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Abstract. We propose an efficient Verifiable Ring Encryption (VRE)
for ad hoc groups. VRE is a kind of verifiable encryption [16,1,4,2,8] in
which it can be publicly verified that there exists at least one user, out of
a designated group of n users, who can decrypt the encrypted message,
while the semantic security of the message and the anonymity of the ac-
tual decryptor can be maintained. This concept was first proposed in [10]
in the name of Custodian-Hiding Verifiable Encryption. However, their
construction requires the inefficient cut-and-choose methodology which
is impractical when implemented. We are the first to propose an efficient
VRE scheme that does not require the cut-and-choose methodology.

In addition, while [10] requires interaction with the encryptor when a
verifier verifies a ciphertext, our scheme is non-interactive in the following
sense: (1) an encryptor does not need to communicate with the users in
order to generate a ciphertext together with its validity proof; and (2)
anyone (who has the public keys of all users) can verify the ciphertext,
without the help of the encryptor or any users. This non-interactiveness
makes our scheme particularly suitable for ad hoc networks in which
nodes come and go frequently as ciphertexts can be still generated and/or
verified even if other parties are not online in the course. Our scheme is
also proven secure in the random oracle model.

1 Introduction

A Verifiable Encryption [16,1,4,2,8] allows a prover to encrypt a message and
sends to a receiver such that the ciphertext is publicly verifiable. That is, any
verifier can ensure the ciphertext can be decrypted by the receiver yet know-
ing nothing about the plaintext. There are numerous applications of verifiable
encryption. For example, in a publicly verifiable secret sharing scheme [16], a
dealer shares a secret with several parties such that a third party can verify
that the sharing was done correctly. This can be done by verifiably encrypting
each shares under the public key of the corresponding party and proves to the
third party that the ciphertext encrypt the correct shares. Another scenario is
in a fair exchange environment [1], in which both parties want to exchange some
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information such that either each party obtain the other’s data, or neither party
does. One approach is to let both parties verifiably encrypt their data to each
other under the public key of a trusted party and then to reveal their data.
If one party refuses to do so, the other can go to the trusted party to obtain
the required data. Verifiable encryption can be also applied in revokable anony-
mous credential [5]. When the administration organization issues a credential,
it verifiably encrypts enough information under the public key of the anonymity
revocation manager, so that later if the identity of the credential owner needs
to be revealed, this information can be decrypted.

In an interactive Custodian-Hiding Verifiable Encryption (CHVE) [10], an
Encryptor wants to send a public-key encrypted message to one among a group
of n users through a Verifier. The Encryptor plays the role of a Prover and
conducts an interactive protocol with the Verifier such that, if the Verifier is
satisfied, at least one of the n possible decryptors can recover the message. At
the same time, the message is semantically secure, even against the Verifier, and
the identity of the actual decryptor is anonymous, again even to the Verifier.
Custodian-Hiding Verifiable Encryption can be found useful in the applications
of gateway system or receiver-oblivious transfer.

In ad hoc networks, nodes are highly dynamic and may switch from being on-
line and being offline frequently from time to time. The verifiability of interactive
Custodian-Hiding Verifiable Encryption schemes is virtually of no practical use if
the encryptor goes offline (or leaves the networks forever) since no one can verify
the validity of the ciphertext without the help of the encryptor. In the environment
of ad hoc networks in which most users are highly mobile, it is unreasonable to re-
quire an encryptor to be always online and available to be contacted by a verifier.
What we need is exactly a non-interactive approach to verify the ciphertext.

Let us spare a few words explaining the decision of naming our scheme as
“Verifiable Ring Encryption” over “Custodian-Hiding Verifiable Encryption”,
as suggested by [10]. The word “Ring” is borrowed from Ring signatures [15]
which is a signature scheme constructed in the structure of a ring in order to
achieve 1-out-of-n anonymity of the signer. Analogously, Verifiable Ring Encryp-
tion implies an encryption scheme constructed in the structure of a ring, in which
ciphertexts can be verified to be decryptable by some one, with the identity of
that genuine decryptor hidden among a group of n members. Our choice of “Ver-
ifiable Ring Encryption” therefore better conveys the information on what the
scheme actually does. Moreover, the non-interactiveness of our scheme suggests
that a verifier is convinced by verifying the validity of some kind of proofs. These
proofs can actually be thought of a kind of ring signatures in the sense that they
convince verifiers of the fact that some 1 out of n users can decrypt a ciphertext,
and yet hiding that decryptor’s identity.

