

Lecture Notes in Computer Science 3813
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Refik Molva Gene Tsudik
Dirk Westhoff (Eds.)

Security and Privacy
in Ad-hoc and
Sensor Networks

Second European Workshop, ESAS 2005
Visegrad, Hungary, July 13-14, 2005
Revised Selected Papers

13

Volume Editors

Refik Molva
Institut Eurécom
2229 Route des Crêtes
06560 Valbonne Sophia Antipolis, France
E-mail: molva@eurecom.fr

Gene Tsudik
University of California, Irvine
Computer Science Department
Irvine CA 92697-3425, USA
E-mail: gts@ics.uci.edu

Dirk Westhoff
NEC Europe Ltd., Network Laboratories
Kurfürsten-Anlage 36
69115 Heidelberg, Germany
E-mail: dirk.westhoff@netlab.nec.de

Library of Congress Control Number: 2005937512

CR Subject Classification (1998): E.3, C.2, F.2, H.4, D.4.6, K.6.5

ISSN 0302-9743
ISBN-10 3-540-30912-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30912-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11601494 06/3142 5 4 3 2 1 0

Preface

It was a pleasure to take part in the 2005 European Workshop on Security and
Privacy in Ad Hoc and Sensor Networks (ESAS 2005), held on July 13–14 in
Visegrad (Hungary) in conjunction with the First International Conference on
Wireless Internet (WICON) <http://www.wicon.org/>.

As Program Co-chairs, we are very happy with the outcome of this year’s
ESAS workshop. It clearly demonstrates the continued importance, popularity
and timeliness of the workshop’s topic: security and privacy in ad hoc and sensor
networks. A total of 51 full papers were submitted. Each submission was reviewed
by at least three expert referees. After a short period of intense discussions and
deliberations, the Program Committee selected 17 papers for presentation and
subsequent publication in the workshop proceedings. This corresponds to an
acceptance rate of 33% — a respectable rate by any measure.

First and foremost, we thank the authors of ALL submitted papers. Your
confidence in this venue is much appreciated. We hope that you will continue
patronizing ESAS as authors and attendees. We are also very grateful to our
colleagues in the research community who served on the ESAS Program Com-
mittee. Your selfless dedication is what makes the workshop a success.

Finally, we are very grateful to the ESAS Steering Group: Levente Buttyan,
Claude Castelluccia, Dirk Westhoff and Susanne Wetzel. They had the vision
and the drive to create this workshop in the first place; they also provided many
insights and lots of help with this year’s event. We especially acknowledge and ap-
preciate the work of Levente Buttyan whose dedication (as Steering Committee
member, PC member and Local Arrangements Chair) played a very important
role in the success of the workshop.

September 2005 Refik Molva
Gene Tsudik

Organization

Program Chairs

Refik Molva, Eurecom, France
Gene Tsudik, UC Irvine, USA

Program Committee

Imad Aad, EPFL, Switzerland
N. Asokan, Nokia, Finland
Sonja Buchegger, UC Berkeley, USA
Laurent Bussard, Microsoft, Germany
Levente Buttyán, BUTE, CrySyS Lab, Hungary
Srdjan Capkun, UCLA, USA
Claude Castelluccia, INRIA, France
Hannes Hartenstein, University of Karlsruhe, Germany
Yih-Chun Hu, UC Berkeley, USA
Markus Jakobsson, Indiana University, Bloomington, USA
Yongdae Kim, University of Minnesota, Minneapolis, USA
Stefan Lucks, University of Mannheim, Germany
Breno de Medeiros, Florida State University, USA
Ludovic M, Supelec, France
Gabriel Montenegro, SunLabs, USA
Cristina Nita-Rotaru, Purdue University, USA
Guevara Noubir, Northeastern University, USA
Kaisa Nyberg, Nokia, Finland
Christof Paar, University of Bochum, Germany
Panagiotis Papadimitratos, Cornell University, USA
Andre Weimerskirch, University of Bochum, Germany
Dirk Westhoff, NEC Europe Network Lab., Germany
Susanne Wetzel, Stevens Institute of Technology, USA

Workshop Organizers

Levente Buttyán, Budapest University of Technology and Economics, Hungary
(buttyan@crysys.hu)
Claude Castelluccia, INRIA, France (Claude.Castelluccia@inrialpes.fr)
Dirk Westhoff, NEC Europe Network Lab., Heidelberg, Germany
(Dirk.Westhoff@netlab.nec.de)
Susanne Wetzel, Stevens Institute of Technology, USA (swetzel@cs.stevens.edu)

Table of Contents

Efficient Verifiable Ring Encryption for Ad Hoc Groups
Joseph K. Liu, Patrick P. Tsang, Duncan S. Wong 1

SKiMPy: A Simple Key Management Protocol for MANETs in
Emergency and Rescue Operations

Matija Pužar, Jon Andersson, Thomas Plagemann, Yves Roudier . . . 14

Remote Software-Based Attestation for Wireless Sensors
Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher,
Yongdae Kim . 27

Spontaneous Cooperation in Multi-domain Sensor Networks
Levente Buttyán, Tamás Holczer, Péter Schaffer 42

Authenticated Queries in Sensor Networks
Zinaida Benenson . 54

Improving Sensor Network Security with Information Quality
Qiang Qiu, Tieyan Li, Jit Biswas . 68

One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks
Kemal Bicakci, Chandana Gamage, Bruno Crispo,
Andrew S. Tanenbaum . 80

Randomized Grid Based Scheme for Wireless Sensor Network
Mohammed Golam Sadi, Jong Sou Park, Dong Seong Kim 91

Influence of Falsified Position Data on Geographic Ad-Hoc Routing
Tim Leinmüller, Elmar Schoch, Frank Kargl, Christian Maihöfer . . . 102

Provable Security of On-Demand Distance Vector Routing in Wireless
Ad Hoc Networks

Gergely Ács, Levente Buttyán, István Vajda . 113

Statistical Wormhole Detection in Sensor Networks
Levente Buttyán, László Dóra, István Vajda . 128

RFID System with Fairness Within the Framework of Security and
Privacy

Jin Kwak, Keunwoo Rhee, Soohyun oh, Seungjoo Kim,
Dongho Won . 142

VIII Table of Contents

Scalable and Flexible Privacy Protection Scheme for RFID Systems
Sang-Soo Yeo, Sung Kwon Kim . 153

RFID Authentication Protocol with Strong Resistance Against
Traceability and Denial of Service Attacks

Jeonil Kang, DaeHun Nyang . 164

Location Privacy in Bluetooth
Ford-Long Wong, Frank Stajano . 176

An Advanced Method for Joint Scalar Multiplications on Memory
Constraint Devices

Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi 189

Side Channel Attacks on Message Authentication Codes
Katsuyuki Okeya, Tetsu Iwata . 205

Author Index . 219

Efficient Verifiable Ring Encryption for
Ad Hoc Groups

Joseph K. Liu1, Patrick P. Tsang1, and Duncan S. Wong2

1 Department of Information Engineering,
The Chinese University of Hong Kong Shatin, Hong Kong

{ksliu, pktsang3}@ie.cuhk.edu.hk
2 Department of Computer Science,

City University of Hong Kong, Kowloon, Hong Kong
duncan@cityu.edu.hk

Abstract. We propose an efficient Verifiable Ring Encryption (VRE)
for ad hoc groups. VRE is a kind of verifiable encryption [16,1,4,2,8] in
which it can be publicly verified that there exists at least one user, out of
a designated group of n users, who can decrypt the encrypted message,
while the semantic security of the message and the anonymity of the ac-
tual decryptor can be maintained. This concept was first proposed in [10]
in the name of Custodian-Hiding Verifiable Encryption. However, their
construction requires the inefficient cut-and-choose methodology which
is impractical when implemented. We are the first to propose an efficient
VRE scheme that does not require the cut-and-choose methodology.

In addition, while [10] requires interaction with the encryptor when a
verifier verifies a ciphertext, our scheme is non-interactive in the following
sense: (1) an encryptor does not need to communicate with the users in
order to generate a ciphertext together with its validity proof; and (2)
anyone (who has the public keys of all users) can verify the ciphertext,
without the help of the encryptor or any users. This non-interactiveness
makes our scheme particularly suitable for ad hoc networks in which
nodes come and go frequently as ciphertexts can be still generated and/or
verified even if other parties are not online in the course. Our scheme is
also proven secure in the random oracle model.

1 Introduction

A Verifiable Encryption [16,1,4,2,8] allows a prover to encrypt a message and
sends to a receiver such that the ciphertext is publicly verifiable. That is, any
verifier can ensure the ciphertext can be decrypted by the receiver yet know-
ing nothing about the plaintext. There are numerous applications of verifiable
encryption. For example, in a publicly verifiable secret sharing scheme [16], a
dealer shares a secret with several parties such that a third party can verify
that the sharing was done correctly. This can be done by verifiably encrypting
each shares under the public key of the corresponding party and proves to the
third party that the ciphertext encrypt the correct shares. Another scenario is
in a fair exchange environment [1], in which both parties want to exchange some

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 J.K. Liu, P.P. Tsang, and D.S. Wong

information such that either each party obtain the other’s data, or neither party
does. One approach is to let both parties verifiably encrypt their data to each
other under the public key of a trusted party and then to reveal their data.
If one party refuses to do so, the other can go to the trusted party to obtain
the required data. Verifiable encryption can be also applied in revokable anony-
mous credential [5]. When the administration organization issues a credential,
it verifiably encrypts enough information under the public key of the anonymity
revocation manager, so that later if the identity of the credential owner needs
to be revealed, this information can be decrypted.

In an interactive Custodian-Hiding Verifiable Encryption (CHVE) [10], an
Encryptor wants to send a public-key encrypted message to one among a group
of n users through a Verifier. The Encryptor plays the role of a Prover and
conducts an interactive protocol with the Verifier such that, if the Verifier is
satisfied, at least one of the n possible decryptors can recover the message. At
the same time, the message is semantically secure, even against the Verifier, and
the identity of the actual decryptor is anonymous, again even to the Verifier.
Custodian-Hiding Verifiable Encryption can be found useful in the applications
of gateway system or receiver-oblivious transfer.

In ad hoc networks, nodes are highly dynamic and may switch from being on-
line and being offline frequently from time to time. The verifiability of interactive
Custodian-Hiding Verifiable Encryption schemes is virtually of no practical use if
the encryptor goes offline (or leaves the networks forever) since no one can verify
the validity of the ciphertext without the help of the encryptor. In the environment
of ad hoc networks in which most users are highly mobile, it is unreasonable to re-
quire an encryptor to be always online and available to be contacted by a verifier.
What we need is exactly a non-interactive approach to verify the ciphertext.

Let us spare a few words explaining the decision of naming our scheme as
“Verifiable Ring Encryption” over “Custodian-Hiding Verifiable Encryption”,
as suggested by [10]. The word “Ring” is borrowed from Ring signatures [15]
which is a signature scheme constructed in the structure of a ring in order to
achieve 1-out-of-n anonymity of the signer. Analogously, Verifiable Ring Encryp-
tion implies an encryption scheme constructed in the structure of a ring, in which
ciphertexts can be verified to be decryptable by some one, with the identity of
that genuine decryptor hidden among a group of n members. Our choice of “Ver-
ifiable Ring Encryption” therefore better conveys the information on what the
scheme actually does. Moreover, the non-interactiveness of our scheme suggests
that a verifier is convinced by verifying the validity of some kind of proofs. These
proofs can actually be thought of a kind of ring signatures in the sense that they
convince verifiers of the fact that some 1 out of n users can decrypt a ciphertext,
and yet hiding that decryptor’s identity.

Finally we would like to note that the notion of “Verifiable Group Encryp-
tion” (VGE) has been used by [4] to mean something related but very different:
VGE allows the prover to prove that any subset of t members of a group of n
users can jointly recover the message behind a ciphertext, by making use of a
secret sharing scheme. That is, the prover divides the message into n pieces of

Efficient Verifiable Ring Encryption for Ad Hoc Groups 3

shares such that any t of them are enough to reconstruct m. Then he encrypts
each share for each user using the user’s encryption function, and sends all ci-
phertexts to the verifier. It is clear that the message m can be reconstructed if
any t users decrypt their corresponding ciphertext to get the shares.

1.1 Contributions

We propose an efficient Verifiable Ring Encryption for ad hoc networks which
is the first of its kind that is without the use of the inefficient cut-and-choose
methodology. Furthermore, our proposed scheme is non-interactive. Unlike the
previous one proposed in [10], in our scheme an encryptor does not need to
communicate with the users in order to generate a ciphertext together with its
validity proof. Also anyone who has got the public keys of all users can verify
the ciphertext without the help of the encryptor or any users. Note that being
non-interactive makes our scheme well-suited for ad hoc networks in which nodes
are highly mobile. Ciphertexts can be still generated and/or verified even if other
parties are not online in the course. We also prove the security of our proposed
scheme in the random oracle model [3].

Organization: The rest of the paper is organized as follows. We give security
definitions in Sec. 2. The details of our proposed scheme is presented in Sec. 3.
Its security is analyzed in Sec. 4. We conclude the paper in Sec. 5.

2 Security Definition

2.1 Notations

Let a be a real number. We denote by �a� the largest integer b ≤ a, by �a� the
smallest integer b ≥ a, and by �a� the largest integer b ≤ a + 1/2. For positive
real numbers a and b, let [a] denote the set {0, 1 . . . , �a� − 1} and [a, b] the set
{�a�, . . . , �b�} and [−a, b] denote the set {−�a�, . . . , �b�}.

By neg(λ) we denote a negligible function, i.e., a function f such that f(λ) <
1/p(λ) holds for all polynomials p(λ) and all sufficiently large λ.

We also use the shorthand notation {PK}N and {SK}N , N ∈ N, to mean the
sets {PK1, . . ., PKN} and {SK1, . . ., SKN} respectively.

2.2 A High Level Description

Before giving a formal definition of verifiable ring encryption, we begin with a
high level discussion of this notion in order to let readers understand more easily.

We start by the description of an ordinary verifiable encryption. A verifiable
encryption scheme proves that a ciphertext encrypts a plaintext satisfying a
certain relation R. The relation R is defined by a generator algorithm G′ which
on input a security parameter λ outputs a binary relation W ×Δ. For δ ∈ Δ, an
element w ∈ W such that (w, δ) ∈ R is called a witness for δ. The encryptor will
be given a value δ, a witness w for δ, then encrypts w to generate a ciphertext

4 J.K. Liu, P.P. Tsang, and D.S. Wong

ψ. Later, the encryptor may prove to another party that ψ decrypts to a witness
for δ. In this system, the honest verifier will output accept or reject. If the system
is sound, the verifier accepts a proof means that with overwhelming probability
the ciphertext ψ can be decrypted to a witness for δ.

We extend this concept into a group of N designated receivers. In a verifiable
ring encryption scheme, a prover proves that a ciphertext encrypts a plaintext
satisfying one of the certain relation R which is corresponding to one of the
receiver. The idea is that the encryptor will be given a value w, which is a
witness for δ where (w, δ) ∈ R, and randomly generates other N − 1 witnesses
and the corresponding group elements.

Note that for an interactive proof system, both the prover and the verifier are
required to interact in order to have the verifier convinced. If the proof system is
non-interactive, the proof is carried out in a non-interactive fashion – the prover
(or the encryptor) generates a proof transcript that can be used to convince a
verifier at any later time that one (out of N) of the receivers can decrypt the
corresponding witness of that group element δ. However, the verifier still cannot
compute the identity of the actual decryptor.

2.3 Defining Verifiable Ring Encryption

A Verifiable Ring Encryption (VRE) scheme is actually a group encryption
scheme with add-on Verifiability. A group encryption scheme is a generalization
of a public key encryption scheme. Entities involved in such a scheme include an
encryptor and a group of N users. The encryptor has a secret message m which
he wants to send to a certain designated one out of the N users in the group,
so that the secret message can be decrypted only by the designated member.
In other words, a VRE scheme, apart from allowing a secret message to be en-
crypted to some designated members, provides with the encryptor the ability to
prove that a ciphertext encrypts a plaintext satisfying certain relation R.

The relation R is defined by a generator algorithm G′ which on input 1λ

outputs a description Ψ = Ψ [R, W, Δ] of a binary relation R on W × Δ. We
require that the sets R, W , and Δ are easy to recognize (given Ψ). For δ ∈ Δ,
an element w ∈ W such that (w, δ) ∈ R is called a witness for δ. The idea is
that the encryptor will be given a value δ, a witness w for δ, and a label L, and
then encrypts w under L, yielding a ciphertext ψ. After this, the encryptor may
prove to another party that ψ decrypts under L to a witness for δ. In carrying
out the proof, the encryptor will need to make use of the random coins that were
used by the encryption algorithm.

Now, a Ver-Gp-Enc scheme is a tuple of (S,G, E ,D,P ,V) defined as follows:

– param ← S(1λ), the probabilistic polytime (PPT) Setup algorithm that on
input security parameter 1λ, λ ∈ N, outputs and publishes a set of system’s
parameters param that also includes the security parameter 1λ, and a de-
scription Ψ [R, W, Δ]← G′(1λ).

– (PKi, SKi)← G(param, 1λi), the PPT Key Generation algorithm that on in-
put the set of system’s parameters param and security parameter 1λi , λi ∈ N,

Efficient Verifiable Ring Encryption for Ad Hoc Groups 5

where λi ≥ λ, outputs a public-key/private key pair (PKi, SKi). PKi includes
also the security parameter 1λi .

– ψ ← E(param, N, {PK}N , π, w, δ, L), the PPT Encryption algorithm that
takes as input the set of system’s parameters param, the group size N ∈ N

of size polynomial in λ, a set of N public keys {PK}N , an index π ∈ [1, N],
a message w ∈ W which is the witness of δ ∈ Δ, and a label L ∈ {0, 1}∗,
and outputs a ciphertext ψ. We denote by E ′(param, N, {PK}N , π, w, δ, L)
the pair (ψ, coins), where ψ is the output of E(param, N, {PK}N , π, w, δ, L)
and coins are the random coins used by E to compute ψ.

– m/⊥ ← D(param, N, {PK}N , π, SKπ, ψ, L), the polynomial-time Decryption
algorithm that takes as input the set of system’s parameters param, the group
size n ∈ N of size polynomial in λ, a set {PK}N of N public keys, an index
π ∈ [1, N], a private key SKπ, a ciphertext ψ, and a label L ∈ {0, 1}∗, and
outputs either a message m ∈M, or a special symbol ⊥. The output of the
algorithm implicitly defines the domain of m, that we denote by M.

– proof ← P(param, N, {PK}N , π, w, δ, L, ψ, coins), the PPT Proof algorithm
that takes as input the tuple (param, N, {PK}N , π, w, δ, L, ψ, coins) such that
(ψ, coins) is the output of some E ′(param, N, {PK}N , π, w, δ, L), and outputs
a proof proof.

– 0/1← V(param, N, {PK}N , L, ψ, proof), the polynomial-time Verification al-
gorithm that takes as input the tuple (param, N, {PK}N , π, L, ψ) such that
ψ is the output of some E(param, N, {PK}N , π, w, δ, L) for some π ∈ [1, N],
w ∈ M and δ ∈ Δ, and outputs either 0 or 1, indicating accept or reject
respectively.

Here we take a more relaxed approach in order to make it to be more conve-
nient and adequate for practical applications. Instead of requiring the ciphertext
to be decrypted to a witness, we only require that a witness can be easily recon-
structed from the plaintext using some efficient reconstruction algorithm recon.
We believe that this definition is more suitable for many applications.

Definition 1. The above Ver-Gp-Enc scheme is a Verifiable Group Encryption
scheme, if it is (1) correct, (2) sound, (3) zero-knowledge and (4) anonymous,
as defined in the following.

Correctness: A Ver-Gp-Enc is correct if it satisfies both Verification Correctness

and Decryption Correctness defined below.

– (Verification Correctness.) For all param ← S(1λ), for all N ∈ N of size
polynomial in λ, for all λi ≥ λ, i ∈ [1, N], for all (PKi, SKi)← G(param, 1λi),
i ∈ [1, N], for all (w, δ) ∈ R, for all L ∈ {0, 1}∗, for all π ∈ [1, N], for all
(ψ, coins) ← E ′(param, N, {PK}N , π, w, δ, L), for all

proof← P(param, N, {PK}N , π, w, δ, L, ψ, coins),

Pr[x← V(param, N, {PK}N , L, ψ, proof) : x = 1] = 1− neg(λ).

6 J.K. Liu, P.P. Tsang, and D.S. Wong

– (Decryption Correctness.) For all param ← S(1λ), for all N ∈ N of size
polynomial in λ, for all λi ≥ λ, i ∈ [1, N], for all (PKi, SKi)← G(param, 1λi),
i ∈ [1, N], for all π ∈ [1, N], for all w ∈ M, for all L ∈ {0, 1}∗, for all

ψ ← E(param, N, {PK}N , π, w, δ, L),

Pr[m̃← D(param, N, {PK}N , π, SKπ, ψ, L) : m = m̃] = 1− neg(λ).

Soundness: For all PPT adversaries A1,A2, and some reconstruction PPT
algorithm recon,

Pr[param← S(1λ);
(N, λ1, . . . , λN)← A1(param),
where N has a size polynomial in λ and λi ≥ λ for all i ∈ [1, N];
(PKi, SKi)← G(param, 1λi), for all i ∈ [1, N];
(δ, ψ, L, proof)← A2(param, N, {PK}N , {SK}N);
x← V(param, N, {PK}N , L, ψ, proof);
mj ← D(param, N, {PK}N , j, SKj , ψ, L}), for all j ∈ [1, N];
wj ← recon(param, N, {PK}N , δ, mj), for all j ∈ [1, N] :
x = 1 ∧ (∀j ∈ [1, N])((wj , δ) ∈ R)]

= neg(λ).

Simply speaking, the definition of soundness above means that if a ciphertext
is verified by a verifier to be valid, then there exists one user who can decrypt
the ciphertext to the witness of δ, with overwhelming probability.

Zero knowledge: There exists a PPT simulator Sim such that for all PPT
adversaries A1,A2,A3, we have

Pr[param← S(1λ);
(N, λ1, . . . , λN)← A1(param),
where N has a size polynomial in λ and λi ≥ λ for all i ∈ [1, N];
(PKi, SKi)← G(param, 1λi), for all i ∈ [1, N];
(w, δ, L, π)← A2(param, N, {PK}N , {SK}N),
where (w, δ) ∈ R, L ∈ {0, 1}∗ and π ∈ [1, N];
(ψ, coins)← E ′(param, N, {PK}N , π, w, δ, L);
b← {0, 1};
if b = 0

then proof← P(param, N, {PK}N , π, w, δ, L, ψ, coins)
else proof← Sim(param, N, {PK}N , δ, ψ, L);

b̂← A3(param, N, {PK}N , {SK}N , w, δ, L, π, ψ, proof) :
b = b̂]

= 1/2 + neg(λ).

The definition above means that an adversary cannot distinguish a simulated
proof from a proof generated from real execution of algorithms. In other words,
the proof is zero-knowledge to a verifier.

Efficient Verifiable Ring Encryption for Ad Hoc Groups 7

Anonymity: For all PPT adversaries A1,A2,A3,

Pr[param← S(1λ);
(N, λ1, . . . , λN)← A1(param, Ψ),
where N has a size polynomial in λ and λi ≥ λ for all i ∈ [1, N];
(PKi, SKi)← G(param, 1λi), for all i ∈ [1, N];
(w, δ, L, π0, π1)← A2(param, N, {PK}N),
where (w, δ) ∈ R and π0, π1 ∈ [1, N] are distinct;
b← {0, 1};
(ψ, coins)← E ′(param, N, {PK}N , πb, w, δ, L);
proof← P(param, N, {PK}N , πb, w, L, ψ, coins);
b̂← A3(param, N, {PK}N , w, δ, L, π0, π1, {SKi|i ∈ [1, n]\{π0, π1}}, ψ, proof);
b̂ = b]

= 1/2 + neg(λ).

The definition of anonymity above means that an adversary cannot decide
better than random guessing, given a ciphertext together with a correspond-
ing proof transcript, who among the 2 possible designated members is actually
designated, even he has corrupted all of the other (N − 2) members.

3 The Proposed Scheme

3.1 Key Generation

For each user, select two random �-bit Sophie Germain primes p′ and q′, with
p′ = q′, and compute p = (2p′ + 1), q = (2q′ + 1) and n = pq, where � = �(λ) is
a security parameter which is a polynomial in λ. Choose random x1, x2, x3 ∈R

[n2/4], choose a random g′ ∈R Z
∗
n2 , and compute g = (g′)2n, y1 = gx1 , y2 = gx2

and y3 = gx3 .
Let Γ be a cyclic group of order ρ generated by γ. We assume ρ and γ

are publicly known, and that ρ is prime. Let W = [ρ] and Δ = Γ , and let
R = {(w, δ) ∈W ×Δ : γw = δ}.

Choose two other l-bit primes p′, q′ and compute p = 2p′ +1, q = 2q′ +1 and
n = pq, and choose g, h as two generators of Gn′ ⊂ Z

∗
n, where n′ = p′q′ and Gn′

is the subgroup of Z
∗
n of order n′, and l = l(λ) which is a polynomial in λ.

The public key of this user is (n, g, y1, y2, y3, n, g, h, h, ρ, γ) and the secret
key is (x1, x2, x3, p, q) where h = (1 + n mod n2) ∈ Z

∗
n2 . We further define

H : {0, 1}∗ → {0, 1}k be a collision resistant hash function and abs : Z
∗
n2 → Z

∗
n2

maps (a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and to
(a mod n2), otherwise.

For a list of N users, we denote PKi, the public key of user i be (ni, gi, y1i , y2i ,
y3i , ni, gi, hi, hi, ρi, γi) and the corresponding secret key SKi is (x1i,x2i ,x2i,pi, qi).
For simplicity, we let L denote the list of the public keys of N users.

3.2 Encryption and Ciphertext Validity Proof

The prover sends an encrypted message to one of the N receivers such that only
one of them can decrypt the message. At the same time, any verifier having the

8 J.K. Liu, P.P. Tsang, and D.S. Wong

public keys of those N receivers can verify that the ciphertext can be decrypted
by at least one of the receivers yet does not know the identity of this targeted
receiver.

We use a special kind of encryption scheme by Camenisch and Shoup [8]
where the plaintext is the discrete log of a group element. Then we apply a
1-out-of-n proof-of-knowledge methodology to achieve our goal.

To encrypt a message m ∈ [nπ] under L, the list of public keys of N users,
the prover executes the following algorithm:

1. For i = 1, . . . , N, i = π, randomly generate mi ∈R [ni] and compute δi =
γmi

i . For π, compute δπ = γm
π .

2. Randomly generate rπ, sπ ∈R [nπ/4] and compute uπ = grπ
π , eπ = yrπ

1π
hm

π ,

vπ = abs((y2πy
H(uπ ,eπ)
3π

)rπ), tπ = gm
π hsπ

π

3. Randomly generate r′π ∈R [−nπ2k+k′−2, nπ2k+k′−2], s′π ∈R [−nπ2k+k′−2,

nπ2k+k′−2], m′
π ∈R [−ρπ2k+k′−2, ρπ2k+k′−2] and compute u′

π = g
2r′

π
π , e′π =

y
2r′

π
1π

h
2m′

π
π , v′π = (y2πy

H(uπ ,eπ)
3π

)2r′
π , δ′π = γ

m′
π

π , t′π = g
m′

π
π h

s′
π

π and cπ+1 =
H(L, δπ, u′

π, e′π, v′π, δ′π, t′π).
4. For i = π + 1, . . . , n, 1, . . . , π − 1, randomly generate r̃i ∈R [−ni2k+k′−2,

ni2k+k′−2], s̃i ∈R [−ni2k+k′−2, ni2k+k′−2], m̃i ∈R [−ρi2k+k′−2, ρi2k+k′−2],
ui, ei, vi ∈R Z

∗
n2 , ti ∈R Z

∗
n2 and compute u′

i = u2ci

i g2r̃i

i , e′i = e2ci

i y2r̃i
1i

h2m̃i

i

v′i = v2ci

i (y2iy
H(ui,ei)
3i

)2r̃iδ′i = δci

i γm̃i

i , t′i = tci

i gm̃i

i hs̃i

i , ci+1 = H(L, δi, u
′
i, e

′
i,

v′i, δ
′
i, t

′
i)

5. Compute r̃π = r′π − cπrπ , s̃π = s′π − cπsπ, m̃π = m′
π − cπmπ (all are

computed in Z)
6. Output the ciphertext ψ and the proof proof, where

ψ := ((u1, e1, v1), . . . , (uN , eN , vN)), and

proof := ((δ1, t1, r̃1, s̃1, m̃1), . . . , (δN , tN , r̃N , s̃N , m̃N), c1).

Note that we describe the Encryption algorithm and the Proof algorithm in
a combined fashion to allow a neat presentation. It should also be a common
practice to do both in one shot in real applications. However, they can always
be done separately if desired.

3.3 Decryption

Assume user π is the actual decryptor. To decrypt a ciphertext ψ using his own
secret key SKπ, user π check whether abs(vπ) ?= vπ and u

2(x2π +H(uπ ,eπ)x3π
π

?= v2
π .

If this does not hold, then output reject and halt. Next, let tπ = 2−1 mod nπ

and compute m̄ = (eπ/u
x1π
π)2tπ . If m̄ is of the form hm

π for some m ∈ [nπ], then
output m. Otherwise, output reject.

Efficient Verifiable Ring Encryption for Ad Hoc Groups 9

3.4 Verification

Any verifier on input L, the list of public keys of those N users, and the ciphertext
ψ, can verify that ψ can be decrypted by at least one of the N users. That is,
at least one user π can reconstruct the plaintext, which is the discrete log of
the group element δπ. Yet the verifier cannot compute the identity of this actual
decryptor and cannot compute the plaintext.

The verification algorithm is as follows.

1. For i = 1, . . . , N , compute ûi = u2ci

i g2r̃i

i , êi = e2ci

i y2r̃i
1i

h2m̃i

i ,

v̂i = v2ci

i (y2iy
H(ui,ei)
3i

)2r̃i , δ̂i = δci

i γm̃i

i , t̂i = tci

i gm̃i

i hs̃i

i and
ci+1 = H(L, δi, ûi, êi, v̂i, δ̂i, t̂i) if i = n

2. Check whether
c1

?= H(L, δN , ûN , êN , v̂N , δ̂N , t̂N)

If yes, output accept. Otherwise, output reject.

4 Security Analysis

The assumptions used for proving our scheme are the following.

Assumption 1 (Strong RSA Assumption). Given a composite modulus n
and a random element g ∈ Z

∗
n, it is hard to compute h ∈ Z

∗
n and integer e > 1

such that he = g.

Assumption 2. (Paillier Decision Composite Residuosity (DCR) As-
sumption [13]) Given only n, it is hard to distinguish random elements of Z

∗
n2

from random elements of the subgroup of Z
∗
n2 consisting of all n-th powers of

elements in Z
∗
n2 .

To be complete, one needs to specify more precisely the distribution from
which n is drawn. We specify that n is of the form pq, where p = 2p′ + 1, q =
2q′ + 1, and p′ and q′ are uniformly distributed over all �-bit numbers such that
p, q, p′, q′ are prime and p′ = q′, where � is the security parameter.

Theorem 1. Under the strong RSA and DCR assumption, our proposed scheme
is a Verifiable Ring Encryption scheme in the random oracle model.

The proof can be found in Appendix A.

5 Conclusion

In this paper, we propose a Verifiable Ring Encryption scheme for ad hoc groups.
Different from previous verifiable encryption schemes which are for one desig-
nated receiver, our proposed scheme is targeted for a group of N receivers.
However, only one of them is able to decrypt the ciphertext while others cannot.
Any public verifier (who has the public keys of those N users) can verify this

10 J.K. Liu, P.P. Tsang, and D.S. Wong

fact yet he cannot compute the identity of this actual decryptor. We propose
a concrete construction and prove its security in the random oracle model. We
believe this kind of schemes will attract many applications in practice.

In addition, there are open problems left such as constructing a verifiable
ring encryption scheme that supports partial or fully separability [9,6]. To build
up a verifiable subgroup encryption, that is, a targeted subgroup of t members
out of a group of N members are able to decrypt the message anonymously, is
another interesting future research. The physical size of the ciphertext of our
proposed scheme grows linearly with the number of designated receivers. It is
another open problem to make the size of the ciphertext to be irrelevant to the
group size.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. In Proc. EUROCRYPT 98, pages 591–606. Springer-Verlag, 1998. Lecture
Notes in Computer Science No. 1403.

2. F. Bao. An efficient verifiable encryption scheme for encryption of discrete loga-
rithms. In Proc. Smart Card Research and Applications (CARDIS) 1998, pages
213–220. Springer-Verlag, 2000. Lecture Notes in Computer Science No. 1820.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proc. 1st ACM Conference on Computer and Communica-
tions Security, pages 62–73. ACM Press, 1993.

4. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In Proc.
ASIACRYPT 2000, pages 331–345. Springer-Verlag, 2000. Lecture Notes in Com-
puter Science No. 1976.

5. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocations. In Proc. EUROCRYPT
2001, pages 93–118. Springer-Verlag, 2001. Lecture Notes in Computer Science
No. 2045.

6. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In Proc. CRYPTO 99, pages 413–430. Springer-Verlag, 1999. Lecture
Notes in Computer Science No. 1666.

7. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. http://eprint.iacr.org/2002/161/, 2002.

8. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Proc. CRYPTO 2003, pages 126–144. Springer-Verlag, 2003.
Leture Notes in Computer Science No. 2729.

9. J. Kilian and E. Petrank. Identity escrow. In Proc. CRYPTO 98, pages 169–185.
Springer-Verlag, 1998. Lecture Notes in Computer Science No. 1642.

10. J. Liu, V. Wei, and D. Wong. Custodian-hiding verifiable encryption. In WISA
2004, pages 54–67. Springer-Verlag, 2004. Lecture Notes in Computer Science No.
3325.

11. J. Liu, V. Wei, and D. Wong. Linkable spontaneous anonymous group signature
for ad hoc groups. In ACISP04, pages 325–335. Springer-Verlag, 2004. Lecture
Notes in Computer Science No. 3108.

Efficient Verifiable Ring Encryption for Ad Hoc Groups 11

12. K. Ohta and T. Okamoto. On concrete security treatment of signatures derived
from identification. In Proc. CRYPTO 98, pages 354–369. Springer-Verlag, 1998.
LNCS Vol. 1462.

13. P. Paillier. Public-key cryptosystems based on composite residuosity classes. In
Proc. EUROCRYPT 99, pages 223–239. Springer-Verlag, 1999. Lecture Notes in
Computer Science No. 1592.

14. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Proc.
EUROCRYPT 96, pages 387–398. Springer-Verlag, 1996. LNCS Vol. 1070.

15. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proc. ASIACRYPT
2001, pages 552–565. Springer-Verlag, 2001. Lecture Notes in Computer Science
No. 2248.

16. M. Stadler. Publicly verifiable secret sharing. In Proc. EUROCRYPT 96, pages
191–199. Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1070.

A Proof of Theorem 1

Proof. Correctness of our proposed scheme is trivial and its proof is thus omitted.
The proof of the theorem is then a direct implication of the three lemmas that
follow. ��

Lemma 1 (Soundness). Our proposed scheme is sound in the random oracle
model if the Strong RSA assumption holds.

Proof. Assume there is a PPT algorithm P∗, which can produce a ciphertext ψ
(corresponding to δ) with non-negligible probability such that V outputs accept
but no one can decrypt, or compute m′ such that (m′, δ) ∈ R. That is,

Pr[(D(param, N, {PK}N , π, SKπ, ψ, L), δ) /∈ R] > neg(λ)

for at least one π ∈ {1, . . . , N}. for some PPT algorithm V and D.
We construct a PPT simulator (the reduction master)M which has N private

keys SK1, . . . ,SKN and calls P∗ to compute an integer x such that (x, δ) ∈ R.
M also controls the random oracle H . It flips coins for H and records queries

to the oracle. It maintains the consistnecy of H . P∗ is allowed the query the
random oracle at most qH times.
P∗ generates a ciphertext ψ (corresponding to δ), consists of c1, (u1, e1, v1, t1,

r̃1, s̃1, m̃1), . . . , (uN , eN , vN , tN , r̃N , s̃N , m̃N) where it satisfies the verification
including the following N equations: ci+1 = H(L, δi, ûi, êi, v̂i, δ̂i, t̂i) for i = 1, . . . ,

N−1 and c1 =H(L, δN , ûN , êN , v̂N , δ̂N , t̂N) where ûi =u2ci

i g2r̃i

i , êi =e2ci

i y2r̃i
1i

h2m̃i

i ,

v̂i = v2ci

i (y2iy
H(ui,ei)
3i

)2r̃i δ̂i = δci

i γm̃i

i , t̂i = tci

i gm̃i

i hs̃i

i for i = 1, . . . , N
The master M will invoke A with constructed inputs, receive and process

outputs fromA, and may invokeP∗ for multiple times depending on P∗’s outputs
from previous invocations. In the random oracle model,M flips the coins for the
random oracle H record queries to the oracle. Consider each invocation of P∗ to
be recorded on a simulation transcript tape. Some transcripts produce successful
ciphertext. Others do not.

12 J.K. Liu, P.P. Tsang, and D.S. Wong

Let E be the event that each of the N queries corresponding to the N Ver-
ification queries have been included in the qH queries P∗ made to the random
oracles. In the event Ē, M needs to flip additional coins in order to verify P∗’s
ciphertext. Then the probability of c1 satisfying the (final) Verification equation
is at most 1/(2k − qH) because P∗ can only guess the outcomes of queries used
in Verification that he has not made. Therefore

neg(λ) < Pr[E]Pr[P∗ succeed|E] + Pr[Ē]Pr[P∗ succeed|Ē]

≤ Pr[E]Pr[P∗ succeed|E] + 1 · (1
2k − qH

)

and

Pr[E and P∗ succeed] > neg(λ) − (
1

2k − qH
)

Hence the probability of P∗ returning a valid ciphertext and having already
queried the random oracle for all the N queries used in Verification is essentially
greater than neg(λ) as 1

2k−qH
is negligibly small.

Therefore, in each P∗ transcript which produced a valid ciphertext, there ex-
ists N queries to H , denoted by Xi1 , · · · , XiN , 1 ≤ i1 < · · · < iN , such that they
match the N queries made in Verification. This happens with each transcript
that P∗ successfully produces a valid ciphertext, with negligible exceptions.

In creating a successful ciphertext ψ by P∗, consider the set of all queries
made by P∗ that were used (including duplicate queries) in Verification. Let Xi1 ,
· · · , XiN denote the first appearance of each of the queries used in Verification,
i1 < · · · < iN . Let π be such that XiN :=H(L, δπ−1, ûπ−1, êπ−1, v̂π−1, δ̂π−1, t̂π−1)
in Verification. We call π the gap of ψ.

We call a successful creation of ψ by P∗ a (�, π)-ψ if i1 = �. That is, the
first appearance of all Verification-related queries is the �-th query and the gap
equals π. There exist � and π, 1 ≤ � ≤ qH , 1 ≤ π ≤ N , such that the probability
P∗ produces (�, π)-ψ is no less than 1/(NqHneg(λ)).

In the following,M will do a rewind-simulation for each value of � and π.
In the rewind-simulation for a given (�, π), M first invokes P∗ to obtain its

output and its Turing transcript T .M computes the output and the transcript
to determine whether they form a successful (�, π)-ψ. If not, abort. Otherwise
continue. This can be done in at most polynomial time because M records
queries made by P∗ to the random oracles. The transcript T is rewound to the
�-th query and given to P∗ for a rewind-simulation to generate transcript T ′.
New coin flips independent of those in T are made for all queries subsequent
to the �-th query while maintaining consistencies with the prior queries. T and
T ′ use the same code in P∗. The �-th query, common to T and T ′, is denoted
cπ+1 = H(L, δπ, u′

π, e′π, v′π , γu
π , t′π) M knows γu

π but not u at the time of the
rewind. After P∗ returns the output from the rewind simulation,M proceeds to
compute the DL of δπ, that is, u.

By the forking lemma [14], heavy-row lemma [12] or the Rewind-on-Success
lemma [11], there exists non-negligible probability that P∗ produces two (�, π)-ψ

Efficient Verifiable Ring Encryption for Ad Hoc Groups 13

from the tape T and a rewind-simulation tape T ′ with γu
π = γm̃π+cπm

π from T
and γu

π = γ
m̃′

π+c′πm
π from T ′

Solve for the equations to obtain m. Using the argument in the proof of
Theorem 4 in [7] (and by the Strong RSA Assumption), (m, δ) ∈ R. That is, ψ
is an encryption of the witness of δ. Desired contradition occurs.

Lemma 2 (Zero-knowledge). Our proposed scheme is zero-knowledge in the
random oracle model.

Proof. (Sketch.) This is rather obvious due to the symmetry enjoyed by the
ring-structure of the ciphertext validity proof. ��

Lemma 3 (Anonymity). Our proposed scheme is anonymous in the random
oracle model if DCR assumption holds.

Proof. (Sketch.) Observe that (ui, ei, vi, ti, r̃i, s̃i, m̃i), i = 1, . . . , n, i = π are
all random numbers chosen uniformly. At the closing point, (uπ, eπ, vπ, tπ,
r̃π, s̃π, m̃π) also distribute uniformly since rπ and sπ are uniformly chosen from
[nπ/4]. Remaining c1 is the output of a hash function which can be regarded as
a random number as well. ��

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 14 – 26, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SKiMPy: A Simple Key Management Protocol for
MANETs in Emergency and Rescue Operations*

Matija Pužar1, Jon Andersson2, Thomas Plagemann1, and Yves Roudier3

1 Department of Informatics, University of Oslo, Norway
{matija, plageman}@ifi.uio.no

2 Thales Communications, Norway
jon.andersson@no.thalesgroup.com

3 Institut Eurécom, France
yves.roudier@eurecom.fr

Abstract. Mobile ad-hoc networks (MANETs) can provide the technical plat-
form for efficient information sharing in emergency and rescue operations. It is
important in such operations to prevent eavesdropping, because some the data
present on the scene is highly confidential, and to prevent induction of false in-
formation. The latter is one of the main threats to a network and could easily
lead to network disruption and wrong management decisions. This paper pre-
sents a simple and efficient key management protocol, called SKiMPy.
SKiMPy allows devices carried by the rescue personnel to agree on a symmet-
ric shared key, used primarily to establish a protected network infrastructure.
The key can be used to ensure confidentiality of the data as well. The protocol
is designed and optimized for the high dynamicity and density of nodes present
in such a scenario. The use of preinstalled certificates mirrors the organized
structure of entities involved, and provides an efficient basis for authentication.
We have implemented SKiMPy as a plugin for the Optimized Link State Rout-
ing Protocol (OLSR). Our evaluation results show that SKiMPy scales linearly
with the number of nodes in worst case scenarios.

1 Introduction

Efficient collaboration between rescue personnel from different organizations is a
mission critical element for a successful operation in emergency and rescue situations.
There are two central requirements for efficient collaboration, the incentive to col-
laborate, which is naturally given for rescue personnel, and the ability to efficiently
communicate and share information. Mobile ad-hoc networks (MANETs) can provide
the technical platform for efficient information sharing in such scenarios, if the rescue
personnel is carrying and using mobile computing devices with wireless network
interfaces.

Wireless communication needs to be protected to prevent eavesdropping. The data
involved should not be available to any third parties, for neither publication or mali-

* This work has been funded by the Norwegian Research Council in the IKT-2010 Program,

Project Nr. 152929/431. It has been also partly supported by the European Union under the E-
Next SATIN-EDRF project.

 SKiMPy: A Simple Key Management Protocol for MANETs 15

cious actions. Another important requirement is to prevent inducing of false data. At
the application layer this might for example lead to wrong management decisions. At
the network layer it has been shown that a very few percent of misbehaving nodes
easily can lead to network disruption and partitioning [17]. In both cases, efficiency of
the rescue operation will be drastically reduced and might ultimately cause loss of
human lives. In order to prevent such a disaster, all data traffic should be protected,
allowing only authorized nodes access to the data. Given that devices carried by the
rescue personnel will mostly have limited resources, any security scheme based sol-
emnly on asymmetric cryptography will be too costly in terms of computing power,
speed and battery consumption. Therefore, the use of symmetric encryption with
shared keys is preferable for MANETs in emergency and rescue scenarios. Agreeing
on a shared key in a highly dynamic and infrastructure-less MANET is a non-trivial
problem and requires establishing trust relations between all devices. It is important
for emergency and rescue scenarios that corresponding solutions are simple, efficient,
robust, and autonomous. User interactions should be kept at an absolute minimum.

This paper describes a simple key management protocol, called SKiMPy, that can
be used to establish a symmetric shared key between the rescue personnel’s devices.
By this, SKiMPy will set up a secure network infrastructure between authorized
nodes, while keeping out unauthorized ones. It may be decided at the application layer
whether the established shared key is robust enough for achieving some degree of
data confidentiality as well. The basis for this simple and efficient solution is the fact
that rescue personnel are members of public organizations with strict, well defined
hierarchies. This hierarchy can be mirrored into a certificate structure installed a priori
on their devices, i.e., before the accident or disaster actually happens. As a result, it is
possible for the nodes during the rescue activity to authenticate each other on a peer-
to-peer basis, without need for contacting a centralized server or establishing trust in a
distributed approach.

The organization of the paper is as follows. Section 2 gives a detailed description
of our protocol. In Section 3 we show some design considerations and respective so-
lutions. Section 4 describes an implementation of the protocol together with evalua-
tion results. In Section 5 we present related work. Finally, conclusion and future work
are given in Section 6.

2 Protocol Description

SKiMPy makes use of the existing traffic in the network to trigger key exchange. Pe-
riodic routing beacons (HELLO), sent by proactive routing protocols, are such an
example. The following two messages are specific to SKiMPy:

• Authentication Request (AUTH_REQ): sent by a node after it detects traffic
from a node having a key that is worse than its own one. The message is used to
inform the remote node that the sending node is willing to transfer its key.

• Authentication Response (AUTH_RESP): sent by a node, as a result of a re-
ceived AUTH_REQ message. The message is used to inform the remote party
that the node is willing to perform the authentication and receive the remote and
better key.

The protocol consists of three phases, namely (I) Neighborhood Discovery, (II)
Batching and (III) Key Exchange.

16 M. Pužar et al.

During phase I, a node listens to all traffic sent by its immediate neighbors. If it de-
tects a node using a worse key (explained in detail in Section 3.2), it will send an
Authentication Request message to it, saying it is willing to pass on its key. Upon re-
ceiving such a message, the other node enters the phase II, waiting for possible other
authentication requests before sending a response. This batching period is used for
optimization - a node will only perform authentication with the best of all neighbors.
All the other keys will, due to the transitiveness property of the better than relation, at
some point get overruled and therefore there is no point in getting them. After the
node has chosen its peer, it sends an Authentication Response after which its peer
initializes the actual authentication procedure, that is, exchange of certificates, estab-
lishing a secure tunnel, and finally transfer of the key. The reason for having such a
handshake procedure is to ensure that the nodes can indeed communicate. In some
standards, such as 802.11b [19], traffic like broadcast messages can be sent on a lower
transmitting rate with larger transmission range than data messages. Thus, broadcast
messages might reach a remote node and trigger a key exchange, even though the
nodes cannot directly exchange data packets.

Figure 1 shows an example of the key exchange between three nodes (A, B and C)
and indicates the different phases of the key exchange for node A. Node A enters
phase I when turned on. Nodes B and C do not directly hear each other’s traffic and
are only able to communicate through node A, once the shared key is fully deployed.

The initial states of the three nodes are as follows: A has the key KA, B has KB and
C has KC. In this example, KC is the best key, whereas KA is the worst key.

Phase I:
1. Node A is turned on. All nodes send periodic HELLO messages which are

part of the routing protocol.
2. A receives a HELLO message from B, notices a key mismatch, but ignores it

because KA is worse than KB.
3. A receives HELLO from C, notices a key mismatch, but ignores it because

KA is worse than KC.
4. B and C receive HELLO from A, they both notice they have a better key than

KA, and after a random time delay (to prevent traffic collisions), send an
AUTH_REQ message to A.

secure tunnel
establishment

2

3

4

1

2

2

3

4

AB C

AUTH_REQ

AUTH_RESP

KC
save(KC)

KB KA KC

KC>KB

KB>KA
AUTH_REQ

HELLO

HELLO HELLO

HELLO

Phase I

Phase II

Phase III

1

1

KC>KA
KB>KA

Fig. 1. Message Flow Diagram

 SKiMPy: A Simple Key Management Protocol for MANETs 17

Phase II:
1. A receives AUTH_REQ from B notices that B has a better key and schedules

authentication with B. The authentication is to be performed after a certain
waiting period, in order to hear if some of the neighbors has an even better
key.

2. A receives AUTH_REQ from C as well, sees that C has a key better than KB,
and therefore decides to perform authentication with C instead.

Phase III:
1. A sends an AUTH_RESP message to C, telling it is ready for the authentica-

tion process
2. C initiates the authentication procedure with A, they exchange and verify cer-

tificates; the secure tunnel is established.
3. C sends its key KC to A through the secure tunnel.
4. A receives the key and saves it locally; the old key KA is saved in the key re-

pository for eventual later use; A sends the new key further, encrypted with
KA.

In the next round, that is, after it hears traffic from node B signed with KB, node A

will use the same procedure to deliver the new key KC to node B, hence establishing a
common shared key in the whole cell.

There are two important parameters which influence the performance of the proto-
col and therefore have to be chosen carefully. The delays used before sending
AUTH_REQ are random, to minimize the possibility of collisions in the case when
more nodes react to the same message. On the other hand, the delay from the moment
a node receives AUTH_REQ to the moment it chooses to answer with AUTH_RESP
is a fixed interval and should be tuned so that it manages to hear as many neighbors as
possible within a reasonable time limit. By this, all nodes that have been heard during
the waiting period can be efficiently handled in the same batch.

3 Design Considerations

Our protocol is designed for highly dynamic networks, where nodes may appear, dis-
appear and move in an arbitrary manner. Topology changes are inevitable. The key
management protocol must have low impact on the available resources, i.e. battery,
bandwidth and CPU time. Here, we analyze the different security and performance
issues that had to be considered while designing the protocol, as well as respective
solutions integrated into SKiMPy.

3.1 Authentication

An important characteristic of an emergency and rescue operation is that the organiza-
tions involved (police, fire department, paramedics, etc.) are often well structured,
public entities. Before the rescue personnel comes to the disaster scene, all devices are
prepared for their tasks. One task in the preparation phase, which we call a priori
phase [23], is the installation of valid certificates. The certificates are signed by a
commonly trusted authority, such as the ministry of internal affairs, ministry of de-

18 M. Pužar et al.

fense, etc., on the top of the trust chain. This gives nodes the possibility to authenti-
cate each other without need for contacting a third party.

Certificates on the nodes can identify devices, users handling them, or even both.
The users would then present their certificate to the device by means of a token, i.e.
smartcard. The decision for this does not impact the key management in SKiMPy, but
it impacts the way how lost and stolen nodes are handled, i.e., revoking certificates
and/or blacklisting of such nodes. We explain this issue later, in Section 3.5.

3.2 Choosing Keys

The main task of SKiMPy is to make sure that all the nodes agree on a shared key.
When a node is turned on, it generates a random key with a random ID number. The
uniqueness of the key IDs must be ensured by e.g. using the hash value of the key
itself as part of the ID, by including the nodes MAC address, etc. The final shared key
is always chosen from nodes’ initial keys. To achieve this, we introduce the notions of
better and worse keys, together with the relation “>” representing better than. There
are several possible schemes for deciding which of the keys is better or worse and all
schemes can be equally valid, as long as they cannot cause key exchange loops, are
unambiguous and transitive: (A > B and B > C) => A > C. The necessary control in-
formation, which depends on the scheme chosen, is always sent with the message
signature.

We briefly describe two schemes and their advantages and drawbacks.
The first scheme uses arithmetic comparison of two numbers, i.e. the key having

a higher or lower ID number, timestamp or a similar parameter, is considered to be
better. The advantage of this scheme is that it is unambiguous, transitive and easy to
implement. In addition, it can be “tweaked” in a way that would prevent a single
node to cause re-keying of an already established network cell. For example, if the
scheme defines that the lower ID number means a better key, the highest bit of the
ID number can be always set to “1” when the node is turned on, and cleared once
two nodes merge. Assuming that nodes in a certain area will in most cases pop up
independently, this simple and yet efficient method might prevent a lot of unneces-
sary re-keying traffic. If we use the keys’ timestamps instead of the ID numbers,
choosing a lower timestamp could imply that the key is older and that more nodes
have it already. SKiMPy does not require the clocks of different devices to be syn-
chronized and therefore, the given assumption might not necessarily be true, espe-
cially if the key creator’s clock was heavily out of sync. One major drawback of the
presented scheme is that a small cell (consisting of, for example, 2 nodes) could
easily cause re-keying of a much bigger cell (having, for example, 100 nodes),
which would be a waste of resources.

The second scheme takes care of this problem by using the number of nodes in
each network cell as the decisive factor. The simple rule for this scheme is to always
re-key the smaller cell, i.e. the one with the lower number of nodes, thus minimizing
resource consumption for the necessary re-keying. The approximate number of nodes
can be either retrieved from the routing protocol state information (if, for example, the
OLSR routing protocol [7] is used) or maintained at a higher protocol layer, as it is
done in our project. However, if not all of the nodes have exactly the same informa-

 SKiMPy: A Simple Key Management Protocol for MANETs 19

tion (which is to be expected in a dynamic scenario), and for some obscure reason we
have more simultaneous merging processes between the same two cells, a key ex-
change loop may occur. One approach to this problem is to adjust in each node the
state information of the number of nodes in its cell, always increasing it when new
nodes join, but never decreasing it upon partitioning of the cell.

At the present, we use the first scheme, choosing always a key with a lower ID
number. An in-depth study of both schemes and their variations is subject to ongoing
and future work.

3.3 Key Distribution

Once a node gets a new key as a result of network merging, the key should be de-
ployed within its previous network cell. There are several ways to achieve this:

• Proactively - each node receiving the key immediately forwards it to the others.
This approach ensures prompt delivery of the key to all nodes, but it also gener-
ates a lot of unnecessary network traffic.

• Reactively - when a node receives a key, it does nothing. Only after detecting a
message sent by a neighbor and signed with the old key, the node sends the new
key further. This approach uses less resources, but it takes more time for the
whole cell to get a stable key.

• Combination - the first node getting the new key (that is, the node which per-
formed the merge) immediately forwards the key to its one-hop neighbors, since
it knows that no other node in its previous cell has it yet. The other nodes do not
distribute it right away, but rather when (if) they notice that a node still uses an
old key. This approach keeps the number of necessary broadcast messages con-
taining the key at a minimum.

In any of the given cases, the new key is encrypted using the old one before send-

ing, giving all the other nodes the possibility to immediately start using it. The old key
is saved for a short period of time, for possible latecomers. This can be done because
in this particular case the key change was not performed explicitly for the purpose of
preventing traffic analysis attacks.

In our implementation, described in Section 4.1, we use the combination approach.

3.4 Key Update

When created, each key has a companion key (called update key) used to periodically
update it. The update key is never used on traffic that goes onto the network and
therefore it is not prone to traffic-analysis attacks. The nodes must periodically update
the main key. The new key can be computed using one-way hash functions such as
SHA-1 [15] or MD5 [25], ensuring backward secrecy in the case the key gets broken
at some stage. In addition to the ID of the key used to sign it, a message contains also
the update-number saying how many times the key on the sender-node has been up-
dated. That way, the receiver can easily compute the new key if it notices a mismatch,
which could happen since we can’t expect all the nodes to perform the update at ex-
actly the same time. The local update will not take place if the received message has
an invalid signature.

20 M. Pužar et al.

3.5 Exclusion of Nodes

Once authenticated, a node is a fully trusted member of the network. This poses the
evident problem of how to exclude such a node once the device has been lost or, even
worse, stolen by a malicious third party. At the present, exclusion of already authenti-
cated nodes is not solved in SKiMPy and is part of ongoing and future work. Here, we
describe some ideas on measures to be taken in order to ensure that such a node stays
out of the network.

First, the node’s certificate must be revoked, preventing the node from re-
authenticating later at some stage. Since there is no central authority, a decision is
reached on which node or person can perform the task of revoking certificates. If the
certificates contain also additional attributes such as rank or role of the persons (as-
suming that the certificates do in fact represent persons, not devices), it can be de-
cided that only certain roles/ranks (such as leader) can perform revocation and black-
listing. In theory, the leaders’ devices might also be stolen, but in practice they should
normally be physically well protected. It is important to ensure that the compromised
node itself does not revoke and blacklist legitimate ones or, even worse, the whole
network.

Next, the node’s IP address should be put on a common blacklist. Assuming that IP
addresses are bound to the certificates (as presented in e.g. [22]), the nodes would be
unable to change their IP address. However, relying on fixed IP addresses might in-
troduce new issues and should be considered carefully. Traffic coming from black-
listed nodes must be discarded at the lowest possible layer and, in case legally signed
traffic coming from a blacklisted node is detected, the compromised key must be re-
moved.

Additional methods might be used to ensure that devices cannot be used by unau-
thorized persons. One such example is a system relying on short range wireless au-
thentication tokens. A token is installed into the personnel’s vests or watches, ensur-
ing confidentiality of the data and denying unauthorized access to the devices when
they get out of their token’s range [8].

3.6 Batching

To save resources as much as possible, our protocol makes the nodes learn about their
neighborhood before acting, reducing the number of performed authentications and
thus reducing directly CPU and bandwidth consumption. This is possible due to the
fact that all nodes directly trust the same certificate authority and, therefore, if a node
has been successfully authenticated before and has received the shared secret, we im-
plicitly trust it.

Emphasis has been put on optimization with regards to number of messages sent
out in the air. We measured the number of certificates and key management messages
exchanged, and compared these figures to the number of routing messages needed
from the moment when the nodes were turned on, up to the moment when a stable
shared key was established. To perform these measurements, we used a static, wired
test bed with 16 nodes.

 SKiMPy: A Simple Key Management Protocol for MANETs 21

Figures 2 and 3 show that introducing neighborhood awareness approximately
halved the total number of messages and, proportionally, the time needed to reach a
stable state. Moreover, the number of messages carrying certificates, whose size is
much larger than other key management messages, has been reduced to approxi-
mately 23% of the initial number. The authentication was considered to be done after
the exchange of certificates. Therefore, the results shown here are only an approxima-
tion, and might be slightly different when an actual authentication algorithm is used.

3.7 Additional Issues

The protocol’s goal is to establish a secure network infrastructure. SKiMPy makes it
impossible for a misbehaving node to induce a key that has either expired, or that
would not have been selected in a normal operation. Such keys will be immediately
discarded.

Timeouts are used during the Key Exchange phase (explained in Section 2) to en-
sure that a node does not end up in indefinite wait states or deadlocks as a result of
possible link failures. Care must be taken for possible Denial-of-Service attacks in
any of these cases.

In the closing phase of the rescue operation [23], the keys must be removed to pre-
vent them from being possibly reused afterwards on a different rescue site.

4 Protocol Implementation and Evaluation

4.1 Implementation

Optimized Link State Routing Protocol (OLSR) [7] is a proactive routing protocol for
ad-hoc networks which is one of the candidates to be used in our solution for the
emergency and rescue operations. The olsr.org OLSR daemon [28] is the implementa-
tion we decided to test, since it is portable and expandable by means of loadable
plugins. One example of such a plugin, present in the main distribution, is the Secure
OLSR plugin [16]. The plugin is used to add signature messages to OLSR traffic,
only allowing nodes that possess the correct shared (pre-installed) key to be part of
the OLSR routing domain. One important functionality this plugin lacks is a key

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
g

es

Routing
Key mgmt
Certificates

Fig. 3. Results for the same scenario, after
introducing the batching process

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
g

es

Routing
Key mgmt
Certificates

Fig. 2. Traffic analysis of the first, non-
optimized protocol implementation

22 M. Pužar et al.

management protocol. Even though SKiMPy is mainly designed to protect all traffic
and not only routing, it is still a good opportunity to test and analyze it in a realistic
environment with a real routing protocol.

The key management protocol has been coded directly into the security plugin, al-
though the plans are to make it as a separate one. X.509 certificates [18] and
OpenSSL [27] are currently used to perform node authentication.

4.2 Evaluation Results

To facilitate development of this and other protocols, we created an emulation test
bed, called NEMAN [24]. Routing daemons run independently, each attached to a
different virtual Ethernet device. We use the monitoring channel of the emulator to
analyze the keys used by each of the routing daemons. In order to test performance
and scalability the protocol, we have made measurements from 2 to 100 nodes, with
two very different kinds of scenario: chain and mesh. Figures 4 and 5 show example
screenshots taken from the GUI, representing the two different scenarios.

In a chain scenario, the nodes are lined up in a single chain and the distance be-
tween all nodes in the chain is such that only the direct neighbors can communicate in
a single hop with each other. We consider this to be the worst case scenario still giv-
ing full network connectivity. Given that all the nodes have to perform authentication
with both their neighbors, this leaves no place for optimization, i.e. batching during
the waiting period.

In a mesh scenario, however, nodes have multiple, randomly scattered neighbors,
as it is natural in ad-hoc networks. Having multiple neighbors allows the protocol to
exploit the batching phase, reducing traffic and resource consumption.

 Fig. 4. Example of a chain scenario

 Fig. 5. Example of a mesh scenario

Ten independent runs were performed for each number of nodes and each scenario.

All the nodes were started simultaneously (which we assume is the worst case for our
protocol), with a random key and key ID. To be able to meaningfully compare the
results, the nodes were static and the density was constant. The delay in the batching
period was set to be 1 second, i.e. half of the interval used by OLSR to send HELLO
messages.

