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Abstract. This paper takes the first steps towards designing incentive
compatible mechanisms for hierarchical decision making problems in-
volving selfish agents. We call these Stackelberg problems. These are
problems where the decisions or actions in successive layers of the hi-
erarchy are taken in a sequential way while decisions or actions within
each layer are taken in a simultaneous manner. There are many im-
mediate applications of these problems in distributed computing, grid
computing, network routing, ad hoc networks, electronic commerce, and
distributed artificial intelligence. We consider a special class of Stack-
elberg problems called SLRF (Single Leader Rest Followers) problems
and investigate the design of incentive compatible mechanisms for these
problems. In developing our approach, we are guided by the classical
theory of mechanism design. To illustrate the design of incentive com-
patible mechanisms for Stackelberg problems, we consider first-price and
second-price electronic procurement auctions with reserve prices. Using
the proposed framework, we derive some interesting results regarding
incentive compatibility of these two mechanisms.

1 Mechanism Design and Stackelberg Problems

The Theory of Mechanism Design is an important discipline in the area of Wel-
fare Economics. The area of Welfare Economics is concerned with settings where
a policy maker faces the problem of aggregating the individual preferences into
a collective (or social) decision and the individuals’ actual preferences are not
publicly known. The theory of mechanism design aims at studying how this pri-
vately held information can be elicited [2, 4, 7]. The state-of-the-art literature on
mechanism design theory deals with situations where individuals are symmetric,
that is to say, no single individual dominates the decision process. However, there
are situations arising in Welfare Economics, Sociology, Engineering, Operations
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Research, Control Theory, and Computer Science where individuals take deci-
sions in a hierarchical manner. A simple example is that of a situation wherein
one of the individuals (or a group of individuals), called leader(s), has the ability
to enforce his preference on the other individual(s), called follower(s). In such
problems, the policy maker first invites the leaders to reveal their privately held
information in a simultaneous manner. After receiving this information the pol-
icy maker broadcasts it among the followers and the followers respond to this by
revealing their preferences in a simultaneous manner. After receiving the prefer-
ences from all the individuals, the policy maker aggregates the information into
a social decision. The problem faced by the individuals in such a situation can
be naturally modeled as a Stackelberg game following the seminal work of Stack-
elberg [15]. Following are some interesting examples where one can see these
problems arising naturally.

– Task allocation in parallel/distributed systems
– Scheduling in grids
– Internet routing
– Admission, routing, and scheduling in telecom networks
– Flow control, routing, and sequencing in manufacturing systems
– Auctions in electronic commerce

In a recent work, Roughgarden [14] considered the problem of job shop schedul-
ing, where fraction of the jobs are scheduled by a centralized authority (leader)
and the remaining jobs are scheduled by selfish users (followers). He modeled
this scheduling problem as Stackelberg game and showed that it is NP-hard to
compute Stackelberg strategies. The underlying Stackelberg game in this prob-
lem is complete information game and there is no privately held information by
the players which we require to elicit truthfully. Thus, the problem considered
in this paper is about computing the optimal strategies of the leader and the
followers and not about designing a mechanism for Stackelberg problem.

1.1 Contributions and Outline of the Paper

The major contributions of this paper are as follows.

– We investigate the mechanism design problem for SLRF games 1. In this new
framework, we define the notion of Bayesian Stackelberg Incentive Compati-
ble (BaSIC) social choice functions. To the best of our knowledge, this is the
first time mechanisms are being investigated in the context of Stackelberg
problems.

– To illustrate our approach, we investigate the Bayesian Stackelberg incentive
compatibility of first-price and second-price procurement auctions with re-
serve prices. We obtain two key results in this regard. The first result shows
that in the first-price auction with reserve prices, the social choice function
is BaSIC for the buyer but not for the sellers. The second result shows that
in the second-price auction with reserve prices, the social choice function is
BaSIC for the sellers but not for the buyer.

