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Abstract. We consider the problem of Internet switching, where traffic is gen-
erated by selfish users. We study a packetized (TCP-like) traffic model, which
is more realistic than the widely used fluid model. We assume that routers have
First-In-First-Out (FIFO) buffers of bounded capacity managed by the drop-tail
policy. The utility of each user depends on its transmission rate and the conges-
tion level. Since selfish users try to maximize their own utility disregarding the
system objectives, we study Nash equilibria that correspond to a steady state of
the system. We quantify the degradation in the network performance called the
price of anarchy resulting from such selfish behavior. We show that for a single
bottleneck buffer, the price of anarchy is proportional to the number of users.
Then we propose a simple modification of the Random Early Detection (RED)
drop policy, which reduces the price of anarchy to a constant.

1 Introduction

If all Internet users voluntarily deploy a congestion-responsive transport protocol (e.g.
TCP [19]), one can design this protocol so that the resulting network would achieve cer-
tain performance goals such as high utilization or low delay. However, with fast growth
of the Internet users population, the assumption about cooperative behavior may not re-
main valid. Users are likely to behave “selfishly”, that is each user makes decisions so
as to optimize its own utility, without coordination with the other users. Buffer sharing
and bandwidth allocation problems are prime candidates for such a selfish behavior.

If a user does not reduce its sending rate upon congestion detection, it can get a better
share of the network bandwidth. On the other hand, all users suffer during congestion
collapse, since the network delay and the packet loss increase drastically. Therefore, it
is important to understand the nature of congestion resulting from selfish behavior. A
natural framework to analyze this class of problems is that of non-cooperative games,
and an appropriate solution concept is that of Nash equilibrium [24]. Strategies of the
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users are at a Nash equilibrium if no user can gain by unilaterally deviating from its
current policy.

The subject of this paper is game-theoretic analysis of the Internet switching prob-
lem. We consider a bottleneck First-In-First-Out (FIFO) buffer shared by many users.
The users compete for the buffer share in order to maximize their throughput, but they
suffer from the created congestion. We assume that each user knows its buffer usage,
the queue length and the buffer size. In reality, these parameters can be estimated only
approximately (e.g. such a mechanism exists in TCP Vegas). However, in this work we
rather study lack of coordination and not lack of information. The goal of a user is to
maximize its utility. We assume that the utility function of a user increases when its
goodput increases and decreases when the network congestion increases.

We assume that there are n users and the buffer capacity is B while B � n. In our
model all packets have a constant size. Time is slotted. Every time step each user may
or may not send a packet to the buffer.1 These packets arrive in an arbitrary order and
are processed by the buffer management policy one by one. Then the first packet in the
FIFO order is transmitted on the output link.

The drop policy has to decide at each time step which of the packets to drop and
which to accept. It can also preempt (drop) accepted packets from the buffer. Under the
drop-tail policy, all arriving packets are accepted if the buffer is not full and dropped
otherwise (when the buffer is full).

We denote by wt
i the number of packets of user i in the buffer at the beginning of

time step t. We call it the buffer usage of user i. We denote by W t =
∑

i wt
i the queue

length at time t. We also denote by W t
−i the buffer usage of all users but user i, i.e.,

W t
−i = W t − wt

i . We assume that the users are greedy, i.e., they always have data to
send and the queue is never empty.

We denote by rt
i = wt

i/W t the instant transmission rate of user i at time t. We say
that the system is in a steady state if the queue length remains constant. In a steady
state, the average transmission rate of user i is ri = wi/W , where wi is the average
buffer usage of user i and W is the average queue length.

Now we proceed to define a utility function. Since in general the rate and the delay
are incomparable values, it is natural to normalize one of these parameters. We intro-
duce the notion of congestion level, that is the congestion level at time t is Lt = W t

B .
Note that the congestion level is zero when the buffer is empty and one when the buffer
is full.

The utility of user i at time t is ui(wt
i , W

t) = rt
i · (1 − Lt). We assume that user i

sends a packet to the buffer at time t if its utility increases, i.e., ui(wt
i + 1, W t + 1) >

ui(wt
i , W

t). In a steady state, the utility of user i is ui(wi, W ) = ri · (1 − L), where
L = W/B. Observe that when the buffer is almost empty, the utility of each user
approximately equals its transmission rate. On the other hand, when the buffer is nearly
full, all users have utility close to zero. The latter situation can be viewed as ”congestion
collapse”.