One important fact that the results on Figure 6 immediately show is that the protocol
scales linearly with linear increase of the number of nodes and physical network area
accordingly (thus giving the same density of nodes). After approximately 10 nodes, the

 SKiMPy: A Simple Key Management Protocol for MANETs 23

total time became almost independent on the network size. By the fourth second, most
authentications have already been performed and the key distribution process came into
place. In some additional measurements, we introduced node movement using the ran-
dom waypoint mobility model. As long as all of the nodes remained reachable and the
density was constant, movement did not induce a notable delay.

0

5

10

15

20

25

30

0 20 40 60 80 100

Number of nodes in the wireless cell

S
ec

on
d

s

Mesh

Chain

Fig. 6. Time needed to achieve a stable shared key

We also proved that having multiple neighbors does in fact lower the time neces-
sary to reach a stable state. This scenario gives less deviation as well, which is under-
standable since in the case of chain there is more fluctuation of keys, nicely seen in
the GUI.

5 Related Work

Different authentication schemes are available as a starting point for key management.
Devices can exchange a secret or pre-authentication data through a physical contact

or directed infrared link between them [3, 26]. Another way is for the users to com-
pare strings displayed on their devices (a representation of their public key, distance
between them, etc. as presented in [9]). Since user interaction in a rescue operation
should be kept as minimum, we need a different approach.

Threshold cryptography schemes, such as [20] and [31] require all nodes that are
going to perform signatures to carry a share of the group private key. The full signa-
ture is acquired by a certain, predefined number of nodes who present partial signa-
tures computed using their shares. These schemes allow a small number of nodes to
be compromised and still not to present a threat for the network. However, since we
do not know the number of nodes that can be expected at the rescue scene and small
partitions might always be present, this approach is not suited for our scenario.

apkun et al. [10] present a fully self-organized public-key management system
that does not rely on trusted authorities, developed mainly for networks where users
can join and leave without any centralized control. This is not applicable to networks
used in rescue operations, where only authorized nodes are allowed to participate. In
[11], they present a solution similar to ours, explained in Section 3.1, allowing nodes
to authenticate each other by means of pre-installed certificates with a common au-
thority. The advantages of such a system are twofold: first, the data in the network is
more secure. Second, establishing trust and agreeing on a shared key is much more
efficient, i.e., faster and less resources are consumed.

24 M. Pužar et al.

Related key management protocols can be roughly divided into the following three
categories [6].

The first one relies on a fixed infrastructure and servers that are always reachable.
Since we never know where accidents will happen, we should expect them to happen
at places where we cannot rely on the fact that fixed infrastructure will be present.

The next category comprises contributory key agreement protocols, which are not
suited for our scenario for several reasons. Such protocols ([1, 5, 12, 29, 30], to name
a few) are based on Diffie-Hellman two-party key exchange [13] where all the nodes
give their contribution to the final shared key, causing re-keying every time a new
node joins or an existing node leaves the group. In an emergency and rescue opera-
tion, we can expect nodes to pop up and disappear all the time, often causing network
partitioning and merging. Therefore, using contributory protocols would cause a lot of
computational and bandwidth costs which cannot be afforded. Besides, most of these
protocols rely on some kind of hierarchy (chain, binary tree, etc.) and a group man-
ager to deploy and maintain shared keys. In a highly dynamic scenario this approach
would be quite ineffective. Another reason why such protocols are not suited for us, is
that in order for the nodes to be able to exchange keys, a fully working routing infra-
structure has to be established prior to that. Since the routing protocol is one of the
main things we need to protect, this is a major drawback. Asokan and Ginzboorg [2]
present a password-based authenticated key exchange system. A weak password is
known to every member and it is used by each of them to compute a part of the final
shared key. This approach shares some already mentioned drawbacks and introduces
new ones which conflict with our scenario and requirements. User interaction is
needed and it is assumed that all the members are present when creating the key.

The last category are protocols based on key pre-distribution. The main character-
istic of such protocols is that a pair or group of nodes can compute a shared key out of
pre-distributed sets of keys present on each node. These sets of keys are either given
by a trusted entity before the nodes come to the scene [4, 14, 21], or chosen and man-
aged by the nodes themselves, as it is done in DKPS [6].

SKiMPy is different in the sense that it uses pre-installed certificates to perform di-
rect authentication between two nodes. This makes it more simple and efficient.

6 Conclusion

In this paper, we presented a simple and efficient key management protocol, called
SKiMPy, developed and optimized especially for highly dynamic ad-hoc networks.
The protocol relies on the fact that there will be an a priori phase of rescue and emer-
gency operations, within which certificates will be deployed on rescue personnel’s
devices. Pre-installed certificates are necessary due to the fact that highly sensitive
data may be exchanged between the rescue personnel. The certificates make it possi-
ble for the nodes to authenticate each other without need for a third party present on
the scene.

We described a proof-of-concept implementation, as well as evaluation results. The
results show that SKiMPy performs very well and it scales linearly with the number
of nodes. As part of further work we will analyze more in-depth different key selec-
tion and distribution schemes, authentication protocols, and fine tune certain protocol

 SKiMPy: A Simple Key Management Protocol for MANETs 25

parameters, like the delays described in Section 2. Open issues like exclusion of com-
promised nodes, duplicate key ID numbers, denial of service attacks, etc. are also sub-
ject of further investigation.

References

1. Alves-Foss, J., “An Efficient Secure Authenticated Group Key Exchange Algorithm for
Large And Dynamic Groups”, Proceedings of the 23rd National Information Systems Se-
curity Conference, pages 254-266, October 2000

2. Asokan, N., Ginzboorg, P., “Key Agreement in Ad Hoc Networks”, Computer Communi-
cations, 23:1627-1637, 2000

3. Balfanz, D, Smetters, D. K., Stewart, P, Wong, H. C., “Talking To Strangers: Authentica-
tion in Ad-Hoc Wireless Networks”, Proceedings of the 9th Annual Network and Distrib-
uted System Security Symposium (NDSS'02), San Diego, California, February 2002

4. Blom, R., “An Optimal Class of Symmetric Key Generation System”, Advances in Cryp-
tology - Eurocrypt’84, LNCS vol. 209, p. 335-338, 1985

5. Bresson, E., Chevassut, O., Pointcheval, D., “Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case (Extended Abstract)”, Advances in Cryptol-
ogy - Proceedings of AsiaCrypt 2001, pages 290-309. LNCS, Vol. 2248, 2001

6. Chan, Aldar C-F., “Distributed Symmetric Key Management for Mobile Ad hoc Net-
works”, IEEE Infocom 2004, Hong Kong, March 2004

7. Clausen T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)”, RFC 3626, Oc-
tober 2003

8. Corner, Mark D., Noble, Brian D., “Zero-Interaction Authentication”, at The 8th Annual
International Conference on Mobile Computing and Networking (MobiCom’02), Atlanta,
Georgia, September 2002

9. agalj, M., apkun, S., Hubaux, J.-P., “Key agreement in peer-to-peer wireless networks”,
to appear in Proceedings of the IEEE (Specials Issue on Security and Cryptography), 2005

10. apkun, S., Buttyán, L., Hubaux, J.-P., “Self-Organized Public-Key Management for Mo-
bile Ad Hoc Networks”, IEEE Transactions on Mobile Computing, Vol. 2, No. 1, January-
March 2003

11. apkun, S., Hubaux, J.-P., Buttyán, L., “Mobility Helps Security in Ad Hoc Networks”, In
Proceedings of the 4th ACM Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc’03), Annapolis, Maryland, June 2003

12. Di Pietro, R., Mancini, L., Jajodia, S., “Efficient and Secure Keys Management for Wire-
less Mobile Communications”, Proceedings of the second ACM international workshop on
Principles of mobile computing, pages 66-73, ACM Press, 2002

13. Diffie, W., Hellman, M., “New directions in cryptography”, IEEE Transactions on Infor-
mation Theory, 22(6):644-652, November 1976

14. Eschenauer L., Gligor, Virgil D., “A Key-Management Scheme for Distributed Sensor
Networks”, Proceedings of the 9th ACM Conference on Computer and Communication
Security (CCS’02), Washington D.C., November 2002

15. Federal Information Processing Standard, Publication 180-1. Secure Hash Standard (SHA-
1), April 1995

16. Hafslund A., Tønnesen A., Rotvik J. B., Andersson J., Kure Ø., “Secure Extension to the
OLSR protocol”, OLSR Interop Workshop, San Diego, August 2004

26 M. Pužar et al.

17. Hollick, M., Schmitt, J., Seipl, C., Steinmetz, R., “On the Effect of Node Misbehavior in
Ad Hoc Networks”, Proceedings of IEEE International Conference on Communications,
ICC'04, Paris, France, volume 6, pages 3759-3763. IEEE, June 2004

18. Housley, R., Ford, W., Polk, W. and D. Solo, “Internet X.509 Public Key Infrastructure”,
RFC 2459, January 1999

19. IEEE, “IEEE Std. 802.11b-1999 (R2003)”,
 http://standards.ieee.org/getieee802/download/802.11b-1999.pdf

20. Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L., “URSA: Ubiquitous and Robust Access
Control for Mobile Ad-Hoc Networks”, IEEE/ACM Transactions on Networking, October
2004

21. Matsumoto, T., Imai, H., “On the key predistribution systems: A practical solution to the
key distribution problem”, Advances in Cryptology - Crypto’87, LNCS vol. 293, p. 185-
193, 1988

22. Montenegro, G., Castelluccia, C., “Statistically Unique and Cryptographically Verifiable
(SUCV) Identifiers and Addresses”, NDSS'02, February 2002

23. Plagemann, T. et al., “Middleware Services for Information Sharing in Mobile Ad-Hoc
Networks - Challenges and Approach”, Workshop on Challenges of Mobility, IFIP TC6
World Computer Congress, Toulouse, France, August 2004

24. Pužar, M., Plagemann, T., “NEMAN: A Network Emulator for Mobile Ad-Hoc Net-
works”, Proceedings of the 8th International Conference on Telecommunications (Con-
TEL 2005), Zagreb, Croatia, June 2005

25. Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992
26. Stajano, R., Anderson, R., “The Resurrecting Duckling: Security Issues for Ad-hoc Wire-

less Networks”, 7th International Workshop on Security Protocols, Cambridge, UK, 1999
27. The OpenSSL project, http://www.openssl.org/
28. Tønnesen A., “Implementing and extending the Optimized Link State Routing protocol”,

http://www.olsr.org/, August 2004
29. Wallner, D., Harder, E., Agee, R., “Key management for Multicast: issues and architec-

ture”, RFC 2627, June 1999
30. Wong, C., Gouda, M. and S. Lam, “Secure Group Communications Using Key Graphs”,

Technical Report TR 97-23, Department of Computer Sciences, The University of Texas
at Austin, November 1998

31. Zhou, L., Haas, Z., “Securing Ad Hoc networks”, IEEE Network, 13(6):24-30, 1999

Remote Software-Based Attestation
for Wireless Sensors

Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim

Computer Science and Engineering,
University of Minnesota - Twin Cities

Abstract. Wireless sensor networks are envisioned to be deployed in
mission-critical applications. Detecting a compromised sensor, whose
memory contents have been tampered, is crucial in these settings, as
the attacker can reprogram the sensor to act on his behalf. In the case of
sensors, the task of verifying the integrity of memory contents is difficult
as physical access to the sensors is often infeasible. In this paper, we
propose a software-based approach to verify the integrity of the memory
contents of the sensors over the network without requiring physical con-
tact with the sensor. We describe the building blocks that can be used
to build a program for attestation purposes, and build our attestation
program based on these primitives. The success of our approach is not
dependent on accurate measurements of the execution time of the at-
testation program. Further, we do not require any additional hardware
support for performing remote attestation. Our attestation procedure is
designed to detect even small memory changes and is designed to be
resistant against modifications by the attacker.

1 Introduction

Recent technological advances in hardware and communications have helped to
achieve significant strides in the area of wireless sensor networks. These networks
can be used in several real-world applications, including various critical appli-
cations, such as military surveillance, infrastructure security monitoring and
fault detection (e.g., Golden Gate Bridge monitoring [23]), or industrial waste
monitoring.

When sensors are deployed for critical applications, securing these sensors is
important. If a sensor is compromised, an attacker can reprogram the sensor to
act on his/her behalf. For example, the attacker can cause the sensor to send
incorrect information to hide some military activity or send false information
about the location of certain troops. Therefore, it is important to verify that
the static memory contents of the sensors have not been modified, that is, to
attest the static memory contents (which includes programs, keys, and system
configuration information) of the sensors. Typically, sensors are deployed in large
numbers in environments that may not be safe or easily accessible to humans.
Further, the deployment mechanisms (e.g., unmanned air planes) often make it
infeasible to locate the position of each sensor individually. Therefore, we need

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 27–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 M. Shaneck et al.

attestation mechanisms that do not require physical contact with the sensors,
but rather use the wireless communication network. In other words, we need
mechanisms to perform remote attestation.

In this paper we present a software-based approach to remotely attest the
static memory contents of the sensors without requiring any additional hard-
ware on the sensors. As sensors are inherently designed to be light-weight and
inexpensive, adding additional hardware on the sensors significantly increases
the cost well as the size of the sensors; therefore, software-based approaches are
always preferable and practical (they also work on legacy systems). In our ap-
proach, in order to attest the sensor, the attester sends an attestation routine to
the sensor and waits for some time (expected response time) to get a response
from the routine. Once the response time elapses, the attester will not accept any
response sent by the sensors. The sensor executes the routine, which randomly
reads the sensor’s static memory contents and returns a checksum of the memory
contents. The attester has an exact image of the memory contents of each sensor
and can pre-compute the checksum by locally running the attestation routine on
the memory image. After receiving the checksum from the routine, the attester
can verify whether the received checksum matches the expected result. Every
attestation routine is unique per sensor and randomized so that the attacker
will be unable to predict (and pre-compute the checksum) the next routine from
the previous routines.

Motivation. One way of performing remote software-based attestation is to in-
clude a small attestation routine in the sensor’s kernel that performs a check-
sum on the memory contents of the sensor. To prevent replay attacks, for every
new attestation request, the attester sends a random key to the sensor and the
routine on the sensor pseudo-randomly reads the memory contents and gener-
ates a checksum on these contents using the attester’s key. However, this näıve
approach is susceptible to a simple attack [32]. The attacker can modify the
attestation routine such that instead of reading the sensor’s memory contents,
the routine reads the unmodified contents stored somewhere else by the attacker
and computes a checksum on these contents. Since the routine is forced to read
the unmodified memory contents, the checksum will be valid, and the attacker
will be able to conceal his changes.

One important observation is that in this case, in order to generate a valid
checksum, the attacker’s modified attestation routine has to check before every
memory read whether the current memory address belongs to the the modified
portion of the memory by inserting if (or similar) statements. The attacker has
to use static analysis techniques (that analyze program binary without executing
it) to understand the routine and insert if statements within the routine, which
also increases the execution time of the routine. The attester can use this fact
to detect the attacker’s modifications by measuring the actual time taken by the
routine (running on the sensor) to generate the checksum and comparing it with
the expected execution time. If the time taken to generate the checksum is greater
than the expected time, the attester proclaims that the sensor is compromised.
This approach was introduced by SWATT [32].

Remote Software-Based Attestation for Wireless Sensors 29

However, while performing software-based attestation over the network, the
detection mechanism cannot be completely dependent on such minute execution
delays, as the network and the current execution state of the sensor can introduce
some unforeseen delays resulting into inaccurate measurement of the execution
time of the attestation routine, and, thus, resulting in false positives or false
negatives. Therefore, in order to accurately measure the execution delay, the
attester should be in physical contact with the sensor, which cannot be always
possible in practice.

Contributions. The main contributions of the paper are summarized as follows.

– We present an approach for detecting malicious changes to the static memory
contents of wireless sensors. The approach allows the attester to attest the
memory contents of the sensors over the network without requiring physical
contact with the sensors.

– Our approach is not dependent on precise measurements of execution timing
delays to detect malicious changes to the memory of the sensors. Therefore,
our approach is more practical and can be used in real-world scenarios.

– Finally, the approach presented in this paper does not require any hardware
support. Thus, we do not add any additional cost or increase the size of the
sensor. Further, our approach can be easily applied on legacy systems.

Scope of this paper. This paper is focused on designing software-based attestation
techniques that are secure against the static analysis attacks described above.
We do not require any tamper-proof hardware on the sensors.

This paper is not focused on addressing the following impersonation attack, as
detecting this attack requires additional tamper-proof hardware on the sensor.
Consider an adversary that controls two identical sensors, or one sensor and
one powerful machine that emulates the sensor. The attacker then modifies the
memory contents of one sensor and keeps the other sensor or the emulated sensor
unmodified. When the modified sensor receives an attestation routine, it forwards
the routine to the other unmodified sensor or the emulated sensor on which it gets
executed. Since the routine is executed as if on the original unmodified sensor,
it will return a valid checksum and the modifications will go undetected. This
attack can be detected by authenticating the actual processor that executed the
authentication routine. However, this requires additional tamper-proof hardware
on the sensor, e.g., controlled physical random functions [12, 13].

Organization. The remainder of this paper is organized as follows. Section 2
describes our system assumptions, requirements, and the attacker model. In sec-
tion 3, we present the basic building blocks that are used to construct the attes-
tation routine. Section 4 explains our attestation mechanism in detail. Section 5
presents security analysis of our system and an extension to our basic mecha-
nism. Related work is presented in section 6 and section 7 draws conclusions and
outlines future work.

30 M. Shaneck et al.

2 Assumptions, Threat Model, and Requirements

2.1 Assumptions

The base station is assumed to be secure and it will play the role of an attester in
our discussion. In reality, any legitimate entity that shares a pairwise key with the
sensor can be an attester. The communications between the base station and the
sensors is secure using a pairwise key shared between them. We do not address
denial of service attacks (DoS) in this paper. The attester knows the hardware
architecture and the original memory contents of the sensors. We assume that
the sensors do not have virtual memory, as an attacker can modify the memory
map, distinguish between data loads and instruction loads as pointed out in [11],
and evade our attestation. We argue that this assumption is reasonable, since
state of the art micro-controllers do not have virtual memory support [2, 3]. The
attester can communicate with all the sensors directly. We also assume that the
attester can send a binary executable to the sensor and cause it to be executed
(e.g. [18]).

2.2 Threat Model

We assume that if the sensor is compromised, then the attacker has complete
read-write access to the sensor’s memory contents, including cryptographic keys,
and is able to modify the memory contents at will. Thus, he can perform any
type of software based attack on the attestation routine including static analysis
(resulting in modification) of the routine, or software emulation of a sensor on a
sensor. However, we assume that the attacker cannot tamper with the hardware
of the sensor. Detection of attacks that involve external resources (such as the
impersonation attack described in section 1) requires hardware support and is
considered to be out of scope. We assume that the attacker can perform a re-
stricted form of collusion attack, which we call as the staging attack. We assume
that the attacker can execute the attestation routine in stages. For example, a
sensor with some modified portion of the memory can collude with the second
sensor with a different modified portion of the memory. Each sensor runs the
routine in such a way that it generates checksum on their respective un-modified
memory and then combine their checksums in the end to generate a valid check-
sum. Finally, the attacker can perform passive attacks such as eavesdropping,
and active attacks such as replaying packets.

2.3 Requirements

The attestation procedure should satisfy the following requirements.

– Resistance to Replay: The attacker should not able to send a valid check-
sum to the verifier by simply replying previous valid results.

– Resistance to Prediction: The attacker should not be able to predict the
next attestation routine. If the attacker can successfully predict the next
attestation routine, then he can pre-compute the checksum.

Remote Software-Based Attestation for Wireless Sensors 31

– Resistance to static analysis: The attacker should not be able to success-
fully analyze the code by using static analysis techniques within the time
period the attester waits for a response from the sensor. This requirement
will prevent the attacker from predicting the sequence of memory reads as
well as predicting the location of read instructions in the attestation routine.

– Very loose dependence on execution time: Since the attestation routine
is sent over the network, it will be impossible for the attester to measure the
actual execution time of the attestation routine. Therefore, the detection
mechanism should not be dependent on the precise measurement running
time of the attestation routine.

– Complete memory coverage: To detect even small memory changes, the
attestation routine should read every memory location.

– Efficient construction: The attestation routine should be as small as pos-
sible to reduce bandwidth consumption and should be as efficient as possible
to consume less battery power. Further, the attestation routine should not
introduce any new vulnerability in the system.

3 Building Blocks

In order to prevent the attacks mentioned in Section 2.2, the attestation code will
make use of the following building blocks. These constructs, which are described
below, include randomization, encryption, obfuscation, and self-modifying code.
These are not employed to provide unbreakable security, but rather they are
used to make the aforementioned attacks infeasible to be carried out using a
sensor’s limited resources.

Randomization. The routine that is sent to the sensor to perform the attestation
should be different each time. If the routine is different, in some random fashion,
and the results of the attestation calculation are dependent on the specific version
that is being run, then a previous version of the code could not be analyzed offline
and reused later. Thus, the attacker is forced to perform the static analysis of
the binary in an online fashion: the attacker needs to analyze and modify the
routine and then execute it to return the result.

Encryption. The next construct that we use in the construction of the attestation
code is encryption. We will make use of a simple encryption scheme (XOR each
word with a random value) to prevent static analysis of the code directly. The
attacker will thus need to first attack the decryption code in order to break the
encryption of the remaining code. The encryption schemes are not meant to be
secure in the traditional sense, but rather are aimed at adding complexity to the
disassembly of the code. This technique has been explored previously in the field
of software tamper resistance [4].

Self-Modifying Code. In addition, we use self-modifying code in the attestation
program. Without this construct, an attacker could avoid doing the full static
analysis of the code and just search for all memory read statements in the pro-
gram. By doing this, the attacker can simply place conditional offsets before each

32 M. Shaneck et al.

read statement. However, if the reads are regenerated and rewritten in a different
memory locations, then the attacker must first analyze the code that performs
these writes. Without doing so the attacker could not reliably redirect the tar-
gets of these memory reads. The usage of this construct is explained further in
Section 4.2 and has been proposed to strengthen operating system security [7].

Opaque Predicates and Pointer Aliasing. With the previous construct in place,
the attacker is forced to analyze the entire program that it is sent. Thus we
also add constructs to further complicate the task of static analysis as much
as possible. For this purpose we use traditional obfuscation constructs, namely
opaque predicates and pointer aliasing. Opaque predicates are predicates that
always evaluate to either true or false, regardless of the input to the condition,
yet it is very difficult to determine which branch will be taken each time, or even
to determine whether this conditional is actually unconditional. Constructions of
this type have been previously discussed in obfuscation literature [10, 8, 9]. One
of the most promising constructions of opaque predicates is the use of pointer
aliasing [28, 37] and performing data flow analysis of aliased pointers is known
to be an NP-hard problem [17, 24, 30].

Junk Instructions. The use of junk or fake instructions can be combined with
the opaque predicates described above to further confuse static analysis and dis-
assembly [26]. Some of these junk instructions can be partial instructions, which
will confuse the disassembly and thus hinder static analysis. Other instructions
will be full instructions, which will be used to misdirect the static analysis and
waste its time and efforts.

4 Design of Attestation Procedure

We now bring together all the building blocks described previously in Section 3
and describe our scheme to perform the attestation. Throughout the description
of our scheme, we use the word code and routine interchangeably to refer to the
attestation routine sent to the sensor.

4.1 Overview

The base station generates the attestation code, which will be sent to the sensor.
The code construction is described in Section 4.2. When sending the code to the
sensor, the base station encrypts the code and appends a MAC of the encrypted
code, and sends this to the sensor. Upon receiving this message, the sensor first
verifies the MAC and then decrypts the attestation code. The sensor then copies
this into its program memory and transfers execution control to it. The attesta-
tion code will run and calculate the results. Once the result is calculated, it is
sent back to the base station (again, this message is encrypted and authenticated
by the sensor with the key it shares with the base station). Since the base station
knows the image of the sensor’s program memory, it can also run the code to
compute the expected result. If the returned value matches the base station’s

Remote Software-Based Attestation for Wireless Sensors 33

expected result, then the sensor is declared to be ok. If the result is incorrect
or if the sensor does not respond with the timeout period δ, then the sensor
is declared to be corrupted. The base station should wait for a timeout period
Twait equal to (2 ∗ r) + e + Δ, where r is the time required to send a message
from base station to the sensor (one way), e is the expected execution time of
the attestation code, and Δ is a system parameter that indicates expected delay
in the response due to network jitters, etc.

4.2 Attestation Code Construction

The high level construction of the code is as follows: the attestation code will
generate random numbers (within the range of the sensor’s memory that is to
be attested) and reads the data at those memory locations. Those values will
be hashed together incrementally (thus the order in which the data is read
influences the final outcome of the attestation code). The code will also include
each of the constructs mentioned in section 3, in order to prevent an attacker
from modifying the code to avoid detection. This section will describe in detail
how the code will be constructed to use those constructs.

Fig. 1. Overall Structure

There are three main components in the code: the seed calculation, the mem-
ory reads, and the hash computation. For simplicity, we will describe the construc-
tion of the code with the assumption that each of these three parts are located in
contiguous sections of the code and in the order described. However, the compo-
nents can easily be interleaved with each other, with appropriate jumps between
the different sections (obscured by opaque predicates). Figure 1 illustrates the
construction of the attestation code.

34 M. Shaneck et al.

Before discussing each component, we first describe the process of encryp-
tion. Not only is each component encrypted with a random key, but the entire
attestation routine is also encrypted. Along with the encrypted code is the cor-
responding decryption routine. This will include the calculation of the key value,
and the code to perform the decryption. The key will be located somewhere in the
sensor’s memory (either within the decryption routine itself, in some dead code
space in the attestation routine, or using known portions of the sensors program
memory), and so it will not be overly difficult for the attacker to discover the key.
This discovery can be delayed, however, through the use of opaque predicates.
Thus, we couple the key calculation with the opaque predicates, to obscure the
location of the key (or components of the key). Then, the key will be calculated,
which can be done in a number of ways, and the specific method used will vary
randomly between each attestation routine. Some example mechanisms include
taking the XOR of two (random) immediate values, adding together values from
two “random” memory locations in the sensor’s program memory, following mul-
tiple pointer indirections to the key value (where the pointers point to locations
in the attestation routine). There are many such possibilities, and a few will be
chosen at random (where one is the true method and its identity is hidden by
the opaque predicates).

Seed Calculation. The first component of the code is the calculation of the seed,
denoted as S0 in Figure 1, which is used to initialize the pseudo-random number
generator. As this value determines the order in which the memory contents are
read, it will be in the attacker’s best interest to leave this section of the code
unmodified. Rather the attacker will need to determine a priori, through static
analysis, the value of the seed. To prevent this, the seed calculation section
is encrypted with a random encryption routine as described above. Also, the
calculation of the seed will be done in the same manner as key calculation as
described above.

The next two parts, memory reads and hashing, will be a part of a loop,
where a location is read, and then the value is added to the hash computation.
This loop will execute “enough” times to provide good coverage of the sensor’s
program memory (thus reducing the ability of the attacker to evade detection
by hiding in a very small section of memory).

Memory Reads. The portion of the code that performs the memory reads is of
particular importance, since that is where the attacker will attempt to inject the
offsets in order to evade detection. This portion of the code has three main com-
ponents: the initial jump, the read instruction, and the self-modification. The
read instruction is initially located at some random address within this compo-
nent, and so the jump instruction simply jumps control to this instruction. This
jump, however, is obscured by the use of opaque predicates. In addition, as there
is dead-code space, some of which will appear to the attacker to be reachable
through the opaque predicate, junk instructions are inserted (randomly) in this
space, both to thwart disassembly (with partial instructions) and to distract
the static analysis (with normal instructions, such as memory reads). Follow-
ing the read instruction, which places the contents of the particular memory

Remote Software-Based Attestation for Wireless Sensors 35

address in question into a register, control is jumped to the self-modification
section. This section is responsible for a number of tasks. First it generates three
pseudo-random numbers. The first is used as the seed to the next iteration of
the routine, denoted in Figure 1 as Si. It uses the second as the next address
to be read (and thus must be within the target range of addresses). The third
is used to relocate the read instruction. It does this by overwriting the current
read instruction with a junk instruction (or leaving it as is), and writing the new
memory read instruction into another place in the code section. It also must up-
date the initial jump so that control will be properly transferred to the new read
instruction in the next iteration. This action is depicted in Figure 1 as SM(Si).

The random numbers will be generated using the RC4 pseudo-random number
generator, as is used in SWATT [32]. In order to provide ample coverage of the
memory space, it will iterate O(n log n) times though the memory read loop (this
was shown in [32] to be a sufficient number of iterations to provide high coverage
of the memory space), where n refers to the number of memory locations to
be read.

Hash Computation. Next, the hashing component updates the current compu-
tation of the hash with the value that was read in the previous step. Once the
computation of the hash is complete (all memory addresses are read), the final
value is returned to the base station. We use the same hashing mechanism as
in [32].

Construction by Base Station. The last item to be considered is the construction
of each attestation routine by the base station. The base station must generate
each attestation routine differently, such that the probability of two sensors re-
ceiving the same attestation code is very low (also the probability of a single
sensor receiving the same code more than once should be very low). Thus each
version of the attestation code must be generated randomly. This is achieved in
several ways. First, the construction of the opaque predicates is based on the
pointer-aliasing construction described in [9]. In our construction, these struc-
tures will be stored in random locations in the attestation code, and thus the
opaque predicates will be different for each attestation routine. In addition, the
seed will be chosen randomly, and the method used to compute this value will
be chosen randomly from a set of possible methods.

5 Discussion

5.1 Security Analysis

In this paper we have presented a scheme for software based attestation that can
be used in wireless sensor networks. In this section we will provide a discussion on
the security properties of our scheme against the attacks described in Section 2.2.

First, an attacker can simply replay a previously computed response, or he
could “sniff” a response from another sensor. However, in this case the attacker
would only be successful if the seed used in the current attestation challenge

36 M. Shaneck et al.

is the same as the seed in the previous attestation challenge. Since the seed is
chosen uniformly at random, this would only occur with negligible probability.

Thus the attacker must attempt to defeat the code contained in the current
attestation challenge. Our goal is to force the attacker to perform some level of
time intensive computation (which would delay the response to the attestation
challenge past the timeout period). We argue that static analysis, while currently
impossible to prevent, is computation intensive and will cause a significant delay
in the response of the (resource-limited) sensor to the attestation challenge.

The attacker, then, has several options available in which to attack the code.
First, the attacker can have an old version of the attestation code already analyzed
(done offline at some previous point in time) and appropriately modified to avoid
detection. In order for the attacker to be able to use this version of the attestation
routine, he must first get the seed from the new attestation code. However, the at-
testation code, as well as the seed computation component, is encrypted. Thus the
attacker must first break the two encryption schemes, which consists of determin-
ing the key that is used. This is protected by the opaque predicates. Also, once the
attacker breaks the encryption schemes, he must determine the value of the seed,
which is protected in the same way as the encryption keys. In order to accomplish
these tasks, the attacker must perform static analysis on the code.

The attacker might also try to modify the read instructions, in order to insert
the conditional offsets to redirect the read to the unmodified copy of the sen-
sor’s original code. The attacker could also use these modifications to redirect
the reads to a collaborating sensor where that portion of the memory is unmod-
ified (as per the staging attack described in Section 2.2). This also requires the
attacker to determine the value of two encryption keys. In addition, due to the
self-modifying code, the attacker cannot simply insert the conditional offsets into
the code, but must first analyze the self-modifying portion of the code. By doing
this, the attacker can cause the code to regenerate not only the memory reads,
but the conditional offsets as well. Otherwise, if the attacker simply inserts the
code before the initial read, the attestation code will overwrite this conditional
offset and it will be lost. Thus, to do this, the attacker must again perform static
analysis on the code.

Finally, the attacker can execute the attestation code within an emulator. In
order for this attack to succeed, the attacker would pause execution of the code at
each memory read, and offset the memory address to be read to point to an unmod-
ified copy of the original sensor code. Emulation, however, imposes an inevitable
slowdown in the execution of the program, and can be as much as an order of mag-
nitude slower, as shown in [20]. Instructions are no longer decoded in hardware
but in software. Also, code must be executed to process each emulated instruction.
As this code is not bound by I/O, the slowdown will be significant, and with an
appropriate choice of a timeout period, the base station can detect such an attack.

5.2 Extension

In addition, an optional extension to our scheme can be utilized to make emula-
tion (and also static analysis) more difficult for the attacker to perform. During

Remote Software-Based Attestation for Wireless Sensors 37

initial program code installation on the sensor, any free space in the sensor’s
program memory will be filled with random values. These random values will
be known by the base station and thus can be included in the memory that
is attested. Thus, the only free space available for the attacker to store an un-
modified copy of the sensor’s original code would be in the data memory. This
is effective for two reasons. First, the data memory is typically used to store
current execution information, such as the program stack, and thus certain por-
tions of it cannot be overwritten by the attacker (without causing the sensor to
crash). This not only reduces the amount of available space (thus requiring the
malicious code to be very efficient), but also requires the attacker to be careful
where the unmodified copy of the sensor’s original code can be stored. Second,
the data memory is typically much smaller than the program memory [1, 3], and
thus the size of the malicious code (which performs static analysis or emulation)
must be small enough to fit within the data memory.

6 Related Work

Software tamper-resistance is a technique to construct a program that either can-
not be modified or an modification can be detected. There have been a variety of
proposed approaches for achieving tamper-resistance. In general requiring addi-
tional hardware support has been one direction taken for solving this problem. On
the other hand software based techniques such as obfuscation can be employed.

A trusted platform is one which adequately guarantees the users that the
hardware and software modules are operating as specified. The Trusted Com-
puting Group (TCG) has proposed an architecture called Trusted Platform Mod-
ule (TPM). The TPM hardware, which is accompanied by supporting software,
is used establish and provide a platform of trust. Load-time attestation using
TPM is explored in [31]. BIND [34] employs TCG to perform fine-grained at-
testation; that is, it does not attest the entire memory but only a specific piece
of code. Secure processors to prevent software tampering have been proposed in
[25, 39, 35, 40]. Copilot [19] is a co-processor based runtime memory attestation
mechanism. These hardware based approaches are not a suitable solution in our
setting as sensors are expected to be inexpensive, and additional secure hardware
would be prohibitively expensive.

SWATT [32], is a scheme that has been proposed to verify the static contents
and configuration settings of an embedded device. However, as discussed previ-
ously in Section 1 this approach is not suitable for our setting. Genuinity [20],
is a technique to ascertain whether a remote machine is running a real hard-
ware running the expected software environment or not. Subsequently, attacks
on Genuinity were described in [33, 32]. However in [21], the authors claim that
the attacks on Genuinity are not sufficient to defeat the system. Our approach is
similar in concept to Genuinity, in that we also send an attestation program to
the sensor. As noted in [21], intricate details that could be exploited in embedded
devices are rare, hence we have adopted sending a tamper-resistant attestation
routine to achieve our goal.

38 M. Shaneck et al.

The majority of the work on software based tamper-resistance relies on ob-
fuscation. The goal of an obfuscating transformation is to make static analysis
and disassembly of the executable, for the purpose of making useful modifica-
tions to a program, difficult [37, 10, 8, 9, 28, 38]. Theoretical work on obfuscation
has yielded interesting results [14, 5, 36, 29, 27], and has shown that in general,
perfect obfuscation is impossible. Therefore, careful choice of obfuscation trans-
formations is necessary. For example, in [26], the authors proposed using indirect
jumps (via branch functions) for preventing disassembly. By analyzing the con-
trol flow graph of the program and exploiting statistical techniques, the authors
of [22] were able to correctly identify a majority of the program instructions.

Program evolution [7] was proposed as a technique to defend against auto-
mated attacks on operating systems. Self-checksumming software tamper resis-
tance has been proposed in [6, 16]. Recently [11], the authors have shown the
inadequacies of [6, 16] and proposed a generic attack on checksumming based
software tamper resistance. The attack presented in [11] relies on advanced pro-
cessor nuances like memory hierarchy, virtual memory and TLB, which is cur-
rently not available in sensors [1, 3], and hence is not applicable to our approach.

Integrity Verification Kernel (IVK) [4] is a technique for constructing tamper
resistant software, where the software (that needs to be attested) is “armored”
by means of self-encryption and self-decryption at run-time, coupled with self-
checking of its integrity. This, however, is inherently different from our goals
(attesting memory). If IVK is included in the sensor’s programs, the attacker
can simply reprogram the sensor. Further, the attacker can run the IVK in an
emulator and get the actual (unencrypted) binary. If the attacker succeeds in
getting the binary in clear, the attacker can generate a valid checksum on mod-
ified code. In our scheme, the attestation routine has to send a valid checksum
on all of the static memory contents within the timeout period Twait. Further,
since the routine is new for each attestation, even if the attacker breaks one
attestation routine, he cannot generate the checksum for the next attestation
routine.

7 Conclusion and Future Work

Software attestation in sensor networks is one of the most important security
primitives. To the best of our knowledge this effort is the first to consider remote
software based attestation in sensor networks. We have presented a scheme which
achieves this goal by sending a checksumming routine to the sensor from the base
station. This code is protected by the techniques of encryption, obfuscation and
self-modifying code, so that an attacker is unable to return a valid response
from a compromised sensor within the allowed time. In addition, our approach
is software based, and does not require the addition of any extra hardware.

Future work includes implementing and evaluating the presented attestation
procedure. We are currently exploring ways to efficiently send the attestation
routine to execute it on the sensor. We plan to explore the Mica Mote platform [2]
and TinyOS [15], as this platform is known to support in-network reprogram-

Remote Software-Based Attestation for Wireless Sensors 39

ming [18]. Detailed experiments will be performed to measure the overhead im-
posed by the attestation routine on the sensor in terms of battery consumption,
code size, and execution time. Tests will also be performed on simulated sensors
that can be used to simulate a large sensor network. As part of the experiments,
we plan to measure the expected runtime so that we can provide estimates on
the amount of time that the base station will wait for a response. We will also
study the effect of Δ on the security of the system. Finally, a detailed security
analysis of the implemented program will be provided.

References

1. Atmel AVR 8-bit RISC processor.
http://www.atmel.com/atmel/products/prod23.htm.

2. Mica2 series.http://www.xbow.com/Products/Product pdf files/Wireless pdf/

MICA2 Datasheet.pdf.
3. TI MSP-430 processor. http://focus.ti.com/mcu/docs/techdocs.tsp?navSection=

user guides&templateId=5246&familyId=342 .
4. D. Aucsmith. Tamper resistant software. In Proceedings of the First Information

Hiding Workshop, 1996.
5. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO ’01: Pro-
ceedings of the 21st Annual International Cryptology Conference on Advances in
Cryptology, pages 1–18, London, UK, 2001. Springer-Verlag.

6. H. Chang and M. J. Atallah. Protecting software code by guards. In DRM ’01:
Revised Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital
Rights Management, pages 160–175, London, UK, 2002. Springer-Verlag.

7. F. Cohen. Operating system protection through program evolution. Computers
and Security, 1993.

8. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-
tions. Technical report, Technical Report 148, Department of Computer Science,
University of Auckland, July 1997.

9. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles of Programming Languages 1998,
POPL’98, San Diego, CA, Jan. 1998.

10. C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection. In IEEE Transactions on Software Engineering,
volume 28, pages 735–746, August 2002.

11. A. S. G. Wurster, P.C. van Oorschot. A generic attack on checksumming-based
software tamper resistance. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005.

12. B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Controlled Physical Ran-
dom Functions. In Proceedings of the 18th Annual Computer Security Conference,
December 2002.

13. B. L. P. Gassend. Physical random functions. Master’s thesis, Massachusetts
Institute of Technology, February 2003.

14. S. Hada. Zero-knowledge and code obfuscation. In ASIACRYPT ’00: Proceedings
of the 6th International Conference on the Theory and Application of Cryptology
and Information Security, pages 443–457, London, UK, 2000. Springer-Verlag.

40 M. Shaneck et al.

15. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System archi-
tecture directions for network sensors. In ASPLOS-IX: Proceedings of the ninth
international conference on Architectural support for programming languages and
operating systems, Cambridge, November 2000.

16. B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic self-checking
techniques for improved tamper resistance. In DRM ’01: Revised Papers from the
ACM CCS-8 Workshop on Security and Privacy in Digital Rights Management,
pages 141–159, London, UK, 2002. Springer-Verlag.

17. S. Horwitz. Precise flow-insensitive may-alias analysis is np-hard. ACM Trans.
Program. Lang. Syst., 19(1):1–6, 1997.

18. J. Jeong and D. Culler. Incremental network programming for wireless sensors. In
The First IEEE International Conference on Sensor and Ad hoc Communications
and Networks, October 2004.

19. N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a coprocessor-
based kernel runtime integrity monitor. In USENIX Security Symposium, pages
179–194, 2004.

20. R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer sys-
tems. In 12th USENIX Security Symposium, pages 295–310. USENIX Association,
August 2003.

21. R. Kennell and L. H. Jamieson. An analysis of proposed attacks against genuinity
tests. Technical report, Purdue University, 09 2004. CERIAS TR 2004-27.

22. C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of ob-
fuscated binaries. In Proceedings of USENIX Security 2004, pages 255–270, San
Diego, CA, August 2004.

23. T. Kuennen. Small science will bring big changes to roads.
http://www.betterroads.com/articles/jul04a.htm.

24. W. Landi and B. G. Ryder. Pointer-induced aliasing: a problem taxonomy. In
POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 93–103. ACM Press, 1991.

25. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In
ASPLOS-IX: Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, pages 168–177, New
York, NY, USA, 2000. ACM Press.

26. C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299, New York, NY, USA, 2003.
ACM Press.

27. B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for ob-
fuscation. In EUROCRYPT ’04, 2004.

28. T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software tamper resistance based
on the difficulty of interprocedural analysis, August 2002.

29. T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a theoretical
basis and its implementation. In IEICE Transactions on Fundamentals, volume
E86-A, pages 176–186, January 2003.

30. G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16(5):1467–1471, 1994.

31. R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-based policy en-
forcement for remote access. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 308–317, New York, NY, USA,
2004. ACM Press.

Remote Software-Based Attestation for Wireless Sensors 41

32. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: Software-based
Attestation for Embedded Devicesi. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2004.

33. U. Shankar, M. Chew, and J. Tygar. Side effects are not sufficient to authenticate
software. In 13th USENIX Security Symposium. USENIX Association, August
2004.

34. E. Shi, A. Perrig, and L. V. Doorn. Bind: A time-of-use attestation service for
secure distributed systems. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005.

35. G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: architec-
ture for tamper-evident and tamper-resistant processing. In ICS ’03: Proceedings of
the 17th annual international conference on Supercomputing, pages 160–171, New
York, NY, USA, 2003. ACM Press.

36. N. P. Varnovsky and V. A. Zakharov. On the possibility of provably secure obfus-
cating programs. In Ershov Memorial Conference, pages 91–102, 2003.

37. C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper resistance: Ob-
structing static analysis of programs. Technical report, University of Virginia,
Charlottesville, VA, USA, 2000.

38. G. Wroblewski. General Method of Program Code Obfuscation. PhD thesis, Wro-
claw University of Technology, Institute of Engineering Cybernetics, 2002.

39. J. Yang, Y. Zhang, and L. Gao. Fast secure processor for inhibiting software
piracy and tampering. In MICRO 36: Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page 351, Washington, DC, USA,
2003. IEEE Computer Society.

40. X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure for efficiently pro-
tecting information leakage on the address bus. In ASPLOS-XI: Proceedings of the
11th international conference on Architectural support for programming languages
and operating systems, pages 72–84, New York, NY, USA, 2004. ACM Press.

Spontaneous Cooperation in Multi-domain
Sensor Networks

Levente Buttyán, Tamás Holczer, and Péter Schaffer

Laboratory of Cryptography and System Security (CrySyS),
Department of Telecommunications,

Budapest University of Technology and Economics, Hungary
{buttyan, holczer, schaffer}@crysys.hu

Abstract. Sensor networks are large scale networks consisting of several
nodes and some base stations. The nodes are monitoring the environment
and send their measurement data towards the base stations possibly via
multiple hops. Since the nodes are often battery powered, an important
design criterion for sensor networks is the maximization of their lifetime.
In this paper, we consider multi-domain sensor networks, by which we
mean a set of sensor networks that co-exist at the same physical location
but run by different authorities. In this setting, the lifetime of all net-
works can be increased if the nodes cooperate and also forward packets
originating from foreign domains. There is a risk, however, that a selfish
network takes advantage of the cooperativeness of the other networks
and exploits them. We study this problem in a game theoretic setting,
and show that, in most cases, there is a Nash equilibrium in the sys-
tem, in which at least one of the strategies is cooperative, even without
introducing any external incentives (e.g., payments).

1 Introduction

Multi-hop wireless sensor networks will be the near future’s most powerful mo-
nitoring applications. These networks contain a large number of sensor nodes
and some base stations which are collecting the information that the sensors
measure. Sensor networks can be used for environmental monitoring (e.g., forest
fire or earthquake detection), tracking of cars or material (e.g., freight transport,
traffic monitoring), or monitoring the state of buildings [1].

An important design criterion for sensor networks is the minimization of the
sensors’ energy consumption. The reason is that sensors are often battery pow-
ered, and it is impractical, or in some cases, even impossible to change or recharge
their batteries once they have been deployed. It is known that the energy con-
sumption of transmitting a data packet is a super-linear function of the distance
of the transmission. Practically, this means that, as far as energy consumption
is concerned, it is more advantageous to transmit a packet in several small hops
than to transmit it in a single large hop. Hence, if there are numerous sensors
near to each other then they could transmit the packets together and by doing
so, they can increase the lifetime of their batteries radically.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 42–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Spontaneous Cooperation in Multi-domain Sensor Networks 43

In today’s research of sensor networks it is generally assumed that all the
sensors and base stations belong to one authority that can control the whole
network. In this paper, we depart from this common assumption, and consider
sensor networks that are deployed at the same physical area, but controlled by
different authorities. In such a situation, the sensors that belong to one authority
may reduce their transmission energy even further if their packets are forwarded
by sensors that belong to another authority; an act that we call cooperation.
There is a risk, however, that the sensors belonging to the other authority are
not willing to help and they drop the foreign packets.

We study this problem in a game theoretic setting. The main question we are
interested in is the following: Can cooperation emerge spontaneously in multi-
domain sensor networks based solely on the self-interest of the nodes (or more
precisely the authorities to which the nodes belong)? To put it in another way: Is
the objective of increasing the lifetime of the network enough to foster coopera-
tion between co-located sensor networks? Our analytical and simulation studies
presented in this paper show that in most cases, the answer to these questions
is affirmative.

The rest of the paper is organized as follows. In Section 2, we show some
cheering analytical results on a simplified model. In Section 3, we extend the
simple model to a more realistic one, and we present our simulation results. In
Section 4, we report on some related work. Finally, we conclude in Section 5.

2 Simplified Model

We start to study the problem of spontaneous cooperation in a simplified model.
We assume that there are only two sensor networks that co-exist at the same
physical location, and each of them consists of a single base station and a single
sensor. The placement of the base stations and the sensors is illustrated in
Figure 1.

1 1 1

1 1

2
α

Fig. 1. Simple network

44 L. Buttyán, T. Holczer, and P. Schaffer

Now, we describe the operation of this simple system. We assume that time
is divided into discrete time slots. In each time slot, each sensor wants to send a
single data packet to its own base station, which contains its measurement data.
We also assume that data packets are equal in size.

The packet can be sent to the base station directly in a single hop, or via the
other sensor in two hops. Thus, at the beginning of each time slot every sensor
has to decide the following:

– whether to request the other sensor to help in forwarding its own packet, or
not, and

– whether to help in forwarding the other sensor’s packet if it requests help,
or not.

The decision made by the sensor defines its move in the time slot. Hence, we
have four possible moves, each of which is denoted by a pair of letters as follows:

CC means that the sensor tries to get help from the other sensor and helps if
the other sensor requests it;

CD means that the sensor tries to get help from the other sensor but it refuses
to help if the other network requests it

DC means that the sensor does not ask for help, but it sends its packet directly
to its base station, however, it helps if the other sensor requests forwarding;

DD means that the sensor does not ask for help from the other sensor, and does
not help if the other sensor request forwarding.

In fact, C stands for cooperation and D stands for defection, and the first letter
of the move defines how the sensor behaves concerning its own packet, and the
second letter defines how it behaves when the other sensor’s packet is concerned.
For instance, making the move CD means that the node tries to cooperate when
sending its own packet, but defects when the other sensor asks it to forward its
packet.

Each pair of moves has a cost for both sensors, which are shown in Table 1.
The costs are related to the energy consumption of the sensors and they are
determined as follows:

– asking the other sensor to forward the packet has a unit cost, because this
only requires to send the packet to a unit distance.

– forwarding the other sensor’s packet also has a unit cost for similar reasons;
– sending the packet directly to the base station has a cost of 2α, where α

is the path loss exponent with usual values between 2 and 5, because this
requires to send the packet to a distance of two units;

– dropping a packet has no cost.

We note that we are aware of the fact that in reality the cost of communication
does not only depend on the distance, but there are also fix costs associated with
the reception and the transmission of packets. In this simplified model, we set
aside these fix costs.

The cells of Table 1 contain not only the costs for the two sensors, but also
indicators of success, where 1 means that the packet reached the base station

Spontaneous Cooperation in Multi-domain Sensor Networks 45

Table 1. Costs and successes in the simple network (cost of row player, cost of column
player; success of row player, success of column player)

CC CD DC DD

CC 2, 2 ;1, 1 2, 1 ;0, 1 1, 1 + 2α;1, 1 1, 2α ;0, 1
CD 1, 2 ;1, 0 1, 1 ;0, 0 1, 1 + 2α;1, 1 1, 2α ;0, 1
DC 1 + 2α, 1;1, 1 1 + 2α, 1;1, 1 2α, 2α ;1, 1 2α, 2α;1, 1
DD 2α, 1 ;1, 0 2α, 1 ;1, 0 2α, 2α ;1, 1 2α, 2α;1, 1

(success) and 0 means that it did not (failure). As an example let us consider the
pair of moves CC −CD. In this case, the first sensor tries to send its packet via
the other sensor, but the other sensor will drop it. On the other hand, the other
sensor’s packet will be sent via the first sensor to the base station successfully.
Hence, the cost of the first sensor is 2 (1 for asking for forwarding its own packet
and 1 for forwarding the other’s packet), and the cost of the other sensor is 1
(the cost for asking for forwarding). Moreover, the first sensor records a failure,
while the other one records a success.

We assume that the sensors record the results (success or failure) of the last
few time slots in a buffer that we call history. One can think of the history as
a binary vector of a fixed length. We assume that each sensor’s next move is a
function of its history. We call this function the strategy of the sensor.

Here we make an important restriction on the strategy space (set of possible
strategies). We assume that each sensor wants to keep the weight of its history
(i.e., the number of successful slots in the recent past) above a threshold, which
we call the weight threshold. Intuitively, this means that we do not want to allow
too many unsuccessful slots in the history, because that would mean that the base
station does not receive measurement data with high enough rate (characteristic
to the application). Therefore, when the weight of the history approaches the
weight threshold, the sensor is not allowed to make risky C∗ moves (i.e., CC and
CD), but it is required to send its data directly to the base station (i.e., to make
a D∗ move). This situation is called the constraint state. Using strategies that
suggest D∗ moves in the constraint state guarantees that the weight threshold
is never violated.

Note that a longer history with a lower weight threshold results in a system
with more freedom. On the other hand, a shorter history with a higher threshold
results in a much stricter system.

Each sensor has some initial battery B. In each time slot, the battery levels of
the sensors decrease. The amount of this decrease depends on the pair of moves
made in the time slot and their associated costs. When a sensor runs out of its
battery, it dies. The other sensor can continue to send data to its base station if
it still has some battery.

Note that the above mentioned concepts describe together an extensive game,
where the players are the sensors, the possible moves (made simultaneously by
both players) in each round (except for the constraint states) are CC, CD, DC,
DD, the information sets are defined by the content of the histories, and the set
of strategies are the functions that assign a move to every possible history with

46 L. Buttyán, T. Holczer, and P. Schaffer

Table 2. Best lifetimes with two-step strategies (lifetime for row player; lifetime for
column player), B initial battery, ρ weight threshold, α path loss exponent, ε1,2 payoff
from transient states

CC/DD CD/DD

CC/DD B
2

; B
2

B
ρ2α+(1−ρ)

; B
ρ2α+(1−ρ)

+ ε1

CD/DD B
ρ2α+(1−ρ)

+ ε1 ; B
ρ2α+(1−ρ)

B
ρ2α+(1−ρ)

+ ε2 ; B
ρ2α+(1−ρ)

+ ε2

the restriction that only D∗ moves are assigned to a history that represents a
constraint state. The game ends when both sensors run out of their batteries.
The payoff of a player is its lifetime, which is represented by the number of
rounds it survived. Lifetime is a good payoff function since the authorities want
to run their network as long as possible with some constraints on their success.

Once we have a game, we can look for Nash equilibria with the highest possible
lifetime. A Nash equilibrium is a strategy pair such that none of the players can
increase its utility by unilaterally changing its strategy. It is quite reasonable to
choose one of these Nash equilibria as an operating point in real systems. If there
are more then one Nash equilibria, the equilibrium with the highest lifetimes is
chosen.

In order to make the analysis feasible, we further restrict the strategy space.
Let us consider first the two-step strategies. These strategies suggest a fix move if
the player is not in a constrained state (independently of the actual weight of the
history), and another fix move if the player is in a constrained state. A two-step
strategy is denoted by m/m′, where m is the move chosen in an unconstrained
state and m′ is the move chosen in a constrained state. For instance, the strategy
CC/DD selects CC in an unconstrained state and DD in a constrained state.
Therefore, we have eight two-step strategies, because in a constrained state only
D∗ moves are possible.

We performed an exhaustive search on this strategy space (there are 8×8 = 64
pairs of strategies to consider), and looked for Nash equilibria. We found that
CC/DD and CD/DD dominate the other strategies. The CC/DD strategy is
a cooperative strategy, while the CD/DD is an uncooperative one. By elimi-
nating the dominated strategies, we get a reduced game. The lifetimes for the
sensors in this reduced game are shown in Table 2, where ρ denotes the weight
threshold, and B denotes the initial battery level. ε1 and ε2 comes from tran-
sient states like starting and ending the game. There are two Nash equilibria:
(CC/DD, CC/DD) and (CD/DD, CD/DD). The first one results in full coop-
eration, while the second one results in full defection. However, if ρ > 1

3 (and
α ≥ 2 which is a fundamental condition in our model), then the cooperative
equilibrium results in a higher lifetime for both players.

A more interesting class of strategies are the weight aware strategies. These
strategies choose the next move as a function of the weight of the history. Thus,
a weight aware strategy can be represented as m1/m2/ . . . /mk, where m1 is
the move that is chosen when the weight of the history is maximal, and mk is
chosen when the weight of the history is just above the weight threshold. k is a

Spontaneous Cooperation in Multi-domain Sensor Networks 47

parameter whose value depends on the history size and the value of the weight
threshold. This class contains more complex and more reactive strategies.

After running 20 different exhaustive simulations, with different parameter
sets, we found that the strategy that achieves the best Nash equilibrium is al-
ways the same: (CD/CD/ . . . /CD/CC/DD). We call it the smart strategy. The
smart strategy tries to ask for help in the first steps (the CD moves, which are
cheap moves), but provides help (the CC move before the DD move) only in
a state when the weight threshold is nearly violated in the hope that its nice
behavior will be reciprocated. In other words, the smart strategy first tries to
exploit the other. If this is successful, then it will never cooperate. However, if
the other strategy is not exploitable, then it will change to a cooperative behav-
ior. In the long run, the strategy keeps the actual weight of the history near to
the weight threshold, which means that it cooperates only as much as necessary.
This turns out to be a very effective behavior to save battery and leads to a
rational cooperation.

In summary, we can see that in the simplified model, which contains two base
stations and two sensor nodes, cooperative Nash equilibria exist based on smart
strategies that try to optimize the amount of cooperation. In the next section
we will investigate if the same is true in a more general model.

3 Generalized Model

After the cheering results of the simplified model in Section 2 we have examined
much bigger and more complex systems. We have developed a simulator that cor-
responds to the model described in the first part of Section 2 with some extensions.

The generalized model uses many sensors per authority randomly placed on
the playground with uniform distribution. The possible moves are the same as
those in the simplified model, but in the generalized model each pair of moves
has a cost that depends not only on the distance of the transmissions and the
path loss exponent α, but also on some fix costs associated with the sending
and receiving of packets. The fix cost of sending and the fix cost of receiving are
constant values, which represent the energy consumption for connecting to the
communication channel and to process the packets.

The principle of routing in the model is finding the minimum energy path
towards the base station [9]. This means that every node has to forward on the
path which has the minimum energy cost among all the possible paths. Every
node maintains three paths: one in its own network (for the defective moves)
and two in the global network (i.e., where all the nodes are possible forwarders).
The global network paths are maintained for being able to make cooperative
moves. The two distinct cooperative paths are towards the two base stations.
These three paths can be the same depending on the placement.

Both networks have a threshold value (success threshold) which defines the
minimum number of packets that the base station has to receive in each time
slot, and the time slot is considered successful only if at least that number of
packets reach the base station. The lifetime of a network is the total number

48 L. Buttyán, T. Holczer, and P. Schaffer

Table 3. Parameters for the simulations (the parameters are motivated in the example
and in [7])

Parameter Value

Number of sensors per domain 10-20-40 (20)
Distribution of the sensors uniformly random
Area size 100x100 m
Position of the base (common base) [50,50]
Position of the bases (separate bases) [45,50] and [55,50]
Initial battery 10 million units
Reception fix cost 3000 units
Sending fix cost 2000 units
Success threshold 0.7-0.8-0.9 (0.8)
Weight threshold 0.6
History length 5
Energy drop-off (α) 2-3-4 (3)

of time slots that elapsed until the weight of the history becomes zero. The
objective of the game is to reach the best possible lifetime under the constraint
that the weight threshold of the history has to be respected.

Example: In an office building it is usual to deploy temperature and movement
sensors. The temperature sensors measure the actual temperature and forward it
to the air conditioning system. The movement sensors gather information about
which zone is visited or abandoned and forward it to the security system. The
two systems ask for information regularly (once in every second) but it is not
crucial to get the information in every time slot. The temperature can be con-
trolled and the security can be guaranteed with enough accuracy if some of the
measurements are successful (let us say three out of the last five). The systems
can work properly if they get enough measurement data in a time slot. While
the sensors are usually deployed redundantly a given proportion can execute the
task (let us say 80 % of the sensors). If the given proportion of data is arrived
to the control systems, then the missing information can be deduced.

We have investigated two main type of scenarios. In one of them (common
base scenario), there is a single common base station that collects the information
from all of the nodes (independently from the authority they belong). In the other
(separate base scenario), both networks have their own base stations. In the
common base model, the base station is placed in the middle of the playground,
while in the separate bases model, the base stations had the same distance from
the theoretical middle of the playground.

We performed 100 simulation runs for each parameter setting with different
topology. The concrete values for the simulations are shown in Table 3. The
values in parenthesis are the defaults. For each run we made an exhaustive
search in the strategy space to find the best strategy pairs (i.e., those that form
a Nash equilibrium and generate the highest lifetimes).

In the extended model, it is not so easy to determine which equilibrium is
a cooperative equilibrium. Two strategies can act in a cooperative way in case

Spontaneous Cooperation in Multi-domain Sensor Networks 49

0 1 2
0

10

20

30

40

50

60

70

80

90
Common base scenario

0 1 2
0

10

20

30

40

50

60

70

80

90
Separate base scenario

Fig. 2. Distribution of equilibrium classes (number of nodes per domain = 10 (black),
20 (gray), 40 (white))

of one topology and in an uncooperative way in case of another topology. In
other words, the topology and the strategies both can influence the cooperation.
Therefore, we classified the equilibria into the following three classes:

– Class 0: If the networks play strategies that form this type of equilibrium,
then neither of them ever forwards a packet for the other. (no cooperation)

– Class 1: If the networks play strategies that form this type of equilibrium,
then one of them forwards some packets for the other. (semi cooperation)

– Class 2: If the networks play strategies that form this type of equilibrium,
then both of them forward some packets for the other. (full cooperation)

If the game had more than one best Nash equilibria, then we considered the
most cooperative ones (i.e., those that have the highest class number).

The simulation results are shown in Figures 2, 3, and 4. In each figure, the
left hand side chart shows the results of the common base scenario, and the
right hand chart shows the results of the separate base scenario. On the x axis,
we show the equilibrium classes (0, 1, 2), and on the y axis, the percentage of
simulations where the best Nash equilibria fell in a given equilibrium class.

Figure 2 shows how the distribution of the different equilibrium classes de-
pends on the number of nodes. One can see that in most cases the best Nash
equilibria result in some kind of cooperation, although semi-cooperation has a
higher probability than full cooperation.

Figure 3 shows how the distribution of the different equilibrium classes de-
pends on the path loss exponent α. If α is high, then full cooperation is the best
choice, because it costs a lot of battery energy to send to a far sensor. If full
cooperation occurs, then the average sending distance is smaller, which is very
advantageous when the path loss exponent is large.

Figure 4 shows how the distribution of the different equilibrium classes de-
pends on the success threshold. One can see that the success threshold does not

50 L. Buttyán, T. Holczer, and P. Schaffer

0 1 2
0

10

20

30

40

50

60

70

80

90
Common base scenario

0 1 2
0

10

20

30

40

50

60

70

80

90
Separate base scenario

Fig. 3. Distribution of equilibrium classes (α = 2 (black), 3 (gray), 4 (white))

0 1 2
0

10

20

30

40

50

60

70

80

90
Common base scenario

0 1 2
0

10

20

30

40

50

60

70

80

90
Separate base scenario

Fig. 4. Distribution of equilibrium classes (success threshold = 0.7 (black), 0.8 (gray),
0.9 (white))

have much influence on the distribution. If the success threshold is higher, than
a little more fully cooperative Nash equilibria occur, but the success threshold
seems to be a not as important parameter as the path loss exponent or the
number of nodes.

