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Abstract. In this work, we introduce and study a simple, graph-theoretic model
for selfish scheduling among m non-cooperative users over a collection of n ma-
chines; however, each user is restricted to assign its unsplittable load to one from
a pair of machines that are allowed for the user. We model these bounded interac-
tions using an interaction graph, whose vertices and edges are the machines and
the users, respectively. We study the impact of our modeling assumptions on the
properties of Nash equilibria in this new model. The main findings of our study
are outlined as follows:

— We prove, as our main result, that the parallel links graph is the best-case
interaction graph — the one that minimizes expected makespan of the stan-
dard fully mixed Nash equilibrium — among all 3-regular interaction graphs.
The proof employs a graph-theoretic lemma about orientations in 3-regular
graphs, which may be of independent interest.

— We prove a lower bound on Coordination Ratio [16] — a measure of the cost
incurred to the system due to the selfish behavior of the users. In particu-
lar, we prove that there is an interaction graph incurring Coordination Ratio

N ( logn ) This bound is shown for pure Nash equilibria.

log logn
— We present counterexample interaction graphs to prove that a fully mixed
Nash equilibrium may sometimes not exist at all. Moreover, we prove prop-
erties of the fully mixed Nash equilibrium for complete bipartite graphs and
hypercube graphs.

1 Introduction

Motivation and Framework. Consider a group of m non-cooperative users, each wish-
ing to assign its unsplittable unit job onto a collection of n processing (identical) ma-
chines. The users seek to arrive at a stable assignment of their jobs for their joint inter-
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action. As usual, such stable assignments are modeled as Nash equilibria [21]], where
no user can unilaterally improve its objective by switching to a different strategy.

We use a structured and sparse representation of the relation between the users and
the machines that exploits the locality of their interaction; such locality almost always
exists in complex scheduling systems. More specifically, we assume that each user has
access (that is, finite cost) to only two machines; its cost on other machines is infinitely
large, giving it no incentive to switch there. The (expected) cost of a user is the (ex-
pected) load of the machine it chooses. Interaction with just a few neighbors is a basic
design principle to guarantee efficient use of resources in a distributed system. Restrict-
ing the number of interacting neighbors to just two is then a natural starting point for
the theoretical study of the impact of selfish behavior in a distributed system with local
interactions.

Our representation is based on the interaction graph, whose vertices and (undirected)
edges represent the machines and the users, respectively. Multiple edges are allowed;
however, for simplicity, our interaction multigraphs will be called interaction graphs.
The model of interaction graphs is interesting because it is the simplest, non-trivial
model for selfish scheduling on restricted parallel links. In this model, any assignment
of users to machines naturally corresponds to an orientation of the interaction graph.
(Each edge is directed to the machine where the user is assigned.)

We will consider pure Nash equilibria, where each user assigns its load to exactly
one of its two allowed machines with probability one; we will also consider mixed Nash
equilibria, where each user employs a probability distribution to choose between its two
allowed machines. Of particular interest to us is the fully mixed Nash equilibrium [20]
where every user has strictly positive probability to choose each of its two machines. In
the standard fully mixed Nash equilibrium, all probabilities are equal to % It is easy to
see that the standard fully mixed Nash equilibrium exists if and only if the (multi)graph
is regular.

With each (mixed) Nash equilibrium, we associate a Social Cost [[16] which is the
expected makespan - the expectation of the maximum, over all machines, total load
on the machine. Best-case and worst-case Nash equilibria minimize and maximize So-
cial Cost, respectively. For a given type of Nash equilibrium such as the standard fully
mixed Nash equilibrium, best-case and worst-case graphs among a graph class mini-
mize and maximize Social Cost of Nash equilibria of the given type, respectively. The
assignment of users to machines that minimizes Social Cost might not necessarily be
a Nash equilibrium; call Optimum this least possible Social Cost. We will investigate
Coordination Ratio [16] - the worst-case ratio over all Nash equilibria, of Social Cost
over Optimum. We are interested in understanding the interplay between the topology
of the underlying interaction graph and the various existence, algorithmic, combinato-
rial, structural and optimality properties of Nash equilibria in this new model of selfish
restricted scheduling with bounded interaction.

Contribution and Significance. We partition our results into three major groups:

3-regular interaction graphs (Section[3)). It is easy to prove that the Social Cost of the
standard fully mixed Nash equilibrium for any d-regular graph is d — f(d,n), where
f(d,n) is a function that goes to 0 as n goes to infinity. This gives a general but rather
rough estimation of Social Cost for d-regular graphs; moreover, it does not say how
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the specific structure of each particular 3-regular graph affects the Social Cost of the
standard fully mixed Nash equilibrium. We continue to prove much sharper estimations
for the special class of 3-regular graphs. Restricting our model of interaction graphs
to 3-regular graphs led us to discover some nice structural properties of orientations in
3-regular graphs, which were motivated by Nash equilibria. However, we have so far
been unable to generalize these properties to regular graphs of degree higher than 3.

