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Abstract. A Bayesian communication in the p-belief system is presented
which leads to a Nash equilibrium of a strategic form game through mes-
sages as a Bayesian updating process. In the communication process each
player predicts the other players’ actions under his/her private informa-
tion with probability at least his/her belief. The players communicate pri-
vately their conjectures through message according to the communication
graph, where each player receiving the message learns and revises his/her
conjecture. The emphasis is on that both any topological assumptions on
the communication graph and any common-knowledge assumptions on
the structure of communication are not required.
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1 Introduction

This article relates equilibria and distributed knowledge. In game theoretical
situations among a group of players, the concept of mixed strategy Nash equi-
librium has become central. Yet little is known the process by which players
learn if they do. This article will give a protocol run by the mutual learning of
their beliefs of players’ actions, and it highlights an epistemic aspect of Bayesian
updating process leading to a mixed strategy Nash equilibrium for a strategic
form game.

As for as J.F. Nash [7]’s fundamental notion of strategic equilibrium is con-
cerned, R.J. Aumann and A. Brandenburger [1] gives epistemic conditions for
� This paper is submitted for possible presentation in WINE 2005, 15-17 December

2005, Hong Kong, China.

X. Deng and Y. Ye (Eds.): WINE 2005, LNCS 3828, pp. 299–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



300 T. Matsuhisa and P. Strokan

mixed strategy Nash equilibrium: They show that the common-knowledge of the
predictions of the players having the partition information (that is, equivalently,
the S5-knowledge model) yields a Nash equilibrium of a game. However it is
not clear just what learning process leads to the equilibrium. The present article
aims to fill this gap from epistemic point of view.

Our real concern is with what Bayesian learning process leads to a mixed
strategy Nash equilibrium of a finite strategic form game with emphasis on
the epistemic point of view. We focus on the Bayesian belief revision through
communication among group of players. We show that

Main theorem. Suppose that the players in a strategic form game have the
p-belief system with a common prior distribution. In a communication process
of the game according to a protocol with revisions of their beliefs about the other
players’ actions, the profile of their future predictions induces a mixed strategy
Nash equilibrium of the game in the long run.

Let us consider the following protocol: The players start with the same prior
distribution on a state-space. In addition they have private information given
by a partition of the state space. Beliefs of players are posterior probabilities: A
player p-believes ( simply, believes) an event with 0 < p ≤ 1 if the posterior prob-
ability of the event given his/her information is at least p. Each player predicts
the other players’ actions as his/her belief of the actions. He/she communicates
privately their beliefs about the other players’ actions through messages, and
the receivers update their belief according to the messages. Precisely, the play-
ers are assumed to be rational and maximizing their expected utility according
their beliefs at every stage. Each player communicates privately his/her belief
about the others’ actions as messages according to a protocol,1 and the receivers
update their private information and revise their belief.

The main theorem says that the players’ predictions regarding the future beliefs
converge in the long run, which lead to a mixed strategy Nash equilibrium of a
game. The emphasis is on the two points: First that each player’s prediction is not
required to be common-knowledge among all players, and secondly that eachplayer
send to the another player not the exact information about his/her belief about the
actions for the other players but the approximate information about the the other
players’ actions with probability at lest his/her belief of the others’ actions.

This paper organized as follows: In section 2 we give the formal model of the
Bayesian communication on a game. Section 3 states explicitly our theorem and
gives a sketch of the proof. In final section 4 we conclude some remarks. We
are planning to present a small example to illustrate the theorem in our lecture
presentation in the conference WINE 2005.

