RFID Authentication Protocol with Strong
Resistance Against Traceability
and Denial of Service Attacks

Jeonil Kang and DaeHun Nyang

Information Security Research Laboratory,
INHA University*, Korea
dreamx@seclab.inha.ac.kr, nyangQ@inha.ac.kr
http://seclab.inha.ac.kr

Abstract. Even if there are many authentication protocols for RFID
system, only a few protocols support location privacy. Because of tag’s
hardware limitation, these protocols suffer from many security threats,
especially from the DoS (Denial of Service) attacks. In this paper, we
discuss location privacy problem and show vulnerabilities of RFID au-
thentication protocols. And then, we will suggest a strong authentication
protocol against location tracing, spoofing attack, and DoS attack.

1 Introduction

A radio-frequency identification (RFID) system has been widely deployed mainly
in supply chain management. Compared to using optical bar-code, RFID sys-
tem has many benefits: quick reading, long recognition distance, obstacle-free,
strength against the contamination, etc. Owing to these properties, a lot of tags
can be read simultaneously during a few seconds. Also, RFID system can be
effectively used in some applications such like animal tagging, high-way tolling,
theft protecting, etc, whereas bar-code cannot handle these sides. RFID system
will replace bar-code system very quickly.

Unfortunately, RFID system also has too many security risks specially when
a high level of security is required. Generally, RFID tag has very low resources:
low computing power and small memory size. Thus, it is very hard to apply
existing security technologies that assumes very high computing power and
large memory size to RFID tag. So, a lot of researches have been considered
about security techniques for low-cost RFID systems [1-9]. We can classify se-
curity problems of RFID systems into two categories: information leakage and
traceability.

A passive attacker might be able to overhear the information between a reader
and some tags because the medium is the air in the RFID system. An active
attacker may be able to send some bogus data that fakes the reader or tags to
extract information from them. To prevent these attacks, many protocols have

* This work was supported by INHA UNIVERSITY Research Grant.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 164-[I'T5] 2005.
© Springer-Verlag Berlin Heidelberg 2005

http://seclab.inha.ac.kr

RFID Authentication Protocol with Strong Resistance 165

been proposed: blocker tag [6], RFID system using AES [9], minimalist XOR
one-time cryptography [4], etc. But still the blocker tag is a very simple and
strong method to protect information leakage.

On the other hand, tag’s location information as well as tag’s own data must
be protected. Also, there are some solutions for this problem; hash-based ID
variation protocol [1], hash chaining [2], universal re-encryption [7], etc. Accord-
ing to G. Avoine, however, it is hard to protect the threat because each RFID
protocol layer (application, communication, and physical layer) has technical
and actual defects [10].

In this paper, we’ll discuss the location privacy of RFID system in section 2.
Vulnerability of existing models of authentication protocols to location tracing
and the DoS attack is shown in section 3. In section 4, we’ll propose a strong
authentication protocol for RFID system to solve the different early mentioned
problems. Finally, we will summarize our results in section 5.

2 Location Privacy

2.1 Traceability at the Application Layer

Generally, RFID communication protocol consists of three layers; application,
communication and physical layer. In the application layer, the information is
handled by the user. Other RFID application programs use this information to
identify objects. To make this possible, generally the information is made of
product number and serial number. Also it might have a secret key or password
for administrative purpose. The communication layer defines how to avoid col-
lision might occur by the reader or the tags. This protocol is called “Collision
Avoidance Protocol” or “Anti-Collision Algorithm.” Collision avoidance proto-
col can be classified into probabilistic and deterministic methods according to
the predictability of singulation time. The physical layer defines how to trans-
mit data physically. (e.g. air interface - frequency, modulation, data encoding,
synchronization, etc.)

Unfortunately, location privacy problem might occur in each layer. If an at-
tacker can overhear all messages between the reader and tags which contents
contain information that is never changed, the attacker can trace tag’s move-
ment using the information. Also, the attacker can use a type of collision avoid-
ance protocol or tag identifier which can be used in collision avoidance protocol.
Therefore, it is hard to prevent the attacker from tracing.

