of negation (negation
as failure and classical negation). This technique was shown to be sound and
complete for universally quantified constraints.

All the above-cited approaches assume that tuple insertions and deletions
are the basic primitives for repairing inconsistent data. More recently, in [12]
a repairing strategy using only tuple deletions was proposed, and in [7, 19, 20]
repairs consisting of also value-update operations were considered. The latter
are the first approaches performing repairs at the attribute-value level, but are
not well-suited in our context, as they do not consider any form of aggregate
constraint.

The first work investigating aggregate constraints on numerical data is [18],
where the consistency problem of very general forms of aggregation is consid-
ered, but no issue related to data-repairing is investigated. In [6] the problem of
repairing databases by fixing numerical data at attribute level is investigated.
The authors show that deciding the existence of a repair under both denial con-
straints (where built-in comparison predicates are allowed) and a non-linear form
of multi-attribute aggregate constraints is undecidable. Then they disregard ag-
gregate constraints and focus on the problem of repairing data violating denial
constraints, where no form of aggregation is allowed in the adopted constraints.

1.2 Main Contribution

We investigate the problem of repairing and extracting reliable information from
data violating a given set of aggregate constraints. These constraints consist of
linear inequalities on aggregate-sum queries issued on measure values stored in
the database. This syntactic form enables meaningful constraints to be expressed,
such as those of Example 1 as well as other forms which often occur in practice.

We consider database repairs consisting of “reasonable” sets of value-update
operations aiming at re-constructing the correct measure values of inconsistent
data. We adopt two different criteria for determining whether a set of update
operations repairing data can be considered “reasonable” or not: set -minimal
semantics and card -minimal semantics. Both these semantics aim at preserv-
ing the information represented in the source data as much as possible. They
correspond to different repairing strategies which turn out to be well-suited for
different application scenarios.

We provide the complexity characterization of three fundamental problems:

i. repairability: is there at least one repair for the given database w.r.t. the
specified constraints?

ii. repair checking: given a set of update operations, is it a “reasonable” repair?
iii. consistent query answer : is a given boolean query true in every “reasonable”

repair?

Consistent Query Answers on Numerical Databases 283

2 Preliminaries

We assume classical notions of database scheme, relational scheme, and rela-
tions. In the following we will also use a logical formalism to represent relational
databases, and relational schemes will be represented by means of sorted predi-
cates of the form R(A1 :∆1, . . . , An :∆n), where A1, . . . , An are attribute names
and ∆1, . . . , ∆n are the corresponding domains. Each ∆i can be either Z (in-
finite domain of integers), R (reals), or S (strings). Domains R and Z will be
said to be numerical domains, and attributes defined over R or Z will be said to
be numerical attributes. Given a ground atom t denoting a tuple, the value of
attribute A of t will be denoted as t[A].

Given a database scheme D, we will denote as MD (namely, Measure at-
tributes) the set of numerical attributes representing measure data. That is,
MD specifies the set of attributes representing measure values, such as weights,
lengths, prices, etc. For instance, in Example 1, MD consists of the only attribute
Value.

2.1 Aggregate Constraints

Given a relational scheme R(A1 :∆1, . . . , An :∆n), an attribute expression on R
is defined recursively as follows:

- a numerical constant is an attribute expression;
- each Ai (with i ∈ [1..n]) is an attribute expression;
- e1ψe2 is an attribute expression on R, if e1, e2 are attribute expressions on R

and ψ is an arithmetic operator in {+,−};
- c×(e) is an attribute expressions on R, if e is an attribute expression on R and

c a numerical constant.

Let R be a relational scheme and e an attribute expression on R. An aggregation
function on R is a function χ : (Λ1 × · · · × Λk) → R, where each Λi is either Z,
or R, or S, and it is defined as follows:

χ(x1, . . . , xk) = SELECT sum(e)
FROM R
WHERE α(x1, . . . , xk)

where α(x1, . . . , xk) is a boolean formula on x1, . . . , xk, constants and attributes
of R.