2 The Model

Let Ω be a non-empty finite set called a state-space, N a set of finitely many
players {1, 2, . . . n} at least two (n ≥ 2), and let 2Ω be the family of all subsets
1 When a player communicates with another, the other players are not informed about

the contents of the message.
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of Ω. Each member of 2Ω is called an event and each element of Ω called a
state. Let µ be a probability measure on Ω which is common for all players.
For simplicity it is assumed that (Ω, µ) is a finite probability space with µ full
support.2

2.1 p-Belief System3

Let p be a real number with 0 < p ≤ 1. The p-belief system associated with the
partition information structure (Πi)i∈N is the tuple 〈N, Ω, µ, (Πi)i∈N ,
(Bi(∗, p))i∈N 〉 consisting of the following structures and interpretations: (Ω, µ)
is a finite probability space, and i’s p-belief operator Bi(∗; p) is the opera-
tor on 2Ω such that Bi(E, p) is the set of states of Ω in which i p-believes
that E has occurred with probability at least p ; that is, Bi(E; p) := {ω ∈
Ω | µ(E | Πi(ω)) ≥ p }.

Remark 1. When p = 1 the 1-belief operator Bi(∗; 1) becomes knowledge
operator.

2.2 Game on p-Belief System4

By a game G we mean a finite strategic form game 〈N, (Ai)i∈N , (gi)i∈N 〉 with the
following structure and interpretations:N is a finite set of players {1, 2, . . . , i, . . . n}
with n ≥ 2, Ai is a finite set of i’s actions (or i’s pure strategies) and gi is an i’s
payoff function of A into IR, where A denotes the product A1 ×A2 ×· · ·×An, A−i

the product A1 × A2 × · · · × Ai−1 × Ai+1 × · · · × An. We denote by g the n-tuple
(g1, g2, . . . gn) and by a−i the (n − 1)-tuple (a1, . . . , ai−1, ai+1, . . . , an) for a of A.
Furthermore we denote a−I = (ai)i∈N\I for each I ⊂ N .

A probability distribution φi on A−i is said to be i’s overall conjecture (or
simply i’s conjecture). For each player j other than i, this induces the marginal
distribution on j’s actions; we call it i’s individual conjecture about j (or simply
i’s conjecture about j.) Functions on Ω are viewed like random variables in the
probability space (Ω, µ). If x is a such function and x is a value of it, we denote
by [x = x] (or simply by [x]) the set {ω ∈ Ω|x(ω) = x}.

The information structure (Πi) with a common prior µ yields the distribution
on A × Ω defined by qi(a, ω) = µ([a = a]|Πi(ω)); and the i’s overall conjecture
defined by the marginal distribution qi(a−i, ω) = µ([a−i = a−i]|Πi(ω)) which
is viewed as a random variable of φi. We denote by [qi = φi] the intersection⋂

a−i∈A−i
[qi(a−i) = φi(a−i)] and denote by [φ] the intersection

⋂
i∈N [qi = φi].

Let gi be a random variable of i’s payoff function gi and ai a random variable of
an i’s action ai. Where we assume that Πi(ω) ⊆ [ai] := [ai = ai] for all ω ∈ [ai]
and for every ai of Ai. i’s action ai is said to be actual at a state ω if ω ∈ [ai = ai];
and the profile aI is said to be actually played at ω if ω ∈ [aI = aI ] :=

⋂
i∈I [ai =

ai] for I ⊂ N . The pay off functions g = (g1, g2, . . . , gn) is said to be actually

2 That is; µ(ω) �= 0 for every ω ∈ Ω.
3 Monderer and Samet [6].
4 Aumann and Brandenburger [1].
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played at a state ω if ω ∈ [g = g] :=
⋂

i∈N [gi = gi]. Let Exp denote the
expectation defined by Exp(gi(bi, a−i); ω) :=

∑

a−i∈A−i

gi(bi, a−i) qi(a−i, ω).

A player i is said to be rational at ω if each i’s actual action ai maximizes
the expectation of his actually played pay off function gi at ω when the other
players actions are distributed according to his conjecture qi(· ; ω). Formally,
letting gi = gi(ω) and ai = ai(ω), Exp(gi(ai, a−i); ω) ≥ Exp(gi(bi,a−i); ω) for
every bi in Ai. Let Ri denote the set of all of the states at which i is rational.