Finally we would like to note that the notion of “Verifiable Group Encryp-
tion” (VGE) has been used by [4] to mean something related but very different:
VGE allows the prover to prove that any subset of t members of a group of n
users can jointly recover the message behind a ciphertext, by making use of a
secret sharing scheme. That is, the prover divides the message into n pieces of
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shares such that any t of them are enough to reconstruct m. Then he encrypts
each share for each user using the user’s encryption function, and sends all ci-
phertexts to the verifier. It is clear that the message m can be reconstructed if
any t users decrypt their corresponding ciphertext to get the shares.

1.1 Contributions

We propose an efficient Verifiable Ring Encryption for ad hoc networks which
is the first of its kind that is without the use of the inefficient cut-and-choose
methodology. Furthermore, our proposed scheme is non-interactive. Unlike the
previous one proposed in [10], in our scheme an encryptor does not need to
communicate with the users in order to generate a ciphertext together with its
validity proof. Also anyone who has got the public keys of all users can verify
the ciphertext without the help of the encryptor or any users. Note that being
non-interactive makes our scheme well-suited for ad hoc networks in which nodes
are highly mobile. Ciphertexts can be still generated and/or verified even if other
parties are not online in the course. We also prove the security of our proposed
scheme in the random oracle model [3].

Organization: The rest of the paper is organized as follows. We give security
definitions in Sec. 2. The details of our proposed scheme is presented in Sec. 3.
Its security is analyzed in Sec. 4. We conclude the paper in Sec. 5.

2 Security Definition

2.1 Notations

Let a be a real number. We denote by �a� the largest integer b ≤ a, by �a� the
smallest integer b ≥ a, and by �a� the largest integer b ≤ a + 1/2. For positive
real numbers a and b, let [a] denote the set {0, 1 . . . , �a� − 1} and [a, b] the set
{�a�, . . . , �b�} and [−a, b] denote the set {−�a�, . . . , �b�}.

By neg(λ) we denote a negligible function, i.e., a function f such that f(λ) <
1/p(λ) holds for all polynomials p(λ) and all sufficiently large λ.

We also use the shorthand notation {PK}N and {SK}N , N ∈ N, to mean the
sets {PK1, . . ., PKN} and {SK1, . . ., SKN} respectively.

2.2 A High Level Description

Before giving a formal definition of verifiable ring encryption, we begin with a
high level discussion of this notion in order to let readers understand more easily.

We start by the description of an ordinary verifiable encryption. A verifiable
encryption scheme proves that a ciphertext encrypts a plaintext satisfying a
certain relation R. The relation R is defined by a generator algorithm G′ which
on input a security parameter λ outputs a binary relation W ×∆. For δ ∈ ∆, an
element w ∈ W such that (w, δ) ∈ R is called a witness for δ. The encryptor will
be given a value δ, a witness w for δ, then encrypts w to generate a ciphertext
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ψ. Later, the encryptor may prove to another party that ψ decrypts to a witness
for δ. In this system, the honest verifier will output accept or reject. If the system
is sound, the verifier accepts a proof means that with overwhelming probability
the ciphertext ψ can be decrypted to a witness for δ.

We extend this concept into a group of N designated receivers. In a verifiable
ring encryption scheme, a prover proves that a ciphertext encrypts a plaintext
satisfying one of the certain relation R which is corresponding to one of the
receiver. The idea is that the encryptor will be given a value w, which is a
witness for δ where (w, δ) ∈ R, and randomly generates other N − 1 witnesses
and the corresponding group elements.