Example 2. The following aggregation functions are defined on the relational
scheme CashBudget(Year, Section, Subsection, Type, Value) of Example 1:

χ1(x, y, z) = SELECT sum(Value)
FROM CashBudget
WHERE Section=x

AND Year=y AND Type=z

χ2(x, y) = SELECT sum(Value)
FROM CashBudget
WHERE Year = x

AND Subsection=y

Function χ1 returns the sum of Value of all the tuples having Section x, Year
y and Type z. For instance, χ1(‘Receipts’, ‘2003’, ‘det’) returns 100 + 120 = 220,

284 S. Flesca, F. Furfaro, and F. Parisi

whereas χ1(‘Disbursements’, ‘2003’, ‘aggr’) returns 160. Function χ2 returns the
sum of Value of all the tuples where Year=x and Subsection=y. In our run-
ning example, as the pair Year, Subsection is a key for the tuples of Cash-
Budget, the sum returned by χ2 is an attribute value of a single tuple. For in-
stance, χ2(‘2003’, ‘cash sales’) returns 100, whereas χ2(‘2004’, ‘net cash inflow’)
returns 10. �	

Definition 1 (Aggregate constraint). Given a database scheme D, an ag-
gregate constraint on D is an expression of the form:

∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑
i=1

ci · χi(Xi) ≤ K

)
(1)

where:

1. c1, . . . , cn, K are constants;
2. φ(x1, . . . , xk) is a conjunction of atoms containing the variables x1, . . . , xk;
3. each χi(Xi) is an aggregation function, where Xi is a list of variables and
constants, and variables appearing in Xi are a subset of {x1, . . . , xk}.

Given a database D and a set of aggregate constraints AC, we will use the
notation D |= AC [resp. D �|= AC] to say that D is consistent [resp. inconsistent]
w.r.t. AC.

Observe that aggregate constraints enable equalities to be expressed as well,
since an equality can be viewed as a pair of inequalities. For the sake of brevity,
in the following equalities will be written explicitly.

Example 3. Constraint 1 defined in Example 1 can be expressed as follows:

∀ x, y, s, t, v CashBudget(y, x, s, t, v) =⇒ χ1(x, y, ‘det’) − χ1(x, y, ‘aggr’) = 0

�	

For the sake of simplicity, in the following we will use a shorter notation for
denoting aggregate constraints, where universal quantification is implied and
variables in φ which do not occur in any aggregation function are replaced with
the symbol ‘ ’. For instance, the constraint of Example 3 can be written as:

CashBudget(y, x, , ,) =⇒ χ1(x, y, ‘det ’) − χ1(x, y, ‘aggr ’) = 0

Example 4. Constraints 2 and 3 of Example 1 can be expressed as follows:

Constraint 2: CashBudget(x, , , ,) =⇒
χ2(x, ‘net cash inflow’) − (χ2(x, ‘total cash receipts’) − χ2(x, ‘total disbursements’)) = 0

Constraint 3: CashBudget(x, , , ,) =⇒
χ2(x, ‘ending cash balance’) − (χ2(x, ‘beginning cash’) + χ2(x, ‘net cash balance’)) = 0

Consider the database scheme consisting of relation CashBudget and relation
Sales(Product, Year, Income), containing pieces of information on annual prod-
uct sales.The following aggregate constraint says that, for each year, the value

Consistent Query Answers on Numerical Databases 285

of cash sales in CashBudget must be equal to the total incomes obtained from
relation Sales :

CashBudget(x, , , ,) ∧ Sales(, x,) =⇒ χ2(x, ‘cash sales’) − χ3(x) = 0
where χ3(x) is the aggregation function returning the total income due to prod-
ucts sales in year x:

χ3(x) = SELECT sum(Income)
FROM Sales
WHERE Year = x �	

2.2 Updates

Updates at attribute-level will be used in the following as the basic primitives for
repairing data violating aggregate constraints. Given a relational scheme R in
the database scheme D, let MR = {A1, . . . , Ak} be the subset of MD containing
all the attributes in R belonging to MD.

Definition 2 (Atomic update). Let t = R(v1, . . . , vn) be a tuple on the re-
lational scheme R(A1 : ∆1, . . . , An : ∆n). An atomic update on t is a triplet
< t, Ai, v

′
i >, where Ai ∈ MR and v′i is a value in ∆i and v′i �= vi.

Update u =< t, Ai, v
′
i > replaces t[Ai] with v′i, thus yielding the tuple u(t) =

R(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn).

Observe that atomic updates work on the set MR of measure attributes, as our
framework is based on the assumption that data inconsistency is due to errors in
the acquisition phase (as in the case of digitization of paper documents) or in the
measurement phase (as in the case of sensor readings). Therefore our approach
will only consider repairs aiming at re-constructing the correct measures.

