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Abstract. Cournot oligopoly is typically inefficient in maximizing social wel-
fare which is total surplus of consumer and producer. This paper quantifies the 
inefficiency of Cournot oligopoly with the term “price of anarchy”, i.e. the 
worst-case ratio of the maximum possible social welfare to the social welfare at 
equilibrium. With a parameterization of the equilibrium market share distribu-
tion, the inefficiency bounds are dependent on equilibrium market shares as 
well as market demand and number of firms. Equilibrium market share parame-
ters are practically observable and analytically manageable. As a result, the 
price of anarchy of Cournot oligopoly established in this paper is applicable to 
both practical estimation and theoretical analysis. 

1   Introduction 

It is well-known that Cournot oligopolistic market equilibrium generally does not 
maximize social welfare (also referred as social surplus, aggregate surplus), which 
means that Cournot oligopoly is typically inefficient. This paper quantifies the ineffi-
ciency of Cournot oligopoly by looking into the worst-case ratio of the social welfare 
at social optimum (SO) to the social welfare at equilibrium. The philosophy is the 
same as the term “price of anarchy” which was firstly introduced to congestion games 
and selfish routing in networks ([9], [11]).  

Earlier studies on the inefficiency properties of oligopoly or monopoly focused 
mainly on empirical analysis (e.g. [6], [4]), while recent papers began to quantify the 
inefficiency. Anderson and Renault [1] parameterized the curvature of market de-
mand, and derived bounds on the ratios of deadweight loss and consumer surplus to 
producer surplus. Their results require marginal costs of producers to be constant. 
Following a series of papers focusing on the quantification of inefficiency for various 
games (e.g. [2], [3], [12], [13]), Johari and Tsitsiklis [8] studied the efficiency loss in 
Cournot games. Their discussion on Cournot oligopoly requires the inverse demand 
curve to be concave, which does not hold for the widely used constant elasticity de-
mand. This paper gives most general results regarding both cost function and market 
demand. For cost function, all the results of this paper allow arbitrarily convex cost 
function (nondecreasing marginal cost function). For market demand, this paper be-
gins with general inverse demand function without concavity or convexity assump-
tion, and then studies concave and convex inverse demand functions separately. 

In this paper, we introduce to each firm a parameter demoting its market share at 
equilibrium. The price of anarchy, or inefficiency bounds of Cournot oligopoly are 
dependent on three terms, market demand, number of firms and equilibrium market 
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shares. The parameterization of equilibrium market shares has at least three advan-
tages. First, in contrast to cost functions typically unknown, market shares at equilib-
rium are observable in practice. With observed equilibrium market shares, the results 
of this paper can be used for practical estimation of the efficiency loss of Cournot 
oligopoly. Second, equilibrium market share parameters are analytically manageable, 
and thereby facilitate theoretical analysis. Finally, equilibrium market share parame-
ters are effective in describing various market structures, which naturally makes the 
results of this paper comprehensive in terms of market structure. 

This paper is organized as follows. Section 2 defines the problem under study and 
the necessary terms. In Section 3, we consider general inverse demand function with-
out concavity or convexity assumption. We present several important lemmas as the 
fundamentals of the whole paper, and a theorem bounding the inefficiency of general 
Cournot oligopoly. Section 4 and Section 5 discuss concave and convex inverse de-
mand functions, respectively. In Section 4, the concavity of the inverse demand func-
tion leads to good properties. As a result, we have refined inefficiency bounds that 
give rise to corollaries regarding several special cases intensively studied by previous 
papers. In Section 5, the convexity of the inverse demand function also leads to tight-
ened inefficiency bounds, and the application to constant elasticity demand has mean-
ingful analytical results. Finally, our conclusions are contained in Section 6. 