1 We keep using the phrases SLRF games and SLRF problems interchangeably.
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The organization of the paper is as follows. Section 2 presents a crisp review of
relevant concepts in Stackelberg games. A more detailed treatment can be found
in [1]. In Section 3, we motivate the Stackelberg mechanism design problems
by means of two examples - first-price procurement auction with reserve prices
(F-PAR) and second-price procurement auction with reserve prices (S-PAR).
We then describe the problem of designing incentive compatible mechanisms for
SLRF problems in Section 4. In Section 5, we state two important results con-
cerning the Bayesian Stackelberg incentive compatibility of the two mechanisms
F-PAR and S-PAR. Due to paucity of space, we are unable to provide the proofs
for these results. Interested readers are urged to look into our recent technical
report [3].

2 Stackelberg Games

2.1 Stackelberg Games with Incomplete Information

To begin with, we consider the following noncooperative finite game with incom-
plete information in its strategic form (also called a Bayesian game [11]):

Γ b = (N, (Ci)i∈N , (Θi)i∈N , (φi)i∈N , (ui)i∈N )

where N = {1, 2, . . . , n} is a nonempty set of players, and, for each i in N , Ci is
a nonempty set of actions available to player i; Θi is a nonempty set of possible
types of player i; φi : Θi �→ ∆Θ−i is a belief function which gives the subjective
probability of player i about the types of the other players for a given type of his
own; and ui : C × Θ �→ � is the utility function of player i, where C = ×j∈NCj ,
Θ = ×j∈NΘj , and Θ−i = ×j∈N−{i}Θj . Note that ∆S for any set S is the set
of all probability distributions over S. A pure strategy si for player i in the
Bayesian game Γ b is defined to be a function from Θi to Ci.

In the above description of the game Γ b, it is an implicit assumption that
all the players choose their actions simultaneously. However, it is possible to
impose an additional structure of hierarchical decision making on this game
where agents choose their actions in a sequential manner as suggested by the
hierarchy. The hierarchy is defined as a sequence of nonempty pairwise disjoint
subsets of players, H = H1, H2, . . . , Hh, where h represents the total number
of levels in the hierarchy. In this setup, after learning their types, first, all the
players in hierarchy level 1, i.e. H1, choose their actions simultaneously. The
actions (but not the types) chosen by all these players are announced publicly to
the rest of the players. Next, all the players in hierarchy level 2, i.e. H2, choose
their actions simultaneously and again the chosen actions by all these players
are announced publicly to the rest of the players. This process continues until
all the players announce their actions.

A Bayesian game Γ b together with hierarchical decision making can be called
a Bayesian Stackelberg (BS) game and would have the following representation.

Γ b
s = ((Hj)j=1,...,k, (Ci)i∈N , (Θi)i∈N , (φi)i∈N , (ui)i∈N )
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If (h = 2), that is, the players are divided into two levels of hierarchy - H1 and
H2, the games are referred to as Leader-Follower Games. The players in H1 are
called leaders and the players in H2 are called followers. The followers, having
observed the actions taken by the leaders, choose their actions in a simultaneous
manner. Within the class of leader-follower games, there is an interesting subclass
of games where H1 is a singleton set. Such games are called single leader rest
followers (SLRF) games. In an SLRF Bayesian Stackelberg game, one player
is declared as the leader and after learning her type, she first takes her action.
The action taken by the leader becomes common knowledge among the followers
but her type remains unknown to the followers. Followed by the action of the
leader, all the followers, who have already learned their types, take their actions
simultaneously.

2.2 Pure Strategy Bayesian Stackelberg Equilibrium for SLRF
Games

In this section, we would like to characterize the solution of the SLRF Bayesian
Stackelberg games. The natural choice for the solution of such games is a combi-
nation of Stackelberg equilibrium and Bayesian Nash equilibrium. We call such
a solution as Bayesian Stackelberg (BS) equilibrium. In what follows is a char-
acterization of BS equilibrium.

1. The Set of Followers’ Optimal Response Strategy Profiles. Let us
assume that after learning her type θ

l
∈ Θl, the leader takes an action

c
l

∈ C
l
. For any such action c

l
∈ C

l
, the set R(c

l
) below, which is a set

of pure strategy profiles of the followers, is called as the set of followers’
optimal response (or rational reaction) strategy profiles.