We pursue a thorough study of 3-regular interaction graphs; these graphs further re-
strict the bounded interaction by insisting that each machine is accessible to just three
users. Specifically, we focus on the standard fully mixed Nash equilibrium where all
probabilities of assigning users to machines are ; We ask which the best 3-regular
interaction graph is in this case. This question brings into context the problem of com-
paring against each other the expected number of 2-orientations and 3-orientations -
those with makespan 2 and 3, respectively. The manner in which these numbers out-
weigh each other brings Social Cost closer to either 2 or 3. We develop some deep
graph-theoretic lemmas about 2- and 3-orientations in 3-regular graphs to prove, as our
main result, that the simplest 3-regular parallel links graph is the best-case 3-regular
graph in this setting. The proof decomposes any 3-regular graph down to the parallel
links graph in a way that Social Cost of the standard fully mixed Nash equilibrium does
not increase. The graph theoretic lemmas about 2- and 3-orientations are proved using
both counting and mapping techniques; both the lemmas and their proof techniques are,
we believe, of more general interest and applicability.

Bound on Coordination Ratio (Sectiond)). For the more general model of restricted par-

allel links, a tight bound of O( log)ﬁ) g ,,) on Coordination ratio restricted to pure Nash
equilibria was shown in [9-Theorem 5.2] and independently in [[1-Theorem 1]. This
implies an upper bound of O( 10{;1%3 gn) on the Coordination Ratio for pure Nash equi-
libria in our model as well. We construct an interaction graph incurring Coordination
Ratio £2( log)ﬁ) g ,,) to prove that this bound is tight for the model of interaction graphs
as well. The construction extends an approach followed in [9-Lemma 5.1] that proved

the same lower bound for the more general model of restricted parallel links.

The Fully Mixed Nash Equilibrium (Section[3). We pursue a thorough study of fully
mixed Nash equilibria across interaction graphs. Our findings are outlined as follows:

— There exist counterexample interaction graphs for which fully mixed Nash equilib-
ria may not exist. Among them are all trees and meshes. These counterexamples
provide some insight about a possible graph-theoretic characterization of interac-
tion graphs admitting a fully mixed Nash equilibrium. 4-cycles and 1-connectivity
are factors expected to play a role in this characterization.

— We next consider the case where infinitely many fully mixed Nash equilibria may
exist. In this case, the fully mixed Nash dimension is defined to be the dimension d
of the smallest d-dimensional space that can contain all fully mixed Nash equilib-
ria. For complete bipartite graphs, we prove a dichotomy theorem that characterizes
unique existence. The proof employs arguments from Linear Algebra. For hyper-
cubes, we have only been able to prove that the fully mixed Nash dimension is
the hypercube dimension for hypercubes of dimension 2 or 3. We conjecture that
this is true for all hypercubes, but we have only been able to observe that the hy-
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percube dimension is a lower bound on the fully mixed Nash dimension (for all
hypercubes).

— We are finally interested in understanding whether (or when) the fully mixed Nash
equilibrium is the worst-case one in this setting. We present counterexample in-
teraction graphs to show that the fully mixed Nash equilibrium is sometimes the
worst-case Nash equilibrium, but sometimes not. For the hypercube, there is a pure
Nash equilibrium that is worse (with respect to Social Cost) than the fully mixed
one. On the other hand, for the 3-cycle the fully mixed Nash equilibrium has worst
Social Cost.

Related Work and Comparison. Our model of interaction graphs is the special case
of the model of restricted parallel links introduced and studied in [9], where each user
is now further restricted to have access to only two machines. The work in [9]] focused
on the problem of computing pure Nash equilibria for that more general model. Awer-
buch et al. [[1]] also considered the model of restricted parallel links, and proved a tight
upper bound of O(, ﬁg ﬁ’)g ,,) on Coordination Ratio for all (mixed) Nash equilibria.
This implies a corresponding upper bound for our model of interaction graphs. It is an
open problem whether this bound of O( log %gg ﬁ)g ,,) is tight for the model of interaction
graphs, or whether a better upper bound on Coordination Ratio for all (mixed) Nash
equilibria can be proved.