2   Cournot Oligopoly: Equilibrium, Social Optimum and the Price 
     of Anarchy 

Let there be N  firms, 1, 2,...,i N= , which supply a homogeneous product in a nonco-

operative fashion. Let ( )p Q , 0Q ≥  denote the inverse demand curve, where Q  is 

the total supply in the market. Let 0iq ≥  denote the thi firm’s supply, then 

1

N

ii
Q q

=
=∑ . Let ( )i if q  denote the thi firm’s total cost of supplying iq  units. A 

Cournot-Nash equilibrium solution is a set of nonnegative output levels 1q∗ , 2q∗ ,…, 

Nq∗  such that iq∗  is an optimal solution to the following problem for all 1, 2,...,i N= : 

( ) ( )
0

maximize  
i

i i i i i
q

q p q Q f q∗

≥
+ −   

where 
 i j

j i

Q q∗ ∗

≠

=∑  

It is well-known (e.g. [7], [10]) that if ( )if ⋅  is convex and continuously differenti-

able for 1,2,...,i N= , the inverse demand function ( )p ⋅  is strictly decreasing and 

continuously differentiable, and the revenue curve ( )Qp Q  is concave, 0Q ≥ , then 

( 1q∗ , 2q∗ , … , Nq∗ ) is a Cournot-Nash equilibrium solution if and only if 

( ) ( ) ( ) 0i i i ip Q q p Q f q q∗ ∗ ∗ ∗ ∗⎡ ⎤′ ′+ − =⎣ ⎦  for each 1,2,...,i N=  (1) 

( ) ( ) ( ) 0i i ip Q q p Q f q∗ ∗ ∗ ∗′ ′+ − ≤  for each 1,2,...,i N=  (2) 
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where 

1

N

ii
Q q∗ ∗

=
=∑   

Assumption 1. 
(a) The cost function ( )if ⋅  is convex, strictly increasing and continuously differen-

tiable for 1,2,...,i N= . In addition, ( )0 0if = .  

(b) The inverse demand function ( )p ⋅  is strictly decreasing and continuously dif-

ferentiable, and the revenue curve ( )Qp Q  is concave for 0Q ≥ .  

(c) At equilibrium, all firms are active, namely 0iq∗ >  for 1,2,...,i N= . 

Note that in Assumption 1, no assumption is made on the concavity or convexity of 
the inverse demand function ( )p ⋅ . Part (a) and (b) of Assumption 1 ensure the exis-

tence and uniqueness of a Cournot-Nash equilibrium solution. ( )0 0if = , implying 

that fixed cost is not considered, makes this paper consistent with previous literature 
([1], [8]). Part (c) is a reasonable and weak assumption. With Part (c) of Assumption 
1, the Cournot-Nash equilibrium condition (1)-(2) is simplified to be 

( ) ( ) ( ) 0i i ip Q q p Q f q∗ ∗ ∗ ∗′ ′+ − =  (3) 

Let is  denote the thi firm’s equilibrium market share 

i is q Q∗ ∗= , 1, 2,...,i N=  (4) 

Without loss of generality, let the first firm have the largest equilibrium market share 

{ }*
1 max  , 1,2,...,iq q i N∗= =   

{ }1 max  , 1, 2,...,is s i N= =  (5) 

By definition, we have 

11 1N s≤ ≤  (6) 

1s  plays a fundamental role in both market structure description and theoretical 

analysis. For market structure description, we have the following observations 

(a) For 1N = , “ 1 1s = ” naturally represents the case of monopoly; for 2N ≥ , 

“ 1 1s = ” also represents the case of monopoly, but is a limit case. 

(b) “ 1 0s → ( N → ∞ )” represents the case of perfect competition. 

(c) “ 1 1s N= ” represents the symmetric cost case. 

Social welfare is defined to be total surplus of consumer and producer, or total bene-
fits minus total costs, which is mathematically formulated as 

( ) ( )
10

Q N

i ii
S p x dx f q

=
= −∑∫  (7) 

    Then the social optimization (SO) problem is given by 

( ) ( )
100

maximize  
i

Q N

i iiq
p x dx f q

=≥
−∑∫  (8) 
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    Let ( 1q , 2q ,…, Nq ) be an optimal solution to problem (8), then the following first-

order conditions hold 

( ) ( ) 0i i ip Q f q q⎡ ⎤′− =⎣ ⎦ , 1, 2,...,i N=  (9) 