R(c
l
) =

{
s−l

∈ ×
j∈N−{l} ×Θj Cj |vθj (cl

, cj , s−l,j
) ≤ vθj (cl

, s−l
)

∀cj ∈ Cj ∀θj ∈ Θj ∀j ∈ N − {l}} (1)

where (c
l
, s−l

) is an action-strategy profile of the players in which the leader
takes an action c

l
and the followers take actions as suggested by the corre-

sponding pure strategy for them in the profile (s−l
). Similarly, (c

l
, cj , s−l,j

)
is an action-strategy profile in which the leader takes an action c

l
, follower

j ∈ N takes an action cj and rest of the followers take actions as suggested by
the corresponding pure strategy for them in the profile (s−l

). The quantities
vθj (cl

, s−l
) and vθj (cl
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) are the expected payoffs to the player j when

his type is θj , and the players follow the action-strategy profile (c
l
, s−l

) and
(c

l
, cj , s−l,j

), respectively. Note that risk averse and risk neutral followers
will always play an optimal response against any action taken by the leader.

2. Secure Strategy Set of Leader. Assuming that R(c
l
) is nonempty for

each c
l
∈ C

l
, we call a strategy s∗

l
∈ S

l
of the leader l to be a secure strategy
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l
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Note that a risk averse and risk neutral leader will always play a secure
strategy. An implicit assumption behind the above relation is that the game
Γ b

s is a finite game. However, if we allow the sets Θi to be infinite, then the
relation (2) gets modified in the following manner:

s∗
l
(θ

l
) = arg max

c
l
∈C

l

min
s−l

∈R(c
l
)
Eθ−l

[ul(cl
, s−l

(θ−l
), (θl, θ−l

))|θ
l
] (3)

Further if we allow the sets (Ci)i∈N to be infinite then in the above relation,
we need to replace max and min by sup and inf respectively.

3. Bayesian Stackelberg Equilibrium. A strategy profile s∗ =
(
s∗

l
, t∗−l

)
is

said to be a Bayesian Stackelberg equilibrium if s∗
l

is a secure strategy for the
leader and t∗

−l
: C

l
�→ ∪c

l
∈C

l
R(c

l
) is a rational reaction strategy of followers

against s∗
l
, that is t∗

−l
(s∗

l
(θl)) ∈ R(s∗

l
(θl)) ∀θl ∈ Θl. One can also define

the Bayesian Stackelberg equilibrium in mixed strategies for SLRF Bayesian
Stackelberg games. However, we omit this because it is not required for this
paper.

3 Stackelberg Mechanism Design Problems: Motivating
Example

Consider an electronic procurement marketplace where a buyer b registers him-
self and wishes to procure a single indivisible object. There are n potential sellers,
indexed by i = 1, 2, . . . , n, who also register themselves with the marketplace.
We make the following assumptions, which are quite standard in the existing lit-
erature on auction theory. A comprehensive discussion about these assumptions
can be found in [9, 8, 17].

A1: Risk Neutral Bidders: The buyer and all the n sellers are risk neutral.
A2: Independent Private Value (IPV) Model: Each seller i, and buyer b

draw their valuations θi, and θb, respectively (which can be viewed as their
types) from distribution Fi(.) and Fb(.), respectively. Fi(.), i = 1, 2, . . . , n
and Fb(.) are mutually independent. Let Θi, i = 1, 2, . . . , n and Θb denote
the set of all possible types of the sellers and buyer, respectively. This implies
that Fi(.), i = 1, 2, . . . , n and Fb(.) are probability distribution functions of
the random variables Θi, , i = 1, 2, . . . , n and Θb, respectively.

A3: Symmetry among Sellers: The sellers are symmetric in following sense:
Θ1 = Θ2 = . . . = Θn = Θ ; F1(.) = F2(.) = . . . = Fn(.) = F (.)

