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Abstract. Given an undirected edge-capacitated graph and a collection
of subsets of vertices, we consider the problem of selecting a maximum
(weighted) set of Steiner trees, each spanning a given subset of vertices
without violating the capacity constraints. We give an integer linear pro-
gramming (ILP) formulation, and observe that its linear programming
(LP-) relaxation is a fractional packing problem with exponentially many
variables and with a block (sub-)problem that cannot be solved in poly-
nomial time. To this end, we take an r-approximate block solver to de-
velop a (1 − ε)/r approximation algorithm for the LP-relaxation. The
algorithm has a polynomial coordination complexity for any ε ∈ (0, 1).
To the best of our knowledge, this is the first approximation result for
fractional packing problems with only approximate block solvers and a
coordination complexity that is polynomial in the input size and ε−1.
This leads to an approximation algorithm for the underlying tree pack-
ing problem. Finally, we extend our results to an important multicast
routing and wavelength assignment problem in optical networks, where
each Steiner tree is also to be assigned one of a limited set of given
wavelengths, so that trees crossing the same fiber are assigned different
wavelengths.

1 Introduction

Multicast is an efficient approach to deliver data from a source to multiple desti-
nations over a communication network. This approach is motivated by emerging
telecommunication applications, e.g., video-conferencing, streaming video and
distributed computing. In particular, a multicast session is established by find-
ing a Steiner tree in the network that connects the multicast source with all the
multicast destinations.
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In this paper we address the following Steiner tree packing problem, that is
fundamental in multicast communications. We are given a communication net-
work represented by an undirected graph, a capacity associated with every edge
in the graph, and a set of multicast requests (each defined by a subset of vertices
to be connected, called terminals). A feasible solution to this problem is a set of
Steiner trees, each spanning a multicast request, such that the number of Steiner
trees crossing the same edge is bounded by the capacity of that edge. The goal
is to maximize the total profit/throughput (the weighted sum of the successfully
routed requests). It is worth noting that some requests may not be successfully
routed due to the edge capacity. This problem arises in the communication net-
work that provides multicast communication service to multiple groups of users
in order to realize the routing that attains the maximum global profit for the
whole network with limited bandwidth resources.

A special case in which the same request is spanned by the maximum num-
ber of edge-disjoint Steiner trees was studied in [10]. The authors presented a
4/|S|-asymptotic approximation algorithm, where S is the terminal set to be
connected. This problem was further studied in [14] and an algorithm was pro-
posed to find �λS(G)/26� edge-disjoint Steiner trees, where λS(G) is the size of a
minimum S-cut in G. Another generalization is to find the maximum collection
of Steiner forests spanning different requests [15]. There are also many applica-
tions in this category (see [14]). A related problem of realizing all given multicast
requests as to minimize the maximum edge congestion was studied from theoret-
ical and experimental aspects in [2, 5, 6, 12, 16, 23]. This is essentially equivalent
to a routing problem in VLSI design [19]. Another related problem is that of
realizing all given multicast requests at the minimum cost. This problem was
studied in [4] and [13] for the special case of all Steiner trees connecting the
same set of vertices, and in [22] for the general case where for each Steiner tree
a different set of vertices is given.

We show that the relaxation of the Steiner packing problem is a fractional
packing problem in Section 2, which has attracted considerable attention in the
literature [7, 17, 25]. In general, a block solver is called to play a similar role to the
separation oracle in the ellipsoid methods in [9]. The approximation algorithm
in [7] is only for the case that the block problem is polynomial time solvable. In
addition, the approximation algorithms in [17, 25] have coordination complexity
depending on the input data, and are thus not polynomial in the input size.
A problem related to fractional packing is the convex min-max resource-sharing
problem, which is studied in [8, 24]. If the block problem is NP-hard, an approx-
imation algorithm is designed in [11] with polynomial coordination complexity.

To date, we are not aware of any approximation results for the Steiner tree
packing problem in its full generality (where for each Steiner tree is required
to connect a set of vertices). Furthermore, we are not aware of any approxi-
mation algorithm for fractional packing problems with coordination complexity
polynomial in the input size while the block problem is NP-hard.