The strategy of each user is its buffer usage while the strategies of the other users
define the background buffer backlog. Now we define a Nash equilibrium.

1 We note that our results can be extended to the case in which each user can send an arbitrary
number of packets.



238 A. Kesselman, S. Leonardi, and V. Bonifaci

Definition 1. The system is said to be in a Nash equilibrium if no user can benefit by
changing its buffer usage.

The total utility of the users in a Nash equilibrium is
∑n

i=1 ui(wi, W ). Observe that
under an optimal centralized policy, all users have equal sending rates of 1/n and ex-
perience almost negligible delay, which results in the total utility close to 1. We define
the price of anarchy in a Nash equilibrium to be 1/

∑n
i=1 ui(wi, W ). We are also con-

cerned with the fairness of a Nash equilibrium. A Nash equilibrium is said to be fair if
all users have the same buffer usage.

A Nash equilibrium in a networking environment is interesting only if it can be
reached efficiently (in polynomial time). We define the convergence time to a Nash
equilibrium as the maximum number of time steps required to reach a Nash equilibrium
starting from an arbitrary state of the buffer.

We demonstrate that the drop-tail buffering policy imposes a fair Nash equilibrium.
However, the price of anarchy is proportional to the number of users. We also show that
the system converges to a Nash equilibrium in polynomial time, namely after O(B2)
time steps. Then we propose a simple modification of the Random Early Detection
(RED) policy [13] called Preemptive RED (PRED) that achieves a constant price of
anarchy. We note that PRED is in the spirit of CHOKe [26] (see Section 4).

Paper organization. The rest of the paper is organized as follows. In Section 2 we
discuss the related work. Analysis of a single switch appears in Section 3. The PRED
policy is presented in Section 4. We conclude with Section 5.

2 Related Work

Shenker [29] analyzes switch service disciplines with a M/M/1 model and Markovian
arrival rates. The utility of each user is increasing in its rate and decreasing in the net-
work congestion. Shenker shows that the traditional FIFO policy does not guarantee
efficiency and fairness and proposes a policy called Fair Share that guarantees both of
them.

Garg at al. [17] study a switching problem using a continuous fluid-flow based traf-
fic model, which is amenable to analysis of an arbitrary network. The user’s utility is
an increasing function of its goodput only. Garg at al. show that selfish behavior leads
to congestion collapse and propose a rate inverse scheduling service discipline under
which a max-min fair rate allocation is a Nash equilibrium. Contrary to [17], we con-
sider only a simple FIFO scheduling policy.

Unfortunately, the complexity of the policies proposed in [29, 17] is too high to im-
plement them in the core of the Internet since they have to maintain per-flow state.
Dutta et al. [9] analyze simple state-less buffer management policies under the assump-
tion that the traffic sources are Poisson and the utility of each user is proportional to
its goodput. Dutta et al. demonstrate that drop-tail and RED do not impose Nash equi-
libria and present a modification of RED that enforces an efficient Nash equilibrium.
Differently from [9], we assume that the utility of each user depends on the network
congestion as well.

In a recent paper, Gao et al. [16] propose efficient drop policy that in case of con-
gestion drops packets of the highest-rate sender. Gao et al. show that if all sources are
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Poisson, this policy results in a Nash equilibrium which is a max-min fair rates alloca-
tion. In addition, it is demonstrated that the throughput of a TCP source is a constant
factor of its max-min-fairness value when competing with Poisson sources. In contrast
to [16], we do not make any assumptions regarding the traffic pattern.

Unlike the works mentioned above, in this paper we study packetized traffic model in
which sources do not control the sending rate explicitly, but rather make it on per-packet
basis. This model is implicit in the TCP protocol.

