
Model-Based Analysis of Money Accountability
in Electronic Purses�

Il-Gon Kim1, Young-Joo Moon1, Inhye Kang2, Ji-Yeon Lee1,
Keun-Hee Han1, and Jin-Young Choi1

1 Dept. of Computer Science and Engineering, Korea University,
Seoul, Korea

{igkim, yjmoon, jylee, khhan, choi}@formal.korea.ac.kr
2 Dept. of Mechanical and Information Engineering, University of Seoul,

Seoul, Korea
inhye@uos.ac.kr

Abstract. The Common Electronic Purse Specifications (CEPS) define
requirements for all components needed by an organization to implement
a globally interoperable electronic purse program. In this paper we de-
scribe how we model purchase transaction protcol in CEPS using formal
specification language. We define and verify the money accountability
property of the CEPS, and we address its violation scenario in the pres-
ence of communication network failures. Using model checking technique
we find that transaction record stored in the trusted-third party plays a
essential role in satisfying the accountability property.

Keywords: Formal specification and verification, security, e-commerce
protocol, CEPS, model checking, money accountability, Casper, FDR.

1 Introduction

The use of smart cards as electronic purses and smart credit card/debit cards is
increasing the market potentiality of electronic commerce. The technology for se-
cure and stable electronic payment cards is being driven by big companies. Visa,
Proton and a number of European financial institutions have collaborated to cre-
ate the Common Electronic Purse Specifications (CEPS)[1], with the purpose of
having some degree of international interoperability in all national purse schemes.

One of the most important requirements in electronic commerce protocols
is to ensure the accountability on electronic transactions. Money accountability
means that money is neither created nor destroyed in the process of an electronic
transaction between customer and merchant. For example, a customer loads
an e-money on smart card from the bank, and attempts to use the coin to
pay a merchant. Unfortunately, communication networks fails in the transit of
e-money from the customer to the merchant. In this situation, the consumer
cannot be convinced that the e-money has been spent correctly. This is a critical
� This work was supported by Korea Research Foundation Grant (KRF-2003-003-

D00397).

X. Deng and Y. Ye (Eds.): WINE 2005, LNCS 3828, pp. 346–355, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model-Based Analysis of Money Accountability in Electronic Purses 347

issues for money accountability, because the customer and the merchant can
be susceptible to dispute between transacting parties. In other words, without
adequate accountability assurance in CEPS, there would be no means to settle
legal disputes against fraudulent individuals.

In this paper we address the accountability problem in the CEPS, and we
verify it with model checking technique. First, we model accountability property
and CEPS process in CSP (Communicating Sequential Processes) process alge-
bra language, respectively. Second, the property model is expressed as SPEC,
and the CEPS is modelled as SYSTEM. Lastly, we use the FDR (Failure Diver-
gence Refinement) model checking tool. If SYSTEM is a refinement of SPEC,
the set of behaviors generated by SYSTEM is a subset of those generated by
SPEC. It means that the CEPS satisfies the accountability property.

The remainder of this paper is organized as follows. Section 2 describes some
related work. Section 3 gives a brief overview of the CEPS. Section 4 briefly
describes model checking technique, and describes how the CEPS and the ac-
countability property can be modelled and verified using CSP and FDR. Finally,
section 5 concludes this paper.

2 Related Work

There has been many research in using model checking to verify the security
aspects of protocols. However, relatively little research has been carried out on
formal analysis of accountability in e-commerce protocols.

Il-Gon Kim et al.[5] used the FDR model checker to verify the secrecy and
authentication properties of a m-commerce protocol.

Heintze et al.[3] researched on non-security properties such as money atomicity
and goods atomicity of two e-commerce protocols(NetBill[2] and Digicash[4]).

IndrakshiRay et al.[7] proposedmechanisms that desirable properties addressed
in [3] are still preserved in a fair-exchange protocol despite network failures.

Jan Jürjens et al.[6] investigated the security aspect of the CEPS using AUT-
OFOCUS tool. The author modelled CEPS with several diagrams which sup-
ported by the AUTOFOCUS tool. Then he added intruder model in order to
intercept messages and learn secrets in the messages. Finally, the author used
the AUTOFOCUS connection to the model checker SMV.

In this paper we specify the behaviour of the CEPS purchase transaction pro-
tocol in presence of network failures, using model checking technique proposed
in [3][7]. We focus on verifying the accountability property in the CEPS, not in
the viewpoint of security properties such as confidentiality and authentication.
So far, there is no research to specify and verify the accountability of the CEPS
using model checking. In this regard our work is different from the work of Jan
Jürjens et al.

