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Abstract. Reserve price auctions are one of hot research topics in the
traditional auction theory. Here we study the starting price in an online
auction, counterpart of the public reserve price in a traditional auction.
By considering three features of online auctions, the stochastic entry of
bidders (subject to Poisson process), the insertion fee proportional to
the starting price, and time discount, we have analyzed the properties of
extremum points of the starting price for maximizing seller’s expected
revenue, and found that, under certain conditions, the optimal starting
price should be at the lowest allowable level, which is contrary to results
from the classic auction theory and finds its optimality in reality. We
have also developed a general extended model of multistage auction and
carried out analysis on its properties. At last, some directions for further
research are also put forward.

1 Introduction

It’s well known that in an endogenous entry auction, the optimal auction should
be zero reserve combined with optimal entry fee or optimal reserve combined
with zero entry fee. That is they are alternative. In online auctions such as eBay
auctions, seller can’t charge entry fee from potential bidders, so they have to set
optimal reserve to maximize their expected revenue.

In an online auction, seller can set some parameters to feature her auction.
She may activate the Buy-It-Now option, choose among different durations and
payment methods, initiate the starting price at high level or low level and set
hidden reserve price and so on. The most important consideration of a seller
in online auctions is how to set the starting price and hidden reserve price[1].
Because the hidden reserve price is seldom used by sellers in online auction[7][12],
the starting price plays an important role on affecting the result of an auction.
Lower starting price can attract more bidders while having risk in a the higher
possibility of receiving lower final price thus lower expected revenue. On the other
hand, if the starting price is too high, the item will not be auctioned off at all.
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How to trade-off? Is there any optimal starting price for maximizing the seller’s
ex ante expected revenue? Do sellers in online auction have some rationalities
in setting their starting price optimally? The starting price, an alternative of
public reserve price in traditional auction theory, is thus our main attention in
this paper.

As it is well known, the online auction market is different from that of the
traditional auction. Some features have changed the seller’s expected revenue.
The first one is the stochastic entry of bidders, which results in uncertainty
in the number of participants in an online auction. While in the traditional
auction theory, the number of bidders is critical to determine the seller’s expected
revenue. The second one is that in online auctions such as eBay auctions, a seller
needs to pay the insertion fee (roughly proportionally to the starting price) to
initiate her auction. This will affect the seller’s decision making on how high
the starting price should be. The last one is about the depreciation of item’s
valuation due to the duration of an online auction. In the case of products with
a rapid depreciation like consumer electronics, computer equipment and fragile
or perishable goods like flower and food, long auctions can reduce the value of
the product and reduce the seller’s revenue [10]. That is, the time discount factor
is also needed to be considered when formulating the seller’s expected revenue.

We intend to formulate the seller’s expected revenue by considering above
more realistic conditions, so as to analyze the optimal starting price policy the
seller should adopt with the objective of maximizing her expected revenue. In
addition, noting that in practice, online auction markets give sellers opportuni-
ties of re-auctioning their items with very cheap costs, we’ll extend our model
to a multistage auction and call for further research. It should be noted that
all the discussions in this paper is under the IPV (Independent Private Value)
assumption.

This paper is organized as follows. We give out the basic model and discuss
several basic properties of extremum points of starting price for maximizing the
seller’s expected revenue in section 2. Subsequently in section 3, we analyze the
optimality of the starting price in online auctions. The extended model for a
multistage auction is suggested in section 4, and section 5 concludes the paper
and puts forward several directions for further research.