Example 5. Update u =< t,Value, 130 > issued on the following tuple:

t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100)

returns the tuple:

u(t) = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 130).
�	

Given an update u, we denote the attribute updated by u as λ(u). That is, if
u = < t, Ai, v > then λ(u) =< t, Ai >.

Definition 3 (Consistent database update). Let D be a database and U =
{u1, . . . , un} be a set of atomic updates on tuples of D. The set U is said to be
a consistent database update iff ∀ j, k ∈ [1..n] if j �=k then λ(uj) �= λ(uk).

Informally, a set of atomic updates U is a consistent database update iff for
each pair of updates u1, u2 ∈ U , u1 and u2 do not work on the same tuples, or
they change different attributes of the same tuple.

286 S. Flesca, F. Furfaro, and F. Parisi

The set of pairs < tuple, attribute > updated by a consistent database update
U will be denoted as λ(U) = ∪ui∈Uλ(ui).

Given a database D and a consistent database update U , performing U on D
results in the database U(D) obtained by applying all atomic updates in U .

3 Repairing Inconsistent Databases

Definition 4 (Repair). Let D be a database scheme, AC a set of aggregate
constraints on D, and D an instance of D such that D �|= AC. A repair ρ for D
is a consistent database update such that ρ(D) |= AC.

Example 6. A repair ρ for CashBudget w.r.t. constraints 1), 2) and 3) consists
in decreasing attribute Value in the tuple:

t = CashBudget(2003, ‘Receipts’, ‘total cash receipts’, ‘aggr’, 250)

down to 220; that is, ρ = { < t,Value, 220 > }. �	

We now characterize the complexity of the repair-existence problem. All the
complexity results in the paper refer to data-complexity, that is the size of the
constraints is assumed to be bounded by a constant.

The following lemma is a preliminary result which states that potential repairs
for an inconsistent database can be found among set of updates whose size is
polynomially bounded by the size of the original database.

Lemma 1. Let D be a database scheme, AC a set of aggregate constraints on
D, and D an instance of D such that D �|= AC. If there is a repair ρ for D w.r.t.
AC, then there is a repair ρ′ for D such that λ(ρ′) ⊆ λ(ρ) and ρ′ has polynomial
size w.r.t. D.

Theorem 1 (Repair existence). Let D be a database scheme, AC a set of
aggregate constraints on D, and D an instance of D such that D �|= AC. The
problem of deciding whether there is a repair for D is NP-complete (w.r.t. the
size of D).

Proof. Membership. A polynomial size witness for deciding the existence of a
repair is a database update U on D: testing whether U is a repair for D means
verifying U(D) |= AC, which can be accomplished in polynomial time w.r.t.
the size of D and U . If a repair exists for D, then Lemma 1 guarantees that a
polynomial size repair for D exists too.

Hardness. We show a reduction from circuit sat to our problem. Without loss
of generality, we consider a boolean circuit C using only NOR gates. The inputs
of C will be denoted as x1, . . . , xn. The boolean circuit C can be represented by
means of the database scheme:

gate(IDGate, norV al, orV al),
gateInput(IDGate, IDIngoing, V al),
input(IDInput, V al).

Consistent Query Answers on Numerical Databases 287

Therein:

1. each gate in C corresponds to a tuple in gate (attributes norVal and or-
Val represent the output of the corresponding NOR gate and its negation,
respectively);

2. inputs of C correspond to tuples of input : attribute Val in a tuple of input
represents the truth assignment to the input xIDInput;

3. each tuple in gateInput represents an input of the gate identified by IDGate.
In particular, IDIngoing refers to either a gate identifier or an input identifier;
attribute Val is a copy of the truth value of the specified ingoing gate or
input.

We consider the database instance D where the relations defined above are
populated as follows. For each input xi in C we insert the tuple input(id(xi),−1)
into D, and for each gate g in C we insert the tuple gate(id(g),−1,−1), where
function id(x) assigns a unique identifier to its argument (we assume that gate
identifiers are distinct from input identifiers, and that the output gate of C is
assigned the identifier 0). Moreover, for each edge in C going from g′ to the gate g
(where g′ is either a gate or an input of C), the tuple gateInput(id(g), id(g′),−1)
is inserted into D. Assume that Mgate = {norV al, orV al}, MgateInput = {V al},
Minput = {V al}. In the following, we will define aggregate constraints to force
measure attributes of all tuples to be assigned either 1 or 0, representing the
truth value true and false, respectively. The initial assignment (where every
measure attribute is set to −1) means that the truth values of inputs and gate
outputs is undefined.