As we have seen above, when co-located sensor networks are allowed to col-
laborate in the packet forwarding effort, some form of cooperation can emerge
spontaneously, by which we mean that in the best Nash equilibria, at least one
of the networks forwards some packets on behalf of the other network. It is
clear that this cooperative behavior is more advantageous (meaning results in a
longer lifetime) for the cooperating network than a defective behavior, given the

Spontaneous Cooperation in Multi-domain Sensor Networks 51

Table 4. Average gain in lifetime in the common base scenario and in the separate
base scenario

Non-default parameter Separate base scenario Common base scenario
- 6.5% 6.1%

n = 10 15.5% 15.6%
n = 40 1.5% 0.6%
ρ = 0.7 4.4% 3.2%
ρ = 0.9 8.7% 7.8%
α = 2 1.9% 2.2%
α = 4 34.7% 31.0%

strategy of the other network, since a Nash equilibrium consists of best response
strategies. In order to quantify this advantage, we performed the following ex-
perience. For each simulation run1, we determined (i) the networks’ lifetimes
when both networks ignore each other and use only their own nodes for for-
warding, and (ii) the networks’ lifetimes in the best Nash equilibrium when the
networks are allowed to collaborate. In both (i) and (ii), we took the smaller life-
time value (i.e., the lifetime of the network that lives shorter), and we computed
the ratio of the values obtained. Finally, we averaged the ratio values over the
100 simulation runs (for each parameter setting). One can interpret the result
of this computation as the average gain in lifetime when the networks are al-
lowed to collaborate compared to the case when they operate independently from
each other.

The results are shown in Table 4. Each row of the table belongs to a particular
parameter setting, where all but one of the parameters have the default values
shown in Table 3, and the first cell of the row shows the non-default parameter
value. The second and the third columns of the table contain the average gain
in lifetime in the common base and in the separate base scenarios, respectively.
As we can see, the average gain in lifetime can be as high as 34% in the common
base scenario and 31% in the separate base scenario when α = 4.

4 Related Work

There are several articles that address the problem of cooperation in ad hoc
networks (see e.g., [2, 3, 6]). However, these papers deal with the question of how
cooperation can be encouraged by the introduction of some incentives (e.g., pay-
ments or reputations). Thus, indirectly, all these papers assume that cooperation
cannot emerge by itself, but it must be stimulated. In contrast to this, we study
spontaneous cooperation in this paper.

Cooperation without incentives has been studied in [8], but there are impor-
tant differences between that paper and our work. First, the authors of [8] study
cooperation in ad hoc networks, while we are considering cooperation in sensor
1 Recall that for each parameter setting, we had 100 simulation runs with different

topologies.

52 L. Buttyán, T. Holczer, and P. Schaffer

networks. Second, in [8], the nodes are collected into energy classes, which repre-
sent the heterogeneity of the nodes, whereas in our model, the nodes have equal
resources. Finally, in [8], randomly chosen pairs of nodes communicate with each
other, while in our case, every sensor communicates with the base stations.

In [4], the authors study the conditions under which cooperation (without
incentives) is the best strategy in static ad hoc networks. Unlike the model
in [8], their model takes into account the topology of the network. The main
difference between [4] and our work is that energy consumption of the nodes is
not considered in [4], whereas it has a central role in this paper. In addition, in
[4], the nodes communicate with each other in a peer-to-peer manner, while we
are considering sensors communicating with base stations.

The paper of Félegyházi et al. [5] stands most near to our work. In that pa-
per, the authors investigated exactly the same problem as we do in this paper,
nonetheless, their model and simulator is remarkably different from ours. First,
in their model the payoff received after a successful round (in which enough sen-
sors managed to send their data to the base station successfully) is a subjective
value that represents the importance of a successful round for the given autho-
rity. In our case, there are no payoffs after the rounds, but instead the lifetime
of the network is the payoff received at the end of the game. Second, in this pa-
per, we introduce a constraint on the available moves after a certain number of
unsuccessful rounds. This guarantees that a minimum level of quality of service
is maintained in the network (i.e., base stations do receive data from sensors
at least with a predefined rate), which indeed is a very important practical re-
quirement. In [5], no lower bound on the success rate is guaranteed. Finally, we
define the notion of lifetime differently: for us a network is dead when a certain
percentage of its nodes die, while in [5], the death of the first node means the
death of the whole network.

5 Conclusion and Future Work

In this paper we examined if cooperation is possible without the usage of incen-
tive mechanisms in multi-domain sensor networks. First, we analyzed a simple
network consisting of two sensors and two base stations, and found that in this
simple setting, the best Nash equilibria (where the lifetime of the sensors is the
highest) consist of cooperative strategies. Then we generalized our model from
two nodes to many nodes, and used a two dimensional layout. We classified equi-
libria into non-cooperative, semi-cooperative, and fully cooperative. We found
that in most cases, the best Nash equilibria belong to the cooperative classes.
Especially, in the case when the path loss exponent is large, full cooperation is
the best strategy.

In terms of future work, we intend to study more in detail how the distribution
of the different equilibrium classes depend on the parameters the density and
the topology. If this dependence can be characterized precisely, then it becomes
possible to engineer cooperation by fine-tuning the parameters and adjusting the
topology (if the application permits that) appropriately.

Spontaneous Cooperation in Multi-domain Sensor Networks 53

Acknowledgements

The authors are thankful to István Vajda for the helpful comments and dis-
cussions. The first author is also grateful to Jean-Pierre Hubaux and Márk
Félegyházi for initial discussions on the simplified model presented in this paper.

This work has partially been supported by the Hungarian Scientific Research
Fund (T046664). The first author has been further supported by IKMA and by
the Hungarian Ministry of Education (BÖ2003/70).

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor
Networks: A Survey. Computer Networks, Vol. 38, No. 4, pp. 393-422, March 2002.

2. S. Buchegger and J-Y. Le Boudec. Performance Analysis of the CONFIDANT Pro-
tocol (Cooperation Of NodesFairness In Dynamic Ad-hoc NeTworks). In Proceed-
ings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), pp. 80-91, June, 2002.

3. L. Buttyán and J.-P. Hubaux. Stimulating Cooperation in Self-Organizing Mo-
bile Ad Hoc Networks. ACM/Kluwer Mobile Networks and Applications (MONET),
8(5), October 2003.

4. M. Félegyházi, J.-P. Hubaux, and L. Buttyán. Nash Equilibria of Packet Forwarding
Strategies in Wireless Ad Hoc Networks. to appear in IEEE Transactions on Mobile
Computing

5. M. Félegyházi, J.-P. Hubaux, and L. Buttyán. Cooperative Packet Forwarding in
Multi-Domain Sensor Networks. In Proceedings of the First International Workshop
on Sensor Networks and Systems for Pervasive Computing (PerSeNS), March 2005.

6. P. Michiardi, R. Molva. CORE: A COllaborative REputation mechanism to enforce
node cooperation in Mobile Ad Hoc Networks. In Communication and Multimedia
Security 2002, September 2002.

7. Rahul C. Shah, Jan M. Rabaey: Energy Aware Routing for Low Energy Ad Hoc
Sensor Networks. In IEEE Wireless Communications and Networking Conference
(WCNC), 2002.

8. V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao. Cooperation in
Wireless Ad Hoc Networks. In Proceedings of IEEE INFOCOM’03, San Francisco,
Mar 30 - Apr 3, 2003.

9. F. Ye, A. Chen, S. Lu, and L. Zhang. A scalable solution to minimum cost forwarding
in large sensor networks. In Proceedings of the Tenth International Conference on
Computer Communications and Networks, pp. 304-309, 2001.

Authenticated Queries in Sensor Networks

Zinaida Benenson

Department of Computer Science,
RWTH Aachen University, Germany

Abstract. This work-in-progress report investigates the problem of au-
thenticated querying in sensor networks. Roughly, this means that when-
ever the sensor nodes process a query, they should be able to verify that
the query was originated by a legitimate entity. I precisely define authen-
ticated querying, analyze the design space for realizing it and propose
solutions to this problem in presence of node capture attacks.

1 Introduction

Consider a sensor network which is deployed over a large geographic area. The
maintainer of the sensor network offers services to the users: They can post
queries to the sensor network using some mobile device. In this case, only the
queries of legitimate users should be answered by the network. However, existing
query processing systems (for an overview, see e.g. [26]) are not concerned with
this issue. Meanwhile, this problem becomes especially difficult in presence of
node capture attacks.

1.1 Node Capture in Sensor Networks

Node capture means gaining full control over a sensor through a physical attack,
e.g., opening the sensor’s cover and and reading out its memory and changing its
program. A node capture attack can only be mounted on a small portion of the
network if the network is sufficiently large, as direct physical access is needed.

This type of attack is fundamentally different from gaining control over a
sensor remotely through some software bug, e.g., a buffer overflow. As all sensors
are usually assumed to run the same software, in particular, the same operating
system, finding an appropriate bug would allow the adversary to control the
whole sensor network.

1.2 Motivation for Authenticated Querying: An Example

Directed Diffusion [12], a popular paradigm for organizing sensor networks, al-
lows the user to post queries at any arbitrary sensor node (called the sink). The
sink then floods the network with the query. After some time, sensor nodes start
sending their aggregated data towards the sink. The sink gives the data to the
user. In this case, to prevent the adversary from querying the sensor network,
an access control mechanism should be built into each sensor node.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 54–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Authenticated Queries in Sensor Networks 55

Consider an adversary who wants to gain unauthorized access to the data. He
can try either to subvert the access control mechanism, or to find some weaker
point in the sensor network architecture. For example, if the communication be-
tween the sensors happens without encryption and authentication, the adversary
would bypass access control mechanism by directly attacking the communication
protocol (eavesdrop, insert his own messages).

But even if all communication between the sensors is properly encrypted and
authenticated, access control remains a separate problem which has to be solved.
To illustrate this, consider a sensor network with Directed Diffusion mechanism
where the sink is able to organize secure and authenticated communication with
other sensor nodes.1

Suppose that, additionally to secure authenticated communication with the
sink, some access control mechanism is built into each sensor node. This even
could be an SSL/TLS-like protocol, as Gupta et al. [10] recently showed. Their
implementation of SSL handshake on extremely resource constrained MICA2
sensors [5] takes less than 4 seconds.

However, if the adversary can disable the access control mechanism on a single
sensor node, for example by capturing it, he would be able to query the entire
sensor network. This single sensor, acting as a new sink, will build a secure
authenticated channel to other sensor nodes, but this would not prevent the
adversary from unauthorized data access. This happens because any arbitrary
sensor is authorized to act on behalf of the user.

1.3 Contributions

The contributions are twofold:

1. This work systematically investigates the problem of authenticated queries
in sensor networks in presence of node captures. To the best of my knowl-
edge, such systematical approach was not considered previously. Moreover,
solutions to certain problem instances in the literature are very scarce (see
Section 7). A precise problem statement is given, and then the design space
for solutions is specified.

2. For each possibility in the design space, solutions are discussed. Some of
them are already known mechanisms for securing communication networks.
For some other cases, original solutions are outlined. However, as this is a
work-in-progress report, presented schemes are not fully implemented and
analyzed yet.

Roadmap: Section 2 defines authenticated querying and gives design space for its
implementation. Section 3 discusses general techniques for query authentication
in sensor networks. In Sections 4 and 5, each possibility in design space is consid-
ered, and existing solutions are outlined. New solutions are presented in Section 6.
Section 7 discusses related work. Section 8 summarizes and describes future work.
1 I am not aware of such a mechanism for arbitrary sinks, although in [24], secure and

authenticated variant of Directed Diffusion for a dedicated sink (the base station) is
presented.

56 Z. Benenson

2 Problem Statement

2.1 System Model

Sensor network architecture. Consider a sensor network which is deployed over
a large geographic area. The network consists of a large number of resource
constrained sensor nodes such as MICA2 sensors [5] which have 128 KB flash
instruction memory, 4 KB SRAM, an 8-bit microprocessor, and are powered
by two AA batteries. The sensor nodes are not tamper proof, i. e., they are
susceptible to node capture attacks.

There is also a small number of base stations which have more resources than
the sensor nodes. For example, they can be laptop class devices.

Users. The maintainer of the sensor network offers services to a large number of
mobile users. Legitimate users can access the sensor network using some mobile
device like a PDA or a mobile phone.

Queries. Queries can be injected into the sensor network either at a base station
(like in TinyDB [14] or Cougar [27]) or at any sensor node (like in Directed
Diffusion [12]). The queries may be first optimized or otherwise processed at the
place of injection and then they are disseminated in the sensor network using
multihop communication according to some query processing mechanism.

Adversary. The goal of the adversary is to post arbitrary unauthorized queries to
the sensor network. The adversary can capture a small amount of sensor nodes,
read out their memory contents, and make them run arbitrary programs.

2.2 Authenticated Querying

As the adversary can capture some sensor nodes, he would have access to all
data measured by these sensor nodes, and to all data routed through them
(in case the data are unprotected or can be decrypted by means of captured
cryptographic keys). This data disclosure cannot be prevented in face of node
captures. Nevertheless, the adversary should not be able to post arbitrary queries
to the sensor network.

Definition 1 (Authenticated Querying). Let WSN be a sensor network
consisting of N nodes s1, . . . , sN . The users can post queries q ∈ Q to the WSN .
Consider an arbitrary query q. Let Sq be the set of all sensors which must process
the query in order to give the required answer to the user. The WSN satisfies
authenticated querying if it satisfies the following properties:

– (Safety) If a sensor s processes the query q, then q was posted by a legitimate
user U .

– (Liveness) Any query q posted by a legitimate user U will be processed at
least by all sensors s ∈ Sq.

Authenticated Queries in Sensor Networks 57

2.3 Design Space for Authenticated Querying

Two following dimensions can be identified for authenticated querying:

– The user has to communicate with the base station in order to post queries
vs. the query can be started at some sensor nodes.

– The sensor network has to forward some data using multihop communication
before the user can start posting queries vs. the query can be started locally.

These two dimensions give four possibilities for authenticated querying (AQ)
(Table 1): direct base station AQ, remote base station AQ, distributed local AQ,
and distributed remote AQ.

Table 1. Design space for realizing authenticated querying (AQ) in sensor networks.
“Base station: yes” means that the base station must be accessed before the query
processing can be started by the network. “Routing: yes” means that multihop com-
munication is needed before the query processing can be started by the network.

routing: no routing: yes
base station: yes direct base station AQ routed base station AQ
base station: no distributed local AQ distributed remote AQ

Each of these mechanisms is appropriate in different situations and requires
different solutions. In the following Section 3, general techniques for query au-
thentication are discussed. In Sections 4 and 5, each mechanism from the design
space is considered, and existing solutions are outlined. New solutions are pro-
posed in Section 6.

3 Techniques for Authenticated Querying

Any of following techniques can be used with any mechanism from the design
space. However, for clarity of presentation, I do not include them into Table 1,
but list them separately.

3.1 Authenticated Broadcast

One possibility for an entity to authenticate its queries (or more generally,
messages) is authenticated broadcast. This means that one sender can send a
message to multiple receivers (here, the sensor nodes). The receivers can verify
the origin of the message using some some authentication information attached
to it.

Some approaches to authenticated broadcast in sensor networks exist in the
literature. In SPINS [18], authenticated streaming broadcast μTESLA is realized
using one-way hash chains, time synchronization, and symmetric keys shared by
the base station with each sensor in the network.

58 Z. Benenson

Inexpensive digital signatures can also be used for authenticated broadcast
(see e.g. [21]), assuming that each sensor node is preloaded with the public key of
some certification authority. For discussion of public key cryptography in sensor
networks, see Appendix A.

However, symmetric key cryptography should be preferred in sensor networks.
Lower bounds on authenticated broadcast which uses only message authentica-
tion codes (MACs) are considered by Boneh et al. in [3]. Scheme for authenticated
broadcast of Canetti et al. [4] meets this lower bound. It requires over 800 bits
of authentication information per message, assuming that up to 10 receivers can
collude and forge an authenticated message for a particular receiver with proba-
bility 2−10. This scheme is independent from the number of receivers. Such high
communication overhead is prohibitive in sensor networks. Below I argue that
nevertheless, purely symmetric techniques can be considered for sensor networks.

3.2 Authenticated Flooding and Cooperative Approaches

Broadcast authentication protocol μTESLA achieves much better performance
than the lower bound showed in [3]. This happens because, additionally to the
system model used by Boneh et al., time synchronization is assumed between
the sender and the receivers.

In sensor networks, another (implicit) assumption from [3] does not neces-
sarily hold. This assumption states that the receivers do not communicate or
cooperate with each other. However, in sensor networks, most queries are for-
warded over multihop communication, or even flooded. Lower bounds from [3]
do not apply if cooperation between the receivers is assumed. Therefore, more
efficient methods which use symmetric cryptography may be possible. For an
example of authenticated flooding, see Section 6.1.

An example of cooperative approach is interleaved message authentication
from [22,30]. There, sensor nodes on the multihop route along which a message
is forwarded, cooperatively authenticate this message. This helps to withstand
capture of some fixed number of sensor nodes. See Section 6.2 for an outline of an
authenticated querying algorithm which uses interleaved message authentication.

4 Using Base Stations for Authenticated Querying

Base stations are supposed to have more resources and to be better protected
against attacks than sensor nodes. Therefore, using base station is a natural
approach to organize such a critical task as authenticated querying.

4.1 Direct Base Station Authenticated Querying

The query is always started at the base station, either by physically approaching
it with a device and connecting to it (wirelessly or not), or by routing the query
through some external network (e.g., the Internet) which is connected to the
base station. Users log into the base station using an arbitrary client/server

Authenticated Queries in Sensor Networks 59

authentication protocol [16]. If the user is successfully authenticated, he can
post arbitrary queries to the base station. The base station forwards (possibly
optimized) user’s queries into the sensor network.

In this case, the base station also has to authenticate its query such that
all sensors which process the query can verify that it originated at the base
station. However, the base station is a trusted entity, and therefore, has more
opportunities for query authentication than a user. For instance, it may know the
network topology, know at which nodes the data are stored, and share symmetric
keys with each sensor in the network.

4.2 Remote Base Station Authenticated Querying

The query can be started on some sensor node (or nodes). Sensors are not con-
cerned with query authentication, but just route the authentication information
to the base station, the base station authenticates the user and then gives per-
mission to the sensor network to answer user’s queries. Thus, the base station
helps to establish trust between the sensor network and the users. Here, at least
two scenarios are possible.

(1) User’s queries are always routed to the base station. The base station sends
authenticated queries into the network on behalf of the user, receives the answers,
and sends the answers back to the user. In this case, an SSL-like protocol can
be used to set up a secure authenticated channel between the user and the base
station.
(2) The base station generates a kind of “ticket” (using Kerberos terminology)
which enables the user to talk to the sensor network for some time. The ticket
is sent back to the user who uses it to generate authenticated queries. For a
possible solution, see Section 6.1.

4.3 Authenticated Querying Using Base Station: Pros and Cons

(Advantages) The base station has more resources than a sensor and therefore,
can implement stronger security measures. It can be placed in dedicated locations
and maintained by humans. This makes the base station more reliable and secure:
it can be protected from physical access, and DoS or penetration attacks are more
likely to be spotted quickly.

(Disadvantages). The base station serves as a dedicated authentication server.
Therefore, it must be very well protected from both physical and remote access
by unauthorized entities. In the literature is usually assumed that to take over
a base station is more difficult than a sensor node. In practice, the reverse could
be the case. For example, if the base station is connected to a popular web server
with known vulnerabilities, the penetration of the base station could be a matter
of utilizing an available exploit. Besides, it is not always possible or desirable to
place a base station into a dedicated secure location, especially if it is supposed
to communicate with the sensors wirelessly.

60 Z. Benenson

Furthermore, if the direct physical access is needed for the authentication
(e.g., wireless communication with the base station), it might be inconvenient
to the user to walk through the half deployment area to the base station while
needing the data from sensors in user’s proximity. In case of remote access,
several messages have to be routed between the base station and the user by
the sensor network, which can be impractical if the base station is far away. The
user might also have to wait for the answer of the far away base station while
needing the data from sensors close-by.

And finally, as the sensors close to the base station are more heavily loaded
with communication, their energy is exhausted more quickly, which leads to
shorter network lifetime.

5 Authenticated Querying Without Base Stations

In cases where the base station cannot be used for authenticated queries, an ac-
cess control mechanism or, more generally, a mechanism for query verification,
should be built into sensor nodes. However, as shown in Section 1.2, relying
on any arbitrary sensor for access control is not sound in face of node capture
attacks. A natural solution here would be to use some kind of distributed algo-
rithm, therefore the word “distributed” for the case without base station.

5.1 Distributed Local Authenticated Querying

The legitimacy of the query is verified by the sensors in user’s location, e.g.,
in his communication range. Of course, even if the sensors in user’s proximity
successfully verified the query, they still need some means to tell to the rest of
the sensor network that this query comes from a legitimate user. That is, at
least sensors which process the query should be able to verify its legitimacy. For
a concrete proposal, see Section 6.2.

5.2 Distributed Remote Authenticated Querying

The legitimacy of the query is verified by several sensors. These sensors can
be specially chosen for this purpose, then the network architecture might be
heterogeneous, with dedicated authentication devices placed in some locations.
On the other hand, these sensors might be selected from the set of all sensors
according to some algorithm.

Distributed remote authenticated querying can also be organized if each sen-
sor in the network can verify the legitimacy of the query. For example, each
user could receive a private/public key pair, certified by the certification author-
ity of the maintainer, for signing his queries. Each sensor in this case must be
preloaded with the authentic copy of the public key of the certification authority.
Each query is then digitally signed and sent into the sensor network together
with the corresponding user’s certificate. In order to reduce computational bur-
den on the sensor nodes, each sensor node could decide whether it is to verify
the query with some probability.

Authenticated Queries in Sensor Networks 61

According to Appendix A, signature verification can be an efficient operation.
However, overhead for verifying user-generated signatures is twice as large as for
signatures generated by the base station (see Appendix A.3).

5.3 Authenticated Querying Without Base Station: Pros and Cons

(Advantages) Users can start queries locally in the sensor network, without
going to the base station or some other access point (e.g., an Internet terminal).
Furthermore, the query can be processed and answered locally. No routing to
the base station is needed for answering the query. Still, routing can be needed
if the query concerns sensor data which are not in the user’s proximity. And
last but not least, if the base station is overloaded or taken over, the data are
still available and not compromised (at least, as long as the compromised base
station can be excluded from the network management).

(Disadvantages) The most severe disadvantage is that user authentication costs
extra computation and communication power, especially if it is done in dis-
tributed fashion, using replication and agreement techniques, or public key cryp-
tography. Distributed algorithms have to be applied in order to cope with unre-
liability and insecurity of individual nodes.

6 New Ideas for Authenticated Querying

Here, I present new proposals and ongoing work on authenticated querying.

6.1 Ticket Generation for Remote Base Station Authenticated
Querying

I propose ticket generation using ID-based key predistribution. Key predistribu-
tion for sensor networks originates from [8]. The idea is that each sensor node is
preloaded with randomly chosen m keys form the key pool of size l. The values
of l and m can be chosen such that any two nodes have at least one common key
with a given probability. ID-based key predistribution was introduced in [31].
The keys in the key pool are numbered from 1 to l. Each sensor with a unique
identifier id is first assigned m distinct integers between 1 and l by applying a
pseudo random number generator PRG() with seed id. This method of choos-
ing keys enables any sensor node u which knows the identifier idv of another
sensor node v to compute v’s key identifiers by computing PRG(idv) and thus
determine if u and v share some keys.

I adapt the above scheme to authenticated querying. In my idea, keys (and
their identifiers) are predistributed to the sensor nodes using PRG(idsec) where
idsec are secret sensor identifiers known only to the base station, but not stored
on the sensor nodes. These identifiers should be sufficiently large (e.g., 80 bits)
to prohibit the brute-force search of an identifier which generated a particular
set of key identifiers. Therefore, an adversary who captured a sensor node cannot
determine the secret identifier idsec from which key identifiers were derived.

62 Z. Benenson

If a user U successfully authenticated to the base station, he receives from
the base station a temporal identifier idU (with a time stamp) and a set KU

of m secret keys which the base station computed using PRG(idU). Now the
user formulates his query q and computes h(q) where h is a hash function. After
that, the user computes m 1-bit message authentication codes (MACs) on h(q)
using keys from KU . The idea of using MACs with single bit output originates
from [4].

The query accompanied by m 1-bit MACs and user’s temporal identifier idU

is sent into the sensor network. Each sensor s can compute PRG(idU) and
thus determine whether some of 1-bit MACs were computed with keys known
to it. Then s verifies all 1-bit MACs which it is able to verify. If any of them
is wrong, the node discards the query. Otherwise, it forwards the query to its
neighbors.

This scheme is an example of authenticated flooding (see Section 3.2). The
query of a legitimate user will be flooded into the sensor network without any
obstacles. However, a query forged by an adversary will only be able to reach
a limited part of the network, as some sensor nodes will discard the query. An
initial analysis of query propagation in this model shows that a relatively small
number of 1-bit MACs suffices to limit the query propagation to a logarithmically
small part of the network. Thus, if there are N sensor nodes, approximately lnN
sensor nodes will receive a fake query. For example, for N = 10, 000, 300 1-bit
MACs suffice. Further analysis of this scheme is subject to ongoing work.

The communication overhead of this scheme is rather high. If we assume that
each query is accompanied by 300 bits of MACs and a user identifier which is 80
bits long, this results in 380 bits, or 48 bytes, of authentication information. The
payload of a TinyOS2 message is 29 bytes. Thus, each query is accompanied
by two packets of authentication information. However, in contrast, an RSA-
1024 digital signature which provides very strong message authentication (each
sensor can verify the legitimacy of each message) is 1024 bits long, and therefore,
requires five TinyOS packets. See Appendixes A.2 and A.3 for more information
about using digital signatures in sensor networks.

6.2 Distributed Local AQ

If the number of users is large, the natural method to use for authentication
is public key cryptography because of its scalability. On the other hand, public
key cryptography is power-hungry, so the sensors should communicate with each
other using symmetric cryptography. My concept is to let the sensors in the
communication range of the user serve as interpreter (or a gateway) between
the “public key crypto world” of the user and the “symmetric crypto world” of
the WSN. The user talks to sensors in his communication range using public
key cryptography, and these sensors then talk to the remainder of the sensor
network on behalf of the user using symmetric cryptography. This happens in
authenticated fashion:
2 TinyOS is a popular operating system for sensor networks, see e.g. [13].

Authenticated Queries in Sensor Networks 63

1. Robust secure channel setup between the user and the WSN : The user exe-
cutes a mutually authenticated key establishment protocol [16] using pub-
lic key cryptography with a specified number m of sensors in his com-
munication range. The protocol results in establishment of symmetric ses-
sion keys between the user and each correct sensor which participated in a
protocol run.

2. Authenticated query forwarding: After the successful secure channel setup,
the sensors in user’s proximity forward user’s query into the sensor network
and append to it some additional information which enables the other sensors
to verify the legitimacy of the query. In this case, the other sensors should
be able to verify that at least m sensors approved the query.

We partially implemented the first step on Telos Revision B sensor nodes [17]
using the EccM library for elliptic curve cryptography (ECC) [15]. For details,
see [1]. In our implementation, the user unilaterally authenticates to the sensors
in his proximity using public key cryptography. Moreover, a great breakthrough
was recently reported by Gupta et al. [10]. They implemented the SSL protocol
on MICA2 motes using elliptic curve cryptography. This confirms the choice of
ECC for our implementation and the feasibility of mutually authenticated key
establishment on sensor nodes, as their SSL handshake takes less than 4 seconds.

One possible solution to the second step (query forwarding) would be to use
interleaved message authentication [22, 30] with m − 1 as a parameter for the
number of captured sensor nodes. This is our ongoing work.

7 Related Work

In SPINS [18], authenticated streaming broadcast μTESLA is realized using
one-way hash chains and time synchronization. In [24], one-way hash chains
help to authenticate queries in Directed Diffusion. Inexpensive digital signatures
are used in [21].

LEAP [29] and LKHW [19] consider using a single symmetric key for authen-
ticated querying and therefore, are not resistant against impersonation attacks
which are possible in case of node captures. Hierarchical sensor network archi-
tecture is considered in [6], [7]. This helps to support in-network processing, but
the cluster heads become very attractive targets for node capture attacks.

All above approaches are suitable for sensor networks with the large number
of users only in case of direct base station authenticated querying. To the best of
my knowledge, the problem of enabling a large number of mobile users to post
authenticated queries to a sensor network was not considered previously.

There is also a number of papers where the “opposite direction” is considered,
e.g., verification of the legitimacy and correctness of answers to the queries.
These methods cannot be directly applied to authenticated querying, as they
assume that the verifier (the base station) has more resources than the sensor
nodes. Statistical approaches are considered in [20,23,28]. Using clustered sensor
network architecture and symmetric key techniques is described in [21, 30].

64 Z. Benenson

8 Conclusions and Future Work

I defined the problem of authenticated querying, systematically examined the
design space for its realizing, considered existing solutions and proposed some
new methods for authenticated querying. These are first results of an ongoing
project on access control to sensor network data. There is still a lot of work to
be done. Proposed solutions have to be precisely specified. Security and resource
demands of all solutions have to be more detailed analyzed, theoretically as
well as by simulations and by implementation on real sensor nodes. First steps
towards these goals are made in [2, 1].

References

1. Z. Benenson, N. Gedicke, and O. Raivio. Realizing robust user authentication in
sensor networks. In Real-World Wireless Sensor Networks (REALWSN), Stock-
holm, June 2005.

2. Z. Benenson, F. C. Gärtner, and D. Kesdogan. An algorithmic framework for
robust access control in wireless sensor networks. In Second European Workshop
on Wireless Sensor Networks (EWSN), January 2005.

3. D. Boneh, G. Durfee, and M. K. Franklin. Lower bounds for multicast message
authentication. In Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques, pages 437–452. Springer-Verlag, 2001.

4. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast se-
curity: A taxonomy and some efficient constructions. In Proc. IEEE INFOCOM’99,
volume 2, pages 708–716, New York, NY, Mar. 1999. IEEE.

5. Crossbow, Inc. MICA2 data sheet. Available at
http://www.xbow.com/Products/Product pdf files/
Wireless pdf/MICA2n Datasheet.pdf.

6. J. Deng, R. Han, and S. Mishra. Security support for in-network processing in
wireless sensor networks. In SASN ’03: Proceedings of the 1st ACM workshop on
Security of ad hoc and sensor networks, pages 83–93, New York, NY, USA, 2003.
ACM Press.

7. T. Dimitriou and D. Foteinakis. Secure and efficient in-network processing for
sensor networks. In First Workshop on Broadband Advanced Sensor Networks
(BaseNets), 2004.

8. L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 41–47. ACM Press, 2002.

9. G. Gaubatz, J.-P. Kaps, and B. Sunar. Public key cryptography in sensor networks
- revisited. In ESAS, pages 2–18, 2004.

10. V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C. Shantz. Siz-
zle: A standards-based end-to-end security architecture for the embedded internet.
In Third IEEE International Conference on Pervasive Computing and Communi-
cation (PerCom 2005), Kauai, March 2005.

11. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs. In CHES2004, volume 3156 of
LNCS, 2004.

Authenticated Queries in Sensor Networks 65

12. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
Diffusion for wireless sensor networking. IEEE/ACM Trans. Netw., 11(1):2–16,
2003.

13. P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and
D. Culler. The emergence of networking abstractions and techniques in tinyos. In
First USENIX/ACM Symposium on Networked Systems Design and Implementa-
tion, 2004.

14. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD ’03: Proceedings of
the 2003 ACM SIGMOD international conference on Management of data, pages
491–502, New York, NY, USA, 2003. ACM Press.

15. D. J. Malan, M. Welsh, and M. D. Smith. A public-key infrastructure for key
distribution in TinyOS based on elliptic curve cryptography. In First IEEE Inter-
national Conference on Sensor and Ad Hoc Communications and Network, Santa
Clara, California, October 2004.

16. A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL, 1997.

17. Moteiv, Inc. Tmote Sky datasheet. Available at
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf.

18. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: security proto-
cols for sensor netowrks. In Proceedings of the 7th annual international conference
on Mobile computing and networking, pages 189–199. ACM Press, 2001.

19. R. D. Pietro, L. V. Mancini, Y. W. Law, S. Etalle, and P. J. M. Havinga. LKHW: A
Directed Diffusion-Based Secure Multicast Scheme for Wireless Sensor Networks.
In 32nd International Conference on Parallel Processing Workshops (ICPP 2003
Workshops), 2003.

20. B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in
sensor networks. In ACM SenSys 2003, Nov 2003.

21. S. Seys and B. Preneel. Efficient cooperative signatures: A novel authentication
scheme for sensor networks. In 2nd International Conference on Security in Per-
vasive Computing, number 3450 in LNCS, pages 86 – 100, April 2005.

22. H. Vogt. Exploring message authentication in sensor networks. In Security in
Ad-hoc and Sensor Networks (ESAS), First European Workshop, volume 3313 of
Lecture Notes in Computer Science, pages 19–30. Springer, 2004.

23. D. Wagner. Resilient aggregation in sensor networks. In SASN ’04: Proceedings of
the 2nd ACM workshop on Security of ad hoc and sensor networks, pages 78–87.
ACM Press, 2004.

24. X. Wang, L. Yang, and K. Chen. Sdd: Secure distributed diffusion protocol for
sensor networks. In First European Workshop on Security in Ad-hoc and Sensor
Networks(ESAS), volume 3313 of Lecture Notes in Computer Science, pages 205–
214, 2004.

25. R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus. TinyPK:
securing sensor networks with public key technology. In Proceedings of the 2nd
ACM workshop on Security of ad hoc and sensor networks, pages 59–64. ACM
Press, 2004.

26. A. Woo, S. Madden, and R. Govindan. Networking support for query processing
in sensor networks. Commun. ACM, 47(6):47–52, 2004.

27. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in
sensor networks. SIGMOD Rec., 31(3):9–18, 2002.

28. F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route detection and filtering of
injected false data in sensor networks. In Proceedings of IEEE INFOCOM, 2004.

66 Z. Benenson

29. S. Zhu, S. Setia, and S. Jajodia. LEAP: efficient security mechanisms for large-
scale distributed sensor networks. In Proceedings of the 10th ACM conference on
Computer and communication security, pages 62–72. ACM Press, 2003.

30. S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication
scheme for filtering of injected false data in sensor networks. In IEEE Symposium
on Security and Privacy, pages 259–271, 2004.

31. S. Zhu, S. Xu, S. Setia, and S. Jajodia. Establishing pair-wise keys for secure com-
munication in ad hoc networks: A probabilistic approach. In IEEE International
Conference on Network Protocols, November 2003.

A Asymmetric Key Cryptography in Sensor Networks

A.1 Efficiency Considerations

Although symmetric key cryptography is several orders of magnitude more ef-
ficient than asymmetric key cryptography [16], quite a number of researchers
considered implementing efficient public key cryptography on small devices in
the last few years. The reasons are that asymmetric key cryptosystems scale
much better and allow more flexible key management, e.g., key agreement.
Moreover, some asymmetric key cryptosystems allow efficient algorithms for en-
cryption and for verification of digital signatures. In contrast, digital signature
schemes based on symmetric mechanisms usually require large verification keys
(cf. [16, page 31]).

A.2 Choosing Appropriate Asymmetric Key Cryptosystem

RSA with small public exponent (considered in [11, 25]) and Rabin public key
cryptosystems (considered in [9]) have fast algorithms for encryption and digital
signature verification. However, decryption and signature generation are slow
and resource-demanding. Therefore, these cryptosystems can be used in sensor
networks only if the sensors are not required to decrypt or to sign messages.

In contrast, elliptic curve cryptosystems (ECC, considered in [15]) require
more overhead for encryption and signature verification than for decryption and
signing. Nevertheless, with ECC, not only encryption and signature verification,
but also decryption and signing are feasible for sensor nodes. Recently, Gupta et
al. [10] implemented a very efficient SSL-like protocol on MICA2 sensor nodes
using ECC in assembly language.

A.3 Digital Signatures by Base Stations vs. by Users

In some algorithms discussed in the main part of this paper, sensor nodes have
to verify digitally signed messages originated from the base station or from the
users. Each sensor has an authentic copy of base station’s public key preloaded.
To verify signatures of the base station, a sensor node just needs to apply the
preloaded public key of the base station to the signature.

Authenticated Queries in Sensor Networks 67

To be able send digitally signed messages to the sensor nodes, each user
receives from the base station a certificate. This certificate is essentially user’s
public key signed by the base station. To verify user’s signature of a message,
the sensor network needs first to verify user’s certificate. Thus, in case of user-
signed messages, a sensor node needs to verify two signatures: First, the base
station’s signature on the certificate, and second, user’s signature on the message.
This means that verifying user-generated signatures roughly requires twice more
resources than verifying signatures generated by the base station.

Improving Sensor Network Security with
Information Quality

Qiang Qiu, Tieyan Li, and Jit Biswas

Institute for Infocomm Research (I2R),
21 Heng Mui Keng Terrace, Singapore 119613
{qiu, litieyan, biswas}@i2r.a-star.edu.sg

Abstract. With extremely limited resources, it is hard to protect sen-
sor networks well with conventional security mechanisms. We study a
class of passive fingerprinting techniques and propose an innovative in-
formation quality based approach to improve the security of sensor net-
work. For each sensor, we create a quality profile QP of profiling its
normal/standard sensing behaviour. After deployment, new sensor read-
ings are verified using this QP. If significant deviation is found, we either
regard the readings as an abnormal behaviour or declare the sensor to be
a fake sensor. The methods can be used as an assistant sensor authen-
tication mechanism, but with a potential drawback. Furthermore, we
also demonstrate a secure data fusion protocol, applying the proposed
methods together with conventional security mechanisms. Through se-
curity analysis, we point out several countermeasures that can explicitly
or implicitly defend against these attacks.

1 Introduction

Sensor networks are increasingly important for a wide variety of applications
such as health monitoring, environmental control and military surveillance. With
cheaper and smaller sensors, they are more attractive to be deployed in large scale
multi-purpose applications in different scenarios. Security is an important issue
[1] when sensors are used in military applications or in safety-critical applica-
tions, e.g. medical monitoring. However, sensors are designed with primary goals
of smallness, cheapness and power-saving, rather than security. On the other
hand, wireless sensor networks, communicating over open medium, are more
vulnerable to passive/active attacks. Conventional security mechanisms, applied
widely for protecting PCs from Internet attacks, are not effective in protecting
sensors under the assumptions of extremely constrained resource and more pow-
erful adversaries (who are able to launch arbitrary attacks). For instance, one
can not differentiate a sensor reading taken on a genuine sensor from one taken
on a fabricated sensor, since both readings are encrypted/authenticated by the
same (fabricated) key.

Authentication of a sensor reading is very challenging under this extreme
condition. Traditional authentication means may check what a sensor knows
(e.g. a secret key), what a sensor has (e.g. a security token) or what a sensor is

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 68–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improving Sensor Network Security with Information Quality 69

(e.g. a fingerprint). Node fabrication attack makes the first two attempts fail. The
third one-fingerprinting is not new and adopted by many practical systems (e.g.
biometric authentication system, remote OS fingerprinting on Internet, etc.). We
study the fingerprinting technique to be used in the context of sensor, that is
“Can we distinguish a sensor from others by investigating some unique physical
behavior of a sensor?”. In other words, we compare the new readings with some
pre-sampled patterns of the same sensor and look for a match to determine
the origin of these readings. Our approach assumes a “passive fingerprinting”
situation, since the readings are typically received passively (not interactively or
actively) from a sensor. Furthermore, since the sensor reading has to be concise
to reduce power consumption on transmission, it does not contain additional
informative data like a time stamp, the justifiable evidence only consists of a
series of fresh sensor measurements. Thus, our method could be convincing if it
is able to make accurate decisions depending on these raw measurement data.

In this paper, we introduce information quality for these measurement data.
In our general model, the sensor nodes are calibrated statistically with its in-
formation quality profile (QP) before deployment. The profiles are then used as
the references for sensors’ reinforcement and rectification. Through experiments,
we test how sensor quality is affected by attacks, how these sensors are detected
and how the sensor network is protected. The success of the proposed approach
may provide another level of security for sensor networks. We can foresee that
it is applicable in many security critical applications. Our contributions are: 1,
A novel approach of using information quality for improving the security of sen-
sor network. 2, We demonstrate a secure data fusion protocol of embedding our
methods with traditional security mechanisms. 3, We analyze the attacks on
sensor network and propose our countermeasures using QP.

2 An Approach Using Information Quality Profile

Sensor networks are normally designed to minimize the sensors’ power consump-
tion, in most cases, only the measurement data are transmitted to the base sta-
tion. Other informative (and relevant) data, such as time stamp, is not included.
Our method utilizes the measurement data only and draws the profile for sen-
sors. This section introduces how to generate quality profile (QP) and how to
use it to detect sensors’ misbehaviours.

2.1 QP and IQP

Let,
S: S = {s1, s2, s3, ..., sm} be the sequence of m measurements from sensor X to
one sample event;
E: E = {e1, e2, e3, ..., en} be the sequence of n sample events detectable to sensor
X, where each event is described as a k-element set e = {v1, v2, v3, ..., vk} with
each element vi indicating the value of a possible data Quality Influence Factor
(QIF) to sensor X.

70 Q. Qiu, T. Li, and J. Biswas

Quality Profile (QP). of sensor X is denoted as a family of parameterized
distributions P (S|E), one for each value in E.

Inverse Quality Profile (IQP). of sensor X is denoted as a family of
parameterized distributions P (E|S), one for each possible sensor measurement
ever reported to any sample event.

By assuming a Gaussian observation model, P (S|ei), which is also of more
detailed form P (S|vi

1, v
i
2, ..., v

i
k), can be represented as N(μi, σ

2
i), where μi and

σi are the mean and variance of sensor measurements in responding to event ei;
thus, QP of sensor X can be described as a table

{(μ1, σ
2
1), (μ2, σ

2
2), ..., (μn, σ2

n)},

one for each sample event. A segment of a sample QP is shown in Tab. 3, which
describes the behaviour of an ultrasonic motion sensor based on the calibra-
tion experimental data shown in Tab. 2 with two QIFs Angle and Distance
considered.

By assuming a Gaussian belief model, P (E|sj), which is also of more detailed
form P (V1, V2, ..., Vk|sj), can be represented as N(μj , Σj), where μj is a length-k
vector of mean and Σj is k×k matrix of covariances of values of k sensor quality
influence factors in responding to a sensor reading sj ; thus, IQP of sensor X can
be described as a table

{(μ1[k], Σ1[k, k]), (μ2[k], Σ2[k, k]), ...},

one for each possible sensor measurement ever reported to any sample event.

2.2 Basic Schemes Using Quality Profile

Sensor behaviour, which is described in sensor QP, can be verified through
Goodness-of-Fit (QP GoF) test or Probability Density Calculation (QP PDC).

Sensor Behaviour Verification Through Goodness-of-Fit Test. The Chi-
square test is used to test if the reported sequence of measurements from a sensor
differs from the expected behaviour to the underlying event, which is represented
as a parameterized distribution in its QP table, e.g., N(μ, σ). If the Chi-Square
sum calculated is less than the probability of exceeding a predetermined critical
value, e.g., χ2

calculated < χ2
0.01, a conclusion can be inferred that the sensor is

working with its normal behaviour.
As Chi-square test can only reflect its significance when the testing sam-

ple size exceeds certain number, e.g., 20 samples, behaviour verification through
Goodness-of-Fit test requires the verifier to buffer a batch of readings from a sen-
sor before it could verify its behaviour. If 20 samples is the minimal requirement
for sample size to perform the Chi-square test and there are k sensor QIFs, which
is of (n1, n2, ..., nk) number of possible values, in the best case, 20 samples are
required to verify the behaviour of a sensor, and in the worst case, 20×

∏k
i=1 ni

samples are required to be buffered to perform behaviour verification.

Improving Sensor Network Security with Information Quality 71

When the space of sensor QIFs is not too huge and the sensors to be verified
are generally operate at a rather high sampling rate, the approach of Goodness-
of-Fit Test is preferred for sensor behaviour verification as it could provide us
more accurate conclusion. In those situations where these two assumptions do
not stand, the second approach to perform the verification through Probability
Density Calculation is more appropriate to use.

Sensor Behaviour Verification through Probability Density Calcula-
tion. When either the buffer size or the buffering time is not affordable at the
verifier to use Goodness-of-Fit test, the method to calculate the probability den-
sity provides a quick way to verify sensor behaviour. In this approach, the area
A =

∫ s+ε

s−ε
f(x)dx is used to evaluate per reading based if the sensor works with

its normal behaviour; where s is a single reading from the sensor to be verified,
f(x) is the probability density function of the distribution corresponding to the
underlying event in the QP and ε is the predetermined tolerable sensor reading
error threshold. As shown in Fig. 1, to the same underlying event, grey area (a)
represents a better behaviour of a sensor than area (b).

Fig. 1. Sensor Behaviour Verification through Probability Density Calculation

Due to the uncertainty of data in sensor networks, unlike the behaviour verifica-
tion approach using Goodness-of-Fit test, one run of verification using probability
density can only detect out-layer readings, but are not sufficient to indicate abnor-
mal sensor behaviour; and sequential runs of verifications are required.

Underlying Event Estimation. In general situation, the actual underlying
event e is unknown to sensors. Therefore, in order to examine behaviour of a
sensor, a verifier usually need to make a estimation ê to the underlying event
based on its own measurement s′ by using its IQP P (E|S). Such process can be
represented as ê = argmax

e
P (e|s′).

The event estimation ê can also be represented in a more detailed form as
ê = {v̂1, v̂2, v̂3, ..., v̂k} by indicating the value of each possible sensor QIF. It will
be chosen from the QP of the sensor to be verified the behaviour under the most
similar event to such estimated one for behaviour checking. Given two events e
and e′, where e = {v1, v2, v3, ..., vk} and e′ = {v′1, v′2, v′3, ..., v′k}, the similarity
between two events is measured by the distance between them as

Distance(e, e′) =
∑k

i=1 wi|vi − v′i|
where wi is a predetermined weighting to indicate the significance of a QIF.

72 Q. Qiu, T. Li, and J. Biswas

2.3 Possible Drawback of Quality Profile

Any fingerprinting technique has a potential drawback that the fingerprint itself
as well as the profiling methods are generally public information. Thus, the
quality profile of a sensor can be disclosed to the adversary. The adversary can
then launch a imitation attack using a compromised sensor.

Sensor Behaviour Imitation is a process for a fabricated sensor to estimate
the measurement that the original sensor should have generated in responding to
the underlying event based totally on the measurement of the fabricated sensor
itself. As limited number of sample events are described in quality profile, such
process can be represented as

P (s|s′) =
∑M

i=1 P (s|ei)P (ei|s′)

where,
s′: a particular measurement value from the fabricated sensor,
s: the possible guess on the measurement of original sensor given s′,
M : the size of sample event space,
ei: ith sample event, which is described as a multi-element set based on the
number of sensor QIFs,
P (s|ei): disclosed quality profile of original sensor,
P (ei|s′): inverse quality profile of fabricated sensor

It becomes possible for a fabricated sensor to imitate the behaviour of the
original sensor by reporting an estimation ŝ when the actual measurement is s′.

ŝ = argmax
s

P (s|ei)P (ei|s′)

In the following example, for simplicity, only one sensor QIF is considered
here, e.g., the distance to a sensor, and Gaussian approximation is assumed for
both observation model and belief model, which are respectively described in
QP and IQP of a sensor. Therefore, the probability density function of ith entry
P (E|si) in the inverse quality profile of the fabricated sensor will be

gi(x) = 1
σsi

√
2π

e−(x−μsj)
2/2σ2

si

And, the probability density function of jth entry P (S|ej) in the quality profile
of original sensor will be

fj(x) = 1
σej

√
2π

e−(x−μej)
2/2σ2

ej

Sample events are described as a discrete set E[M] in quality profile, where
M is the number of sample events recorded, and for simplicity a constant 2ε
value step is assumed for the QIF considered. By assuming the sensor readings
follows a Gaussian distribution N(μ, σ2) to an event, 99.7% of readings will fall
into the range of [μ− 3σ, μ + 3σ]; therefore, in practice, sensor readings can be
examined as if a discrete set S[N] with 2θ as the step, where θ is determined by
the error tolerable level of sensor readings and N equals to 3σ

θ . In Tab. 1, it is
shown a typical sensor behaviour imitation process with one QIF considered is
of the complexity O(MN), which is rather low.

Improving Sensor Network Security with Information Quality 73

Table 1. A Sensor Behaviour Imitation Process

A Sensor Behaviour Imitation Process

//Given the fabricated sensor reading s′

proc Sensor Behaviour Imitation(s′)
for i = 1 to M //

e = E[i]
//g′(x) is the pdf of fake sensor’s IQP entry to reading s′

A = e+ε

e−ε
g′(x)dx

for j = 1 to N
s = S[j]

//fi(x) is the pdf of original sensor’s QP entry to event E[i]

B = s+θ

s−θ
fi(x)dx

when Max(AB) = true
s = s

2.4 Discussions

Since most sensors are not designed to be tamper-proof, our methods proposed
above suffer from the imitation attack. We hereby discuss the harmfulness of
imitation attack and point out several techniques to protect the QP.

An adversary can get the QP in two ways: either by taking an existing one or
by measuring the QP itself. In the first case, the adversary can not find the QP
from the sensor itself (the QPs are normally stored at some trusted places like the
base station, not on the sensor.), while it takes much time for the measurement in
the second case. In either case, the adversary can not exploit the QP immediately.
Noted that when an adversary compromises a sensor with its secret key, he can
exploit it immediately. This subtle difference makes it possible for the verifier to
detect a small delay when sensors are reporting their readings regularly.

Now we assume the adversary has a disclosed QP of a compromised sensor. He
can definitely launch the imitation attack for reporting a wrong event with small
deviations. There is no effective way of justifying these sensor readings, but by col-
lecting multiple sensor readings (that are not tampered with), the verifier is able to
justify the current event by consulting other observers (refer to section 4.2 for the
countermeasures). If the adversary only reports the good events (the same events
as reported by others) by mimicking the original sensor,we have no effective way to
detect it, but accept it as not very harmful. This does happen in certain advanced
attack like this: e.g., for reporting sensor readings, a faked sensor launches imita-
tion attack to cheat the verifier; for other functions (like forwarding, routing, etc.),
it launches other corresponding attacks. Again, we stress that our QP method is
only one possible mechanism for defending against limited sources of attacks.

Given disclosed QP, the imitation attack needs to buffer some readings and
delay a while for computing imitated readings. The defending mechanisms can
exploit these facts: the protocol can force sensors to report their readings one
by one with no delay, the adversary has no buffer or time to translate the read-
ings. However, sometimes if there is no tight time-synchronization protocol, the
method is not very valuable.

74 Q. Qiu, T. Li, and J. Biswas

3 How to Use QP in a Sensor Network Model

Above we described how to use QP or IQP to verify the sensor readings in a basic
scheme. Although the basic scheme can somehow justify the sensor readings, the
better if it is used as an assistant mechanism on authenticating the sensor with
some other security means. Especially in the case that a large scale of sensors
are deployed in a wide area, where they are easily attacked. In this section, we
show how the QP methods can be used to protect the sensor readings together
with traditional security mechanisms.

Many approaches [8][9][10][11][12] studied secure fusion service in sensor net-
work. We depict a sensor network model as shown in Fig. 2, where a cluster
head (CH) 1 is responsible for collecting local sensor readings, aggregating and
reporting to remote base station. We assume that the sensor network already has
the following security mechanisms: proper cryptographic primitives for encryp-
tion/decryption and authentication, hierarchical or pairwise key management
schemes and secure data fusion protocol. These security mechanisms provide
confidentiality, authenticity and integrity for messages sent on the sensor net-
work. Particularly in Fig. 2, the cluster head establishes pairwise keys with the
base station and each of its local neighbors. All messages between any send-
ing party and receiving party are encrypted and authenticated. To embed our
QP methods, the cluster head needs to be equipped with the quality profiles of
its neighbors. The base station is responsible for the maintenance of individual
quality profiles and updates them periodically to the cluster head.

S5

S1

S3

C

A

B

RA

RB

Cluster

Head S4

RC

e

S2

QP A
QP B
QP C

...

Sensor
Network

Fig. 2. A network model of using QP. The cluster head is the fusion point cov-
ering its local communicating area (the shadow circle), which contains sensors
(A,B, C, S1, S2, ...).

Notations:
RX : A reading of sensor X ,
QPX : The quality profile of sensor X ,

1 Typically, a cluster head is selected by possessing higher computation capability and
better quality of communication bandwidth.

Improving Sensor Network Security with Information Quality 75

KX−Y : A pairwise key shared by sensor X and sensor Y,
ENC MACK [M]: Encrypt and authenticate a message M with key K 2,
DEC MACK [M]: Decrypt and authenticate a message M with key K,
The procedure of the secure data fusion protocol is as follows:

1 Suppose the event e is detected by sensor A, B and C. The sensors may
generate their reports RA, RB, RC with the following format
Ri = ENC MACKCH−i [ei||ri1, ri2, · · · , rij], where i ∈ {A, B, C, ...} and j ∈
{1, 2, 3, ...}.
The reports are then sent to the cluster head.

2 On receiving any report, the cluster head first computes DEC MACKCH−i

[Ri] for the decryption and authentication. If successful, the cluster head
gets Ri.

3 The cluster head then verifies the data readings [ri1, ri2, · · · , rij] according
to its sensor quality profile QPi with either QP GoF or QP PDC method.

4 Only verified sensor readings are aggregated together for a cluster head’s
report RCH .

4 Security Analysis

The basic QP scheme above can determine whether a series of sensor readings
come from a sensor. In this section, we analyze various attacks on sensor network,
and the possible countermeasures against these attacks. Specially, we may point
out the defending ways of using our QP methods.

4.1 Attack Analysis

Sensor networks, like any other network, are suffering from many common at-
tacks, e.g. DDoS attack, replay attack. These attacks have been well studied
in the context of Internet, their countermeasures can also be used for sensor
networks. For instance, in resource consumption attack, an adversary can jam a
sensor node by repeatedly sending packets to it, the sensor will soon run out of
battery or can not use its radio bandwidth. This is actually a kind of DoS at-
tack [2] on sensor network, which is countered with certain traceback mechanism
[5][7]. But as long as the adversary has extra power, unlimited RF bandwidth
and computing resources, there is no effective defending mechanism. Another ex-
ample is the Replay attack, where an adversary can replay an old message. Since
the message is normally encrypted and authenticated, it should be processed
as good message. Thus, the final sensing result may be intentionally modified.
Replay attacks, applied on Internet, are countered with the usage of time-stamp
and sequence number. These methods can also be used here if there is tight
time synchronization or enough sensor memory. We stress that these attacks are
mainly defended by traditional security means.
2 The key is split into one encryption key and one authentication key, and used sepa-

rately.

76 Q. Qiu, T. Li, and J. Biswas

There are some security approaches [3][4][6] that were proposed particularly
for attacks and defenses on different layers of sensor network. The Wormhole at-
tack and Sinkhole attack, proposed in [3], are harmful attacks on sensor routing
protocols. In Sybil attack of [4], an adversary can pretend to be one or multiple
legitimate sensor nodes in the sensor network. Several defending techniques for
Sybil attacks are: radio resource testing, random key predistribution, registra-
tion, position verification and code attestation (refer to [4] for details). However,
some of the techniques are still compromised by Node fabrication attack (Re-
placement attack), where an adversary can physically take control of the sensor
node. The sensor can be dropped or destroyed, but the worst thing is for the
sensor to be used for sending manipulated data. In our work, we don’t deal with
these attacks directly, but defend against them implicitly (refer to section 4.2).

As mentioned above, we focus on a class of environmental attacks (passive
or active). A sensor reading can be affected by many factors due to nature
condition changes or malicious attacks. Some of them are predictable, e.g. low
battery; yet some are unpredictable. Proper operating processes are needed to
prevent floating data in case of predictable conditions. While more strict detec-
tion mechanisms are needed to prevent active attacks. For those environmental
factors, like location, orientation, temperature or noise level, we measure their
correct conditions into their quality profiles. Noted that these conditions may be
changed passively (due to environmental changes) or actively (due to malicious
adversary), we then need to adjust them according to some predefined rules so
that the results are generated correctly and promptly.

4.2 Countermeasures Using QP

We set up the game between an attacker and a verifier like this: the attacker
sends a series of readings [r1, r2, · · · , rj] as the input of the verifier and claims
that they are coming from sensor “A”. The verifier justifies the readings using
our QP methods and outputs the final result as V =< TRUE, FALSE >, where
“TRUE” means the verification is positive, or the readings are coming from the
sensor “A”, or the attacker wins, and vice versa for “FALSE”. Sometimes the
verifier needs a known event e 3 as an assistant input. Below, we counter these
attacks:

Environmental attack: Given a known event “e”, and a series of readings
[r1, r2, · · · , rj] coming from sensor A, the verifier evaluates an event eA from
QPA. Applying the QP-GoF or QP-PDC method, if V = TRUE, We believe
that the readings are originated from “A”, or to say we lose and the attacker
wins the game. If not, we win.

Node fabrication attack: Given a known event “e”, and a series of readings
[r′1, r

′
2, · · · , r′j] from the fabricated sensor A′, the verifier generates an event

e′A from QPA and evaluates it with our QP-GoF or QP-PDC method. If the
result is “TRUE”, the attacker wins the game, otherwise it loses.

3 A known event can be viewed as a standard test point or other correlated consulting
point.

Improving Sensor Network Security with Information Quality 77

Sybil attack: We study a simple case: a sensor “A” claims its identity at an-
other location called “B” 4. Given a known event “e” at “B”, “A”, who is not
physically at “B”, can either generate arbitrary readings or fabricate sensor
“B” and generate “B”’s readings. Suppose we can defend against environ-
mental attack and node fabrication attack discussed above, we are sure that
the attacker can not win in either case.

Wormhole/sinkhole attack: One way of enabling wormhole attack is through
Sybil attack, by claiming a faked identity on the critical route. From above
analysis, our QP methods can somehow defend against Sybil attack, thus in
some implicit way, the methods also help defend against wormhole attack or
sinkhole attack.

Above countermeasures are only effective if the sensors are profiled accurately
for appropriate sensing behaviors. In case the sensors are only involved in the
activities such as forwarding messages, routing or aggregating data, or as storage
nodes, that are not directly relevant to the data generation phase, our methods
may not apply.

5 Conclusion and Future Works

In this paper, we proposed a new approach for improving security of sensor
network. We identified a kind of passive fingerprinting technique to be used
for profiling sensor behaviours. This profile is then used for verifying the new
sensor readings. We defined the concepts of QP and IQP in the context of an
ultrasonic motion sensor environment and introduced the basic methods to use
them. The preliminary experiments on single sensor are done for concept-proof.
Moreover, we demonstrated how to use QP in a network sensor model. The
security analysis shows that our methods are useful in defending against various
attacks. In the near future, we will acquire correlated sensing models that should
be more important in profiling cooperated sensing behaviours.

References

1. Adrian Perrig, John Stankovic, and David Wagner “Security in wireless sensor net-
works.” Communications of the ACM, 47(6), June 2004, Special Issue on Wireless
sensor networks, pp.53-57.

2. Anthony D. Wood, John A. Stankovic. Denial of Service in Sensor Networks. IEEE
Computer, 35(10):54-62, 2002

3. Chris Karlof and David Wagner, “Secure Routing in Wireless Sensor Networks: At-
tacks and Countermeasures”, First IEEE International Workshop on Sensor Net-
work Protocols and Applications, May 2003

4. James Newsome, Elaine Shi, Dawn Song and Adrian Perrig. “The Sybil Attack in
Sensor Networks: Analysis and Defenses.” In Third International Symposium on
Information Processing in Sensor Networks (IPSN 2004).

4 The location “B” is also regarded as the identity of a sensor “B”, by default.

78 Q. Qiu, T. Li, and J. Biswas

5. Thomas Martin, Michael Hsiao, Dong Ha, Jayan Krishnaswami, Denial-of-Service
Attacks on Battery-powered Mobile Computers Second IEEE International Con-
ference on Pervasive Computing and Communications (PerCom’04) March 14-17,
2004 Orlando, Florida pp. 309-318

6. Weichao Wang, Bharat Bhargava. Visualization of Wormholes in Sensor Networks.
ACM WiSe 2004, October 1, 2004.

7. Damon Smith, Ryan Mahon, Swathi Koundinya, Shubhashri Panicker. SNTS: Sen-
sor Node Traceback Scheme. ACM WiSe 2004, October 1, 2004.

8. L. Hu and D. Evans. Secure aggregation for wireless networks. In Workshop on
Security and Assurance in Ad hoc Networks. Jan. 2003.

9. Wenliang Du, Jing Deng, Yunghsiang S. Han, and Pramod Varshney. A Witness-
Based Approach For Data Fusion Assurance In Wireless Sensor Networks. IEEE
2003 Global Communications Conference (GLOBECOM). San Francisco, CA,
USA. December 1-5, 2003.

10. B. Przydatek, D. Song, and A. Perrig. SIA: Secure Information Aggregation in
Sensor Networks. In Proc. of ACM SenSys 2003.

11. David Wagner Resilient Aggregation in Sensor Networks. ACM Workshop on Se-
curity of Ad Hoc and Sensor Networks (SASN ’04), October 25, 2004.

12. Joao Girao, Dirk Westhoff, Markus Schneider. CDA: Concealed Data Aggregation
in Wireless Sensor Networks. ACM WiSe 2004, October 1, 2004.