Note that for an interactive proof system, both the prover and the verifier are
required to interact in order to have the verifier convinced. If the proof system is
non-interactive, the proof is carried out in a non-interactive fashion – the prover
(or the encryptor) generates a proof transcript that can be used to convince a
verifier at any later time that one (out of N) of the receivers can decrypt the
corresponding witness of that group element δ. However, the verifier still cannot
compute the identity of the actual decryptor.

2.3 Defining Verifiable Ring Encryption

A Verifiable Ring Encryption (VRE) scheme is actually a group encryption
scheme with add-on Verifiability. A group encryption scheme is a generalization
of a public key encryption scheme. Entities involved in such a scheme include an
encryptor and a group of N users. The encryptor has a secret message m which
he wants to send to a certain designated one out of the N users in the group,
so that the secret message can be decrypted only by the designated member.
In other words, a VRE scheme, apart from allowing a secret message to be en-
crypted to some designated members, provides with the encryptor the ability to
prove that a ciphertext encrypts a plaintext satisfying certain relation R.

The relation R is defined by a generator algorithm G′ which on input 1λ

outputs a description Ψ = Ψ [R,W,∆] of a binary relation R on W × ∆. We
require that the sets R, W , and ∆ are easy to recognize (given Ψ). For δ ∈ ∆,
an element w ∈ W such that (w, δ) ∈ R is called a witness for δ. The idea is
that the encryptor will be given a value δ, a witness w for δ, and a label L, and
then encrypts w under L, yielding a ciphertext ψ. After this, the encryptor may
prove to another party that ψ decrypts under L to a witness for δ. In carrying
out the proof, the encryptor will need to make use of the random coins that were
used by the encryption algorithm.

Now, a Ver-Gp-Enc scheme is a tuple of (S,G, E ,D,P ,V) defined as follows:

– param ← S(1λ), the probabilistic polytime (PPT) Setup algorithm that on
input security parameter 1λ, λ ∈ N, outputs and publishes a set of system’s
parameters param that also includes the security parameter 1λ, and a de-
scription Ψ [R,W,∆]← G′(1λ).

– (PKi, SKi)← G(param, 1λi), the PPT Key Generation algorithm that on in-
put the set of system’s parameters param and security parameter 1λi , λi ∈ N,
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where λi ≥ λ, outputs a public-key/private key pair (PKi, SKi). PKi includes
also the security parameter 1λi .

– ψ ← E(param, N, {PK}N , π, w, δ, L), the PPT Encryption algorithm that
takes as input the set of system’s parameters param, the group size N ∈ N

of size polynomial in λ, a set of N public keys {PK}N , an index π ∈ [1, N ],
a message w ∈ W which is the witness of δ ∈ ∆, and a label L ∈ {0, 1}∗,
and outputs a ciphertext ψ. We denote by E ′(param, N, {PK}N , π, w, δ, L)
the pair (ψ, coins), where ψ is the output of E(param, N, {PK}N , π, w, δ, L)
and coins are the random coins used by E to compute ψ.

– m/⊥ ← D(param, N, {PK}N , π, SKπ, ψ, L), the polynomial-time Decryption
algorithm that takes as input the set of system’s parameters param, the group
size n ∈ N of size polynomial in λ, a set {PK}N of N public keys, an index
π ∈ [1, N ], a private key SKπ, a ciphertext ψ, and a label L ∈ {0, 1}∗, and
outputs either a message m ∈M, or a special symbol ⊥. The output of the
algorithm implicitly defines the domain of m, that we denote by M.

– proof ← P(param, N, {PK}N , π, w, δ, L, ψ, coins), the PPT Proof algorithm
that takes as input the tuple (param, N, {PK}N , π, w, δ, L, ψ, coins) such that
(ψ, coins) is the output of some E ′(param, N, {PK}N , π, w, δ, L), and outputs
a proof proof.

– 0/1← V(param, N, {PK}N , L, ψ, proof), the polynomial-time Verification al-
gorithm that takes as input the tuple (param, N, {PK}N , π, L, ψ) such that
ψ is the output of some E(param, N, {PK}N , π, w, δ, L) for some π ∈ [1, N ],
w ∈ M and δ ∈ ∆, and outputs either 0 or 1, indicating accept or reject
respectively.

