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Abstract. We analyze “Bill-and-Keep” peering between two providers, where
no money exchanges hands. We assume that each provider incurs costs from its
traffic traversing its as well as the peer’s links, and compute the traffic levels
in Nash equilibrium. We show that Nash strategies are not blind, i.e., they are
neither pure hot-potato nor pure cold-potato strategies. Rather, the Nash strategies
involve strategically splitting traffic between a provider’s own links and its peer’s.
We derive necessary and sufficient conditions for both the providers to be better
(or worse) off in Nash equilibrium compared to the blind strategies.1 We also
analyze society’s performance as a whole and derive necessary and sufficient
conditions for the society to be better (or worse) off. In particular we establish
that, under Bill-and-Keep peering, while it is not possible for two asymmetric
providers to be both worse off, it is certainly possible for both to be better off.

1 Introduction

Today’s Internet is composed of many distinct networks, operated by independent net-
work providers, also referred to as Internet Service Providers (ISPs). Each provider
is interested in maximizing its own utility and the objectives of the providers are not
necessarily aligned with any global performance objective. Most relationships between
providers may be classified under one of two categories [7] : transit and peer. In a
transit relationship, a traffic-originating provider pays a transit provider to carry traffic
destined to nodes outside the originator’s local network. On the other hand, in a peering
relationship the providers agree to accept and carry traffic from each other.

In this paper, we focus primarily on peering relationships. In a peering arrange-
ment, a pair of providers agree to install bi-directional links at multiple peering points
to accept traffic from each other. In today’s Internet, peering relationships are mostly
“Bill-and-Keep” [1]. In this arrangement, the providers don’t charge each other for the
traffic accepted on the peering links. This arrangement is also referred to as “Zero-
Dollar” peering or “Sender-Keep-All” (SKA) peering [3]. Under the peering relation-
ship, since the ISPs are interested in minimizing their own costs, they predominantly
use the nearest-exit or hot-potato routing [6], where outgoing traffic exits a provider’s
network as quickly as possible. In some cases, where the receiver is a bigger player and
is able to exert its market power, the routing is farthest-exit or cold-potato [7].

Various aspects of ISP peering have been analyzed by [5], [1], [4], [9], [8]. [5] was
the first paper to analyze ISP peering in depth from an economic perspective. It ana-
lyzed the impact of access charge on strategies of the providers and showed that, in a

1 By better off we mean weakly better off, i.e., the cost in Nash equilibrium is less than or equal
to the cost under blind strategies.
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broad range of environments, operators set prices for their customers as if their cus-
tomers’ traffic were entirely off-net. [8] extended the models in [5] to include the fact
that the ISPs are geographically separated. It thus analyzed the local ISP interaction
separately from the local and transit ISP interaction. It also analyzed the economics of
private exchange points and showed that they could become far more wide spread. Both
[5] and [8] used linear pricing schemes assuming fixed marginal costs. In addition, they
assumed hot-potato routing. [9] extended the models in [5] to include customer delay
costs, finding that they have a substantial effect on market structure. [4] used a different
model of ISP peering. It assumed that customers are bound to ISPs, subject to gen-
eral, non-linear marginal costs. It then looked at how ISPs could charge each other in
response to the externality caused by their traffic.

All these models ignored one important aspect of peering: they did not consider
the case when the provider incurs costs even when its traffic flows on its peers links.
This would happen, for example, if the providers care about the end-to-end quality of
service (QOS) for traffic originating within their networks. In this paper we focus on
this situation, and show that this cost structure has a substantial effect on how ISPs
route traffic. Moreover, we look at the case where peering happens in the absence of
pricing, with the costs incurred on the peer’s links serving as a proxy for a transfer
price. Our results imply that Bill-and-Keep peering, currently used mainly due to ease
of implementation, can be beneficial if combined with non-myopic routing.

We analyze peering decisions using non-cooperative game theory [2] in a simple
two-provider model. Analyzing Nash equilibria, under mild assumptions on the cost
structures, we show that it is not in the provider’s interest to route traffic in a hot-
potato or a cold-potato fashion in equilibrium. That is, the blind strategies are not Nash.
Rather, the Nash strategy involves strategically splitting traffic among peering points.
We also show that, in Nash equilibria, it is not possible for both ISPs to be worse off
with respect to the blind strategies. We then show that it is possible to have the two
remaining scenarios in equilibrium, where either one or both ISPs are better off. We
derive necessary and sufficient conditions on the cost functions for each of the two cases
to occur. In addition, under a specific pricing scheme, we show that peers who would
peer and be both better off under Bill-and-Keep peering, will choose to use cold-potato
peering and effectively not peer at all.