2 Basic Model

We consider a risk-neutral seller who chooses to auction one item on an eBay-like
online auction site. She doesn’t set any hidden reserve price, and initiates her
auction by paying an insertion fees proportional to the starting price r, which
is prescribed by her. we assume this insertion fee rate is c0, the intrinsic value
of the item to the seller is vs with vs ≥ 0, and the number of bidders is fixed
at n. Suppose that bidders have independent private values (assessed at the
end of the auction) to the item being auctioned, and the common cumulative
distribution function (c.d.f.) of a bidder’s valuation is F (v), v ∈ [v, v], which is
twice differentiable. The probability density function (p.d.f.) is f(v).
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Because online auctions, such as eBay auctions, are essentially second-price
auctions in which the bidders’ equilibrium bidding behaviors are the same with
or without ambiguity about the number of bidders [6], we can use the similar
method of [11] to construct the seller’s expected revenue providing there are
fixed n bidders participate:

E(πs, n) = vsF
n(r) + n

∫ v̄

r

(vF ′(v) + F (v) − 1)Fn−1(v)dv − c0r. (1)

The expressions for E(πs, n) is composed of three parts. The first is that when
no bid surpasses the starting price, i.e. the highest valuation of bidders is less
than the starting price, in which case the item doesn’t sell at the auction. The
auction revenue increasing from this outcome is vs and occurs with probability
Fn(r). The second is that the highest bid is at least equal to the starting price,
so the item sells in the auction. This outcome’s contribution to E(πs, n) is

n

∫ v̄

r

(vF ′(v) + F (v) − 1)Fn−1(v)dv

(from Prop.1 of [11]). At last, the seller pays the insertion fee p0 = c0r definitely
to initiate her auction.

In online auctions, bidders can place their bids at any point in the duration.
We assume that the bid or bidder arrivals follow a Poisson process, i.e. the
probability of n bidders participating in the auction is:

pn =
λe−λ

n!
, n = 0, 1, 2, · · · (2)

where λ > 0 is the average number of bidders during the duration of auction.
As discussed above, we consider the effect of duration on item’s valuation

and denote the time discount factor as δ ∈ [0, 1). Therefore, the seller can only
receive vs

1+δ by retaining the item in case of the failed auction.
By further considering the above two assumptions resulting from the charac-

teristics of online auctions, the seller’s expected revenue should be:

E(πs) =
∞∑

n=0

pn[n
∫ v̄

r

(vF ′(v) + F (v) − 1)Fn−1(v)dv +
vs

1 + δ
Fn(r)] − c0r. (3)

To get the extremum point of r for the seller, consider the first-order necessary
optimality condition for E(πs), i.e.:

∂E(πs)
∂r

=
∞�

n=0

pn[n(1 − rf(r) − F (r))F n−1(r) +
nvs

1 + δ
F n−1(r)f(r)]|r=r∗ − c0 = 0.

Combined with equation (2), solving and simplifying it gives:

r∗ =
1 − F (r∗) − c0

λ eλ(1−F (r∗))

f(r∗)
+

vs

1 + δ
. (4)

Following We’ll discuss the properties of the extremum point r∗.
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Lemma 1. Denote

H(v) = f2(v)(2 − c0e
λ(1−F (v))) + f

′
(v)(1 − F (v) − c0

λ
eλ(1−F (v))),

and

M(v) = v −
1 − F (v) − c0

λ eλ(1−F (v))

f(v)
, v ∈ (v, v),

if H(v) ≥ 0, then M(v) increases in v.

Proof. Taking the derivative of M(v) w.r.t. v gives

dM(v)
dv

= 1 −
f2(v)[c0e

λ(1−F (v)) − 1] − f
′
(v)[1 − F (v) − c0

λ eλ(1−F (v))]
f2(v)

=
H(v)
f2(v)

,

that is dM(v)
dv ≥ 0 ⇔ H(v) ≥ 0. ��

Proposition 1. The extremum point r∗ for E(πs) may be unique, non-unique
or non-existent at all.

Proof. By definition, H(v) can be negative or positive. From Lemma 1, dM(v)
dv

has the same signal as that of H(v). So M(v) may be non-monotone in [v, v].
On the other hand, from Equation (4), the extremum point r∗ should satisfy:
M(r∗) = vs

1+δ . So, r∗ may be unique, non-unique or non-existent at all. ��

Consider the boundary points of the interval of r. Because at r = v, no bidders
will participate, the expected revenue can’t be maximized at r = v.