Improving Sensor Network Security with Information Quality 79

Appendix: Sample Quality Profile Segment of an
Ultrasonic Motion Sensor

Table 2. Calibration experiments data for an ultrasonic motion sensor with
sample events occur at center beam within [2.0, 3.0] meters distance to the
sensor

Sample Events Sensor Readings (Angle: v1 = 0o)
v2: distance (m)
2.0 2.0843 2.1968 2.1968 2.2251 2.1785 2.0163 2.0599 2.1562 1.9666 2.0997 2.0846 2.1170
2.1 2.2627 2.2380 2.2380 2.2602 2.3286 2.1787 2.2108 2.1818 2.1005 2.2158 2.2336 2.2525
2.2 2.3170 2.3008 2.3008 2.3157 2.4021 2.2575 2.2792 2.2193 2.1716 2.2783 2.2926 2.3371
2.3 2.3565 2.3533 2.3533 2.3631 2.4745 2.3305 2.4117 2.3225 2.3308 2.3985 2.4219 2.3930
2.4 2.5848 2.4666 2.5278 2.5626 2.5623 2.5459 2.4685 2.4133 2.4169 2.5220 2.5335 2.5409
2.5 2.7223 2.6342 2.7166 2.7105 2.7286 2.7607 2.5409 2.5360 2.5456 2.6982 2.6974 2.5854
2.6 2.7525 2.6787 2.7539 2.8524 2.8565 2.8540 2.7253 2.7097 2.7182 2.7327 2.7317 2.7215
2.7 2.8060 2.7563 2.8041 2.9163 2.9215 2.9086 2.7887 2.7709 2.7813 2.7959 2.7917 2.7558
2.8 2.8420 2.8307 2.8367 3.0272 2.9800 2.9687 2.9166 2.8883 2.8903 2.8392 2.8304 2.8211
2.9 3.1298 3.0897 3.0815 2.8225 2.9890 2.6540 3.0069 2.9893 2.9888 2.9512 2.9012 2.8104
3.0 3.2494 3.2201 3.2124 2.8749 3.1526 2.8749 3.1748 3.1625 3.1581 3.0947 3.0261 2.8617

Table 3. Quality profile segment of an ultrasonic motion sensor with sample
events occur at center beam within [2.0, 3.0] meters distance to the sensor

Sample Events N(μ, σ2)
v1: angle (o) v2: distance (m) μ σ

0 2.0 2.1152 0.0787
0 2.1 2.2251 0.0559
0 2.2 2.2893 0.0578
0 2.3 2.3758 0.0452
0 2.4 2.5121 0.0572
0 2.5 2.6564 0.0831
0 2.6 2.7573 0.0617
0 2.7 2.8164 0.0619
0 2.8 2.8893 0.0696
0 2.9 2.9512 0.1357
0 3.0 3.0885 0.1437

One-Time Sensors: A Novel Concept to Mitigate
Node-Capture Attacks

Kemal Bicakci, Chandana Gamage, Bruno Crispo, and Andrew S. Tanenbaum

Department of Computer Science,
Vrije Universiteit Amsterdam, The Netherlands
{kemal, chandag, crispo, ast}@few.vu.nl

Abstract. Dealing with captured nodes is generally accepted as the
most difficult challenge to wireless sensor network security. By utilizing
the low-cost property of sensor nodes, we introduce the novel concept of
one-time sensors to mitigate node-capture attacks. The basic idea is to
load each sensor with only one cryptographic token so that the captured
node can inject only a single malicious message into the network. In ad-
dition, sybil attacks are avoided and explicit revocation is not necessary
using one-time sensors. By using public key techniques, one-way hash
functions and Merkle’s hash tree, we also show efficient implementations
and interesting tradeoffs for one-time sensors.

Keywords: Sensor network security, one-time sensor, node-capture at-
tack, sybil attack, Merkle’s hash tree.

1 Introduction

Believe it or not, one of the great inventions of humankind was considered as
disposable one-time baby diapers [1]. Napkins, plastic utensils, cameras are just
a few other examples where one-time usage is widespread. The idea of one-time
has also found numerous applications in the digital security world e.g., one-time
pads, one-time passwords, one-time credentials, etc. While traditionally one-time
usage is generally preferred for convenience, regarding security applications most
of the time the aim is instead to improve security.

Over the last few years, it has become more clear that the sciences of security
and economics have a strong connection between. Within this line of argument
we claim that security is a more challenging issue in wireless sensor networks,
especially because of economic factors. More precisely, since it is required to make
the sensor nodes low-cost, they are designed as (1) resource constrained devices
and (2) without tamper resistant hardware. The latter deficiency makes sensor
nodes which are frequently deployed in unprotected areas vulnerable to “node-
capture” attacks while the former limitation puts stringent constraints on the
defenses against such attacks.

By using cryptography in the sensors, it is easy to prevent attacks by unau-
thorized intruders. On the other side, cryptography by itself can not prevent
node-capture or inside attacks because in this case the attacker would have the

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 80–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks 81

full control over the sensor, including the cryptographic keys on it. Up to now,
coping with compromised nodes remains to be one of the most difficult challenges
to wireless sensor network security.

In this paper, we present the concept of one-time sensors to mitigate node-
capture attacks. The idea is to preload every sensor with a single “cryptographic
token” before deployment, so that any node can only insert one legitimate mes-
sage. Note that for the applications we consider, this message cannot be arbi-
trary, it rather has a pre-established semantics (e.g., the sensor’s reading is above
the threshold level or a pre-fixed event has been triggerred).

In our terminology the generic term “cryptographic token” (or just “token”)
has a different meaning than cryptographic keys and refers to a unique, un-
forgeable, verifiable and ready-to-transmit bit string. Since there is store-and-
forwarding in the wireless sensor network, besides the token, every node is also
preloaded with sufficient amount of data to verify others’ tokens. This brings us
the following advantages:

– The attacker capturing a node can inject at most one malicious message.
– The base station can identify the sources of malicious messages by keeping

track of which token was loaded into which sensor.
– Since the tokens are ready to transmit, the sensors do not need to do any

cryptographic computation to originate them. However when they are for-
warding, the intermediate nodes do require the processing to check the va-
lidity of tokens. Note that verification can be implemented more efficiently
than generation with some algorithms.

– Previously, explicit revocation was the general strategy to revoke the cap-
tured node and prevent energy deprivation attack. One-time sensors elim-
inate the need for the base station to broadcast a revocation message to
the network. We will later show that when one-time sensors are used, the
damage an attacker can do with a captured node cannot be more than the
cost incurred by sending the revocation message.

Considering these benefits (as well as the low-cost property), we claim that
using one-time sensors makes perfect sense for a class of security critical sensor
network applications. These include applications where the sensors lose their
functionality after the first sensing (e.g., some chemical detectors [2]) or when
the sensors can be used only one-time because of external conditions (e.g., fire
sensors in the fire scene). When the sensor network should carry alarm messages
for rarely-happened events (e.g., nuclear attacks), again one-time sensors are
very appropriate.

The rest of this paper is organized as follows. In the next section, we will first
give a good application for one-time sensors and then elaborate on its security
requirements. In section 3, we will provide a solution based on one-time sensors
and discuss three different implementation alternatives. In section 4 we will
provide a security analysis. In section 5 we will explore previous studies and
their shortcomings. In section 6 we will describe future work and conclude.

82 K. Bicakci et al.

2 Application Example and Its Security Requirements

Think of an application where a wireless sensor network is installed in a forest to
detect forest fires. In this network possibly thousands of sensors are employed to
be able to cover the area concerned. There might be one or more base stations
serving as the data sink but for simplicity let us assume there is only one. Unlike
sensor nodes, the base station is a powerful and physically protected node.

We assume that the base station knows the locations of sensor nodes at least
roughly. Upon detection of a fire in its coverage area, a sensor transmits an alarm
message to a base station, which then takes the necessary actions. Our claim is
that this example represents an important portion of security critical sensor net-
work applications (e.g., earthquake monitoring, nuclear attack detection, flood
detection etc.) in which the common type of communication is between a sen-
sor node and the base station rather than between individual sensors. However
since the cheap node has only a small range of transmission, the message it has
generated should be forwarded by intermediate nodes (acting as routers) hop by
hop until it reaches the base station.

The basic security requirements for this example are as follows:
1. Protection against False Alarms: False alarms should be deterred as they

pose a real problem today. Recent investigations [3, 4] found that 98-99% of
all security alarms are false alarms. In our case, anyone who would like to
insert a false alarm message into the network has 3 choices: (i) as an outside
intruder he can generate bogus messages or (ii) replay old intercepted alarm
messages (iii) he can capture sensor node(s) and as an insider inject malicious
message(s) into the network.

2. Resilience of True Alarms: The network should be designed in a way to
assure that true alarms can reach to the base station in spite of attacks.

3. Availability: Since the sensor nodes are battery powered devices, it is impor-
tant to protect them from denial of service or energy deprivation attacks.
Otherwise the sensors receiving, processing and sending unnecessary traffic
may lose their functionality very quickly. This might have serious conse-
quences since true alarms cannot be detected by the sensor network any
more.

4. Efficiency: Since the sensors are resource constrained devices (i.e. have stor-
age, energy, processing power, transmission constraints), it is crucial to have
a solution which has a good performance in terms of all these parameters.

5. Scalability: The solution should work reliably and efficiently when thousands
or even tens of thousands of nodes are used.

As you might have noticed, confidentiality is not in our list of security require-
ments because it is not reasonable to consider the fire information as secret. Also,
nonrepudiation is not a requirement.

3 Solution

Traditionally, cryptography is the fundamental tool in the toolbox of security
designers. On the other side, the low-cost property of sensors where you do not

One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks 83

care much if you throw away some of the nodes is a unique feature of most
sensor network applications including the one we discussed here. In our view, to
deal with unique security challenges here, it is essential to integrate the counter-
measures of cryptography and redundancy 1 . For this reason we will first
discuss briefly how redundancy can help to meet some of the aforementioned
requirements and then start explaining our cryptographic solution based on the
concept of one-time sensors. We will finish this section by explaining three dif-
ferent implementations of one-time sensors.

3.1 Getting Help from Redundancy

It is easy to protect the network from false alarms produced by outsiders by
use of cryptography but cryptography does not help when an attacker captures
a node. A recent study showed that all of the information located on sensor’s
memory can be extracted in less than one minute [5]. With this information,
attackers can simply analyze it to capture the cryptographic token and use it to
inject a malicious alarm message.

Therefore the proposed defenses against captured nodes should benefit from
redundancy. Since the nodes are cheap, it is possible to deploy sensor nodes
densely enough to achieve resilience to node capturing up to a threshold value
e.g., when the threshold is set to be m, m − 1 alarm messages would not be
sufficient for the base station to notify an alarm. Therefore the attacker must
capture at least m nodes, which requires more work but is not impossible 2.

For the resilience of true alarms, redundancy is crucial. For instance the node
sensing the fire should send the alarm using multiple paths so that even when a
portion of network is under DoS attack (e.g., using jamming signals), the base
station can receive the alarm message.

If energy deprivation attacks take aim to exhaust the battery of only one node
(or a few nodes), using enough redundancy we do not need to care much about
it. However, the attacks affecting the whole network at the same time should be
mitigated by all means.

3.2 Initialization and Operation of One-Time Sensors

We now describe one-time sensors, which can satisfy all the security requirements
listed in section 2, if there is enough redundancy in the network.

At the initialization phase, the base station preloads every sensor node with
a unique ID value and a single cryptographic token. We will explain different
ways for implementing the token in the next subsection. All sensor nodes are also
preloaded with sufficient amount of verification data to enable them to check the

1 Note that redundancy is already a widely used technique to achieve other desired
properties such as fault tolerance, reliability, accuracy etc.

2 We will show that one-time sensors prevent the attacker to claim multiple identities
(sybil attack [6]). Otherwise by using only a single node, the attacker can succeed
to generate m different alarm messages.

84 K. Bicakci et al.

validity of tokens received. In every node (including the base station) there is
also a memory space reserved to store the revocation list which is initially empty
but that will be filled with the ID values of received alarms.

Based on the level of redundancy employed (number of nodes within a certain
area), the base station decides on the threshold value for the number of received
messages to notify an alarm. It also determines maximum allowable latency (as
measured by the time between the receipt of 1st and mth message) before it
considers received messages as stale and reinitializes its alarm counter to the
value of 0.

Then the operation is performed as follows:

1. Based on its local routing information, the one-time sensor sensing the fire
sends an alarm message to the node (or multiple nodes) through which it
can reach the base station 3. The alarm message is basically consists of the
ID of the sensing node and its cryptographic token.

2. The node receiving the alarm message first checks by comparing the ID value
with the entries in its revocation list whether it has already received a valid
alarm message from the same node. If not, it then ensures that the token it
received is valid. Only if the token is verified correctly, are two actions taken.
First, the alarm message is forwarded to the node(s) on the way to the base
station. Second, the ID of the sender node is added to the revocation list for
future reference.

3. The second step repeats itself with other nodes until the alarm message
is received by the base station. The base station verifies that the alarm
message is valid and not already received. Based on the threshold value and
the number of previously received fresh messages it either decides to notify
an alarm or waits for additional alarm messages to come. The base station
does not broadcast a revocation message to the network.

3.3 Implementation of One-Time Sensors

One-time sensors can be implemented either with public key signatures or one-
way hash functions. The implementation using one-way hash functions can be
improved using Merkle’s hash tree. Thus we have three cases in total: (1) Public
key based (2) One-way hash based (3) One-way hash based with Merkle’s hash
tree.

With Public Key Signatures: The base station generates a public key -
private key pair. It then signs the unique ID of each sensor with its private key.
This signature is in fact the cryptographic token preloaded to each sensor. The
public key of the base station is also preloaded to all sensors so that they can
verify the signatures (the tokens). When a message is received, its validity can
simply be checked by verifying the signature using the base station’s public key.

3 We do not discuss how routing is performed in this paper. We refer interested readers
to [14].

One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks 85

Considering the last two requirements given in the previous section, public
key based implementation makes perfect sense in terms of scalability because
of the fact that storage, transmission and computation requirements is constant
and does not increase proportionally with the number of nodes in the network.
On the other hand, it has problems with respect to efficiency. Since public key
operations are expensive, especially for low-cost sensor nodes, this can be a viable
alternative only if public key algorithms are implemented very efficiently (e.g. as
recently shown in [7]). Note that to reduce the computational requirements on
the sensors, in our particular case the sensors use the public key operation only
for verification of the signature which can be implemented much more efficiently
than signature generation with some algorithms [7].

With One-way Hash Functions: The implementation based on one-way hash
functions has two variants. Since the first unoptimized version does not scale
well and has problems with respect to storage requirements, we improve it in
the second version using Merkle’s hash tree. We start explaining with the easier
one.

The base station generates a sufficiently long unique random number for each
sensor to be deployed. It also precomputes the hash of these random numbers
one by one. It preloads each sensor with one of the random numbers as well as
hash values of the random numbers loaded to every other node. While they are
loaded, the hash values are indexed with the ID values to ease the searching. The
base station also keeps track which random number is loaded to which sensor.
Now in this case, when a message is received, its validity is checked by computing
the hash value of the random number received and comparing it with the hash
value stored for the sender’s ID value.

In contrast to the previous case, this solution performs very well with respect
to computational and transmission requirements but it has a serious storage
problem especially when number of nodes is large.

Using Merkle’s hash tree: To reduce the storage cost, we can use Merkle’s
hash tree (MHT) construction [8].

A MHT is a binary tree where a value associated with a node is a one-way
hash function of the values of its children. As an example Figure 1 shows the
case where the MHT has a height of 4 and the total number of leaf nodes is 16.
Each leaf node is identified with an ID value, a positive number incrementing
starting from 1 in the left-most node.

For our application this MHT can support up to 16 sensor nodes. Leaf nodes
of the MHT contain the hash of the random numbers preloaded to each sensor.

hi = hash(Ri) (1)

We use the notation where hi.j denotes the value stored in the parent of all
children nodes having the ID values between i and j. As an example, the value
stored in the parent of node 1 and 2 can be computed as follows:

h1.2 = hash(h1||h2) (2)

86 K. Bicakci et al.

hroot

h13 h16

h15.16h13.14

h13.16h9.12

h9.16h1.8

R13 R16

Fig. 1. A Merkle’s hash tree supporting 16 sensor nodes

The value of upper parents can be computed similarly. As an example:

h1.4 = hash(h1.2||h3.4) (3)

This continues until we reach the root node.

hroot = h1.16 = hash(h1.8||h9.16) (4)

Using MHT, we do not need to load all hash values to all sensor nodes. Instead
every sensor node is loaded with (1) a random number (2) the value in the root
node (3) the values of the nodes required to recompute the value in the root
node.

For instance node 13 is loaded with R13, h14, h15.16, h9.12, h1.8, hroot whereas
node 16 is loaded with R16, h15, h13.14, h9.12, h1.8, hroot. These values in fact serve
as the cryptographic tokens as well as verification data for these nodes as we
will see in an example.

Example: After the deployment, consider the case where node 13 sends an
alarm message to node 16 by transmitting its cryptographic token together with
its ID value 4. Node 16 can verify this token as follows:

– It first computes h13.
– It then computes h13.14, h13.16 and h9.16.
– Finally it computes hroot and verifies it with the one in its memory.

4 We have chosen node 13 and node 16 to show the worst case. For instance node 16
can verify node 1 using one less hash computation since h1.8 is available locally to
itself.

One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks 87

Table 1. Comparison of three implementations with respect to network size n

Storage Communication Computation

Public Key Based O(1) O(1) O(1)
Hash Based O(n) O(1) O(1)
Hash Based with Merkle’s Tree O(log n) O(log n) O(log n)

As a generalization, we note that for a network having n nodes, using MHT
each node has to store only log n+2 elements instead of n. On the other hand with
MHT the communication and computation load increases from the complexity
O(1) to O(log n). Table 1 summarizes the comparison of three implementations
described above. There is one other important difference between public key
based and hash based solutions. While we can freely add more nodes to the
network in public key settings, the maximum size of the network should be
determined at the set-up time for the hash based solution.

4 Security Analysis

In this section we briefly analyze the security of one-time sensor implementations.
In both public-key based and one-way hash based implementation, those who

are not authorized participants of the network are unable to insert a legitimate
alarm message to the network. This is due to unforgeability of the digital signa-
ture and one-way property of the hash function used.

Since there is only one cryptographic token inside every sensor, sybil attack
[6] is avoided using one-time sensors. In other words, the network is resilient
to node-capture attacks up to a threshold value m where m is the minimum
number of captured nodes for a successful attack.

Consider the case where sensor nodes are densely deployed and m is chosen
sufficiently high. We claim that if the attacker does not know the threshold value
m, it is more difficult for him to make the base station to notify a false alarm.
Consider the case when the attacker has captured n nodes (n < m) and injects
n different malicious messages. Just after he realizes that he has not captured
enough nodes (for instance by observing that the base station did not take
any action), he might want to capture a few more and retry. However since the
previous n tokens have already been revoked (assuming that the base station has
reinitialized its alarm counter), this does not work. He has to do the capturing
again from the scratch and has to try to guess the threshold value in order to
decide when to stop.

For our application example, replay attacks do not pose a threat for false
alarms and the only damage they can cause is energy deprivation. Traditionally
protection against replays includes a monotonically increasing counter with every
message and rejecting messages with old counter values. Using one-time sensors
counters are no longer needed and the revocation table every sensor holds is
in fact perfect to protect also against replay attacks. By omitting the counters,
only the ID values are needed to be stored therefore storage requirement for the

88 K. Bicakci et al.

revocation (replay) table is reduced significantly using one-time sensors. However
even with this reduction, to fit into sensor node’s limited memory we might need
to consider further optimizations for the replay table. We do not discuss this issue
here any further and leave it as a future work. See [9] for a general discussion of
replay protection.

When a sensor transmits its token, its ID is stored in the revocation list of all
intermediate sensors forwarding it. Even when the network is designed such a
way that multiple redundant paths are used, due to the large size of network, it
is reasonable to think that most sensors do not receive the token and store the
ID value initially. That is why an attacker who has captured the node or who
has intercepted a valid alarm message might replay it in different parts of the
network to exhaust the battery of receiving nodes.

One might think that the base station should broadcast a message to the
network to explicitly revoke the ID of the node that has sent its token so that
the replayed message is not accepted by any node afterwards. However we think
this is not so meaningful for two main reasons:

– For security purposes, the revocation messages have to be signed with the
base station’s private key and every sensor has to verify this public key
signature before it updates its revocation table. If one-time sensors are im-
plemented using one-way hash functions, this means sensors should perform
public key operations instead of hash computations, which obviously requires
much more work and adds to sensor complexity and cost.

– For the case where one-time sensors are implemented with public key signa-
tures, the damage the attacker can do is at most as the cost incurred due
to revocation message because in either case, every sensor should receive,
process and send a public key signature once. The only exception is bulk
revocation where using a single revocation message a number of ID values
are revoked together. This latter case is not practical most of the time due to
urgent and timely revocation needs of sensor applications for which one-time
sensors are proposed.

5 Related Work

In previous work it was repeatedly emphasized that dealing with node-capture
attacks is one of the biggest challenge to sensor network security e.g., [10, 11].
According to Perrig et al. [11], “we are a long way from a good solution.”

Researchers have recently proposed random key predistribution schemes e.g.,
[12, 13]. The basic idea is to distribute a random subset of a large pool of sym-
metric keys to each sensor node. Two nodes that want to communicate first
determine whether they share a common secret key, and if they do, then they
use the shared key for achieving integrity and confidentiality in their subsequent
communication. These schemes are not suitable for our application scenario be-
cause it is vulnerable to sybil attacks, meaning that by claiming multiple iden-
tities using different keys from the subset the node has, an attacker can even
mount a successful attack by capturing only a single sensor node.

One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks 89

For the applications that require end-to-end messaging only between sensor
nodes and the base station, one might think that a straightforward solution
would be such that each sensor node shares a secret key with the base station.
However this solution is vulnerable to energy deprivation attacks because of the
fact that the forwarding nodes do not have the capability to verify the legitimacy
of messages received.

Using redundancy to protect against node capturing has been previously pro-
posed. For instance in [14], the resilience of multiple paths routing in presence
of malicious nodes is analyzed. Additionally, to protect the base station from
spoofing, one-way hash functions are used to generate sequence numbers for
route discovery messages.

Up to our best knowledge this paper is the first that aims to show how re-
dundancy and cryptography can be used together at a system level to defend
against node-capture attacks in sensor networks.

6 Conclusion and Future Work

In this paper we have presented the concept of one-time sensors to mitigate
node-capture attacks and three implementation alternatives.

With the novel concept of one-time sensors our attempt is to use the inherent
features of sensors and the characteristics of some of their network applications
for our own sake of improving the security. One-time sensors are innovative as
well as pragmatic if we consider their low-cost property.

Using one-time sensors is not an appropriate choice for applications that re-
quire sensors to send arbitrary messages and the integrity and/or confidentiality
of these messages should be protected.

As a future work, extending our idea to k-times sensors is possible. More
formal treatment of redundancy and cryptography integration is highly promis-
ing. We are also planning to look at the recent work of improvements on Merkle’s
hash tree [15, 16] to have a more efficient one-time sensor implementation. Last
but not the least, prototype deployments of one-time sensor networks would be
very useful to have a better idea on other practical aspects.

References

1. http://www.gpoabs.com.mx/cricher/history.htm
2. CONSESSUS Project, http://www.aramis-research.ch/d/7082.html.
3. http://fox5atlanta.com/iteam/911.html
4. http://www.ci.baltimore.md.us/news/crime/calls.html
5. C. Hartung, J. Balasalle, R. Han: Node Compromise in Sensor Networks: The Need

for Secure Systems, Technical Report CU-CS-990-05, Department of Computer
Science, University of Colorado, January 2005.

6. J.R. Douceur: The Sybil Attack. In Proc. 1st International Workshop on Peer-to-
Peer Systems (IPTPS’02), pages 251-260, LNCS 2429, Springer 2002.

7. G. Gaubatz, J. Kaps, B. Sunar: Public Key Cryptography in Sensor Networks
- Revisited. In Proc. 1st European Workshop on Security in Ad-hoc and Sensor
Networks, ESAS 2004, pages 2-18, LNCS3313, Springer 2005.

90 K. Bicakci et al.

8. R. C. Merkle: A Digital Signature Based on a Conventional Encryption Function. In
Proc. Advances in Cryptology - CRYPTO ’87, pages 369-378, LNCS 293, Springer
1988.

9. C. Karlof, N. Sastry, and D. Wagner: TinySec: A Link Layer Security Architec-
ture for Wireless Sensor Networks. In Proc. 2nd ACM Conference on Embedded
Networked Sensor Systems, SenSys 2004, pages 162-175, November 2004.

10. E. Shi and A. Perrig: Designing Secure Sensor Networks. IEEE Wireless Commu-
nication Magazine, 11(6), pages 38-43, December 2004.

11. A. Perrig, J. Stankovic and D. Wagner: Security in Wireless Sensor Networks.
Communications of the ACM, 47(6), pages 53-57, June 2004.

12. L. Eschenauer, V. D. Gligor: A key-management scheme for distributed sensor net-
works. In Proc. 9th ACM Conference on Computer and Communications Security,
pages 41-47, ACM 2002.

13. H. Chan, A. Perrig, D. X. Song: Random Key Predistribution Schemes for Sensor
Networks. Proc. IEEE Symposium on Security and Privacy, pages 197-213, IEEE
Computer Society 2003.

14. J. Deng, R. Han, S. Mishra: A Performance Evaluation of Intrusion-Tolerant Rout-
ing in Wireless Sensor Networks. In Proc. IEEE 2nd International Workshop on
Information Processing in Sensor Networks, pages 349-364, 2003.

15. M. Jakobsson, T. Leighton, S. Micali and M. Szydlo: Fractal Merkle Tree Rep-
resentation and Traveral. In Proc. Cryptographers’ Track at the RSA Conference
2003, pages 314-326, LNCS 2612, Springer 2003.

16. M. Szydlo: Merkle Tree Traversal in Log Space and Time. In Proc. EUROCRYPT
2004, pages 541-554, LNCS 3027, Springer 2004.

Randomized Grid Based Scheme for Wireless
Sensor Network

Mohammed Golam Sadi, Jong Sou Park, and Dong Seong Kim

Network Security Lab., Hankuk Aviation University, Korea
{jspark, sadi, dskim}@hau.ac.kr

Abstract. Wireless Sensor Network (WSN) has a wide variety of civil
and military applications need enforcement of security. Traditional pub-
lic key cryptography such as RSA is infeasible due to resource constraints
in WSN. Key predistribution is one of the feasible solutions to cope with
these constraints. This paper proposes a novel key predistribution scheme
named Randomized Grid Based (RGB) scheme which employs the basic
probabilistic scheme on the basis of the grid based scheme. Our scheme
is not only able to extend resiliency than the existing key predistribu-
tion schemes but also ensure a high probability to establish pairwise key
and efficiency in path key establishment between sensor nodes. Security
analysis shows substantial improvement in term of resiliency and key es-
tablishment with little additional overheads in memory, communication.

1 Introduction

Wireless Sensor Network (WSN) consists of a large number of ultra small au-
tonomous devices, called sensor node, powered with battery and equipped with
integrated sensors, data processing capabilities and short range radio communi-
cation. In typical application scenarios sensor nodes are spread randomly over
the terrain under scrutiny and collect sensor data. Resource constraints in the
sensor node have established popular perception that traditional public key cryp-
tography and key distribution center are beyond the capabilities of sensor nodes.
Although the software implementation of ECC for 8 bit CPUs showed the possi-
bility to take advantage of public key cryptography to constrained devices such
as embedded system [5], it is still not feasible for WSN. In order to ensure se-
curity to WSN, key predistribution schemes have been widely accepted since
the early stage of WSN development. Several studies [1-4, 6] have proposed key
predistribution schemes. Eschenauer and Gligor have proposed the basic proba-
bilistic scheme [4]. The main idea is to let each sensor node randomly pick a set
of keys from a key pool before deployment. Any two nodes have a certain prob-
ability to share at least one key that act as the secret key between them. Chan
et. al. further extended this idea and developed two key predistribution schemes
[2]: q-composite key scheme and random pairwise keys scheme. The q-composite
key scheme also uses key pool but requires two sensors compute a pairwise key
from at least q-predistributed shared keys. The random pairwise keys scheme
picks pair of sensors and assigns each pair a unique random key. Both these

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 91–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 M.G. Sadi, J.S. Park, and D.S. Kim

schemes improve the resiliency over basic probabilistic scheme. However the ba-
sic probabilistic and q-composite key scheme provides very poor performance
when the number of compromised nodes increases. The random pairwise keys
scheme overcomes the above problem but it needs much memory requirement.
Liu and Ning have proposed two efficient schemes [6]: random subset assignment
and grid based key predistribution scheme that have basis of polynomial key
predistribution. In grid based scheme a conceptual grid is formed and a unique
polynomial function is allocated to each row and column of the grid. A sensor
node is allocated to a particular intersection of the grid and the two polynomial
shares corresponding to that row and column are assigned to its memory. If any
two sensors have same column or row number then certainly they can establish
a pairwise key if they are in a communication range. This scheme has a number
of nice facilities such as high probability to establish pairwise keys, resiliency
to node capture, low communication overhead and reduced computation in the
sensor node. However, the resiliency to node capture is not acceptable when the
compromise of nodes grows larger than certain threshold value.

In this paper, we propose a novel key predistribution scheme named Ran-
domized Grid Based (RGB) scheme to solve the problem of resiliency against
the large number of node capture. We employ the basic probabilistic scheme
on the basis of the grid based scheme. The combined effect of these two basic
schemes improves the network resiliency to a higher level against large number
of node capture. Besides this improvement, RGB scheme guarantees a very high
probability to establish pairwise keys between neighboring nodes in the absence
of compromised nodes. Although some nodes in the network are compromised,
there are are several ways to reestablish pairwise keys between the noncompro-
mised nodes through path discovery method.

2 Overview of Randomized Grid Based (RGB) Scheme

In this section we present our proposed scheme in detail. We use grid based
scheme as the building block to achieve enhanced resiliency against large num-
ber of node capture. Motivated by the probabilistic random key predistribution
scheme, we combine probabilistic scheme with the grid based scheme. We con-
struct a m × m grid structure where m =

√
N and N is number of nodes in

the network. Practically the value of N is chosen larger than the actual number
of sensor nodes in the network to keep the option to increase the network size
in future if required. We allocate distinct multiple polynomials to each row and
column of the grid. An intersection in the grid has been selected for each sen-
sor node and then τ polynomials are randomly chosen from the corresponding
row and column of the intersection for that node. Finally these 2τ polynomial
shares and the coordinate of the intersection as the sensor ID are assigned to
that sensor node. We encode the coordinate of a sensor into a single valued ID.
Let l = �log2m�. Any valid column or row coordinate can be represented as an l
bit binary string. We then denote the ID of a sensor as the concatenation of the
binary representations of the row and column coordinate values. Syntactically,

Randomized Grid Based Scheme for Wireless Sensor Network 93

we represent an ID constructed from the coordinate (i, j) as 〈i, j〉. For ease of
presentation, we denote ID i as 〈ri, ci〉, where ri and ci is the first and last l
bits of i respectively. If two sensor nodes share a common polynomial, then they
can establish a pairwise key between them. The details of the RGB scheme are
presented below.

Fig. 1. Polynomial allocation and key discovery mechanism of RGB scheme

2.1 Pre-assignment of Polynomials

Before deployment of the sensors in the practical field the setup server does the
following works:

– Randomly generates 2mω number of t degree bi-variate polynomials F =
{f r

i (x, y) , f c
i (x, y)}i=0,...,mω−1 over a finite field Fq.

– Divides the polynomials f r
i (x, y)i=0,...,mω−1 into m groups f r

ωi
(x,y)i=0,...,m−1

where each group contains ω distinct polynomials and assigns to each row
of the grid.

– In a similar way the setup server divides the polynomials f c
i (x, y)i=0,...,mω−1

into m distinct groups f c
ωi

(x, y)i=0,...,m−1 that are allocated to each column
of the grid as shown in Fig. 1.

– For each sensor, the setup server picks an unoccupied intersection (i, j) in
the grid and selects τ polynomials randomly from each of the allocated poly-
nomial group corresponding to ith row and jth column of the intersection.

– Finally assigns these 2τ polynomial shares with their IDs and the ID 〈i, j〉
to the sensor node.

94 M.G. Sadi, J.S. Park, and D.S. Kim

Fig. 2. An example of order of node assignment in RGB scheme

To facilitate path discovery, we require that the intersection allocated to each
sensor be in densed rectangle area in the grid. Fig. 2 shows a possible order to
allocate intersections to the sensors.

2.2 Discovery of Polynomial Shares

To establish a pairwise key with node j, node i checks whether ci = cj or ri = rj .
If ci = cj , then it is confirmed that both nodes i and j share τ polynomials from
the polynomial group f c

ωi
(x, y). So they go through to discover a common polyno-

mial by simply broadcasting the polynomial IDs in clear text or by using challenge
response protocol similar to basic probabilistic scheme [4]. If any common polyno-
mial ID is found then they can establish a pairwise key directly using that common
polynomial. Similarly, if ri = rj , they have polynomial shares from f r

ωi
(x, y) and

go through to establish a pairwise key in similar way stated earlier. If they fail then
they have to establish a pairwise key using path key discovery method.

2.3 Discovery of Path Key

Nodes i and j have to use path discovery when ci = cj and ri = rj or when there
is no common polynomial in their memory. We note that either node 〈ri, cj〉 or
〈rj , ci〉 can establish a pairwise key with both the nodes i and j as they have
τ polynomials selected randomly from a common polynomial group. Indeed, if
there is no compromised node, it is obvious that there might exist at least one
node that can be used as an intermediate node between any two sensor nodes due

Randomized Grid Based Scheme for Wireless Sensor Network 95

to the node assignment algorithm. For example, in Fig.1, both nodes
〈
i
′
, j

〉
and〈

i, j
′〉

can help node 〈i, j〉 to establish a pairwise key with node
〈
i
′
, j

′〉
. Note

that nodes i and j can predetermine the possible intermediate nodes without
communicating with others.

In some situations, it may be possible that both of the above intermediate
nodes have been compromised or are out of communication range. However,
there are still alternative key paths. For example, in Fig. 1, beside node

〈
i
′
, j

〉
and

〈
i, j

′
〉
, node 〈i, m− 2〉 and

〈
i
′
, m− 2

〉
can work together to help node 〈i, j〉

to setup a common key with
〈
i
′
, j

′
〉
. Thus all the nodes that belong to same

row or column of the nodes i and j can help to setup a pairwise key between
them. Indeed, there are up to 2(m− 2) pairs of such nodes in the grid.

In general, we can map the set of noncompromised nodes into a graph, where
each vertex in the graph is one of the sensors, and there is an edge between
two nodes if these two sensors have polynomial shares of a common polynomial.
Discovering a key path between two nodes is equivalent to finding a path in
this graph. Nevertheless, in a large sensor network, it is usually not feasible for
a sensor to store such a graph and run a path discovery algorithm. Thus, in
our scheme, we focus on the key paths that involve two intermediate nodes.
Specifically, a sensor node S may use the algorithm in [6] to discover key paths
to sensor D that have two intermediate nodes.

3 Security Analysis of RGB Scheme

We assume that there are N = m × m sensors in the network. According to
polynomial distribution in WSN, each sensor node has a very high probability
to establish a pairwise key with 2(m− 1) sensor nodes directly. Thus, among all
the other sensors, the percentage of nodes that a node can establish a pairwise
key directly is,

2(m− 1)
N − 1

≈ 2(m− 1)
m2 − 1

=
2

m + 1
(1)

This scheme has reasonable memory requirements mainly for storing several
polynomials chosen randomly. Each sensor needs to store 2τ polynomials of
degree t and also their corresponding IDs. Assume b bits are required to represent
a polynomial ID. Then we can write b = log2 (2mω). In addition, a sensor needs
to store the IDs of the compromised nodes with which it can establish a pairwise
key directly. Thus, the total storage overhead in each sensor is at most

Memory = 2τ (t + 1) logq + 2τb + 2 (t + 1) l (2)

First we will compute the desired values for security parameter and then focus
our attention to the performance of the RGB scheme under two types of attacks.
First, the attacker may target the pairwise key between two particular sensors.
The attacker may either try to compromise the pairwise key or prevent the two

96 M.G. Sadi, J.S. Park, and D.S. Kim

sensor nodes from establishing a pairwise key. Second, the attacker may target
the entire network to lower the probability that two sensors may establish a
pairwise key or to increase the cost to establish pairwise keys.

3.1 Preferred Values of ω, τ

For any pair of nodes, establishing a pairwise key between them is possible if
the key sharing graph of the nodes is connected. Given the size and the den-
sity of a network, we can calculate the values for ω and τ so that the node
graph is connected with high probability. We use the following approach adapted
from [4].

Computing Required Local Connectivity. Let pc be the probability that
the key sharing graph is connected. We call it global connectivity. We use local
connectivity to refer to the probability of two neighboring nodes sharing at least
one polynomial. To achieve a desired global connectivity pc, the local connec-
tivity must be higher than a certain value; we call this value the required local
connectivity, denoted by prequired. Using connectivity theory in a random graph
by Erdos and Renyi [6], we can obtain the necessary expected node degree d (i.e.
the average number of edges connected to each node) for a network of size N ,
when N is large in order to achieve a given global connectivity, pc:

d =
N − 1

N
[ln (N)− ln (−ln (pc))] (3)

For a given density of sensor network deployment, let n be the expected number
of neighbors within wireless communication range of a node. Since the expected
node degree must be at least d as calculated above, the required local connectivity
prequiredcan be estimated as:

prequired =
d

n
(4)

Computing Actual Local Connectivity. After we have selected values for
ω and τ , the actual local connectivity is determined by these values. We use
pactual to represent the actual local connectivity, namely pactual is the actual
probability of any two neighboring nodes sharing at least one polynomial share
(i.e. they can find a common key between them). Since pactual = 1 − pr (two
nodes do not share any polynomial),

pactual = 1− (
ω
τ)(

ω−τ
τ)

(
ω
τ)2

= 1− ((ω − τ)!)2

(ω − 2τ)!ω!
(5)

The values pactual have been plotted in Fig. 3 when ω varies from τ to 100
and τ = 2, 4, 6, 8. For example, when τ = 6, the largest ω we can choose while
achieving the local connectivity pactual ≥ 0.7 is 35.

Randomized Grid Based Scheme for Wireless Sensor Network 97

Fig. 3. Probability of sharing at least one key between nodes

Computing ω and τ . Getting the required local connectivity prequired and
the actual local connectivity pactual, in order to achieve the desired global con-
nectivity pc, we should have pactaul ≥ prequired,

1− ((ω − τ)!)2

(ω − 2τ)!ω!
≥ N − 1

nN
[ln(N)− ln(pc)] (6)

Therefore, in order to achieve certain pc for a network of size N and the expected
number of neighbors for each node being n, we just need to find values of ω and
τ , such that Inequality (6) is satisfied.

3.2 Attacks Against a Pair of Sensors

To explain the security of our scheme, we like to focus the difficulty to compromise a
pairwise key without compromising the related nodes and the difficulty to prevent
two nodes from establishing a pairwise key. Assume two nodes u and v can estab-
lish a pairwise key directly. The only way to compromise the pairwise key without
compromising the related nodes is to compromise the shared polynomial between
them. It requires the attacker to compromise at least t+1 sensor nodes having same
polynomial shares and belongs to the same row or column of the target node. Even
if the attacker successfully compromises the polynomial (as well as the pairwise
key), the related sensors can still reestablish another pairwise key through path
discovery process or by using one of the noncompromised polynomials stored in
their memory. From the path discovery process, we know that there are m−1 pair
of nodes, which can help nodes u and v to reestablish a pairwise key. To prevent

98 M.G. Sadi, J.S. Park, and D.S. Kim

node u from establishing a key with node v completely attacker has to compromise
all of the pair of nodes otherwise there will be a possibility to establish a pairwise
key between them through multiple rounds of path discovery process. Thus, in this
case, the attacker has to compromise t + 1 nodes from the same row or column to
learn the preestablished pairwise key and t + 2m sensors to prevent u and v from
establishing another pairwise key.

Now we will discuss the scenario where nodes u and v establish a pairwise key
through path key establishment. The attacker may compromise one of the sensors
involved in the key path. If the attacker has the message used to deliver the key,
he/she can recover the pairwise key. However, the related sensors can establish a
new key with a new round of path key establishment once the compromise is de-
tected. To prevent the sensors from establishing another pairwise key, the attacker
has to block at least one sensor in each path between u and v. There are 2m−2 key
paths between u and v that involve one or two intermediate nodes. Besides the key
path with the compromised node, there are at least 2m−3 paths. To prevent pair-
wise key establishment, the attacker has to compromise at least one sensor in each
path. Still there is a probability of reestablishment of new path key having more
than two intermediate nodes. Thus, in summary, the attacker has to compromise
one sensor involved in the path key establishment to compromise the pairwise key
and at least 2m− 3 sensors to prevent u and v from establishing a pairwise key.

3.3 Attacks Against the Network

Having the knowledge of the subset assignment mechanism, adversary may com-
promise the bivariate polynomials in F one after another by compromising se-
lected sensor nodes in order to finally compromise the whole network. Suppose
the adversary just compromised l bivariate polynomials in F . In the grid based
scheme [6] there are about ml sensor nodes where at least one of their polynomial
shares has been disclosed. But in our scheme, each node in the same column or
row has random selection of polynomials. There is a probability that these com-
promised polynomials may belong to each sensors of the same column or row and
depends on ω and τ . So the polynomials belong to the sensor nodes are disclosed
rather than the all the nodes in the same column or row and still those nodes can
work normally as they have other uncompromised polynomials in their memory.
However we see that adoption of randomness in the bloom’s scheme [4] enhances
the resiliency to node capture. Now we will calculate the probability of at least
one key is disclosed when Nc nodes are captured. An adversary may randomly
compromise sensor nodes to attack the path discovery process. It follows from
the security analysis in [1] that an attacker cannot determine noncompromised
keys if he or she has compromised more than t sensor nodes. We assume that an
attacker randomly compromises Nc sensor nodes, where Nc > t. Consider any
polynomial f in F . The probability of f being chosen for a sensor node is τ

mω
and the probability of this polynomial being chosen exactly k times among Nc

compromised sensor nodes is,

P (k) =
Nc!

(Nc − k)!k!
(

τ

mω
)k(1− τ

mω
)Nc−k (7)

Randomized Grid Based Scheme for Wireless Sensor Network 99

Thus, the probability of any polynomial being compromised is Pc=1−
∑k

t=0 P (k).
Since f is a polynomial in F , the fraction of compromised links between noncom-
promised sensors can be established as Pc. Fig. 4 shows the relationship between
the fraction of compromised links for noncompromised sensors and the number
of compromised nodes for a combination of ω = 25 and τ = 6. According to
the graph, we see that our scheme has a very high security performance when
a large number of the sensor nodes are compromised. For example, in the case
of a sensor network of 20,000 nodes, if the attacker compromises 40% of the
total nodes (i.e. 8,000 nodes) then only about 5% of the links of noncompro-
mised nodes are affected. Thus, the majority of the noncompromised nodes are
not affected.

3.4 Comparison with Previous Schemes

Let us compare the RGB scheme with basic probabilistic scheme, q-composite
scheme and grid based scheme. Here we assume the network size N is 20000,
m = 142 and the probability p = 0.24. In Fig. 4, the four curves show the
fraction of compromised link as a function of the number of compromised sen-
sor nodes. Basic probabilistic scheme has almost same performance as the q-
composite scheme (q = 2) and the grid based scheme works well up to 2000
compromised nodes. In contrast, our scheme provides sufficient security up to
9000 compromised nodes and then the performance gradually decreases. Here
we assume the value of the security parameters ω = 25, τ = 6 and degree of
polynomial t = 19.

Now we compare the memory requirements of our scheme with grid based
scheme. According to grid based scheme [6], the storage overhead in each sen-
sor is at most (t + 1)logq + 2(t + 1)l. Memory overhead of our scheme indi-
cated by Equation (2) mainly depends on the value of the security factor τ and
the degree of polynomial t. A comparison of these two equations indicates that
our scheme requires almost τ times more memory than the grid based scheme.
Fig. 3 describes how the probability of sharing at least one key among nodes
varies for different values of τ . Larger value of τ will increase the memory over-
head in our scheme. But we can regulate the value of τ considering the network
security requirement as stated in Sec. 3.1. To get the performance shown in
Fig. 4 each sensor needs the storage capacity, which is equivalent to store al-
most 260 keys. Though it needs more memory, it is not a significant factor for
WSN because size of memory on a sensor node will be increased in near fu-
ture as technology is developing very fast. In terms of communication overhead,
our scheme has additional overhead compared to the grid based scheme due to
broadcasting of polynomial IDs during direct key establishment process. But
this additional communication will occur only once during the key discovery
process and after that stage the communication overhead is similar to the grid
based scheme. So the overall communication is not a significant overhead for
the sensors. The computational overhead is essentially the evaluation of one or
multiple t-degree polynomials that follow the same approach as in [6]. From
the above comparison, we can explicitly say that our scheme has a substan-

100 M.G. Sadi, J.S. Park, and D.S. Kim

Fig. 4. Fraction of compromised links between noncompromised sensors v.s. number
of compromised sensor nodes

tial improvement in network resiliency with little increase in memory usage and
reasonable communication and computation workload. It also includes other fa-
cilities. First, it guarantees the establishment of pairwise key between two nodes
directly or via intermediate nodes when there are no compromised nodes and
also provides efficiency in determining the path key. Secondly, if some nodes
are compromised there is still a high probability to establish a pairwise key be-
tween noncompromised nodes. Finally, this scheme allows optimized deployment
of sensors to establish pairwise key directly due to orderly assignment of grid
intersections.

4 Conclusions

We have presented a new pairwise key distribution scheme named Randomized
Grid Based (RGB) scheme for WSN. Security analysis demonstrates substantial
improvement in resiliency against large number of node capture and significant
enhancement for establishing a pairwise key between nodes in an efficient way.
Furthermore, our scheme enables one to adjust the probability of key estab-
lishment by regulating the security parameters according to the desired level
of security for WSN. The future works include further analysis on computation
workloads in terms of energy requirements through both analytical method and
simulation in detail.

Randomized Grid Based Scheme for Wireless Sensor Network 101

Acknowledgement

This research was supported by the Internet information Retrieval Research
Center (IRC) in Hankuk Aviation University. IRC is a Regional Research Center
of Gyeonggi Province, designated by ITEP and Ministry of Commerce, Industry
and Energy.

References

1. Chan, H., Perrig, A., Song, D.X.: Random Key Predistribution Schemes for Sensor
Networks. In Proc. of the 2003 IEEE Sym. on Security and Privacy (2003) 197

2. Du, W., Deng, Jin., Han, S.Y., Varshney, P.K.: A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks. In Proc. of the 10th ACM conf. on Computer
and Communications Security. (2003) 42-51

3. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In Proc. of the 9th ACM Conf. on Computer and Communications Secu-
rity. (2002) 41-47

4. Gupta, V., Millard, M., Fung, S., Zhu, Yu., Gura, N., Eberle, H., Shantz, S.C.: Sizzle:
A Standards-Based End-to-End Security Architecture for the Embedded Internet.
In Proc. of 3th IEEE Int. Conf. on Pervasive Computing and Communications.
(2005) 247-256

5. Liu, D., Ning, P.,:Establishing Pairwise Keys in Distributed Sensor Networks. In
Proc. of the 10th ACM Conf. on Computer and Communications Security. (2003)
52-61

6. Erods, P., Renyi, A.: On Random Graph. Publicationes Mathematicae. (1959) 290-
297

Influence of Falsified Position Data
on Geographic Ad-Hoc Routing

Tim Leinmüller1, Elmar Schoch1, Frank Kargl2, and Christian Maihöfer1

1 DaimlerChrysler AG, Research Vehicle IT and Services
{Tim.Leinmueller, Elmar.Schoch, Christian.Maihoefer}@DaimlerChrysler.com

2 University of Ulm, Department of Media Informatics
Frank.Kargl@informatik.uni-ulm.de

Abstract. There has been a lot of effort in the research on routing
in mobile ad hoc networks in the last years. Promising applications of
MANETs, e.g. in the automotive domain, are the drive for the design
of inter-vehicle networks. So far, several projects in this field have cho-
sen geographic routing approaches because of their outstanding perfor-
mance and the possibility to support location-based applications like
traffic warning functions. Having reached a reasonable functional level,
a next step will be a deeper study of safety and security issues.

With this paper, we dive into that area by assuming defective or ma-
licious nodes that disseminate wrong position data. First, we have a look
at the local problems that may arise from falsified position data, then we
show the global effects on the routing performance by simulating mali-
cious nodes. Simulation results show that the overall ratio of successfully
delivered messages decreases, depending on the number of maliciously
acting nodes, even up to approximately 30%. We conclude from this re-
sult that future work should take these threats into account in order to
design more robust routing protocols.

1 Introduction

In the recent years, Mobile Ad hoc Networks (MANETs) have attracted a lot
of attention in the research community. Still, there are very few real application
scenarios where the wide deployment of MANETs is really foreseeable in the near
future. Two exceptions are the military area and networks that spontaneously
connect vehicles on the road, so called Vehicular Ad hoc Networks (VANETs).
In the latter case, a number of research projects produced significant results
concerning routing and other operational issues 1. Main target of these projects
is the improvement of vehicle safety by means of inter-vehicle communication.
So e.g. in the case of an accident, a VANET might be used to warn approaching
cars and give the drivers enough time to come to a halt. Another application
area is using VANETs for entertainment purposes, allowing e.g. news exchange
between passengers of different cars.

1 e.g. projects like Fleetnet [1] or CarTalk2000 [2].

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 102–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Influence of Falsified Position Data on Geographic Ad-Hoc Routing 103

A

F

G

H

I

J

K

Avl Avr

Fig. 1. Vehicle A pretends to be at positions Avl and Avr and thus manages to grab
all traffic along the road.

Now European and US car manufacturers are taking the next step in
projects that aim at defining a reference architecture and suitable standards
for VANETs2.

In contrast to generic MANETs, where mostly topology-based routing pro-
tocols are being developed, many of the VANET projects use position-based
routing mechanisms [6] for establishing connectivity between vehicles. This of-
fers some advantages in performance and the possibility to address vehicles by
their position (so called Geocast) instead of their address.

Whereas a lot of effort was already put in securing traditional MANETs [7,8],
the security research for position-based routing and VANETs is still in its infancy.
[9] gives a first overview on this subject. When using position-based routing, one
important aspect is the correctness of position data. The routing mechanisms
proposed so far all work the same: nodes measure their location by means of
some sensors (e.g. GPS) and then distribute the measured location to other
nodes which can then base their routing decision on the location of others.

When false position information is distributed in the VANET, this can severely
impact the performance of the network, as we will show in this paper. A potential
source for such false position data is a malfunction of a node’s location sensing
system. E.g. a GPS receiver may wrongly calculate the position of a node because
of bad reception conditions.

Whereas malfunctioning nodes may degrade the performance of a system to
some extent, malicious nodes may cause even more harm. The intents of an
adversary may range from simply disturbing the proper operation of the sys-
tem to intercepting traffic exchanged by ordinary users, followed by a potential
modification and retransmission. If the data is not protected, e.g. by crypto-
graphic means, this can lead to a compromise of nearly all security goals like
confidentiality, authenticity, integrity, or accountability.

Figure 1 shows a scenario where node A claims to be at two additional (faked)
positions Avl and Avr. Based on a greedy forwarding strategy, nodes always select
the node nearest to the destination as the next forwarding node. Assuming that
F wants to send a packet to node K, it will first sent the packet to its only
direct neighbor G. G will then forward the packet to the node nearest to the
destination from which it can hear beacons. This seems to be Avr , so the packet
ends up at node A, which can now forward, modify or discard it at will. In the

2 e.g. the US Vehicle Safety Communication Consortium (VSCC) [3], the Network on
Wheels project (NoW) [4], or the Global Systems For Telematics (GST) [5] initiative.

104 T. Leinmüller et al.

opposite direction, the packet from K will go to I, which will again send it to
the assumed best node Avl. So faking only two positions, A is able to intercept
all traffic along the road.

The remainder of this paper is organized as follows. The next section will
give a more complete discussion on the effects of false position data. Section
3 provides our simulation results. In section 4 we discuss related work and
section 5 concludes our work.

2 Effects of False Position Data

If we assume that false position data is generated by malfunctioning or malicious
nodes, what are the possible effects?

Figure 2 shows some of the effects that can occur. If a node’s real position
is not in the route from source to destination and neither is the false position,
then no effect occurs (6). The same is true if real and false position are in the
route, but the positions are similar and the position within the route does not
change (9).

A node that does not want to be used for forwarding, e.g. to save own resources
like energy, bandwidth, etc, may choose to fake a position outside the route (4).
Depending on whether there is a backup path (7) or not (8), either packets get
lost or at least the routing becomes non-optimal.

Finally, the cases below position (10) can either be reached, if real and false
position are both in the route but at different positions, or if the real position
is not in the route but the false is. Then one has to distinguish, if the node can
receive the packet sent to the false position at his real position (12) or not (11).

1

2 3

real pos. not in routereal pos. in route

4
false pos. not in route

5

false pos. in route

7 8

ba
ck

up
pa

th
ex

is
ts

no
backup

path
exists

node saves
ressources,
packets get

lost

node saves
ressources,
non-optimal

routing

9
10

real and false pos.

at same order in route

no effect

real and false pos.

at diff. order in route

6

false pos. not in route

no effect

node cannot

receive packet

11 12

node can

receive packet

fa
ls

e
po

s.
in

ro
ut

e

13

ro
ut

ing
pr

ot
. h

as

ba
ck

up
str

at
eg

y

14

routing
prot. has

no
backup

strategy

delayed transfer,
wasted bandwidth

packet
gets lost

re
al

po
s.

in
/n

ea
r

ea
rli

er
ro

ut
e

15

node
can

forward
packet

nearer to
dest.

16

routing
loop

interception

Fig. 2. Possible effects of false position data

Influence of Falsified Position Data on Geographic Ad-Hoc Routing 105

S

Ar

Av

D

1v

1r 2
3v

3r M

N

Fig. 3. Routing loop induced by the malicious node A which pretends to be at Av

rather than at its actual position Ar

In case (11), the packet sent to the node is lost. If the routing protocol notices
that (e.g. by means of acknowledgments or timeouts) and has a backup strategy
(13), the packet may still be delivered to the destination. This will create an
additional delay and waste bandwidth, as the first transmission gets lost. If the
routing protocol has no such backup strategy, the packets get lost (14).

In case (12), the node receives the packet. If the real position of a node allows
the packet to be delivered to a position which is nearer to the destination than
the false position (16), then the packet will reach its destination. The benefit
of an attacker might be, that he can intercept traffic that would otherwise be
routed around him, sniffing e.g. confidential information or similar.

If the real position of the node is further away from the destination than the
false position (15) and the node will then forward the packet so it reaches the
false position again, routing loops can occur as shown in figure 3. Here node A
claims to be at position Av where its real position is Ar. S sends the packet to
the node in its neighborship that claims to be nearest to D (1v). In reality, node
A receives the packet (1r). It then forwards the packet to node M (2) which
again tries to forward it to the node that is nearest to D (3v). This is the virtual
position Av and so the packet is again received by A (3r). The steps 2 and 3r

repeat forever or until a time-to-live counter expires.
As we have shown, false position data is clearly an issue that can affect the

performance, reliability and security of a MANET using position-based routing.
In the next section we will use simulations to show, how severe this impact can
be for certain scenarios.

3 Simulative Analysis

3.1 Simulation Environment

In order to be able to estimate the impact of falsified position data on geo-
graphic routing, we have implemented position faking in the ns-2 simulation
environment. For the routing scheme, we choose a greedy based approach. It
selects the neighbor node as next hop for a packet, whose distance to the desti-
nation is minimal. Like all greedy methods, this algorithm fails if no neighbor is

106 T. Leinmüller et al.

Table 1. Short overview on simulation parameters

Parameter Value

Number of nodes 100
Length of square node field 1000 – 4000m

⇒ node density (nodes/km2) 6,25 – 100
Max. node velocity (m/s) 50
Pause times (s) 0.0
Mobility model Random Waypoint
Link-/MAC-Layer IEEE 802.11
Transmission range (m) 250
Number of sent messages 100
Simulation time (s) 40
Simulation runs 20

found that is closer to the destination than the current node itself. The deployed
recovery strategy is based on a caching approach, i.e. packets are stored locally
until either a suitable neighbor is reachable or until the node decides to drop the
packet (see [10]).

Besides ordinary routing, we also have to integrate a model of maliciously act-
ing nodes. Therefore, a certain percentage of all nodes in the simulation scenario
behaves as follows:

1. Whenever a malicious node is about to send a beacon message to announce
its present position, it selects a random position on the field and applies it
to the beacon (instead of its real position).

2. Whenever a malicious node gets a data packet, depending on the simulation
setup, it either forwards it correctly according to the protocol rules or it
drops the packet.

As data traffic, 100 messages are transmitted from a random source to a
random destination. The messages are randomly created during the first 30 sec-
onds of the simulation run. Further simulation parameters are listed in table 1.
Node density, velocities and mobility model approximately reflect the movement
patterns of vehicular traffic in an urban area [11].

The following subsections present and discuss our simulation results regarding
the impact on ad hoc network routing performance. We take a look at the impact
on the delivery ratio and the reasons for the impact, namely parameters such as
number of packet drops due to routing loops and number of packets remaining
in the routing caches.

3.2 Impact on Delivery Ratio

The influence of falsified position information on the overall number of success-
fully delivered messages has been measured in several simulation runs with dif-
ferent percentages of position faking nodes. Figures 4 and 5 contain the results of
simulation runs in a 2000m ∗ 2000m sized network field with 10% and 40% faking

Influence of Falsified Position Data on Geographic Ad-Hoc Routing 107

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

S
uc

es
sf

ul
ly

 d
el

iv
er

ed
 m

es
sa

ge
s

Time (seconds)

No faked positions
10% position faking nodes
40% position faking nodes

10% faking and dropping
40% faking and dropping

Fig. 4. Successfully delivered messages accumulated over simulation time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

R
el

at
iv

e
re

du
ct

io
n

of
 d

el
iv

er
ed

 m
es

ag
es

Time (seconds)

10% position faking nodes
40% position faking nodes

10% faking and dropping
40% faking and dropping

Fig. 5. Relative reduction of successfully delivered messages over simulation time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 1500 2000 2500 3000 3500 4000

R
el

at
iv

e
re

du
ct

io
n

in
 d

el
iv

er
y

su
cc

es
s

ra
tio

Network size (m*m)

10% position faking nodes
40% position faking nodes

10% faking and dropping
40% faking and dropping

Fig. 6. Relative reduction of successfully delivered messages in dependence of
network size

108 T. Leinmüller et al.

nodes, once with and once without packet dropping. In figure 4, the percentage
of successfully delivered messages in total is depicted, whereas figure 5 shows the
relative decrease compared to the case without falsified position information.

As expected, with position faking, the delivery ratio is always negatively influ-
enced. In case faking nodes do also drop received packets, the impact is even more
severe (see figure 4). The relative comparison in figure 5 shows, after an initial
phase, pure position faking decreases the overall delivery ratio by approximately
4% for 10% faking nodes, or 12% for 40% position falsifying nodes. Position
faking with dropping results in higher loss, namely about 20% respectively 32%.

Figure 6 contains the relative delivery ratio reduction for different network
sizes, compared to the case without falsified position information. When mali-
cious nodes do not drop packets, increasing network sizes continue to reduce the
relative delivery ratio. With packet drops, we observe a maximum reduction at
network sizes of 2500m ∗ 2500m. This is the result of two overlapping effects.
On the one hand, with increased network size, the number of hops and thus
the probability of encountering a malicious node increases. On the other hand,
with sparse network density, the probability of unsuccessful delivery due to net-
work partitioning increases anyway and leverages the effects of dropping. The
latter effect is visualized in figure 7, where the overall delivery ratio is shown for
different network area sizes.

3.3 Analysis of Reasons for Decreased Delivery Ratio

The decreased amount of successfully delivered messages in scenarios with posi-
tion falsifying nodes has its origin in three different reasons of messages getting
”lost” during their traversal of the ad hoc network. These three are, packet drops
due to detection of routing loops, undelivered messages remaining in caches since
no suitable next hop has been found and packets dropped by maliciously acting
nodes. Obviously, the latter reason is only of importance in scenarios, where
position faking nodes actually drop packets.

According to our assumptions made in section 2, one reason for the decreased
ratio of successfully delivered messages is the higher amount of packet drops
due to routing loops. Figure 8 shows the corresponding simulation results. As
a general remark, larger network sizes result in higher number of intermediate
hops and therefore in a higher probability for creation of routing loops. From the
simulation results in figure 8, we see, packet drops resulting from detected routing
loops do also occur, even if there is no falsified position information. This results
from the combination of node mobility and packet caching as recovery strategy.
In scenarios, where position falsifying nodes do not drop received packets, the
amount of packets dropped due to routing loops is always higher. On the other
hand, it is obvious that if position faking nodes do drop received packets, i.e.
before they can get into routing loops, this value has to be inferior.

The simulation results for the second reason for decreased delivery ratio, the
amount of packets remaining in the node’s caches, is shown in figure 9. Accord-
ing to these simulation results, in most cases falsified position information does
not cause an increased number of packets remaining in the caches. For scenarios
without packet dropping by maliciously acting nodes, the results are quite close

Influence of Falsified Position Data on Geographic Ad-Hoc Routing 109

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 1500 2000 2500 3000 3500 4000

D
el

iv
er

y
su

cc
es

s
ra

tio
 (

%
)

Network size (m*m)

No faked position
10% position faking nodes
40% position faking nodes

10% faking and dropping
40% faking and dropping

Fig. 7. Percentage of successfully delivered messages for different network sizes

 0

 10

 20

 30

 40

 50

 60

 1000 1500 2000 2500 3000 3500 4000

R
ou

tin
g

lo
op

s

Network size (m*m)

No faked position
10% position faking nodes
40% position faking nodes

10% faking and dropping
40% faking and dropping

Fig. 8. Number of drops due to routing loops

 0

 10

 20

 30

 40

 50

 60

 70

 1000 1500 2000 2500 3000 3500 4000

P
ac

ke
ts

 r
em

ai
ni

ng
 in

 c
ac

he
s

Network size (m*m)

No faked positions
10% position faking nodes
40% position faking nodes

10% faking and dropping
40% faking and dropping

Fig. 9. Number of undelivered messages remaining in caches

110 T. Leinmüller et al.

to those of simulations without false position information. The increasing differ-
ence for larger network areas is caused by the increasing amount of packet drops
in routing loops. And again, in case, maliciously acting nodes do drop packets,
this effect can be neglected.

