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Abstract. This paper studies the equilibrium property and algorith-
mic complexity of the exchange market equilibrium problem with more
general utility functions: piece-wise linear functions, which include Leon-
tief’s utility functions. We show that the Fisher model again reduces to
the general analytic center problem, and the same linear programming
complexity bound applies to approximating its equilibrium. However, the
story for the Arrow-Debreu model with Leontief’s utility becomes quite
different. We show that, for the first time, that solving this class of Leon-
tief exchange economies is equivalent to solving a known linear comple-
mentarity problem whose algorithmic complexity status remains open.

1 Introduction

This paper studies the equilibrium property and algorithmic complexity of the
Arrow-Debreu competitive equilibrium problem. In this problem, players go to
the market with initial endowments of commodities and utility functions. They
sell and buy commodities to maximize their individual utilities under a market
clearing price. Arrow and Debreu [1] have proved the existence of equilibrium
prices when utility functions are concave and commodities are divisible. From
then on, finding an efficient algorithm for computing a price equilibrium has
became an attractive research area; see [2, 4, 6, 7, 8, 9, 10, 15, 16, 17, 21, 22, 26].

Consider a special case of the the Arrow-Debreu problem, the Fisher exchange
market model, where players are divided into two sets: producer and consumer.
Consumers have money to buy goods and maximize their individual utility func-
tions; producers sell their goods for money. The price equilibrium is an assign-
ment of prices to goods so that when every consumer buys a maximal bundle of
goods then the market clears, meaning that all the money is spent and all the
goods are sold. Eisenberg and Gale [12, 13] gave a convex optimization setting to
formulate Fisher’s problem with linear utilities. They constructed an aggregated
concave objective function that is maximized at the equilibrium. Thus, finding
an equilibrium became solving a convex optimization problem, and it could be
obtained by using the Ellipsoid method or interior-point algorithms in polyno-
mial time. Here, polynomial time means that one can compute an ε-approximate
equilibrium in a number of arithmetic operations bounded by polynomial in n
and log 1

ε .
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It has turned out that the general Arrow-Debreu problem with linear utilities
is also equivalent to a convex optimization setting (see, e.g., Nenakhov and
Primak [20] and Jain [15]). The best arithmetic operation bound for solving the
Arrow-Debreu problem with linear utilities is O(n4 log 1

ε ); see [26]. Moreover, if
the input data are rational, then an exact solution can be obtained by solving
a system of linear equations and inequalities when ε < 2−L, where L is the bit
length of the input data. Thus, the arithmetic operation bound becomes O(n4L),
which is in line with the best complexity bound for linear programming of the
same dimension and size.

In this paper we deal more general utility functions: piece-wise linear func-
tions, which include Leontief’s utility functions. We show that the Fisher model
again reduces to the general analytic center model discussed in [26]. Thus, the
same linear programming complexity bound applies to approximating the Fisher
equilibrium with these utilities. We also show that the solution to a (pairing) class
of Arrow-Debreu problems with Leontief’s utility can be decomposed to solutions
of two systems of linear equalities and inequalities, and the price vector is the
Perron-Frobenius eigen-vector of a scaled Leontief utility matrix. Consequently,
if all input data are rational, then there always exists a rational Arrow-Debreu
equilibrium, that is, the entries of the equilibrium vector are rational numbers.
Additionally, the size (bit-length) of the equilibrium solution is bounded by the
size of the input data. This result is interesting since rationality does not hold
for Leontief’s utility in general. Perhaps more importantly, it also implies, for
the first time, that solving this class of Leontief’s exchange market problems is
equivalent to solving a known linear complementarity problem where its algo-
rithmic complexity status remains open.

2 The Fisher Equilibrium Problem

Without loss of generality, assume that there is 1 unit good from each producer
j ∈ P with |P | = n. Let consumer i ∈ C (with |C| = m) has an initial endowment
wi to spend and buy goods to maximize his or her individual linear substitution
utility:

ui(xi) = min
k

{uk
i (xi)}, (1)

where uk
i (xi) is a linear function in xij—the amount of good bought from pro-

ducer j by consumer i, j = 1, ..., n. More precisely,

uk
i (xi) = (uk

i )T xi =
∑

j∈P

uk
ijxij .