( ) ( ) 0i ip Q f q′− ≤ , 1, 2,...,i N=  (10) 

where 

1

N

ii
Q q

=
=∑   

Let S  and S ∗  denote the social welfare at optimum and equilibrium, respectively 

( ) ( )
10

Q N

i ii
S p x dx f q

=
= −∑∫  (11) 

( ) ( )10

Q N

i ii
S p x dx f q

∗
∗ ∗

=
= −∑∫  (12) 

    Define the following ratio 

S S ∗ρ =  (13) 

    Clearly, 1ρ ≥ . This ratio is called the inefficiency, or price of anarchy of Cournot 

oligopoly. We will give upper bounds on ρ  under different conditions. 

With Assumption 1, ( )0 0if = , then social welfare defined by (7) becomes 

( ) ( )
10 0

iQ qN

ii
S p x dx f x dx

=
′= −∑∫ ∫  (14) 

    In some economics textbook [5], social welfare is directly defined by (14) instead 
of (7) regardless of the value of fixed cost, which justifies the assumption ( )0 0if = . 

3   General Inverse Demand Function 

In this section, we bound the inefficiency ratio ρ  with Assumption 1 only. 

Define function ( )γ ⋅  as 

( ) ( ) ( ) ( )( )1:  x p x s xp x p x x′γ + = γ , 0x >  (15) 

and assume ( )xγ  to be bounded for 0x > . Since ( )p ⋅  is strictly decreasing, ( )γ ⋅  is 

generally well-defined. For example, if ( )p ⋅  takes the form of ( )p Q Q−β= α , 0α > , 

0 1< β < , we have 

( ) ( ) 1

11x s
− βγ = − β , 0x >  (16) 

Lemma 1. With Assumption 1, let k Q Q∗= , then it holds ( )1 k Q∗< ≤ γ . 

Proof: (a) 1k > . If it holds i iq q∗>  for each 1,2,...,i N= , then Q Q∗>  and 1k > . 

Otherwise, without loss of generality, suppose j jq q∗ ≥ , then we have 

( ) ( )j jp Q f q′≤  (17) 
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( )j jf q∗′≤  (18) 

( ) ( )jp Q q p Q∗ ∗ ∗′= +  (19) 

( )p Q∗<  (20) 

where (17) follows from condition (10), (18) follows from that ( )jf ⋅  is convex and 

thus ( )jf ′ ⋅  is nondecreasing, (19) follows from condition (3), and (20) follows from 

that ( )p ⋅  is strictly decreasing and thus ( ) 0p Q∗′ < . ( )p ⋅  is strictly decreasing, 

then ( ) ( )p Q p Q∗<  leads to Q Q∗>  and 1k > . 

(b) ( )k Q∗≤ γ . Since Q Q∗> , thus without loss of generality, suppose j jq q∗> , then  

( ) ( )j jp Q f q′=  (21) 

          ( )j jf q∗′≥  (22) 

          ( ) ( )jp Q q p Q∗ ∗ ∗′= +  (23) 

          ( ) ( )1p Q s Q p Q∗ ∗ ∗′≥ +  (24) 

          ( )( )p Q Q∗ ∗= γ  (25) 

where (21) follows from condition (9), (22) follows from ( )jf ′ ⋅  nondecreasing, (23) 

follows from condition (3), (24) follows from ( ) 0p Q∗′ < , and (25) follows from  

(15), the definition of ( )γ ⋅ . ( )p ⋅  is strictly decreasing, then ( ) ( )( )p Q p Q Q∗ ∗≥ γ  

leads to ( )Q Q Q∗ ∗≤ γ  and ( )k Q∗≤ γ , which completes the proof.                        ♦ 

Define function ( )θ ⋅  as 

( ) ( )( ) ( ) ( )( )2

0

1
2

x
x x p x p w dw xp x′θ = − −∫ , 0x >  (26) 

and assume ( )xθ  to be bounded and nonzero for 0x > . ( )θ ⋅  is a well-defined func-

tion. For example, if ( )p ⋅  takes the form of ( )p Q Q−β= α , 0α > , 0 1< β < , then 

( ) ( )1 2xθ = − β , 0x >  (27) 

If ( )p ⋅  takes the form of ( ) 0p Q p Qβ= − α , 0α > , 0β > , we have 

( ) ( )1 2xθ = + β , 0x >  (28) 

where 1β =  gives a linear ( )p ⋅  with ( ) 1xθ =  for 0x > . 