2.3 Protocol 5

We assume that the players communicate by sending messages. Let T be the time
horizontal line {0, 1, 2, · · · t, · · ·}. A protocol is a mapping Pr : T → N × N, t 
→
(s(t), r(t)) such that s(t) �= r(t). Here t stands for time and s(t) and r(t) are,
respectively, the sender and the receiver of the communication which takes place
at time t. We consider the protocol as the directed graph whose vertices are the
set of all players N and such that there is an edge (or an arc) from i to j if and
only if there are infinitely many t such that s(t) = i and r(t) = j.

A protocol is said to be fair if the graph is strongly-connected; in words,
every player in this protocol communicates directly or indirectly with every
other player infinitely often. It is said to contain a cycle if there are players
i1, i2, . . . , ik with k ≥ 3 such that for all m < k, im communicates directly with
im+1, and such that ik communicates directly with i1. The communications is
assumed to proceed in rounds6

2.4 Communication on p-Belief System

A Bayesian belief communication process π(G) with revisions of players’ conjec-
tures (φt

i)(i,t)∈N×T according to a protocol for a game G is a tuple

π(G) = 〈Pr, (Πt
i )i∈N , (Bt

i )i∈N , (φt
i)(i,t)∈N×T 〉

with the following structures: the players have a common prior µ on Ω, the
protocol Pr among N , Pr(t) = (s(t), r(t)), is fair and it satisfies the conditions
that r(t) = s(t + 1) for every t and that the communications proceed in rounds.
The revised information structure Πt

i at time t is the mapping of Ω into 2Ω for
player i. If i = s(t) is a sender at t, the message sent by i to j = r(t) is M t

i . An
n-tuple (φt

i)i∈N is a revision process of individual conjectures. These structures
are inductively defined as follows:

– Set Π0
i (ω) = Πi(ω).

– Assume that Πt
i is defined. It yields the distribution qt

i(a, ω) = µ([a =
a]|Πt

i (ω)). Whence

5 C.f.: Parikh and Krasucki [8].
6 There exists a time m such that for all t, Pr(t) = Pr(t + m). The period of the

protocol is the minimal number of all m such that for every t, Pr(t + m) = Pr(t).
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• Rt
i denotes the set of all the state ω at which i is rational according to

his conjecture qt
i(· ; ω); that is, each i’s actual action ai maximizes the

expectation of his pay off function gi being actually played at ω when the
other players actions are distributed according to his conjecture qt

i(· ; ω)
at time t.7

• The message M t
i : Ω → 2Ω sent by the sender i at time t is defined by

M t
i (ω) =

⋂

a−i∈A−i

Bt
i([a−i];qt

i(a−i, ω)),

where Bt
i : 2Ω → 2Ω is defined by

Bt
i (E; p) = {ω ∈ Ω | µ(E | Πt

i (ω)) ≥ p }.

Then:
– The revised partition Πt+1

i at time t + 1 is defined as follows:
• Πt+1

i (ω) = Πt
i (ω) ∩ M t

s(t)(ω) if i = r(t);

• Πt+1
i (ω) = Πt

i (ω) otherwise,
– The revision process (φt

i)(i,t)∈N×T of conjectures is inductively defined as
follows:

• Let ω0 ∈ Ω, and set φ0
s(0)(a−s(0)) := q0

s(0)(a−s(0), ω0)
• Take ω1 ∈ M0

s(0)(ω0) ∩ Br(0)([gs(0)] ∩ R0
s(0); p),8 and set φ1

s(1)(a−s(1)) :=
q1

s(1)(a−s(1), ω1)

• Take ωt+1 ∈M t
s(t)(ωt)∩Br(t)([gs(t)]∩Rt

s(t); p), and set φt+1
s(t+1)(a−s(t+1)) :=

qt+1
i (a−s(t+1), ωt+1).

The specification is that a sender s(t) at time t informs the receiver r(t) his/her
individual conjecture about the other players’ actions with a probability greater
than his/her belief. The receiver revises her/his information structure under the
information. She/he predicts the other players action at the state where the
player p-believes that the sender s(t) is rational, and she/he informs her/his the
predictions to the other player r(t + 1).

We denote by ∞ a sufficient large τ such that for all ω ∈ Ω, qτ
i (· ; ω) =

qτ+1
i (· ; ω) = qτ+2

i (· ; ω) = · · ·. Hence we can write qτ
i by q∞

i and φτ
i by φ∞

i .