3 CEPS

In this section we give a brief overview of the Common Electronic Purse Speci-
fication and describe its purchase transaction protocol.

348 I.-G. Kim et al.

The Common Electronic Purse Specification (CEPS) was proposed by Visa,
Proton and a number of European financial institutions, in order to have a
common standard for all national purse schemes. Currently, stored value smart
cards(called “electronic purses”) have been proposed to allow an electronic purse
application which conforms to CEPS. It is designed as a standard for 72 different
e-purse systems worldwide to work together.

Herein we address the central function of CEPS, the purchase transaction,
which allows the cardholder to use e-money on a smart card to pay for goods.
In this paper we assume that the communicating participants in the purchase
transaction protocol should consist of three part; customer’s smart card, PSAM
in the merchant’s POS (Point Of Sale) device, and bank. The POS device em-
beds Purchase Security Application Module (PSAM), which is used to store and
process data transferred from cardholders. The bank plays a role of checking the
validity of customer’s card and account.

3.1 Purchase Transaction Protocol

The PSAM starts the protocol (see Fig.1) after the smart card(CARD) is in-
serted into the POS device, by sending a debit request to the card. The debit
request message contains an e-money amount for a deal. In this paper we focus
on addressing the accountability property, not security properties. For the de-
tailed notation and meaning of each data and key used in messages, the reader
can see [1]. At step 2, the CARD responds with the message containing e-money
singed by the customer. The message of purchase response includes the e-money
amount signed by the customer. Then the PSAM forwards the customer’s elec-
tronic payment order (EPO) to the BANK. At step 4, the BANK checks the
validity of this EPO and sends to the PSAM a receipt of the fund transfer.
Finally, if the electronic transaction between the CARD and the PSAM has
completed successfully, then the PSAM sends ‘transaction completed’ message
to the CARD.

1. PSAM → CARD : debit request
2. CARD → PSAM : purchase response
3. PSAM → BANK : endorsed signed EPO
4. BANK → PSAM : signed receipt
5. PSAM → CARD : transaction completed

Fig. 1. Purchase transaction protocol of the CEPS

4 CSP Specification and FDR Model Checking of the
Purchase Transaction Protocol

In this section we describe how we model and verify the purchase transaction
protocol and the accountability property using CSP/FDR.

We use CSP process algebra language to encode communicating channel and
each participant. A CSP process denotes a set of sequences of events, where

Model-Based Analysis of Money Accountability in Electronic Purses 349

an event represents a finite state transition. A CSP process may be composed
of component processes which require synchronization on some events. In this
paper we encode communicating channel, the customer, the merchant, and the
bank processes in CSP.

In FDR model checking tool, the refinement model is described as a process,
say SYSTEM, and the property model is specified as another process, say SPEC.
If SYSTEM is a refinement of SPEC, it means that the set of the possible behav-
iors of SYSTEM is a subset of the set of possible behaviors of SPEC. This rela-
tionship is written SPEC � SYSTEM in FDR. If SYSTEM is not a refinement of
SPEC, the FDR tool generates a counter-example that describes under what sce-
nario the property is violated. In the following subsections, SYSTEM represents
the purchase transaction protocol and SPEC means the accountability property.

4.1 Communication Environment Process

We model asynchronous communication channel which proposed in [3][7], instead
of using synchronous channel, because the asynchronous communication is useful
to consider a network failure in the CSP model.

Fig.2 shows logical communication channel in the purchase transaction proto-
col. For example, the customer uses two communication processes(COMMcp and
COMMcb) in order to communicate with the merchant and the bank, respec-
tively. For example, the process COMMcp reads a data from channel coutp(which
is connected to the channel coutp in the CARD) and writes the data to channel
pinc and the process COMMpc reads a data from channel poutc and writes it to
channel cinm. In a failure network, the transaction data between the customer
and the merchant may be lost. To reflect on this unreliable communication chan-
nels, we model that COMMcp and COMMpc could lose sending or receiving data
non-deterministically.