The contribution of this paper can be summarized as follows. We formulate the
Steiner tree packing problem in its full generality as an ILP, and observe that its
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LP-relaxation is a fractional packing problem with exponentially many variables
and an NP-hard block problem. We thus develop a (1 − ε)/r-approximation
algorithm for fractional packing problems with polynomial coordination com-
plexity, each iteration calling an r-approximate block solver, for r ≥ 1 and any
given ε ∈ (0, 1). This is the first result for fractional packing problems with only
approximate block solvers and a coordination complexity strictly polynomial in
input size and ε−1. In fact, the coordination complexity of our algorithm is ex-
actly the same as in [7] where the block problem is required to be polynomial
time solvable. Then we present an algorithm for the Steiner tree packing prob-
lem and also apply our approximation algorithm for integer packing problems to
establish a method to directly find a feasible solution. We extend our results to
an important multicast routing and wavelength assignment problem in optical
networks, where each Steiner tree is also to be assigned one of a limited set of
given wavelengths, so that trees crossing the same fiber are assigned different
wavelengths.

The remainder of this paper is organized as follows. In Section 2 we give an
ILP formulation of the Steiner tree packing problem. Then we present and an-
alyze the approximation algorithm for fractional packing problems in Section 3
and use it to develop an approximation algorithm for the integer Steiner tree
packing problem in Section 4. The approach to directly find integer approximate
solutions is discussed in Section 5. The multicast routing and wavelength as-
signment problem in optical networks is studied in Section 6. Finally, Section 7
concludes the paper. Due to the limit of space we do not give all proofs of our
results in this version. We refer the readers to the full version of our paper [21]
for details.

2 Mathematical Programming Formulation

We are given an undirected graph G = (V, E) representing the input commu-
nication network, and a set of multicast requests S1, . . . , SK ⊆ V to be routed
by Steiner trees. Each edge ei ∈ E is associated with a capacity ci indicating
the bandwidth of the corresponding cable. Denote by Tk the set of all Steiner
trees spanning Sk, k ∈ {1, . . . , K}. The number of trees |Tk| may be exponen-
tially large. Furthermore, we define an indicator variable xk(T ) for each tree as
follows: xk(T ) = 1 if T ∈ Tk is selected for routing Sk; Otherwise xk(T ) = 0.
In addition, each request Sk is associated with a weight wk to measure its im-
portance in the given multicast communication network. Therefore, the Steiner
tree packing problem can be cast as the following ILP:

max
∑K

k=1 wk

∑
T∈Tk

xk(T )
s.t.

∑K
k=1

∑
T∈Tk&ei∈T xk(T ) ≤ ci, ∀ei ∈ E;∑

T∈Tk
xk(T ) ≤ 1, k = 1, . . . , K;

xk(T ) ∈ {0, 1}, ∀T & k = 1, . . . , K.

(1)

The first set of constraints in (1) means that the congestion of each edge is
bounded by the edge capacity. The second set of constraints shows that at most
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one tree is selected to realize the routing for each request. It is possible that in
a feasible solution, no tree is chosen for some requests, i.e., some requests may
not be realized, due to the edge capacity constraints.

The special cases of the Steiner tree packing problem studied in this work
have been shown APX -hard [10, 14, 15], so is our underlying problem. There
may be exponentially many variables in (1). Thus many exact algorithms such
as standard interior point methods can not be applied to solve its LP-relaxation.
The LP-relaxation of (1) may be solved by the volumetric-center [1] or the
ellipsoid methods with separation oracle [9]. However, those approaches will lead
to a large amount of running time.

As usual, we first solve the LP-relaxation of (1), and then apply rounding
techniques to obtain a feasible solution. We call the linear relaxation of the
Steiner tree packing problem as the fractional Steiner tree packing problem, and
its solution as the fractional solution to the Steiner tree packing problem. The
LP-relaxations of (1) is in fact a fractional packing problem [7, 17, 25]. However,
the approximation algorithm in [7] is only for the case that the block problem
is polynomial time solvable. Unfortunately, it is not the case for the Steiner
tree packing problem as its block problem is the minimum Steiner tree problem.
In addition, the approximation algorithms in [17, 25] both lead to complexity
bounds that depend on the input data, and only result in pseudo polynomial time
approximation algorithms. Thus, we need to study approximation algorithms
for fractional packing problems with approximate block solvers and input data
independent complexity.

3 Approximation Algorithm for Fractional Packing
Problems

In this section, we develop an approximation algorithm for fractional packing
problems based on the approach in [7]. Our algorithm allows that the block
problem can only be approximately solved. Our complexity is still strictly poly-
nomial in the input size and ε−1, which is superior to the methods in [17, 25].