Consider the following aggregation functions:

NORV al(X) = SELECT Sum(norVal)
FROM gate
WHERE (IDGate=X)

ORV al(X) = SELECT Sum(orVal)
FROM gate
WHERE (IDGate=X)

IngoingV al(X, Y) = SELECT Sum(Val)
FROM gateInput
WHERE (IDGate=X)

AND (IDIngoing=Y)

IngoingSum(X) = SELECT Sum(Val)
FROM gateInput
WHERE (IDGate=X)

InputV al(X) = SELECT Sum(Val)
FROM Input
WHERE (IDInput=X)

V alidInput() = SELECT Sum(1)
FROM input
WHERE (Val �= 0)

AND (Val �= 1)

V alidGate() = SELECT Sum(1)
FROM gate
WHERE (orVal �= 0 AND orVal �= 1)
OR (norVal �= 0 AND norVal �= 1)

Therein: NORV al(X) and ORV al(X) return the truth value of the gate X
and its opposite, respectively; IngoingV al(X, Y) returns, for the gate with

288 S. Flesca, F. Furfaro, and F. Parisi

identifier X , the truth value of the ingoing gate or input having identifier Y ;
IngoingSum(X) returns the sum of the truth values of the inputs of the gate
X ; InputV al(X) returns the truth assignment of the input X ; V alidInput()
returns 0 iff there is no tuple in relation input where attribute V al is neither
0 nor 1, otherwise it returns a number greater than 0; likewise, V alidGate()
returns 0 iff there is no tuple in relation gate where attributes norV al or orV al
are neither 0 nor 1 (otherwise it returns a number greater than 0).

Consider the following aggregate constraints on D:

1. V alidInput() + V alidGate() = 0, which entails that only 0 and 1 can
be assigned either to attributes orV al and norV al in relation gate, and to
attribute V al in relation input;

2. gate(X, ,) ⇒ ORV al(X) + NORV al(X) = 1, which says that for each
tuple representing a NOR gate, the value of orV al must be complementary
to norV al;

3. gate(X, ,) ⇒ ORV al(X) − IngoingSum(X) ≤ 0, which says that for each
tuple representing a NOR gate, the value of orV al cannot be greater than
the sum of truth assignments of its inputs (i.e. if all inputs are 0, orV al must
be 0 too);

4. gateInput(X, Y,) ⇒ IngoingV al(X, Y) − ORV al(X) ≤ 0, which implies
that, for each gate g, attribute orV al must be 1 if at least one input of g has
value 1;

5. gateInput(X, Y,) ⇒ IngoingV al(X, Y)−NORV al(Y)− InputV al(Y) = 0,
which imposes that the attribute V al in each tuple of gateInput is the same
as the truth value of either the ingoing gate or the ingoing input.

Observe that D does not satisfy these constraints, but every repair of D
corresponds to a valid truth assignment of C.

Let AC be the set of aggregate constraints consisting of constraints 1-5 defined
above plus constraint NORV al(0) = 1 (which imposes that the truth value of
the output gate must be true). Therefore, deciding whether there is a truth
assignment which evaluates C to true is equivalent to asking whether there is a
repair ρ for D w.r.t. AC. �	

Remark. Theorem 1 states that the repair existence problem is decidable. This
result, together with the practical usefulness of the considered class of con-
straints, makes the complexity analysis of finding consistent answers on inconsis-
tent data interesting. Basically decidability results from the linear nature of the
considered constraints. If products between two attributes were allowed as at-
tribute expressions, the repair-existence problem would be undecidable (this can
be proved straightforwardly, since this form of non-linear constraints is more ex-
pressive than those introduced in [6], where the corresponding repair-existence
problem was shown to be undecidable). However, observe that occurrences of
products of the form Ai ×Aj in attribute expressions can lead to undecidability
only if both Ai and Aj are measure attribute. Otherwise, this case is equivalent
to products of the form c × A, which can be expressed in our form of aggregate
constraints.