Nash equilibria for network games have been extensively studied in the literature.
Douligeris and Mazumdar [8] determine conditions for a Nash equilibrium for a
M/M/1 system when the utility of a user is a function the throughput and the delay.
Orda et al. [25] investigate uniqueness of Nash equilibria in communication networks
with selfish users. Korilis and Lazar [21] study Nash equilibria of a non-cooperative
flow control game. Congestion control schemes utilizing pricing based on explicit feed-
back are proposed by Kelly et al. [20]. Gibbens and Kelly [18] explore the implementa-
tion of network pricing in which users are charged for marks that routers place on pack-
ets in order to achieve congestion control. Akella et al. [1] present a game-theoretic
analysis of TCP congestion control. Qiu et al. [27] consider selfish routing in intra-
domain network environments.

Traditionally, in Computer Science research has been focused on finding a global
optimum. With the emerging interest in computational issues in game theory, the price
of anarchy introduced by Koutsoupias and Papadimitriou [22] has received considerable
attention [6, 7, 14, 28, 11]. The price of anarchy is the ratio between the cost of the worst
possible Nash equilibrium (the one with the maximum social cost) and the cost of the
social optimum (an optimal solution with the minimum social cost). In some cases the
price of anarchy is small, and thus good performance can be achieved even without a
centralized control.

If a Nash equilibrium imposed by selfish users is not satisfiable, one can deploy
resource allocation policies to improve the situation. Recently, Christodoulou at al. [5]
introduced the notion of coordination mechanism, which is a resource allocation policy
whose goal is to enforce a better Nash equilibrium. They show that even simple local
coordination mechanisms can significantly reduce the price of anarchy.

Efficient convergence to a Nash equilibrium is especially important in the network
environment, which is highly variable. The question of convergence to a Nash equi-
librium has received significant attention in the game theory literature [15]. Altman at
al. [2] and Boulogne at al. [4] analyze the convergence to a Nash equilibrium in the
limit for a routing and a scheduling game, respectively. Even-Dar et al. [10] consider
deterministic convergence time to a pure Nash equilibrium for a load balancing game
(routing on parallel links).

3 Single Switch

In this section we consider a single switch. We first characterize Nash equilibria and
derive the price of anarchy. Then we establish an upper bound on the convergence time.
Finally, we study the Nash traffic model.
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3.1 Price of Anarchy

The intuition explaining why congestion collapse does not happen is that at some point
users start to suffer from the delay due to their own packets in the bottleneck buffer and
would not further increase their sending rates. The next theorem shows the existence of
a unique Nash equilibrium and derives the price of anarchy.

Theorem 1. There exists a unique Nash equilibrium that has the price of anarchy of n
and is fair.

Proof. By the definition of a Nash equilibrium, no user can increase its utility by chang-
ing the buffer usage. Therefore, a Nash equilibrium is a local maximum point for the
utility function of each user i. We have that the first derivative (ui(wi, W ))′ must be
equal to zero:

−w2
i − 2W−iwi − W 2

−i + BW−i

B(wi + W−i)2
= 0,

and thus

wi =
√

BW−i − W−i. (1)

It is easy to verify that the second derivative (ui(wi, W ))′′ is negative: −2W−i

B(wi+W−i)3
<0.

We obtain that a Nash equilibrium is fair since for each user i, W =
√

BW−i,
where W is constant. Summing Equation (1) for all users, we get: W = B(n − 1)/n.
Therefore, the unique Nash equilibrium is wi = B(n−1)/n2 for each user i. The price
of anarchy in the Nash equilibrium is 1/

∑n
i=1

( 1
n · 1

n

)
= n.

For simplicity, we assume that B(n − 1)/n2 is an integer. Otherwise, there would be
an approximate Nash equilibrium in which the buffer usage of each user varies between
�B(n − 1)/n2� and �B(n − 1)/n2� as our simulations indeed show.

3.2 Convergence

Now we analyze convergence to a Nash equilibrium. The next theorem demonstrates
that the convergence time to a Nash equilibrium is proportional to the square of the
buffer size.

Theorem 2. The convergence time to a Nash equilibrium is O(B2).

Proof. Let w∗ = B(n − 1)/n2 be the buffer usage of each user in a Nash equilibrium.
Observe that until a Nash equilibrium is reached, each time step either a user with the
maximum buffer usage (greater than w∗) can benefit from decreasing its buffer usage
or a user with the minimum buffer usage (smaller than w∗) can benefit from increasing
its buffer usage. Note that a user can increase its buffer usage at any time if the buffer
is not full, but can decrease its buffer usage only when one of its packets is transmitted
out of the buffer.