Proposition 2. Fixing λ, δ, vs and c0, the expected revenue E(πs) can achieve
its global maximum at either r∗ or r = v, where r∗ meets the Equation (4).

Theorem 1. If H(v) ≥ 0, v ∈ [v, v], then the expected revenue E(πs) can
achieve its global maximum at r∗, which is determined in Equation (4).

Proof. From equation (4), we have M(r∗) = vs

1+δ . Because H(v) ≥ 0, from

Lemma 1, we know M(v) = v − 1−F (v)− c0
λ eλ(1−F (v))

f(v) is increasing in v. Thus for
v < r < r∗, M(r) ≤ vs

1+δ , i.e. 1− rf(r)−F (r) ≥ − vs

1+δ f(r)+ c0
λ eλ(1−F (r)). Thus,

∂E(πs)
∂r ≥ 0, for v < r < r∗. Similarly, ∂E(πs)

∂r ≤ 0, for r∗ < r < v. Therefore,
E(πs) can achieve its maximum at r∗. ��

Remark 1. Theorem 1 has indicated that if the parameter combinations of c0,
λ and F (·) make H(v) satisfy the strong condition H(v) ≥ 0 within the whole
interval [v, v], then the extremum point r∗ is unique. Furthermore, the seller’s
expected revenue can achieve global maximum at it.

Because the insertion fee rate c0 is fixed at each auction site, following we’ll only
discuss the relations between r∗ and λ, δ. Denote

K(r∗, λ, δ) = r∗ −
1 − F (r∗) − c0

λ eλ(1−F (r∗))

f(r∗)
− vs

1 + δ
= 0.
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Then

dr∗

dλ
= −

∂K
∂r∗

∂K
∂λ

= −
dM
dr∗

c0eλ(1−F (r∗))

f(r∗)λ2 [λ(1 − F (r∗)) − 1]
.

Similarly,

dr∗

dδ
= −

∂K
∂r∗

∂K
∂δ

= −
dM
dr∗
vs

(1+δ)2
.

Intuitively, the higher the discount factor δ is, the lower the starting price
should be, i.e. dr∗

dδ should be less than zero, which requires dM
dr∗ ≥ 0. On the

other hand, because r∗ can’t be too high generally, λ(1 − F (r∗)) − 1 ≥ 0 is
easy to be held. Thus, generally, dr∗

dλ ≤ 0. That is when the average number
of bidders λ reach a certain level (satisfying λ(1 − F (r∗)) − 1 ≥ 0), the larger
expected number of bidders on average, the lower the optimal starting price
should be. This is consistent with the intuition. The more the bidders, the higher
probability the bidders with higher valuation will arrive, resulting in more furious
competition among higher valuator, lower starting price can play an important
role in attracting these high level bidders.

3 Optimal Starting Price

In the traditional auction theory (e.g., [5][9][11]), the optimal starting price r∗

maximizing the seller’s expected revenue should satisfy: r∗ = vs+ 1−F (r∗)
f(r∗) , which

implies r∗ > vs, so there is a positive probability the seller refuses the entry of
bidders with valuations exceeding the valuation to the seller. However, in online
auction market, there are nontrivial percentage of sellers set the starting price at
the lowest allowable level. An obvious discrepancy between theory and practice
motivates us to explore the possibility of setting the starting price equal to the
lowest allowable level other than above the true value to the seller. We open up
our study by an example as follows.