Consistent Query Answers on Numerical Databases 289

3.1 Minimal Repairs

Theorem 1 deals with the problem of deciding whether a database D violating
a set of aggregate constraints AC can be repaired. If this is the case, different
repairs can be performed on D yielding a new database consistent w.r.t. AC,
although not all of them can be considered “reasonable”. For instance, if a repair
exists for D changing only one value in one tuple of D, any repair updating all
values in all tuples of D can be reasonably disregarded. To evaluate whether a
repair should be considered “relevant” or not, we introduce two different ordering
criteria on repairs, corresponding to the comparison operators ‘≤set ’ and ‘≤card ’.
The former compares two repairs by evaluating whether one of the two performs
a subset of the updates of the other. That is, given two repairs ρ1, ρ2, we say that
ρ1 precedes ρ2 (ρ1 ≤set ρ2) iff λ(ρ1) ⊆ λ(ρ2). The latter ordering criterion states
that a repair ρ1 is preferred w.r.t. a repair ρ2 (ρ1 ≤card ρ2) iff |λ(ρ1)| ≤ |λ(ρ2)|,
that is if the number of changes issued by ρ1 is less than ρ2.

Observe that ρ1<set ρ2 implies ρ1<card ρ2, but the vice versa does not hold,
as it can be the case that repair ρ1 changes a set of values λ(ρ1) which is not a
subset of λ(ρ2), but whose cardinality is less than that of λ(ρ2).

Example 7. Another repair for CashBudget is:

ρ′ = {〈t1, Value, 130〉, 〈t2, Value, 70〉, 〈t3, Value, 190〉},
where:
t1 = CashBudget(2003, ‘Receipts’, cash sales’, ‘det’, 100),
t2 = CashBudget(2003, ‘Disbursements’, ‘long-term financing’, ‘det’, 40),
t3 = CashBudget (2003, ‘Disbursements’, ‘total disbursements’, ‘aggr’, 160).

Observe that ρ <card ρ′, but not ρ <set ρ′ (where ρ is the repair defined in
Example 6). �	

Definition 5 (Minimal repairs). Let D be a database scheme, AC a set of
aggregate constraints on D, and D an instance of D. A repair ρ for D w.r.t. AC
is a set-minimal repair [resp. card-minimal repair] iff there is no repair ρ′ for
D w.r.t. AC such that ρ′ <set ρ [resp. ρ′ <card ρ].

Example 8. Repair ρ of Example 6 is minimal under both the set -minimal and
the card -minimal semantics, whereas ρ′ defined in Example 7 is minimal only
under the set -minimal semantics.

Consider the repair ρ′′ = {〈t1,Value, 110〉, 〈t2,Value, 110〉, 〈t3,Value, 220〉}
where:

t1 = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100),
t2 = CashBudget(2003, ‘Receipts’, ‘receivables’, ‘det’, 120),
t3 = CashBudget(2003, ‘Receipts’, ‘total cash receipts’, ‘aggr’, 250).

The strategy adopted by ρ′′ can be reasonably disregarded, since the only atomic
update on tuple t3 suffices to make D consistent. In fact, ρ′′ is not minimal
neither under the set -minimal semantics (as λ(ρ) ⊂ λ(ρ′′) and thus ρ<set ρ′′)
nor under the card -minimal one. �	

290 S. Flesca, F. Furfaro, and F. Parisi

Given a database D which is not consistent w.r.t. a set of aggregate constraints
AC, different set -minimal repairs (resp. card -minimal repairs) can exist on D. In
our running example, repair ρ of Example 6 is the unique card -minimal repair,
and both ρ and ρ′ are set -minimal repairs (where ρ′ is the repair defined in
Example 7). The set of set -minimal repairs and the set of card -minimal repairs
will be denoted, respectively, as ρset

M and ρcard
M .

Theorem 2 (Minimal-repair checking). Let D be a database scheme, AC a
set of aggregate constraints on D, and D an instance of D such that D �|= AC.
Given a repair ρ for D w.r.t. AC, deciding whether ρ is minimal (under either
the card-minimality and set-minimality semantics) is coNP-complete (w.r.t. the
size of D and ρ).

Set-minimality vs card-minimality
Basically, both the set -minimal and the card -minimal semantics aim at consid-
ering “reasonable” repairs which preserve the content of the input database as
much as possible. The notion of repair minimality based on the number of per-
formed updates has been discussed in the context of relational data violating
“non-numerical” constraints (such as keys, foreign keys, and functional depen-
dencies) in [5], where only tuple deletions were considered. Indeed, most of the
proposed approaches consider repairs consisting of deletions and insertions of
tuples, and preferred repairs are those consisting of minimal sets of insert/delete
operations. In fact, the set -minimal semantics is more natural than the card -
minimal one when no hypothesis can be reasonably formulated to “guess” how
data inconsistency occurred, which is the case of previous works on database-
repairing. As it will be clear in the following, in the general case, the adoption of
the card -minimal semantics could make reasonable sets of delete/insert opera-
tions to be not considered as candidate repairs, even if they correspond to error
configurations which cannot be excluded.