Initially, we let the system run for B time steps so that the users would be able to
fill the buffer. Note that at this point no user with the maximum buffer usage wishes to
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increase its buffer usage. In the sequel, the maximum buffer usage will only decrease
and the minimum buffer usage will only increase until they become equal to w∗.

We divide time into phases of B time steps. Consider a phase that starts at time step
t. We argue that if a Nash equilibrium is not reached by time t + B, then either the
maximum buffer usage decreases or the minimum buffer usage increases. Otherwise,
there would be a Nash equilibrium contradicting Theorem 1, which states that in a
Nash equilibrium all users have the same buffer usage. Therefore, the system reaches a
Nash equilibrium after B phases or in B2 time steps.

We also perform a convergence simulation. We consider different settings, where ini-
tially the buffer is filled randomly with packets of different users. The dynamics of the
minimum and the maximum buffer usage for 8 and 16 users appears in Figure 1. The
simulation results show that the actual convergence time is roughly proportional to the
buffer size.
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Fig. 1. Convergence to a Nash equilibrium

3.3 Nash Traffic Model

The traffic model of any QoS architecture is the regulation of the rate at which a user
is allowed to inject packets into the network. There are two important policing criteria:
average rate – limit of the long-term average rate at which packets can be injected into
the network and burst size – the limit of the maximum number of packets that can be
sent into the network over an extremely short time interval.

Definition 2. The (σ, ρ) leaky bucket mechanism is an abstraction modeling a source
with an average rate of ρ and burst size of at most σ. Therefore, at any time interval of
length l there are at most ρ · l + σ packets entering the system.

We show that the traffic of a user in a Nash equilibrium conforms to the leaky bucket
model.

Theorem 3. In a Nash equilibrium the traffic of each user conforms to the leaky bucket
model with σ = B(n − 1)/n2 and ρ = 1/n.

The theorem follows due to the fact that in order to maintain the buffer usage of B(n −
1)/n2, each user must send a burst of B(n − 1)/n2 packets and keep sending packets
at the average rate of 1/n.



242 A. Kesselman, S. Leonardi, and V. Bonifaci

4 PRED Policy

In this section we consider the problem of designing a coordination mechanism (drop
policy) that will improve the price of anarchy. The main goal of a drop policy is to
control the average queue length. This can be done by dropping arriving packets proba-
bilistically when the average queue length exceeds some pre-defined threshold. Such a
policy called Random Early Detection (RED) has been introduced by Floyd and Jacob-
son [13]. We will show that a simple modification of RED reduces the price of anarchy
to a constant. Again, we assume that the users are aware of the drop policy.

The RED policy calculates the average queue length, using a low-pass filter with
an exponential weighted moving average. The average queue length is compared to
two thresholds, a minimum threshold and a maximum threshold. When the average
queue length is less than the minimum threshold Tl, no packets are dropped. When the
average queue length is greater than the maximum threshold Th, every arriving packet
is dropped. When the average queue length is between the minimum and the maximum
threshold, each arriving packet is dropped with probability p, which is a function of the
average queue length.

Pan et al. [26] devise a simple packet dropping scheme, called CHOKe, that dis-
criminates against unresponsive or misbehaving flows aiming to approximate the fair
queuing policy. When a packet arrives at a congested router, CHOKe picks up a packet
at random from the buffer and compares it with the arriving packet. If they both belong
to the same flow, then they are both dropped. Otherwise, the randomly chosen packet is
left intact and the arriving packet is admitted into the buffer with the same probability
as in RED.

Our goal is to ensure a small queue length. Unfortunately, CHOKe is not aggressive
enough in penalizing misbehaving flows since the probability that the buffer usage of
a non-responsive user decreases is inversely proportional to the queue length. We pro-
pose a modification of RED in the spirit of CHOKe, called Preemptive RED (PRED).
The PRED policy is presented in Figure 2. The main feature of PRED is extra drop
mechanism that drops an additional packet of the same user from the buffer when its
packet is dropped by RED. Intuitively, we try to penalize users that do not respond to
congestion signals. Note that if there is no penalty associated with dropped packets,
users will greedily send new packets as long as they can benefit from increasing their
buffer usage.