Lemma 2. With Assumption 1, the equilibrium social welfare S ∗  satisfies 

( )( ) ( ) ( ) ( )2 2

1

1

2

N

i
i

S p Q Q q
Q

∗ ∗ ∗ ∗
∗

=

⎡ ⎤
′ ⎢ ⎥≥ − +

θ⎢ ⎥⎣ ⎦
∑  (29) 
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Proof: We have 

( ) ( )
0

iq

i i i if x dx q f q
∗

∗ ∗′ ′≤∫  
(30) 

( ) ( )( )i iq p Q q p Q∗ ∗ ∗ ∗′= +  (31) 

where (30) follows from ( )jf ′ ⋅  nondecreasing, and (31) follows from condition (3). 

From (14), it holds 

( ) ( )
10 0

iQ qN

ii
S p x dx f x dx

∗ ∗
∗

=
′= −∑∫ ∫  (32) 

Substitute (30)-(31) into (32), we have 

( ) ( ) ( )( )10

Q N

i ii
S p x dx q p Q q p Q

∗
∗ ∗ ∗ ∗ ∗

=
′≥ − +∑∫   

( ) ( ) ( )( ) ( )2

0
1

NQ

i
i

p x dx Q p Q p Q q
∗

∗ ∗ ∗ ∗

=

′= − + − ∑∫   

( )( ) ( ) ( ) ( )2 2

1

1

2

N

i
i

p Q Q q
Q

∗ ∗ ∗
∗

=

⎡ ⎤
′ ⎢ ⎥= − +

θ⎢ ⎥⎣ ⎦
∑  (33) 

where (33) follows from (26), the definition of ( )θ ⋅ . This completes the proof.           ♦ 

Lemma 3. With Assumption 1, the following inequality holds 

( )( ) ( )11

N

i i ii
p Q q q qS

S S

∗ ∗ ∗
=

∗ ∗

′− −
ρ = ≤ +

∑
 (34) 

Proof: From (11) and (12), we have 

( ) ( ) ( )( )1

Q N

i i i iiQ
S S p x dx f q f q

∗

∗ ∗
=

− = − −∑∫  (35) 

Because ( )p ⋅  is strictly decreasing, it holds 

( ) ( ) ( )Q

Q
p x dx Q Q p Q

∗

∗ ∗≤ −∫  (36) 

where “=” may hold only as a limit case. Because ( )if ⋅  is convex, we have 

( ) ( ) ( ) ( )i i i i i i i if q f q q q f q∗ ∗ ∗′− ≥ − , 1, 2,...,i N=  (37) 

Substitute (36) and (37) into (35), we obtain 

( ) ( ) ( ) ( )1

N

i i i ii
S S Q Q p Q q q f q∗ ∗ ∗ ∗ ∗

=
′− ≤ − − −∑   

( ) ( ) ( )( )1

N

i i i ii
q q p Q f q∗ ∗ ∗

=
′= − −∑   

( )( ) ( )1

N

i i ii
p Q q q q∗ ∗ ∗

=
′= − −∑  (38) 

where (38) follows from condition (3). It follows immediately (34) from 

( )( ) ( )1

N

i i ii
S S p Q q q q∗ ∗ ∗ ∗

=
′− ≤ − −∑ , which completes the proof.                       ♦ 

Combine Lemma 2 and Lemma 3, substitute (29) into (34), we obtain 

( ) ( ) ( ) ( ) ( )2 2 2

1 1
2 2

N N

i i ii i
Q Q q q Q Q q∗ ∗ ∗ ∗ ∗ ∗

= =
⎡ ⎤ ⎡ ⎤ρ ≤ + θ + θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑  (39) 
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With ( )2