Here we take a more relaxed approach in order to make it to be more conve-
nient and adequate for practical applications. Instead of requiring the ciphertext
to be decrypted to a witness, we only require that a witness can be easily recon-
structed from the plaintext using some efficient reconstruction algorithm recon.
We believe that this definition is more suitable for many applications.

Definition 1. The above Ver-Gp-Enc scheme is a Verifiable Group Encryption
scheme, if it is (1) correct, (2) sound, (3) zero-knowledge and (4) anonymous,
as defined in the following.

Correctness: A Ver-Gp-Enc is correct if it satisfies both Verification Correctness

and Decryption Correctness defined below.

– (Verification Correctness.) For all param ← S(1λ), for all N ∈ N of size
polynomial in λ, for all λi ≥ λ, i ∈ [1, N ], for all (PKi, SKi)← G(param, 1λi),
i ∈ [1, N ], for all (w, δ) ∈ R, for all L ∈ {0, 1}∗, for all π ∈ [1, N ], for all
(ψ, coins) ← E ′(param, N, {PK}N , π, w, δ, L), for all

proof← P(param, N, {PK}N , π, w, δ, L, ψ, coins),

Pr[x← V(param, N, {PK}N , L, ψ, proof) : x = 1] = 1− neg(λ).
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– (Decryption Correctness.) For all param ← S(1λ), for all N ∈ N of size
polynomial in λ, for all λi ≥ λ, i ∈ [1, N ], for all (PKi, SKi)← G(param, 1λi),
i ∈ [1, N ], for all π ∈ [1, N ], for all w ∈ M, for all L ∈ {0, 1}∗, for all

ψ ← E(param, N, {PK}N , π, w, δ, L),

Pr[m̃← D(param, N, {PK}N , π, SKπ, ψ, L) : m = m̃] = 1− neg(λ).

Soundness: For all PPT adversaries A1,A2, and some reconstruction PPT
algorithm recon,

Pr[ param← S(1λ);
(N,λ1, . . . , λN )← A1(param),
where N has a size polynomial in λ and λi ≥ λ for all i ∈ [1, N ];
(PKi, SKi)← G(param, 1λi), for all i ∈ [1, N ];
(δ, ψ, L, proof)← A2(param, N, {PK}N , {SK}N );
x← V(param, N, {PK}N , L, ψ, proof);
mj ← D(param, N, {PK}N , j, SKj , ψ, L}), for all j ∈ [1, N ];
wj ← recon(param, N, {PK}N , δ,mj), for all j ∈ [1, N ] :
x = 1 ∧ (∀j ∈ [1, N ])((wj , δ) �∈ R) ]

= neg(λ).

Simply speaking, the definition of soundness above means that if a ciphertext
is verified by a verifier to be valid, then there exists one user who can decrypt
the ciphertext to the witness of δ, with overwhelming probability.

Zero knowledge: There exists a PPT simulator Sim such that for all PPT
adversaries A1,A2,A3, we have

Pr[ param← S(1λ);
(N,λ1, . . . , λN )← A1(param),
where N has a size polynomial in λ and λi ≥ λ for all i ∈ [1, N ];
(PKi, SKi)← G(param, 1λi), for all i ∈ [1, N ];
(w, δ, L, π)← A2(param, N, {PK}N , {SK}N),
where (w, δ) ∈ R, L ∈ {0, 1}∗ and π ∈ [1, N ];
(ψ, coins)← E ′(param, N, {PK}N , π, w, δ, L);
b← {0, 1};
if b = 0

then proof← P(param, N, {PK}N , π, w, δ, L, ψ, coins)
else proof← Sim(param, N, {PK}N , δ, ψ, L);

b̂← A3(param, N, {PK}N , {SK}N , w, δ, L, π, ψ, proof) :
b = b̂ ]

= 1/2 + neg(λ).