COMMcp
coutp pinc

COMMcb
coutb binc

COMMpb
poutb binp

COMMpc
poutc cinp

COMMbc
boutc cinb

COMMbp
boutp pinb

CARD

cinp coutp

PSAM

pinc poutc

BANK

binp boutp

 poutbpinbcinb coutb binc boutc

Communication Networks

Fig. 2. Logical communication channel in purchase communication protocol

350 I.-G. Kim et al.

4.2 The CARD Process

We model the CARD process could load e-money from the BANK process if the
customer’s account holds enough balance. Then the CARD waits for the debit
request(DebitA or DebitB) from the PSAM. If the CARD receives DebitA or
DebitB correctly, it sends electronic payment order(epo TokenA orepo TokenB)
to the PSAM. In the model we allow the CARD to send two different electronic
payment orders for one purchase transaction, because this will be considered
evidence to detect fradulent double deposit of the merchant. Because the CEPS
provides on-line and off-line communication between the CARD and the PSAM,
the following scenarios could be possible. As the customer’s response to the debit
request is in transit, the communication network fails. Thus the customer is left
in an uncertain situation whether the e-money has been spent correctly or not.
This is a critical issue for money accountability, because the merchant could be
accused of double deposit. To confirm the accountability, we allow the customer
to go to the bank and wait for the arbitration decision based on the transaction
record. To reflect on this scenario, we model that the card process sends second

CARD = STOP |~| LOAD_CARD
LOAD_CARD = coutb!loadtoken ->

cinb?x ->
if x==token then loaded_token -> (USE_TOKEN [] KEEP_TOKEN)
else STOP

USE_TOKEN = cinp?x -> DEBIT_CARD(x)
KEEP_TOKEN = cKeepsToken -> STOP

DEBIT_CARD(x) = if (x==DebitA) then
(coutp!epo_TokenA -> EPO_TOKEN_SENT)
else if (x==DebitB) then
(coutp!epo_TokenB -> EPO_TOKEN_SENT)
else RETURN_TOKEN

RETURN_TOKEN = coutb!paymentAlready ->
cinb?x ->
(if (x==refundSlip) then REFUND_RECEIVED
else if (x==depositSlip) then epo_tokenSpent -> ARBITRATION
else ERROR_DEBIT)

REFUND_RECEIVED = STOP
EPO_TOKEN_SENT = (cinp?y ->

(if (y==ok) then epo_tokenSpent -> (END |~| USE_TOKEN)
else if (y==no) then STOP
else RETURN_TOKEN))

[] USE_TOKEN
[] (timeoutEvent -> RETURN_TOKEN)

Fig. 3. The CARD process

Model-Based Analysis of Money Accountability in Electronic Purses 351

EPO(epo TokenB) again, if the response from the merchant is not received in a
specified time after sending first EPO(epo TokenA) to the merchant.

The CARD process’s main behaviours could be summarized as follows:

– use token(USE TOKEN) : the customer may use a token for purchasing a
good

– load token(LOAD CARD) : the customer may load a token from the bank
– token holding(KEEP TOKEN) : the customer may keep a token for future

use, not spending it to purchase goods
– token return(RETURN TOKEN) : the consumer may return token to the

bank for refund, in case of incorrect transaction.

4.3 The PSAM Process

The PSAM process starts with sending the debit request message(DebitA or Deb-
itB) to the CARD; the SEND DEBIT A and SEDN DEBIT B states represent
this step. Then the PSAM waits for the response(epo TokenA or epo TokenB)

PSAM = STOP |~| REPEATED_DEBIT_REQUEST(none)

REPEATED_DEBIT_REQUEST(previousDebitRequest) =
if (previousDebitRequest == none) then (SEND_DEBIT_A [] SEND_DEBIT_B)
else if (previousDebitRequest == DebitA) then SEND_DEBIT_B
else SEND_DEBIT_A

SEND_DEBIT_A = (poutc!DebitA -> WAIT_FOR_RESPONSE(epo_TokenA))
SEND_DEBIT_B = (poutc!DebitB -> WAIT_FOR_RESPONSE(epo_TokenB))

WAIT_FOR_RESPONSE(epo_Token) = pinc?x ->
if (x==epo_Token) then (mGets_epoToken->FORWARD_EPO_TO_BANK(epo_Token))
else poutc!bad_epoToken -> NO_TRANSACTION

NO_TRANSACTION = STOP
FORWARD_EPO_TO_BANK(epo_Token)=poutb!epo_Token -> WAIT_FOR_BANK(epo_Token)

WAIT_FOR_BANK(epo_Token) =
(pinb?x -> (if x==depositSlip then M_MAY_BE_FRAUD(epo_Token)

else if x==refundSlip then (mGetsRefundSlip -> STOP)
else if x==alreadyDeposited then FRAUD_DISCOVERED
else if x==badBalance then poutc!no -> STOP
else STOP))

FRAUD_DISCOVERED = STOP
M_MAY_BE_FRAUD(epo_Token) = END |~| FORWARD_EPO_TO_BANK(epo_Token)|~|

REPEATED_DEBIT_REQUEST(epo_Token) |~|
poutc!ok -> STOP

Fig. 4. The PSAM process

352 I.-G. Kim et al.

from the CARD. After receiving the EPO (Electronic Payment Order) token, the
PSAM sends it to the BANK in order to check the validity and the balance of the
cardholder. If the payment token from the customer has been settled successfully,
the merchant will get a deposit slip; denoted by depositSlip. When a merchant
attempts to deposit a coin twice, the PSAM process receives alreadyDeposited
data from the bank.