We are also interested in the performance of the society as a whole. Therefore, we
compare society’s performance in Nash equilibrium versus the blind strategies. We de-
rive necessary and sufficient conditions for the society to be better or worse off. In this
process, we show that society is always better off under Bill-and-Keep peering if the
costs incurred are linear.

2 The Model and the Nash Strategies

We look at a two ISP peering model. A realistic model would include the actual topolo-
gies of the two ISPs. However, most of the insights can be gained from the following
simple model (figure 1); analysis of a generalized model is work in progress. We have
two ISPs, S and R, with two peering points, P1 and P2. The ISPs have nodes Si and
Ri, respectively, located right next to the peering point Pi, i ∈ {1, 2}. We assume that
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Fig. 1. The Peering Model

ISP S sends one unit of traffic from node S1 to node R2, and similarly, ISP R sends one
unit of traffic from node R1 to S2. We also assume that the cost to send traffic across
the peering links is zero.

The ISPs have the choice to split these flows between the two peering points. We
look at the two components for ISP S first. The hot potato component, fR

S , goes over
to ISP R at the closest peering point P1, and then travels to R2 on the internal link
R1R2. The cold potato component, fS

S , first travels on the internal link S1S2, and then
crosses over to ISP R at the farthest peering point P2. The hot potato and cold potato
components for ISP R, i.e., fS

R and fR
R , can be described in a similar way. Overall, ISP

S carries flows fS
S and and fS

R on its internal link, whereas ISP R carries flows fR
S and

fR
R on its internal link. The cost incurred per unit of traffic on ISP S’s links is given by

CS(fS
S + fS

R) and that on ISP R’s link is given by CR(fR
S + fR

R ).
We assume that these per unit cost functions are strictly increasing, convex and twice

differentiable. We also assume that the per unit cost of one ISP carrying all the traffic is
more than the per unit cost of the other ISP carrying zero traffic, i.e.,

CS(2) ≥ CR(0) (1a)

CR(2) ≥ CS(0) (1b)

In Nash equilibrium, given fS
R, ISP S solves (by choosing 0 ≤ fR

S ≤ 1)

minimize JS(fR
S , fS

R) = CS(fS
S + fS

R)fS
S + CR(fR

S + fR
R )fR

S

subject to fS
S + fR

S = 1 and fS
R + fR

R = 1,

and ISP R solves (by choosing 0 ≤ fS
R ≤ 1)

minimize JR(fR
S , fS

R) = CS(fS
S + fS

R)fS
R + CR(fR

S + fR
R )fR

R

subject to fS
S + fR

S = 1 and fS
R + fR

R = 1,

given fR
S .
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The first order conditions are given by

C′
S(fS

S + fS
R)fS

S + CS(fS
S + fS

R) = C′
R(fR

S + fR
R )fR

S + CR(fR
S + fR

R ) (2a)

C′
S(fS

S + fS
R)fS

R + CS(fS
S + fS

R) = C′
R(fR

S + fR
R )fR

R + CR(fR
S + fR

R ). (2b)

Note that the second order conditions will be satisfied automatically since the per
unit cost functions are strictly increasing and convex, especially at interior point solu-
tions.

We next show that the Nash strategies don’t include blind strategies.

Proposition 1. In Nash equilibrium, no ISP uses a blind strategy.

Proof. We prove this in two parts. We first prove that, in Nash equilibrium, no ISP
routes pure cold potato. We then prove that no ISP routes pure hot potato. The proofs
are very similar and we have omitted the second part.

We now show that it is not possible for ISP R to do pure cold potato routing (a
similar argument can be applied to ISP S). This is done in three steps. First, it is not
possible for both ISPs to do pure cold potato routing. This would require fR

S = fS
R = 0,

and2

∂JS

∂fR
S

(0, 0) = −C′
S(1) − CS(1) + CR(1) ≥ 0 (3a)

∂JR

∂fS
R

(0, 0) = −C′
R(1) − CR(1) + CS(1) ≥ 0. (3b)

This requires
CS(1) + C′

S(1) ≤ CR(1) ≤ CS(1) − C′
R(1), (4)

which is a contradiction since CS(x) and CR(x) are strictly increasing.
Second, it is not possible for ISP S and R to do hold potato and cold potato routing,

respectively. This would require fR
S = 1, fS

R = 0, and

∂JS

∂fR
S

(1, 0) = −CS(0) + C′
R(2) + CR(2) ≤ 0 (5a)