In particular, the Leontief utility function is the one with

uk
i (xi) =

xik

aik
, k = j ∈ P

for a given aik > 0, that is, vector uk
i is an all zero vector except for the kth

entry that equals 1/aik.
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We make the following assumptions: Every consumer’s initial money endow-
ment wi > 0, at least one uk

ij > 0 for every k and i ∈ C and at least one uk
ij > 0

for every k and j ∈ P . This is to say that every consumer in the market has
money to spend and he or she likes at least one good; and every good is val-
ued by at least one consumer. We will see that, with these assumptions, each
consumer can have a positive utility value at equilibria. If a consumer has zero
budget or his or her utility has zero value for every good, then buying nothing
is an optimal solution for him or her so that he or she can be removed from the
market; if a good has zero value to every consumer, then it is a “free” good with
zero price in a price equilibrium and can be arbitrarily distributed among the
consumers so that it can be removed from the market too.

For given prices pj on good j, consumer i’s maximization problem is

maximize ui(xi1, ..., xin)
subject to

∑
j∈P pjxij ≤ wi,

xij ≥ 0, ∀j.
(2)

Let x∗
i denote a maximal solution vector of (2). Then, vector p is called a Fisher

price equilibrium if there is x∗
i for each consumer such that

∑

i∈C

x∗
i = e

where e is the vector of all ones representing available goods on the exchange
market.

Problem (2) can be rewritten as an linear program, after introducing a scalar
variable ui, as

maximize ui

subject to
∑

j∈P pjxij ≤ wi,

ui −
∑

j∈P uk
ijxij ≤ 0, ∀k,

ui, xij ≥ 0, ∀j.

(3)

Besides (ui, xi) being feasible, the optimality conditions of (3) are

λipj −
∑

k πk
i uk

ij ≥ 0, ∀j ∈ P∑
k πk

i = 1
λiwi = ui.

(4)

for some λi, πk
i ≥ 0.

It has been shown by Eisenberg and Gale [12, 11, 13] (independently later by
Codenotti et al. [3]) that a Fisher price equilibrium is an optimal Largrange
multiplier vector of an aggregated convex optimization problem:

maximize
∑

i∈C wi log ui

subject to
∑

i∈C xij = 1, ∀j ∈ P,
ui −

∑
j∈P uk

ijxij ≤ 0, ∀k, i ∈ C,

ui, xij ≥ 0, ∀i, j.

(5)
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Conversely, an optimal Largrange multiplier vector is also a Fisher price equi-
librium, which can be seen from the optimality conditions of (5):

pj −
∑

k πk
i uk

ij ≥ 0, ∀i, j
πk

i (
∑

j∈P uk
ijxij − ui) = 0, ∀i, k

xij(pj −
∑

k πk
i uk

ij) = 0, ∀i, j
ui

∑
k πk

i = wi, ∀i.

(6)

for some pj , the Largarange multiplier of equality constraint of j ∈ P , and
some πk

i ≥ 0, the Largarange multiplier of inequality constraint of i ∈ C and k.
Summing the second constraint over k we have

wi =
∑

k

πk
i ui =

∑

k

πk
i

∑

j∈P

uk
ijxij =

∑

j∈P

(
xij

∑

k

πk
i uk

ij

)
, ∀i;

then summing the third constraint over j we have

∑

j∈P

pjxij =
∑

j∈P

(
xij

∑

k

πk
i uk

ij

)
= wi.

This implies that xi from the aggregate problem is feasible for (3). Moreover,
note that πk

i in (6) equals πk
i /λi in (4). Thus, finding a Fisher price equilibrium

is equivalent to finding an optimal Largrange multiplier of (5).
In particular, if each uk

i (xi) has the Leontief utility form, i.e.,

uk
i (xi) =

xik

aik
, ∀k = j ∈ P

for a given aik > 0. Then, upon using ui to replace variable xij , the aggregated
convex optimization problem can be simplified to

maximize
∑

i wi log ui

subject to AT u ≤ e,
u ≥ 0;

(7)

where the Leontief matrix

A =

⎛

⎜⎜⎝

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn

⎞

⎟⎟⎠ and variable vector u =

⎛

⎜⎜⎝

u1
u2
...
um

⎞

⎟⎟⎠ . (8)

3 The Weighted Analytic Center Problem

In [26] the Eisenberg-Gale aggregated problem was related to the (linear) ana-
lytic center problem studied in interior-point algorithms

maximize
∑n

j=1 wj log(xj) (9)
subject to Ax = b,

x ≥ 0,
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where the given A is an m × n-dimensional matrix with full row rank, b is an
m-dimensional vector, and wj is the nonnegative weight on the jth variable.
Any x who satisfies the constraints is called a primal feasible solution, while any
optimal solution to the problem is called a weighted analytic center.