The one thing that we must consider to protect location privacy is accuracy
(or correctness) of tracing. Accuracy of tracing using defects in communication
and physical layer is lower than that in application layer. That’s because there
are many tags which use the same collision avoidance protocol and have same
physical features in the real world. However, accuracy of tracing with messages
in application layer is very high, because the databases server should distinguish
each tag clearly. Therefore, it is very important to protect location privacy in the
application layer. In this paper, we will propose a method to solve the location
privacy problem in application layer.

166 J. Kang and D. Nyang

2.2 Threat Model

Before describing our authentication protocol, a threat model is defined to an-
alyze vulnerabilities of existing authentication model. By defining the threat
model, we can restrict the ability of the attacker reasonably in RFID system.

READER DATABASE

TAG
C} ______ Wireless Wired
Open Channel Secure Channel

Fig. 1. RFID system threat model. An attacker cannot intercept in wireless channel
because of a property of the air. Also, we assume that wired channel is secure in any
case.

Like another threat model, we assume that an attacker can’t intercept or
modify messages. In the wireless open channel between tag and reader, the at-
tacker can overhear all messages or insert fake messages, but he can’t intercept
or modify messages because the medium of transmission is the air itself. In wired
secure channel between reader and database, an attacker can’t eavesdrop, inter-
cept, insert, or modify. In RFID system, we assume that reader and database
server have pre-authenticated each other.

In the threat model, the attacker tries to trace location of tags and also tries
to collapse system. The system collapse is caused by DoS(Denial of the Service),
spoofing, or asynchronisation attack against specific, unspecific tags or against
the database.

3 Vulnerabilities of Authentication Protocols

In this section, we will describe some methods to attack RFID system using
structural problem of existing authentication protocols.

3.1 Un-terminated Session Attack

We cannot be sure that an attacker may always terminate the authentication
session correctly. The authentication protocols - which send only hashed iden-
tifier (or hashed identifier with the nonce that was received from a reader) to
a reader - are more prone to be traceable. Since the tag returns same hashed
identifier in every session for attacker’s queries, attacker can easily find tag’s
location. Unfortunately, the tag can’t change its identifier to prevent this attack
because the identifier always must be synchronized with that in the database.
This asynchronisation (between database and tag) means that we cannot use
the tag anymore.

RFID Authentication Protocol with Strong Resistance 167

ATTACKER TAG

request

H(D), ...

request

H(ID), ...

request

H(ID), ...

Fig. 2. Location tracing using un-terminated session. An attacker can trace target tag
by sending request message and closing session.

3.2 Preemptive Locking

Consider that a tag receives a new request message, while it is already in the
authentication session. The tag should choose its action: to ignore the request
or to start immediately a new authentication session for the new request. The
former gives a chance for the attacker to lock a tag preemptively. The attacker
can make a target tag keep silence just by sending request message to the tag
before it starts a legal authentication session. Because of this preemptive locking,
the manufacturer should provide some mechanism with the tags to prevent this
attack, or choose the latter one as the reaction of the tag.

Using timer, it looks rather easy to prevent preemptive locking. A tag has a
timer and it starts the timer when session starts. When the timer is expired, the
tag closes the session instantly. However, during the time that attacker possesses
the session, tag cannot serve any request and thus, the attack might cause a
severe degradation of the overall performance.

So, it seems to be better to start new authentication session for the newly
arrived request message. But even in this case, tag is still weak against the attack
described in section 3.3.

3.3 Stealth Bombing

If a tag is implemented to start new authentication session for the newly arrived
request message, then it will suffer from so called, ’stealth bombing’. Stealth
bombing is a kind of the DoS attacks. We assumed that the attacker can generate
and insert fake messages, in section 2. What will happen if fake messages are
inserted by the attacker during authentication session? If the tag which changes
its response at every session using a random nonce opens a new session for a
fake request message, the ongoing legal authentication session will fail by this
illegal authentication trial.

168 J. Kang and D. Nyang

READER ATTACKER TAG

Request, S1

H(ID xor S1), ...

Request, S2

H(D xor S2), ...