Herein the M MAY BE FRAUD state is used to trace the fraud when a mer-
chant attempts to deposit a coin twice for one purchase transaction.

4.4 The Bank Process

The most important function in the BANK process plays a role in recording logs
about an electronic transaction in order to guarantee the accountability. If the
BANK decides that an EPO token of the customer is valid, then it debits the

BANK = binc?x -> (if (x==loadtoken) then
(debitC -> boutc!token -> RECORD_LOG(0,0,0))
else STOP)

RECORD_LOG(Flag, A, B) =
binc?x -> (if (x==paymentAlready) then

(if (Flag==0) then
(creditC -> boutc!refundSlip -> RECORD_LOG(1,0,0))

else if (A==1 or B==1) then
(arbitration -> boutc!depositSlip -> RECORD_LOG(Flag, A, B))
else RECORD_LOG(Flag, A, B))
else RECORD_LOG(Flag, A, B))

[] binp?x ->(if (x==epo_TokenA) then
(if (Flag==0) then

(creditM -> boutp!depositSlip -> RECORD_LOG(1,1, B))
else if (B==0 and A==1) then

(boutp!alreadyDeposited -> mFraud -> RECORD_LOG(Flag, A, B))
else if (B==1 and A==1) then

(creditM -> boutp!depositSlip -> RECORD_LOG(Flag, A, B))
else if (A==1 and B==1) then STOP
else (arbitration -> boutp!refundSlip -> RECORD_LOG(Flag,A, B)))

else if (x==epo_TokenB) then
if (Flag==0) then

(creditM -> boutp!depositSlip -> RECORD_LOG(1,A,1))
else if (A==0 and B==1) then

(boutp!alreadyDeposited -> mFraud -> RECORD_LOG(Flag, A, B))
else if (A==1 and B==0) then

(creditM -> boutp!depositSlip -> RECORD_LOG(Flag, A, B))
else if (A==1 and B==1) then STOP
else arbitration -> boutp!refundSlip -> RECORD_LOG(Flag, A, B)

else RECORD_LOG(Flag, A, B))

Fig. 5. The BANK process

Model-Based Analysis of Money Accountability in Electronic Purses 353

balance of the card and credits the account of the merchant(denoted by events
debitC and creditM). In addition, the BANK process can settle out arbitration
state caused by fraud of a customer or a merchant. For example, after a mer-
chant gets a deposit slip by finishing a successful transaction with a customer,
he/she may try to deposit an e-money twice. In this situation, the BANK pro-
cess warns that the merchant has already deposited and it may be fraud by the
merchant(shown by boutp!alreadyDeposited and mFraud events).

4.5 Failure Analysis of Money Accountability Property

Accountability is one of the most critical requirements to electronic commerce
protocols and it can be divided into two categories; money accountability and
goods accountability.

Money accountability property means that money is neither created nor de-
stroyed in the steps of an electronic commerce transaction[3]. Goods account-
ability property represents that a merchant receives payment if and only if the
customer receives the goods[3].

In this paper, we do not deal with failure analysis of goods accountability
property because goods delivery is not included in the CEPS. Money account-
ability in the CEPS could be considered in the viewpoint of a customer and
a merchant. Customer’s money accountability property may be defined as the
following trace specification.

SPECc = STOP |~| (loaded_token ->
((epo_tokenSpent -> STOP) |~|
(cKeepsToken -> STOP) |~|
(creditC -> STOP)))

Customer’s money accountability written in CSP means that once e-money
is loaded into a smart card, the customer may choose keep it for future use,
spend it for purchasing goods, or return it for refund. After using FDR tool, we
found that customer’s money accountability property is satisfied in the spite of
unreliable communication networks and merchant’s fraudulent behaviour.

SPECm = STOP |~| (mGets_epoToken ->
((creditM -> STOP) |~|
(mGetsRefundSlip -> STOP)

Merchant’s money accountability described in CSP represents that once e-
money is transferred into the PSAM, the merchant’s account balance may be
incremented and the merchant may get a refund slip for incorrect transaction.
When we run FDR tool, it shows the following counterexample which repre-
sents that merchant’s money accountability property(SPECm process) may be
violated due to a merchant fraud.