If the weighted analytic center problem has an optimal solution, the optimality
conditions are

Sx = w,
Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0,
(10)

where y and s are the Largrange or KKT multipliers or dual variable and slacks
of the dual linear program:

min bT y subject to s = AT y ≥ 0,

and S is the diagonal matrix with slack vector s on its diagonals.
Let the feasible set of (9) be bounded and has a (relative) interior, i.e., has

a strictly feasible point x > 0 with Ax = b (clearly holds for problem (5) and
(7)). Then, there is a strictly feasible dual solution s > 0 with s = AT y for some
y. Furthermore, [26], based on the literature of interior-point algorithms (e.g.,
Megiddo and Kojima et al. [19, 18] and Güler [14]), has shown that

Theorem 1. Let A, b be fixed and consider a solution (x(w), y(w), s(w)) of (10)
as a mapping of w ≥ 0 with

∑
j wj = 1. Then,

– The mapping of Sn
++ = {x > 0 ∈ Rn : eT x = 1} to F++ = {(x > 0, y, s >

0) : Ax = b, s = AT y} is one-to-one, continuously and differentiable.
– The mapping of Sn

+ = {x ≥ 0 ∈ Rn : eT x = 1} to F+ = {(x ≥ 0, y, s ≥ 0) :
Ax = b, s = AT y} is upper semi-continuous.

– The pair (xj(w), sj(w)) is unique for any j ∈ W = {j : wj > 0}, and

x′
j(w)s′′j (w) = x′′

j (w)s′j(w) = 0, ∀j �∈ W

and for any two solutions (x′(w), y′(w), s′(w)) and (x′′(w), y′′(w), s′′(w)) of
(10).

From this theorem, we see that, in the Fisher equilibrium problem (5) or (7),
ui(w), the utility value of each consumer, is unique; but the price vector p(w)
can be non-unique.

In addition, a modified primal-dual path-following algorithm was developed
in [26], for computing an ε-solution for any ε > 0:

‖Sx − w‖ ≤ ε,
Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.
(11)

Theorem 2. The primal-dual interior-point algorithm solves the weight ana-
lytic center problem (9) in O(

√
n log(n max(w)/ε)) iterations and each iteration

solves a system of linear equations in O(nm2+m3) arithmetic operations. If Kar-
markar’s rank-one update technique is used, the average arithmetic operations
per iteration can be reduced to O(n1.5m).
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A rounding algorithm is also developed for certain types of problems possessing
a rational solution, and the total iteration bound would be O(

√
nL) and the

average arithmetic operation bound would be O(n1.5m) per iteration, where
L is the bit-length of the input data A, b, w. These results indicate, for the
first time, that the complexity of the Fisher equilibrium problem with linear
substitution utility functions is completely in line with linear programming of
the same dimension and size.

4 The Arrow-Debreu Equilibrium Problem

The Arrow-Debreu exchange market equilibrium problem which was first formu-
lated by Leon Walras in 1874 [24]. In this problem everyone in a population of
m players has an initial endowment of a divisible good and a utility function for
consuming all goods—their own and others. Every player sells the entire initial
endowment and then uses the revenue to buy a bundle of goods such that his or
her utility function is maximized. Walras asked whether prices could be set for
everyone’s good such that this is possible. An answer was given by Arrow and
Debreu in 1954 [1] who showed that such equilibrium would exist if the utility
functions were concave.

We consider a special class of Arrow-Debreu’s problems, where each of the
m = n players have exactly one unit of a divisible good for trade (e.g., see
[15, 26]), and let player i, i = 1, ..., m, bring good j = i and have the linear
substitution utility function of (1). We call this class of problems the pairing
class. The main difference between Fisher’s and Arrow-Debreu’ models is that, in
the latter, each player is both producer and consumer and the initial endowment
wi of player i is not given and will be the price assigned to his or her good i.
Nevertheless, we can still write a (parametric) convex optimization model

maximize
∑

i wi log ui

subject to
∑

i xij = 1, ∀j,
ui ≤

∑
j uk

ijxij , ∀i, k,

ui, xij ≥ 0, ∀i, j,

where we wish to select weights wi’s such that an optimal Largrange multiplier
vector p equals w. It is easily seen that any optimal Largrange multiplier vector
p satisfies

p ≥ 0 and eT p = eT w.