Confirm MSG for S1

Fail

Fig. 3. Stealth bombing attack. An attacker can attempt DoS attack by sending request
message to the tag in session. The tag has to decide its action against the request
message.

Also, we can think another attacking method. Instead of sending a fake request
message, the attacker might send an invalid confirm message for a legal session
request. Some type of tags might abort the authentication session after receiving
this confirm message.

Though this stealth bombing attack seems to be very hard to try because
the communication layer will discard if the frame does not have a valid iden-
tifier defined by the communication layer, it is possible to send a fake request
message that includes the valid identifier since it is disclosed during the normal
communication between reader and tag.

3.4 DoS Attack Against the Database

Some authentication protocols use status-based flag to prevent problems of section
3.1. If the previous session terminated unsuccessfully, the tag responds using the
message created with spare key and hint for the real identifier. These protocols must
use large computational resource for recovering correct status and identifier. For an-
other example, Ohkubo’s protocol [2] must calculate alot of hash function to search
tag’s identifier because the database server must compute s; = h(h(---h(s1)---))
from s;. Since RFID tag has only small computing power, their approach to move
tag’s computation to database server is reasonable.

Because of this computational inefficiency, the attacker can try the DoS attack
with very small effort against these protocols. It is enough to send some garbage
messages toward the database server. Then, the database server will start to
search identifier until finding it or retrieving all records. The attacker doesn’t
need to check whether the identifier exists or not when he makes fake messages.

In conclusion, a strong authentication protocol against DoS attacks should not
search a large space for finding the hidden identifier. It seems to be incompatible
to the solution of the problems in section 3.1.

RFID Authentication Protocol with Strong Resistance 169

4 Proposed Protocol

In this section, we will propose an authentication protocol which has a tolerance
against DoS attack, provides location privacy, and strengthens other weakness.

4.1 Tag and Database Structure
A tag using this protocol has fields shown in below.

— SFlag (session flag): indicates whether tag is under an authentication session
or not. When a session starts, it is set to true, and when a session ends
either normally or abnormally, it is set to false. SFlag is initialized to false
immediately after a tag comes to be active.

— ID (identifier): used to distinguish a tag from another tags during authenti-
cation session. {0,1}"

— CWD (confirm word): used to confirm the ID of tag by the database. {0,1}"

— R1 (Random nonce 1): changed at each session. If SFlag is true, it is replaced
by saved R1. Or it is generated by the tag newly. {0,1}"

— C (Counter): increased or randomly changed at each session. If SFlag is true,
it is replaced by saved C. Or it is changed by the tag. {0,1}™

— THR COUNT (threshold counter): indicates how many trials have hap-
pened. When THR, COUNT reaches THR MAX, the tag terminates current
session and starts a new session. It can report DoS attack optionally.

The database has the structure shown in figure 4. It must prepare the same
number of slots as that of all possible H(ID||C), while H denotes cryptographic
hash function, and || denotes concatenation. When ID is constant, there are 2™
numbers of slots that have the same ID. If H(ID||C)of different ID conflicts, they
are ‘linked’ in the same slot. If m is 10, the database server has to calculate 1024
(=210) hash values in advance. Though it seems to require much computation of
database server, hash values are computed after authentication in the idle time.
It is possible to use special purpose unit for computing hash values. Actually, the
computations spend small of time (about 0.283 second in internal md5 testing,
0.017 second if only hashing), and we have thought it is not a problem at all if
a reasonable m is used.

Hash space H(ID || C)

* The darkest slots have the same ID. led Slot

Fig. 4. Example of the database

170 J. Kang and D. Nyang

4.2 Basic Protocol

Our protocol is shown in figure 5 and 6. The protocol solves the security problems
referred in section 3.1-3.4.

In order to prevent un-terminated session attack, it must reserve the freshness
of response message from tag between sessions. For reserving the freshness of
messages, all messages should be generated with secure random nonce at every
session. However, if insecure random nonces are used or the attacker can use his
number as nonce in authentication session, it can’t prevent this attack. Because
the tag can’t know where the random number included in the request message
is from, the random number from a legal reader also isn’t trusted. Therefore,
only random number from the tag itself is trusted. Consequently, the tag should
generate random nonces newly when new session starts.