∂JR

∂fS
R

(1, 0) = CS(0) − C′
R(2) − CR(2) ≥ 0. (5b)

This requires
CS(0) ≥ CR(2) + C′

R(2), (6)

which is a contradiction from (1) and the fact that CR(x) is strictly increasing.
Finally, it is not possible for ISP R to do cold potato routing and ISP S to send some

nonzero amount, but not all, off its traffic to ISP R. This would require 0 < fR
S < 1,

fS
R = 0, and

∂JS

∂fR
S

(fR
S , 0) = −CS(fS

S ) − C′
S(fS

S )fS
S + C′

R(fR
S + 1)fR

S + CR(fR
S + 1) = 0 (7a)

∂JR

∂fS
R

(fR
S , 0) = CS(fS

S ) − C′
R(fR

S + 1) − CR(fR
S + 1) ≥ 0. (7b)

2 The partial derivatives are evaluated at (fR
S , fS

R).
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This requires
C′

S(fS
S )fS

S ≤ C′
R(fR

S + 1)(fR
S − 1) ≤ 0, (8)

which is a contradiction since 0 < fR
S < 1 and CS(x) and CR(x) are strictly increasing.

��

3 Individual Performance

In this section we provide necessary and sufficient conditions for the individual players
to be better or worse off in Nash equilibrium compared to the blind strategies. We also
provide examples showing that both ISPs can be better off in Nash equilibrium. In
addition, we illustrate potential problems with introduction of pricing.

3.1 Preliminaries

We start by writing (2) in an alternate form. Using fS
S + fR

S = 1, fS
R + fR

R = 1, and
denoting fR

S − fS
R = fd, fR

S + fS
R = fa, we get

C′
S(1 − fd)(1 − fd) + 2CS(1 − fd) = C′

R(1 + fd)(1 + fd) + 2CR(1 + fd) (9a)

fa = 1. (9b)

In Nash equilibrium, we denote the solution to (9) as fNash
d . We also denote the Nash

equilibrium costs of ISP S and R as JNash
S and JNash

R , respectively. We then get the
following lemma.

Lemma 1. The ISPs costs in Nash equilibrium are equal.

Proof. From (9), in Nash equilibrium, we have fS
S = fS

R = (1−fNash
d )
2 as well as

fS
S = fS

R = (1−fNash
d )
2 . This ensures that the costs at equilibrium are equal, i.e.,

JNash
S = JNash

R = JNash
common =

Jtotal(fNash
d )

2
, (10)

where we define the sum of costs as

Jtotal(fd) = [CS(1 − fd)(1 − fd) + CR(1 + fd)(1 + fd)]. (11)

��
We next define the following three differences

∆1(fd) = CS(1 − fd) − CR(1 + fd) (12a)

∆2(fd) = CS(1 − fd) + C′
S(1 − fd)(1 − fd) − CR(1 + fd) − C′

R(1 + fd)(1 + fd)
(12b)

∆3(fd) = ∆1(fd) + ∆2(fd). (12c)

Then, in Nash equilibrium, from (9), we get

∆3(fNash
d ) = 0 (13a)

∆1(fNash
d ) = −∆2(fNash

d ) (13b)

as well as
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Lemma 2. In Nash equilibrium, ∆3(0)fNash
d ≥ 0.

Proof. First consider fNash
d ≥ 0. Since, from (13), ∆3(fNash

d ) = 0, and ∆3(fd) is
non-increasing in fd, the result follows. The argument for fNash

d < 0 is similar ��

Finally, we derive some useful inequalities, as follows. Since CS(x) and CR(x) are
twice differentiable, strictly increasing, and convex, CS(x)x and CR(x)x are twice
differentiable, strictly increasing, and strictly convex. Using Jensen’s inequality, we get

CS(1 − fd)(1 − fd) ≥ CS(1) − [C′
S(1) + CS(1)]fd (14a)

CR(1 + fd)(1 + fd) ≥ CR(1) + [C′
R(1) + CR(1)]fd, (14b)

and

CS(1) ≥ CS(1 − fd)(1 − fd) + [C′
S(1 − fd)(1 − fd) + CS(1 − fd)]fd (15a)

CR(1) ≥ CR(1 + fd)(1 + fd) − [C′
R(1 + fd)(1 + fd) + CR(1 + fd)]fd. (15b)

Now, using (11), and (12) we get

Jtotal(fd) ≥ Jtotal(0) − ∆2(0)fd (16)

as well as
Jtotal(0) ≥ Jtotal(fd) + ∆2(fd)fd. (17)

3.2 Necessary and Sufficient Conditions

We first show that, under our assumptions, it is not possible for both the ISPs to be
worse off.