As an overall conclusion of this analysis, we retain the following. Depending on
the behavior of position faking nodes, the following effects are responsible for the
decreased ratio of successfully delivered messages. If the falsifying nodes do not
drop packets, the main reason are packet drops resulting from detected routing
loops. Their number is higher than the reduction of packets remaining in the
routing caches compared to the case without faked positions. If the falsifying
nodes maliciously do drop packets, the dropping itself is the dominant effect.
Improvements regarding both other effects are only the result of less packets
remaining in the network after those drops.

4 Related Work

The possibility of using geographic routing for mobile ad hoc networks has been
investigated intensely. Especially the vision of ad hoc routing in vehicular net-
works was a stimulus for geographic routing research. This is due to the par-
ticular characteristics of such networks on the one hand and the necessity of
geographic data distribution for the envisioned applications on the other hand.

Among the proposed packet forwarding schemes based on the individual node
position, some main categories can be identified [6]. One of these comprises the
greedy routing approaches. All greedy approaches have in common that the next
hop node of a packet has to be closer to the destination’s position than the
current node. In case multiple neighbors satisfy this criterion, several selection
strategies were proposed. The greedy-only method selects the neighbor with the
smallest Euclidean distance to the destination. In contrast, MFR (most forward
progress within radius [12]) projects the positions of the suitable neighbors onto
a straight line stretched across the current node’s position and the destination’s
position. Then, the neighbor with the most ”progress” on that line is chosen.
Other greedy methods select the next hop randomly or by the minimal distance
to the current node (NFP [13]) in order to save sending power. Obviously, all
greedy methods are stuck if there is no neighbor closer to the destination’s
position. If packets shall not be lost at such a point, a recovery strategy must be
introduced. The perimeter routing in GPSR [14] is one possibility, caching the
packet until a suitable neighbor appears is another [10].

A completely different geographic routing category uses restricted directional
flooding [6]. For example, the LAR (Location aided routing) protocol by Ko and
Vaidya [15] defines a rectangular region with the sender’s position as one edge,
and the destination’s position as the diagonal opposed edge. Within that region,
the packet is flooded. DREAM [16] acts very similarly, but uses a conus-shaped
flooding region.

A third category of geographic routing applies hierarchical mechanisms. Ter-
minodes [17], for instance, introduces two levels of routing. In a small region of

Influence of Falsified Position Data on Geographic Ad-Hoc Routing 111

several hops, a proactive routing is used, whereas larger distances are traversed
by a special greedy method.

For vehicular ad hoc networks, geographic routing is particularly appropri-
ate. Car-to-car networks show high node mobility and contain potentially large
numbers of nodes. Geographic routing is able to address these challenges better
than topology-based protocols [18]. One reason is that topology-based protocols
like DSR or AODV need to find and maintain routes, which is not necessary
for geographic routing. The matter of position determination is not a critical
issue in vehicular ad hoc networks, due to the increasing number of cars being
equipped with GPS receivers, which is mostly used in navigation systems.

Kim, Lee and Helmy have conducted examinations on the impact of location
inaccuracies on geographic routing [19]. They defined a scheme to classify local-
ization errors and ran simulations with relative location errors ranging from 0m
to 50m. They simulated using GPSR, with and without perimeter mode. Their
results show some effects like routing loops that have also been observed during
our work, under the assumption of malicious nodes.

Apart from these observations of localization errors and in contrast to routing
functionality, there has been no work on security concerns specific to effects of
falsified position data in geographic ad hoc routing.

5 Conclusion

Falsified position information in mobile ad hoc networks with geographic routing
protocols results in serious network performance degradation. In this paper we
have presented an analysis of local and global effects of falsified position informa-
tion. Our simulation results show that the overall delivery ratio might decrease
even up to approximately 30%, depending on the number of maliciously acting
nodes and depending on whether the malicious nodes drop packets or not.

Furthermore, we analyzed the reasons for decreased delivery ratio, which
again, depend on the forwarding behavior of malicious nodes. Whereas for sce-
narios without packet dropping by position faking nodes, drops resulting from
routing loops are the main reason, in scenarios with packet dropping by position
faking nodes, the dropping itself is the actual reason.

In current research, we develop methods to detect maliciously acting nodes, in
order to lower the effects of faked position information. These methods comprise
detection techniques and countermeasures, which are divided into single node
and co-operative functions.

References

1. Franz, W., Wagner, C., Maihöfer, C., Hartenstein, H.: Fleetnet: Platform for inter-
vehicle communications. In: Proc. 1st International Workshop on Intelligent Trans-
portatin (WIT’04), Hamburg, Germany (2004)

2. CarTalk 2000. (http://www.cartalk2000.net)
3. US Vehicle Safety Communication Consortium. (http://http://www-nrd.nhtsa.

dot.gov/pdf/nrd-12/CAMP3/pages/VSCC.htm)

112 T. Leinmüller et al.

4. Network on Wheels. (http://www.informatik.uni-mannheim.de/pi4/lib/
projects/NoW/links.html)

5. Global Systems For Telematics. (http://www.gstproject.org/)
6. Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in

mobile ad-hoc networks (2001)
7. Kargl, F., Schlott, S., Weber, M., Klenk, A., Geiss, A.: Securing ad hoc routing

protocols. In: Proceedings of 30th Euromicro Conference, Rennes, France (2004)
8. Kargl, F., Gei, A., Schlott, S., Weber, M.: Secure dynamic source routing. In: Pro-

ceedings of the 38th Hawaii International Conference on System Sciences (HICSS-
38), Hilton Waikoloa Village, HA (2005)

9. Hubaux, J.P., Čapkun, S., Luo, J.: The security and privacy of smart vehicles.
IEEE Security and Privacy 4 (2004) 49–55

10. Maihöfer, C., Eberhardt, R., Schoch, E.: CGGC: Cached Greedy Geocast. In: Proc.
2nd Intl. Conference Wired/Wireless Internet Communications (WWIC 2004). Vol-
ume 2957 of Lecture Notes in Computer Science., Frankfurt (Oder), Germany,
Springer Verlag (2004)

11. Saha, A.K., Johnson, D.B.: Modeling mobility for vehicular ad-hoc networks. In:
VANET ’04: Proceedings of the first ACM workshop on Vehicular ad hoc networks,
ACM Press (2004) 91–92

12. Takagi, H., Kleinrock, L.: Optimal transmission ranges for randomly distributed
packet radio terminals. IEEE Transactions on Communications 32 (1984) 246–257

13. Hou, T.C., Li, V.: Transmission range control in multihop packet radio networks.
IEEE Transactions on Communications 34 (1986) 38–44

14. Karp, B., Kung, H.: Greedy perimeter stateless routing for wireless networks. In:
Proceedings of the Sixth ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom 2000), Boston, USA (2000) 243–254

15. Ko, Y., Vaidya, N.: Location-aided routing (lar) in mobile ad hoc networks. In:
Proceedings of the Fourth ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom 1998). (1998) 66–75

16. Basagni, S., Chlamtac, I., Syrotiuk, V.R., Woodward, B.A.: A distance routing
effect algorithm for mobility (DREAM). In: Proceedings of the ACM/IEEE In-
ternational Conference on Mobile Computing and Networking (MobiCom), Dallas,
USA, ACM Press (1998) 76–84

17. Blazevic, L., Giordano, S., Boudec, J.L.: Self organized terminode routing. Tech-
nical Report DSC/2000/040, Swiss Federal Institute of Technology (2000)

18. Füssler, H., Mauve, M., Hartenstein, H., Käsemann, M., Vollmer, D.: A comparison
of routing strategies for vehicular ad hoc networks. Technical Report TR-3-2002,
Department of Computer Science, University of Mannheim (2002)

19. Kim, Y., Lee, J.J., Helmy, A.: Impact of location inconsistencies on geographic
routing in wireless networks. In: MSWIM ’03: Proceedings of the 6th ACM in-
ternational workshop on Modeling analysis and simulation of wireless and mobile
systems, ACM Press (2003) 124–127

Provable Security of On-Demand
Distance Vector Routing

in Wireless Ad Hoc Networks

Gergely Ács, Levente Buttyán, and István Vajda

Laboratory of Cryptography and Systems Security (CrySyS),
Department of Telecommunications,

Budapest University of Technology and Economics, Hungary
{acs, buttyan, vajda}@crysys.hu

Abstract. In this paper, we propose a framework for the security anal-
ysis of on-demand, distance vector routing protocols for ad hoc networks,
such as AODV, SAODV, and ARAN. The proposed approach is an adap-
tation of the simulation paradigm that is used extensively for the analy-
sis of cryptographic algorithms and protocols, and it provides a rigorous
method for proving that a given routing protocol is secure. We demon-
strate the approach by representing known and new attacks on SAODV
in our framework, and by proving that ARAN is secure in our model.

1 Introduction

Routing is a fundamental networking function, which makes it an ideal start-
ing point for attacks aiming at disabling the operation of an ad hoc network.
Therefore, securing routing is of paramount importance. Several “secure” rout-
ing protocols for ad hoc networks have been proposed in the academic literature
(see [7] for a good overview), but their security have been analyzed by informal
means only. In [3] and in [1], we show that flaws in routing protocols can be very
subtle (leading to very sophisticated attacks), and therefore, they are very diffi-
cult to discover by informal reasoning. In [1], we propose a systematic approach
based on a mathematical framework, in which the security of on-demand source
routing protocols (e.g., DSR [8], Ariadne [6], and SRP [11]) can be analyzed rig-
orously. In this paper, we extend that approach to on-demand, distance vector
routing protocols (e.g., AODV [12], SAODV [14] and ARAN [13]).

We must emphasize that by secure routing we mean the security of the route
discovery part of the routing protocol only. In other words, we are not concerned
with the problem of misbehaving nodes that do not forward data packets either
for selfish or for malicious reasons. There are many attacks that aim at paralyzing
the entire network by denial of service (e.g., rushing attack) or subverting the
neighbor discovery mechanism (e.g., wormhole attack). In our notion these are
not against the route discovery process primarily, and thus, we are not concerned
with them in the rest of the paper.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 G. Ács, L. Buttyán, and I. Vajda

Rather, we focus on the problem of how to maintain the “correctness” of the
routing information stored in the routing tables of the honest nodes in the pres-
ence of an adversary. We will define precisely what we mean by the “correctness”
of routing table entries later in this paper.

Our mathematical framework is based on the simulation paradigm that has
been successfully used to analyze the security of various cryptographic algorithms
and protocols (see parts V and VI of [9] for an overview). In this approach, one
constructs a real-world model that describes the real operation of the system,
and an ideal-world model that captures what the system wants to achieve in
terms of security. Then, in order to prove the security of the system, one proves
that the outputs of the two models are indistinguishable (statistically or com-
putationally). In [1], we apply this approach to source routing protocols, where
the output of the models are sets of routes returned by the routing protocol in
route reply messages. In case of distance vector routing, however, no routes are
returned explicitly in the route reply messages. Hence, the main novelty of this
paper is that here, the output of the models is the state of the system, which is
represented by the content of the routing tables of the honest nodes.

The rest of the paper is organized as follows. In Section 2, we introduce our
mathematical framework, which includes a precise definition of a “correct” sys-
tem state, and based on that, a definition of routing security. Then, in Section 3,
we illustrate the concepts introduced in Section 2 by representing known and
new attacks on SAODV in our framework. In Section 4, we demonstrate the use-
fulness of our approach by formally proving that ARAN is secure in our model.
Finally, we report on some related work in Section 5, and conclude the paper in
Section 6.

2 Model

2.1 Static Representation of the System

Network model: We model the ad hoc network as an undirected labelled graph
G(V, E), where V is the set of vertices and E is the set of edges. Each vertex
represents a node, and there is an edge between two vertices if and only if there
is a radio link between the corresponding nodes. We assume that the radio links
are symmetric, and that is why the graph is undirected.

We assume that the nodes use authenticated identifiers (e.g., public keys, sym-
metric keys) during neighbor discovery and in the routing protocol. We denote
the set of identifiers by L, and we label each vertex v of G with the identifiers
used by the node corresponding to v. We assume that honest (non-corrupted)
nodes use a single identifier that is unique in the network, whereas corrupted
nodes may use multiple compromised identifiers (see attacker model below).
We represent the assignment of identifiers to the nodes by a labelling function
L : V → 2L, which returns for each vertex v the set of labels assigned to v. As
we mentioned above, if v corresponds to a non-corrupted node, then L(v) is a
singleton, and L(v) ⊆ L(v′) holds for any other vertex v′.

Provable Security of On-Demand Distance Vector Routing 115

We also assign cost values to the nodes and to the radio links that may
be interpreted as (minimum) processing and transmission costs, respectively,
and may be used to compute routing metrics. The assignment of cost values is
represented by two functions Cnode : V → R and Clink : E → R. Quite naturally,
Cnode(v) will represent the cost assigned to the node that corresponds to vertex
v, and Clink (e) will represent the cost assigned to the link that corresponds to
edge e. In the following, we will omit the indices node and link of C when the type
of the argument unambiguously determines which of the two functions is used
in a given context. An example for a typical cost assignment is the following:
C(v) = 1 for all v ∈ V , and C(e) = 0 for all e ∈ E, which leads to the widely
used hop count metric, where the cost of a route is equal to the number of
intermediate nodes on the route.

Adversary model: We assume that the adversary is not all powerful, but it
launches its attacks from corrupted nodes that it controls and that have similar
communication capabilities as regular nodes. We denote the vertices that cor-
respond to corrupted nodes by V ∗. In addition, we assume that the adversary
compromised some identifiers, by which we mean that the adversary compro-
mised the cryptographic keys that are used to authenticate those identifiers. We
denote the set of compromised identifiers by L∗. We further assume that the
adversary distributed all compromised identifiers to all corrupted nodes, and
hence, we have L(v) = L∗ for all v ∈ V ∗. Using the notation introduced in
[6], the adversary described above is an Active-y-x adversary, where x = |V ∗|
and y = |L∗|. In addition, we assume that the adversary is static in the sense
that it does not corrupt more nodes and compromise more identifiers during the
operation of the system.

Since neighboring corrupted nodes can communicate with each other in an
unrestricted manner (e.g., by sending encrypted messages), they can appear as
a single node (under all the compromised identifiers) to the other nodes. Hence,
without loss of generality, we assume that corrupted nodes are not neighbors in
G; if they were, we could merge them into a single corrupted node that would
inherit all the neighbors of the original nodes.

Configuration: A configuration is a five tuple (G(V, E), V ∗,L, Cnode , Clink) that
consists of the network graph, the set of corrupted nodes, the labelling function,
and the cost functions.

2.2 System States and Correctness

The state of the system is represented by the routing tables of the non-corrupted
nodes. We assume that an entry of the routing table of a given node v contains
the following three fields: the identifier of the target node, the identifier of the
next hop towards the target, and the cost value that represents the believed
cost of the route to the given target via the given next hop. Without loss of
generality, we assume that the routing metric is such that routes with lower cost
values are preferred.

116 G. Ács, L. Buttyán, and I. Vajda

Consequently, the state of the system in our model will be represented by a
set Q ⊂ (V \ V ∗) × L × L × R of quadruples such that for any (v, �tar, �nxt, c)
and (v′, �′tar, �

′
nxt, c

′) in Q, v = v′ and �tar = �′tar and �nxt = �′nxt implies
c = c′. The quadruple (v, �tar, �nxt, c) in Q represents an entry in v’s routing
table with target identifier �tar, next hop identifier �nxt, and believed route cost
c. The ensemble of quadruples that have v as their first element represent the
entire routing table of v, and the ensemble of all quadruples in Q represent the
ensemble of the routing tables of the non-corrupted nodes (i.e., the state of the
system). Note that we allow that a node’s routing table contains multiple entries
for the same target, but the next hops should be different.

We define a correct state as follows:

Definition 1 (Correct state). A state Q is correct if for every (v,�tar,�nxt,c) ∈
Q, there exists a sequence v1, v2, . . . , vp of vertices in V such that (vi, vi+1) ∈ E
for all 1 ≤ i < p, and

• v1 = v,
• �tar ∈ L(vp),
• �nxt ∈ L(v2), and
•

∑p−1
i=2 Cnode(vi) +

∑p−1
i=1 Clink (vi, vi+1) ≤ c.

Intuitively, the system is in a correct state if all the routing table entries of the
non-corrupted nodes are correct in the sense that if v has an entry for target �tar

with next hop �nxt and cost c, then indeed there exists a route in the network
that

• starts from node v
• ends at a node that uses the identifier �tar

• passes through a neighbor of v that uses identifier �nxt, and
• has a cost that is smaller than or equal to c.

The requirement on the believed cost of the route (last point above) deserves
some explanation. First of all, recall the assumption that routes with a lower
cost are preferred. It is, therefore, natural to assume that the adversary wants
to make routes appearing less costly than they are. This means that if node v
believes that there exists a route between itself and target �tar (passing through
neighbor �nxt) with a cost c, while in reality, there exist only routes between
them with a cost higher than c, then the system should certainly be considered
to be in an incorrect state (i.e., under attack). On the other hand, allowing
the existence of routes with a smaller cost does not have any harm (under the
assumption that the adversary has no incentive to increase the believed costs
corresponding to the routes), and it makes the definition of the correct state less
demanding. This has a particular importance in case of protocols that use one-
way hash chains to protect hop count values (e.g., SAODV and alike), since in
those protocols, the adversary can always increase the hop count by hashing the
current hash chain element further. However, this ability of the attacker should
rather be viewed as a tolerable imperfection of the system than a flaw in those
protocols.

Provable Security of On-Demand Distance Vector Routing 117

2.3 Dynamic Representation of the System

The simulation paradigm: The main idea of the simulation paradigm is to
define two models: a real-world model that represents the behavior of the real
system and an ideal-world model that describes how the system should work
ideally. In both models, there is an adversary, whose behavior is not constrained
apart from requiring it to run in time polynomial in the security parameter
(e.g., size of the cryptographic keys used by the cryptographic primitives). This
allows us to consider any feasible attacks, and makes the approach very general.
Although the adversary is not constrained, the construction of the ideal-world
model ensures that all of its attacks are unsuccessful against the ideal-world
system. In other words, the ideal-world system is secure by construction.

Once the models are defined, the goal is to prove that for any real-world adver-
sary, there exist an ideal-world adversary that can achieve essentially the same
effects in the ideal-world model as those achieved by the real-world adversary in
the real-world model (i.e., the ideal-world adversary can simulate the real-world
adversary). A successful proof means that no attacks can be successful in the
real-world model (or more precisely attacks can be successful only with negligible
probability), since otherwise, an attack would be successful in the ideal-world
model too, which is impossible by definition.

Real-world model: The real-world model that corresponds to a configuration
conf = (G(V, E), V ∗,L, Cnode , Clink) and adversary A is denoted by sys real

conf ,A,
and it is illustrated on the left hand side of Figure 1. sys real

conf ,A consists of a
set {M1, . . . , Mn, A1, . . . , Am, H, C} of interacting Turing machines, where the
interaction is realized via common tapes. Each Mi represents a non-corrupted
device that corresponds to a vertex in V \V ∗, and each Aj represents a corrupted
vertex in V ∗. H is an abstraction of higher-layer protocols run by the honest
parties, and C models the radio links represented by the edges in E. All machines
are probabilistic.

We describe the operation of the real-world model only briefly, since it is
essentially the same as the operation of the model described in [1]. Each machine
is initialized with some input data (e.g., identifiers of neighbors, cryptographic
keys, etc.), which determines its initial state. In addition, the machines also
receive some random input (the coin flips to be used during the operation).
Once the machines have been initialized, the computation begins. The machines
operate in a reactive manner, which means that they need to be activated in
order to perform some computation. When a machine is activated, it reads the
content of its input tapes, processes the received data, updates its internal state,
writes some output on its output tapes, and goes back to sleep. The machines
are activated in rounds by a hypothetic scheduler (not illustrated in Figure 1).
The order of activation is not important, apart from the requirement that C
must be activated at the end of the round.

Machine C is intended to model the broadcast nature of radio communica-
tions. Its task is to read the content of the output tape of each machine Mi

and Aj and copy it on the input tapes of all the neighboring machines, where

118 G. Ács, L. Buttyán, and I. Vajda

the neighbor relationship is determined by the configuration conf . Machine H
models higher-layer protocols (i.e., protocols above the routing protocol) and the
end-users of the non-corrupted devices. H can initiate a route discovery process
at any machine Mi by placing a request on tape reqi. A response to this request
is eventually returned via tape resi. Machines Mi (1 ≤ i ≤ n) represent the
non-corrupted nodes, which belong to the vertices in V \ V ∗. Mi communicates
with the other protocol machines via its output tape out i and its input tape ini,
and its operation is essentially defined by the routing algorithm.

Finally, machines Aj (1 ≤ j ≤ m) represent the corrupted nodes, which be-
long to the vertices in V ∗. Regarding its communication capabilities, Aj is identi-
cal to any machine Mi. However, Aj may not follow the routing protocol faithfully.
In addition, Aj may send out-of-band requests to H by writing on extj by which
it can instruct the honest parties to initiate route discovery processes. Here, we
make the restriction that the adversary triggers a route discovery only between
non-corrupted nodes. Moreover, we restrict each Aj to write on extj only once, at
the very beginning of the computation (i.e., before receiving any messages from
other machines). This essentially means that we assume that the adversary is non-
adaptive; it cannot initiate new route discoveries as a function of previously ob-
served messages. Note, however, that each Aj can write multiple requests on extj ,
which means that we allow several parallel runs of the routing protocol.

Fig. 1. The real-world model sys real
conf ,A (left hand side) and the ideal-world model

sys ideal
conf ,A (right hand side)

Provable Security of On-Demand Distance Vector Routing 119

The computation ends when H reaches one of its final states. This happens
when H receives a response to each of the requests that it placed on the tapes reqi

(1 ≤ i ≤ n), where a response can also be a time-out. The output of sys real
conf ,A

is the ensemble of the routing tables of the non-corrupted nodes, which is a
set of quadruples as defined above in Subsection 2.2. We denote the output by
Out real

conf ,A(r), where r is the random input of the model. In addition, Out real
conf ,A

will denote the random variable describing Out real
conf ,A(r) when r is chosen uni-

formly at random.

Ideal-world model: The ideal-world model that corresponds to a configuration
conf = (G(V, E), V ∗,L, Cnode , Clink) and adversary A is denoted by sys ideal

conf ,A,
and it is illustrated on the right hand side of Figure 1. One can see that the
ideal-world model is similar to the real-world model; the main difference is
that machines Mi (1 ≤ i ≤ n) are replaced with a new machine called T .
The operation of the ideal-world model is very similar to the real-world model,
therefore, we do not detail it here. We focus only on the operation of the new
machine T .

In effect, machine T emulates the behavior of the machines Mi (1 ≤ i ≤ n),
with the difference that T is initialized with conf , and hence, it can detect when
the system gets into an incorrect state. When this happens, T records that
the system has been in an incorrect state, but the computation continues as if
nothing wrong had happened.

Similar to the real-world model, the computation ends, when H reaches one
if its terminal states, which happens when H receives a response to each of the
requests that it placed on the tapes reqi (1 ≤ i ≤ n), where a response can
also be a time-out. The output of the ideal-world model is either the ensemble
of the routing tables if T has not recorded an incorrect state during the com-
putation, or a special symbol that indicates that an incorrect state has been
encountered. The output is denoted by Out ideal

conf ,A(r). Moreover, Outreal
conf ,A de-

notes the random variable describing Out real
conf ,A(r) when r is chosen uniformly

at random.

2.4 Definition of Security

Based on the model introduced in the previous subsections, we define routing
security formally as follows:

Definition 2. (Statistical security) A routing protocol is said to be statistically
secure if, for any configuration conf and any real-world adversary A, there exists
an ideal-world adversary A′, such that Out real

conf ,A is statistically indistinguish-
able1 from Out ideal

conf ,A′ .

The intuitive meaning of the definition above is that if a routing protocol is statis-
tically secure, then any system using this routing protocol gets into an incorrect
1 Two random variables are statistically indistinguishable if the L1 distance of their

distributions is negligibly small.

120 G. Ács, L. Buttyán, and I. Vajda

state only with negligible probability. This negligible probability is related to the
fact that the adversary can always forge the cryptographic primitives (e.g., gen-
erate a valid digital signature) with a very small probability.

3 Insecurity of SAODV

SAODV [14] is a “secure” variant of the Ad hoc On-demand Distance Vector
(AODV) [12] routing protocol. In the following, we briefly overview the operation
of SAODV, and we show that, in fact, it is not secure in our model.

3.1 Operation of SAODV

The operation of SAODV is similar to that of AODV, but it uses cryptographic
extensions to provide integrity of routing messages and to prevent the manip-
ulation of the hop count information. Conceptually, SAODV routing messages
(i.e., route requests and route replies) have a non-mutable and a mutable part.
The non-mutable part includes, among other fields, the node sequence numbers,
the addresses of the source and the destination, and a request identifier, while
the mutable part contains the hop count information. Different mechanisms are
used to protect the different parts.

The non-mutable part is protected by the digital signature of the originator
of the message (i.e., the source or the destination of the route discovery). This
ensures that the non-mutable fields cannot be changed by an adversary without
the change being detected by the non-corrupted nodes.

In order to prevent the manipulation of the hop count information, the au-
thors propose to use hash chains. When a node originates a routing message
(i.e., a route reply or a route request), it first sets the HopCount field to 0, and
the MaxHopCount field to the TimeToLive value. Then, it generates a random
number seed, and puts it in the Hash field of the routing message. After that, it
calculates the TopHash field by hashing seed iteratively MaxHopCount times. The
MaxHopCount and the TopHash fields belong to the non-mutable part of the mes-
sage, while the HopCount and the Hash fields are mutable. Every node receiving
a routing message hashes the value of the Hash field (MaxHopCount−HopCount)
times, and verifies whether the result matches the value of the TopHash field.
Then, before rebroadcasting a route reply or forwarding a route request, the
node increases the value of the HopCount field by one, and updates the Hash
field by hashing its value once.

The rationale behind using the above hash chaining mechanism is that given
the values of the Hash, the TopHash, and the MaxHopCount fields, anyone can
verify the value of the HopCount field. On the other hand, preceding hash values
cannot be computed starting from the value in the Hash field due to the one-way
property of the hash function. This ensures that an adversary cannot decrease
the hop count, and thus, cannot make a route appearing shorter than it really
is. However, as we will see later (and as pointed out by the authors of SAODV
themselves), this latter statement does not hold in general, because a corrupted

Provable Security of On-Demand Distance Vector Routing 121

node that happens to be on a route between the source and the destination may
pass on the routing message without increasing the value of the HopCount field
and without updating the value of the Hash field.

3.2 Simple Attacks Against SAODV

According to our definition of security, a routing protocol is secure if it ensures
that incorrect entries in the routing tables of the non-corrupted nodes can be
generated only with negligible probability. In case of SAODV, a node v creates
an entry in its routing table for a target �tar only if it receives a fresh enough
routing message that carries a valid digital signature of �tar. The fact that this
routing message arrived to v means that there must be a route between v and
a node that uses the identifier �tar, since otherwise, the message cannot reach
v. However, SAODV cannot guarantee that the next hop and the hop count
information in the newly created routing table entry is correct. This is illustrated
by the following two examples.

Attack 1: Let us consider the configuration illustrated in Figure 2. Since SAODV
uses the hop count as the routing metric, we set the node cost to 1 for every node
and the link cost to 0 for every link. Let us assume that the node labelled by S
starts a route discovery towards the node labelled by T . When the route request
message reaches the corrupted node labelled by Z, it does not increase the hop
count and does not update the hash value in the message. Therefore, when this
route request is eventually received by the node labelled by T , it will create an
entry (S, B, 1) in its routing table. In addition, this entry will not be overwritten
when the other route request message arrives through the node labelled by C,
since that request will have a hop count of 2. This means that the system ends up
in an incorrect state, because there is not any route in this network that starts at
the node labelled by T , passes through the node labelled by B, ends at the node
labelled by S, and has a cost less than or equal to 1.

Fig. 2. A configuration where the adversary can achieve that the node labelled by T
creates in its routing table an entry with an incorrect cost value when SAODV is used

We note that this weakness of SAODV has already been known by its authors
(see Subsection 5.3.5 of [14]). Our purpose with this example is simply to illus-
trate how an attack that exploits the weakness can be represented within our
framework.

122 G. Ács, L. Buttyán, and I. Vajda

Fig. 3. A configuration where the adversary can achieve that the node labelled by S
creates in its routing table an entry for target T with an incorrect next hop A when
SAODV is used

Attack 2: Let us now consider the configuration illustrated in Figure 3. Let us
assume again that the source is the node labelled by S and the destination is
the node labelled by T . Furthermore, let us assume that a route request message
reached the destination, and it returned an appropriate route reply. When this
reply reaches the corrupted node labelled by Z, it forwards it to the node labelled
by S in the name of A. Therefore, the node labelled by S will create a routing
table entry (T , A, 2). Note, however, that there is no route at all from the node
labelled by S to the node labelled by T that passes through the node labelled by
A. In other words, the system ends up in an incorrect state again. To the best
of our knowledge, this weakness of SAODV has not been published yet.

4 Security of ARAN

ARAN (Authenticated Routing for Ad hoc Networks) is another secure, distance
vector routing protocol for ad hoc networks proposed in [13]. In this section, we
briefly overview its operation, and we prove that it is secure in our model.

4.1 Operation of ARAN

Just like SAODV, ARAN as well uses public key cryptography to ensure the
integrity of routing messages. Initially, a source node S begins a route discovery
process by broadcasting a route request message:

(RREQ, T , certS , NS , t, SigS)

where RREQ means that this is a route request, S and T are the identifiers of the
source and the destination, respectively, NS is a nonce generated by S, t is the
current time-stamp, certS is the public-key certificate of the source, and SigS

is the signature of the source on all of these elements. NS is a monotonically
increasing value that, together with t and S, uniquely identifies the message,
and it is used to detect and discard duplicates of the same request (and reply).

Later, as the request is propagated in the network, intermediate nodes also
sign it. Hence, the request has the following form in general:

(RREQ, T , certS , NS, t, SigS, SigA, certA)

Provable Security of On-Demand Distance Vector Routing 123

where A is the identifier of the intermediate node that has just re-broadcast
the request. When a neighbor of A, say B, receives this route request, then it
verifies both signatures, and the freshness of the nonce. If the verification is
successful, then B sets an entry in its routing table with S as target, and A
as next hop. Then, B removes the certificate and the signature of A, signs the
request, appends its own certificate to it, and rebroadcasts the following message:

(RREQ, T , certS , NS, t, SigS, SigB, certB)

When destination T receives the first route request that belongs to this route
discovery, it performs verifications and updates it routing table in a similar
manner as it is done by the intermediate nodes. Then, it sends a route reply
message to S. The route reply is propagated back on the reverse of the discovered
route as a unicast message. The route reply sent by T has the following form:

(RREP, S, certT , NS, t, SigT)

where RREP means that this is a route reply, NS and t are the nonce and the
time-stamp obtained from the request, S is the identifier of the source, certT
is the public-key certificate of T , and SigT is the signature of T on all of these
elements.

Similar to the route request, the route reply is signed by intermediate nodes
too. Hence, the general form of the route reply is the following:

(RREP, S, certT , NS, t, SigT , SigB, certB)

where B is the identifier of the node that has just passed the reply on.
A node A that receives the route reply verifies both signatures in it, and if

they are valid, then it forwards the reply to the neighbor node from which it has
received the corresponding route request previously. However, before doing that,
A will remove the certificate and the signature of B, and put its own certificate
and signature in the message:

(RREP, S, certT , NS, t, SigT , SigA, certA)

In addition, A also sets an entry in its routing table for target T with B as the
next hop.

As it can be seen from the description, ARAN does not use hop counts as a
routing metric. Instead, the nodes update their routing tables using the infor-
mation obtained from the routing messages that arrive first; any later message
that belongs to the same route discovery is discarded. This means that ARAN
may not necessarily discover the shortest paths in the network, but rather, it
discovers the quickest ones. In effect, ARAN uses the message propagation delay
(i.e., physical time) as a path length metric.

4.2 Security Proof

Theorem 1. ARAN is a secure ad hoc routing protocol in our model, if the
signature scheme is secure against chosen message attacks.

124 G. Ács, L. Buttyán, and I. Vajda

Proof. Since ARAN uses the message propagation delay as the routing metric, we
will assume that the node cost values in our model represent minimum message
processing delays (at the nodes), and the link cost values represent minimum
message transmission delays (on the links). In addition, we make the pessimistic
assumption that the adversary’s message processing delay is 0, which means that
Cnode(v) = 0 for all v ∈ V ∗.

In order to be compliant with our framework, we also assume that each routing
table entry explicitly contains a routing metric value too. In our case, this metric
value is the time that was needed for the routing message that triggered the
creation of this entry to get from the originator of the message to the node that
created this entry. Although these times are not represented explicitly in ARAN
routing table entries, representing them in the model does not weaken our results
in any way. In particular, exactly the same routing table entries are created in
our model as in ARAN with respect to the target and the next hop identifiers.

In order to prove that ARAN is secure, one has to find the appropriate ideal-
world adversary A′ for any real-world adversary A such that Definition 2 is
satisfied. Due to the constructions of our models, a natural candidate is A′ = A,
since in that case, the steps of the real-world and the ideal-world models are
exactly the same (for the same random input, of course). If no incorrect state is
encountered during the computation in the ideal-world model, then not only the
steps, but the outputs of the two models will be the same too. On the other hand,
if an incorrect state occurs in the ideal-world model, then the outputs of the
models will be different, since the ideal-world model will output a special symbol.
Hence, Definition 2 is satisfied, if an incorrect state can only be encountered with
negligible probability. We will show that indeed this is the case for ARAN.

Getting into an incorrect statemeans that one of the non-corruptednodes, say v,
sets an incorrect entry in its routing table. Let this incorrect entry be (�tar, �nxt, c).
Since v is non-corrupted, it sets this entry only if it received a routing message that
has been signed by �tar as originator and �nxt as previous hop, v has a neighbor that
uses identifier �nxt, and it took time c for the message to get from its originator to
v. Now, (�tar, �nxt, c) can be incorrect for one of the following three reasons:

1. There is no route from v to a node that uses �tar.
2. There are routes from v to a node that uses �tar, but none of them go through

any neighbor of v that uses �nxt.
3. There are routes from v to a node that uses �tar going through a neighbor

of v using �nxt, but each of them has a cost higher than c.

In case 1, if the signature of �tar in the routing message is not forged, then the
very fact that v received the message proves that there is a route between v and
a node that uses �tar (since otherwise the message could not reach v). Hence,
case 1 is possible only if the signature of �tar is forged, and this has negligible
probability if the signature scheme is secure.

In case 2, if the signature of �nxt in the routing message is not forged, then
a neighbor of v, say v′, that uses �nxt has indeed seen and signed the message.
Now, the same reasoning can be used for v′ as in case 1 for v: if the signature
of �tar in the routing message is not forged, then the fact that v′ received the

Provable Security of On-Demand Distance Vector Routing 125

message proves that there is a route between v′ and a node that uses �tar, and
hence, there is a route between v and a node that uses �tar that goes through
v′ (since v′ is a neighbor of v). This means that case 2 is possible only if the
signature of �tar or �nxt, or both are forged, and this has negligible probability.

Finally, in case 3, let R be the set of existing routes that start at v, end at a
node that uses �tar, and go through a neighbor of v using �nxt. Moreover, let c′

be the minimum of the costs of the routes in R. By assumption, c′ > c. If the sig-
natures of �tar and �nxt in the routing message received by v are not forged, then
the message must have taken one of the routes in R. However, it could not reach
v in time c < c′, since the node and link costs represent the minimum message
processing and transmission delays at the nodes and on the links. In other words,
the adversary cannot speed up the transmissions on the links and the processing
at the non-corrupted nodes. Hence, case 3 is possible only if either �tar or �nxt,
or both are forged, which can happen only with negligible probability.

5 Related Work

There are several proposals for secure ad hoc routing protocols (see [7] for a
recent overview). However, most of these proposals come with an informal se-
curity analysis with all the pitfalls of informal security arguments. Another set
of related papers deal with provable security for cryptographic algorithms and
protocols (see Parts V and VI of [9] for a survey of the field) and with the ap-
plication of formal methods for the security analysis of cryptographic protocols
(see [4] for an overview of the main approaches). However, these papers are not
concerned with ad hoc routing protocols. There exist only a few papers where
formal techniques are proposed for the verification of the security of ad hoc
routing protocols; we briefly overview them here.

In [15], the authors propose a formal model for ad hoc routing protocols that
is similar to the strand spaces model [5], which has been developed for the formal
verification of key exchange protocols. Routing security is defined in terms of a
safety and a liveness property. The liveness property requires that it is possible
to discover routes, while the safety property requires that discovered routes do
not contain corrupted nodes. In contrast to this, our definition of security admits
routes that pass through corrupted nodes, because it seems to be impossible to
guarantee that discovered routes do not contain any corrupted node, given that
corrupted nodes can behave correctly and follow the routing protocol faithfully.

Another approach, presented in [10], is based on a formal method, called
CPAL-ES, which uses a weakest precondition logic to reason about security
protocols. Unfortunately, the work presented in [10] is very much centered around
the analysis of SRP [11], and it is not general enough. We must also mention that
in [11], SRP has been analyzed by its authors using BAN logic [2]. However, BAN
logic has never been intended for the analysis of routing protocols, and there is
no easy way to represent the requirements of routing security in it. In addition, a
basic assumption of BAN logic is that the protocol participants are trustworthy,
which does not hold in the typical case that we are interested in, namely, when

126 G. Ács, L. Buttyán, and I. Vajda

there are corrupted nodes in the network controlled by the adversary that may
not follow the routing protocol faithfully.

Finally, in [3] and [1], we have developed and applied an approach based
on the simulation paradigm for on-demand source routing protocols for ad hoc
networks. The framework proposed in this paper is essentially the adaptation of
that approach to on-demand, distance vector routing protocols.

6 Conclusion

In this paper, we proposed an approach for the security analysis of on-demand,
distance vector routing protocols for ad hoc networks, such as AODV, SAODV,
and ARAN. The proposed approach is based on the simulation paradigm that
is used extensively for the analysis of cryptographic algorithms and protocols,
and it provides a rigorous method for proving that a given routing protocol is
secure. We demonstrated the approach by representing two attacks on SAODV
in our framework, and by proving that ARAN is secure in our model.

An important message of this paper is that flaws (leading to attacks) in ad hoc
routing protocols can be very subtle, and hard to discover by informal reasoning.
Another important message is that it is possible to adopt sound analysis tech-
niques known from the cryptographic literature, and to use them in the context
of ad hoc routing protocols.

In our future work, we intend to automate (at least partially) the process of the
security analysis of ad hoc routing protocols. For this purpose, we will identify an
appropriate formal framework, e.g., one based on model checking. Furthermore,
our current definition of a correct state is not strict enough, because it does not
consider that an adversary might have an interest in increasing the cost of a
route passing through it (perhaps, to get rid of the traffic). Thus, we intend to
extend the definition of a correct routing table entry by requiring an appropriate
upper bound on the believed cost of the route.

Acknowledgements

The work presented in this paper has partially been supported by the Hungar-
ian Scientific Research Fund (T046664). The second author has been further
supported by IKMA and by the Hungarian Ministry of Education (BÖ2003/70).

References

[1] G. Ács, L. Buttyán, and I. Vajda. Provably Secure On-demand Source
Routing in Mobile Ad Hoc Networks. Technical Report, Budapest Uni-
versity of Technology and Economics, March 2005. Available on-line at:
http://www.hit.bme.hu/˜buttyan/publications.html

[2] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1):18–36, February 1990.

Provable Security of On-Demand Distance Vector Routing 127

[3] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing protocols.
In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor Networks
(SASN), October 2004.

[4] R. Focardi and R. Gorrieri (eds). Foundations of Security Analysis and Design.
LNCS 2171, Springer-Verlag, 2000.

[5] J. Guttman. Security goals: packet trajectories and strand spaces. In Foundations
of Security Analysis and Design, edited by R. Focardi and R. Gorrieri, Springer
LNCS 2171, 2000.

[6] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demonad routing
protocol for ad hoc networks. In Proceedings of the ACM Conference on Mobile
Computing and Networking (Mobicom), 2002.

[7] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE Security
and Privacy Magazine, 2(3):28–39, May/June 2004.

[8] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks.
In Mobile Computing, edited by Tomasz Imielinski and Hank Korth, Chapter 5,
pages 153–181. Kluwer Academic Publisher, 1996.

[9] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2004.
[10] J. Marshall. An Analysis of the Secure Routing Protocol for mobile ad hoc network

route discovery: using intuitive reasoning and formal verification to identify flaws.
MSc thesis, Department of Computer Science, Florida State University, April
2003.

[11] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In
Proceedings of SCS Communication Networks and Distributed Systems Modelling
Simulation Conference (CNDS), 2002.

[12] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing. In Proceed-
ings of the IEEE Workshop on Mobile Computing Systems and Applications, pp.
90-100, February 1999.

[13] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer. A secure rout-
ing protocol for ad hoc networks. In Proceedings of the International Conference
on Network Protocols (ICNP), 2002.

[14] M. G. Zapata and N. Asokan. Securing ad hoc routing protocols. Proceedings of
the ACM Workshop on Wireless Security (WiSe), 2002.

[15] S. Yang and J. Baras. Modeling vulnerabilities of ad hoc routing protocols. In
Proceedings of the ACM Workshop on Security of Ad Hoc and Sensor Networks,
October 2003.

Statistical Wormhole Detection
in Sensor Networks

Levente Buttyán, László Dóra, and István Vajda

Laboratory of Cryptography and System Security (CrySyS),
Department of Telecommunications,

Budapest University of Technology and Economics, Hungary
{buttyan, laszlo.dora, vajda}@crysys.hu

Abstract. In this paper, we propose two mechanisms for wormhole de-
tection in wireless sensor networks. The proposed mechanisms are based
on hypothesis testing and they provide probabilistic results. The first
mechanism, called the Neighbor Number Test (NNT), detects the in-
crease in the number of the neighbors of the sensors, which is due to the
new links created by the wormhole in the network. The second mecha-
nism, called the All Distances Test (ADT), detects the decrease of the
lengths of the shortest paths between all pairs of sensors, which is due to
the shortcut links created by the wormhole in the network. Both mecha-
nisms assume that the sensors send their neighbor list to the base station,
and it is the base station that runs the algorithms on the network graph
that is reconstructed from the received neighborhood information. We
describe these mechanisms and investigate their performance by means
of simulation.

1 Introduction

Sensor networks [1] consist of a large number of sensors that monitor the envi-
ronment, and a few base stations that collect the sensor readings. The sensors
are usually battery powered and limited in computing and communication re-
sources, while the base stations are considered to be more powerful. In order to
reduce the overall energy consumption of the sensors, it is conceived that the
sensors send their readings to the base station via multiple wireless hops. Hence,
in a sensor network, the sensor nodes are responsible not only for the monitor-
ing of the environment, but also for forwarding data packets towards the base
station on behalf of other sensors.

In order to implement the above described operating principle, the sensors
need to be aware of their neighbors, and they must also be able to find routes
to the base station. An adversary may take advantage of this, and may try to
control the routes and to monitor the data packets that are sent along these
routes [6]. One way to achieve this is to set up a wormhole in the network.
A wormhole is a dedicated connection between two physical locations. The ad-
versary installs a radio transceiver at each end of the connection, and it sends
and re-transmits every data packet received at one end of the wormhole at the

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 128–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Statistical Wormhole Detection in Sensor Networks 129

other end of it. Practically, this means that the adversary creates communica-
tion links between some pairs of sensors that would otherwise not be able to
communicate directly with each other. In other words, the adversary modifies
the topology of the network. If this is done carefully, the adversary may achieve
that many sensors send their data packets to the base station via the worm-
hole. While the application of cryptographic mechanisms (e.g., encryption and
message authentication) prevents an adversary from monitoring and modifying
the information sent to the base station, cryptographic mechanisms do not solve
every problem stemming from wormholes. The adversary can still mount denial
of service type attacks, such as dropping packets (possibly selectively) that are
transferred through the wormhole. In addition, the sensors which are close to
the transceivers of the wormhole participate more in packet forwarding and they
deplete their battery earlier. Therefore, in most of the applications, wormhole
detection is an important requirement.

In this paper, we propose two mechanisms for wormhole detection in wire-
less sensor networks. The proposed mechanisms are based on hypothesis testing
and they provide probabilistic results. The first mechanism, called the Neigh-
bor Number Test (NNT), detects the increase in the number of the neighbors
of the sensors, which is due to the new links created by the wormhole in the
network. The second mechanism, called the All Distances Test (ADT), detects
the decrease of the lengths of the shortest paths between all pairs of sensors,
which is due to the shortcut links created by the wormhole in the network. Both
mechanisms assume that the sensors send their neighbor list to the base station,
and it is the base station that runs the algorithms on the network graph that is
reconstructed from the received neighborhood information. The main advantage
of the proposed mechanisms is that they do not require special hardware in the
sensors, directional antennas, tight clock synchronization, or distance measure-
ments between the nodes. The only requirement is that the sensor nodes can
determine who their neighbors are, and they can send this information to the
base station in a secure way. The rest of the paper is organized as follows. In
Section 2, we overview the state-of-the-art in the filed of wormhole detection.
In Section 3, we present our approach by describing the operation of the two
wormhole detection mechanisms that we propose. The effectiveness of the mech-
anisms is studied in Section 4, where we present and analyze our simulation
results. Finally, in Section 5, we conclude the paper and sketch some possible
future research directions.

2 Related Work

In [5], the authors propose two approaches for detecting wormholes in wireless ad
hoc networks, where sensors are allowed to move during the communication. The
first approach is called geographical packet leashes, and it requires the nodes to be
aware of their own location and to maintain loosely synchronized clocks. Every
time when a node A sends a packet to its neighbor B, it puts its location and the
time of sending into the header of the packet. When the packet is received by

130 L. Buttyán, L. Dóra, and I. Vajda

B, it compares the time of reception to the time of sending, and calculates the
maximum distance between A and B using the difference between their locations
and the distance that they could move away between sending and receiving the
packet. If the estimated distance is longer than the possible maximum radio
range then B rejects the communication with A.

The other approach is called temporal packet leashes, and it avoids using any
special hardware for localization, but it requires tightly synchronized clocks. Ev-
ery time when a node A sends a packet to its neighbor B, it puts an authenticated
time stamp into the header. When B receives the packet, it calculates the pos-
sible maximum distance between A and B from the difference between the time
of sending and the time of receiving of the packet, and assuming that the packet
travels with the speed of light. If the resulting distance is too large, then this
indicates a wormhole. This procedure relies on the fact that going through the
wormhole means covering a longer distance than the normal distance between
neighboring nodes, and this longer distance can be precisely measured due to
the tightly synchronized clocks.

The disadvantage of the above approaches is that they require either location
information of each node or tight clock synchronization between the nodes, and
these requirements cannot always be satisfied in sensor networks.

In [3], another approach is proposed to estimate the real physical distance
between two communicating nodes, which does not require location information
or clock synchronization at all. That approach is based on an authenticated
distance-bounding protocol, called MAD. The distance-bounding phase of MAD
consist of several rounds, and in each round, each node sends a one bit challenge
to the other node to which the other node responds with a one bit response
immediately. Each node locally measures the time between sending out the chal-
lenge and receiving the response, and based on the measured times, it estimates
its distance to the other node, assuming that messages travel with the speed of
light. In order for this to work, the nodes must be able to measure local timings
with nanosecond precision, which is possible with today’s hardware. In addition,
it is crucial that the response is sent immediately after receiving the challenge.
This, however, may not be possible using standard hardware. The main problem
is that typical wireless medium access control protocols introduce random de-
lays between the time at which the application sends a message and the time at
which that message is really transmitted via the radio interface. Therefore, this
approach also requires special hardware in the sensor nodes and special medium
access control protocols.

Another wormhole detection approach that uses the node’s location informa-
tion is proposed in [7]. However, as opposed to the geographical leash approach
proposed in [5], here only a small fraction of the nodes need to be equipped
with a GPS receiver. These special nodes are called guards and it is also as-
sumed that the guards have a larger radio range (denoted by R) than the other
nodes. The guards broadcast their positions in their one hop neighborhood. Two
nodes consider each other neighbor only if they hear a threshold number of com-
mon guards. The nodes use the location information broadcast by the guards

Statistical Wormhole Detection in Sensor Networks 131

to detect wormholes based on the following two principles: (i) since any guard
heard by a node must lie within a range of radius R around the node, a node
cannot hear two guards that are 2R apart from each other; and (ii) since the
messages sent by the guards are authenticated and protected against replay, a
node cannot receive the same message twice from the same guard. It is shown in
[7] that based on these principles, wormholes can be detected with probability
close to one. However, the disadvantage of this approach is that the guards are
distinguished nodes in the network that differ from the regular nodes.

In [4], the authors propose a wormhole detection approach that assumes that
the nodes know from which direction they got a packet. The intuitive idea behind
this approach is that if there is no wormhole in the system, then the following
must be true: if one node sends a packet in a given direction, then its neighbor
will hear that packet from the opposite direction. However, if there is a worm-
hole in the system, then the above statement is not always true (depending on
the placement of the wormhole), and thus, the wormhole becomes detectable.
Unfortunately, it has a significant probability that the wormhole is there, but
it is not caught. In order to address this problem, the authors worked out two
algorithms in which the nodes involve their neighbors during the communica-
tion to help to discover the wormhole. The main disadvantage of this approach
is that it requires directional antennas, which are usually not available in sensor
networks.

In [8], a centralized wormhole detection technique is proposed, which uses
inaccurate distance estimations between neighboring nodes. The main idea of
the proposed technique is to reconstruct a virtual layout of the network and
identify inconsistencies in it. For this reason, the connectivity information and
the inaccurately estimated distances between the neighbors are fed into a multi-
dimensional scaling (MDS) algorithm, which tries to determine a virtual position
for every node in such a way that the constraints induced by the connectivity
and the distance estimation data are respected. Since the distances are esti-
mated inaccurately, the algorithm has a certain level of freedom in “stretching”
the nodes within the error bounds of the distance estimation. If the estimated
distance between two nodes connected by a wormhole are much larger than
the nodes’ communication range, then the wormhole is detected immediately.
Hence, the adversary must falsify the distance estimation and arrange that the
estimated distances between the nodes affected by the wormhole become cred-
ible. However, this will result in a distortion in the virtual layout constructed
by the MDS algorithm; in particular, the layout will be contracted between the
affected nodes. By visualizing the virtual layout or by computing appropriate
indicator values, the distortion can be detected and the wormhole can be located.

3 Our Approach

Compared to the above described approaches, our approach neither requires
special hardware and directional antennas in the nodes, nor tight clock synchro-
nization and distance measurements. We only assume that the sensor nodes can

132 L. Buttyán, L. Dóra, and I. Vajda

determine who their neighbors are, and they can send this information to the
base station(s). Based on the received neighborhood information, the base sta-
tion(s) can detect the presence of wormholes probabilistically using hypothesis
testing. In this section, we propose two specific mechanisms for this purpose; we
will evaluate the effectiveness of the proposed mechanisms in Section 4.

3.1 System Assumptions

We assume that the system consists of a large number of sensor nodes and a
few base stations placed on a two dimensional surface. We assume that the base
stations have no resource limitations, and they can run complex algorithms. We
assume that the sensors have a fixed radio range r, and two sensors are neighbors,
if they reside in the radio range of each other. We assume that the sensors run
some neighbor discovery protocol, and they can determine who their neighbors
are. We also assume that the sensors send their neighborhood information to the
closest base station regularly in a secure way. By security we mean confidentiality,
integrity, and authenticity; in other words, we assume that the adversary cannot
observe and change the neighborhood information sent to the base stations by the
sensors, neither can it spoof sensors and fabricate false neighborhood updates.
This can be ensured by using cryptographic techniques that we will not detail
in this paper. Note that the neighborhood information can be piggy-backed on
regular data packets. In addition, as sensor networks tend to be rather static,
sending only the changes in the neighborhood since the last update would reduce
the overhead significantly. The base stations can pool the received neighborhood
information together, and based on that, they can reconstruct the graph of the
sensor network. We assume that the node density is high enough so that the
network is always connected.

We assume that the adversary can set up a wormhole in the system. The worm-
hole is a dedicated connection between two physical locations. There are radio
transceivers installed at both ends of the wormhole, and packets that are received
at one end can be sent to and re-transmitted at the other end. In this way, the ad-
versary can achieve that nodes that otherwise do not reside in each other’s radio
range can still hear each other and establish a neighbor relationship (i.e., they can
run the neighbor discovery protocol). This means that the adversary can introduce
new, otherwise non-existing links in the network graph that is constructed by the
base stations based on the received neighborhood information.

The wormhole is characterized by the distance between the two locations that
it connects and the radio ranges of its transceivers. We assume that the receiving
and the sending ranges of both transceivers are the same, and we will call this
range the radius of the wormhole. The radius of the wormhole is not necessarily
equal to the radio range of the sensors.

In principle, the adversary can drop packets carrying neighborhood informa-
tion that are sent to the base stations via the wormhole. However, consistently
missing neighborhood updates can be detected by the base stations and they in-
dicate that the system is under attack. Therefore, we assume that the adversary
does not drop the neighborhood updates. In addition, by the assumptions made
earlier, it cannot alter or fabricate them either.

Statistical Wormhole Detection in Sensor Networks 133

3.2 Neighbor Number Test (NNT)

Our first detection mechanism is based on the fact that by introducing new
links into the network graph, the adversary increases the number of neighbors
of the nodes within its radius. This is illustrated in Figure 1. The thick circle
in the figure is the radio range of the sensor node A. Its real neighbors are Ni

within the radio range of sensor node A. The two other circles show the radius
of the wormhole. The nodes at the further end of the wormhole that are labelled
with Wi are the neighbors that are due to the existence of the wormhole. These
sensors are outside of the radio range of A, and they would not be its neighbors
if there was no wormhole.

If the distribution of the placement of the nodes is given, then it is possible to
compute the hypothetical distribution of the number of neighbors. Then, the base
stations can use statistical tests to decide if the network graph constructed from
the neighborhood information that is received from the sensors corresponds to

A

N
1

N
2 N

3

W
1

W
5W

3

W
2

W
4

Fig. 1. The wormhole increases the number of neighbors of the nodes in its radius

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

Neighbor number

S
en

so
r

nu
m

be
r

Fig. 2. Hypothetical (dark) and real (light) distributions of the number of neighbors

134 L. Buttyán, L. Dóra, and I. Vajda

this hypothetical distribution. In order to illustrate this idea, let us consider the
example depicted in Figure 2, where the dark bars correspond to the hypothetical
distribution of the number of neighbors, and the light bars show the actual
distribution in the network graph reconstructed from the sensors’ neighborhood
updates. One can see that the probability of higher neighbor numbers (15-20)
is increased with respect to the hypothetical distribution, and the idea of the
proposed mechanism is to detect this increase by using statistical tests.

Based on the above observations, the NNT algorithm is given as follows:

1. The base station computes the expected histogram of the neighbor numbers
using the hypothetical distribution of the number of neighbors.

2. The base station collects the neighborhood updates from the sensors, con-
structs the network graph, and computes the histogram of the real neighbor
numbers in the graph.

3. The base station compares the two histograms with the χ2–test.
4. If the computed χ2 number is larger than a preset threshold that corresponds

to a given significance level, then a wormhole is indicated.

Computing the parameters for the χ2–test. Assuming that the sensors
are placed uniformly at random on the plane, the probability of two nodes being
neighbors is

q =
r2 · π

T

where r is the radio range of the sensor nodes and T is the sphere of the area
where the sensor network is deployed. The probability p(k) of having exactly k
neighbors is

p(k) =
(

N

k

)
· qk · (1− q)N−k

where N +1 is the total number of nodes in the network. Let us partition the set
{0, 1, 2, . . .} into subsets B1, B2, · · · , Bm, such that e(i) = (N + 1)

∑
k∈Bi

p(k)
be larger than 5 (a requirement needed by the χ2–test [2]). The χ2 number is
then computed using the following formula:

χ2 =
∑
∀i

r(i) − e(i)
e(i)

where r(i) is the real number of nodes with number of neighbors in Bi. If χ2 is
below the threshold that corresponds to a given significance level (this threshold
can be looked up in published tables of χ2 values), then the hypothesis is ac-
cepted, and no wormhole is indicated. Otherwise the hypothesis is rejected, and
a wormhole is indicated.

3.3 All Distances Test (ADT)

Our second detection mechanism is based on the fact that the wormhole shortens
the paths in the network, or more precisely, it distorts the distribution of the

Statistical Wormhole Detection in Sensor Networks 135

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of hops

N
um

be
r

of
 r

ou
te

s

Fig. 3. Hypothetical (dark) and real (light) distributions of the length of the shortest
paths between all pairs of nodes

length of the shortest paths between all pairs of nodes. This is illustrated by the
example depicted in Figure 3, where the dark bars represent the hypothetical
distribution of the length of the shortest paths and the light bars represent the
real distribution. As it can be seen, the two distributions are different, and in
the real distribution, shorter paths are more likely than in the hypothetical one.
The idea is to detect this difference with statistical tests.

The ADT algorithm is very similar to the NNT algorithm:

1. The base station computes the histogram of the length of the shortest paths
between all pairs of nodes in the hypothetical case when there is no wormhole
in the system using the knowledge of the distribution of the node placement.

2. The base station collects the neighborhood information from the sensors,
and computes the histogram of the length of the shortest paths in the real
network.

3. The base station compares the two histograms with the χ2–test.
4. If the computed χ2 number is larger than a preset threshold that corresponds

to a given significance level, then a wormhole is indicated.

Computing the parameters for the χ2–test. In this case, we were not
able to derive a close formula that describes the hypothetical distribution of the
length of the shortest paths. Instead, we propose to estimate that distribution by
randomly placing nodes on the plane according to the distribution of the node
placement, and compute the lengths of the shortest paths between all pairs of
nodes in the resulting graph. We propose to repeat the experience many times
and average the normalized histograms obtained in these experiences. Once the
hypothetical distribution is estimated in this way, the χ2–test can be used in a
similar way as we described in Subsection 3.2.

4 Simulation Environment

In order to evaluate the effectiveness of the proposed mechanisms, we built a
simulator that places 300 sensor nodes uniformly at random on a 500 m × 500 m

136 L. Buttyán, L. Dóra, and I. Vajda

Table 1. Simulation parameters

Number of nodes 300
Extent of territory 500 m × 500 m
Number of simulation runs 100
Radio range of sensor nodes 40 m, 47 m, 54 m, 60 m, 65 m, 70 m
Radio range of the wormhole 16 m, 50 m
Distance between the affected areas 20 m, 50 m, 100 m, 200 m, 300 m, 400 m
at the two end wormhole

flat area with one base station in the middle, and it also places a wormhole
randomly in the same area. The simulator permits us to set three parameters:
the radio range of the sensors, the radius of the wormhole, and the distance
between the affected areas at the two ends of the wormhole.

We chose two extreme values for the radio range of the sensor nodes: 40 m
and 70 m. The expected neighbor number is 5.9 in the 40 m case, and 18.5 in the
70 m case. Then, we split up the range between 5.9 and 18.5 evenly into 5 pieces
to get the six radio range values that we used in our simulations (see Table 1).

We set the radius of the wormhole to 16 m or to 50 m (see Table 1). These
two values have been selected in such a way that the number of nodes affected
by the wormhole differs significantly in the two cases. When the radius of the
wormhole is 16 m, one node is affected (falls in the wormhole’s range) on both
ends of the wormhole on average, whereas when the radius of the wormhole is
50 m, 9.4 nodes are affected on both ends on average.

Finally, we varied the distance between the affected areas at the two ends of
the wormhole between 20 m and 400 m (see Table 1).

A given combination of the possible parameter values define a test case. For
each test case we run 100 simulations and averaged the results. For each ra-
dio range setting, we first determined the rate of the false positive alarms (i.e.,
the percentage of the simulation runs where the algorithms indicate a wormhole
when there is no wormhole in the system). Then, we placed wormholes with
different parameters in the system and determined the accuracy of both of our
detection mechanisms (i.e., the percentage of simulation runs where the worm-
hole is detected when there is indeed a wormhole in the system). The results are
presented in the following subsections.

4.1 Results of the Neighbor Number Test (NNT)

The results of the NNT algorithm are shown on Figures 4 and 5. Figure 4(a)
shows the accuracy of the detection as a function of the radio range of the
sensors when the radius of the wormhole is 50 m. As it can be seen, the detection
accuracy decreases as the sensors’ radio range increases. The reason is that in the
case of larger radio ranges, the sensors have more real neighbors, and therefore,
the increase in the number of neighbors caused by the wormhole becomes less
significant, and consequently, more difficult to detect. We can also observe that
the detection accuracy is better when the areas affected by the wormhole are

Statistical Wormhole Detection in Sensor Networks 137

40 47 54 60 65 70
0

20

40

60

80

100

Radio range of sensor nodes (metre)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

20
50
100
200
300
400

(a)

40 47 54 60 65 70
0

20

40

60

80

100

Radio range of sensor nodes (metre)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

20
50
100
200
300
400

(b)

Fig. 4. Detection accuracy plotted against the radio range of the sensor nodes. The
different curves belong to different distances between the areas affected by the wormhole
with a radius of 50 m (a) and 16 m (b).

more distant from each other, although increasing this distance above 100 m
has no real influence on the results. In fact, if the distance between the affected
areas is smaller than the radio range of the sensors, then it is possible that
two affected nodes that do not belong to the same affected areas are already
real neighbors, and therefore, the wormhole does not create a new link between
them. In other words, the larger the distance between the affected areas is, the
higher the probability is that the wormhole introduces new links into the graph,
and by doing so it increases the number of neighbors of the affected nodes.