We consider the following fractional packing problem:

max{cT x|Ax ≤ b, x ≥ 0}. (2)

Here A is a m×n positive matrix, and b ∈ IRm and c ∈ IRn are positive vectors.
In addition, we assume that the (i, j)-th entry Ai,j ≤ bi for all i and j. The
corresponding dual program is:

min{bT y|AT y ≥ c, y ≥ 0}. (3)

Similar to the strategies in [7, 8, 11, 17, 24, 25], an (approximate) block solver is
needed, which is similar to the separation oracle for the ellipsoid methods. For a
given y ∈ IRm, the block problem is to find a column index q that (Aq)T y/cq =
minj(Aj)T y/cj. In our algorithm, we assume that we are given the following
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Table 1. Approximation algorithm for fractional packing problems

δ = 1 −
√

1 − ε, u = (1 + δ)((1 + δ)m)−1/δ, k = 0, xk = 0, fk = 0, yk
i = u/bi, Dk = um;

while Dk < 1 do {iteration}
k = k + 1;
call ABS(yk−1) to find a column index q;
p = arg mini bi/Ai,q ;
xk

q = xk−1
q + bq/Ap,q;

fk = fk−1 + cqbp/Ap,q;
yk

i = yk−1
i [1 + δ(bp/Ap,q)/(bi/Ai,q)];

Dk = bT yk;
end do

approximate block solver ABS(y) that finds a column index q that (Aq)T y/cq ≤
r minj(Aj)T y/cj, where r ≥ 1 is the approximation ratio of the block solver.

Our algorithm is an iterative method. We first maintain a pair of a feasible
primal solution x to the fractional packing problem (2) and an infeasible dual
solution y. At each iteration, based on the current dual solution y, the algo-
rithm calls the approximate block solver once. Then the algorithm increases the
component of the primal solution x corresponding to the returned column index
by a certain amount and multiples the dual solution y by a factor larger than
1. This iterative procedure does not stop until the dual objective value is more
than 1 (though the dual solution may be still infeasible). The algorithm is shown
in Table 1. In the algorithm, Dk is in fact the dual objective value for the dual
vector yk at the k-th iteration, though it can be infeasible. Let OPT denote the
optimum dual value (also the optimum objective value of the primal program
according to the duality relation). In addition, we assume that the algorithm
stops at the t-th iteration. We have the following bound:

Lemma 1. When the algorithm stops, OPT /f t ≤ rδ/ ln(um)−1.

The solution xt delivered by the algorithm could be infeasible and some packing
constraints may be violated. Thus we need to scale the solution by an appropriate
amount to obtain a feasible solution.

Lemma 2. The scaled solution xS = xt/ log1+δ((1 + δ)/u) is feasible for (2)
and the corresponding objective value is f t/ log1+δ((1 + δ)/u).

Now we are ready to show the performance bound of the solution:

Theorem 1. When the algorithm stops, the scaled solution xS is a (1 − ε)/r-
approximate solution to the fractional packing problem (2).

Proof. According to the duality relation, the optimum dual value OPT is also
the optimum objective value of the primal problem (2). Thus we need to examine
the objective value corresponding to the feasible solution xS . According to the
definition u = (1 + δ)((1 + δ)m)−1/δ, we have ln(um)−1 = (1 − δ) ln[m(1 + δ)]/δ
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and ln((1 + δ)/u) = ln[m(1 + δ)]/δ. Denote by ALG the objective value of the
solution delivered by our algorithm. From the above relations and Lemma 1, the
following bound holds:

ALG
OPT =

f t

OPT log1+δ((1 + δ)/u)
≥ ln(um)−1

rδ

ln(1 + δ)
ln((1 + δ)/u)

=
(1 − δ) ln(1 + δ)

rδ

According to the elementary inequality ln(1+z) ≥ z−z2/2 for any 0 ≤ z ≤ 1, we
have rALG = inf(ALG/OPT ) ≥ (1 − δ)(δ − δ2/2)/(rδ) ≥ (1 − δ)2/r = (1 − ε)/r.

Theorem 2. There exists a (1 − ε)/r-approximation algorithm for the frac-
tional packing problem (2) that performs O(mε−2 ln m) iterations, calling an
r-approximate block solver once per iteration, for any ε ∈ (0, 1].

Thus we have developed the first algorithm that find a (1 − ε)/r-approximate
solution to fractional packing problems (2) with a complexity polynomial in the
input sizes and ε−1, provided an approximate block solver. It is a generalization
of the approximation algorithm in [7].

4 Approximation Algorithm for Steiner Tree Packing

We first study the LP-relaxation of (1).

Theorem 3. There is a (1 − ε)/r-approximation algorithm for the fractional
Steiner tree packing problem with complexity O((m + K)Kε−2β ln(m + K)),
where r and β are the approximation ratio and the complexity of the minimum
Steiner tree solver called as an oracle, respectively.