Lemma 3. In Nash equilibrium, both ISPs are worse off only if ∆1(0)∆3(0) ≥ 0.

Proof. For both to be worse off, from lemma 1, this requires

JNash
common =

Jtotal(fNash
d )

2
≥ max(Jblind

S , Jblind
R ), (18)

where Jblind
S = CS(1) and Jblind

R = CR(1) when both ISPs are doing pure cold potato
routing.3 Using (11), (17) and (13), we get

Jtotal(fNash
d )

2
≥ max(CS(1), CR(1)) ≥ Jtotal(0)

2

≥ Jtotal(fNash
d )

2
− ∆1(fNash

d )fNash
d

2
.

(19)

This requires
∆1(fNash

d )fNash
d ≥ 0, (20)

which necessitates ∆1(0)fNash
d ≥ 0. This, from lemma 2, is the same as ∆1(0)

∆3(0) ≥ 0. ��
3 Similarly, Jblind

S = CR(1) and Jblind
R = CS(1) when both ISPs are doing hot potato routing.

In both cases, the min, max and avg operations give the same results.
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Proposition 2. In Nash equilibrium, both ISPs cannot be worse off.

Proof. The case fNash
d = 0 is straightforward. From (11) and (10), we get JNash

common =
CS(1)+CR(1)

2 . Since max(CS(1), CR(1)) ≥ CS(1)+CR(1)
2 ≥ min(CS(1), CR(1)), we

must have one ISP better off and the other worse off. Thus, both ISPs can’t be worse
off.

Next, we look at fNash
d �= 0. We first consider fNash

d > 0. Both ISPs worse off
requires

JNash
common ≥ CS(1). (21)

Since CS is convex, using CS(1) ≥ CS(1 − fNash
d ) + C′

S(1 − fNash
d )fNash

d , we get

JNash
common ≥ CS(1 − fNash

d ) + C′
S(1 − fNash

d )fNash
d , (22)

which, using (10) and (11), simplifies to

(1 + fNash
d )[CR(1 + fNash

d ) − CS(1 − fNash
d )] ≥ 2C′

S(1 − fNash
d )fNash

d . (23)

Now, since CS(x) is strictly increasing, using (12) we get, ∆1(fNash
d ) < 0 as well as

∆1(fNash
d )fNash

d < 0.
The argument for fNash

d < 0 is similar. Thus, in both cases, both ISPs worse off
necessitates

∆1(fNash
d )fNash

d < 0. (24)

This contradicts (20) of lemma 3. ��

Now, we look for necessary conditions for both ISPs to be better off.

Proposition 3. In Nash equilibrium, both ISPs are better off only if ∆2(0)∆3(0) ≥ 0.

Proof. We first consider fNash
d ≤ 0. Both ISPs better off requires

JNash
common ≤ CS(1). (25)

Since CS is convex, using CS(1) ≤ CS(1 − fNash
d ) + C′

S(1)fNash
d , we get

JNash
common ≤ CS(1 − fNash

d ) + C′
S(1)fNash

d , (26)

which, using (10) and (11), simplifies to

(1 + fNash
d )[CR(1 + fNash

d ) − CS(1 − fNash
d )] ≤ 2C′

S(1)fNash
d . (27)

Now, since CS(x) is strictly increasing, using (12) we get, ∆1(fNash
d ) ≥ 0 as well as

∆1(fNash
d )fNash

d ≤ 0. From (13), this requires

∆2(fNash
d )fNash

d ≥ 0, (28)

which necessiates ∆2(0)fNash
d ≥ 0. This, from lemma 2, is the same as ∆2(0)∆3(0)

≥ 0.
The argument for fNash

d ≥ 0 is similar. ��

Finally, we provide a sufficient condition for both ISPs to be better off.
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Proposition 4. If the costs under blind strategies are equal then both the ISPs are better
off in Nash equilibrium.