Figure 4(b) shows the accuracy of the detection as a function of the radio
range of the sensors when the radius of the wormhole is 16 m. It is clear from
the figure that the NNT algorithm does not work in this case, as the accuracy of
the detection is unacceptably low. The huge difference between the performance
in the 50 m case and that in the 16 m case can be explained with the large
difference in the number of the affected nodes in the two cases. As we described
earlier, when the radius of the wormhole is 16 m, on average one node is affected
at both ends on the wormhole. Hence, practically, such a wormhole creates a
single new link in the graph, which is extremely difficult detect with statistical
techniques. On the other hand, as the average number of affected nodes is around
10 at both ends of the wormhole when the radius is 50 m, the number of new
links introduced in the graph is around 100. More importantly, around 20 nodes
out of the total of 300 have around 10 more neighbors due to the wormhole, and
this can be detected by the NNT algorithm.

Figure 5 shows the percentage of the false positive alarms as a function of
the radio range of the sensors. As it can be seen, the NNT algorithm performs
quite well regarding the false positive alarms. Indeed, the percentage of the false
positive alarms is determined by the selected significance level of the χ2–test,
which in our case was 0.025.

In summary, the NNT algorithm detects the wormhole reasonably well if the
radius of the wormhole is comparable to or larger than the radio range of the
sensors, but it performs very badly if the radius of the wormhole is small. We

138 L. Buttyán, L. Dóra, and I. Vajda

40 47 54 60 65 70
0

20

40

60

80

100

Radio range of sensor nodes (metre)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

Fig. 5. Percentage of false positive wormhole detections plotted against the radio range
of sensor nodes

0 50 100 150 200 250 300

16

50

Expected number of concerned routes leading to the base station

R
ad

io
 r

an
ge

 o
f w

or
m

ho
le

 (
m

et
er

)

Fig. 6. The effect of the wormhole on the number of the controlled shortest paths
plotted against the radius of the wormhole

note, however, that a smaller wormhole radius has smaller effect on the system in
terms of the number of sensors that send measurement data to the base station
through the wormhole. In order to illustrate this, we constructed the minimum
spanning tree rooted at the base station, and counted the number of shortest
paths between the base station and the sensors that contain a link created by
the wormhole. The result is shown in Figure 6. As it can be seen, when the
radius of the wormhole is 16 m, the number of concerned paths is between 0
and 50, whereas in the case of a 50 m radius, the number of concerned paths
is between 100 and 200. Thus, the adversary can monitor the measurements of
more sensors when the radius of the wormhole is larger, but in that case, it can
also be detected more accurately by the NNT algorithm.

4.2 Results of the All Distances Test (ADT)

The results of the ADT algorithm are shown on Figures 7 and 8. Figure 7(a)
shows the accuracy of the detection as a function of the sensors’ radio range
when the radius of the wormhole is 50 m, whereas Figure 7(b) shows the same

Statistical Wormhole Detection in Sensor Networks 139

40 47 54 60 65 70
0

20

40

60

80

100

Radio range of sensor nodes (metre)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

20
50
100
200
300
400

(a)

40 47 54 60 65 70
0

20

40

60

80

100

Radio range of sensor nodes (metre)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

20
50
100
200
300
400

(b)

Fig. 7. Detection accuracy plotted against the radio range of the sensor nodes. The
different curves belong to different distances between the areas affected by the wormhole
with a radius of 50 m (a) and 16 m (b).

40 47 54 60 65 70
0

20

40

60

80

100

Radio range of sensor nodes (metre)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

Fig. 8. Percentage of false positive wormhole detections plotted against the radio range
of the sensor nodes

when the radius of the wormhole is 16 m. Similar to the NNT algorithm, the
ADT algorithm performs better when the radius of the wormhole is larger. How-
ever, unlike the NNT algorithm, the ADT algorithm is not completely unusable
in the case when the radius of the wormhole is 16 m. Rather, its performance
depends on the distance between the areas affected by the wormhole: the higher
this distance is, the more accurate the detection is. Moreover, when the dis-
tance between the affected areas is 400 m, the accuracy is close to 100% . The
explanation for this is quite obvious: a longer wormhole reduces the length of
the shortest paths between more distant nodes, and thus overall, it represents
a larger decrease in the average length of the shortest paths between all pairs
of nodes.

Regarding the percentage of the false positive alarms (Figure 8), the ADT
algorithm performs quite well except for small radio ranges.

One may have expected that the detection accuracy of the ADT algorithm
is independent of the radius of the wormhole. The rationale would be that no

140 L. Buttyán, L. Dóra, and I. Vajda

Fig. 9. Shortest paths are longer when the radius of the wormhole is smaller

matter how many new links are created by the wormhole, the important thing
is that it creates shortcuts in the graph which reduce the lengths of the shortest
paths between the sensors. However, this intuition is fallacious: shortest paths
are indeed longer if the radius of the wormhole is smaller. As an illustration, let
us consider Figure 9. The upper two nodes are directly connected if the radius
is larger, whereas they are three hops away if the radius is small. This difference
may seem to be small, but note that many shortest paths may use the wormhole
and this two hop difference appears in each of them.

5 Conclusion and Future Work

In this paper, we have studied the problem of wormhole detection in wireless
sensor networks. We proposed two mechanisms for wormhole detection that are
based on hypothesis testing, and that provide probabilistic results. The first
mechanism, called the Neighbor Number Test (NNT), detects the increase in the
number of the neighbors of the sensors, which is due to the new links created by
the wormhole in the network. The second mechanism, called the All Distances
Test (ADT), detects the decrease of the lengths of the shortest paths between
all pairs of sensors, which is due to the shortcut links created by the wormhole
in the network. Both mechanisms assume that the sensors send their neighbor
list to the base station, and it is the base station that runs the algorithms on
the network graph constructed from the received neighborhood information.

We investigated the effectiveness of the two proposed mechanisms by means
of simulation. Our results show that both mechanisms can detect the wormhole
with high accuracy when the radius of the wormhole is comparable to the radio
range of the sensors. In addition, the ADT algorithm performs better than the
NNT algorithm when the radius of the wormhole is small (compared to the
radio range of the sensors). In terms of false alarms, both algorithms perform
reasonably well.

One disadvantage of the mechanisms that we proposed in this paper is that
they detect only the presence of a wormhole, but they do not pinpoint its loca-
tion. While detection is certainly the first thing that one needs to do, localization
of the wormhole afterwards is also necessary for a successful defense. In the fu-
ture, we intend to study if the statistical approach proposed in this paper can
be extended to provide also wormhole localization services.

In this paper, we addressed the problem of wormhole detection in a static
setting. In the future, we intend to extend our results to the dynamic case,

Statistical Wormhole Detection in Sensor Networks 141

when the wormhole is not present in the system from the beginning, but it
is established by the adversary during the operation of the network. To some
extent, detecting a dynamic wormhole is easier than detecting a static one: if the
base station detects that two sensors that previously were many hops away from
each other become neighbors, then it is reasonable to assume that a wormhole
has just been established between them. On the other hand, such a detection
scheme would require the sensors to provide neighborhood information to the
base station continuously; a prohibitive price in sensor networks. Therefore, we
are interested in the trade-offs between the overhead, the speed, and the accuracy
of the detection.

Acknowledgement

The work presented in this paper has partially been supported by the Hungarian
Scientific Research Fund (T046664). The first author has been further supported
by IKMA and by the Hungarian Ministry of Education (BÖ2003/70).

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless sensor networks:
a survey. Computer Networks 38:393-422, 2002.

2. I.N. Bronstein, K.A. Semendjajew, G. Musiol, and H. Muehlig. Handbook of Math-
ematics, Springer, 2004.

3. S. Čapkun, L. Buttyán, and J.-P. Hubaux. SECTOR: secure tracking of node en-
counters in multi-hop wireless networks. In Proceedings of the ACM Workshop on
Security in Ad Hoc and Sensor Networks (SASN), 2003.

4. L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In
Proceedings of the IEEE Symposium on Network and Distributed System Security
(NDSS), 2004.

5. Y. Hu, A. Perrig, and D. Johnson. Packet leashes: a defense against wormhole attacks
in wireless ad hoc networks. In Proceedings of the IEEE Conference on Computer
Communications (Infocom), 2003.

6. C. Karlof and D. Wagner. Secure routing in sensor networks: attacks and counter-
measures. Ad Hoc Networks 1:293–315, 2003.

7. R. Poovendran and L. Lazos. A graph theoretic framework for preventing the worm-
hole attack in wireless ad hoc networks, to appear in ACM Wireless Networks.

8. W. Wang and B. Bhargava. Visualization of wormholes in sensor networks. In Pro-
ceedings of the ACM Workshop on Wireless Security (WiSe), 2004.

RFID System with Fairness Within the
Framework of Security and Privacy�

Jin Kwak1, Keunwoo Rhee1, Soohyun oh2, Seungjoo Kim1, and Dongho Won1

1 Information Security Group, Sunkyunkwan University,
300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Korea
{jkwak, kwrhee, dhwon}@dosan.skku.ac.kr, skim@ece.skku.ac.kr

http://www.security.re.kr
2 Division of Computer Science, Hoseo University,

29-1. Sechul-ri, Baebang-myun, Asan, Chuncheongnam-do, 336-795, Korea
shoh@office.hoseo.ac.kr

Abstract. Radio Frequency Identification (RFID) systems are expected
to be widely deployed in automated identification and supply-chain ap-
plications. Although RFID systems have several advantages, the tech-
nology may also create new threats to user privacy. In this paper, we
propose the Fair RFID system. This involves improving the security and
privacy of existing RFID systems while keeping in line with procedures
already accepted by the industrial world. The proposed system enables
the protection of users’ privacy from unwanted scanning, and, when nec-
essary, is conditionally traceable to the tag by authorized administrators.

Keywords: Fairness, RFID, security, privacy, uncheckable, traceability.

1 Introduction

The Radio Frequency Identification (RFID) system is a technology that recog-
nizes and manages the tag through the Radio Frequency (RF) signal. The low-
cost RFID tag can be read, and information can be updated without physical
contact. Therefore, RFID systems have become popular for automated identifi-
cation and supply-chain applications. In addition, the RFID tag is expected to
replace the barcode in supply-chain applications[4, 12, 17, 20, 22].

However, RFID system creates new problems such as the invasion of users’
privacy including excessive information exposure. In particular, although the
RFID tag enables more effective supply-chain management, it may also allow
access to information regarding users credit information and purchase patterns
without their agreement.

Thus, several methods and concepts for protecting the users’ privacy have
been proposed[7, 8, 9, 10, 14, 18, 19, 25, 26, 27]. However, some of these methods
do not resolve privacy problems perfectly. (see [16] for more details.)

� This work was supported by the University IT Research Center Project funded by
the Korean Ministry of Information and Communication.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 142–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RFID System with Fairness Within the Framework of Security and Privacy 143

The proposed system in this paper, can authenticate the tag without exposing
its Unique IDentifier (UID) to the reader (or the back-end database), therefore,
protecting users’ privacy. If necessary, only authorized administrators can iden-
tify the UID of the tag. In the proposed system, when necessary, the UID of the
tag can be tracked through the cooperation of authorized administrators.

The proposed system is applicable to user location based information services,
such as missing children search, emergency call services, and so on. These services
rely on the availability of user location information in order to provide specific
targeted information. However, a user location is a sensitive piece of information
and releasing it to random entities may create security and privacy issues. The
user is entitled to protect their location information, keeping this information
secret, or shared with trusted entities. Therefore, when required, only authorized
entities should have access to this location information.

The subsequent sections of the paper are organized as follows. After shortly in-
troducing the basic RFID system and components in Section 2, the security and
privacy requirements for the proposed system are discussed in Section 3. In Section
4, theFairRFIDSystem is presented, enabling the protection of users’ privacy, and,
when necessary, is traceable to the tag by authorized administrators. The security
properties of the proposed systemare the described.Finally, in Section 6, this paper
is concluded, with a discussion on possible future research directions.

2 RFID System Primer

RFID systems are basically composed of an RFID tag, RFID reader, and back-
end database. The forward channel, i.e., the reader to the tag, is assumed to
be broadcast with an RF signal to achieve long-range monitoring. However, the
backward channel, i.e., the tag to the reader, in a relative secnse, is much weaker,
enabling monitoring only by eavesdroppers within the tag’s shorter operating
range. In general, it is assumed that eavesdroppers can only monitor the forward
channel undetected [3, 6, 21].

• RFID tag (transponder) includes UID (object-identifying data) 1. Tags are
generally composed of an IC chip and an antenna. The IC chip in the tag is
used for data storage and logical operations, whereas the coiled antenna is
used for communication between the reader and the tag. The RFID tag may
either be an active or passive2 tag. In this paper, the passive tag is focused
on, in order to demonstrate hash operations.
• The RFID reader (scanner) is a device that transmits an RF signal to the

tag, receives the information from the tag, and transmits such information
to the back-end database. The reader may read and write data to the tag.

1 In case of the location based service, the UID correspond to Social Security Number
(SSN).

2 The Active tag has a battery and actively sends the information to the reader. The
passive tag must be inductively powered from the RF signal of the reader since RFID
tags usually do not possess their own battery.

144 J. Kwak et al.

Reader
Radio frequency

Backward range

Forward range

insecure channelsecure channel

1Tag

Back-End database

2Tag

Reader
Radio frequency

Backward range

Forward range

insecure channelsecure channel

1Tag

Back-End database

2Tag

Fig. 1. Basic passive RFID System [21]

In general, readers are composed of the RF module, a control unit, and a
coupling element to interrogate electronic tags via RF communication.
• The Back-end database is a data-processing system that stores related

information3 (e.g., product information, tracking logs, reader location, etc)
with a particular tag.

3 Security and Privacy Requirements for the Propose
System

To protect users’ privacy, the UID of the tag should not be known to the legiti-
mate reader and the back-end database; only the authentication of the legitimate
tag should be provided. This section discusses the security requirements for the
proposed system.

(1) Fairness
Let S be a RFID System, it can be said that S is a Fair RFID system if it
guarantees a special agreed upon party under the proper circumstances envisaged
by the policy to understand all UIDs encrypted using S, even without the users’
consent and knowledge. If the encrypted ID is used in a Fair RFID system, only
authorized administrators can retrieve the unique ID (UID) of the encrypted ID.
That is to say, the RFID system should be able to provide not only user privacy
but also traceability.

(2) Uncheckability
The recipient of response generated by the tag can verify that it is a valid
response of the query, but cannot discover which tag made it.

(3) Anonymity
The recipient of a response generated by the tag can verify that it is a valid
response of the query, but cannot decide whether two responses have been gen-
erated by the same tag. In this paper, the meaning of anonymity and that of
“unlinkability” are the same.
3 In case of the the location based services, user’s telephone number, address, etc.

RFID System with Fairness Within the Framework of Security and Privacy 145

(4) Traceability

The UID of the tag should be encrypted and stored in IMC (UID Management
Center), tracing of the UID, when necessary, should only be possible through
the cooperation of authorized administrators.

4 Proposed RFID System with Fairness

This section proposes the system for the protection of users’ privacy and, when
necessary, the traceability of the UID of the tag. The readers are assumed to have
a secure connection to the back-end database, although the tag and the reader
communicate through an insecure channel. Fig.2 shows the proposed RFID Sys-
tem with Fairness.

EISEIS

Back-end DBBack-end DB

IMCIMC

���

Admin1

Adminn

…
�
�

Reader

DistributorsDistributors���

secure connection

conveyance

RFID tag

���

Manufacturer

e.g. Warmart

EISEIS

Back-end DBBack-end DB

IMCIMC

���

Admin1

Adminn

…
�
�

Reader

DistributorsDistributors���

secure connection

conveyance

RFID tag

���

Manufacturer

e.g. Warmart

Fig. 2. Propose RFID System with Fairness

4.1 Initial Setup Phase

The initial setup phase of the proposed system is described, in the proposed sys-
tem, to satisfy security requirements, and a cryptographic secret sharing method
is adopted.

The proposes system consists of the EIS (EPC Information Server)4, IMC
(UID Management Center)5, RFID tag, RFID reader, and Back-end database6.

Fig.3 demonstrates the initial setup phase in the proposed system.

4 It managed by the manufacturer. The EIS provides related information of products
such as the term of validity, factory price, UID, and so on.

5 The IMC generates MID (encrypted value of the tag’s UID) of the tag. In this
paper, for encryption of the MID, cryptographic secret sharing methods are adopted.
[1, 2, 5, 11, 15, 23, 24])

6 The retailer’s retail system utilizing the information transmitted from the reader. It
has sufficient computational ability.

146 J. Kwak et al.

EISEIS

UIDT

Back-end DBBack-end DB

IMCIMC

���

���

Retailer (e.g. Mart)

UIDT Factory price Info.

MIDT Info.Sale price

UIDT MIDT K

Admin1

Admin2

Adminn

���

MIDT = (ENC(UIDT))

tagging DistributorsDistributors

���

conveyance

Manufacturer

(1)

(2)

(3)

(4)

EISEIS

UIDT

Back-end DBBack-end DB

IMCIMC

������

���

Retailer (e.g. Mart)

UIDT Factory price Info.UIDT Factory price Info.

MIDT Info.Sale priceMIDT Info.Sale price

UIDT MIDT KUIDT MIDT K

Admin1

Admin2

Adminn

���

MIDT = (ENC(UIDT))

tagging DistributorsDistributors

������

conveyance

Manufacturer

(1)

(2)

(3)

(4)

Fig. 3. Initial Setup phase

[Notations and Parameters]

– h() : collision-resistant hash-functions.
– ‖ : concatenation.
– queryi : query of Ri.
– UIDT : the unique identifier of the tag T
– MIDT : encrypted value of the tag’s unique identifier7

– RR : random number chosen by the reader.
– RT : random number chosen by the tag.
– P : a set of participant Admis, P = {Adm1, Adm2, · · · , Admn}.
– p : a large prime number, where p > 2512.
– q : a prime number, where q | p− 1.
– g : an element over ZZp, where ord(g) = q.
– Admi : administrators of IMC, they have secret sharing information of the

key K.
– K : a master secret key used encryption of UIDT .
– yAdm : a group public key of administrators.
– ENC() : a public key encryption scheme.

[Initial Setup]

1. The manufacturer issues a unique ID for each product by EIS. Then EIS
sends the UID to the IMC.

2. The IMC encrypts the UID and then writes the encrypted value MIDT to
the tag instead of the UID. The encryption process as follows.

(The encryption of UID)

① Let there by n administrators. Every administrators (Admini | i ∈
{1, · · · , n}) picks ri ∈R Zq at random and broadcasts yi = gri mod p
to every other administrator in the set Si.

Si = {Admj | j ∈ {1, · · · , n} AND i = j}
7 In case of the location based service, MID is encrypted value of the user’s SSN.

RFID System with Fairness Within the Framework of Security and Privacy 147

Each Admi picks ri ∈R Zq at random and broadcasts yi = gri mod p to
all other administrators.

② To distribute ri, each Admi randomly selects a polynomial fi of degree
t− 1 in Zq such that fi(0) = ri, i.e.,

fi(x) = ri + ai,1x + ai,2x
2 + · · · + ai,t−1x

t−1

with ai,1, · · · , ai,t−1 ∈R Zq, and sends fi(j) mod q to Admj in a secure
manner (∀j = i). Each Admi also broadcasts values

gai,1mod p , · · · , gai,t−1 mod p

③ From distributed fj(i) (∀j = i), Admi checks whether, for each j,

gfj(i) = yj · (gaj,1)i1 · · · (gaj,t−1)it−1
mod p

④ Let H = {Admj | Admj is not detected to be cheating at step 3 }. Every
Admi computes the share

si =
∑
j∈H

fj(i)

secretly, and computes

yAdm =
∏
j∈H

yj , ga1 =
∏
j∈H

gaj,1 , · · · , gat−1 =
∏
j∈H

gaj,t−1

⑤ To encrypt each UIDi, Adm1 picks ti,1 ∈R Zq and computes gti,1 mod p.
Then, Adm1 transmits the result to Adm2.

⑥ The Adm2 picks ti,2 ∈R Zq and computes (gti,1)ti,2 mod p. Then, Adm2

transmits the result to Adm3.
⑦ The last participant Admi(i = n) computes gti = (gti,1,ti,2,···)ti,n mod p

and broadcasts the result to other Admn.
⑧ Through the cooperation of n Admi, the ciphertext of UIDi is generated

as follow.
ENC(UIDi) = (gti , (yAdm)ti · SNimod p)

⑨ Each Admi stores ENC(UIDi) in their IMC.

3. After step 2, the tag contains encrypted value instead of the UID- adhere to
the product. Then the tagged products are transported to the retailer (e.g.
Walmart).

4. When the tagged product arrives at the retailer, the products are managed
by the retailer’s systems.

4.2 Authentication Phase

The following steps present the authentication process of the proposed system.
Fig.4 demonstrates the authentication phase of the proposed system.

1. RFID reader, which is connected with back-end database, broadcasts to the
tags with a query and RR.

· reader −→ tag : query , RR

148 J. Kwak et al.

Back-end DBBack-end DB

MIDT Info.

���

Reader
S=H(MIDT, RR , RT)

(1) query , RR

(4) H(MIDT, RT)

(2) S , RT

(3) S, RT , RR

(5) H(MIDT, RT)

Back-end DBBack-end DB

MIDT Info.

���

Reader
S=H(MIDT, RR , RT)

(1) query , RR

(4) H(MIDT, RT)

(2) S , RT

(3) S, RT , RR

(5) H(MIDT, RT)

Fig. 4. Authentication protocol

2. When the tag received query and RR, the tag generates random number RT .
Then the tag computes a response S(= H(MIDT , RT , RR)) and sends the
S to the reader with RT .

· tag −→ reader : S, RT

3. The reader sends RR to the back-end database with S and RT received from
the tag.

· reader −→ back-end database : S, RT , RR

4. For all MIDT s in the back-end database, when the back-end database re-
ceived data from the reader, the back-end database computes hash values.
Then the back-end database compares it with S received from the reader to
authenticate the tag.

· back-end database : received S
?= computed S

If the authentication is successful, the back-end database sends H(MIDT,RT)
to the reader.

· back-end database −→ reader: H(MIDT , RT)

5. The reader sends H(MIDT , RT) received from the back-end database to the
tag.

· reader −→ tag: H(MIDT , RT)

The tag computes H(MIDT , RT) and compares it with H(MIDT , RT) re-
ceived from the reader to authenticate the back-end database. If the au-
thentication is successful, the tag authenticates back-end database and the
authentication session is successfully finished.

· tag : computed H(MIDT , RT) ?= received H(MIDT , RT)

4.3 Tracing Phase

If the IMC requires tracing the UID, he/she needs at least t (n ≥ t) shared in-
formation among n. This is because the UID is encrypted with the master secret
key K, and K is shared between n administrators. Therefore, only authorized
administrators can identify the UID of the tag.

If X = {Adm1, Adm2, · · · , Admt} is a qualified subset to recover the UIDi,
they operate the recovery phase as follow.

RFID System with Fairness Within the Framework of Security and Privacy 149

1. Through the cooperation of every Admi ∈ X , the value r1 + r2 + · · · + rt

is recovered using polynomial interpolation [23].
2. Each Admi ∈ X computes K = (gti)r1 + r2 + ··· + rt using stored gti .
3. Each Admi ∈ X computes the UIDi as follow

UIDi = ((yAdm)ti · UIDi) / K

5 Security

In this section, the security of the proposed system is discussed. An unauthorized
entity is assumed to eavesdrop on the RF signal between R and T . For security
analysis, Ohkubo et al.’s methods of security proof are referred [14].

Definition 1. (Fair RFID System). The proposed system consists of tag T ,
reader R, back-end database DB, and management center IMC.

• T performs the following tasks:

– after T receives query and RR from R, T computes S = H(MIDT , RR, RT)
using received RR and randomly chosen value RT .

– outputs S

• DB stores data set MIDT and operates as follows:

– receives S, RR, and RT from R.
– identifies T using MIDT , RR, and RT .

The property of indistinguishability is first discussed. The unauthorized en-
tity Eveind is defined. Its purpose is to undermine the indistinguishability (i.e.,
attempt at tracking) property. Specifically, it attempts to distinguish between a
truly random number and output S of T .

Definition 2. (Uncheckability). Unauthorized entity Eveind performs the
following:

– access oracle T adaptively, transmits a query and RR, then receives response
(s, i).

s = S, i = RT

– access oracle DB adaptively, transmits (s, i), and receives response or error.
response = H(MIDT , RT)

Eveind requests for the problem with RR, and r ∈R {0, 1} is chosen randomly.
If r = 0, Eveind is given (s′, i) (where, s′ = S′) response, which has not been
given to Eveind. If r = 1, Eveind is given (a, i) response, where the value a is a
truly random number. Finally, Eveind guesses r and outputs r′.

AdvantageEveind
= |Pr[r′ ←− Eveind, r = r′]− 1/2|

In the proposed system, the advantage of any probabilistic polynomial-time
of adversary Eveind is negligible. Therefore, the proposed system satisfies the
property of uncheckability.

150 J. Kwak et al.

In addition, the output of each tag is different each time, since S is generated
using the random value Ri. Therefore, it is impossible for an adversary to compute
S without knowledge of the randomvaluesRT , RR andMIDT . Also, unauthorized
tracking is impossible since a random answer is generated for each query.

Theorem 1. Assuming functions H is random oracles, the proposed system is
uncheckable.

Secondly, the property of unlinkability is discussed. An adversary Evelink is
defined. Its purpose is to undermine the unlinkability property. In particular, it
attempts to distinguish between (s, a) and (s, s′), where s = S, s′ = S′ and a is
a truly random number.

Definition 3 (Unlinkability). Adversary Evelink performs the following:

– access oracle T adaptively, transmits a query and RR, then receives a re-
sponse (s, i).

s = S, i = RT

– access oracle DB1 and DB2 adaptively, transmits (s, i), and receives
response or error.

response = H(MIDT , RT)

If Evelink requests DB1 and DB2 for the problem with (IDDB1 , IDR) and
(IDDB2 , IDR), r ∈R {0, 1} is chosen randomly. If r = 0, Evelink is provided
a response ((s′, i),(s′′, i)), which has not been given to Alink. If r = 1, Evelink

is provided a response ((s′, i),(a, i)), where value a is a truly random number.
Finally, Evelink guesses r and outputs r′.

AdvantageEvelink
= |Pr[r′ ←− Evelink, r = r′]− 1/2|

In the proposed system, the advantage of any probabilistic polynomial-time
of adversary Evelink is negligible. Therefore, the proposed system is unlinkable,
i.e., it is impossible to find a relationship among the output of T through the
cooperation of DBs.

In the case of the DB, and without knowing the UID of the tag, it is impossible
to compute MIDT stored in other DBs. This is because each DB is stored with
different MIDT , and all MIDT s are generated differently.

When the reader attempts to perform tracking by collecting transmitted data
from the tag, it is impossible to ensure that the transmitted data from the same
tag will change for each query.

Theorem 2. Assuming functions H is random oracles, the proposed system is
unlinkable.

The proposed system is proven to ensure users’ privacy, compared with the ex-
isting methods since the response from the tag is one-time based information. In
addition, the UIDs stored in the IMC are encrypted with K, and K is consigned
to each of the IMC administrator in the secret sharing scheme for secure-keeping.

RFID System with Fairness Within the Framework of Security and Privacy 151

To track the UID from the tag in IMC, the original secret may be recovered
through the cooperation of t(t ≤ n) or more of the consigned institutions among
“n” consigned institutions. Accordingly, in case there is a need to trace the UID
in the tag, the UID can be acquired by recovering the key used in encryption
only through the cooperation of “t” administrators or more. As a result, the
privacy of the users can be protected better.

6 Conclusion

The RFID system have become popular for automated identification and supply-
chain applications. Furthermore, the RFID system can be applicable to location
based systems. In location providing services such as a search for missing chil-
dren, and emergency call services, the availability of the user location informa-
tion is critical in providing specific location information. However, location is a
sensitive piece of information, and the user usually desires protect their location
information secret. Therefore, when necessary, only authorized entities should
have access to location information.

In this paper, a secure and fair RFID system is proposed. The proposed system
can authenticate the tag without exposing its UID to the reader (also the back-
end database), and therefore protect users’ privacy. However, if necessary, only
authorized administrators can identify the UID of the tag.

In conclusion, the following two points are stated; (1) The tag generates a
random response with a random value received from the reader on every session.
Therefore, the proposed system secures against an adversary attempting a replay
attack, tracking, and so on. (2) The UID of the tag can be traced, when necessary,
through the cooperation of authorized administrators. Therefore, the proposed
RFID system can be satisfied with fairness.

References

1. C. Cachin. On-Line Secret Sharing. Cryptography and Coding: 5th IMA Confer-
ence, LNCS 1025, pp. 190-198, Springer-Verlag, 1995.

2. L. Chen, D. Gollmann, C. J. Mitchell and P. Wild. Secret sharing with Reusable
Polynomial. 2nd Australasian Conference on Information Security and Privacy,
ACISP 97, LNCS 1270, pp. 183-193, Springer-Verlag, 1997.

3. D. Engels. The Reader Collision Problem. Technical Report. MIT-AUTOID-WH-
007, MIT Auto ID Center, 2001. Available from http://www.autoidcenter.org.

4. D. M. Ewatt and M. Hayes. Gillette razors get new edge: RFID tags. Information
Week, 13 January 2003. Available from http://www.informationweek.com.

5. P. Fedlman. A Practical scheme for Non-interactive Verifiable secret sharing. 28th
Annual Symposium on the Foundation of Computer Science, pp. 427-437, 1987.

6. K. Finkenzeller. RFID Handbook, John Wiley and Sons. 1999.
7. G. Avoine and P. Oechslin. A Scalable and Provably Secure Hash-Based RFID

Protocol. 2nd IEEE International Workshop on Pervqsive Computing and Com-
munications Security, PerSec 2005, pp. 110-114, IEEE, 2005.

8. G. Avoine and P. Oechslin. RFID Traceability: A Multilayer Problem. Financial
Cryptography, FC’05, LNCS 3570, pp. 125-140, Springer-Verlag, 2005.

152 J. Kwak et al.

9. A. Juels and R. Pappu. Squealing Euros: Privacy protection in RFID-enabled ban-
knotes. Financial Cryptography, FC’03, LNCS 2742, pp. 103-121, Springer-Verlag,
2003.

10. A. Juels, R. L. Rivest and M. Szydlo. The Blocker Tag : Selective Blocking of RFID
Tags for Consumer Privacy. 10th ACM Conference on Computer and Communica-
tions Security, CCS 2003, pp. 103-111, 2003.

11. S. J. Kim, S. J. Park and D. H. Won. Proxy Signatures, Revisited. International
Conference on Information and Communications Security, ICISC’97, LNCS 1334,
pp. 223-232, Springer-Verlag, 1997.

12. H. Knospe and H. Pobl. RFID Security. Information Security Technical Report,
vol. 9, issue 4, pp. 39-50, Elsevier, 2004.

13. MIT Auto-ID Center (EPCglobal), http://www.epcglobalinc.org.
14. M. Ohkubo, K. Suzuki, and S. Kinoshita. A Cryptographic Approach to “Privacy-

Friendly” tag. RFID Privacy Workshop, Nov 2003. http://www.rfidprivacy.org/
15. T. P. Pedersen. A Threshold cryptosystem without a trusted party. Advances in

Cryptology-EUROCRYPT’91: Workshop on the Theory and Application of Cryp-
tographic Techniques, LNCS 547, pp. 522-526, Springer-verlag, 1991.

16. K. W. Rhee, J. Kwak, S. J. Kim, and D. H. Won. Challenge-Response Based
RFID Authentication Protocols for Distributed Database Environment. Second
International Conference on Security in Pervasive Computing, SPC 2005, LNCS
3450, pp. 70-84, Springer-Verlag, 2005.

17. S. E. Sarma. Towards the five-cent tag. Technical Report MIT-AUTOID-WH-006,
MIT Auto ID Center, 2001. Available from http://www.autoidcenter.org.

18. S. E. Sarma, S. A. Weis, and D. W. Engels. RFID systems, security and privacy im-
plications. Technical Report MIT-AUTOID-WH-014, AutoID Center, MIT, 2002.

19. S. E. Sarma, S. A. Weis, and D. W. Engels. Radio-frequency identification systems.
Workshop on Cryptographic Hardware and Embedded Systems, CHES’02, LNCS
2523, pp. 454-469, Springer-Verlag, 2002.

20. S. E. Sarma, S. A. Weis, and D. W. Engels. Radio-frequency-identification security
risks and challenges. CryptoBytes, 6(1), 2003.

21. T.Scharfeld.AnAnalysisof theFundamentalConstraintsonLowCostPassiveRadio-
Frequency Identification System Design. MS Thesis, Department of Mechanical En-
gineering, Massachusetts Institute of Technology, Cambridge, MA 02139, 2001.

22. Security technology: Where’s the smart money? The Economist, pages 69-70, 9
February 2002.

23. A. Shamir, How to share a secret. Communication of the ACM, vol. 21, pp. 120-126,
1979.

24. M. Tompa and H. Woll. How to share a secret with cheater. Journal of Cryptology,
vol. 1, pp. 133-138, 1988.

25. I. Vajda and L. Buttyan. Lightweight Authentication Protocols for Low-Cost RFID
Tags. 2nd Workshop on Security in Ubiquitous Computing, Ubicomp 2003, 2003.

26. S. A. Weis. Radio-frequency identification security and privacy. Master’s thesis,
M.I.T. May 2003.

27. S.A.Weis,S.Sarma,R.Rivest,andD.Engels.Securityandprivacyaspectsof low-cost
radio frequency identification systems. First International Conference on Security in
Pervasive Computing, SPC 2004, LNCS 2802, pp. 201-212, Springer-Verlag, 2004.

Scalable and Flexible Privacy Protection Scheme
for RFID Systems

Sang-Soo Yeo and Sung Kwon Kim

Chung-Ang University, Seoul, Korea
ssyeo@alg.cse.cau.ac.kr, skkim@cau.ac.kr

Abstract. Radio Frequency Identification (RFID) system has been
studied so much and it may be applicable to various fields. RFID sys-
tem, however, still has consumer privacy problems under the limitation of
low-cost tag implementation. We propose an efficient privacy protection
scheme using two hash functions in the tag. We show that our scheme
satisfies not only privacy and location history protection of consumers,
but also scalability and flexibility of back-end servers. Additionally, we
present a practical example to compare performance of several schemes.

1 Introduction

Recently, in the areas of manufacturing, logistics, sales and consumer services, ra-
dio frequency identification(RFID) system has been adopted rapidly. This trend
may be caused of cost-down of manufacturing RFID tag, which is about 5 ∼ 10
cents through large purchase orders. And accelerated adoption of RFID systems
of multinational enterprises and of national agencies plays an important role in
widely use of RFID systems. But low cost RFID tag has important security holes
such as information leakage, location tracking, location history disclosure and
counterfeiting [1][2][3]. Particularly, because low cost RFID tag gives an iden-
tical answer to any readers, privacy of consumer bearing item, in which RFID
tag embedded, may be not guaranteed and location of him may be traceable. In
low cost RFID tag, it is infeasible to embed high level cryptographic primitives
such that public-key cryptography or qualified PRNG(pseudo-random number
generator) [3]. Only hash functions or block ciphers seem to be implemented in
low cost RFID tag [4].

In this paper, we propose a new privacy protection scheme that guarantees pri-
vacy protection and location history protection for consumers and that improves
performance of back-end server. Our scheme is similar to the scheme of Ohkubo
et al. [1] in the view of self-refreshment of the tag. And our scheme provides
indistinguishability and forward security and guarantees reasonable complexity
of back-end server computation. In section 2, we mention some issues related
to privacy and security in RFID systems. In section 3, we summarize several
schemes for privacy protection. In section 4, we present our basic scheme for pri-
vacy protection. In section 5, we introduce our main scheme that enhances tag’s
security and server’s performance. And then we describe the pre-computation

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 153–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 S.-S. Yeo and S.K. Kim

approach for the main scheme. In section 6, with a practical example, our scheme
is evaluated and compared to other schemes’ results. In section 7, we conclude
with mentioning the significance of our scheme and results.

2 Privacy and Security Issues in RFID System

2.1 RFID System

Normally, RFID system is consist of four main components [1][5]; tag, reader,
data processing subsystem, and back-end server.

The RFID tag, or transponder, is embedded in the item(object) to be iden-
tified. The tag comprises an IC chip and an antenna module. The passive tag,
which has not own battery for reducing the manufacturing cost, receives reader’s
query through radio signal and sends its answer to reader using harvested en-
ergy from the electromagnetic field of the reader’s radio signal. The RFID reader
communicates several tags at the same time and identifies their ID through data
processing subsystem and/or back-end server system. The data processing sub-
system is attached to the reader and retrieves appropriate information from its
own database or external database server according to the data obtained by
the reader. Generally, the data processing subsystem is considered as a part of
reader. The back-end server has a database and manages various types of infor-
mation related to each tag. The answer of the tag is transmitted securely to the
back-end server through authenticated reader and it is used to identify the tag.
The back-end server must be trusted and must have the capability to process
every query from a lot of readers concurrently.

2.2 Privacy Problems and Security Requirements

RFID Privacy problem has two main issues. Therefore two security requirements
are needed for solving the problem [1]. These are described below.

Privacy Problems. Information Leakage - RFID tag gives data to any read-
ers. The privacy of the consumer, who has tag-embedded items, should not
be guaranteed. If anyone have a RFID reader, he can acquire tag data easily
and guess the owner’s personality. Traceability - If the tag always answers
identical data such as unique ID, its owner’s location can be traced contin-
uously.

Security Requirements. Indistinguishability - This means that the output of
the tag must be indistinguishable from truly random values and the output
should be unlinkable to its own ID [1]. If the output of the tag is always
indistinguishable, it guarantees the complete prevention of information leak-
age and the partial prevention of traceability. Forward Security - This means
that even if the adversary, who has a set of readings between tags and read-
ers, acquires the secret data stored in the tag, he cannot find the relation to
past events in which the tag was involved [1]. Because the tag can be tam-
pered physically, this requirement is important in RFID privacy problem.
This requirement guarantees the complete untraceability.

Scalable and Flexible Privacy Protection Scheme for RFID Systems 155

2.3 Requirements of Back-End Server

Efficiency and Scalability. Some privacy protection schemes [1][6] require
that back-end server performs a large amount of computation for each identi-
fication request. Some other schemes [9][10] require that the reader frequently
writes new data on the tag. In these case, computations of the reader or the
back-end server must be efficient and scalable.

Flexibility. The database of back-end server must be flexible. In some ap-
proaches [11], back-end server must rebuild its database whenever a tag
is registered or unregistered. It takes very long time to rebuild the database.

3 Related Work

Recently, many researches related to RFID privacy problem are published. Sarma
et al. announced privacy issues of RFID tag and introduced Self Destruct com-
mand [5]. Weis et al. suggested hash lock scheme, randomized hash lock scheme,
and silent tree walking scheme [3]. Juels et al. introduced Blocker tag [7] and
suggested privacy protection scheme for RFID-enabled banknotes [2]. Golle et al.
suggested re-encryption scheme that reader writes frequently new secret on the
tag using ElGamal public-key cryptosystem [9] and Saito et al. proposed modi-
fied scheme of [9]. Henrici et al. suggested hash based scheme using transaction
counter [8].

Unfortunately, all above schemes are insecure. For the detailed descriptions
of security holes and possible attacks for them, refer to [1] and [11]. Particularly,
the scheme of Saito et al. [10] seems to be infeasible for a low cost tag because
the tag must perform ElGamal decryption by itself.

However, the basic scheme Ohkubo et al. is secure [1]. In this scheme, the tag
refreshes its secret data by itself using two one-way hash functions, while the
reader refreshes secret data of the tag in most of above schemes. Nevertheless,
this scheme is impractical and not scalable because it has a very high computa-
tional complexity of back-end server to resolve the ID of the tag. (The scheme of
Ohkubo et al. has a complexity of O(mn), where m is the number of tags and n
is the maximum length of hash-chains.) Though Ohkubo et al. suggested some
enhancing techniques in [6], which decreased security of the original scheme par-
tially. Avoine et al. proposed the pre-computation approach supporting the basic
scheme of Ohkubo et al. and makes it practical [11]. In the approach of Avoine
et al., however, the pre-computation table must be rebuilt whenever a new tag is
registered on back-end server or a useless tag is removed from back-end server.
It takes very long time for the pre-computation.

4 Basic Scheme

RFID System Construction.

H : {0, 1}∗ −→ {0, 1}
, the one-way hash function algorithm with outputs of
length �.

156 S.-S. Yeo and S.K. Kim

H Hst,i st,i+1

ku || ot,i

Gku

G

ot,ipt,i

ku || ot,i+1

Gku

G

ot,i+1pt,i+1

... ...

Fig. 1. The refreshment and the output of the tag in the basic scheme

G : {0, 1}∗ −→ {0, 1}
, the one-way hash function algorithm with outputs of
length �. G has the different distribution from that of H .

m : the number of tags.
n : the maximum length of the hash chain for each tag.
g : the number of tag groups.
Tt : the tag has the hash seed, the group index, and two types of hash functions.
R : the reader communicates with B through a secure channel.
B : the back-end server manages a database of (idt, st,1), in which st,1 is created

randomly for each tag. Additionally, B manages a database of tag groups
and group index value ku.

idt : the ID of tag t, where t = 1, 2, · · · , m.
st,1 : the hash seed of tag t.
st,i : the i-th hash chain value of tag t, where i = 1, 2, · · · , n.
ku : the index value of tag group u, where u = 1, 2, · · · , g.

4.1 Scheme Outline

Main concerns of the basic scheme are in satisfying the forward security using
two hash functions in the tag and in reducing the computational complexity of
back-end server using the group index in the tag and back-end server. Whenever
it is queried by a reader, the tag computes output data pt,i||ot,i for the reader
using hash function G and the tag changes its secret data st,i using hash function
H (fig.1). As mentioned above, the scheme using two hash functions is originally
proposed by Ohkubo et al. [1]. We have modified their scheme and added the
step of hashing the group index concatenated to ot,i together. The group index
is a fixed value of each group and all of m tags are evenly divided into g groups,
and so the number of tags in each group is m/g. Back-end server finds ku by
checking pt,i = G(ku||ot,i) for all 1 ≤ u ≤ g and then finds (idt, st,1) by checking
ot,i = G(Hi−1(st,1)) for all 1 ≤ i ≤ n and all t ∈ group u.

Detailed Protocol.

1. Reader, R
(a) sends request to the tag.

Scalable and Flexible Privacy Protection Scheme for RFID Systems 157

2. Tag, Tt

(a) computes ot,i = G(st,i) and pt,i = G(ku || ot,i).
(b) sends answer pt,i || ot,i to the reader.
(c) changes secret data st,i+1 = H(st,i).

3. Reader, R

(a) receives pt,i || ot,i from Tt.
(b) sends pt,i || ot,i to B through a secure channel.

4. Back-end Server, B

(a) receives pt,i || ot,i from the authenticated R.
(b) finds ku by checking pt,i = G(ku||ot,i) for all 1 ≤ u ≤ g.
(c) finds (idt, st,1) by checking ot,i = G(Hi−1(st,1)) for all 1 ≤ i ≤ n and all

t ∈ group u.
(d) sends idt to the authenticated R through a secure channel.

5. Reader, R

(a) receives idt of Tt from B.

4.2 Security and Performance Analysis

Security. Firstly, the output of hash function G is indistinguishable, hence
this scheme satisfies indistinguishability. Even if the tag is tampered and st,i

is revealed by adversary, he will not know st,j , for j < i, because of one-way
property of hash function H . However, if ku is revealed to him, forward security
will not be guaranteed. He can obtain location history of the tag by computing
with ku and prior outputs of the tag. This is adjusted in the our main scheme.

Performance. The complexity of hashing in the step of finding group u to which
the tag belongs is O(g) and the complexity of hashing in the step of finding st,1 in

group u is O
(
nm

g

)
. Therefore the total complexity in terms of hashing, Tbasic,

is O
(
g + mn

g

)
. If g =

√
mn, Tbasic is minimized and Tbasic = (

√
mn). The

scheme of Ohkubo et al. has the complexity of O(mn) [1].

5 Main Scheme

RFID System Construction. It is identical to the basic scheme except below.

l : the maximum length of the hash chain for each group. We assumes l = n.
B : the back-end server manages a database of (idt, st,1), in which st,1 is created

randomly for each tag. And B manages a database of tag groups and each
group seed, ku,1.

ku,1 : the seed of tag group u, where u = 1, 2, · · · , g.
ku,i : the i-th hash chain value of tag group u, where i = 1, 2, · · · , n.

158 S.-S. Yeo and S.K. Kim

H Hst,i st,i+1

ku,i || ot,i

G

G

ot,ipt,i

ku,i+1 || ot,i+1

G

G

ot,i+1pt,i+1

H Hku,i ku,i+1

...

...

...

...

Fig. 2. The refreshment and the output of the tag in the main scheme

5.1 Scheme Outline

In the main scheme, we replace group index ku in the basic scheme by another
hash chain(fig.2). This modification gives a stronger forward security to our
scheme. The tag has only two hash functions H and G, therefore the tag’s
hardware is equivalent to the scheme of Ohkubo et al. in the view of the number
of hash modules. Whenever it is queried by a reader, the tag computes output
data pt,i||ot,i and the tag changes its secret data st,i and its group hash value
ku,i. pt,i is computed from ot,i and ku,i. Back-end server finds ku,1 by checking
pt,i = G(Hi−1(ku,1)||ot,i) for all 1 ≤ u ≤ g and all 1 ≤ i ≤ n. And then B finds
(idt, st,1) by checking ot,i = G(Hi−1(st,1)) for all t ∈ group u.

Detailed Protocol.

1. Reader, R
(a) sends request to the tag.

2. Tag, Tt

(a) computes ot,i = G(st,i) and pt,i = G(ku,i || ot,i).
(b) sends answer pt,i || ot,i.
(c) changes secret data st,i+1 = H(st,i) and changes group hash value

ku,i+1 = H(ku,i).

3. Reader, R
(a) receives pt,i || ot,i from Tt.
(b) sends pt,i || ot,i to B through a secure channel.

4. Back-end Server, B
(a) receives pt,i || ot,i from the authenticated R.
(b) finds ku,1 and i by checking pt,i = G(Hi∗−1(ku,1)||ot,i) for all 1 ≤ u ≤ g

and all 1 ≤ i∗ ≤ n.
(c) finds (idt, st,1) by checking ot,i = G(Hi∗−1(st,1)) for all t ∈ group u.
(d) sends idt to the authenticated R through a secure channel.

5. Reader, R
(a) receives idt of Tt from B.

Scalable and Flexible Privacy Protection Scheme for RFID Systems 159

ot,i = G(st,i)

pt,i = G(ku,i||ot,i)

ku,i+1 = H(ku,i)
st,i+1 = H(st,i)

pt,i , ot,i

querys idt to
product DB server

finds ku,1 in group
s.t.

pt,i = G(Hi-1(ku,1)|| ot,i)

finds idt in group u
s.t. ot,1 = G(Hi-1(st,1))

• Back-end server, B generates (idt , st,1) for all tags
 and stores all (idt , st,1) pairs in its DB
• B divides tags into g groups uniformly
• B generates and stores ku,1 for all tag groups
• st,1 and ku,1 are stored in each tag, Tt

Initialization Step

Tag, Tt Reader, R Back-end, B

request

pt,i , ot,i

idt

insecure
channel

secure
channel

pt,i , ot,i

Fig. 3. The overview of our main scheme

5.2 Security and Performance Analysis

Security. As mentioned in the basic scheme, the output of hash function G is
indistinguishable, hence this scheme satisfies indistinguishability. Even if the tag
is tampered and st,i is revealed by adversary, he will not know st,j, for j < i,
because of one-way property of hash function H . And the group hash value in
the tag is also refreshed by hash function H whenever the tag sends answer.
Even if the tag is tampered and ku,i is revealed by the adversary, he will not
know ku,j , for j < i. Therefore forward security is guaranteed.

Additionally, we consider the case that the adversary who tampered one tag,
Ta and knows ku,i would try to trace another tag, Tb. Because he does not
know Ta’s i, Tb’s group hash seed, and Tb’s transaction counter i′, he cannot
distinguish Tb from the others. Even in the case that Tb and Ta are in the same
group, only if i′ < i, he cannot trace it. However, if and only if Tb and Ta are in
the same group and i′ ≥ i, he can distinguish Tb from the others by computing
ptb,i′ = G(ku,i′ ||otb,i′) for all i ≤ i′ ≤ n. Nevertheless, if the number of groups
is large enough, such as m

4 ∼
m
2 , the number of tags in the same group will be

very small and the security risk will be reduced considerably.

Performance. The complexity of hashing in the step of finding group u is O(ng)
and the complexity of hashing in the step of finding st,1 in group u is O

(
nm

g

)
.

Therefore the total complexity in terms of hashing, Tmain, is O
(
ng + nm

g

)
. If

g =
√

m, Tmain is minimized and Tmain = O (n
√

m), but it is not enough to
ensure the security . Practically, it is recommended that g should be large enough
for a strong security.

160 S.-S. Yeo and S.K. Kim

0
1

2
3

4
5

6
7

8

x 10
5

0

200

400

600

800
0

1000

2000

3000

4000

5000

6000

nm

t
h
e

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

h
a
s
h

c
o
m
p
u
t
a
t
i
o
n
s

G. Avoine’s scheme

Our main scheme
with pre−computation

Fig. 4. The average number of hash computations, where M = 230(1GB Memory)

The flexibility of back-end server is good because it is easy to add a new tag
into back-end server’s DB and to remove an useless tag.

Performance Enhancement with Pre-computation. We can build pre-
computation table for the step of finding group u using the pre-computation
technique of Avoine et al. [11]. This technique has no effect on flexibility of
our scheme, because the number of groups is not changed when a new tag is
registered or an useless tag is removed. Using the pre-computation technique of
Avoine et al. [11] with M bytes memory, adequate g value can be computed as
below (proof is omitted):

g =
(

mM3μ2

3429n2γ

) 1
4

, where we assume γ and μ small factors. Refer them to [11]

So we can compute Tmain with pre−computation straightforwardly:

Tmain with pre−computation =
(

217m3n6γ

M3μ2

) 1
4

= O

((
m3n6

M3

) 1
4
)

The complexity of the scheme of Ohkubo et al. is O(mn) [1] and the complex-
ity of the scheme of Avoine et al. is 3329n3m3γ

M3μ2 = O
(

m3n3

M3

)
[11]. Therefore our

main scheme with pre-computation has the lower complexity than Ohkubo et

Scalable and Flexible Privacy Protection Scheme for RFID Systems 161

al., where m > n2

M3 . And it has the lower complexity than Avoine et al., where
m > M

3√n
. Fig.4 shows comparison of our main scheme with pre-computation

and the scheme of Avoine et al. in the view of the average number of hash
computations. A practical example is introduced in the next section.

6 Practical Example

We compare the scheme of Ohkubo et al. , the scheme of Avoine et al. and our
scheme in the view of hash computation complexity of back-end server.

– Example setting:

m = 220: the number of tags
n = 210: the maximum length of each hash chain
g: the number of group
hashspeed = 224times/sec: the number of times of hash function per seconds
M : the amount of memory for pre-computation table (bytes)
μ = 2: refer to [11]
γ = 8: refer to [11]

– the scheme of Ohkubo et al.

complexity = nm = 230

identification time = 26sec. = 64sec.

– the scheme of Avoine et al. (M = 230 bytes)

complexity of pre-computation ≈ n2m

2
= 239

pre-computation time ≈ 215sec. ≈ 10hours

complexity of identification ≈
(

3329n3m3γ

M3μ2

)
= 28 · 33

identification time = 33 · 2−14sec. ≈ 0.00165sec.

– our basic scheme (g =
√

nm)

complexity =
√

nm = 215

identification time = 2−9sec. ≈ 0.00195sec.

– our main scheme without pre-computation (g =
√

m)

complexity = n ·
√

m = 220

identification time = 2−4sec. ≈ 0.0625sec.

162 S.-S. Yeo and S.K. Kim

– our main scheme with pre-computation (M = 227bytes)

the optimum of g =
(

mM3μ2

3429n2γ

) 1
4

= 217 · 2 3
4 · 3−1 ≈ 217

complexity of pre-computation ≈ gn2

2
≈ 236

pre-computation time ≈ 212sec. ≈ 69min.

complexity of identification ≈
(

217n6m3γ

M3μ2

) 1
4

= 213

identification time = 2−11sec. ≈ 0.00049sec.

7 Conclusion

The scheme of Ohkubo et al. is secure, but not scalable. We have described server-
side computational advantages of grouping the tags in our basic scheme. And we
have proposed the scalable and flexible privacy protection scheme that satisfies
indistinguishability and forward security. We have shown that our main scheme
has a enhanced identification time in back-end server without pre-computation
compared to Ohkubo et al.’s scheme. Applying the pre-computation technique
of Avoine et al. to the step of finding the group in our main scheme, we have
shown that our main scheme can be more efficient and more scalable.

Acknowledgement

This work was supported by grant No. R01-2005-000-10568-0 from the Basic
Research Program of the Korea Science & Engineering Foundation.

References

1. M. Ohkubo, K. Suzuki, and S. Kinoshita, “Cryptographic Approach to “Privacy-
Friendly” Tags”. RFID Privacy Workshop, MIT, November 2003.

2. A. Juels and R. Pappu, “Squealing Euros: Privacy Protection in RFID-Enabled
Banknotes”, Financial Cryptography ’03, 2003.

3. S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and Privacy Aspects of
Low-cost Radio Frequency Identification Systems”, In Proceedings of the 1st Inter-
national Conference on Security in Pervasive Computing, 2003.

4. M. Feldhofer, “A Proposal for Authentication Protocol in A Security Layer for
RFID Smart Tags”, IEEE MELECON 2004, vol. 2, pp. 759-762, May 2004.

5. S. Sarma, S. Weis, and D. Engels, “RFID Systems and Security and Privacy Im-
plications”, CHES 2002, vol. 2523 of LNCS, pp. 454-469, August 2002.

6. M. Ohkubo, K. Suzuki and S. Kinoshita, “Efficient Hash-Chain Based RFID Pri-
vacy Protection Scheme”, Ubicomp 2004, 2004.

Scalable and Flexible Privacy Protection Scheme for RFID Systems 163

7. A. Juels, R. Rivest, and M. Szydlo, “The Blocker Tag : Selective Blocking of RFID
Tags for Consumer Privacy”, ACM CCS 2003, pp. 27-30, October 2003.

8. D. Henrici, and P. Müller, “Hash-based Enhancement of Location Privacy for
Radio-Frequency Identification Devices using Varying Identifiers”, IEEE PerSec
’04 at IEEE PerCom, March 2004.

9. P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal Re-Encryption for
Mixnets”, CT-RSA ’04, 2004.

10. J. Saito, J-C. Ryou and K. Sakurai, “Enhancing Privacy of Universal Re-
Encryption Scheme for RFID Tags”, EUC ’04, pp. 879-890, August 2004.

11. G. Avoine and P. Oechslin. “A Scalable and Provably Secure Hash-Based RFID
Protocol”, IEEE PerSec 2005, Kauai island, Hawaii, USA, March 8th, 2005.

RFID Authentication Protocol with Strong
Resistance Against Traceability
and Denial of Service Attacks

Jeonil Kang and DaeHun Nyang

Information Security Research Laboratory,
INHA University�, Korea

dreamx@seclab.inha.ac.kr, nyang@inha.ac.kr

http://seclab.inha.ac.kr

Abstract. Even if there are many authentication protocols for RFID
system, only a few protocols support location privacy. Because of tag’s
hardware limitation, these protocols suffer from many security threats,
especially from the DoS (Denial of Service) attacks. In this paper, we
discuss location privacy problem and show vulnerabilities of RFID au-
thentication protocols. And then, we will suggest a strong authentication
protocol against location tracing, spoofing attack, and DoS attack.

1 Introduction

A radio-frequency identification (RFID) system has been widely deployed mainly
in supply chain management. Compared to using optical bar-code, RFID sys-
tem has many benefits: quick reading, long recognition distance, obstacle-free,
strength against the contamination, etc. Owing to these properties, a lot of tags
can be read simultaneously during a few seconds. Also, RFID system can be
effectively used in some applications such like animal tagging, high-way tolling,
theft protecting, etc, whereas bar-code cannot handle these sides. RFID system
will replace bar-code system very quickly.

Unfortunately, RFID system also has too many security risks specially when
a high level of security is required. Generally, RFID tag has very low resources:
low computing power and small memory size. Thus, it is very hard to apply
existing security technologies that assumes very high computing power and
large memory size to RFID tag. So, a lot of researches have been considered
about security techniques for low-cost RFID systems [1-9]. We can classify se-
curity problems of RFID systems into two categories: information leakage and
traceability.

A passive attacker might be able to overhear the information between a reader
and some tags because the medium is the air in the RFID system. An active
attacker may be able to send some bogus data that fakes the reader or tags to
extract information from them. To prevent these attacks, many protocols have

� This work was supported by INHA UNIVERSITY Research Grant.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 164–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RFID Authentication Protocol with Strong Resistance 165

been proposed: blocker tag [6], RFID system using AES [9], minimalist XOR
one-time cryptography [4], etc. But still the blocker tag is a very simple and
strong method to protect information leakage.

On the other hand, tag’s location information as well as tag’s own data must
be protected. Also, there are some solutions for this problem; hash-based ID
variation protocol [1], hash chaining [2], universal re-encryption [7], etc. Accord-
ing to G. Avoine, however, it is hard to protect the threat because each RFID
protocol layer (application, communication, and physical layer) has technical
and actual defects [10].

In this paper, we’ll discuss the location privacy of RFID system in section 2.
Vulnerability of existing models of authentication protocols to location tracing
and the DoS attack is shown in section 3. In section 4, we’ll propose a strong
authentication protocol for RFID system to solve the different early mentioned
problems. Finally, we will summarize our results in section 5.

2 Location Privacy

2.1 Traceability at the Application Layer

Generally, RFID communication protocol consists of three layers; application,
communication and physical layer. In the application layer, the information is
handled by the user. Other RFID application programs use this information to
identify objects. To make this possible, generally the information is made of
product number and serial number. Also it might have a secret key or password
for administrative purpose. The communication layer defines how to avoid col-
lision might occur by the reader or the tags. This protocol is called “Collision
Avoidance Protocol” or “Anti-Collision Algorithm.” Collision avoidance proto-
col can be classified into probabilistic and deterministic methods according to
the predictability of singulation time. The physical layer defines how to trans-
mit data physically. (e.g. air interface - frequency, modulation, data encoding,
synchronization, etc.)

Unfortunately, location privacy problem might occur in each layer. If an at-
tacker can overhear all messages between the reader and tags which contents
contain information that is never changed, the attacker can trace tag’s move-
ment using the information. Also, the attacker can use a type of collision avoid-
ance protocol or tag identifier which can be used in collision avoidance protocol.
Therefore, it is hard to prevent the attacker from tracing.

The one thing that we must consider to protect location privacy is accuracy
(or correctness) of tracing. Accuracy of tracing using defects in communication
and physical layer is lower than that in application layer. That’s because there
are many tags which use the same collision avoidance protocol and have same
physical features in the real world. However, accuracy of tracing with messages
in application layer is very high, because the databases server should distinguish
each tag clearly. Therefore, it is very important to protect location privacy in the
application layer. In this paper, we will propose a method to solve the location
privacy problem in application layer.

166 J. Kang and D. Nyang

2.2 Threat Model

Before describing our authentication protocol, a threat model is defined to an-
alyze vulnerabilities of existing authentication model. By defining the threat
model, we can restrict the ability of the attacker reasonably in RFID system.

Wired

Secure Channel

Wireless

Open Channel

Wired

Secure Channel

Wireless

Open Channel

Fig. 1. RFID system threat model. An attacker cannot intercept in wireless channel
because of a property of the air. Also, we assume that wired channel is secure in any
case.

Like another threat model, we assume that an attacker can’t intercept or
modify messages. In the wireless open channel between tag and reader, the at-
tacker can overhear all messages or insert fake messages, but he can’t intercept
or modify messages because the medium of transmission is the air itself. In wired
secure channel between reader and database, an attacker can’t eavesdrop, inter-
cept, insert, or modify. In RFID system, we assume that reader and database
server have pre-authenticated each other.

In the threat model, the attacker tries to trace location of tags and also tries
to collapse system. The system collapse is caused by DoS(Denial of the Service),
spoofing, or asynchronisation attack against specific, unspecific tags or against
the database.

3 Vulnerabilities of Authentication Protocols

In this section, we will describe some methods to attack RFID system using
structural problem of existing authentication protocols.

3.1 Un-terminated Session Attack

We cannot be sure that an attacker may always terminate the authentication
session correctly. The authentication protocols - which send only hashed iden-
tifier (or hashed identifier with the nonce that was received from a reader) to
a reader - are more prone to be traceable. Since the tag returns same hashed
identifier in every session for attacker’s queries, attacker can easily find tag’s
location. Unfortunately, the tag can’t change its identifier to prevent this attack
because the identifier always must be synchronized with that in the database.
This asynchronisation (between database and tag) means that we cannot use
the tag anymore.

RFID Authentication Protocol with Strong Resistance 167

ATTACKER TAG

request

H(ID), …

request

H(ID), …

request

H(ID), …

ATTACKER TAG

request

H(ID), …

request

H(ID), …

request

H(ID), …

Fig. 2. Location tracing using un-terminated session. An attacker can trace target tag
by sending request message and closing session.

3.2 Preemptive Locking

Consider that a tag receives a new request message, while it is already in the
authentication session. The tag should choose its action: to ignore the request
or to start immediately a new authentication session for the new request. The
former gives a chance for the attacker to lock a tag preemptively. The attacker
can make a target tag keep silence just by sending request message to the tag
before it starts a legal authentication session. Because of this preemptive locking,
the manufacturer should provide some mechanism with the tags to prevent this
attack, or choose the latter one as the reaction of the tag.