Remark 2. The Bayesian belief communication is a modification of the commu-
nication model introduced by Ishikawa [3].

7 Formally, letting gi = gi(ω), ai = ai(ω), the expectation at time t, Expt, is de-
fined by Expt(gi(ai,a−i); ω) :=

�

a−i∈A−i

gi(ai, a−i) qt
i(a−i, ω). An player i is

said to be rational according to his conjecture qt
i(· , ω) at ω if for all bi in Ai,

Expt(gi(ai,a−i); ω) ≥ Expt(gi(bi,a−i); ω).
8 We denote [gi] := [gi = gi].
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3 The Result

We can now state the main theorem:

Theorem 1. Suppose that the players in a strategic form game G have the p-
belief system with µ a common prior. In the Bayesian belief communication
process π(G) according to a protocol among all players in the game with revisions
of their conjectures (φt

i)(i,t)∈N×T there exists a time ∞ such that for each t ≥ ∞,
the n-tuple (φt

i)i∈N induces a mixed strategy Nash equilibrium of the game.

The proof is based on the below proposition:

Proposition 1. Suppose that the players in a strategic form game have the
p-belief system with µ a common prior. In the Bayesian belief communication
process π(G) in a game G with revisions of their conjectures, if the protocol
has no cycle then both the conjectures q∞

i and q∞
j on A × Ω must coincide;

that is, q∞
i (a; ω∞) = q∞

j (a; ω∞+t) for (i, j) = (s(∞), s(∞ + t)) and for any
t = 1, 2, 3, · · ·.

Proof. Let us first consider the case that (i, j) = (s(∞), r(∞)). In view of the
construction of {Πt

i }t∈T we can observe that

Π∞
j (ξ) ⊆ W∞

i (ω) for all ξ ∈ W∞
i (ω). (1)

It immediately follows that W∞
i (ω) is decomposed into a disjoint union of com-

ponents Π∞
j (ξ) for ξ ∈ Π∞

i (ω);

W∞
i (ω) =

⋃

k=1,2,...,m

Π∞
j (ξk) where ξk ∈ W∞

i (ω). (2)

It can be observed that

µ([a = a]| W∞
i (ω)) =

m∑

k=1

λkµ([a = a]| Π∞
j (ξk)) (3)

for some λk > 0 with
∑m

k=1 λk = 1.9 Since Πi(ω) ⊆ [ai] for all ω ∈ [ai], we
can observe that q∞

i (a−i; ω) = q∞
i (a; ω). On noting that W∞

i (ω) is decomposed
into a disjoint union of components Π∞

i (ξ) for ξ ∈ Π∞
i (ω), we can obtain

q∞
i (a; ω) = µ([a = a]| W∞

i (ω)) = µ([a = a]| Π∞
i (ξk)) for any ξk ∈ W∞

i (ω). It
follows by (3) that, for each ω ∈ Ω there exists a state ξω ∈ Π∞

i (ω) such that
q∞

i (a; ω) ≤ q∞
j (a; ξω) for (i, j) = (s(∞), t(∞)).

On continuing this process according to the fair protocol, the below facts can
be plainly verified: For each ω ∈ Ω and for sufficient large τ ≥ 1,

1. For any t ≥ 1, q∞
s(∞)(a; ω) ≤ q∞

s(∞+t)(a; ξt) for some ξt ∈ Ω; and
2. q∞

i (a; ω) ≤ q∞
i (a; ξ) ≤ q∞

i (a; ζ) ≤ · · · for some ξ, ζ, · · · ∈ Ω.