In order to prevent preemptive locking and stealth bombing attack at once,
it needs to handle the session very carefully. Preemptive locking attack is pos-
sible because of the session-preemptive feature of the authentication protocol,
and stealth bombing attack is mountable because of the session-nonpreemptive
feature of the authentication protocol. An authentication protocol cannot be
preemtive and non-preemptive at the same time.

Even though the tag receives request message during authentication session,
the attacker can not preempt the session if the tag sends the same response mes-
sage repeatedly until normal termination. We can also frustrate stealth bombing
attack using the repeated transmission of the same response message. Note that
this method is possible only if random nonces are generated by the tag. By
reserving the identicalness of response message from a tag during one session,
our protocol can be very robust against preemptive locking and stealth bombing
attack. Our protocol provides a strategy that dose not frustrate the attacks, but
ignore them.

READER ATTACKER TAG READER ATTACKER TAG
Request Request
Response Response
Request Request
Response Response
Confirm Confirm
Success Success

Fig.5. How to solve preemptive locking and stealth bombing. All response messages
have the same value. If a tag can respond with the same response in one session, these
two attack can be thwarted.

RFID Authentication Protocol with Strong Resistance 171

DATABASE READER TAG

(1) REQUEST

if SFlag = false
Choose R1€{0,1}" and C € {0,1}™
SFlag < true
HID < H(ID||C)
HCWD « H(R1||CWD)

(2-1) HID, HCWD, XR1 XR1 < IDXORR1
Search ID in DB
If found ID
Choose R2€ i{o,1}"
HR < H(R1|[R2)
XR2 < ID XOR Rz (3) HR, XR2

THR COUNT < THR COUNT+1
if THR COUNT < THR MAX
R2 <~ XR2 XORID
(4-1) CWD if HR = H(R1||R2)
/¥ send CWD */

A

/* Prepare slots ID <~ ID XOR R1 XOR R2
for new ID */ CWD < R1+R2
SFlag < false
else
SFlag < false

Fig. 6. Proposed protocol

However, to prevent DoS attack using insertion of an invalid confirm message,
we need another strategy. To prevent this attack, tag have to wait for a valid
confirm message for reserved time. Because it is too expensive to use a timer in
RFID tag, threshold counter can be used instead of the timer.

Our protocol illustrated in figure 6 runs as the following:

step 1. When a reader needs tag’s data, the reader sends message (1)
{REQUEST} to tag

step 2. When a tag receives REQUEST message, it checks SFlag. If SFlag is true,
the tag uses R1 and C which are already in memory. Else, the tag chooses ran-
dom numbers R1 €r {0,1}" and C € {0,1}™. Also, the tag sets SFlag to
true. And then, the tag computes and sends message (2-1) {HID—H(ID||C),
HCWD+—H(R1||R3||CWD),XR1+ID®R1} to the database server through
the reader.

step 3. Using HID of message (2-1), the server can get candidates for ID. Also
the server gets candidates for R1 by computing XR1@®(candidates for ID).
The server can find a real ID of the tag by checking whether HCWD is the
same as H((candidates for R1)||R3||(candidates for CWD)) or not.

step 4. If the server can’t find any satisfied ID in previous step, the server
regards this message as an attack and ignores it. When the server finds ID,
the server chooses another random nonce R2. And then, the server generates
and sends message (3) {HR+—H(R1||R2),XR2—ID®R2} to the tag.

172 J. Kang and D. Nyang

step 5. If the tag receives message (3), it increases THR COUNT. Then the
tag checks whether H(R1||[(ID®XR2)) is the same as HR or not if only if
THR COUNT < THR MAX. If it matches, the tag has to send message
(4-1) {CWD} to the database server and continues step 7.

step 6. If the tag has some reason for reject or message (3) is not valid, the tag
should wait another messages until THR COUNT expires. If THR COUNT
reaches THR MAX (or expires), the tag sets SFlag to false, ignores all next
messages and waits until another reader opens a new session.