A4: Properties of F (.) and Θ: We assume that F (.) and Θ satisfy:
Θ = [ θ , θ ], θ > 0
F (.) is twice continuously differentiable
f(θ) = F

′
(θ) > 0; ∀ θ ≤ θ ≤ θ

The marketplace first invites the buyer to report his type. Based on his actual
type θb, the buyer first reports his type, say, θ̂b ∈ Θb to the marketplace. The
declared type of the buyer, that is θ̂b, is treated as the price above which the
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buyer is not willing to buy the object. This price is known as reserve price. The
marketplace publicly announces this reserve price among all the sellers. Now, the
sellers are invited to submit their bids (or types) to the marketplace. Based on
actual type θi, each seller i bids (or reports) his type say θ̂i ∈ Θi. After receiving
the bids from all the sellers, the marketplace determines the winning seller, the
amount that will be paid to him, and the amount that will be paid by the buyer.
These are called as winner determination and payment rules. In E-commerce,
such a trading institution is known as procurement auction with reserve prices
(PAR). It is easy to see that the above problem is a Stackelberg problem and
designing the winner determination and payment rules for this problem in a way
that there is no incentive for buyer and sellers to reveal untruthful valuation
is essentially a problem of designing an incentive compatible mechanism for
Stackelberg problem. Depending on what winner determination and payment
rules are employed by the marketplace, it may affect the incentive compatibility
property. Following are two well known and existing mechanisms for PAR.

1. First-Price Procurement Auction with Reserve Prices (F-PAR):
In this setting, the marketplace first discards all the received bids that fall
above the reserve price announced by the buyer. Next, the seller whose bid is
the lowest among the remaining bids is declared as the winner. The winner
transfers the object to the buyer and the buyer pays to the winning seller
an amount equal to his bid, that is θ̂i. If there is no bid below the reserve
price then no deal is struck. On the other hand, if there is a tie among the
winning bids then the winner is chosen randomly, where each of the lowest
valued bids has an equal chance of winning.

2. Second-Price Procurement Auction with Reserve Prices (S-PAR):
In this setting, the winner determination rule is the same as F-PAR but the
payment rules are slightly different. The winning seller transfers the object
to the buyer and the buyer pays to him an amount equal to second lowest
valued bid, if such a bid exists, otherwise an amount equal to the reserve
price. Further, if there is no bid below the reserve price then no deal is struck.
If there is a tie among winning bids, the winner is chosen randomly, where
each of the lowest bids has an equal chance of winning.

It is easy to see that if the buyer announces a reserve price of θ̂b = θ, then the
procurement auction with reserve price will simply become the classical version
of procurement auction with no reserve price.

4 Mechanism Design for SLRF Problems

A mechanism can be viewed as an institution, which a social planner deploys,
to elicit the information from the agents about their types and then aggregate
this information into a social outcome. Formally, a mechanism for an SLRF
problem is a collection of action sets (C1, . . . , Cn) and an outcome function g :
×i∈NCi �→ X , that is MSLRF = ((Ci)i∈N , g(.)). A mechanism MSLRF combined
with possible types of the agents (Θ1, . . . , Θn), probability density φ(.), Bernoulli
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utility functions (u1(.), . . . , un(.)), and description of leader agent l defines a
Bayesian Stackelberg game Γ b

s which is induced among the agents when the
social planner invokes this mechanism as a means to solve the SLRF problem.
The induced Bayesian Stackelberg game Γ b

s is given by:

Γ b
s = ({l}, N − {l}, (Ci)i∈N , (Θi)i∈N , φ(.), (ui)i∈N )

where ui : C × Θ �→ � is the utility function of agent i and is defined in the
following manner: ui(c, θ) = ui(g(c), θi), where, we recall that C = ×i∈NCi, and
Θ = ×i∈NΘi.