Example 1. Suppose the valuations of bidders are distributed uniformly on unit
interval, i.e. F (v) = v, where v ∈ [0, 1], the discount factor δ = 0.05, insertion
fee rate c0 = 0.03, and true value to the seller vs = 0.2. We derive the condition
under which should seller start the auction from the lowest price, zero. Given the
above assumption, and from Equation (4), the extremum points should satisfy:

0.691 − r∗ =
0.015

λ
eλ(1−r∗). (5)

It’s easy to verify that the right hand side of Equation (5) is increasing in λ
and the left hand side is less than 0.691. So there exists λ∗, when λ ≥ λ∗, no r∗

satisfies Equation (5). That is, the maximum of the expected revenue is achieved
at the starting price r = 0. For this example, the optimal starting price should
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Fig. 1. The expected revenue varied with starting price, (a)λ = 11, (b)λ = 6

be zero for all λ ≥ 11. Figure 1(a) gives the expected revenue varied with the
starting price from 0 to 1.

While, if the average number of bidders λ is less than 11, say at 6, then there
exist two extremum points, one is the global minimum r∗1 = 0.1284 and the other
is the global maximum r∗2 = 0.5603, which are plotted in Figure 1(b).

The implication behind example 1 is very intuitive. In fact, it originates from
the following theorem.

Theorem 2. For fixed c0, F (v), v ∈ [v, v], δ and vs, there exists such threshold
λ∗ that:
(1)for λ < λ∗, there exist one or two extremum points for E(πs);
(2)for λ ≥ λ∗, the maximum of E(πs) is achieved by letting starting price equal
to the lowest allowable level v.

Proof. Define T (v, λ) = − c0
λ eλ(1−F (v))+[1−F (v)−f(v)(v− vs

1+δ )], from Equation
(4) we know that the extremum point of E(πs) must be the root of T (v, λ) = 0,
for fixed λ. On the other hand, according to L’Hospital’s Rule,

lim
λ→∞

−c0

λ
eλ(1−F (v)) = lim

λ→∞
−c0(1 − F (v))eλ(1−F (v)) = −∞;

on the other hand, for fixed c0, F (v), v ∈ [v, v], δ and vs, 1−F (v)−f(v)(v− vs

1+δ )
must be bounded. So there must exist a threshold λ∗, for all λ > λ∗, T (v, λ) < 0,
which induces that T (v, λ) = 0 has no root. That is no available extremum
point determined by equation (4). Because we have excluded the possibility of
maximum point at r = v, it is clear immediately that the expected revenue for
seller must achieve its maximum at the lowest starting price v. This has proved
the second claim.

Similarly, we can easily verify that

lim
λ→0

−c0

λ
eλ(1−F (v)) = −∞

and note ∂T (v,λ)
∂λ = − c0

λ2 eλ(1−F (v))[λ(1−F (v))− 1]. So T (v, λ) is increasing with
λ when λ(1−F (v)) ≤ 1 and decreasing with λ when λ(1−F (v)) > 1. Combined
with the fact that

lim
λ→0

T (v, λ) < 0, lim
λ→∞

T (v, λ) < 0,
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if T (v, λ) crosses the axis from below once, it must cross the axis again from
above; if it just reaches the axis and decreases subsequently, unique root is
found.

At last, we’ll indicate that, for λ < λ∗, there always exist at least one solution
for extremum condition (4). We rearrange it and find that r∗ must satisfy:

eλ(1−F (v)) =
λ

c0
[1 − F (v) − f(v)(v − vs

1 + δ
)]. (6)

For fixed v, denote the left hand side of (6) is A(λ) and the right hand side
is B(λ). For certain λ∗, when λ < λ∗, there exists v ∈ [v, v] that brings A(λ)
crosses B(λ) one or two times. That is the first claim of Theorem 2 comes into
exist. ��
Remark 2. The implication behind Theorem 2 is that the average number of
bidders λ is the critical determinant of optimal starting price. There exists a
threshold λ∗, when λ > λ∗, the optimal starting price should be at the lowest
allowable level. This enlightens the seller to pay more attention on attracting the
participants into her auction, so as to achieve the maximal expected revenue at
the lowest starting price. However, for those less popular items or short auctions,
the optimal starting price should be other than the lowest one.