Using timer, it looks rather easy to prevent preemptive locking. A tag has a
timer and it starts the timer when session starts. When the timer is expired, the
tag closes the session instantly. However, during the time that attacker possesses
the session, tag cannot serve any request and thus, the attack might cause a
severe degradation of the overall performance.

So, it seems to be better to start new authentication session for the newly
arrived request message. But even in this case, tag is still weak against the attack
described in section 3.3.

3.3 Stealth Bombing

If a tag is implemented to start new authentication session for the newly arrived
request message, then it will suffer from so called, ’stealth bombing’. Stealth
bombing is a kind of the DoS attacks. We assumed that the attacker can generate
and insert fake messages, in section 2. What will happen if fake messages are
inserted by the attacker during authentication session? If the tag which changes
its response at every session using a random nonce opens a new session for a
fake request message, the ongoing legal authentication session will fail by this
illegal authentication trial.

168 J. Kang and D. Nyang

ATTACKER TAG

Request, S1

H(ID xor S1), …

READER

Request, S2

H(ID xor S2), …

Confirm MSG for S1

Fail

ATTACKER TAG

Request, S1

H(ID xor S1), …

READER

Request, S2

H(ID xor S2), …

Confirm MSG for S1

Fail

Fig. 3. Stealth bombing attack. An attacker can attempt DoS attack by sending request
message to the tag in session. The tag has to decide its action against the request
message.

Also, we can think another attacking method. Instead of sending a fake request
message, the attacker might send an invalid confirm message for a legal session
request. Some type of tags might abort the authentication session after receiving
this confirm message.

Though this stealth bombing attack seems to be very hard to try because
the communication layer will discard if the frame does not have a valid iden-
tifier defined by the communication layer, it is possible to send a fake request
message that includes the valid identifier since it is disclosed during the normal
communication between reader and tag.

3.4 DoS Attack Against the Database

Some authentication protocols use status-based flag to prevent problems of section
3.1. If the previous session terminated unsuccessfully, the tag responds using the
message createdwith sparekeyandhint for the real identifier.Theseprotocolsmust
use largecomputational resource for recovering correct statusand identifier.Foran-
other example, Ohkubo’s protocol [2] must calculate a lot of hash function to search
tag’s identifier because the database server must compute si = h(h(· · ·h(s1) · · ·))
from s1. Since RFID tag has only small computing power, their approach to move
tag’s computation to database server is reasonable.

Because of this computational inefficiency, the attacker can try the DoS attack
with very small effort against these protocols. It is enough to send some garbage
messages toward the database server. Then, the database server will start to
search identifier until finding it or retrieving all records. The attacker doesn’t
need to check whether the identifier exists or not when he makes fake messages.

In conclusion, a strong authentication protocol against DoS attacks should not
search a large space for finding the hidden identifier. It seems to be incompatible
to the solution of the problems in section 3.1.

RFID Authentication Protocol with Strong Resistance 169

4 Proposed Protocol

In this section, we will propose an authentication protocol which has a tolerance
against DoS attack, provides location privacy, and strengthens other weakness.

4.1 Tag and Database Structure

A tag using this protocol has fields shown in below.

– SFlag (session flag): indicates whether tag is under an authentication session
or not. When a session starts, it is set to true, and when a session ends
either normally or abnormally, it is set to false. SFlag is initialized to false
immediately after a tag comes to be active.

– ID (identifier): used to distinguish a tag from another tags during authenti-
cation session. {0, 1}n

– CWD (confirm word): used to confirm the ID of tag by the database. {0, 1}n
– R1 (Random nonce 1): changed at each session. If SFlag is true, it is replaced

by saved R1. Or it is generated by the tag newly. {0, 1}n
– C (Counter): increased or randomly changed at each session. If SFlag is true,

it is replaced by saved C. Or it is changed by the tag. {0, 1}m
– THR COUNT (threshold counter): indicates how many trials have hap-

pened. When THR COUNT reaches THR MAX, the tag terminates current
session and starts a new session. It can report DoS attack optionally.

The database has the structure shown in figure 4. It must prepare the same
number of slots as that of all possible H(ID‖C), while H denotes cryptographic
hash function, and ‖ denotes concatenation. When ID is constant, there are 2m

numbers of slots that have the same ID. If H(ID‖C)of different ID conflicts, they
are ‘linked’ in the same slot. If m is 10, the database server has to calculate 1024
(=210) hash values in advance. Though it seems to require much computation of
database server, hash values are computed after authentication in the idle time.
It is possible to use special purpose unit for computing hash values. Actually, the
computations spend small of time (about 0.283 second in internal md5 testing,
0.017 second if only hashing), and we have thought it is not a problem at all if
a reasonable m is used.

Hash space H(ID || C)

…

Empty Slot

Filled Slot* The darkest slots have the same ID.

Hash space H(ID || C)

…

Empty Slot

Filled Slot* The darkest slots have the same ID.

Fig. 4. Example of the database

170 J. Kang and D. Nyang

4.2 Basic Protocol

Our protocol is shown in figure 5 and 6. The protocol solves the security problems
referred in section 3.1-3.4.

In order to prevent un-terminated session attack, it must reserve the freshness
of response message from tag between sessions. For reserving the freshness of
messages, all messages should be generated with secure random nonce at every
session. However, if insecure random nonces are used or the attacker can use his
number as nonce in authentication session, it can’t prevent this attack. Because
the tag can’t know where the random number included in the request message
is from, the random number from a legal reader also isn’t trusted. Therefore,
only random number from the tag itself is trusted. Consequently, the tag should
generate random nonces newly when new session starts.

In order to prevent preemptive locking and stealth bombing attack at once,
it needs to handle the session very carefully. Preemptive locking attack is pos-
sible because of the session-preemptive feature of the authentication protocol,
and stealth bombing attack is mountable because of the session-nonpreemptive
feature of the authentication protocol. An authentication protocol cannot be
preemtive and non-preemptive at the same time.

Even though the tag receives request message during authentication session,
the attacker can not preempt the session if the tag sends the same response mes-
sage repeatedly until normal termination. We can also frustrate stealth bombing
attack using the repeated transmission of the same response message. Note that
this method is possible only if random nonces are generated by the tag. By
reserving the identicalness of response message from a tag during one session,
our protocol can be very robust against preemptive locking and stealth bombing
attack. Our protocol provides a strategy that dose not frustrate the attacks, but
ignore them.

ATTACKER TAG

Request

Response

READER

Request

Response

Confirm

ATTACKER TAG

Request

Response

READER

Request

Response

Confirm

Success Success

ATTACKER TAG

Request

Response

READER

Request

Response

Confirm

ATTACKER TAG

Request

Response

READER

Request

Response

Confirm

Success Success

Fig. 5. How to solve preemptive locking and stealth bombing. All response messages
have the same value. If a tag can respond with the same response in one session, these
two attack can be thwarted.

RFID Authentication Protocol with Strong Resistance 171

TAG

(1) REQUEST

READERDATABASE

(2-1) HID, HCWD, XR1

(3) HR, XR2

(4-1) CWD

TAG

(1) REQUEST

READERDATABASE

(2-1) HID, HCWD, XR1

(3) HR, XR2

(4-1) CWD

Fig. 6. Proposed protocol

However, to prevent DoS attack using insertion of an invalid confirm message,
we need another strategy. To prevent this attack, tag have to wait for a valid
confirm message for reserved time. Because it is too expensive to use a timer in
RFID tag, threshold counter can be used instead of the timer.

Our protocol illustrated in figure 6 runs as the following:

step 1. When a reader needs tag’s data, the reader sends message (1)
{REQUEST} to tag

step 2. When a tag receives REQUEST message, it checks SFlag. If SFlag is true,
the tag uses R1 and C which are already in memory. Else, the tag chooses ran-
dom numbers R1 ∈R {0, 1}n and C ∈R {0, 1}m. Also, the tag sets SFlag to
true. And then, the tag computes and sends message (2-1) {HID←H(ID‖C),
HCWD←H(R1‖R3‖CWD),XR1←ID⊕R1} to the database server through
the reader.

step 3. Using HID of message (2-1), the server can get candidates for ID. Also
the server gets candidates for R1 by computing XR1⊕(candidates for ID).
The server can find a real ID of the tag by checking whether HCWD is the
same as H((candidates for R1)‖R3‖(candidates for CWD)) or not.

step 4. If the server can’t find any satisfied ID in previous step, the server
regards this message as an attack and ignores it. When the server finds ID,
the server chooses another random nonce R2. And then, the server generates
and sends message (3) {HR←H(R1‖R2),XR2←ID⊕R2} to the tag.

172 J. Kang and D. Nyang

step 5. If the tag receives message (3), it increases THR COUNT. Then the
tag checks whether H(R1‖(ID⊕XR2)) is the same as HR or not if only if
THR COUNT < THR MAX. If it matches, the tag has to send message
(4-1) {CWD} to the database server and continues step 7.

step 6. If the tag has some reason for reject or message (3) is not valid, the tag
should wait another messages until THR COUNT expires. If THR COUNT
reaches THR MAX (or expires), the tag sets SFlag to false, ignores all next
messages and waits until another reader opens a new session.

step 7. If the database server receives correct message (4-1), the server changes
its ID and CWD by new ones. Otherwise, the server consider previous mes-
sage (2-1) to replay attack and halts the process. If the tag has no error
to send message (4-1), the tag changes its ID and CWD, and sets SFlag
to false. Also the server must prepare hash space for all possible H(ID‖C).
Here, CWD consists of R1 and R2 in the previous session. That is,

CWDi = (R1i−1 + R2i−1) mod 2n

where i denotes the current session and i− 1 denotes previous session. Also

IDi = IDi−1⊕ R1i−1⊕ R2i−1

In order to find ID from H(ID‖C) in (2-1) message, the database server must
prepare all possible slots. If |ID| denotes the number of tags, the number of slots
is 2m × |ID|. If all possible candidates of H(ID‖C) are distributed informly and
2n is larger then 2m × |ID|, there is no collision in the same slot. If the system
has some collisions, it might have a few liked slots. So, it is good to system
to have a number of tags smaller than 2(n−m). If the number of tags is about
4,294,967,296(=232) in system, 42 is enough for n and 10 is enough for m for
structure efficiency of the database. But it is strongly recommended to use ID
and C with large length for security.

4.3 Security Analysis

Against location tracing: When the attacker wants to trace target tag, he can
use message (2-1) and (3) because both message (1) and (4) do not have any
information. However, if he can’t find any collision pair from hashed messages,
he can only use ID ⊕ R1 and ID ⊕ R2 to get clues about the tag. Because
he can only get a result of operation ⊕ with these fields, he will only know
(ID⊕R1)⊕(ID⊕R2)=R1⊕R2. Since these R1 and R2 are generated by the tag
and the server newly at each session, R1⊕R2 also can’t be a clue for tracing,
even though he can observe all authentication messages.

Also, the attacker can’t estimate the messages for next session. Because he
knows R1⊕R2, and also knows CWD of tag for next session. However, only with
CWD, an attacker cannot trace the location because CWD is masked with R1
such as H(R1‖CWD). An attacker might trace the tag using all possible values
of H(ID‖C), but he requires ID which is not exposed to him.

RFID Authentication Protocol with Strong Resistance 173

Against spoofing attack : If an attacker wants to spoof the database server or tag
for asynchronism between the server and tag, he must generate message (2-1) or
(3) correctly. (This asynchronism enables an attacker to mount a kind of DoS
attack.) An attacker can generate a valid H(R1‖CWD) only with a probability of
2−n because he must guess a valid ID. In the other hand, an attacker can choose
R1 and ID in order to attack against unspecific tag. However, the probability of
guessing CWD correctly is 2−n. Since a probability that the guessed ID is found
in the database is |ID| × 2−n, he can succeed in this attack having a probability
of |ID| × 2−2n.

An attacker can spoof a tag by sending illegal message (3). However, he can
generate a valid H(R1‖R2) for ID⊕R2 only with a probability of 2−n since he
can extract a valid R1 from ID⊕R1 of message (2-1) if he can guess a valid ID.

Against denial of service attack : DoS attack against a tag was described in sec-
tion 3.2 and 3.3. Also we explained how to solve these problems at once in
section 4.2 and our protocol works according to those principles. Using random
nonces from tag and threshold counter for attack trials, the protocol has immu-
nity against the DoS attack. Assuming an attacker cannot modify messages, he
has to send or insert messages to mount DoS attack. Even though the attacker
tries to do preemptive locking or stealth bombing attack by sending message
(1), he cannot succeed because tag answers the request of the attacker using the
same response message (2). Also he cannot guess correctly ID, R1 or C from
message (2).

When the database server searches ID of the tag, it does not need to hash
because all possible values of H(ID‖C) are pre-computed already. Using this
strategy, an attacker can’t make the database server compute hash value in any
cases. Note that the only messages which the attacker can send to the database
server are message (2-1) and (4-1). The amount of burden that the database
server experiences from one attack message is just as much as one searching of
ID space. Thus, even if the attacker can insert or replay message (2-1) and (4-1)
in the session, the database server will ignore that message.

When the tag waits message (3), the attacker can send invalid messages to tag
for making authentication fail. However, the tag increases THR COUNT against
these messages, and finally authentication will succeed if a valid message arrives
before THR COUNT expires. In the other side, the server must send message
(3) in time.

4.4 Alternative Protocol

We propose another protocol, which is a slight modification of our original proto-
col. The database server authenticates the tag first in the original protocol. But,
in the alternative protocol, the tag authenticates the database server first. After
message (2-2) is sent, the server makes candidates of ID, and tries to be authenti-
cated by sending message (3) several times until it finds a valid ID. After the tag re-
ceives a valid message that includes valid ID and R2, it sends CWD to the server in
plaintext, and changes its ID by ID⊕R1⊕R2. If a valid CWD arrive, the database

174 J. Kang and D. Nyang

TAG

(1) REQUEST

(2-2) H(ID || C), ID XOR R1

READER

(3) H(R1 || R2), ID XOR R2

DATABASE

(4-2) CWD / False

TAG

(1) REQUEST

(2-2) H(ID || C), ID XOR R1

READER

(3) H(R1 || R2), ID XOR R2

DATABASE

(4-2) CWD / False

Fig. 7. Alternative Protocol

server will changes ID to ID⊕R1⊕R2 and CWD to R1+R2. Even though R1⊕R2
is obtained easily by observing previous session, it is hard to extract R1+R2 from
R1⊕R2. So, the attacker can’t get any clues for tracing target tag.

Even though alternative protocol might require slightly more message in av-
erage than the original one, it needs only two hash computations.

5 Conclusion

Even if there are many authentication protocols for RFID system, only a few
protocols support location privacy. Because of the tag’s hardware limitation,
these protocols suffer from many security threats, especially from DoS attack.

We established threat model for RFID system and explained some special
attack for general authentication protocol. In order to solve these problems,
we suggested two strategies: keeping the nonce identical during a session, and
threshold counter. With these schemes, we proposed a strong authentication
protocol against DoS attack supporting location privacy.

Finally, we checked the strength of our protocol against three categories of
attacks, and we concluded that our protocol has reasonable security strength.
In addition, we introduced alternative protocol that reduces one more hash
operation.

References

1. Dirk Henrici and Paul Müller : Hash-based Enhancement of Location Privacy
for Radio-Frequency Identification Device using Verying Identifiers. University of
Kaiserslautern, Germany, Workshop on Pervasive Computing and Communications
Security - PerSec2004, pp. 149-153, IEEE, 2004

2. Miyako Ohkubo, Koutarou Suzuki and Shingo Kinoshita : Cryptographic Approach
to ‘Privacy-Friendly’ Tags. NTT Laboratories, Japan, RFID Privacy Workshop
MIT, 2003

RFID Authentication Protocol with Strong Resistance 175

3. István Vajda and Levente Buttyán : Lightweight Authentication Protocols for Low-
Cost RFID tags. Budapest University of Technology and Economics, Hungary, 2003

4. Ari Juels : Minimalist Cryptography for Low-Cost RFID Tags. RSA Laboratories,
USA

5. Ari Juels : Yoking-Proofs for RFID Tags. RSA Laboratories, USA
6. Ari Juels, Ronald L. Rivest and Michael Szydlo : The Blocker Tag:Selective Block-

ing of RFID Tag for Consumer Privacy. RSA Laboratories, USA
7. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson : Universal Re-

encryption for Mixnets. RSA Laboratories, USA
8. Stephen J. Engberg, Morten B. Harning and Christian Damsgaard Jensen : Zero-

knowledge Device Authentication: Privacy & Security Enhanced RFID preserving
Business Value and Consumer Convenience. Privacy, Security and Trust 2004 -
PST2004, EU Smarttag Workshop, 2004

9. Martin Feldhofer : A Propsal for an Authentication Protocol in a Security Layer
for RFID Smart Tags. Institute for Applie Information Processing and Communi-
cations (IAIK), Graz University of Technology, Austria

10. Gildas Avoine and Philippe Oechslim : RFID Traceability: A Multilayer Problem.
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, Financial Cryp-
tography - FC’05, LNCS, Springer, 2005

Location Privacy in Bluetooth

Ford-Long Wong and Frank Stajano

University of Cambridge,
Computer Laboratory

Abstract. We discuss ways to enhance the location privacy of Blue-
tooth. The principal weakness of Bluetooth with respect to location pri-
vacy lies in its disclosure of a device’s permanent identifier, which makes
location tracking easy. Bluetooth’s permanent identifier is often disclosed
and it is also tightly integrated into lower layers of the Bluetooth stack,
and hence susceptible to leakage. We survey known location privacy at-
tacks against Bluetooth, generalize a lesser-known attack, and describe
and quantify a more novel attack. The second of these attacks, which re-
covers a 28-bit identifier via the device’s frequency hop pattern, requires
just a few packets and is practicable. Based on a realistic usage scenario,
we develop an enhanced privacy framework with stronger unlinkability,
using protected stateful pseudonyms and simple primitives.

1 Introduction

1.1 Wireless Devices

Ubiquitous gadgets have been steadily proliferating, posing an increasing threat
to personal information privacy. The types of ubiquitous devices may be sim-
plistically arranged on a spectrum according to their intended pervasiveness. On
one end we would have the personal cellphone, which we may find one apiece for
each individual person, where each cellphone is identifiable and traceable by its
network. At the other end, you may find by the hundreds RFIDs—passive radio
tags returning 128-bit unique IDs. Privacy solutions for cellphones include the
use of network-issued temporary pseudonyms - the ‘TMSI’, and ways to manage
these [1, 2]. Solutions for RFID privacy include ‘killing’ the tag upon purchase of
the attached item, or enclosing it in a mesh, or changing its ID by ‘re-encrypting’
with an external agent, etc. We propose that short-range ad-hoc wireless tech-
nologies, such as Bluetooth, which lie in the middle of the spectrum among
ubiquitous devices, lend themselves to a different solution framework. Bluetooth
devices have finally appeared in large numbers in the past two years after ini-
tial problems, and have gained market acceptance and general user familarity.
Improving upon a tested and well-received technology may be less painful than
designing from ground-up a completely new solution. This article is an attempt
to work towards a more refined privacy solution framework for Bluetooth.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 176–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Location Privacy in Bluetooth 177

1.2 Location Privacy

There are different components to privacy. The Common Criteria [3] analyzes pri-
vacy into anonymity, pseudonymity, unlinkability and unobservability.
Anonymity deals with whether a subject may use a resource without disclosing
the user identity. Pseudonymity makes a user accountable for the use, without
disclosing his identity, by providing an alias. Unlinkability ensures that a user
may make multiple uses of resources or services without others being able to link
these uses together. It attempts to obscure the relations between actions by the
same user. Unobservability ensures that a user may use a resource without third
parties being able to observe that it is being used. For example, a broadcast
obscures from third parties who actually received and used that information.

In location privacy, we are concerned with a particular type of privacy, which
has been defined as ‘the ability to prevent other parties from learning one’s
current or past location’ [4], and it is a relatively new issue in privacy.

1.3 Structure of Paper

In Sections 2 and 3, we cover attacks on the current system. Our location privacy
goals are outlined in Section 4. Proposals to assure location privacy are described
in Sections 5 and 6.

2 Vulnerabilities

Current well-known authentication weaknesses in Bluetooth could be relatively
easily resolved by recourse to asymmetric key establishment techniques [5, 6]
at the cost of slightly increased computation. These enhancements would de-
feat even a strong adversary, by which we mean one which is omnipresent, has
significant computational resources, and is able to mount active attacks.

In comparison, it is generally difficult to secure privacy, including location
privacy. Awareness to Bluetooth’s vulnerabilities in this area was first raised by
Jakobsson and Wetzel [7]. Each Bluetooth device is identified by a unique per-
manent 48-bit Bluetooth Device Address (BD ADDR). As Bluetooth is usually
attached onto personal devices, the detection of a particular BD ADDR in the
neighbourhood would suggest that a particular human operator is nearby. That
individual may even be carrying multiple Bluetooth devices and, if such a cluster
of BD ADDRs is detected, it is highly probable that the individual is nearby.

Furthermore, the device’s BD ADDR is used as an input into many procedures
in Bluetooth. It is deeply entangled into certain parts of the protocol stack, and
it is difficult to engineer it away easily, showing the general difficulty of providing
security as an afterthought.

We will provide an overview of aspects of the Bluetooth radio and baseband
layers, which are cause for privacy concerns. They can be summarized into:

1. problems of discoverability
2. problems of the non-discoverable mode
3. disclosure of the identity in certain packets

178 F.-L. Wong and F. Stajano

4. derivation of the access code from the identity
5. derivation of the frequency hop set from the identity

We provide a survey of the first three problems, which are well-known. The last
two problems have been raised before partially, but we analyze and quantify
more fully the risks involved.

2.1 Problems of Discoverability

The purpose of discovery is to allow one to find devices which one has not encoun-
tered before. The inquiry scan mode is also known as discoverable mode. The
discovering (or inquirying) device sends ID packets, which contain just an access
code — either the General Inquiry Access Code (GIAC) or a Dedicated Inquiry
Access Code (DIAC), and according to the requisite inquiry hop sequence. A
device in the inquiry scan mode will respond to inquiries with a Frequency Hop
Synchronisation (FHS) packet, disclosing its own BD ADDR and CLKN (native
clock). The response is not immediate, but is on receipt of the next packet, so
as to avoid collision with other slaves.

Essentially, the discovery process enables a hitherto stranger device to be
found after at most tens of seconds, and from the privacy perspective the real
identity is unfortunately disclosed when a device is discoverable. Keeping de-
vices constantly discoverable is clearly a privacy risk. It is advisable to turn off
discoverability whenever it is not needed.

2.2 Problems of Non-discoverable Mode

Devices which are set to ‘non-discoverable’ are nevertheless responsive to some
degree. If they are set to ‘connectable’, they can still be detected, due to privacy
weaknesses in the page and page scan states. During page, the master device
will page for another device using an ID packet containing a Device Access Code
(DAC) derived from the Lower Address Part (LAP) of the latter’s BD ADDR.
The hopping at the physical layer during page is similar to the case for inquiry.
The hop sequence is derived from the DAC, instead of the GIAC or some DIAC,
together with the estimated clock (CLKE) of the paged device. When the slave
detects the page message containing its own DAC, it will reply with an ID packet
containing the same DAC. After that, the master will transmit a FHS packet.

Thus, a slave device set to non-discoverable and connectable will not respond
to inquiry messages, but it will respond to page messages containing its perma-
nent DAC. Devices which have previously encountered this device and have a
record of its BD ADDR and/or DAC can still page for it successfully if the de-
vice is within radio range. If its BD ADDR is not known, the discovering devices
can conduct a brute-force search of the BD ADDR range, or more precisely, the
24-bit LAP range. The only means of protection against being tracked this way
possible under the current specification are to either turn off Bluetooth, or to
switch to non-connectable mode if such fine-grained control is supported on the
particular device, and lastly, to reduce occurrences of pairing to a minimum so
as avoid over-exposing the device’s BD ADDR.

Location Privacy in Bluetooth 179

2.3 Disclosure of Identity in FHS Packets

The FHS is a special control packet. The entire BD ADDR of the sender, com-
prising the Lower Address Part (LAP), Upper Address Part (UAP), and Non-
significant Address Part (NAP), are disclosed in the FHS packet, together with
the highest 26 bits of its 28-bit native clock CLKN. The FHS packet is sent
on two occasions: by a slave device in inquiry scan mode responding to an in-
quiry; and by a master device in page mode responding in turn after a slave
in page scan mode has responded to the page. The device’s identity is hence
revealed to the opposite party and to any eavesdropper who is monitoring the
spectrum.

2.4 Baseband Access Code Derived from Identity

The derivation of the Channel Access Code (CAC) from the master device’s
LAP had been recognized by Jakobsson et al [7] as a privacy risk, because the
LAP can be reverse-engineered. We generalize further that the derivation of not
just the CAC but also the DAC from the LAP carry privacy risks.

The access code of a Bluetooth packet is either one of three types. The CAC
is used during the Connected state, the DAC is used during page and page
scan, and the Inquiry Access Code (IAC) is used during inquiry and inquiry
scan. The sync word is a 64-bit code derived from the LAP of a BD ADDR. In
the CAC, the sync word is derived from the master device’s LAP; in the DAC,
the LAP of the paged slave unit is used; and in the IAC, either the single re-
served LAP is used or else certain dedicated IACs are used. The inquiry state
is of less interest for privacy because the IACs being correlated for are not too
device-specific.

The attacker only needs to compute once a dictionary of 224 (ie. 16.7 million)
LAP entries and their corresponding 64-bit sync words. As raised in [7], when
the attacker detects a CAC, he can perform a table lookup and learn the master
device’s LAP. For completeness, we further raise that when this attacker detects
a DAC sent by a paging master and a responding slave, he can perform a table
lookup using the same pre-computed dictionary, and learn the slave device’s
LAP. As such, the slave device, non-discoverable but connectable, also faces
location privacy risks. Note that a particular LAP is not unique, though collisions
would be rare. The remaining address bits — the 24 bits of the UAP and NAP
which constitute the ‘company id’, do not span the entire 24 bits of entropy —
the allocated numbers are published by IEEE Standards, and as of Jan 2005,
there were only around 213 issued numbers.

2.5 Hop-Set Derived from Identity

Jakobsson et al [7] observed that since the hop sequence in a connected piconet
is a function of the master device’s BD ADDR and CLKN, and thus if one can
capture a FHS packet sent by the master, the hop sequence can be trivially
calculated. We investigated the reverse attack—the more difficult one of how to

180 F.-L. Wong and F. Stajano

recover the master device’s address by tracking the frequency hopping pattern
if we failed to capture the master’s FHS packet, and we found that collecting
just 6 packets, along with other information, is adequate. This attack produces
28 bits of address — 4 more bits than attacking the access code.

Bluetooth uses frequency-hopping mainly to mitigate environmental interfer-
ence, and to reduce collisions among different piconets. There are five types of
hopping sequences for the 79-hop system, one type each for the inquiry, inquiry
response, page, page response and connected states. Each of these sequences is
determined by the 24-bit LAP and the lower 4 bits of the UAP, of the relevant
device’s BD ADDR, and its clock. The choice of device address used here is
identical to that used to compute the access codes for the different states.

Thus 28 bits of LAP/UAP and 27 bits of the clock go into the hop selection
box at any one time to choose one frequency. This function is fully documented
in the specification and is strictly surjective. In the connected state, the output
selects one of 79 frequencies, corresponding to an approximate 6-bit range. Based
on a reasonable assumption of a uniform distribution, thus for the same clock
offset, roughly 222 LAP/UAP values would result in the same frequency.

We can carry out the following attack. Capture a first packet and form a
tuple of the clock and frequency. Do a brute-force search and narrow the set
of 228 LAP/UAP values into a set of about 222 possibilities. Collect another
packet and obtain the tuple. Assuming uniform distribution, we can narrow fur-
ther to a set of 216 possibilities. Continuing in a similar way, just 6 packets in
total are required to determine a unique 28-bit LAP/UAP with a probability
calculated at 99+%. This is described in Appendix A. The overall work factor
is on the order of 228. With so few packets required for successful attack, the
attacker may simply listen at a fixed frequency for it to be re-visited, instead
of scanning the entire band. We have to add a caveat that, since the clock set-
ting at each packet is required, determining the master device’s clock setting
initially without recourse to capturing its FHS packet would entail an indirect
route of obtaining a LMP packet containing the slave’s clock offset relative to the
master’s, and inquiring the slave (which needs to be discoverable) to learn the
slave’s clock.

This novel attack shows that even if a master device is non-discoverable and
non-connectable, its hop pattern in a connected state and a discoverable slave
could betray its identity.

Bluetooth was not expressly designed to be resistant to interception and de-
liberate narrowband jamming, unlike, for example, military tactical communi-
cations. Our interest with the frequency hop in Bluetooth is on the anonymity
issues rather than availability. By resource-sharing the radio access via differ-
ent clock offsets and public long-term identifiers, frequency hopping achieves
equitable allocation of the spectrum and reduces collisions, but it hurts pri-
vacy. To improve privacy, the options are: either to disentangle the identifier
from the time-frequency allocation, thereby requiring a re-design of the radio
layer; or else to just de-link the identifier from the long-term identity, which
is simpler.

Location Privacy in Bluetooth 181

3 Adversary Types

We identify two classes of adversaries, in ascending order of capability to com-
promise the privacy of the Bluetooth device.

The first class of attackers use commercial Bluetooth devices that can inquire
and page as usual, and can therefore find any discoverable Bluetooth devices, as
described in Section 2.1. The attacking range may be extended by directional
antennae, a concept well-known to EM/RF engineers. For example, a 18 dBi yagi
antenna can boost the 100 m Class I Bluetooth range to around 900 m, and a
24 dBi antenna to 1.6 km, assuming low RF losses at the joints, though such an-
tennae are large and obtrusive. Within this class of attackers, we can distinguish
a slightly more sophisticated sub-class, who can conduct brute-force searches
of the BD ADDR space, or rather, the LAP space, so as to find connectable
victim devices, as described in Section in 2.2. Such proof-of-concept code has
been released [8], though it is estimated to require around 11 hours to conduct
a complete search of the space, using 127 devices working in parallel. We have
developed our own version of this attack using a shell script, the open-source
BlueZ stack, and an ordinary Bluetooth dongle.

A second class of attackers uses radio receivers, or modified Bluetooth devices,
which are not constrained to frequency hop. The first sub-class can listen on one
selected channel continuously for all types of messages in the inquiry, inquiry
scan, page, page scan, and connected state hops. If this attacker sees a CAC or
DAC, he can carry out his table lookup privacy attack, as described in Section
2.4. If he sees a FHS packet, then he has learnt the full BD ADDR, as described in
Section 2.3. He can also derive the master’s identity by knowing at which clock
offsets a particular hop frequency is re-visited, and by probing a discoverable
slave, as described in Section 2.5. Another more powerful sub-class is capable of
listening on the entire 2.4 GHz band simultaneously. This attacker is less likely
to miss any packets, and is more effective than the first sub-class in determining
the CLKN of the target master device for the attack in Section 2.5. Attacking the
access code is less costly than attacking the frequency hop pattern though. The
first sub-class of attacks can be readily demonstrated with today’s Bluetooth
protocol analyzers, such as the Frontline-Tektronix BPA-100 and 105.

We distinguish between hardware, and do not distinguish between the cryp-
tographic capability among the classes, because programs which do such com-
putations can be commoditised easily and can run on generic PCs. The first
category of adversaries are able to successfully compromise the privacy of to-
day’s Bluetooth devices easily, unless tight discipline is maintained over the use
of the discoverable mode and connectable mode. The second category of at-
tackers is able to compromise the privacy of Bluetooth devices even when their
victims maintain tighter discipline over discoverability and connectability, and
whenever devices are transmitting in a connected state. The overall efficacy of
location privacy attacks also depends on the pervasiveness (and investment) of
the attackers, and how effectively they can correlate and fuse information ob-
tained by their various spatially distributed sensors to continuously track the
location of their victims.

182 F.-L. Wong and F. Stajano

4 Location Privacy Goals

The current specification of Bluetooth does not support strong location privacy.
Before we go into the detailed technical mechanisms, we need to define the
usage scenarios for this short-range wireless connectivity technology. Then we
will articulate the privacy goals which take into account the usage.

Bluetooth-equipped devices tend to talk to other personal devices, and less
with fixed immobile network infrastructure. The interaction is mostly peer-to-
peer. Users of Bluetooth do not seem to require it to have substantial location-
awareness for it to work well for cable-replacement. A higher application layer
may require location-awareness, but Bluetooth, as a connectivity layer, does not
require location-awareness built-in, and can very well lean towards the location-
private part of the continuum. These differences make its location privacy re-
quirement different from other technologies which have been analyzed elsewhere,
which had assumed a network backbone [4]. We admit that the security inter-
action of Bluetooth with the location-aware parts, where present, of the host
device may merit further study.

On the other hand, devices hosting Bluetooth are rather much smarter than
dumb tags such as RFIDs. Bluetooth interactions may be stateful, since ses-
sion keys need to be established. Identifiers are required for this and cannot be
eliminated. This is true for both piconet and scatternet configurations.

Temporary throwaway pseudonyms [9, 5, 10] can be of help. However, these
must not be completely stateless, otherwise prior pair-wise relationships and pi-
conet configurations would be quickly lost, and require frequent re-initialization.
From the point of view of privacy, the need for a permanent identifier is debat-
able. Apart from helping manufacturers tell their product lines apart, having
hierarchically arranged BD ADDRs does not appear to do privacy much good.

Spectrum allocation and collision avoidance at the physical layer have been
mentioned to have privacy implications. A good solution must resolve these.

While we have discussed exclusively about Bluetooth, in practice some
other protocol is sometimes tunneled over Bluetooth. One important issue for
anonymity is that the different protocols must carry out proper de-identification
between them and be stateless. For example, if TCP/IP is tunneled over Blue-
tooth, the BD ADDR should be de-linked from the IP address. However, we will
consider this as outside the scope of this article.

Thus we require a privacy framework which provides sender and destination
anonymity in a mostly peer-to-peer ad-hoc wireless environment. Pseudonyms
may be used, and unlinkability between pseudonyms should be provided. The so-
lution should account for cases in which the wireless personal area network stays
in a static configuration, and for cases where state needs to be kept between two
paired devices over different sessions due to the inconvenience of establishing
a new session key. Unobservability should be provided. If the premises under-
lying the usage scenario evolve, the privacy framework needs to change too.
The means to establish strong pair-wise keys is assumed to exist [5, 6]: this is a
non-goal.

Location Privacy in Bluetooth 183

5 Problems of Pseudonyms and Permanent Identifiers

As the identifier BD ADDR is tightly integrated in the protocol and is used
in many computations, it cannot be easily discarded. Throwaway pseudonymous
‘BD addr actives’ were proposed by Gehrmann and Nyberg [5] to be used within
an anonymity mode. Using frequently changing pseudonyms would improve the
unlinkability between actions by the same actual principal, and also protect the
permanent BD ADDR, which the device still retains, from disclosure to a casual
observer. Using pseudonymous BD addr actives this way also allow the original
design of the access code and frequency hop to be essentially retained.

However, that proposal has three privacy weakness. The first is that the
real identity, the BD ADDR, is being used and may be disclosed to any de-
vice with which one has paired previously, though the identity is protected
against other casual observers. Thus, adversaries can link different actions to
the same actual principal if they can pair with this device, no matter what its
particular BD addr active is at the instant. This is not an ideal privacy qual-
ity to possess, as policy-wise it should not automatically be assumed that all
devices which have paired with one’s own are not adversarial with respect to
one’s privacy.

A second weakness is with regards to the usage of BD addr alias, which
is another ‘BD ADDR-like’ identifier, established by two devices after they
have paired, to signify the pairing in their respective database. For example,
a BD addr alias would in Alice’s database serve as an alias signifying Bob to Al-
ice, and in Bob’s database as an alias signifying Alice to Bob. In Alice’s database
there would be a tuple containing this BD addr alias and Bob’s real BD ADDR.
In one mode, after Alice pages Bob, and before authentication takes place, Alice
would send a packet containing this BD addr alias to Bob in an attempt to find
out if they have paired before. Bob will now look up this alias in his database
to find Alice’s BD addr, and respond accordingly. The problem with this usage
is as follows: if Alice pages for Bob, but this is intercepted by an adversary Eve,
and Eve receives the BD addr alias sent by Alice, while Eve will fail the test,
Eve would be able to page Bob later using the alias, and thence be able to probe
whether Bob has previously paired with Alice. The observability of transactions
between Alice and Bob could thus be compromised offline.

A third privacy weakness is related to the second. An adversary who observes
the same pairwise BD addr alias transmitted can deduce that the same two
devices may be communicating again. There are other caveats concerned with
the use of temporary pseudonyms, which we would discuss. One of the most
germane ones is that if a device could continually be tracked, even as it changes
its pseudonym, that could still be linked to the previous one.

We propose an enhanced anonymity mode, also using pseudonyms, which
would attempt to address these three said problems, while recognizing that pair-
ings may be stateful. We emphasize that this mode by itself will not resolve all
privacy risks; a policy which requires discoverability and connectability to be
turned off most of the time must be applied.

184 F.-L. Wong and F. Stajano

6 Proposed Solution: Protected Stateful Pseudonyms

6.1 Inquiry and Inquiry Scan

For device discovery, we keep to the Gehrmann and Nyberg proposal [5], where
the inquiry and inquiry scan states are left as according to the original specifi-
cation, with the change that the identifier returned at inquiry scan is the slave’s
BD addr active instead of its BD ADDR.

As a matter of strong privacy policy to counter tracking, we recommend that
a device’s discoverability should be turned off whenever it is not required.

6.2 Page and Page Scan

The Gehrmann and Nyberg proposal featured two paging situations. One
situation is where a master pages a slave based on the latter’s current
BD ADDR active. The second situation is where a master pages a slave based
on the latter’s long-term BD ADDR, which is useful for previously paired units.
The second situation allows pairings to be remembered, but has the unfortunate
weakness of leaking the BD ADDR of the slave being paged, hence compromising
linkability as well.

We prefer that the long-term BD ADDR never be leaked. We hence propose
a somewhat different second situation, in which a master would attempt to page
a slave using modified ID packets derived from the previous BD ADDR actives
which the master and the slave had used to pair. These packets cryptographically
protect the addresses from casual sniffing. The formats of the packets and the
required protocol are as described in the following section. We believe that it is
more private to have done pairing with the pseudonyms than with the long-term
identifiers. This is not too difficult to support, as Bluetooth pairing is already
based on a shared password rather than on permanent identifiers. It can be
decided by policy settings how soon to expire pairings, as well as how soon a
device expects a paired device to have changed pseudonyms.

As a policy setting, we recommend that a device’s connectability be turned
off whenever the owner does not expect connection requests to be received.

6.3 Protected Pseudonyms

This protocol (Fig. 1), designed for our second situation described above, at-
tempts to protect past pseudonyms from all third parties. We modify the ID
packet from the original Bluetooth specification. We now use three ID packets,
denoted by ID1, ID2 and ID3. The relevant past pseudonyms of Alice and Bob
are denoted by IA and IB. H is a hash function, R1, R2 and R3 are random
nonces, and KAB is the shared link key formed by Alice and Bob previously.
The three-way handshake is essential. Say, Alice intends to page for Bob. On
verifying correctly the ID2 packet, Alice will have the assurance that Bob knows
his previous pseudonym, her previous pseudonym, and their shared key. On ver-
ifying correctly the ID3 packet, Bob has the assurance that Alice knows these
same three things.

Location Privacy in Bluetooth 185

Alice Bob

1 Chooses random R1

2 H1 = H(IB|R1|KAB)
3 − ID1 : (R1 | H1) →
4 Verifies H1

5 Chooses random R2

6 H2 = H(IA|R1|R2|KAB)
7 ← ID2 : (R2 | H2)−
8 Verifies H2

9 Chooses random R3

10 H3 = H(IB|IA|R1|R2|R3|KAB)
11 − ID3 : (R3 | H3) →
12 Verifies H3

Fig. 1. Protected Stateful Pseudonyms

Alice keeps a database of tuples each containing her temporary pseudonym,
the pseudonym of the other party, and the shared link key. Bob keeps a similar
database. Alice wants to page for Bob. She selects a random nonce R1, computes
the hash H1, and sends an ID1 packet. The hash in the ID1 packet hides the past
pseudonym of Bob. Bob would compute and verify the expected hash in the ID1
packet using his list of the paired devices’ pseudonyms and their associated link
keys with the nonce. When he successfully finds a match, he chooses a random
nonce R2, computes H2, and responds with the ID2 packet. The hashes are
inexpensive operations, thus the parties can do these easily. As Bob generates
nonce R2 randomly, he can be sure that his challenge to Alice is fresh. Alice,
on receiving the ID2 packet, will verify the hash. If there is a match, Alice will
generate a nonce R3, compute the hash H3, and reply with the ID3 packet.
Bob will verify the hash on receipt of the ID3 packet. After the protocol runs
successfully, both parties can proceed to carry out mutual authentication as
usual. The security of the protocol depends on the randomness of the nonces,
the irreversibility of the hash function, and the secrecy of the shared link key.

A naive replay attack — the second weakness mentioned in Section 5 —
incarnated here as an adversary capturing an ID1 packet previously sent by
Alice and received by Bob, and replaying it, would be defeated, because Bob
checks for freshness of R1 and R3, and Alice checks for freshness of R2

In another conceivable and more sophisticated attack, an adversary Eve in-
tercepts an ID1 packet and prevents it from reaching Bob, but replays it later to
Bob. Such an ID1 packet will pass Bob’s R1 freshness test. However, Bob now
sends an ID2 packet with a fresh R2. We can set a policy whereby uncompleted
handshakes would raise an alarm at Bob’s end, to alert Bob of the possibility of
an intruder, so unless Eve next responds with a correctly formed ID3 packet, Bob
would receive an alert. The 3-way handshake is essential for mitigating such an
attack. Over at Eve’s end, on her receipt of Bob’s ID2 packet, Eve may suspect
that Alice and Bob had paired previously, but she retains some doubt, because
of possible collisions among the hashes.

186 F.-L. Wong and F. Stajano

The protocol is not resistant to an online relay attack — in which Eve would
position herself between two widely geographically separated victims — because
the protocol does not incorporate any distance-bounding algorithm.

We leave it open whether the length of the ID1, ID2 and ID3 packets need to
be equivalent to the DAC length of 68 bits. If they are also 68-bit, especially the
ID1 packet, then it helps to obscure the fact from simplistic traffic analysis that
Alice is paging for a old pseudonym of Bob, in which case the random nonce
would take up, say, 34 bits, and the hash the other 34 bits. Or else these packets
can extend up to the length of 160 bits plus a suitable length of a nonce.

The proposed protocol provides good scalability in remembering and respond-
ing to past pairings, while not leaking the permanent BD ADDR nor previous
pseudonyms unnecessarily. Bob keeps changing pseudonyms, yet remains able to
respond to some previous pseudonym of his which Alice has paired with, as he
has kept a history of his pseudonyms, whose ages are set by policy.

6.4 Physical Layer

We have described in Section 2 that parts of the device address can be recov-
ered from the access code and the frequency hop pattern. This privacy risk can
be resolved by using changing pseudonyms. A more complex possible solution
would be to modify the physical layer. The frequency hop pattern can, for exam-
ple, be initialized from other parameters instead of a device’s identifier and its
clock. Another alternative solution is to use direct-sequence (DS) spread spec-
trum instead of frequency hopping, so that different DS sequences use different
pseudonymous identifiers. But the cost of DS is generally considered higher.

6.5 Triggers for Pseudonym Change

We propose several triggering mechanisms to change pseudonyms. It is well-
known that if a device can be continuously tracked, such as when it is discover-
able and is the only device in a locality, then even a change of identifier would
not prevent linkability. Discoverability ought to be turned off during pseudonym
change. We suggest a sub-state in the anonymity mode in which the device is
ready to change pseudonyms. A change may be triggered by any of several events.
Firstly, it may be brought about by the owner’s manual action. Secondly, it can
be automatically changed at random time intervals. Thirdly, the pseudonym be
changed when a certain threshold large number of discoverable devices are de-
tected in an inquiry sweep. The rationale is that it would be easy to ‘blend in
with the crowd’ and anonymise oneself. This method should be carefully applied
because an attacker can spoof the presence of a large number of devices. 1 It
uses the concept of a mix zone [4], the difference being that here, pseudonym
change is handled by the devices themselves instead of a network infrastructure.

1 However, the attacker would not reduce the anonymity of the victim by forcing a
pseudonym change — the only effect would be to make the victim believe he is more
anonymous that he actually is, which might perhaps lead him to lower his guard.

Location Privacy in Bluetooth 187

6.6 Further Issues

New pseudonyms must be randomly generated, and one solution is by hashing
some counter. Also, the 28-bit 3.2 kHz Bluetooth device clock, which has a
cycle of 23.3 hours, of which the highest 26 bits are disclosed (— or a 1.25 ms
resolution), must be randomly re-adjusted on a pseudonym change, to prevent
an adversary from linking pseudonyms to a clock, even accounting for the clock
drift. Bluetooth uses a ‘friendly name’, which is a human-readable name to tag
devices during device discovery and to help manage the list of paired devices
locally. To reconcile privacy with usability, we propose the following: the field
should be left empty or not transmitted during device discovery, but the user
could be allowed to locally tag his list of paired devices with ‘friendly names’ of
his choice to help him better distinguish the devices than through hexadecimals.

Certain RF attacks attempt to pinpoint the location of devices by measure-
ments of irradiated power, and more sophisticated attacks distinguish RF sig-
natures of individual devices, but these are outside our scope. In our privacy
framework, we have not made use of digital certificates, because though these
allow strong authentication, they are inimical to anonymity.

7 Conclusions

We have investigated the privacy problems of this pervasive wireless ad-hoc tech-
nology, particularly the leakage of its unique device address. We have surveyed
known attacks against its location privacy, expanded a previously raised attack,
and quantified another less-studied attack. The last attack requires only several
packets and a work factor of 228. While the basic location privacy problem of us-
ing a long-term device address can be resolved by using temporary pseudonyms,
an incomplete solution can give rise to linkability.

Based on a plausible usage scenario distinct from other wireless technologies,
we propose ways which refine the use of the pseudonyms, so that they are stateful
and past device pairings can be remembered according to policy, yet which do
not leak past pseudonyms and the long-term device address unnecessarily. We
have also described various mechanisms to manage pseudonym change.

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments.

References

1. D. Kesdogan, H. Federrath, A. Jerichow and A. Pfitzmann. “Location Management
Strategies increasing Privacy in Mobile Communication Systems”. Proceedings of
the 12th IFIP SEC, 1996.

2. S. Capkun, J. Hubaux and M. Jakobsson. “Secure and Privacy-Preserving Com-
munication in Hybrid Ad Hoc Networks”. EPFL-IC Technical report IC/2004/10,
Jan 2004.

188 F.-L. Wong and F. Stajano

3. ISO/IEC-15408 (1999). ISO/IEC-15408 Common Criteria for Information Tech-
nology Security Evaluation v2.1, 1999. http://csrc.nist.gov/cc.

4. A. R. Beresford and F. Stajano. “Location privacy in pervasive computing”. IEEE
Pervasive Computing, 3(1):46–55, 2003.

5. C. Gehrmann and K. Nyberg. “Enhancements to Bluetooth Baseband Security”.
Proceedings of Nordsec 2001, Nov 2001.

6. F.-L. Wong, F. Stajano and J. Clulow. “Repairing the Bluetooth Pairing Protocol”.
Thirteenth International Workshop in Security Protocols, Apr 2005.

7. M. Jakobsson and S. Wetzel. “Security Weaknesses in Bluetooth”. Proceedings of
the RSA Conference, LNCS 2020, 2001.

8. O. Whitehouse. “RedFang”. 2003. http://www.atstake.com/.
9. D. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms”. Communications of the ACM, 24(2):84–88, Feb 1981.
10. M. Gruteser and D. Grunwald. “Enhancing Location Privacy in Wireless LAN

through Disposable Interface Identifiers: A Quantitative Analysis”. First ACM
International Workshop on Wireless Mobile Applications and Services on WLAN
Hotspots, 2003.

11. Bluetooth SIG Security Experts Group. Bluetooth Security White Paper, 1.0, April
2002.

12. Bluetooth Special Interest Group. “Bluetooth Specification Volume 1 Part B Base-
band Specification”. Specifications of the Bluetooth System, 1.1, Feb 2001.

13. Bluetooth Special Interest Group. “Bluetooth Specification Volume 2 Part H Se-
curity Specification”. Specification of the Bluetooth System, 1.2, Nov 2003.

Appendix A: Recovery of Address Bits from Frequency
Hop

The mathematics of the method can be formulated as a binomial distribution.
We assume that each of the 79 outputs is equi-probable. We want to find the
probability that after k rounds, only one input is left, ie. all of the other 228 − 1
inputs are discarded at some round. Each one of these remains with probability
(1/79)k. Assuming independence of clock values, and independence between the
outcomes of different inputs, the probability we seek is

(1 + x)n = (1− (
1
79

)k)2
28−1

As the exponent is large, the numerical result is difficult to compute. Since x is
small with respect to 1, we can do a binomial expansion.

(1 + x)n = 1 +
nx

1!
+

n(n− 1)x2

2!
+ · · ·

For k = 6, the first two terms sum to 0.9989. If we approximate 1/79 to 1/26,
the result is 0.9961.

An Advanced Method for Joint Scalar
Multiplications on Memory Constraint Devices

Erik Dahmen1, Katsuyuki Okeya2, and Tsuyoshi Takagi3

1 Technische Universität Darmstadt, Fachbereich Informatik,
Hochschulstr.10, D-64289 Darmstadt, Germany
dahmen@rbg.informatik.tu-darmstadt.de

2 Hitachi, Ltd., Systems Development Laboratory,
1099, Ohzenji, Asao-ku, Kawasaki-shi, Kanagawa-ken, 215-0013, Japan

ka-okeya@sdl.hitachi.co.jp
3 Future University - Hakodate,

116-2 Kamedanakano-cho Hakodate Hokkaido, 041-8655, Japan
takagi@fun.ac.jp

Abstract. One of the most frequent operations in modern cryptosys-
tems is a multi-scalar multiplication with two scalars. Common methods
to compute it are the Shamir method and the Interleave method whereas
their speed mainly depends on the (joint) Hamming weight of the scalars.
To increase the speed, the scalars are usually deployed using some general
representation which provides a lower (joint) Hamming weight than the
binary representation. However, by using such general representations
the precomputation and storing of some points becomes necessary and
therefore more memory is required. Probably the most famous method
to speed up the Shamir method is the joint sparse form (JSF). The
resulting representation has an average joint Hamming weight of 1/2 and
it uses the digits 0,±1. To compute a multi-scalar multiplication with
the JSF, the precomputation of two points is required. While for two
precomputed points both the Shamir and the Interleave method provide
the same efficiency, until now the Interleave method is faster in any
case where more points are precomputed. This paper extends the used
digits of the JSF in a natural way, namely we use the digits 0,±1,±3
which results in the necessity to precompute ten points. We will prove
that using the proposed scheme, the average joint Hamming density
is reduced to 239/661 ≈ 0.3615. Hence, a multi-scalar multiplication
can be computed more than 10% faster, compared to the JSF. Further,
our scheme is superior to all known methods using ten precomputed
points and is therefore the first method to improve the Shamir method
such that it is faster than the Interleave method. Another advantage
of the new representation is, that it is generated starting at the most
significant bit. More specific, we need to store only up to 5 joint bits of
the new representation at a time. Compared to representations which are
generated starting at the least significant bit, where we have to store the
whole representation, this yields a significant saving of memory.

Keywords: elliptic curve cryptosystem, joint sparse form, left-to-
right, multi-scalar multiplication, shamir method.

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 189–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 E. Dahmen, K. Okeya, and T. Takagi

1 Introduction

In our modern society it becomes more and more necessary to communicate and
authenticate electronically in a secure way. Because of their mobility and tam-
per resistance, smart cards are often used for this task. However, since smart
cards are quite small, the available memory and computational power is very
limited. The Elliptic Curve Cryptosystem (ECC) [Kob87, Mil86] is an efficient
cryptosystem, which can attain high security with very short key length. There-
fore, the ECC is suitable for implementation on devices where computational
power is limited. The basic operation for verifying a signature with the ECC is
a so-called multi-scalar multiplication

uP + vQ

for given scalars u, v and points on the elliptic curve P, Q. The research goal from
practical requirement is to efficiently compute this multi-scalar multiplication by
minimizing both memory usage and computational costs [Ava02, Gor98, Möl01].
Another example for resource constraint devices where the ECC can be imple-
mented are sensors. Those devices are mainly used to monitor a given physical
environment. Different from smart cards, sensors have no external power source,
therefore efficiency is not only required to save time and resources, but also to
save energy.

Two efficient methods to compute a multi-scalar multiplication are the Shamir
method [ElG85] and the Interleave method [Möl01]. The speed of those meth-
ods depends on the (joint) Hamming weight of the scalars. If some memory
for precomputation is available they can be sped up by deploying a redundant
representation of the scalars. Those representations provide a smaller (joint)
Hamming weight than the binary representation, but use a larger digit set. The
downside is, that the size of the digit set determines the number of points to
precompute, and thus a trade-off between memory usage and speed has to be
made.

Probably the most popular representation to speed up the Shamir method
is the Joint Sparse Form (JSF) proposed by Solinas [Sol01]. The used digits in
this representation are 0,±1 and it requires the precomputation of two points.
The resulting average joint Hamming density is 1/2. While for two precomputed
points, the Shamir method and the Interleave method can provide the same
efficiency, until now the Interleave method is faster in any case where more
points are precomputed.

In this paper we propose a new representation to further speed up the Shamir
method. This is achieved by naturally extending the digit set of the JSF and
allowing the digits 0,±1,±3. For those digits, the precomputation of ten points
is required. The main idea of the algorithm is to apply a sliding window method
with variable width on both scalars. The widths are chosen such that the re-
sulting density of non-zero columns increases from step to step. Also, if certain
conditions are satisfied we reuse already converted columns in the proceeding
step. We will prove that the average joint Hamming density of the proposed

An Advanced Method for Joint Scalar Multiplications 191

scheme is 239/661 ≈ 0.3615, which is superior to any known method using ten
precomputed points. Therefore, our method is the first to improve the Shamir
method such that it is faster than the Interleave method. Compared to the JSF,
the computation of uP + vQ can be sped up by more than 10%. Another ad-
vantage of the proposed scheme is, that it is generated starting at the most
significant bit, which is more natural and memory saving in conjunction with
the ECC (see Section 2). More specific, we need to scan only up to 6 joint bits
of the binary representations of the scalars at once.

The rest of the paper is organized as follows: In Section 2 we give an overview
of multi-scalar multiplication. In Section 3 we review several known methods
to speed up the computation of uP + vQ. In Section 4 the proposed scheme is
described and its computational cost is calculated. In Section 5 we compare our
scheme to the methods of Section 3 and Section 6 states our conclusion.

2 Preliminaries

2.1 Notations

A scalar d is a positive integer and there are several ways to represent
it. The most common one is the uniquely determined binary representation
(dn−1, . . . , d0), where d =

∑n−1
i=0 di · 2i and di ∈ {0, 1}, ∀i = 0, . . . , n − 1. Here,

n is the bit length of the representation. Another way is a more general ap-
proach. Now we don’t restrict the digits to the set {0, 1} but to an arbitrary
digit set D. We call (dn−1, . . . , d0) a D-representation of d, if d =

∑n−1
i=0 di · 2i

and di ∈ D, ∀i = 0, . . . , n−1. For example, if D = {0,±1} we call the underlying
D-representation a signed binary representation. In general, D-representations
loose the property of uniqueness.

The Hamming weight (HW) of a D-representation is its number of non-zero
entries. The Hamming density (HD) is defined as HW/n. The average Hamming
density (AHD) is the expected HD for a random representation with bit length
n →∞. If we consider more than one D-representation simultaneously, we may
want to examine non-zero columns rather than non-zero entries. The number
of non-zero columns of an arbitrary number of D-representations is given by
the joint Hamming weight (JHW). The joint Hamming density (JHD) and the
average joint Hamming density (AJHD) are defined in accordance to the HD
and the AHD, respectively. For simplicity, we consider only representations with
the same bit length n. This can be achieved by padding with zeros to the left.

Let K = GF (p) be a finite field, where p > 3 is a prime. Let E be an
elliptic curve over K. The elliptic curve E has an abelian group structure with
identity element O called the point of infinity. A point P ∈ E is represented as
P = (x, y). The inverse of point P = (x, y) is equal to −P = (x,−y), hence it can
be computed virtually free. For that reason, it is advisable to use a signed binary
representation of the scalars [MO90]. Note that this is also true for elliptic curves
over different fields, e.g. binary curves. The elliptic curve operations P + Q and
2P are denoted by ECADD and ECDBL, respectively, where P, Q ∈ E.

192 E. Dahmen, K. Okeya, and T. Takagi

2.2 Multi-scalar Multiplication Algorithms

In this section we explain how the Shamir method and the Interleave method
compute uP + vQ. This is done in the so-called evaluation stage: at first an
accumulator X is initialized with the neutral group elementO, then the following
steps are performed.

Shamir Method

for i = n− 1 down to 0 do
X ← ECDBL(X)
if (ui, vi) = (0, 0) then

X ← ECADD(X, uiP + viQ)

Interleave Method

for i = n− 1 down to 0 do
X ← ECDBL(X)
if ui = 0 then

X ← ECADD(X, uiP)
if vi = 0 then

X ← ECADD(X, viQ)

After the last iteration X contains the result uP +vQ and is returned. Because
both methods frequently use points of the form viQ, uiP and uiP + viQ it is
preferable to precompute and store those points. This is done in the precomputa-
tion stage which is executed prior to the evaluation stage. Note, that since point
inversions can be performed online, we don’t have to precompute all required
points. Typically one uses a symmetric digit set of the form D = {0,±1, . . . ,±x}.
In that case only half of all used points have to be precomputed. The Interleave
method computes t1P, ∀t1 ∈ D1 : t1 > 1 and t2Q, ∀t2 ∈ D2 : t2 > 1, where D1

and D2 are the digit sets of the scalars u and v, respectively. The Shamir method
computes the points tP, tQ, ∀t ∈ D : t > 1 and t1P + t2Q, ∀t1, t2 ∈ D : t1 > 0,
where D is the digit set of both scalars. Hence, the total number of precomputed
points is (|D1| − 3)/2+ (|D2| − 3)/2 and (|D|− 1)2/2 + |D| − 3 for the Interleave
method and the Shamir method, respectively.

The average speed of both methods is determined by the number of ECDBL
and ECADD operations used. The ECDBL operation is performed in each iter-
ation in both methods, i.e. n times. The Shamir method performs an ECADD
operation every time a non-zero column is found, therefore the average number
of ECADD operations equals n times the AJHD of the scalars. The Interleave
method performs an ECADD operation every time a non-zero entry is found in
any of the scalars, therefore the average number of ECADD operations equals n
times the sum of the AHD of the scalars.

2.3 Left-to-Right vs. Right-to-Left

Now we explain why it is preferable to perform the evaluation starting at the
most significant bit, i.e. left-to-right (LtR), rather than the least significant bit,
i.e. right-to-left (RtL). Although both the Shamir method and the Interleave
method use a LtR evaluation stage, there also exist methods which use a RtL
evaluation stage. The main drawback of those methods is that they are very
inefficient when used with general D-representations. Namely, in each iteration,

An Advanced Method for Joint Scalar Multiplications 193

they have to perform one ECDBL operation for all points which might be re-
quired in the ECADD step. Those points are all precomputed points plus the
base points P and Q. On the other hand, the LtR methods always use the same,
fixed points for the ECADD step. Therefore, it is possible to speed up this step
significantly if those points are represented in affine coordinates [CMO98].

2.4 A Special Signed Binary Representation

Now we introduce a special signed binary representation which is required to
generate our proposed representation. This signed binary representation was pro-
posed independently by two parties and is called the ”alternating greedy expan-
sion” [GHPT03] or the ”mutual opposite form” [OSST04]. Let (dn−1, . . . , d0) be
the binary representation of an integer d. We define μi = di−1−di for i = 0, . . . , n,
where dn = d−1 = 0. Since

(μn, . . . , μ0) = (dn−1, . . . , d0, 0)− (0, dn−1, . . . , d0) = 2d− d = d

this operation indeed yields a signed representation of d. Note that this repre-
sentation, from now on called MOF, can be obtained from LtR and from RtL
likewise. The MOF of a non-zero scalar satisfies the following properties:

1. The signs of adjacent non-zero bits (without considering zero bits) are op-
posite.

2. The most non-zero bit and the least non-zero bit are 1 and 1̄, respectively.

Further, MOF uses the digit set D = {0,±1} and provides a AHD of 1/2. Also it
has been proven that each n-bit integer has a unique representation as (n+1)-bit
MOF.

3 The Shamir Method vs. the Interleave Method

As we saw in Section 2.2, the number of ECADD operations of the Shamir
method and the Interleave method depends on the JHW and the HW of
the scalars, respectively. Hence, in order to speed up those methods these
numbers have to be decreased. This is achieved by applying a so-called recoding
algorithm which rewrites the binary representation of the scalars into some D-
representation. There are two kinds of recoding algorithms: those which decrease
the HW and therefore speed up the Interleave method and those which decrease
the JHW and therefore speed up the Shamir method. Also, the direction in which
the scalars are recoded is important. In the case of a RtL recoding algorithm the
scalars must be recoded in a separate stage prior to the precomputation stage,
because we use a LtR evaluation stage. Then it is necessary to store the whole
recoded scalars, which requires O(n) bits memory for each scalar. In the case of
a LtR recoding algorithm the recoding can be performed ”on-the-fly” during the
evaluation stage. The advantage is obvious, now we don’t have to store the whole
recoded scalars, but only a small part which leads to a significant memory saving.