The definition above means that an adversary cannot distinguish a simulated
proof from a proof generated from real execution of algorithms. In other words,
the proof is zero-knowledge to a verifier.
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Anonymity: For all PPT adversaries A1,A2,A3,

Pr[ param← S(1λ);
(N,λ1, . . . , λN )← A1(param, Ψ),
where N has a size polynomial in λ and λi ≥ λ for all i ∈ [1, N ];
(PKi, SKi)← G(param, 1λi), for all i ∈ [1, N ];
(w, δ, L, π0, π1)← A2(param, N, {PK}N),
where (w, δ) ∈ R and π0, π1 ∈ [1, N ] are distinct;
b← {0, 1};
(ψ, coins)← E ′(param, N, {PK}N , πb, w, δ, L);
proof← P(param, N, {PK}N , πb, w, L, ψ, coins);
b̂← A3(param, N, {PK}N , w, δ, L, π0, π1, {SKi|i ∈ [1, n]\{π0, π1}}, ψ, proof);
b̂ = b ]

= 1/2 + neg(λ).

The definition of anonymity above means that an adversary cannot decide
better than random guessing, given a ciphertext together with a correspond-
ing proof transcript, who among the 2 possible designated members is actually
designated, even he has corrupted all of the other (N − 2) members.

3 The Proposed Scheme

3.1 Key Generation

For each user, select two random �-bit Sophie Germain primes p′ and q′, with
p′ �= q′, and compute p = (2p′ + 1), q = (2q′ + 1) and n = pq, where � = �(λ) is
a security parameter which is a polynomial in λ. Choose random x1, x2, x3 ∈R

[n2/4], choose a random g′ ∈R Z
∗
n2 , and compute g = (g′)2n, y1 = gx1 , y2 = gx2

and y3 = gx3 .
Let Γ be a cyclic group of order ρ generated by γ. We assume ρ and γ

are publicly known, and that ρ is prime. Let W = [ρ] and ∆ = Γ , and let
R = {(w, δ) ∈W ×∆ : γw = δ}.

Choose two other l-bit primes p′, q′ and compute p = 2p′ +1, q = 2q′ +1 and
n = pq, and choose g, h as two generators of Gn′ ⊂ Z

∗
n, where n′ = p′q′ and Gn′

is the subgroup of Z
∗
n of order n′, and l = l(λ) which is a polynomial in λ.

The public key of this user is (n, g, y1, y2, y3, n, g, h, h, ρ, γ) and the secret
key is (x1, x2, x3, p, q) where h = (1 + n mod n2) ∈ Z

∗
n2 . We further define

H : {0, 1}∗ → {0, 1}k be a collision resistant hash function and abs : Z
∗
n2 → Z

∗
n2

maps (a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and to
(a mod n2), otherwise.

For a list ofN users, we denote PKi, the public key of user i be (ni, gi, y1i , y2i ,
y3i , ni, gi, hi, hi, ρi, γi) and the corresponding secret key SKi is (x1i,x2i ,x2i,pi, qi).
For simplicity, we let L denote the list of the public keys of N users.

3.2 Encryption and Ciphertext Validity Proof

The prover sends an encrypted message to one of the N receivers such that only
one of them can decrypt the message. At the same time, any verifier having the
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public keys of those N receivers can verify that the ciphertext can be decrypted
by at least one of the receivers yet does not know the identity of this targeted
receiver.

We use a special kind of encryption scheme by Camenisch and Shoup [8]
where the plaintext is the discrete log of a group element. Then we apply a
1-out-of-n proof-of-knowledge methodology to achieve our goal.

To encrypt a message m ∈ [nπ] under L, the list of public keys of N users,
the prover executes the following algorithm:

1. For i = 1, . . . , N, i �= π, randomly generate mi ∈R [ni] and compute δi =
γmi

i . For π, compute δπ = γm
π .