1 1 11 1

N N

i i ii i
q q q q Qq ks Q∗ ∗ ∗ ∗

= =
≤ = =∑ ∑ , ( ) ( )2 2 2

1 1

N N

i ii i
q Q s∗ ∗

= =
=∑ ∑ , it comes 

( )( ) ( )( )2
1 1

1 2 1 2
N

ii
Q ks Q s∗ ∗

=
ρ ≤ + θ + θ ∑  (40) 

Define parameter γ  and θ  as 

( )
0

max  
x

x
>

γ = γ  (41) 

( )
0

max  
x

x
>

θ = θ  (42) 

Theorem 1. With Assumption 1, the inefficacy ratio ρ  is bounded as 

( ) ( )2
1 1

1 2 1 2
N

ii
s s

=
ρ ≤ + θγ + θ∑  (43) 

                                      ( ) ( )11 2 1 2s m≤ + θγ + θ  (44) 

where 

( ) ( )22
1 1

1,      1

1 1 ,  2

N
m

s s N N

=⎧⎪= ⎨
+ − − ≥⎪⎩

 (45) 

Proof: The right-hand side of (40) increases with k  and ( )Q∗θ , and we have k ≤ γ  

from Lemma 1 and definition (41) and ( )Q∗θ ≤ θ  by definition (42), thus we readily 

obtain (43) by setting k = γ  and ( )Q∗θ = θ  in (40). Then (44) follows from 

2

1

N

ii
s m

=
≥∑  ( ( ) ( )22 2 2 2

1 1 11 2
1 1

N N

i ii i
s s s s s N m

= =
= + ≥ + − − =∑ ∑ , for 2N ≥ ). 

This completes that proof.                                                                                 ♦ 

Theorem 1 gives the price of anarchy for general Cournot oligopoly. The two ineffi-
ciency bounds given by (43) and (44) are both determined by three terms, the market 
demand function (represented by θ  and γ ), the number of firms N  and the market 
share distribution at equilibrium. While (43) requires the equilibrium market share of 
each individual firm to be known, (44) needs 1s  only because parameter m  captures 

the worst-case market structure for any 1s , i.e. the first firm have the largest market 

share 1s  and each other  firm have market share ( ) ( )11 1s N− − . In general, (43) 

applies to practical estimation for which equilibrium market shares are observed in 
practice, while (44) is applicable to theoretical analysis for which it is impossible and 
unnecessary to know the equilibrium market shares of individual firms. 

Apply (44) to the case of perfect competition, we have the following corollary 
which states that perfect competition, as expected, is fully efficient in terms of the 
maximization of social welfare. 

Corollary 1. With Assumption 1, for the case of perfect competition, namely 1 0s →  

( N → ∞ ), it holds 
 1ρ →  

Proof: When N → ∞  and 1 0s → , it follows 0m →  from (45), thus the right-hand 

side of (44) approaches 1 given that θ  and γ  are bounded. Since 1ρ ≥ , it follows 

immediately 1ρ → , which completes that proof.                                                     ♦ 
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4   Concave Inverse Demand Function 

In this section, we study the case of concave inverse demand function, and apply our 
general results to the special cases studied by Johari and Tsitsiklis [8] for comparison. 

Lemma 4. With Assumption 1, if ( )p ⋅  is concave, then it holds 

(a) ( ) 11x sγ ≤ + , for 0x > ; 

(b) 
( )( ) ( ) ( )2

1

1
2

1

N

i i ii
p Q q q q Q Q

S

S S

∗ ∗ ∗ ∗
=

∗ ∗

⎡ ⎤′− − − −⎢ ⎥⎣ ⎦ρ = ≤ +
∑

      (46) 

Proof: (a) With Assumption 1, if ( )p ⋅  is concave, we have 

( ) ( ) ( )1 1p x s xp x p x s x′+ ≥ + , 0x >  (47) 

    From (15), the definition of ( )γ ⋅ , (47) gives 

( )( ) ( )( )11p x x p s xγ ≥ + , 0x >  (48) 

    Since ( )p ⋅  is strictly decreasing, (48) simply gives ( ) 11x sγ ≤ +  for 0x > . 