4 Model Extension

Now we consider the possibility of re-auction. In reality, some sellers prefer higher
final price to higher probability of auctioning off the item. Then they usually
choose very high starting price regardless of possibility of attracting no bidders
at all. Were the item not auctioned off, the seller will re-auction it just after
the end of current auction with same or lower starting price, by paying another
insertion fee. This process will continue until the item is auctioned off or the
seller decides to never auction it again. We describe this auction process as a
multistage auction. Suppose the seller’s belief of the longest stage is m, the c.d.f.
of valuations in each auction is Fi(v), v ∈ [vi, vi], i = 1, 2, · · ·, m, then the seller’s
problem should be:

max
ri,i∈{1,2,···m}

E(π1) (7)

s.t.�����
����

E(π1) =
�∞

n=0 pn[n
� v1

r1
(vF ′

1(v) + F1(v) − 1)F n−1
1 (v)dv + E(π2)

1+δ
F n

1 (r1)] − c0r1

E(π2) =
�∞

n=0 pn[n
� v2

r2
(vF ′

2(v) + F2(v) − 1)F n−1
2 (v)dv + E(π3)

1+δ
F n

2 (r2)] − c0r2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E(πm) =

�∞
n=0 pn[n

� vm

rm
(vF ′

m(v) + Fm(v) − 1)F n−1
m (v)dv + vs

1+δ
F n

m(rm)] − c0rm.

That is the seller should choose a series of optimal starting price r∗i , i ∈
{1, 2, · · ·m} for each stage of auction so as to maximize the total expected rev-
enue E(π1).

How to solve problem (7) is still a challenge. While, from some simple analyses
and numerical study can we get some properties of this extended model.
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Proposition 3. The optimal starting price of current stage, 1) isn’t affected by
that of any previous stage, and 2) affects the previous optimal starting price.

Remark 3. This property is very straightforward: the effect of the optimal start-
ing price of current stage on that of previous stage is through its effect on current
optimal expected revenue because of the expected revenues’ recursion in prob-
lem (7). This proposition enlightens the seller to determine the optimal starting
price series r∗i backward.

Theorem 3. If H(v) (defined in Lemma 1) is larger than zero and assume
Fi(v) = Fj(v) = F (v), v ∈ [v, v], then the optimal starting price series r∗i will be
non-increasing in i, i ∈ {1, 2, · · ·m}.

Proof. According to previous analysis, the extremum point r∗i in each stage
should satisfy:

M(r∗i ) =

{
vs

1+δ , i = m,
E(πi+1)

1+δ , otherwise.

Lemma 1 has shown that if H(v) is lager than zero, then M(v) is increasing in
v. Obviously, E(πm) ≥ vs, which results to r∗m−1 ≥ r∗m. Noting further that the
model also needs E(π1) ≥ E(π2) ≥ · · · ≥ E(πm), for otherwise, the maximum
of E(π1) can’t be achieved (the auction may be continued infinitely). So we get
r∗1 ≥ r∗2 ≥ · · · ≥ r∗m. ��

Remark 4. The result in Theorem 3 may be intuitive. When the seller anticipates
multi-stage of auction, she may set a very high starting price at the first stage
to look for the higher valuator. If she successes, she can get a higher revenue;
otherwise, she can set a lower starting price in the next stage of auction so as
to improve the probability of auctioning off the item. Once she decides the last
opportunity of re-auction (i.e. the stage m), she can set the optimal starting
price according to the discussion in section 3.

Example 2. Recall Example 1 in section 3, and assume m = 4. Considering dif-
ferent level of λ, the optimal starting price and corresponding expected revenue
for each stage are shown in table 1.