2. Randomly generate rπ, sπ ∈R [nπ/4] and compute uπ = grπ
π , eπ = yrπ

1π
hm

π ,

vπ = abs((y2πy
H(uπ ,eπ)
3π

)rπ), tπ = gm
π hsπ

π

3. Randomly generate r′π ∈R [−nπ2k+k′−2, nπ2k+k′−2], s′π ∈R [−nπ2k+k′−2,

nπ2k+k′−2], m′
π ∈R [−ρπ2k+k′−2, ρπ2k+k′−2] and compute u′π = g

2r′
π

π , e′π =
y
2r′

π
1π

h
2m′

π
π , v′π = (y2πy

H(uπ ,eπ)
3π

)2r′
π , δ′π = γ

m′
π

π , t′π = g
m′

π
π h

s′
π

π and cπ+1 =
H(L, δπ, u′π, e

′
π, v

′
π, δ

′
π, t

′
π).

4. For i = π + 1, . . . , n, 1, . . . , π − 1, randomly generate r̃i ∈R [−ni2k+k′−2,
ni2k+k′−2], s̃i ∈R [−ni2k+k′−2, ni2k+k′−2], m̃i ∈R [−ρi2k+k′−2, ρi2k+k′−2],
ui, ei, vi ∈R Z

∗
n2 , ti ∈R Z

∗
n2 and compute u′i = u2ci

i g2r̃i

i , e′i = e2ci

i y2r̃i
1i
h2m̃i

i

v′i = v2ci

i (y2iy
H(ui,ei)
3i

)2r̃iδ′i = δci

i γ
m̃i

i , t′i = tci

i gm̃i

i hs̃i

i , ci+1 = H(L, δi, u′i, e
′
i,

v′i, δ
′
i, t

′
i)

5. Compute r̃π = r′π − cπrπ , s̃π = s′π − cπsπ, m̃π = m′
π − cπmπ (all are

computed in Z)
6. Output the ciphertext ψ and the proof proof, where

ψ := ((u1, e1, v1), . . . , (uN , eN , vN )), and

proof := ((δ1, t1, r̃1, s̃1, m̃1), . . . , (δN , tN , r̃N , s̃N , m̃N ), c1).

Note that we describe the Encryption algorithm and the Proof algorithm in
a combined fashion to allow a neat presentation. It should also be a common
practice to do both in one shot in real applications. However, they can always
be done separately if desired.

3.3 Decryption

Assume user π is the actual decryptor. To decrypt a ciphertext ψ using his own
secret key SKπ, user π check whether abs(vπ) ?= vπ and u2(x2π +H(uπ ,eπ)x3π

π
?= v2

π .
If this does not hold, then output reject and halt. Next, let tπ = 2−1 mod nπ

and compute m̄ = (eπ/u
x1π
π )2tπ . If m̄ is of the form hm

π for some m ∈ [nπ], then
output m. Otherwise, output reject.
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3.4 Verification

Any verifier on input L, the list of public keys of thoseN users, and the ciphertext
ψ, can verify that ψ can be decrypted by at least one of the N users. That is,
at least one user π can reconstruct the plaintext, which is the discrete log of
the group element δπ. Yet the verifier cannot compute the identity of this actual
decryptor and cannot compute the plaintext.

The verification algorithm is as follows.

1. For i = 1, . . . , N , compute ûi = u2ci

i g2r̃i

i , êi = e2ci

i y2r̃i
1i
h2m̃i

i ,

v̂i = v2ci

i (y2iy
H(ui,ei)
3i

)2r̃i , δ̂i = δci

i γ
m̃i

i , t̂i = tci

i gm̃i

i hs̃i

i and
ci+1 = H(L, δi, ûi, êi, v̂i, δ̂i, t̂i) if i �= n

2. Check whether
c1

?= H(L, δN , ûN , êN , v̂N , δ̂N , t̂N )

If yes, output accept. Otherwise, output reject.

4 Security Analysis

The assumptions used for proving our scheme are the following.

Assumption 1 (Strong RSA Assumption). Given a composite modulus n
and a random element g ∈ Z

∗
n, it is hard to compute h ∈ Z

∗
n and integer e > 1

such that he = g.

Assumption 2. (Paillier Decision Composite Residuosity (DCR) As-
sumption [13]) Given only n, it is hard to distinguish random elements of Z

∗
n2

from random elements of the subgroup of Z
∗
n2 consisting of all n-th powers of

elements in Z
∗
n2 .