Proof. To use our approximation algorithm for fractional packing problems, the
only problems are to identify the block problem and to find an (approximate)
solver. Notice that the dual vector y = (y1, . . . , ym, ym+1, . . . , ym+K)T consists
of two types of components. The first m = |E| components y1, . . . , ym corre-
sponds to the edges e1, . . . , em. The remaining K components ym+1, . . . , ym+K

in y corresponds to the second set of constraints in (1). It is easy to verify that
the block problem is as follows: to find a tree T that mink minT∈Tk

(
∑

ei∈T yi +
ym+kδk,T )/wk. Here the indicator δk,T = 1 if T ∈ Tk, and otherwise δk,T = 0.
To solve the block problem, one can search for K trees corresponding to the
K requests separately, such that each tree routes a request with the minimum
of

∑
ei∈T yi. Afterwards, for each of these K trees, the additional term ym+k

is added, and the sums are divided by wk respectively. Thus the tree with the
minimum value of (

∑
ei∈T yi + ym+kδk,T )/wk over all K trees is selected, which

is the optimum solution to the block problem. Since the value ym+k is fixed for
a fixed request k at each iteration, the block problem is in fact equivalent to
finding a tree spanning the request Sk that minT∈Tk

∑
ei∈T yi, for k = 1, . . . , K.

Regarding yi the length of edge ei for i = 1, . . . , m, the block problem is in fact
the minimum Steiner tree problem in graphs. Thus, we can use the approxima-
tion algorithm developed in Section 3 with an approximate minimum Steiner
tree solver to obtain a feasible solution to the LP-relaxation of (1), and the
theorem follows.
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Unfortunately, the minimum Steiner tree problem is APX -hard [3]. Thus, the
approximation algorithm in [7] is not applicable in this case. We apply random-
ized rounding [18, 19] to find a feasible (integer) solution. As indicated in [18, 19],
to guarantee non-zero probability that no constraint is violated, a scaling tech-
nique is necessary to be employed. Denote by c the minimum edge capacity.
Suppose that there exists a scalar v satisfying (ve1−v)c < 1/(m + 1). From [18],
we can immediately obtain the following bound:

Theorem 4. There is an approximation algorithms for the Steiner tree packing
problem such that the objective value delivered is at least
��
�

(1 − ε)vOPT/r − (exp(1) − 1)(1 − ε)v
�

OPT ln(m + 1)/r, if OPT > r ln(m + 1);

(1 − ε)vOPT/r − exp(1)(1 − ε)v ln(m + 1)
1 + ln (r ln(m + 1)/OPT )

, otherwise,

where OPT is the optimal objective value of (1).

In (1) there are exponential number of variables. However, by applying our
approximation algorithm for fractional packing problems in Section 3, we just
need to generate K approximate minimum Steiner trees for the K requests at
each iteration corresponding to the current dual vector. Thus there are only
O((m + K)Kε−2 ln(m + K)) Steiner trees generated in total. This is similar to
the column generation technique for LPs, and the hardness due to exponential
number of variables in (1) is overcome.

5 Integrality

A solution to the fractional packing problem (2) has integrality w if each com-
ponents in the solution is a non-negative integer multiple of w. In this case
we modify the approximation algorithm in Table 1 as follows: At the k-th it-
eration, after calling the approximate block solver, the increments of x and y
are xk(q) = xk−1(q) + w and yk(i) = yk−1(i){1 + δ[w]/[b(i)/A(i, q)]}, and the
following result follows:

Theorem 5. If w ≤ mini,j bi/Ai,j in the fractional packing problem (2), then
there exists an algorithm that finds a (1 − ε)/r-approximate solution to (2)
with integrality wδ/(1 + log1+δ m) within O(mε−2ρ ln m) iterations, where ρ =
maxi,j bi/Ai,j.

Corollary 1. If bi/Ai,j ≥ (1 + log1+δ m)/δ for all i and j, then there exists an
algorithm that finds a (1−ε)/r-approximate solution to integer packing problems
within O(mε−2ρ ln m) iterations.

Corollary 2. If all edge capacities are at least (1+log1+δ(m+K))/δ, then there
exists an algorithm that finds a (1 − ε)/r-approximate integer solution to the
Steiner tree packing problem (1) within O((m+K)Kε−2cmaxβ ln(m+K)) time,
where r and β are the approximation ratio and the complexity of the minimum
Steiner tree solver called as the oracle, and cmax is the maximum edge capacity.
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We have presented a pseudo polynomial time approximation algorithm for inte-
ger packing problems. However, this approach is still useful, as it can directly
lead to an integer solution and can avoid the rounding stage. We believe that
there exist instances in practice that our approximation algorithm for integer
packing problem works efficiently.