In Section 2.2 we also saw that the size of the digit set determines the number
of points to precompute. However, the size of the digit set also affects the AHD

194 E. Dahmen, K. Okeya, and T. Takagi

or AJHD of the D-representation produced by a recoding algorithm, but in a
non-proportional way. Therefore we face a trade-off between memory usage for
the precomputed points and speed for the multi-scalar multiplication.

This section serves two purposes. At first we review several known recoding
methods and explain how they speed up the computation of uP +vQ. Second, we
explain why the optimal choice for the Shamir method is to use representations
which require ten precomputed points. Note, that all representations reviewed
in this section are uniquely determined and at most one bit longer than the
corresponding binary representation (see the respective reference).

Known Methods Using Two Precomputed Points. The most common
recoding algorithm to decrease the JHW is the joint sparse form (JSF) proposed
by Solinas [Sol01]. Its AJHD is 1/2 and it uses the digit set D = {0,±1}. The
drawback of the JSF is, that it can only be generated from RtL. A similar
method was proposed in [HKPR04]. It uses the same digit set and provides the
same AJHD as the JSF, but it can be applied from LtR. The main idea of this
algorithm is to apply a LtR sliding window method with different widths on the
MOF of both scalars. At first the width w = 2 is tested and if no zero column
can be generated the width is increased to w = 3. The precomputed points for
those two methods are {P + Q, P −Q}.

To decrease the HW of the scalars, there also exists RtL and LtR variants.
One RtL method is the famous width-w non adjacent form (wNAF) [Sol00,
BSS99, MOC97]. It uses the digit set D = {0,±1, . . . ,±2w−1 − 1} and its AHD
is 1/(w + 1). Its LtR equivalent is called the width-w mutual opposite form
(wMOF) and is generated by applying a width-w sliding window method from
LtR on the MOF each scalar separately [OSST04]. Another LtR method, which is
directly applied on the binary representation was proposed in [Ava04]. Both these
methods also use the same digit set and provide the same AHD as wNAF. In
the case of two precomputed points we choose w = 3 and precompute {3P, 3Q}.
The resulting AHD of each scalar then is 1/4. Therefore, the average density of
ECADD operations used by the Interleave method is 1/2, the same as for the
Shamir method using the JSF or the scheme described in [HKPR04].

However, two precomputed points require only 80 bytes of memory and since
the current smart card technology offers several kbytes of memory, a lot of mem-
ory is waisted. If we want to use more memory, the logical step is to extend the
digit set. And if we want to preserve the nice properties of signed representa-
tions in conjunction with the ECC, the natural extension of the digit set for the
Shamir method is D = {0,±1,±3}, which requires the precomputation of 10
points. To store those points, 400 bytes of memory are required.

Known Methods Using Ten Precomputed Points. The first known
method using 10 precomputed points is an extension of the algorithm
to create the JSF, called JSF3 which was proposed by Kuang, Zhu and
Zhang [KZZ04]. They use the digit set D = {0,±1,±3} and the resulting
AJHD is 121/326 ≈ 0.3712. This methods requires the precomputation of
{3P, 3Q, P + Q, P − Q, P + 3Q, P − 3Q, 3P + Q, 3P − Q, 3P + 3Q, 3P − 3Q}.
Another method was proposed by Avanzi [Ava02]. He lets a width-2 window

An Advanced Method for Joint Scalar Multiplications 195

method slide from LtR over the JSF of two scalars to increase the number of
zero columns. His method uses the digit set D = {0,±1,±2,±3}, but because of
the properties of the JSF only the points {P + Q, P −Q, P + 2Q, P − 2Q, 2P +
Q, 2P −Q, 2P + 3Q, 2P − 3Q, 3P + 2Q, 3P − 2Q} have to be precomputed. The
resulting AJHD of this method is 3/8 = 0.3750. Since both methods reduce
the JHW, they are suitable for the Shamir method. However, since they both
originate in the JSF, they can only be generated from RtL.

If we want to use even more memory, i.e. extend the digit set even more, the
logical choice is the digit set D = {0,±1,±3,±5,±7}. Now it becomes necessary
precompute 38 points, which require 1520 bytes of memory. While this might fit
on a smart card, there is another point of concern. If we consider the customary
160-bit scalars, the computational effort (ECDBL and ECADD operations) to
precompute those 38 points would be almost as high as the expected effort to
compute the actual multi-scalar multiplication. Therefore it is unwise to use
larger digit sets and we can conclude that the digit set D = {0,±1,±3}, i.e. the
use of ten precomputed points is optimal for the Shamir method.

Now we consider two improvements of the Interleave method which also use
10 precomputed points. The first is to use the wMOF with different widths,
namely w = 4 for the first scalar and w = 5 for the second ((4, 5)MOF). The
used digit sets are D1 = {0,±1, . . . ,±7} and D2 = {0,±1, . . . ,±15} and the
resulting AHDs are 1/5 = 0.2 and 1/6 ≈ 0.1667 for the first and second scalar,
respectively. Then, the average density of ECADD operations is 11/30 ≈ 0.3666.
The points to precompute are {3P, 3Q, 5P, 5Q, 7P, 7Q, 9Q, 11Q, 13Q, 15Q}. The
second method is to apply a fractional sliding window method on MOF from
LtR [SST04, Möl02, Möl04]. The resulting representation uses the degenerated
digit set D = {0,±1, . . . ,±2w−1 + m} and the AHD is 1/(w + m+1

2w−1 + 1).
In order to obtain 10 precomputed points we chose w = 4 and m = 3
for both scalars. The resulting digit set is D = {0,±1, . . . ,±11} and the
AJHD is 2/11 ≈ 0.1818 for each scalar. This leads to an average density of
ECADD operations of 4/11 ≈ 0.3636. Also we have to precompute the points
{3P, 3Q, 5P, 5Q, 7P, 7Q, 9P, 9Q, 11P, 11Q}.

From this one can see that in the case of ten precomputed points the Interleave
method currently wins over the Shamir method.

4 Proposed Scheme

In this section we describe the proposed scheme. At first glance our scheme
is similar to [HKPR04], namely the main idea is to apply a sliding window
method (SWM) with different widths on the MOF of both scalars from LtR.
The difference is that we chose a larger digit set and can therefore use larger
window widths. For the reasons explained in Section 3 we chose the digit set
D = {0,±1,±3} and therefore need ten precomputed points. The algorithm is
divided in three parts: the Main Routine, the Calculation of Z and the Conver-
sion Routine. Further, the recoding can be performed with the knowledge of at
most 6 bits of each scalar at a time and we will show that the resulting AJHD
is 239/661 with the method of stochastic processes.

196 E. Dahmen, K. Okeya, and T. Takagi

4.1 First Considerations

First, we want to examine how we can use the MOF representation to decrease
the JHW. The first MOF property implies that the absolute value of any w
consecutive MOF bits is at most 2w−1−1. Therefore, if we take any w consecutive
MOF bits it is possible to represent them using w−1 zero entries and 1 non-zero
entry with absolute value of at most 2w−1−1. Since we want to use the digit set
D = {0,±1,±3}, w = 3 holds in our case and by extending this to two scalars,
we get

Lemma 1. Given two MOF representations, a SWM can create at most two
consecutive zero columns without exceeding the digit set D = {0,±1,±3}. After
that, at least one non-zero column must follow.

Next, we are interested in the position of the columns which are candidates to
become zero.

Lemma 2. Let μ0 and μ1 be two k-bit MOF representations. Further, let f0

and f1 be the digit of the least non-zero entry of μ0 and μ1 respectively. The set

Z := {k − 1, . . . , 0} \ {f0, f1}
contains the indices of the columns which are candidates to become zero columns.

Note that for two scalars, we have to scan at least three and at most four columns
to create two zero columns.

4.2 The Main Routine

The purpose of this part is to decide on the window width used in a certain
step. The widths and the required number of zero columns to create are chosen
such that the resulting JHD of the recoded window increases from step to step.
In other words, at first we try a width which results in a low JHD and if that
fails, we increase the width and accept slightly worse JHD. Table 1 shows the
sequence in which the widths and the required zero columns are chosen.

If a recoding with one of the first three widths is possible we recode the
window, write it out and proceed to the next column. Otherwise after using
the last width, where a recoding is always possible, we check the following two
conditions to decide how to proceed.

1. If the last two columns remained unchanged after the recoding we write out
the first two columns and proceed the scan with the third column.

2. If the last column has been changed, but does not contain any entries equal
to ±3 we write out the first three columns and proceed with the last column.

If those two conditions fail we write out all four columns and proceed with the
next column.

However, in the case where we reuse an already recoded column, some prob-
lems might occur. Now, it is no longer guaranteed that adjacent non-zero bits
have opposite signs. Therefore, Lemma 1 doesn’t hold anymore and we have to
reduce it to

An Advanced Method for Joint Scalar Multiplications 197

Lemma 3. If we reuse a converted column, a SWM can create at most one
consecutive zero column without exceeding the digit set D = {0,±1,±3}. After
that at least one non-zero column must follow.

According to Lemma 2 now we have to scan at least two and at most three
columns in order to create one zero column. Therefore we use a different sequence
of widths as shown in Table 1.

Table 1. Sequence of window widths with and without reusing

without reusing with reusing
Sequence of conversion 1. 2. 3. 4. 1. 2. 3. 4.

zero columns required 1 2 3 2 1 1 2 1
window width 1 3 5 4 1 2 4 3
resulting JHD 0 0.33 0.4 0.5 0 0.5 0.5 0.66

Again, if a recoding using one of the first three widths is possible we recode
the window, write it out and proceed to the next column. Otherwise we apply
the fourth conversion and perform the same checks as above. Note that in all
cases where we don’t reuse an already converted column, Lemma 1 holds again
in the next step.

4.3 The Calculation of Z

This method computes the number of zero columns which can be created in a
certain window. Therefore it is used by the main routing to decide whether a
certain width should be used or not. Further it computes the positions of the
columns to become zero, which are needed by the conversion routine. Hence,
at first we calculate the set Z according to Lemma 2. Next, we select a set
Z̃ ⊂ Z which represents the columns that will actually be converted to zero.
This choice is performed according to Lemma 1 or Lemma 3. If we have more
than one possibility for Z̃, we start picking the leftmost candidates first. In the
following examples let x̄ = −x.

Example 1.

a) Without reusing. Let μ0 = 1̄011̄1, μ1 = 101̄00. Therefore f0 = 0 and f1 = 2
holds.
Lemma 2 =⇒ Z := {4, 3, 2, 1, 0} \ {2, 0} = {4, 3, 1} Lemma 1=⇒ Z̃ = {4, 3, 1}

b) With reusing. Let μ0 = 1̄1̄1̄1, μ1 = 1̄01̄1. Therefore f0 = 0 and f1 = 0 holds.

Lemma 2 =⇒ Z := {3, 2, 1, 0} \ {0} = {3, 2, 1} Lemma 3=⇒ Z̃ = {3, 1}

4.4 The Conversion Routine

This part performs the actual recoding of the window. At this point we know
which columns shall become zero, therefore it is possible to recode each scalar

198 E. Dahmen, K. Okeya, and T. Takagi

separately. Each window is scanned from LtR and if a non-zero entry which
should become zero is detected, we scan for the next non-zero entry on the right
and apply one of the following conversions.

(1) 100 . . .01̄ �→ 011 . . .11 (2) 1̄00 . . . 01 �→ 01̄1̄ . . . 1̄1̄

(3) 100 . . .01 �→ 031̄ . . . 1̄1̄ (4) 1̄00 . . . 01̄ �→ 03̄1 . . . 11

Note, that because of Lemma 2 we are always able to find a non-zero entry to
the right in the current window.

Example 2.

a) Let μ0 = 1̄011̄1, μ1 = 101̄00, Z̃ = {4, 3, 1}. Applying (1)− (4) yields

1̄
↑
011̄1

(2)�−→ 01̄
↑
1̄1̄1

(4)�−→ 003̄1̄
↑
1

(2)�−→ 003̄01̄

1
↑
01̄00

(1)�−→ 01
↑
100

(3)�−→ 0030
↑
0 �−→ 00300

b) Let μ0 = 1̄1̄1̄1, μ1 = 1̄01̄1, Z̃ = {3, 1}. Applying (1)− (4) yields

1̄
↑
1̄1̄1

(4)�−→ 03̄1̄
↑
1

(2)�−→ 03̄01̄ 1̄
↑
01̄1

(4)�−→ 03̄1
↑
1

(3)�−→ 03̄03

4.5 Implementation

The implementation of the three parts of the proposed scheme can be found in
Algorithms 1, 2 and 3. They use the following notations: The variables u and
l denote the first and the last index of the current window, respectively. The
variable c denotes the current case, namely c = 0 if we are reusing an already
converted column and c = 1 otherwise. The set Z to determine which columns
should be converted, is represented as a k-bit array z, where zj = 1, if the j-th
column in the current window is to be converted and zj = 0, otherwise. Here
k is the width of the current window and j = k − 1, . . . , 0. The notation di,j

denotes the j-th bit of the i-th scalar and substrings are denoted by d0,u..l :=
(d0,u, d0,u−1, . . . , d0,l). Also, � denotes the bitwise subtraction which is used for
the on-the-fly MOF generation.

4.6 Average Joint Hamming Density

Thenext step is to prove, that the representationgeneratedby the proposed scheme
indeed results in an AJHD of 239/661 ≈ 0.3615. We will calculate the AJHD us-
ing Markov Chains [Häg02]. Figure 1 shows the transition graph of the proposed
scheme. Each state indicates the number of columns currently scanned, the number
of columns which are reused (the boxed ones) and the probability with which the
state changes into another. Whenever a recoding was performed, we jump back to
state 1. Those changes are indicated by arrows with a dot at the end.

The transition probabilities are given by the matrix (pij) := P (Si �→ Sj),
where Si �→ Sj indicates that state Si changes into Sj . Those numbers were

An Advanced Method for Joint Scalar Multiplications 199

Fig. 1. Transition graph

obtained by checking all cases. Also we need the matrices (tij) which contains the
total number of columns written out by the algorithm if Si �→ Sj and (nij) which
contains the number of non-zero columns written out if Si �→ Sj , i, j = 1, . . . , 14.
The non-zero entries of those three matrices as well as the line in Algorithm 1
where the changes of states occur are summarized in Table 2.

Since this Markov chain is irreducible and aperiodic, it exists a stationary
distribution

π = 976
2885

, 732
2885

, 366
2885

, 1891
23080

, 227
17310

, 2257
46160

, 323
8655

, 323
13848

, 323
17310

, 76
2885

, 48
2885

, 21
2885

, 27
5770

, 27
9232

Table 2. Non-zero entries of the matrices pij , tij and nij

line Si �→ Sj pij tij nij line Si �→ Sj pij tij nij

1 S1 �→ S1 1/4 1 0 1 S3 �→ S1 17/48 5 2
1 S6 �→ S1 17/37 2 1 1 S7 �→ S1 3/8 4 2
1 S9 �→ S1 1/2 2 1 1 S12 �→ S1 5/14 5 2
1 S10 �→ S1 7/19 1 0 1 S3 �→ S4 31/48 0 0
1 S14 �→ S1 7/15 2 1 1 S7 �→ S8 5/8 0 0

1/1 S6 �→ S7 20/37 0 0 1 S12 �→ S13 9/14 0 0
1/1 S9 �→ S7 1/2 0 0 1 S4 �→ S5 3/31 2 1
1/1 S14 �→ S7 8/15 0 0 1 S8 �→ S5 1/5 1 1
1 S1 �→ S2 3/4 0 0 1 S13 �→ S5 1/9 2 1
1 S10 �→ S11 12/19 0 0 1 S4 �→ S6 37/62 3 1
1 S2 �→ S1 1/2 3 1 1 S8 �→ S9 4/5 2 1
1 S5 �→ S1 1 3 1 1 S13 �→ S14 5/8 3 1
1 S11 �→ S1 9/16 3 1 1 S4 �→ S10 19/62 4 2
1 S2 �→ S3 1/2 0 0 1 S13 �→ S10 19/72 4 2
1 S11 �→ S12 7/16 0 0

200 E. Dahmen, K. Okeya, and T. Takagi

Algorithm 1. The Main Routine
Require: two n-bit scalars d0 and d1 in their binary representation
Ensure: recoded representation δ0 and δ1

1: d0,−1 ← � 0 ; d1,−1 ← � 0; d0,n ← � 0; d1,n ← � 0
2: u ← � n; c ← � 1
3: while u > 0 do
4: while d0,u = d0,u−1 ∧ d1,u = d1,u−1 ∧ u > 0 do
5: μ0,u ← � 0; μ1,u ← � 0
6: u ← � u − 1; c ← � 1
7: end while
8: l ← � u − 1 − c
9: μ0,u+c−1..l ← � d0,u+c−1..l � d0,u+c−2..l−1

10: μ1,u+c−1..l ← � d1,u+c−1..l � d1,u+c−2..l−1

11: z ← � calculateZ(μ0,u..l, μ1,u..l, c)
12: if zu−l + . . . + z0 ≥ 1 + c ∨ l ≤ 0 then
13: (μ0,u...l, μ1,u...l) ← � convert(μ0,u..l, μ1,u..l, z)
14: u ← � u − 2 − c; c ← � 1
15: else
16: l ← � u − 3 − c
17: μ0,u+c−1..l ← � d0,u+c−1..l � d0,u+c−2..l−1

18: μ1,u+c−1..l ← � d1,u+c−1..l � d1,u+c−2..l−1

19: z ← � calculateZ(μ0,u..l, μ1,u..l, c)
20: if z3 = 1 ∧ z2 = 0 ∧ z1 = 1 ∧ z0 = 0 then
21: (μ0,u...l, μ1,u...l) ← � convert(μ0,u..l, μ1,u..l, z)
22: u ← � u − 4 − c; c ← � 1
23: else
24: l ← � u − 2 − c
25: μ0,u+c−1..l ← � d0,u+c−1..l � d0,u+c−2..l−1

26: μ1,u+c−1..l ← � d1,u+c−1..l � d1,u+c−2..l−1

27: z ← � calculateZ(μ0,u..l, μ1,u..l, c)
28: (μ0,u..l, μ1,u..l) ← � convert(μ0,u..l, μ1,u..l, z)
29: if μ0,l+1..l = d0,l+1..l � d0,l..l−1 ∧ μ1,l+1..l = d1,l+1..l � d1,l..l−1 then
30: u ← � u − 1 − c; c ← � 1
31: else if μ0,l �= ±3 ∧ μ1,l �= ±3 ∧ (μ0,l, μ1,l) �= (0, 0) then
32: u ← � u − 2 − c; c ← � 0
33: else
34: u ← � u − 3 − c; c ← � 1
35: end if
36: end if
37: end if
38: end while
39: return μ0, μ1.

Using the stationary distribution π and the matrices (pij), (tij) and (nij) we can
calculate the AJHD as follows. According to the definition of the AJHD, we need
the average number of (non-zero) columns written out by the algorithm for any
possible transition Si �→ Sj , i, j = 1, . . . 14. For one fixed transition Sı̃ �→ Sj̃,
these numbers obviously are (nı̃j̃ · pı̃j̃) tı̃j̃ · pı̃j̃. If we consider a whole state Sı̃,

An Advanced Method for Joint Scalar Multiplications 201

Algorithm 2. Calculation of z calculateZ
Require: two k-bit MOF strings μ0 and μ1 and the current case c
Ensure: the vector z
1: for i = 0 to 1 do
2: fi ← � −1
3: for j = k − 1 down to 0 do
4: if μi,j �= 0 then
5: fi ← � j
6: end if
7: end for
8: end for
9: r ← � 0

10: for j = k − 1 down to 0 do
11: if j = f0 ∨ j = f1 ∨ r = 2 then
12: zj ← � 0; r ← � 0
13: else
14: zj ← � 1; r ← � r + 1
15: end if
16: if c = 0 ∧ j = k − 1 ∧ zk−1 = 1 then
17: r ← � 2
18: end if
19: end for
20: return z.

Algorithm 3. Conversion routine convert
Require: two k-bit MOF strings μ0 and μ1 and the columns to convert z
Ensure: recoded representation of μ0 and μ1

1: for i = 0 to 1 do
2: for j = k − 1 down to 0 do
3: if zj = 1 ∧ μi,j �= 0 then
4: s ← � j − 1
5: while μi,s = 0 do
6: s ← � s − 1
7: end while
8: if μi,j = −μi,s then
9: for t = j − 1 down to s do

10: μi,t ← � μi,j

11: end for
12: μi,j ← � 0
13: else if μi,j = μi,s then
14: for t = j − 2 down to s do
15: μi,t ← � −μi,j

16: end for
17: μi,j−1 ← � 3 · μi,j ; μi,j ← � 0
18: end if
19: end if
20: end for
21: end for
22: return μ0, μ1.

202 E. Dahmen, K. Okeya, and T. Takagi

we have to add all values (nı̃j · pı̃j) tı̃j · pı̃j , j = 1, . . . , 14. Finally if we consider
all states Si, i = 1, . . . , 14 we have to multiply this sum with πi, the probability
that the algorithm currently is in this state and add them together. The AJHD
then is the quotient of the value for the non-zero columns and the value for all
columns, namely

AJHD =

14∑
i=1

πi

14∑
j=1

nij · pij

14∑
i=1

πi

14∑
j=1

tij · pij

=
239
661
≈ 0.3615733

Because such calculations involve a great number of difficult to estimate values,
it is very likely that some error occurs. However, we are happy to report that
this AJHD was confirmed by experimental results. While for 160-bit scalars the
estimated AJDH was 0.3636836, for a larger bit length it converged against the
calculated value.

5 Comparison

In this section we want to compare the average number of ECADD operations
required for computing uP + vQ of the proposed scheme and the methods of
Section 3. Table 3 shows these values and also the direction in which the scalar
are recoded, i.e. LtR od RtL.

According to Table 3 the proposed scheme requires the least average number
of additions and is therefore the first scheme with which the Shamir method wins
over the Interleave method. Compared to the first two methods [Ava02, KZZ04]
the memory usage for the recoding is reduced due to the LtR generation. The
problem with the last two methods is that the underlying representations have
been proven to be minimal [Ava04, Möl04]. Therefore it is not possible to further
reduce the average number of additions using methods which reduce the AHD,
while for methods which reduce the AJHD a minimal representation is still
unknown.

Table 3. Average number of additions and direction of recoding

Scheme avg. number of ECADD direction

Shamir+[Ava02] 3
8
n = 0.3750n RtL

Shamir+[KZZ04] 121
326

n ≈ 0.3712n RtL

Interleave+(4,5)MOF (1
6

+ 1
5
)n ≈ 0.3666n LtR

Interleave+[Möl04] (2
11

+ 2
11

)n ≈ 0.3636n LtR

Shamir+Section 4 239
661

n ≈ 0.3615n LtR

An Advanced Method for Joint Scalar Multiplications 203

6 Conclusion

In this paper we proposed a new algorithm to speed up the calculation of uP +vQ
using the Shamir method. The main point was extending the digit set of the
JSF to D = {0,±1,±3}. We proved that the AJHD of our scheme is 239/661 ≈
0.3615, which is superior to any known method which uses ten precomputed
points. The proposed scheme is the first to enhance the Shamir method such
that it wins over the Interleave method and compared to the JSF, the multi-
scalar multiplication can be sped up by more than 10%. Due to the LtR fashion
of our algorithm, the memory consumption for the recoding is reduced and we
need only the knowledge of 6 joint bits of the binary representations to generate
the new representation. Future work may include an improvement of the AJHD
and a generalisation to an arbitrary number of scalars.

References

[Ava02] Avanzi, R., On multi-exponentiation in cryptography, Cryptology ePrint
Archive: Report 2002/154, 2002, available at
http://eprint.iacr.org/2002/154/

[Ava04] Avanzi, R., A Note on the Signed Sliding Window Integer Recoding and
a Left-to-Right Analogue, Selected Areas in Cryptography - SAC 2004,
LNCS 3357, pp. 130-143

[BSS99] Blake, I., Seroussi, G., and Smart, N., Elliptic Curves in Cryptography,
Cambridge University Press, 1999.

[CMO98] Cohen, H., Miyaji, A., Ono, T., Efficient Elliptic Curve Exponentiation
Using Mixed Coordinates, Advances in Cryptology - ASIACRYPT ’98,
LNCS1514, (1998), 51-65.

[ElG85] ElGamal, T., A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE Transactions on Information Theory, Vol.
31, IEEE 1985, pp. 469-472.

[GHPT03] Grabner, P., Heuberger, C., Prodinger, H., Thuswaldner J., Anal-
ysis of linear combination algorithms in cryptography, available at
http://www.opt.math.tu-graz.ac.at/∼cheub/publications/

[Gor98] Gordon, D., A survey of fast exponentiation methods, Journal of Algo-
rithms, vol.27, (1998), 129-146.

[Häg02] Häggström, O., Finite Markov Chains and Algorithmic Applications,
London Mathematical Society Student Texts 52, Cambridge University
Press, (2002).

[HKPR04] Heuberger, C., Katti, R., Prodinger, H., Ruan, X., The Alternating
Greedy Expansion and Applications to Left-To-Right Algorithms in Cryp-
tography available at
http://www.opt.math.tu-graz.ac.at/∼cheub/publications/

[Kob87] Koblitz, N., Elliptic Curve Cryptosystems, Math. Comp. 48, (1987),
203-209.

[KZZ04] Kuang, B., Zhu, Y., Zhang, Y., An Improved Algorithm for uP+vQ using
JSF3, Applied Cryptography and Network Security - ACNS 2005, LNCS
3089, pp. 467-478

204 E. Dahmen, K. Okeya, and T. Takagi

[Mil86] Miller, V.S., Use of Elliptic Curves in Cryptography, Advances in Cryp-
tology - CRYPTO ’85, LNCS218, (1986), 417-426.

[MOC97] Miyaji, A., Ono, T., and Cohen, H., Efficient Elliptic Curve Exponentia-
tion, Information and Communication Security, ICICS 1997, LNCS 1334,
(1997), 282-291.

[MO90] Morain, F., Olivos, J., Speeding Up the Computations on an Elliptic
Curve using Addition-Subtraction Chains, Informa. Theor. Appl., 24,
(1990), pp.531-543.

[Möl01] Möller, B., Algorithms for Multi-exponentiation, Selected Areas in Cryp-
tography - SAC 2001, LNCS 2259, pp. 165-180

[Möl02] Möller, B., Improved Techniques for Fast Exponentiation, Information
Security and Cryptology ICISC 2002. LNCS 2587, pp. 298312

[Möl04] Möller, B., Fractional Windows Revisited: Improved Signed-Digit Repre-
sentations for Efficient Exponentiation, Information Security and Cryp-
tology ICISC 2004, to appear.

[OSST04] Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T., Signed Binary
Representations Revisited, Advances in Cryptology - CRYPTO 2004,
LNCS 3152, pp.123-139, available at
http://eprint.iacr.org/2004/195/

[Pro03] Proos, J., Joint Sparse Forms and Generating Zero Columns when Comb-
ing, Technical Report of the Centre for Applied Cryptographic Research,
University of Waterloo - CACR, CORR 2003-23, 2003, available at
http://www.cacr.math.uwaterloo.ca .

[SST04] Schmidt-Samoa, K., Semay, O., Takagi, T., Analysis of Some Efficient
Window Methods and their Application to Elliptic Curve Cryptosystems,
Technical Report No. TI-3/04, 16. August 2004.

[Sol00] Solinas, J.A., Efficient Arithmetic on Koblitz Curves, Design, Codes and
Cryptography, 19, (2000), 195-249.

[Sol01] Solinas, J.A., Low-weight binary representations for pairs of integers,
Technical Report of the Centre for Applied Cryptographic Research,
University of Waterloo - CACR, CORR 2001-41, 2001, available at
http://www.cacr.math.uwaterloo.ca

Side Channel Attacks on Message
Authentication Codes

Katsuyuki Okeya1 and Tetsu Iwata2

1 Hitachi, Ltd., Systems Development Laboratory,
1099, Ohzenji, Asao-ku, Kawasaki, 215-0013, Japan

ka-okeya@sdl.hitachi.co.jp
2 Dept. of Computer and Information Sciences,

Ibaraki University, 4–12–1 Nakanarusawa,
Hitachi, Ibaraki 316-8511, Japan

iwata@cis.ibaraki.ac.jp

Abstract. Side channel attacks are a serious menace to embedded de-
vices with cryptographic applications which are utilized in sensor and
ad hoc networks. In this paper we show that side channel attacks can
be applied to message authentication codes, even if the countermeasure
is applied to the underlying block cipher. In particular, we show that
EMAC, OMAC, and PMAC are vulnerable to our attack. Based on sim-
ple power analysis, we show that several key bits can be extracted, and
based on differential power analysis, we present selective forgery against
these MACs. Our results suggest that protecting block ciphers against
side channel attacks is not sufficient, and countermeasures are needed
for MACs as well.

Keywords: Side Channel Attacks, MACs, Selective Forgery, SPA, DPA.

1 Introduction

Ubiquitous computing devices are penetrating in our daily life. A sensor net-
work is such an example. While some sensors have batteries, others are sup-
plied with electricity from outside. However, side channel attacks (SCA) are a
serious menace to such embedded devices with cryptographic applications. In
SCA the attacker reveals secret information using side channel information such
as power consumption while the victim device performs cryptographic applica-
tions [Koc96, KJJ99].

An ad hoc network is also useful for mobile devices to communicate each
other. In many environments including the ad hoc network, authentication and
integrity check mechanism are important to prevent against impersonation and
substitution/alternation of messages. Since such devices are equipped with scarce
computational resources only, authentication based on the symmetric ciphers,
namely message authentication code (MAC) is often utilized.

Nowadays some IC chips are equipped with tamper-resistant modules as coun-
termeasures against SCA, especially countermeasures on a block cipher are uti-
lized. Under this situation, MACs are implemented as a software program using

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 205–217, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 K. Okeya and T. Iwata

the tamper-resistant block cipher module. Whereas many researches have been
made on SCA against block ciphers, little attention has been given to SCA
against MACs so far.

This paper discusses the security of MACs with tamper-resistant block
cipher.

1.1 Previous Works

First, Vaudenay demonstrated a side-channel attack against CBC encryption
mode with CBC-PAD [Vau02]. Given an oracle which reveals whether or not the
plaintext (corresponding to some altered ciphertext) is correctly padded (side
channel information), the paper [Vau02] showed that one can efficiently recover
the plaintext. This attack is often referred to as the padding oracle attack. Later,
Black and Urtubia described an improvement to the Vaudenay’s attack [BU02].
The paper [BU02] generalized the attack to other encryption schemes showing
that other common methods for symmetric encryption (CTR, OFB, CFB, and
stream ciphers) all possess the required weaknesses which permit this type of at-
tack. Paterson and Yau considered CBC mode of ISO/IEC 10116 [PY04]. Klima
and Rosa described how the CBC mode in the PKCS#7 can be attacked [KR03].

Möler [Möl04] pointed out problems with the CBC-based ciphersuites in SSL
3.0 and TLS 1.0. In fact, TLS 1.0 has different error codes for incorrect MACs
(‘decryption failed’ and ‘bad record mac’), the attacker can utilize it as the
padding oracle. Because of the menace of the padding oracle attack, these er-
ror codes were unified. Next, Canvel, Hiltgen, Vaudenay, and Vaugnoux showed
that the attack is actually applicable against the popular implementations of
SSL/TLS for password interception [CHVV03].

1.2 Contribution of This Paper

The lesson from the above results is that a strong message integrity check is
needed, and padding schemes or obscure message encoding does not seem to
help in preventing these kind of attacks.

Message integrity checks are often realized by using a Massage Authentication
Code, or a MAC for short. A MAC takes a secret key and a message to produce
a fixed length output, called a tag. This tag is then used to check if the message
is altered during the transmission, or storage.

There are several well known MACs based on block ciphers, for example,
we have CBC MAC [FIPS94, ISO99], EMAC [BBB+95], OMAC [IK03], and
PMAC [BR02].

CBC MAC is a widely used standard MAC, and EMAC was developed for
the RACE project. OMAC is recommended by NIST under the name of CMAC
[NIST], and also is in the process of approval at IEEE 802.16 Task Group e
(Mobile WirelessMAN) [IEEE].

In this paper, we show that side channel attacks can be applied to these
MACs, even if the countermeasure is applied to the underlying block cipher.
In particular, we show that EMAC, OMAC, and PMAC are vulnerable to our

Side Channel Attacks on Message Authentication Codes 207

attack. As SCAs, we consider Simple Power Analysis (SPA) and Differential
Power Analysis (DPA) [Koc96, KJJ99] against these MACs. Based on SPA, we
show that two bits of information (which is equivalent to two bits of the key) is
extracted in OMAC, and log m bits of information (which is equivalent to log m
bits of the key) can be extracted in PMAC, where m denotes the maximum
length of the messages that the attacker obtains. For DPA, we present selective
forgery against EMAC, OMAC, and PMAC, assuming that the attacker is in a
chosen plaintext attack scenario. We note that this attack is much stronger and
useful than the standard existential forgery, since the attacker can choose the
message. For example the message may be a contract that is beneficial to the
attacker. Furthermore, we allow the attacker to choose the target message before
the key is chosen.

Our results suggest that protecting block ciphers against side channel attacks
is not sufficient, and the countermeasure is needed for implementations of MACs
as well.

2 Block Ciphers and Message Authentication Codes

Notation. If x is a string then |x| denotes its length in bits. If x and y are
two equal-length strings, then x ⊕ y denotes the XOR of x and y. If x and y
are strings, then x ◦ y, or simply xy, denotes their concatenation. Let x ← y

denote the assignment of y to x. If X is a set, let x
R← X denote the process

of uniformly selecting at random an element from X and assigning it to x. For
positive number n, {0, 1}n is the set of all binary strings of length n. We also
denote ({0, 1}n)+ the set all binary strings of length positive multiple of n, and
{0, 1}∗ the set all binary strings.

Block Ciphers. A block cipher E : {0, 1}k × {0, 1}n → {0, 1}n is a function
from k-bit keys and n-bit blocks to n-bit blocks. We use the notation EK(X)
as shorthand for E(K, X). A block cipher is a family of permutations; that is,
for each key K ∈ {0, 1}k, EK(·) is a permutation on {0, 1}n. We call k the key
length of E and we call n the block length.

MACs and Their Security. A message authentication code or MAC MA =
(K, T ,V) consists of three algorithms and is defined for some message space
MSG and some tag length τ . The randomized key generation algorithm K takes
no input and returns a random key K. The stateless and deterministic tagging
algorithm takes a key K and a message M ∈ MSG as input and returns a tag
T ∈ {0, 1}τ ; we write TK(M) = T . The stateless and deterministic verification
algorithm takes a key K, a message M ∈ MSG, and a candidate tag T ∈ {0, 1}τ
as input and returns a bit b; we write VK(M, T) = b. For consistency, we require
that for all keys K and messages M , VK(M, TK(M)) = 1.

In this paper, we assume that the adversary is in a chosen plaintext attack
scenario. Such attacks are possible, for example, if a device such as smart card
containing a secret key is physically accessible by the attacker. In this scenario
the device acts as oracles, and the attacker A has two oracles: a tagging oracle

208 K. Okeya and T. Iwata

TK(·) and a verification oracle VK(·, ·). We say that A forges if A makes a query
(M∗, T ∗) to VK(·, ·) such that VK(M∗, T ∗) = 1 and A did not make a query M∗

to TK(·) that resulted in a response T ∗. Then

Advmac
MA(A) def= Pr(K R← K : ATK(·),VK(·,·) forges)

is defined as the MAC-advantage of A against MA. Intuitively, the attacker
forges if the integrity of the message is broken, that is, if the adversary is able
to obtain the correct (message, tag) pair, where this pair has not previously
produced by the oracle.

(M∗, T ∗) is called a forgery attempt, and it is called a forgery if VK(M∗, T ∗)=
1. If the attacker can choose M∗ at will, then (M∗, T ∗) is called a selective
forgery, otherwise it is called an existential forgery.

3 MACs: CBC MAC, EMAC, OMAC and PMAC

CBC MAC [FIPS94, ISO99]. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher. The function CBC is parameterized by E. CBC : {0, 1}k× ({0, 1}n)+ →
{0, 1}n takes a key K ∈ {0, 1}k and a message M ∈ ({0, 1}n)+ as input and
returns an n-bit string. The algorithm of CBC is described in Figure 1.

EMAC [BBB+95]. Let E : {0, 1}k× {0, 1}n → {0, 1}n be a block cipher and let
τ ≤ n be the tag length. We write EMAC[E, τ] if we use E and τ as parameters.
The EMAC[E, τ] key generation algorithm EMAC-K returns two independent
random k-bit keys K1 and K2. The EMAC[E, τ] tagging algorithm EMAC-T
takes K1 and K2 and a message M ∈ ({0, 1}n)+ as input and returns a τ -bit
tag T . The algorithm of EMAC-T is described in Figure 2.

The EMAC[E, τ] verification algorithm EMAC-V takes K1 and K2, a mes-
sage M ∈ ({0, 1}n)+, and a tag T ∈ {0, 1}τ as input and returns 1 iff
EMAC-T K1,K2(M) = T .

OMAC [IK03]. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and let
τ ≤ n be the tag length. We write OMAC[E, τ] if we use E and τ as parameters.
The OMAC[E, τ] key generation algorithm OMAC-K returns a random k-bit
key K. The OMAC[E, τ] tagging algorithm OMAC-T takes a k-bit key K and

Algorithm CBCK(M)
Let M [1] · · ·M [m] ← M where |M [i]| = n
Y [0] ← 0n

for i ← 1 to m do
Y [i] ← EK(M [i] ⊕ Y [i − 1])

return Y [m]

Fig. 1. CBCK(M)

Side Channel Attacks on Message Authentication Codes 209

Algorithm EMAC-T K1,K2(M)
Y [m] ← CBCK1(M)
T ← the leftmost τ bits of EK2(Y [m])
return T

Fig. 2. EMAC-T K1,K2(M)

Algorithm OMAC-T K(M)
L ← EK(0n)
Let M = M [1] · · ·M [m], where |M [i]| = n for 1 ≤ i ≤ m − 1
Y [m − 1] ← CBCK(M [1], . . . , M [m − 1])
if |M [m]| = n then X[m] ← Y [m − 1] ⊕ M [m] ⊕ L · u

else X[m] ← Y [m − 1] ⊕ pad(M [m]) ⊕ L · u2

T ← EK(X[m])
return the leftmost τ bits of T

Fig. 3. OMAC-T K(M)

a message M ∈ {0, 1}∗ as input and returns a τ -bit tag T . The algorithm of
OMAC-T is described in Figure 3. In Figure 3, the padding function pad(·)
takes M ∈ {0, 1}∗ such that |M | ≤ n and is defined as follows:

pad(M) = M ◦ 10n−1−(|M| mod n) (1)

L · u is defined as follows:

L · u =
{

L� 1 if msb(L) = 0,
(L� 1)⊕ Cstn if msb(L) = 1, (2)

where: msb(L) denotes the most significant bit of L (meaning the left most bit),
L� 1 denotes the left shift of L by one bit (the most significant bit disappears
and a zero comes into the least significant bit), and Cstn is an n-bit constant.
For example, Cst64 = 05911011 and Cst128 = 012010000111. L · u2 is simply
(L · u) · u.

We also note that multiplication by u−1 is easy. For any L ∈ {0, 1}n, if
lsb(L) = 0 then L·u−1 is L 1, and if lsb(L) = 1 then L·u−1 is (L 1)⊕Cst′n,
where: lsb(L) denotes the least significant bit of L (meaning the right most bit),
L 1 denotes the right shift of L by one bit (the least significant bit disappears
and a zero comes into the most significant bit), and Cst′n is an n-bit constant.
For example, Cst′128 = 101201000011.

The OMAC[E, τ] verification algorithm OMAC-V takes a k-bit key K, a
message M ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ as input and returns 1 iff
OMAC-T K(M) = T .

PMAC [BR02]. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a block cipher and let τ ≤
n be the tag length. We write PMAC[E, τ] if we use E and τ as parameters. The
PMAC[E, τ] key generation algorithm PMAC-K returns a random k-bit key K.

210 K. Okeya and T. Iwata

Algorithm PMAC-T K(M)
L ← EK(0n)
Let M = M [1] · · ·M [m], where |M [i]| = n for 1 ≤ i ≤ m − 1
for i ← 1 to m − 1 do

X[i] ← M [i] ⊕ γi · L
Y [i] ← EK(X[i])

Σ ← Y [1] ⊕ Y [2] ⊕ · · · ⊕ Y [m − 1] ⊕ pad(M [m])
if |M [m]| = n then X[m] ← Σ ⊕ L · u−1

else X[m] ← Σ
T ← EK(X[m])
return the leftmost τ bits of T

Fig. 4. PMAC-T K(M)

The PMAC[E, τ] tagging algorithm PMAC-T takes a k-bit key K and a message
M ∈ {0, 1}∗ as input and returns a τ -bit tag T . The algorithm of PMAC-T is
described in Figure 4. See (1) for the definition of pad(·), and Appendix for the
computation of γi · L.

The PMAC[E, τ] verification algorithm PMAC-V takes a k-bit key K, a mes-
sage M ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ as input and returns a bit, and is defined
in the natural way.

4 Side Channel Attacks and Their Countermeasures

In this section, we review side channel attacks and their countermeasures.

4.1 Side Channel Attacks

Side channel attacks (SCA) are a serious menace to embedded devices with
cryptographic applications which are utilized in sensor and ad hoc networks. In
SCA the attacker reveals secret information using side channel information such
as power consumption while the victim device performs cryptographic applica-
tions [Koc96, KJJ99].

SCA includes two types of attacks; simple power analysis (SPA) and differ-
ential power analysis (DPA). In SPA the attacker utilizes power consumption
directly, and parses it into a sequence composed of fundamental operations such
as XOR and finite field operations. Then, he/she reveals the secret using the
relation between the sequence and the secret. In DPA the attacker utilizes some
statistical tools in addition to power consumption for revealing the secret. Nor-
mally he/she utilizes the average of power consumption for confirming his/her
guess at the secret.

4.2 SCA on Block Ciphers

Kocher et al. were first to propose SCA on DES [Koc96, KJJ99]. Later SCA
were extended to other block ciphers such as AES [Mes00a]. Whilst the several

Side Channel Attacks on Message Authentication Codes 211

researches enhanced the attack, countermeasures against SCA were proposed.
The masking method [Mes00a] is a typical example of a countermeasure on
block ciphers.

Such countermeasures are not only theoretical or academic works, but also
practical or industrial ones. In fact, nowadays some IC chips are equipped with
tamper-resistant modules as countermeasures against SCA, especially counter-
measures on a block cipher are utilized. MAC modules are achieved by using
software combinations of such a block cipher with countermeasures. This is for
reasons of the flexibility of cryptographic modules.

Whereas many researches have been made on SCA against block ciphers, little
attention to SCA against MACs so far.

5 Proposed Attacks

In this section, we propose side channel attacks against MACs with tamper-
resistant block cipher.

5.1 Simple Power Analysis

Simple Power Analysis on OMAC. We first present our SPA against OMAC.
In OMAC, the computation L · u has a conditional branch as in (2), which

is recognizable in view of SPA. If msb(L) = 0 then only the left shift operation
is performed. On the other hand, if msb(L) = 1 then the left shift and XOR
operations are performed. Thus, when an observed power consumption indicates
XOR operation, the attacker can deduce the most significant bit of L is 1. That
is, the attacker retrieves one-bit information on the secret L.

Figure 5 shows the experimental result for SPA on the computation L ·u. For
the experiment, the computation L · u was implemented on an IC chip. While
the computation L · u was performed, the power consumption was observed by
using an oscilloscope. Figure 5 shows this power consumption. The upper half
is the power consumption when msb(L) = 0, and the lower half is that when
msb(L) = 1. It is easy to recognize the additional operation in the lower half,
which corresponds to XOR operation. Note that the power consumption curve
just before XOR operation corresponds to the left shift operation L � 1, thus
the counterpart appears in the upper half.

If the message length is not a positive multiple of n, then OMAC requires to
compute L · u2. In computing this value, we have only the left shift operation
if msb(L · u) = 0, while we have both the left shift and XOR operations if
msb(L · u) = 1. Therefore, the attacker can deduce the second most significant
bit of L.

We have the following proposition.

Proposition 1. There exists an SPA attacker A against OMAC that retrieves
two-bit information on the secret L.

Notice that L acts as a key (even if this value is derived from K). Namely, the
security proof of OMAC requires L to be completely secret, and if L is retrieved
by the attacker, then OMAC becomes insecure.

212 K. Okeya and T. Iwata

Fig. 5. SPA on L · u

Simple Power Analysis on PMAC. We next present our SPA against
PMAC. Now let M = M [1]◦M [2]◦ · · ·◦M [m] be a message. To compute the tag
for M , we have to compute the sequence of masks, γ1 ·L, γ2 ·L, . . . , γm−1 ·L. Now
to compute γi ·L, we do as follows: γi ·L = (γi−1 ·L)⊕ (L · untz(i)), where ntz(i)
is the number of trailing 0-bits in the binary representation of i (e.g., ntz(7) = 0
and ntz(8) = 3). The i-th word in the sequence γ1 ·L, γ2 ·L, γ3 ·L, . . . is obtained
by XORing the previous word with (L · untz(i)) (See Appendix).

Therefore, to compute a tag for M = M [1] ◦M [2] ◦ · · · ◦M [m], we have to
compute L · u, L · u2, . . . , L · untz(m−1) and also L · u−1.

As we have seen in the case for OMAC, computing these values reveals
msb(L), msb(L · u), . . . , msb(L · untz(m−1)−1) and also the least significant bit of
L. Therefore, the attacker learns roughly log m bits of L. We have the following
proposition.

Proposition 2. There exists an SPA attacker A against PMAC that retrieves
log m-bit information on the secret L, where m demotes the block length of the
message.

5.2 Differential Power Analysis

First, we show the principle of the proposed DPA against MACs with tamper-
resistant block cipher.

Side Channel Attacks on Message Authentication Codes 213

Y1
secret

constant

�

M public
changeable

�� � Y2

Fig. 6. DPA on XOR

Fig. 7. Experiment with DPA on XOR

Figure 6 shows the target XOR operation in a victim MAC. The XOR op-
eration has two inputs Y1 and M ; Y1 is secret and constant which the attacker
tries to reveal, and M is public and the attacker can control this value. Y2 is the
output of the XOR, and the attacker does not know this value.

The first step of the attack is to guess a certain bit of Y1, and he/she sorts
the output Y2 depending on the target bit of Y2 is 0 or 1 according to the
changeable input M . Then, the attacker observes the power consumption for the
XOR operation with several inputs M . The third step is to compute the average
power consumption for each group. Under the Hamming weight model [Mes00b],
the power consumption depends on the Hamming weight of manipulated data.
Hence the large power consumption implies that the target bit of Y2 is 1 since
the other bits behave as random and averaging eliminates the effect of the other
bits. This provides the attacker with the information whether the original guess
for the target bit of the secret Y1 is correct or not. Repeating this procedure,
the attacker can reveal the whole bits of the secret Y1.

Note that once the attacker observes sufficient number of the power con-
sumptions, he/she does not have to re-observe them for another target bit. Only
he/she has to do is to re-classify Y2 and compute the average power consumption
for the new groups.

Figure 7 shows the experimental result for DPA on XOR. We utilized the
same experimental environment as the one we did for SPA. For computing the
averages, we observed the power consumption 100,000 times. Then, we classified
the power consumption data into two groups, and computed the average power
consumption for each group. Figure 7 shows the difference of these two averages.
The peaks are easily recognized in the figure. Hence, when such an XOR opera-
tion exists in a victim MAC, the attack is realistic even if the underlying block
cipher is tamper-resistant.

214 K. Okeya and T. Iwata

In what follows, we present our DPA against EMAC, OMAC, and PMAC.
A remarkable aspect of our attack is that the attacker can achieve the selective
forgery. That is, the attacker can choose the target message M∗. Furthermore,
we allow the attacker to choose M∗ before the key is chosen.

Differential Power Analysis on EMAC. The attack proceeds as follows.

1. A first chooses any massage M∗. Let M∗ = M∗[1] ◦M∗[2] ◦ · · · ◦M∗[m∗],
where |M∗[i]| = n for 1 ≤ i ≤ m∗.

2. Then the oracle runs the key generation algorithm EMAC-K to choose a
random secret key K. This K is hidden from A.

3. Now the attacker makes a tagging query M1 = M∗[1]◦M∗[2]◦· · ·◦M∗[m∗−1]
to EMAC-T K1,K2(·) oracle.

4. Then the attacker receives the associated side channel information. This side
channel information includes the value of Y [m∗ − 2]. That is, the attacker
uses M∗[m∗ − 1] as the changeable input (M in Figure 6), and Y [m∗ − 2] is
treated as a secret constant (Y1 in Figure 6).

5. A makes the next tagging query M2 = (Y [m∗ − 2]⊕M∗[m∗ − 1]) ◦M∗[m∗]
to get the tag T2 = EMAC-T K1,K2(M2).

6. Finally, A outputs (M∗, T ∗), where T ∗ ← T2, as a forgery attempt.

It is easy to verify that Advmac
EMAC[E,τ](A) = 1 and A succeeds in selective

forgery. Therefore, we have the following proposition.

Proposition 3. There exists a DPA attacker A against EMAC such that
AdvmacEMAC[E, τ](A) = 1.

Differential Power Analysis on OMAC. The attack proceeds similarly to
the case for EMAC.

That is, A first chooses any massage M∗ = M∗[1] ◦M∗[2] ◦ · · · ◦ M∗[m∗],
where |M∗[i]| = n for 1 ≤ i ≤ m∗− 1. The length of M∗[m∗] may be fewer than
n bits. Then the oracle runs the key generation algorithm OMAC-K to choose
a random secret key K. This K is hidden from A. Now the attacker makes a
tagging query M1 = M∗[1] ◦M∗[2] ◦ · · · ◦M∗[m∗ − 1] to OMAC-T K(·) oracle.

Then the attacker learns the associated side channel information. As for the
side channel information, there are two cases depending on the implementation
of OMAC.

– Y [m∗−2] is known to the attacker: In this case, the attacker uses M∗[m∗−1]
as the changeable input (M in Figure 6), and Y [m∗−2] is treated as a secret
constant (Y1 in Figure 6). Then A proceeds as follows.
1. A makes the second tagging query M2 = (Y [m∗ − 2] ⊕M∗[m∗ − 1]) ◦

M∗[m∗] to get the second tag T2 = OMAC-T K(M2).
2. Finally, A outputs (M∗, T ∗), where T ∗ ← T2, as a forgery attempt.

– L · u is known to the attacker: In this case, the attacker uses M∗[m∗ − 1]
as the changeable input (M in Figure 6), and L · u is treated as a secret
constant (Y1 in Figure 6). Then, A proceeds as follows.

Side Channel Attacks on Message Authentication Codes 215

1. A first computes L = (L · u) · u−1. This can be done easily as shown in
Sec. 2.

2. A makes the second tagging query M2 = 0n◦(M∗[1]⊕L)◦M∗[2]◦M∗[3]◦
· · · ◦M∗[m∗] to get the second tag T2 = OMAC-T K(M2).

3. Finally, A outputs (M∗, T ∗), where T ∗ ← T2, as a forgery attempt.

It is easy to verify that Advmac
OMAC[E,τ](A) = 1 and A succeeds in selective

forgery. We have the following proposition.

Proposition 4. There exists a DPA attacker A against OMAC such that
Advmac

OMAC[E,τ](A) = 1.

Differential Power Analysis on PMAC. In this section, we present our
DPA against PMAC. Let M∗ = M∗[1] ◦M∗[2] ◦ · · · ◦M∗[m∗] be a message that
the attacker wants to forge, where |M∗[i]| = n for 1 ≤ i ≤ m∗ − 1. The length
of M∗[m∗] may be fewer than n bits.

The attack proceeds as follows.

1. The attacker makes a tagging query M1 = M∗[1]◦M∗[2]◦· · ·◦M∗[m∗−1]◦M
to PMAC-T K(·) oracle. If |M∗[m∗]| = n, then we choose M = M∗[m∗] and
|M | = n. Otherwise we choose M = M∗[m∗] and 1 ≤ |M | < n.

2. Then the attacker receives the associated side channel information Σ1.
3. A makes the second tagging query M2 = M ′[1] ◦ M ′[2] ◦ · · · ◦ M ′[m∗ −

1] ◦ M ′[m∗] to PMAC-T K(·) oracle, where M2 = M1 and M2 = M∗. If
|M∗[m∗]| = n, then we choose M ′[m∗] = M∗[m∗] and |M ′[m∗]| = n. Other-
wise we choose M ′[m∗] = M∗[m∗] and 1 ≤ |M ′[m∗]| < n.

4. Then the attacker receives the associated side channel information Σ2.
5. Let M ′′ be a string such that pad(M ′′) = Σ2 ⊕ Σ1 ⊕ pad(M∗[m∗]). Then A

makes the third tagging query M3 = M ′[1] ◦M ′[2] ◦ · · · ◦M ′[m∗ − 1] ◦M ′′

to PMAC-T K(·) oracle to receive T3.
6. Finally, A outputs (M∗, T ∗), where T ∗ ← T3, as a forgery attempt.

If Σ2 ⊕ Σ1 ⊕ pad(M∗[m∗]) = 0n, then the attack fails since there is no M ′′.
But this occurs with probability 1/2n, assuming that the underlying block cipher
behaves as a random permutation. Therefore, we have the following proposition.

Proposition 5. There exists a DPA attacker A against PMAC such that
Advmac

PMAC[E,τ](A) ≥ 1− 1/2n.

6 Conclusion

In this paper we showed that side channel attacks can be applied to MACs,
even if the countermeasure is applied to the underlying block cipher. We showed
that EMAC, OMAC, and PMAC are vulnerable to our attacks. We showed that,
based on SPA, information on the keys can be extracted. Also, based on DPA,
we presented selective forgery against these MACs, assuming that the attacker is
in a chosen plaintext attack scenario. Our results suggest that protecting block
ciphers against side channel attacks is not sufficient, and the countermeasure is
needed for modes implementations.

216 K. Okeya and T. Iwata

References

[BKR00] M. Bellare, J. Kilian, and P. Rogaway, “The Security of the Cipher Block
Chaining Message Authentication Code,” JCSS, Vol. 61, No. 3, pp. 362–
399, 2000. Earlier version in CRYPTO ’94, LNCS 839, pp. 341–358, 1994.

[BBB+95] A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt,
D. Chaum, I. Damg̊ard, M. Dichtl, W. Fumy, M. van der Ham,
C. J. A. Jansen, P. Landrock, B. Preneel, G. Roelofsen, P. de Rooij, and
J. Vandewalle. “Final Report of RACE Integrity Primitives. ” LNCS 1007,
1995.

[BR02] J. Black and P. Rogaway, “A Block-Cipher Mode of Operation for Par-
allelizable Message Authentication,” EUROCRYPT 2002, LNCS 2332,
pp. 384–397.

[BU02] J. Black, and H. Urtubia, “Side-Channel Attacks on Symmetric Encryp-
tion Schemes: The Case for Authenticated Encryption,” In Proc. of 11th
USENIX security symposium, pp. 327–338, 2002.

[CHVV03] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vaugnoux, “Password Inter-
ception in a SSL/TLS Channel,” CRYPTO 2003, LNCS 2729, pp. 583–599,
2003.

[DR02] J. Daemen and V. Rijmen, “The Design of Rijndael,” Springer-Verlag,
Berlin Germany, 2002.

[FIPS94] FIPS 113, Computer data authentication. Federal Information Process-
ing Standards Publication 113, U.S. Department of Commerce / National
Bureau of Standards, National Technical Information Service, Springfield,
Virginia, 1994.

[IEEE] IEEE 802.16 Task Group e (Mobile WirelessMAN),
http://wirelessman.org/tge/.

[ISO99] ISO/IEC 9797-1, Information technology — security techniques — data
integrity mechanism using a cryptographic check function employing a
block cipher algorithm. Organization for Standards, Geneva, Switzerland,
1999. Second edition.

[IK03] T. Iwata and K. Kurosawa, “OMAC: One-Key CBC MAC,” FSE 2003,
LNCS 2887, pp. 129–153, 2003.

[KR03] V. Klima and T. Rosa, “Side Channel Attacks on CBC Encrypted Mes-
sages in the PKCS#7 Format,” IACR ePrint Archive 2003/098, 2003.

[Koc96] C. Kocher, “Timing attacks on Implementations of Diffie-Hellman, RSA,
DSS, and other Systems,” CRYPTO ’96, LNCS 1109, pp. 104–113, 1996.

[KJJ99] C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” CRYPTO
’99, LNCS 1666, pp. 388–397, 1999.

[Mes00a] T. Messerges, “Securing the AES Finalists against Power Analysis At-
tacks,” FSE 2000, LNCS 1978, pp. 150–164, 2001.

[Mes00b] T. Messerges, “Using Second-Order Power Analysis to Attack DPA Resis-
tant Software,” CHES 2000, LNCS 1965, pp. 238–251, 2000.

[MDS02] T.S. Messerges, E.A. Dabbish, R.H. Sloan, “Examining Smart-Card Secu-
rity under the Threat of Power Analysis Attacks,” IEEE Trans. Comput-
ers, Vol. 51, No. 5, pp. 541–552, 2002.

[Möl04] B. Möller, “Security of CBC Ciphersuites in SSL/TLS: Problems and
Countermeasures,” Available at
http://www.openssl.org/∼bodo/tls-cbc.txt, 2004.

Side Channel Attacks on Message Authentication Codes 217

[NIST] M. Dworkin, “Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication,” Available at
http://csrc.nist.gov/publications/nistpubs/800-38B/

SP 800-38B.pdf, 2005.
[PY04] K.G. Paterson, and A. Yau, “Padding Oracle Attacks on the ISO CBC

Mode Encryption Standard,” CT-RSA 2004, LNCS 2964, pp. 305–323,
2004.

[Vau02] S. Vaudenay, “Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS,” EUROCRYPT 2002, LNCS 2332, pp. 534–545,
2002.

A Gray Code

For any l ≥ 1, a Gray code is an ordering γl = γl
0γ

l
1 · · · γl

2l−1 of {0, 1}l such
that successive points differ (in the Hamming sense) by just one bit. For n a
fixed number, PMAC uses the “canonical” Gray code γ = γn constructed by
γ1 = 0 ◦ 1 while, for l > 0,

γl+1 = (0γl
0)◦(0γl

1)◦· · ·◦(0γl
2l−2)◦(0γl

2l−1)◦(1γl
2l−1)◦(1γl

2l−2)◦· · ·◦(1γl
1)◦(1γl

1) .

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n − 1,
γi = γi−1⊕ (0n−11� ntz(i)), where ntz(i) is the number of trailing 0-bits in the
binary representation of i (e.g., ntz(7) = 0 and ntz(8) = 3). This makes easy to
compute successive points.

Let L ∈ {0, 1}n and consider the problem of successively forming the strings
γ1 · L, γ2 · L, . . . , γm · L. Of course γ1 · L = 1 · L = L. Now for i ≥ 2, assume
one has already produced γi−1 ·L. Since γi = γi−1 ⊕ (0n−11� ntz(i)), we know
that γi · L = (γi−1 ⊕ (0n−11� ntz(i))) · L = (γi−1 · L)⊕ (0n−11� ntz(i)) · L =
(γi−1 ·L)⊕(L·untz(i)). That is, the i-th word in the sequence γ1 ·L, γ2 ·L, γ3 ·L, . . .
is obtained by XORing the previous word with (L · untz(i)).

Author Index

Ács, Gergely 113
Andersson, Jon 14

Benenson, Zinaida 54
Bicakci, Kemal 80
Biswas, Jit 68
Buttyán, Levente 42, 113, 128

Crispo, Bruno 80

Dahmen, Erik 189
Dóra, László 128

Gamage, Chandana 80

Holczer, Tamás 42

Iwata, Tetsu 205

Kang, Jeonil 164
Kargl, Frank 102
Kher, Vishal 27
Kim, Dong Seong 91
Kim, Seungjoo 142
Kim, Sung Kwon 153
Kim, Yongdae 27
Kwak, Jin 142

Leinmüller, Tim 102
Li, Tieyan 68
Liu, Joseph K. 1

Mahadevan, Karthikeyan 27
Maihöfer, Christian 102

Nyang, DaeHun 164

oh, Soohyun 142
Okeya, Katsuyuki 189, 205

Park, Jong Sou 91
Plagemann, Thomas 14
Pužar, Matija 14

Qiu, Qiang 68

Rhee, Keunwoo 142
Roudier, Yves 14

Sadi, Mohammed Golam 91
Schaffer, Péter 42
Schoch, Elmar 102
Shaneck, Mark 27
Stajano, Frank 176

Takagi, Tsuyoshi 189
Tanenbaum, Andrew S. 80
Tsang, Patrick P. 1

Vajda, István 113, 128

Won, Dongho 142
Wong, Duncan S. 1
Wong, Ford-Long 176

Yeo, Sang-Soo 153

	Frontmatter
	Efficient Verifiable Ring Encryption for Ad Hoc Groups
	SKiMPy: A Simple Key Management Protocol for MANETs in Emergency and Rescue Operations
	Remote Software-Based Attestation for Wireless Sensors
	Spontaneous Cooperation in Multi-domain Sensor Networks
	Authenticated Queries in Sensor Networks
	Improving Sensor Network Security with Information Quality
	One-Time Sensors: A Novel Concept to Mitigate Node-Capture Attacks
	Randomized Grid Based Scheme for Wireless Sensor Network
	Influence of Falsified Position Data on Geographic Ad-Hoc Routing
	Provable Security of On-Demand Distance Vector Routing in Wireless Ad Hoc Networks
	Statistical Wormhole Detection in Sensor Networks
	RFID System with Fairness Within the Framework of Security and Privacy
	Scalable and Flexible Privacy Protection Scheme for RFID Systems
	RFID Authentication Protocol with Strong Resistance Against Traceability and Denial of Service Attacks
	Location Privacy in Bluetooth
	An Advanced Method for Joint Scalar Multiplications on Memory Constraint Devices
	Side Channel Attacks on Message Authentication Codes
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