For fixed uk
ij , consider p be a map from w. Then, the mapping is from Sn

+ to
Sn

+, and the mapping is upper semi-continuous from Theorem 1. Thus, there is
a w ∈ Sn

+ such that an Largrange multiplier vector p(w) = w from the Kakutani
fixed-point theorem (see, e.g., [22, 23, 25]). This may be seen as an alternative, re-
stricted to the case of the linear substitution utility functions, to Arrow-Debreu’s
general proof of the existence of equilibria.

We now focus on the Arrow-Debreu equilibrium with the (complete) Leontief
utility function:

uk
i (xi) =

xik

aik
, ∀k = j = 1, ..., m



20 Y. Ye

for a given aik > 0. Recall the parametric convex optimization model (7) where
the Leontief matrix A of (8) is a m × m positive matrix. Let p ∈ Rm be an
optimal Largrange multiplier vector of the constraints. Then, we have

ui

∑
j aijpj = wi ∀i, and pj(1 −

∑
i aijui) = 0 ∀j,∑

i aijui ≤ 1 ∀j, and ui, pj ≥ 0 ∀i, j.

Thus, the Arrow-Debreu equilibrium p ∈ Rm, together with u ∈ Rm, satisfy

UAp = p,
P (e − AT u) = 0,

AT u ≤ e,
u, p ≥ 0,

(12)

where U and P are diagonal matrices whose diagonal entries are u and p, re-
spectively. The Arrow-Debreu theorem implies that nonzero p and u exist for
this system of equalities and inequalities, even in general case where A ≥ 0, that
is, some aik = 0 in the Leontief matrix.

5 Characterization of an Arrow-Debreu Equilibrium

If ui > 0 at a solution (u, p �= 0) of system (12), we must have pi > 0, that is,
player i’s good must be priced positively in order to have a positive utility value.
On the other hand, pi > 0 implies that

∑m
k akiuk = 1, that is, good i must

be all consumed and gone. Conversely, if pi > 0, we must have ui > 0, that is,
player i’s utility value must be positive. Thus, there is a partition of all players
(or goods) such that

B = {i : pi > 0} and N = {i : pi = 0}

where the union of B and N is {1, 2, ..., m}. Then, (u, p) satisfies

(UBABB)pB = pB,
AT

BBuB = e,
AT

BNuB ≤ e,
uB, pB > 0.

Here ABB is the principal submatrix of A corresponding to the index set B,
ABN is the submatrix of A whose rows in B and columns in N . Similarly, uB

and pB are subvectors of u and p with entries in B, respectively.
Since the scaled Leontief matrix UBABB is a (column) stochastic matrix

(i.e., eT UBABB = eT ), pB must be the (right) Perron-Frobenius eigen-vector
of UBABB . Moreover, ABB is irreducible because UBABB is irreducible and
uB > 0, and UBABB is irreducible because pB > 0. To summarize, we have

Theorem 3. Let B ⊂ {1, 2, ..., n}, N = {1, 2, ..., n} \ B, ABB be irreducible,
and uB satisfy the linear system

AT
BBuB = e, AT

BNuB ≤ e, and uB > 0.
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Then the (right) Perron-Frobenius eigen-vector pB of UBABB together with
pN = 0 will be an Arrow-Debreu equilibrium. And the converse is also true.
Moreover, there is always a rational Arrow-Debreu equilibrium for every such
B, that is, the entries of price vector are rational numbers, if the entries of A
are rational. Furthermore, the size (bit-length) of the equilibrium is bounded by
the size of A.

Our theorem implies that the players in block B can trade among them self
and keep others goods “free.” In particular, if one player likes his or her own
good more than any other good, that is, aii ≥ aij for all j. Then, ui = 1/aii,
pi = 1, and uj = pj = 0 for all j �= i, that is, B = {i}, makes an Arrow-Debreu
equilibrium. The theorem thus establishes, for the first time, a combinatorial
algorithm to compute an Arrow-Debreu equilibrium with Leontief’s utility by
finding a right block B �= ∅, which is actually a non-trivial complementarity
solution to a linear complementarity problem (LCP)

AT u + v = e, uT v = 0, 0 �= u, v ≥ 0; (13)

see, e.g., [5] for more references on LCP. If A > 0, then any complementarity
solution u �= 0 and B = {j : uj > 0} of (13) induce an equilibrium that is
the (right) Perron-Frobenius eigen-vector of UBABB, and it can be computed in
polynomial time by solving a linear equation. If A is not strictly positive, then
any complementarity solution u �= 0 and B = {j : uj > 0}, as long as ABB is
irreducible, induces an equilibrium. The equivalence between the pairing Arrow-
Debreu model and the LCP also implies that LCP (13) always has a comple-
mentarity solution u �= 0 such that ABB is irreducible where B = {j : uj > 0}.