6 Multicast Routing and Wavelength Assignment in
Optical Networks

In the multicast routing and wavelength assignment problem in optical net-
works, we are given an undirected graph G = (V, E), a set of multicast requests
S1, . . . , SK ⊆ V , and a set L = {1, . . . , L} of wavelengths. It is assumed that
every edge represents a bundle containing multiple fibers in parallel. In particu-
lar, we let ci,l denote the number of fibers of edge ei ∈ E that have wavelength
l ∈ L. Note that wavelengths that are not available in a fiber are assumed to be
pre-occupied by existing connections in the network. The goal is to find rout-
ing trees with the maximum total profit/throughput, such that every selected
request is realized by a Steiner tree and assigned one of the given wavelengths,
and that trees crossing the same fiber are assigned different wavelengths.

Denote by Tk the set of all trees spanning the request Sk, for all k = 1, . . . , K.
Here |Tk| could be exponentially large. Then we define an indicator variable
xk(T, l) as follows: xk(T, l) = 1 if T ∈ Tk is selected for routing Sk and is
assigned wavelength l; Otherwise xk(T, l) = 0. In addition, each request SK is
associated with a weight wk indicating its importance in the given multicast
optical network. Thus the ILP of the problem is as follows:

max
∑K

k=1 wk

∑L
l=1

∑
T∈Tk

xk(T, l)
s.t.

∑K
k=1

∑
T∈Tk&ei∈T xk(T, l) ≤ ci,l, ∀ei ∈ E & l ∈ L;

∑L
l=1

∑
T∈Tk

xk(T, l) ≤ 1, k = 1, . . . , K;
xk(T, l) ∈ {0, 1}, ∀T, l ∈ L& k = 1, . . . , K.

(4)

The first set of constraints ensures that each of these trees can be routed through
a separate fiber. The second set of constraints indicate that the we just need to
route each request by at most one tree and assign at most one wavelength to it.

First, for the fractional multicast routing and wavelength assignment problem,
we have the following result (see [21] for proof):

Theorem 6. There is a (1 − ε)/r-approximation algorithm for the fractional
multicast routing and wavelength assignment problem in optical networks with
complexity O((mL + K)KLε−2β ln(mL + K)), where r and β are the approxi-
mation ratio and the complexity of the minimum Steiner tree solver called as the
oracle, respectively.

Similar to Section 4, for any real number v satisfying (ve1−v)c < 1/(m + 1),
where c = mini,l ci,l is the minimal capacity, we can obtain a bound for the
integer solution by randomized rounding [18, 19]:
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Theorem 7. There is an approximation algorithms for the multicast routing
and wavelength assignment problem in optical networks such that the objective
value delivered has the same bound as in Theorem 4, where OPT is the optimal
objective value of (4).

Furthermore, we can apply our approximation algorithm for integer packing
problems described in Section 5 to (4) and directly obtain an integer solution:

Theorem 8. If all edge capacities are at least (1 + log1+δ(mL + K))/δ, then
there exists an algorithm that finds a (1 − ε)/r-approximate integer solution to
the multicast routing and wavelength assignment problem in optical networks
(4) within O((mL + K)LKε−2cmaxβ ln(mL + K)) time, where r and β are the
approximation ratio and the complexity of the minimum Steiner tree solver called
as the oracle, and cmax is the maximum capacity.

7 Conclusions and Future Research

in this paper, we have addressed the problem of maximizing a Steiner tree pack-
ing, such that each tree connects a subset of required vertices without violating
the edge capacity constraints. We have developed a (1 − ε)/r approximation al-
gorithm to solve the LP-relaxation provided an r-approximate block solver. This
is the first approximation result for fractional packing problems with only ap-
proximate block solvers and a coordination complexity that is polynomial in the
input size and ε−1. This generalizes the well-known result in [7] while the com-
plexity is the same, and it is superior to many other approximation algorithms
for fractional packing problems, e.g., [17, 25]. In this way we have designed ap-
proximation algorithms for the Steiner tree packing problem. Finally, we have
studied an important multicast routing and wavelength assignment problem in
optical networks. We are further interested in both theoretical and practical
extensions of this work. An interesting problem is to develop approximation al-
gorithms for fractional/integer packing problems with other properties. From
the practical point of view, we aim to develop more realistic models for routing
problems arising in communication networks and design strategies to (approxi-
mately) solve them efficiently. We have applied our approximation algorithm for
fractional packing problems to the global routing problem in VLSI design [20].
In addition, we are working on implementation of our approximation algorithms
with challenging benchmarks to explore their power in computational practice.
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