Proof. We start by noting that, when CS(1) = CR(1), we have Jblind
S = Jblind

R . Also,
from (10), we have JNash

S = JNash
R . This rules out the possibility that one ISP is

strictly better off and the other one is strictly worse off. In addition, propostion 2 rules
out the possibility that both are strictly worse off. Thus, the only remaining possibility
is that they are both better off. ��

3.3 Examples

We provide two examples that show that both ISPs can be better off. We look for func-
tions CS(x) and CR(x) satisfying the following properties. First, they satisfy CS(1) =
CR(1) which, from (10), gives Jblind

S = Jblind
R = Jblind

common = Jtotal(0)
2 , where Jblind

common

is defined to be the common cost under blind strategies. Second, they satisfy JNash
common ≤

Jblind
common, which is the same as Jtotal(fNash

d ) ≤ Jtotal(0) - this basically requires one
of the internal link costs, i.e., CS(x)x and CR(x)x, to be more convex at x = 1. Now,
both ISPs benefit by choosing an fNash

d ≈ 0 such that the link with the more convex
cost function carries less traffic.

Example 1. When CS(x) = x and CR(x) = x2, we get JNash
common = 0.97 ≤ 1.0 =

Jblind
common.

Example 2. This example uses more realistic per unit cost functions, given by CS(x) =
θN

S

(θD
S −x) and CR(x) = θN

R

(θD
R−x) (in an M/G/1 queue, θN would be proportional to the

variance of service times, whereas θD would be the capacity of the link). Using θN
S =

1.00, θD
S = 1.10, θN

R = 2.00, θD
R = 1.20, we get JNash

common = 9.75 ≤ 10.0 = Jblind
common.

3.4 Can Pricing Be Bad?

In this section we illustrate potential problems with moving away from Bill-and-Keep
peering toward a situation where ISP S charges ISP R an amount pSfS

R and ISP R
charges ISP S an amount pRfR

S , for some prices pS and pR. We consider the sequential
game where the ISPs first pick prices, having committed to optimally choosing traffic
splits thereafter. That is, ISP S solves (by choosing 0 ≤ fR

S ≤ 1)

minimize JS(fR
S , fS

R) = CS(fS
S + fS

R)fS
S + CR(fR

S + fR
R )fR

S

subject to fS
S + fR

S = 1 and fS
R + fR

R = 1,

and ISP R solves (by choosing 0 ≤ fS
R ≤ 1)

minimize JR(fR
S , fS

R) = CS(fS
S + fS

R)fS
R + CR(fR

S + fR
R )fR

R

subject to fS
S + fR

S = 1 and fS
R + fR

R = 1

for fixed pS and pR, and this is used, in turn, to calculate the optimal pS and pR.
Using CS(x) = x and CR(x) = x2 (the cost functions from section 3.3), and solving

in the above manner, we get fR
S = fS

R = 0. This is the same as the situation when the
ISPs are routing blindly. In this case both the ISPs are worse off compared to peering
without pricing.
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4 Society’s Performance

The necessary conditions for the society to be better (or worse) off turn out to be the
same as the ones stated in propostion 3 and lemma 3. Intuitively, this makes sense since
the society must be better (or worse) off when both the ISPs are better (or worse) off.

Now we look at sufficient conditions for the society to be better off or worse off. The
following propositions summarize our results.

Proposition 5. If ∆1(0)∆3(0) ≤ 0 then the society is better off in Nash equilibrium.

Proof. This implies, from lemma 3, that society can’t be strictly worse off. Thus, it
must be better off. ��

Proposition 6. If ∆2(0)∆3(0) ≤ 0 then the society is worse off in Nash equilibrium.
In addition, one ISP is better off and the other worse off.

Proof. This implies, from proposition 3, that society can’t be strictly better off. Thus, it
must be worse off. Also, since proposition 2 rules out he possibility that both are worse
off, it must be that one ISP is worse off and the other one is better off. ��

We finish the paper with the following specific result

Proposition 7. When the per unit cost functions are linear, society is better off in Nash
equilibrium.

Proof. To do so, we use the linear cost functions CS(x) = θSx and CR(x) = θRx,
where θS > 0 and θR > 0. In Nash equilibrium, we get

fS
S = fS

R =
θR

(θS + θR)
(29a)

fR
S = fR

R =
θS

(θS + θR)
. (29b)

Next, we assume that the society is strictly worse off. This gives

JNash
total =

4θSθR

(θS + θR)
> (θS + θR) = Jblind

total , (30)

which reduces to
0 > (θS − θR)2, (31)

which is always false. Thus, we have a contradiction. ��
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