For instance, consider the relational scheme:
Department(Name, Area, Employees, Category)

and the relation:

Department Area Employees Category

D1 100 24 A −→ t1
D2 100 30 B −→ t2
D3 100 30 B −→ t3

where the following functional dependencies are defined:

FD1 : Area → Employees (i.e. departments having the same area must
have the same number of employees)

FD2 : Employees → Category (i.e. departments with the same number of em-
ployees must be of the same category)

The above-reported relation does not satisfy FD1, as the three departments oc-
cupy the same area but do not have the same number of employees. Suppose

Consistent Query Answers on Numerical Databases 291

we are using a repairing strategy based on deletions and insertions of tuples.
Different repairs can be adopted. For instance, if we suppose that the inconsis-
tency arises as tuple t1 contains wrong information, Department can be repaired
by only deleting t1. Otherwise, if we assume that t1 is correct, a possible re-
pair consists of deleting t2 and t3. If the card -minimal semantics is adopted,
the latter strategy will be disregarded, as it performs two deletions, whereas the
former deletes only one tuple. On the contrary, if the set -minimal semantics is
adopted, both the two strategies define minimal repairs (as the sets of tuples
deleted by each of these strategies are not subsets of one another). In fact, if
we do not know how the error occurred, there is no reason to assume that the
error configuration corresponding to the second repairing strategy is not possi-
ble. Indeed, inconsistency could be due to integrating data coming from different
sources, where some sources are not up-to-date. However, there is no good rea-
son to assume that the source which contains the smallest number of tuples is
the one that is up to date. See [15] for a survey on inconsistency due to data
integration.

Likewise, the card -minimal semantics could disregard reasonable repairs also
in the case that a repairing strategy based on updating values instead of delet-
ing/inserting whole tuples is adopted 1. For instance, if we suppose that the
inconsistency arises as the value of attribute Area is wrong for either t1 or both
t2 and t3, Department can be repaired by replacing the Area value for either t1 or
both t2 and t3 with a value different from 100. Otherwise, if we assume that the
Area values for all the tuples are correct, Department can be repaired w.r.t. FD1
by making the Employees value of t1 equal to that of t2 and t3. Indeed this update
yields a relation which does not satisfy FD2 (as t1[Category] �= t2[Category]) so
that another value update is necessary in order to make it consistent. Under
the card -minimal semantics the latter strategy is disregarded, as it performs
more than one value update, whereas the former changes only the Area value
of one tuple. On the contrary, under the set -minimal semantics both the two
strategies define minimal repairs (as the sets of updates issued by each of these
strategies are not subsets of one another). As for the case explained above, dis-
regarding the second repairing strategy is arbitrary, if we do not know how the
error occurred.

Our framework addresses scenarios where also card -minimal semantics can
be reasonable. For instance, if we assume that integrity violations are generated
while acquiring data by means of an automatic or semi-automatic system (e.g. an
OCR digitizing a paper document, a sensor monitoring atmospheric conditions,
etc.), focusing on error configurations which can be repaired with the minimum
number of updates is well founded. Indeed this corresponds to the case that
the acquiring system made the minimum number of errors (e.g. bad symbol-
recognition for an OCR, sensor troubles, etc.), which can be considered the
most probable event.

1 Value updates cannot be necessarily simulated as a sequence deletion/insertion, as
this might not be minimal under set inclusion.

292 S. Flesca, F. Furfaro, and F. Parisi

In this work we discuss the existence of repairs, and their computation under
both card -minimal and set -minimal semantics. The latter has to be preferred
when no warranty is given on the accuracy of acquiring tools, and, more generally,
when no hypothesis can be formulated on the cause of errors.

3.2 Consistent Query Answers

In this section we address the problem of extracting reliable information from
data violating a given set of aggregate constraints. We consider boolean queries
checking whether a given tuple belongs to a database, and adopt the widely-used
notion of consistent query answer introduced in [2].