1. When a new packet arrives, apply the RED policy (regular drop).
2. If the packet is dropped by RED, preempt (drop) the earliest packet of the same user

from the buffer, if any (extra drop).

Fig. 2. The Preemptive RED (PRED) drop policy

The next theorem analyzes Nash equilibria imposed by PRED.

Theorem 4. Under the PRED policy, the price of anarchy in a Nash equilibrium is at
most B

B−Tl
and there exists a fair Nash equilibrium.
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Proof. First we show how to select the drop probability function so that in a Nash
equilibrium the queue length is bounded by Tl. Consider the expected utility of user i
after sending a new packet when the queue length is X ≥ Tl. The buffer usage of user i
will increase and decrease by one with probability 1 − p and p, respectively. Therefore,
the expected utility of user i is

(1 − p(X)) · ut
i(wi + 1, X + 1) + p(X) · ui(wi − 1, X − 1).

User i would refrain from sending additional packets if the expected utility is less than
its current utility ui(wi, X), and we get that p(X) must be greater than

ui(wi + 1, X + 1) − ui(wi, X)
ui(wi + 1, X + 1) − ui(wi − 1, X − 1)

. (2)

Suppose that the drop probability function satisfies inequality (2) for each user i and for
each wi ≥ Tl/n (e.g. p ≈ 1/2 satisfies the above requirements).

If Tl ≥ B(n − 1)/n then clearly there is a unique Nash equilibrium identical to that
imposed by the drop-tail policy. If Tl < B(n−1)/n, then we argue that w∗ = Tl/n is a
fair Nash equilibrium. We have that no user can benefit from increasing its buffer usage
above Tl/n by the selection of the drop probability function and no user can benefit
from decreasing its buffer usage below Tl/n since in the Nash equilibrium imposed by
the drop-tail policy the buffer usage of each user is greater than Tl/n.

We also claim that in a Nash equilibrium the queue length is bounded by Tl. If it is
not the case, at least one user has buffer usage greater than Tl/n. However, the selection
of the drop probability function implies that its buffer usage will eventually drop to or
below Tl/n, which contradicts to the stability of a Nash equilibrium. Therefore, the
price of anarchy is at most B

B−Tl
.

Note that if the queue length exceeds Tl, new users with zero buffer usage would still
keep sending new packets since they can only increase their utility. That allows to avoid
Denial of Service (DoS) when the buffer is completely monopolized by old users.

We also present a simulation that illustrates the effect of PRED on the queue length.
The setting is similar to that of Section 3. The dynamics of the queue length for 8 and
16 users is presented in Figure 3. It turns out that the queue length in a steady state is
very close to Tl and has a small variance, as our analysis indeed shows.
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Fig. 3. The effect of PRED on the queue length



244 A. Kesselman, S. Leonardi, and V. Bonifaci

5 Concluding Remarks

The Internet is stable today mostly due to the fact that the majority of the users vol-
untarily use a congestion-responsive TCP protocol. However, some users can benefit
from not reducing their transmission rate during congestion. Thus, if users behave self-
ishly, the assumption about cooperative behavior may not remain valid. Therefore, it is
important to understand the nature of congestion resulting from selfish behavior.

We analyze the users’ behavior by means of game theory. We consider a single bot-
tleneck buffer under a packetized traffic model, which makes our approach more prac-
tical and applicable to real networks such as the Internet. We show that there exist
efficient and fair Nash equilibria imposed by a simple FIFO buffering policy. However,
the congestion created by the users is rather high. Then we propose a simple modifica-
tion of RED policy, which decreases the congestion at a Nash equilibrium. Finally, we
consider some natural extensions of our model.

We believe that our results can help to shed more light on the stability of the exist-
ing Internet infrastructure in presence of selfish users. Some interesting open problems
include analysis of routing in general networks, alternative utility functions and inter-
action of greedy and non-greedy users (e.g. VBR and CBR applications).
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