354 I.-G. Kim et al.

coutb.loadtoken, binc.loadtoken, debitC, boutc.token, cinb.token,
loaded_token, poutc.DebitB, cinp.DebitB, coutp.epo_TokenB,
pinc.epo_TokenB, mGets_epoToken, poutb.epo_TokenB, binp.epo_TokenB,
creditM, boutp.depositSlip, pinb.depositSlip, poutc.DebitA,
cinp.DebitA, coutp.epo_TokenA, pinc.epo_TokenA, mGets_epoToken,
boutp.alreadyDeposited, mFraud

This sequence of CSP events may show the scenario where a merchant at-
tempts to deposit an e-money twice for a deal with a customer. After the cus-
tomer sends an e-money for a good price to the merchant(shown by
coutp.epo TokenB event), communication network fails between the customer
and the merchant. The merchant finishes a transaction with a bank and the
account balance of the merchant is incremented(poutb.epo TokenB, creditM, and
pinb.depositSlip). Then the customer sends another e-money again
(coutp.epo TokenA) to the merchant because the customer can’t confirm the
transaction result due to the network failure. At this moment a malicious mer-
chant attempts to use the customer’s e-money again by sending it to the bank.

However, the merchant’s fraud behaviour can be detected by the transaction
record in the bank. Therefore, above counterexample doesn’t mean a violation
of the merchant’s money accountability property. When we modify the SPECm
process to contain at least one fraud event mFraud, we confirm that the CEPS
model satisfies the merchant accountability property. This result means that the
merchant fraud may happen in the e-commerce transaction based on the CEPS,
by tampering of a POS device and man-in-the-middle attack. However the risk
of the merchant accountability violation against the merchant fraud could be
solved through comparing the signed transaction log information stored in the
card and the bank.

5 Conclusion

In this paper we analyzed the money accountability properties of the Common
Electronic Purse Specification (CEPS) using model checking approach. We have
also shown how model checking using CSP and FDR can be used to describe
e-commerce transaction in the CEPS including communication failure networks
and detect the violation scenario of the accountability properties.

In our modelling of the CEPS we have abstracted away the purchase trans-
action of the CEPS by focusing on the non-security aspect. We have found that
the risk of customer security against the merchant may bring about the cause
to violate the money accountability. In addition, we have also identified that
the transaction record in the trusted-third party such as the bank could provide
the most effective solution to guarantee the accountability in the e-commerce
protocol.

In the future we plan to analyze accountability properties of the Load Security
Application Module (LSAM) which plays a role in loading e-money into the
card.

Model-Based Analysis of Money Accountability in Electronic Purses 355

References

1. CEPSCO, Common Electronic Purse Specification, Business Requirements vers. 7.0,
Functional Requirements vers. 6.3, Technical Specification vers.2.2, available from
http://www.cepsco.com, 2000.

2. B. Cox, J.D.Tygar, and M. Sirbu, “NetBill Security and Transaction Protocol”, In
Proceedings of the First USENIX Workshop in Electronic Commerce, pp.77-88, July
1995.

3. N. Heintze, J. Tygar, J. Wing, and H. Wong, “Model Checking Electronic Commerce
Protocols”, In Proceedings of the 2nd USENIX Workshop in Electronic Commerce,
pp.146-164, November 1996.

4. A. Flat, D. Chaaum, and M. Naor, “Untraceable Electronic Cash”, In Advances in
Cryptography -Proceedings of CRYPTO’88, pp.200-212, Springer-Verlag, 1990.

5. I.G. Kim, H.S. Kim, J.Y. Lee, and J.Y. Choi, “Analysis and Modification of ASK
Mobile Security Protocol”, Proceedings of the Second IEEE International Workshop
on Mobile Commerce and Services, pp.79-83, July 2005.

6. Jan Jürjens, Guido Wimmel, “Security Modelling for Electronic Commerce: The
Common Electronic Purse Specifications”, Proceedings of the IFIP conference on
towards the E-society, pp.489-506, 2001.

7. I. Ray, I. Ray, “Failure Analysis and E-commerce Protocol using Model Check-
ing”, Proceedings of the Second International Workshop on Advanced Issues of
E-Commerce and Web-based Information Systems, pp.176-183, June 2000.

	Introduction
	Related Work
	CEPS
	Purchase Transaction Protocol

	CSP Specification and FDR Model Checking of the Purchase Transaction Protocol
	Communication Environment Process
	The CARD Process
	The PSAM Process
	The Bank Process
	Failure Analysis of Money Accountability Property

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