Definition 6 (Query). A query over a database scheme D is a ground atom
of the form R(v1, . . . , vn), where R(A1, . . . , An) is a relational scheme in D.

Definition 7. (Consistent query answer). Let D be a database scheme, D
be an instance of D, AC be a set of aggregate constraints on D and q be a query
over D. The consistent query answer of q on D under the set-minimal semantics
[resp. card-minimal semantics] is true iff q ∈ ρ(D) for each ρ ∈ ρset

M [resp. for
each ρ ∈ ρcard

M].

The consistent query answers of a query q issued on the database D under
the set -minimal and card -minimal semantics will be denoted as qset(D) and
qcard(D), respectively. The following theorems characterize data-complexity of
the consistent query answering problem under both the set -minimal and card -
minimal semantics.

Theorem 3 (Consistent query answer under set-minimal semantics).
Let D be a database scheme, D be an instance of D, AC a set of aggregate
constraints on D and q a query over D. Deciding whether qset(D) = true is
Πp

2 -complete (w.r.t. the size of D).

Theorem 4 (Consistent query answer under card-minimal semantics).
Let D be a database scheme, D an instance of D, AC a set of aggregate con-
straints on D and q be a query over D. Deciding whether qcard(D) = true is
∆p

2[log n]-complete (w.r.t. the size of D).

4 Conclusions and Future Work

We have addressed the problem of repairing and extracting reliable information
from numerical databases violating aggregate constraints, thus filling a gap in
previous works dealing with inconsistent data, where only traditional forms of
constraints (such as keys, foreign keys, etc.) were considered. In fact, aggregate
constraints frequently occur in many real-life scenarios where guaranteeing the
consistency of numerical data is mandatory. In particular, we have considered ag-
gregate constraints defined as sets of linear inequalities on aggregate-sum queries

Consistent Query Answers on Numerical Databases 293

on input data. For this class of constraints we have characterized the complexity
of several issues related to the computation of consistent query answers.

Some related issues remain still open. For instance, it would be interesting to
get a tight characterization of the combined complexity of the consistent-query-
answer problem. Another interesting issue is the identification of decidable cases
when more expressive forms of constraint are adopted, where products between
attribute values are allowed to be expressed.

References

1. Agarwal, S., Keller, A. M., Wiederhold, G., Saraswat, K., Flexible Relation: An
Approach for Integrating Data from Multiple, Possibly Inconsistent Databases,
Proc. International Conference on Data Engineering (ICDE), 495–504, 1995.

2. Arenas, M., Bertossi, L. E., Chomicki, J., Consistent Query Answers in Inconsistent
Databases, Proc. Symposium on Principles of Database Systems (PODS), 68–79,
1999.

3. Arenas, M., Bertossi, L. E., Chomicki, J., Specifying and Querying Database Re-
pairs using Logic Programs with Exceptions Proc. International Conference on
Flexible Query Answering Systems (FQAS), 27–41,2000.

4. Arenas, M., Bertossi, L. E., Chomicki, J., He, X., Raghavan, V., Spinrad, J., Scalar
aggregation in inconsistent databases, Theoretical Computer Science (TCS), Vol.
3(296), 405-434, 2003.

5. Arenas, M., Bertossi, L. E., Chomicki, J., Answer sets for consistent query answer-
ing in inconsistent databases, Theory and practice of logic programming (TPLP),
Vol. 3(4-5), 393–424, 2003.

6. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A., Fixing Numerical Attributes
Under Integrity Constraints, Proc. 10th International Symposium on Database
Programming Languages (DBPL) (These proceedings), 2005.

7. Bohannon, P., Flaster, M., Fan, W., Rastogi, R., A Cost-Based Model and Effective
Heuristic for Repairing Constraints by Value Modification, Proc. ACM SIGMOD
International Conference on Management of Data (SIGMOD), 143–154, 2005.

8. Borosh, I., Treybig, L. B., Bounds on positive integral solutions of linear diophan-
tine equations, Proc. American Mathematical Society, Vol. 55(2), 299-304, 1976.

9. Bry, F., Query Answering in Information Systems with Integrity Constraints, IFIP
WG 11.5 Working Conference on Integrity and Control in Information Systems
(IICIS), 113–130, 1997.

10. Cadoli, M., Donini, F. M., Liberatore, P., Schaerf, M., Feasibility and unfeasibility
of off-line processing. Proc. 4th Israeli Symposium on Theory of Computing and
Systems (ISTCS’96), 100–109, 1996.