step 7. If the database server receives correct message (4-1), the server changes
its ID and CWD by new ones. Otherwise, the server consider previous mes-
sage (2-1) to replay attack and halts the process. If the tag has no error
to send message (4-1), the tag changes its ID and CWD, and sets SFlag
to false. Also the server must prepare hash space for all possible H(ID||C).
Here, CWD consists of R1 and R2 in the previous session. That is,

CWD; = (R1;—1 + R2;_;) mod 2"
where 47 denotes the current session and ¢ — 1 denotes previous session. Also
ID; =ID;—1® R1;_1® R2;

In order to find ID from H(ID||C) in (2-1) message, the database server must
prepare all possible slots. If [ID| denotes the number of tags, the number of slots
is 2™ x |ID|. If all possible candidates of H(ID||C) are distributed informly and
2" is larger then 2™ x |ID|, there is no collision in the same slot. If the system
has some collisions, it might have a few liked slots. So, it is good to system
to have a number of tags smaller than 2(®~)_ If the number of tags is about
4,294,967,296(=23%) in system, 42 is enough for n and 10 is enough for m for
structure efficiency of the database. But it is strongly recommended to use ID
and C with large length for security.

4.3 Security Analysis

Against location tracing: When the attacker wants to trace target tag, he can
use message (2-1) and (3) because both message (1) and (4) do not have any
information. However, if he can’t find any collision pair from hashed messages,
he can only use ID @ R1 and ID @& R2 to get clues about the tag. Because
he can only get a result of operation & with these fields, he will only know
(IDeR1)®(ID®R2)=R14R2. Since these R1 and R2 are generated by the tag
and the server newly at each session, R1&R2 also can’t be a clue for tracing,
even though he can observe all authentication messages.

Also, the attacker can’t estimate the messages for next session. Because he
knows R1GR2, and also knows CWD of tag for next session. However, only with
CWD, an attacker cannot trace the location because CWD is masked with R1
such as H(R1||[CWD). An attacker might trace the tag using all possible values
of H(ID||C), but he requires ID which is not exposed to him.

RFID Authentication Protocol with Strong Resistance 173

Against spoofing attack: If an attacker wants to spoof the database server or tag
for asynchronism between the server and tag, he must generate message (2-1) or
(3) correctly. (This asynchronism enables an attacker to mount a kind of DoS
attack.) An attacker can generate a valid H(R1||[CWD) only with a probability of
27" because he must guess a valid ID. In the other hand, an attacker can choose
R1 and ID in order to attack against unspecific tag. However, the probability of
guessing CWD correctly is 27", Since a probability that the guessed ID is found
in the database is |ID| x 27", he can succeed in this attack having a probability
of [ID| x 272,

An attacker can spoof a tag by sending illegal message (3). However, he can
generate a valid H(R1||R2) for ID@&R2 only with a probability of 27" since he
can extract a valid R1 from ID@R1 of message (2-1) if he can guess a valid ID.

Against denial of service attack: DoS attack against a tag was described in sec-
tion 3.2 and 3.3. Also we explained how to solve these problems at once in
section 4.2 and our protocol works according to those principles. Using random
nonces from tag and threshold counter for attack trials, the protocol has immu-
nity against the DoS attack. Assuming an attacker cannot modify messages, he
has to send or insert messages to mount DoS attack. Even though the attacker
tries to do preemptive locking or stealth bombing attack by sending message
(1), he cannot succeed because tag answers the request of the attacker using the
same response message (2). Also he cannot guess correctly ID, R1 or C from
message (2).

When the database server searches ID of the tag, it does not need to hash
because all possible values of H(ID||C) are pre-computed already. Using this
strategy, an attacker can’t make the database server compute hash value in any
cases. Note that the only messages which the attacker can send to the database
server are message (2-1) and (4-1). The amount of burden that the database
server experiences from one attack message is just as much as one searching of
ID space. Thus, even if the attacker can insert or replay message (2-1) and (4-1)
in the session, the database server will ignore that message.

When the tag waits message (3), the attacker can send invalid messages to tag
for making authentication fail. However, the tag increases THR, COUNT against
these messages, and finally authentication will succeed if a valid message arrives
before THR COUNT expires. In the other side, the server must send message
(3) in time.