4.1 Social Choice Function

A social choice function is a function f : ×i∈NΘi �→ X , which a social planner
or policy maker uses to assign a collective choice f(θ1, . . . , θn) to each possible
profile of the agents’ type θ = (θ1, . . . , θn). The set X is known as collective
choice set or outcome set. For example, in the context of PAR, an outcome may
be represented by a vector x = (yb, y1, . . . , yn, tb, t1, . . . , tn), where yb = 1 if
the buyer receives the object, yb = 0 otherwise, and tb is the monetary transfer
received by the buyer. Similarly, yi = −1 if the seller i is the winner, yi = 0
otherwise, and ti is the monetary transfer received by the seller i. The set of
feasible alternatives is then

X = {(yb, y1, . . . , yn, tb, t1, . . . , tn)|yb +
n∑

i=1

yi = 0, tb +
n∑

i=1

ti ≤ 0}

In view of the above description, the general structure of the social choice
function for PAR is

f(θb, θ) = (yb(θb, θ), y1(θb, θ), . . . , yn(θb, θ), tb(θb, θ), t1(θb, θ), . . . , tn(θb, θ)) (4)

where θ = (θ1, . . . , θn). Note that yb(.), and yi(.) depend on the winner determi-
nation rule whereas tb(.) and ti(.) depend on the payment rule.

4.2 Implementing a Social Choice Function in Bayesian Stackelberg
Equilibrium

We say that the mechanism MSLRF = ((Ci)i∈N , g(.)) implements the social
choice function f : ×i∈NΘi �→ X in Bayesian Stackelberg equilibrium if there is a
pure strategy Bayesian Stackelberg equilibrium s∗ =

(
s∗l , t

∗
−l

)
of the game Γ b

s in-
duced by MSLRF such that g

(
s∗l (θl), (t∗−l(s

∗
l (θl)))(θ−l)

)
= f (θl, θ−l) ∀ (θl, θ−l) ∈

×i∈NΘi.
By making use of the definition of Bayesian Stackelberg equilibrium, we can

say that s∗ =
(
s∗l , t

∗
−l

)
is a pure strategy Bayesian Stackelberg equilibrium of

the game Γ b
s induced by the mechanism MSLRF iff leader Plays a secure strategy

and followers play an optimal response.
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4.3 Bayesian Stackelberg Incentive Compatibility

1. Bayesian Stackelberg Incentive Compatibility for the Leader. An
SCF f(.) is said to be Bayesian Stackelberg incentive compatible (BaSIC)
for the leader (or truthfully implementable in BS equilibrium for the leader)
if the direct revelation mechanism DSLRF = ((Θi)i∈N , f(.)) has a BS equilib-
rium s∗ = (s∗

l
, t∗−l) in which s∗

l
(θl) = θ

l
, ∀θ

l
∈ Θ

l
. That is, truth telling is a

BS equilibrium strategy for the leader in the game induced by DSLRF.
2. Bayesian Stackelberg Incentive Compatibility for the Followers. An

SCF f(.) is said to be Bayesian Stackelberg incentive compatible (BaSIC)
for the followers (or truthfully implementable in BS equilibrium for the fol-
lowers) if the direct revelation mechanism DSLRF = ((Θi)i∈N , f(.)) has a BS
equilibrium s∗ = (s∗

l
, t∗−l) in which t∗−l(θl) = ((s∗j )j∈N−l) ∀θ

l
∈ Θ

l
, where

s∗j (θj) = θj ∀θj ∈ Θj ∀j ∈ N −{l}. That is, truth telling is a BS equilibrium
strategy for the followers in the game induced by DSLRF.

3. Bayesian Stackelberg Incentive Compatibility. An SCF f(.) is said to
be Bayesian Stackelberg incentive compatible (BaSIC) if it is BaSIC for both
the leader and the followers.