(b) With Assumption 1, if ( )p ⋅  is concave, we have 

( ) ( ) ( ) ( )( )( )21

2

Q

Q
p x d Q Q p Q p Q Q Q

∗

∗ ∗ ∗ ∗′≤ − − − −∫  (49) 

    Let (49) take the place of (36) in Lemma 3, then (34) of Lemma 3 simply becomes 
(46), which completes the proof.                                                                                 ♦ 

Part (b) of Lemma 4 in this section takes the place of Lemma 3 in last section. 
Combine Lemma 2 and Part (b) of Lemma 4, substitute (29) into (46), we obtain 

( ) ( ) ( )
( ) ( ) ( )

2 2

1

2 2

1

1
2

2

2

N

ii

N

ii

Q Q qq Q Q

Q Q q

∗ ∗ ∗ ∗
=

∗ ∗ ∗
=

⎡ ⎤+ θ − −⎢ ⎥⎣ ⎦ρ ≤
+ θ

∑

∑
 (50) 

With ( )2

1 1 11 1

N N

i i ii i
q q q q Qq ks Q∗ ∗ ∗ ∗

= =
≤ = =∑ ∑ , ( ) ( )2 2 2

1 1

N N

i ii i
q Q s∗ ∗

= =
=∑ ∑ , it comes 

( ) ( )( ) ( )( )2 2
1 1

1 2 1 1 2
N

ii
Q ks k Q s∗ ∗

=
⎡ ⎤ρ ≤ + θ − − + θ
⎣ ⎦ ∑  (51) 

Theorem 2. With Assumption 1, if ( )p ⋅  is concave, then it holds 

( ) ( )2
1 1 1

1 2 1 2
N

ii
s s s

=
ρ ≤ + θ + + θ⎡ ⎤⎣ ⎦ ∑  (52) 

( ) [ ]1 11 2 1 2s s m≤ + θ + + θ⎡ ⎤⎣ ⎦  (53) 

Proof: The right-hand side of (51) increases with ( )Q∗θ  and k , and we have 

( )Q∗θ ≤ θ  by definition (42) and 11k s≤ +  from Lemma 1 and Part (a) of Lemma 4, 

thus we readily obtain (52) by setting ( )Q∗θ = θ  and 11k s= +  in (51). Then (53) 

follows immediately from 2

1

N

ii
s m

=
≥∑ , which completes the proof.                       ♦ 



254 X. Guo and H. Yang 

 

Theorem 2 gives the price of anarchy of Cournot oligopoly for concave inverse de-
mand function, which is a tightened and refined counterpart of Theorem 1. Like Theo-
rem 1, the two inefficiency bounds given by (52) and (53) are applicable to practical 
estimation and theoretical analysis, respectively. The bounds do not use parameter γ  

thanks to Part (a) of Lemma 4, a good property brought about by the concavity of 

( )p ⋅ . Without γ  in its formulation, (53) gives rise to the following corollaries re-

garding the worst-case inefficiency for several special cases. 

Corollary 2. With Assumption 1, if ( )p ⋅  is concave, then it holds 

( )1 12 2s s mρ ≤ +  (54) 

where “=” may hold only if θ → ∞ . 
Corollary 2 gives the worst-case inefficiency for given N  and 1s , and has two im-

portant applications, the case of monopoly and the symmetric cost case, both studied 
intensively by previous papers. For the case of monopoly, namely 1N =  and 1 1s = , 

it follows 1m =  from (45), thus (54) gives 3 2ρ ≤ . For the symmetric cost case, 

namely all firms share the same cost function and thereby 1 1s N= , it follows 

1m N=  from (45), thus (54) gives 1 1 2Nρ ≤ + . These two results are exactly the 

same as those of Johari and Tsitsiklis (Corollary 17 and 18 of [8]). 