11. Chomicki, J., Marcinkowski, J., Staworko, S., Computing consistent query answers
using conflict hypergraphs, Proc. 13th International Conference on Information
and Knowledge Management (CIKM), 417–426, 2004.

12. Chomicki, J., Marcinkowski, J., Minimal-Change Integrity Maintenance Using Tu-
ple Deletions, Information and Computation (IC), Vol. 197(1-2), 90–121, 2005.

13. Greco, G., Greco, S., Zumpano, E., A Logical Framework for Querying and Re-
pairing Inconsistent Databases, IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), Vol. 15(6), 1389–1408, 2003.

14. Imielinski, T., Lipski, W., Incomplete Information in Relational Databases, Journal
of the Association for Computing Machinery (JACM), Vol. 31(4), 761–791, 1984.

294 S. Flesca, F. Furfaro, and F. Parisi

15. Lenzerini, M., Data Integration: A Theoretical Perspective, Proc. Symposium on
Principles of Database Systems (PODS), 233–246, 2002.

16. Papadimitriou, C. H., On the complexity of integer programming, Journal of the
Association for Computing Machinery (JACM), Vol. 28(4), 765–768, 1981.

17. Papadimitriou, C. H., Computational Complexity, Addison-Wesley, 1994.
18. Ross, K. A., Srivastava, D., Stuckey, P. J., Sudarshan, S., Foundations of Aggre-

gation Constraints, Theoretical Computer Science (TCS), Vol. 193(1-2), 149–179,
1998.

19. Wijsen, J., Condensed Representation of Database Repairs for Consistent Query
Answering, Proc. International Conference on Database Theory (ICDT), 378–393,
2003.

20. Wijsen, J., Making More Out of an Inconsistent Database, Proc. International
Conference on Advances in Databases and Information Systems (ADBIS), 291–
305, 2004.

Author Index

Abiteboul, Serge 106

Benedikt, Michael 138
Bertossi, Leopoldo 262
Brabrand, Claus 27
Bravo, Loreto 262
Busatto, Giorgio 199

Calvanese, Diego 90
Castagna, Giuseppe 1
Colazzo, Dario 74

De Giacomo, Giuseppe 90

Fan, Wenfei 122
Flesca, Sergio 279
Foster, J. Nathan 42
Franconi, Enrico 262
Fundulaki, Irini 138
Furfaro, Filippo 279

Geerts, Floris 122
Greenwald, Michael B. 42

Hidders, Jan 154

Kimelfeld, Benny 58
Kirkegaard, Christian 42
Kolahi, Solmaz 247

Lembo, Domenico 90
Lenzerini, Maurizio 90
Levin, Michael Y. 184
Lohrey, Markus 199
Lopatenko, Andrei 262

Maneth, Sebastian 199
Marrara, Stefania 154
Martens, Wim 232
Møller, Anders 27

Niehren, Joachim 217, 232

Paredaens, Jan 154
Parisi, Francesco 279
Pierce, Benjamin C. 42, 184
Planque, Laurent 217
Poggi, Antonella 106

Rosati, Riccardo 90

Sagiv, Yehoshua 58
Sartiani, Carlo 74
Schmitt, Alan 42
Schwartzbach, Michael I. 27

Talbot, Jean-Marc 217
Thiemann, Peter 169
Tison, Sophie 217

Vercammen, Roel 154

	Frontmatter
	Patterns and Types for Querying XML Documents
	Dual Syntax for XML Languages
	Exploiting Schemas in Data Synchronization
	Efficiently Enumerating Results of Keyword Search
	Mapping Maintenance in XML P2P Databases
	Inconsistency Tolerance in P2P Data Integration: An Epistemic Logic Approach
	XML Data Integration with Identification
	Satisfiability of XPath Queries with Sibling Axes
	XML Subtree Queries:~Specification and Composition
	On the Expressive Power of XQuery Fragments
	A Type Safe DOM API
	Type-Based Optimization for Regular Patterns
	Efficient Memory Representation of XML Documents
	N-Ary Queries by Tree Automata
	Minimizing Tree Automata for Unranked Trees
	Dependency-Preserving Normalization of Relational and XML Data
	Complexity and Approximation of Fixing Numerical Attributes in Databases Under Integrity Constraints
	Consistent Query Answers on Numerical Databases Under Aggregate Constraints
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