5 Incentive Compatibility of Reserve Price Procurement
Auctions

In this section, we state two key results pertaining to the Bayesian Stackelberg
incentive compatibility of the social choice functions for first-price and second-
price procurement auctions with reserve prices that were defined earlier in Sec-
tion 3. Due to paucity of space, we are unable to include the proofs for these
results. We urge the interested reader to refer to our recent technical report [3].
Theorem 1. Under the assumptions A1 - A4, the social choice function for
the first-price procurement auction with reserve prices is BaSIC for the buyer
but is not BaSIC for the sellers. The BS equilibrium of the BS game induced by
this function among the sellers and the buyer is given by s∗ = (s∗b , t

∗
−b) where

s∗b(θb) = θb ∀θb ∈ Θb = [ θ , θ ]

t∗−b(θ̂b) = (s∗(.), . . . , s∗(.)) ∀θ̂b ∈ Θb = [ θ , θ ]

That is, in the BS equilibrium, the buyer announces his true valuation itself
as the reserve price, and for any announced reserve price θ̂b, the sellers bid as
suggested by the (symmetric) BN equilibrium strategy profile (s∗(.), . . . , s∗(.)),
where

s∗(θi) =

{
θi : θi ∈ [θ̂b, θ ]

θi + 1
[1−F (θi)]n−1

∫ θ̂b

θi
[1 − F (x)]n−1dx : θi ∈ [ θ , θ̂b ]

Proof: The proof of this result is based on a systematic analysis of different
possible scenarios for bidding by the sellers after the reserve price is made known
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to the sellers. The analysis leads to quite interesting insights. For details of the
proof, refer to [3].

Corollary. If θ̂b = θ, then F-PAR will be the same as the traditional first-price
procurement auction with no reserve price.
Theorem 2. Under the assumptions A1 - A4, the social choice function for the
second-price procurement auction with reserve prices is BaSIC for the followers
but is not BaSIC for the leader. The BS equilibrium of the BS game induced by
this function among the sellers and the buyer is given by s∗ = (s∗b , t

∗
−b) where

1. s∗b(.) is the solution of the differential equation F (s∗b(θb)) = (θb − s∗b (θb))
f(s∗b(θb)) with boundary condition s∗b(θ) = θ

2. t∗−b(θ̂b) = (s∗(.), . . . , s∗(.)) ∀θ̂b ∈ Θb = [ θ , θ ] where s∗(θi) = θi ∀θi ∈
Θi = [ θ , θ ]

That is, the buyer always announces s∗b(θb) as the reserve price if his true valu-
ation is θb. For any reserve price θ̂b announced by the buyer, the sellers always
bid their true valuation.

Proof: The proof of this result is also based on a systematic analysis of different
possible scenarios for bidding by the sellers after the reserve price is made known
to the sellers. The analysis leads to quite interesting insights. For details of the
proof, refer to [3].

Corollaries and Insights
1. The optimal reserve price strategy of the buyer in S-PAR when all the sellers

draw their types independently from uniform distribution over the set [0, 1]
is given by s∗b(θb) = θb/2.

2. Announcing s∗b(θb) as the reserve price is a better strategy for the buyer in
S-PAR than announcing true type as the reserve price.

3. Announcing the true type as the reserve price is a better strategy for the
buyer than always fixing θ as the reserve price. Another interpretation of
this result is that buyer will be better off in S-PAR if he fixes his true type
as reserve price as compared to having no reserve price.

4. If the buyer announces his true type as the reserve price then for any given
type θb, his expected payoff and the expected revenue paid by him is the same
as in F-PAR. The classical Revenue Equivalence theorem [16, 12, 6, 5, 10, 13]
can be derived as a special case of the above result.

6 Summary

In this paper we have taken the first steps in extending the classical mecha-
nism design theory to Stackelberg problems in general and SLRF problems in
particular. These problems are natural in areas such as distributed computing,
grid computing, network routing, ad hoc networks, electronic commerce, and
distributed artificial intelligence. To illustrate the approach, we have taken two
examples from the domain of electronic commerce - first-price and second-price
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procurement auctions with reserve prices and investigated the Bayesian Stackel-
berg incentive compatibility of these two mechanisms. To the best of our knowl-
edge, this is the first attempt in the direction of designing incentive compatible
mechanisms for Stackelberg problems. This opens up an avenue for solving many
important problems, for example:

– designing fair pricing schemes for ad hoc and wireless networks
– developing fair routing algorithms in wireless ad hoc networks
– designing efficient scheduling policies in the grid computing environment.
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