Corollary 3. With Assumption 1, if ( )p ⋅  is concave, then it holds 

( )4 5 3 4Nρ ≤ + +  (55) 

where “=” may hold only if θ → ∞  and ( )1 4 5 1 2( 1)s N N= + + + . 

Corollary 3 gives the worst-case inefficiency for given N . Particularly, if 1N = , 
(55) gives 3 2ρ ≤ , the same as the result of Corollary 2. 

Corollary 4. With Assumption 1, if ( )p ⋅  is concave, then it holds 

( )3 1 8 4ρ ≤ + + θ  (56) 

where “=” may hold only if N → ∞  and ( )1 1 8 1 4s = + θ − θ . 

Corollary 4 gives the worst-case inefficiency for given θ . The most important ap-
plication of Corollary 4 is the case of linear (affine) market demand function, which 
appears in a lot of papers. For linear market demand function, namely 1θ = , (56) 
gives 3 2ρ ≤  (where “ = ” holds if and only if N → ∞  and 1 1 2s = ). This result 

(including the condition for “=” to hold) is again the same as that of Johari and Tsit-
siklis (Theorem 19 of [8]). 

5   Convex Inverse Demand Function 

In this section, we study the case of convex inverse demand function including the 
constant elasticity demand. 
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Lemma 5. With Assumption 1, if ( )p ⋅  is convex, then it holds 

( )( ) ( ) ( ) ( ) ( )( )1

1
21

N

i i ii
p Q q q q Q Q p Q p QS

S S

∗ ∗ ∗ ∗ ∗
=

∗ ∗

′− − − − −
ρ = ≤ +

∑
 (57) 

Proof: With Assumption 1, if ( )p ⋅  is convex, we have 

( ) ( ) ( ) ( ) ( ) ( )( )1

2

Q

Q
p x dx Q Q p Q Q Q p Q p Q

∗

∗ ∗ ∗ ∗≤ − − − −∫  (58) 

Then the proof follows the same line as the proof Lemma 3. Let (58) take the place of 
(36) in Lemma 3, then (34) of Lemma 3 simply becomes (57). 

This completes the proof.                                                                                 ♦ 

In this section, Lemma 5, like Part (b) of Lemma 4 in last section, takes exactly the 
place of Lemma 3 in Section 3. Combine Lemma 2 and Lemma 5, substitute (29) into 
(57), we obtain 

( ) ( ) ( ) ( ) ( )( )
( )( )

( ) ( ) ( )

2

1

2 2

1

1
2

2

2

N

ii

N

ii

k Q p Q p Q
Q Q qq

p Q

Q Q q

∗ ∗
∗ ∗ ∗

= ∗

∗ ∗ ∗
=

⎡ ⎤− −
⎢ ⎥+ θ −
⎢ ⎥′−⎣ ⎦ρ ≤

+ θ

∑

∑
 

(59) 

   With ( )2

1 1 11 1

N N

i i ii i
q q q q Qq ks Q∗ ∗ ∗ ∗

= =
≤ = =∑ ∑ , ( ) ( )2 2 2

1 1

N N

i ii i
q Q s∗ ∗

= =
=∑ ∑ , it comes 

( ) ( ) ( )( ) ( )( )2
1 1

1 2 1 , 1 2
N

ii
Q ks k h Q k Q s∗ ∗ ∗

=
⎡ ⎤ρ ≤ + θ − − + θ⎣ ⎦ ∑  (60) 

where 2 1:h E E→  is a function defined as 

( ) ( ) ( )( ) ( )( ),h x k p x p kx p x x′= − − , 0x > , ( )1 k x< ≤ γ  (61) 

Like ( )γ ⋅  and ( )θ ⋅ , ( ),h x k  is a well-defined function. For example, if ( )p ⋅  takes 

the form of ( )p Q Q−β= α , 0α > , 0 1< β < , we have 

( ) ( ), 1h x k k −β= − β , 0x > , ( )1 k x< ≤ γ  (62) 

    Furthermore, ( ),h x k  have the following relationship with ( )γ ⋅  defined by (15) 

( )( ) 1,h x x sγ = , 0x >  (63) 

Assumption 2. For any 11 1N s≤ ≤  and 0x > , ( ) ( )( )12 1 ,ks k h x k− −  increases 

with k  for ( )1 k x< ≤ γ . 