Table 1. Optimal starting price and resulted expected revenue for each stage

Stage λ = 4 λ = 6 λ = 11
i r∗

i E(π∗
i ) r∗

i E(π∗
i ) r∗

i E(π∗
i )

4 0.574685 0.581486 0.560260 0.678683 0.000000 0.818205
3 0.767389 0.681668 0.815625 0.757464 0.884778 0.845557
2 0.816800 0.723277 0.854720 0.785441 0.898481 0.853474
1 0.837226 0.743121 0.868517 0.797060 0.902428 0.855996

Increasing rate 45.68% 27.80% 55.02% 17.44% – 4.62%
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From table 1 we can find that:

(1) Both the optimal starting price and corresponding expected revenue are
decreasing in the stage of auction regardless of average number of arrived
bidders. That is, when there is anticipation of re-auction, to maximize her
expected revenue, the seller should set decreasing optimal starting prices,
from higher to lower. In practical online auction market, there is a kind of
seller characterized by following behavior: setting very high starting price
when she auctioned her item first time. Fortunately enough, she can get
excessive profit; if the item is not auctioned off in the first stage, she can
re-auction it with a little lower starting price just after the end of the first
stage. This process continues until she sets a suddenly lower starting price
to maximize the expected revenue of last stage.

(2) The expected revenue is also increasing in the average number of bidders un-
der each stage. This is consistent with the intuition and previous study[8].
This finding implies that attracting bidders as many as possible to partici-
pate the auction is the main source of revenue for the seller.

(3) The multi-stage auction can provide the seller more expected revenue than
just one-shot auction. The difference is just E(π1) − E(πm). As in table
1, all these difference is positive. However, the effect may be weakened as
the average number of arrived bidders λ increases. As in this example, the
increasing rate of expected revenue is the highest 27.80% at λ = 4, then
decreases to 17.44% at λ = 6, finally to the lowest level of only 4.62%
at λ = 11.

(4) The increasing rate of optimal starting price is increasing in λ.

If we consider the “damaged good effect” of re-auction: the bidders generally
regard the re-auctioned items to be damaged and lower their offers[2], then they
will value the item decreasingly as the stages go on. Consequently, Fi(v) should
first order stochastic dominate Fj(v), for every i < j. i.e. Fi(v) < Fj(v), for every
i < j. Under this circumstance, it is further difficult to extract the analytical
solution to problem (7).

5 Conclusion Remark

How to set appropriate starting price may be the most important problem for
sellers in online auctions. In this paper, we make some efforts on this topic. By
considering three features of online auctions—the stochastic entry of bidders
(subject to Poisson process), the insertion fee proportional to the starting price,
and time discount, we have investigated the properties of extremum points of
the starting price for maximizing seller’s expected revenue. Through some exam-
ples and analyses, we found that under certain conditions, the optimal starting
price should be at the lowest allowable level, which is contrary to results from
the classic auction theory and finds its optimality in reality. We have also devel-
oped a general extended model of multistage auction, given out analysis on its
properties, and call for further research on its analytical solution.
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It should be noted that setting the starting price at the lowest allowable level
may be served as a kind of fraud. Kauffman and Wood[4] illustrated the preva-
lence of reserve price shilling, which is motivated by the avoidance of auction
site’s insertion fees. By setting a low starting price, and then secretly bidding
that amount up by pretending to be a bidder, sellers can save money when selling
items in online auction. This behavior should be investigated in further research.

The objectives of sellers in online auctions may not always be maximizing
their expected revenue. For firm who is trying to dump its excess inventory,
seller who clear her attic full of used tools, furniture, toys etc., the goal of using
online auction is just to sell out the items as soon as possible. Many firms have
found that online auctions are also a tool for managing inventory and marketing
new products [3][10]. Under all above circumstances, the sellers are more inclined
to let bidders compete with each other and determine the final price themselves
without imposing any reserve. That is starting the auction from the lowest level
finds its optimality in reality. So empirical study should proceed to investigate
whether items with above characteristics are more likely be auctioned with the
lowest allowable starting price in online auction sites.
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