To be complete, one needs to specify more precisely the distribution from
which n is drawn. We specify that n is of the form pq, where p = 2p′ + 1, q =
2q′ + 1, and p′ and q′ are uniformly distributed over all �-bit numbers such that
p, q, p′, q′ are prime and p′ �= q′, where � is the security parameter.

Theorem 1. Under the strong RSA and DCR assumption, our proposed scheme
is a Verifiable Ring Encryption scheme in the random oracle model.

The proof can be found in Appendix A.

5 Conclusion

In this paper, we propose a Verifiable Ring Encryption scheme for ad hoc groups.
Different from previous verifiable encryption schemes which are for one desig-
nated receiver, our proposed scheme is targeted for a group of N receivers.
However, only one of them is able to decrypt the ciphertext while others cannot.
Any public verifier (who has the public keys of those N users) can verify this
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fact yet he cannot compute the identity of this actual decryptor. We propose
a concrete construction and prove its security in the random oracle model. We
believe this kind of schemes will attract many applications in practice.

In addition, there are open problems left such as constructing a verifiable
ring encryption scheme that supports partial or fully separability [9,6]. To build
up a verifiable subgroup encryption, that is, a targeted subgroup of t members
out of a group of N members are able to decrypt the message anonymously, is
another interesting future research. The physical size of the ciphertext of our
proposed scheme grows linearly with the number of designated receivers. It is
another open problem to make the size of the ciphertext to be irrelevant to the
group size.
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A Proof of Theorem 1

Proof. Correctness of our proposed scheme is trivial and its proof is thus omitted.
The proof of the theorem is then a direct implication of the three lemmas that
follow. ��

Lemma 1 (Soundness). Our proposed scheme is sound in the random oracle
model if the Strong RSA assumption holds.

Proof. Assume there is a PPT algorithm P∗, which can produce a ciphertext ψ
(corresponding to δ) with non-negligible probability such that V outputs accept
but no one can decrypt, or compute m′ such that (m′, δ) ∈ R. That is,

Pr[(D(param, N, {PK}N , π, SKπ, ψ, L), δ) /∈ R] > neg(λ)

for at least one π ∈ {1, . . . , N}. for some PPT algorithm V and D.
We construct a PPT simulator (the reduction master)M which hasN private

keys SK1, . . . ,SKN and calls P∗ to compute an integer x such that (x, δ) ∈ R.
M also controls the random oracle H . It flips coins for H and records queries

to the oracle. It maintains the consistnecy of H . P∗ is allowed the query the
random oracle at most qH times.
P∗ generates a ciphertext ψ (corresponding to δ), consists of c1, (u1, e1, v1, t1,

r̃1, s̃1, m̃1), . . . , (uN , eN , vN , tN , r̃N , s̃N , m̃N ) where it satisfies the verification
including the followingN equations: ci+1 = H(L, δi, ûi, êi, v̂i, δ̂i, t̂i) for i = 1, . . . ,
N−1 and c1 =H(L, δN , ûN , êN , v̂N , δ̂N , t̂N ) where ûi =u2ci

i g2r̃i

i , êi =e2ci

i y2r̃i
1i
h2m̃i

i ,

v̂i = v2ci

i (y2iy
H(ui,ei)
3i

)2r̃i δ̂i = δci

i γ
m̃i

i , t̂i = tci

i gm̃i

i hs̃i

i for i = 1, . . . , N
The master M will invoke A with constructed inputs, receive and process

outputs fromA, and may invokeP∗ for multiple times depending on P∗’s outputs
from previous invocations. In the random oracle model,M flips the coins for the
random oracle H record queries to the oracle. Consider each invocation of P∗ to
be recorded on a simulation transcript tape. Some transcripts produce successful
ciphertext. Others do not.
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Let E be the event that each of the N queries corresponding to the N Ver-
ification queries have been included in the qH queries P∗ made to the random
oracles. In the event Ē, M needs to flip additional coins in order to verify P∗’s
ciphertext. Then the probability of c1 satisfying the (final) Verification equation
is at most 1/(2k − qH) because P∗ can only guess the outcomes of queries used
in Verification that he has not made. Therefore

neg(λ) < Pr[E]Pr[P∗ succeed|E] + Pr[Ē]Pr[P∗ succeed|Ē]