With Assumption 2, set ( )k Q∗= γ  in (60), and make use of (63), we obtain 

( ) ( )( ) ( )( )2
1 1

1 1 1 2
N

ii
Q Q s Q s∗ ∗ ∗

=
⎡ ⎤ρ ≤ + θ + γ + θ⎣ ⎦ ∑  (64) 

Theorem 3. With Assumption 1 and 2, if ( )p ⋅  is convex, then it holds 

( ) ( )2
1 1

1 1 1 2
N

ii
s s

=
ρ ≤ + θ + γ + θ⎡ ⎤⎣ ⎦ ∑  (65) 
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( ) ( )11 1 1 2s m≤ + θ + γ + θ⎡ ⎤⎣ ⎦  (66) 

Proof: The right-hand side of (64) increases with ( )Q∗γ  and ( )Q∗θ , and we have 

( )Q∗γ ≤ γ  and ( )Q∗θ ≤ θ  by definitions (41)-(42), thus we readily obtain (65) by 

setting  ( )Q∗γ = γ  and ( )Q∗θ = θ  in (64). Then, like the proof of Theorem 1 and 2, 

(66) follows immediately from 2

1

N

ii
s m

=
≥∑ , which completes the proof.          ♦ 

Theorem 3 gives the price of anarchy of Cournot oligopoly for convex inverse de-
mand function. Like Theorem 1 and 2, the two inefficiency bounds given by (65) and 
(66) are applicable to practical estimation and theoretical analysis, respectively. 

Apply (66) to the constant elasticity demand, we have the following corollary. 

Corollary 5. Suppose ( )p ⋅  takes the constant elasticity form, ( )p Q Q−β= α , 0α > , 

0 1< β < . With Assumption 1, it holds 

( ) ( )
( )

1

1 1

1
1 1 1 1

2
1 1

s s

m

− β⎡ ⎤+ −β + − β⎣ ⎦ρ ≤
+ − β

 (67) 

Furthermore, monopoly 1 1s =  gives the worst-case inefficiency 

( ) ( )1 1
3 1 2 2

− β⎡ ⎤ρ ≤ − β + − β −β⎣ ⎦  (68) 

and 0.8670β = gives the overall worst-case inefficiency 1.5427ρ ≤ . 

Corollary 5 does not require Assumption 2 explicitly because constant elasticity 
demand automatically meets Assumption 2. From Corollary 5, for a constant elasticity 
demand, the worst-case inefficiency can be attained only by monopoly, and the over-
all worst-case inefficiency is that the optimal social welfare is 1.5427 times of the 
equilibrium social welfare. 

6   Conclusion 

This paper studies the price of anarchy of Cournot oligopoly, and gives most general 
results regarding cost function and market demand. General, concave and convex 
inverse demand functions are studied separately. The general inefficiency bounds 
given by Theorem 1-3 are determined by three terms, market demand, number of 
firms and equilibrium market shares. These general results are applicable to both 
practical estimation and theoretical analysis thanks to the practical observability and 
analytical manageability of the equilibrium market share parameters. Furthermore, 
since equilibrium market share parameters can effectively describe various special 
market structures, the general results can be readily applied to special cases such as 
monopoly, perfect competition and the symmetric cost case. 

One point worth mentioning is that the general inefficiency bounds given by  
Theorem 1-3 are not independent of the cost functions of firms because the cost  
characteristics of firms to a large extent determine the equilibrium market shares. 
However, with these general results, equilibrium market share parameters are enough 
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for practical estimation and theoretical analysis of the price of anarchy of Cournot 
oligopoly. Thus it is unnecessary to know any information on the cost functions (as 
long as the marginal costs are nondecreasing with output). In addition, inefficiency 
bounds independent of cost functions can simply be obtained by searching the worst-
case equilibrium market share distribution, like in Corollary 3-4 where the ineffi-
ciency bounds are dependent on θ  or N  only. 
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