The pairing class of Arrow-Debreu’s problems is a rather restrictive class of
problems. Consider a general supply matrix 0 ≤ G ∈ Rm×n where row i of G
represents the multiple goods brought to the market by player i, i = 1, ..., m.
The pairing model represents the case that G = I, the identity matrix, or G = P
where P is any permutation matrix of m × m.

What to do if one player brings two different goods? One solution is to copy
the same player’s utility function twice and treat the player as two players with
an identical Leontief utility function, where each of them brings only one type
of good. Then, the problem reduces to the pairing model. Thus, we have

Corollary 1. If all goods are different from each other in the general Arrow-
Debreu problem with Leontief ’s utility, i.e., each column of G ∈ Rm×n has ex-
actly one positive entry, then there is always a rational equilibrium, that is, the
entries of a price vector are rational numbers.

Now what to do if two players bring the same type of good? In our present
pairing class, they will be treated as two different goods, and one can set the
same utility coefficients to them so that they receive an identical appreciation
from all the players. Again, the problem reduces to the pairing class, which leads
to rationality. The difference is that now these two “same” goods may receive two
different prices; for example, one is priced higher and the other is at a discount
level. I guess this could happen in the real world since two “same” goods may
not be really the same and the market does have “freedom” to price them.
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6 An Illustrative Example

The rationality result is interesting since the existence of a rational equilibrium
is not true for Leontief’s utility in Fisher’s model with rational data, see the
following example converted in Arrow-Debreu’s setting, with three consumers
each of whom has 1 unit money (the first good) and two other goods (the second
and third) brought by a seller (the fourth player) who is only interested in money,
adapted from Codenotti et al. [3] and Eaves [9].

A =

⎛

⎜⎜⎝

0 1 1
2

0 1
2 1

0 1
4

1
5

1 0 0

⎞

⎟⎟⎠ and G =

⎛

⎜⎜⎝

1 0 0
1 0 0
1 0 0
0 1 1

⎞

⎟⎟⎠ .

There is a unique equilibrium for this example, where the utility values of the
three consumers are u∗

1 = 2
3
√

3
, u∗

2 = 1
3 + 1

3
√

3
, u∗

3 = 10
3 − 10

3
√

3
, and the utility

value of the seller u∗
4 = 3. The equilibrium price for good 1 (money) is p∗1 = 1,

and for other two goods are p∗2 = 3(
√

3 − 1), and p∗3 = 3(2 −
√

3).
However, if we treat the money from each consumer differently, that is, let

A =

⎛

⎜⎜⎝

0 0 0 1 1
2

0 0 0 1
2 1

0 0 0 1
4

1
5

1 1 1 0 0

⎞

⎟⎟⎠ and G =

⎛

⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

⎞

⎟⎟⎠ .

Then, there are multiple rational equilibria and here are a few:

1. B = {1, 4}, with u∗
1 = u∗

4 = 1 and p∗1 = p∗4 = 1, and u∗
2 = u∗

3 = p∗2 = p∗3 =
p∗5 = 0;

2. B = {2, 5}, with u∗
2 = u∗

4 = 1 and p∗2 = p∗5 = 1, and u∗
1 = u∗

3 = p∗1 = p∗3 =
p∗4 = 0;

3. B = {3, 4}, with u∗
3 = 4 and u∗

4 = 1 and p∗3 = p∗4 = 1, and u∗
1 = u∗

2 = p∗1 =
p∗2 = p∗5 = 0;

4. B = {1, 2, 3, 4, 5}, with an equilibrium u∗
1 = 11

30 , u∗
2 = 31

60 , u∗
3 = 3

2 , u∗
4 = 1,

p∗1 = 66
80 , p∗2 = 93

80 , p∗3 = 81
80 and p∗4 = p∗5 = 3

2 , .
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