≤ Pr[E]Pr[P∗ succeed|E] + 1 · ( 1
2k − qH

)

and

Pr[E and P∗ succeed] > neg(λ) − (
1

2k − qH
)

Hence the probability of P∗ returning a valid ciphertext and having already
queried the random oracle for all the N queries used in Verification is essentially
greater than neg(λ) as 1

2k−qH
is negligibly small.

Therefore, in each P∗ transcript which produced a valid ciphertext, there ex-
ists N queries to H , denoted by Xi1 , · · · , XiN , 1 ≤ i1 < · · · < iN , such that they
match the N queries made in Verification. This happens with each transcript
that P∗ successfully produces a valid ciphertext, with negligible exceptions.

In creating a successful ciphertext ψ by P∗, consider the set of all queries
made by P∗ that were used (including duplicate queries) in Verification. Let Xi1 ,
· · · , XiN denote the first appearance of each of the queries used in Verification,
i1 < · · · < iN . Let π be such that XiN :=H(L, δπ−1, ûπ−1, êπ−1, v̂π−1, δ̂π−1, t̂π−1)
in Verification. We call π the gap of ψ.

We call a successful creation of ψ by P∗ a (�, π)-ψ if i1 = �. That is, the
first appearance of all Verification-related queries is the �-th query and the gap
equals π. There exist � and π, 1 ≤ � ≤ qH , 1 ≤ π ≤ N , such that the probability
P∗ produces (�, π)-ψ is no less than 1/(NqHneg(λ)).

In the following,M will do a rewind-simulation for each value of � and π.
In the rewind-simulation for a given (�, π), M first invokes P∗ to obtain its

output and its Turing transcript T .M computes the output and the transcript
to determine whether they form a successful (�, π)-ψ. If not, abort. Otherwise
continue. This can be done in at most polynomial time because M records
queries made by P∗ to the random oracles. The transcript T is rewound to the
�-th query and given to P∗ for a rewind-simulation to generate transcript T ′.
New coin flips independent of those in T are made for all queries subsequent
to the �-th query while maintaining consistencies with the prior queries. T and
T ′ use the same code in P∗. The �-th query, common to T and T ′, is denoted
cπ+1 = H(L, δπ, u′π, e

′
π, v

′
π , γ

u
π , t

′
π) M knows γu

π but not u at the time of the
rewind. After P∗ returns the output from the rewind simulation,M proceeds to
compute the DL of δπ, that is, u.

By the forking lemma [14], heavy-row lemma [12] or the Rewind-on-Success
lemma [11], there exists non-negligible probability that P∗ produces two (�, π)-ψ
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from the tape T and a rewind-simulation tape T ′ with γu
π = γm̃π+cπm

π from T
and γu

π = γ
m̃′

π+c′πm
π from T ′

Solve for the equations to obtain m. Using the argument in the proof of
Theorem 4 in [7] (and by the Strong RSA Assumption), (m, δ) ∈ R. That is, ψ
is an encryption of the witness of δ. Desired contradition occurs.

Lemma 2 (Zero-knowledge). Our proposed scheme is zero-knowledge in the
random oracle model.

Proof. (Sketch.) This is rather obvious due to the symmetry enjoyed by the
ring-structure of the ciphertext validity proof. ��

Lemma 3 (Anonymity). Our proposed scheme is anonymous in the random
oracle model if DCR assumption holds.

Proof. (Sketch.) Observe that (ui, ei, vi, ti, r̃i, s̃i, m̃i), i = 1, . . . , n, i �= π are
all random numbers chosen uniformly. At the closing point, (uπ, eπ, vπ, tπ,
r̃π, s̃π, m̃π) also distribute uniformly since rπ and sπ are uniformly chosen from
[nπ/4]. Remaining c1 is the output of a hash function which can be regarded as
a random number as well. ��
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