4.4 Alternative Protocol

We propose another protocol, which is a slight modification of our original proto-
col. The database server authenticates the tag first in the original protocol. But,
in the alternative protocol, the tag authenticates the database server first. After
message (2-2) is sent, the server makes candidates of ID, and tries to be authenti-
cated by sending message (3) several times until it finds a valid ID. After the tag re-
ceives a valid message that includes valid ID and R2, it sends CWD to the server in
plaintext, and changes its ID by ID@R1®R2. If a valid CWD arrive, the database

174 J. Kang and D. Nyang

DATABASE READER TAG
(1) REQUEST

(2-2) H(ID || C€), ID XOR R1

(3) H(R1 || R2), ID XOR R2

(4-2) CWD / False

A

Fig. 7. Alternative Protocol

server will changes ID to ID@R1®R2 and CWD to R1+R2. Even though R1&R2
is obtained easily by observing previous session, it is hard to extract R1+R2 from
R1®R2. So, the attacker can’t get any clues for tracing target tag.

Even though alternative protocol might require slightly more message in av-
erage than the original one, it needs only two hash computations.

5 Conclusion

Even if there are many authentication protocols for RFID system, only a few
protocols support location privacy. Because of the tag’s hardware limitation,
these protocols suffer from many security threats, especially from DoS attack.

We established threat model for RFID system and explained some special
attack for general authentication protocol. In order to solve these problems,
we suggested two strategies: keeping the nonce identical during a session, and
threshold counter. With these schemes, we proposed a strong authentication
protocol against DoS attack supporting location privacy.

Finally, we checked the strength of our protocol against three categories of
attacks, and we concluded that our protocol has reasonable security strength.
In addition, we introduced alternative protocol that reduces one more hash
operation.

References

1. Dirk Henrici and Paul Miiller : Hash-based Enhancement of Location Privacy
for Radio-Frequency Identification Device using Verying Identifiers. University of
Kaiserslautern, Germany, Workshop on Pervasive Computing and Communications
Security - PerSec2004, pp. 149-153, IEEE, 2004

2. Miyako Ohkubo, Koutarou Suzuki and Shingo Kinoshita : Cryptographic Approach
to ‘Privacy-Friendly’ Tags. NTT Laboratories, Japan, RFID Privacy Workshop
MIT, 2003

10.

RFID Authentication Protocol with Strong Resistance 175

Istvan Vajda and Levente Buttyan : Lightweight Authentication Protocols for Low-
Cost RFID tags. Budapest University of Technology and Economics, Hungary, 2003

. Ari Juels : Minimalist Cryptography for Low-Cost RFID Tags. RSA Laboratories,

USA

Ari Juels : Yoking-Proofs for RFID Tags. RSA Laboratories, USA

Ari Juels, Ronald L. Rivest and Michael Szydlo : The Blocker Tag:Selective Block-
ing of RFID Tag for Consumer Privacy. RSA Laboratories, USA

Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson : Universal Re-
encryption for Mixnets. RSA Laboratories, USA

Stephen J. Engberg, Morten B. Harning and Christian Damsgaard Jensen : Zero-
knowledge Device Authentication: Privacy & Security Enhanced RFID preserving
Business Value and Consumer Convenience. Privacy, Security and Trust 2004 -
PST2004, EU Smarttag Workshop, 2004

Martin Feldhofer : A Propsal for an Authentication Protocol in a Security Layer
for RFID Smart Tags. Institute for Applie Information Processing and Communi-
cations (IAIK), Graz University of Technology, Austria

Gildas Avoine and Philippe Oechslim : RFID Traceability: A Multilayer Problem.
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, Financial Cryp-
tography - FC’05, LNCS, Springer, 2005

	Introduction
	Location Privacy
	Traceability at the Application Layer
	Threat Model

	Vulnerabilities of Authentication Protocols
	Un-terminated Session Attack
	Preemptive Locking
	Stealth Bombing
	DoS Attack Against the Database

	Proposed Protocol
	Tag and Database Structure
	Basic Protocol
	Security Analysis
	Alternative Protocol

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