Since Ω is finite it can be obtained that q∞
i (a; ω∞) = q∞

j (a; ω∞+t) for (i, j) =
(s(∞), s(∞ + t)) for every a, in completing the proof.
9 This property is called the convexity for the conditional probability µ(X|∗) in Parikh

and Krasucki [8].
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Proof of Theorem 1: We denote by Γ (i) the set of all the players who directly
receive the message from i on N ; i.e., Γ (i) = { j ∈ N | (i, j) = Pr(t) for some t ∈
T }. Let Fi denote [φ∞

i ] :=
⋂

a−i∈Ai
[q∞

i (a−i; ∗) = φ∞
i (a−i)]. It is noted that

Fi ∩ Fj �= ∅ for each i ∈ N , j ∈ Γ (i).
We observe the first point that for each i ∈ N , j ∈ Γ (i) and for every a ∈ A,

µ([a−j = a−j ] | Fi∩Fj) = φ∞
j (a−j). Then summing over a−i, we can observe that

µ([ai = ai] | Fi ∩ Fj) = φ∞
j (ai) for any a ∈ A. In view of Proposition 1 it can

be observed that φ∞
j (ai) = φ∞

k (ai) for each j, k, �= i; i.e., φ∞
j (ai) is independent

of the choices of every j ∈ N other than i. We set the probability distribution
σi on Ai by σi(ai) := φ∞

j (ai), and set the profile σ = (σi).
We observe the second point that for every a ∈

∏
i∈N Supp(σi), φ∞

i (a−i) =
σ1(a1) · · · σi−1(ai−1)σi+1(ai+1) · · · σn(an) : In fact, viewing the definition of σi

we shall show that φ∞
i (a−i) =

∏
k∈N\{i} φ∞

i (ak). To verify this it suffices to
show that for every k = 1, 2, · · · , n, φ∞

i (a−i) = φ∞
i (a−Ik

)
∏

k∈Ik\{i} φ∞
i (ak) : We

prove it by induction on k. For k = 1 the result is immediate. Suppose it is true
for k ≥ 1. On noting the protocol is fair, we can take the sequence of sets of
players {Ik}1≤k≤n with the following properties:
(a) I1 = {i} ⊂ I2 ⊂ · · · ⊂ Ik ⊂ Ik+1 ⊂ · · · ⊂ Im = N :
(b) For every k ∈ N there is a player ik+1 ∈

⋃
j∈Ik

Γ (j) with Ik+1 \ Ik = {ik+1}.

We let take j ∈ Ik such that ik+1 ∈ Γ (j). Set Hik+1 := [aik+1 = aik+1 ] ∩ Fj ∩
Fik+1 . It can be verified that µ([a−j−ik+1 = a−j−ik+1 ] | Hik+1) = φ∞

−j−ik+1
(a−j).

Dividing µ(Fj ∩ Fik+1) yields that

µ([a−j = a−j ] | Fj ∩ Fik+1) = φ∞
ik+1

(a−j)µ([aik+1 = aik+1 ] | Fj ∩ Fik+1).

Thus φ∞
j (a−j) = φ∞

ik+1
(a−j−ik+1 )φ

t
j(aik+1); then summing over aIk

we obtain
φ∞

j (a−Ik
) = φ∞

ik+1
(a−Ik−ik+1)φ

∞
j (aik+1). It immediately follows from Proposi-

tion 1 that φ∞
i (a−Ik

) = φ∞
i (a−Ik−ik+1)φ

∞
i (aik+1), as required.

Furthermore we can observe that all the other players i than j agree on the
same conjecture σj(aj) = φ∞

i (aj) about j. We conclude that each action ai

appearing with positive probability in σi maximizes gi against the product of
the distributions σl with l �= i. This implies that the profile σ = (σi)i∈N is a
mixed strategy Nash equilibrium of G, in completing the proof. ��

4 Concluding Remarks

We have observed that in a communication process with revisions of players’
beliefs about the other actions, their predictions induces a mixed strategy Nash
equilibrium of the game in the long run. Matsuhisa [4] established the same as-
sertion in the S4-knowledge model. Furthermore Matsuhisa [5] showed a similar
result for ε-mixed strategy Nash equilibrium of a strategic form game in the
S4-knowledge model, which gives an epistemic aspect in Theorem of E. Kalai
and E. Lehrer [2]. This article highlights the Bayesian belief communication
with missing some information, and shows that the convergence to an exact
Nash equilibrium is guaranteed even in such the communication on approximate
information.
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