The model of restricted parallel links is, in turn, a generalization of the so called KP-
model for selfish routing [[16], which has been extensively studied in the last five years;
see e.g. 314,507,181 9L10,11L119L120]. Social Cost and Coordination Ratio were origi-
nally introduced in [16]]. Bounds on Coordination Ratio are proved in [3L8}9,10}20].
The fully mixed Nash equilibrium was introduced and studied in [20], where its unique
existence was proved for the original KP-model. The Fully Mixed Nash Equilibrium
Conjecture, stating that the fully mixed Nash equilibrium maximizes Social Cost, was
first explicitly stated in [[L1]]. It was proved to hold for special cases of the KP-model
[[L1L[19] and for variants of this model [9,/10]. Recently the Fully Mixed Nash Equilib-
rium Conjecture was disproved for the original KP-model and the case that job sizes
are non-identical [6]. This stands in sharp contrast to the model considered in this paper
where job sizes are identical.

The model of interaction graphs is an alternative to graphical games [14] studied
in the Artificial Intelligence community. The essential difference is that in graphical
games, users and resources are modeled as vertices and edges, respectively. The prob-
lem of computing Nash equilibria for graphical games has been studied in [13.[14}[18]].
Other studied variants of graphical games include the network games studied in [12],
multi-agent influence diagrams [15] and game networks [17].

2 Framework and Preliminaries

For all integers k& > 1, denote [k] = {1,...,k}.

Interaction Graphs. We consider a graph G = (V| E) where edges and vertices corre-
spond to users and machines, respectively. Assume there are m users and n machines,
respectively, where m > 1 and n > 1. Each user has a unit job. From here on, we
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shall refer to users and edges (respectively, machines and vertices) interchangeably. So,
an edge connects two vertices if and only if the user can place his job onto the two
machines.

Strategies and Assignments. A pure strategy for a user is one of the two machines it
connects; so, a pure strategy represents an assignment of the user’s job to a machine.
A mixed strategy for a user is a probability distribution over its pure strategies. A pure
assignment L = (€1, ...,0,,) is a collection of pure strategies, one for each user. A
pure assignment induces an orientation of the graph G in the natural way. A mixed as-
signment P = (pij)ie[n],je[m] is a collection of mixed strategies, one for each user.
A mixed assignment F is fully mixed [20-Section 2.2] if all probabilities are strictly
positive. The standard fully mixed assignment F is the fully mixed one where all prob-
abilities are equal to % The fully mixed dimension of a graph G is the dimension d of
the smallest d-dimensional space that contains all fully mixed Nash equilibria for this
graph.

Cost Measures. For a pure assignment L, the load of a machine j € [n] is the number
of users assigned to j. The Individual Cost for user i € [m]is A; = [{k : {x = £;}],
the load of the machine it chooses. For a mixed assignment P = (p;;)ic[m],je[n]» the
expected load of a machine j € [n] is the expected number of users assigned to j. The
Expected Individual Cost foruseri € [m] on machine j € [n] is the expectation, accord-
ing to P, of the Individual Cost for user ¢ on machine j, then, Aij = 143 "y c ) kzi P
The Expected Individual Cost for user i € [m]is A\j = 3 () PijAij-

Associated with a mixed assignment P is the Social Cost defined as the expec-
tation, according to P, of makespan (that is, maximum load), that is, SC(G,P) =
Ep (maxve[n} {k: £, = v} ) that is, Social Cost is the expectation, according to P,
of makespan (that is, maximum load). The Optimum OPT(G) is defined as the least
possible, over all pure assignments L = (¢1,...,¢,) € [n]™, makespan; that is,
OPT(G) = miny,¢[pm maXye[n) [{k 1l = v}].

Nash Equilibria and Coordination Ratio. We are interested in a special class of (pure
or) mixed assignments called Nash equilibria [21]] that we describe here. The mixed
assignment P is a Nash equilibrium [9,[16] if for each user i € [m], it minimizes \;(P)
over all mixed assignments that differ from P only with respect to the mixed strategy
of user ¢. Thus, in a Nash equilibrium, there is no incentive for a user to unilaterally
deviate from its own mixed strategy in order to decrease its Expected Individual Cost.
Clearly, this implies that A;; = \; if p;; > 0 whereas \;; > A; otherwise. We refer to
these conditions as Nash equations and Nash inequalities, respectively.

The Coordination Ratio CR¢ for a graph G is the maximum, over all Nash equilibria
SC(G,P). SC(G,P)

P, of the ratio OPT(G) * thus, CRg = maxp OPT(G) - The Coordination Ratio CR is
the maximum, over all graphs G and Nash equilibria P, of the ratio SOCFETG(’g)); thus,

CR = max¢ p %Cég(’g)) . Our definitions for CRs and CR extend the original definition

of Coordination Ratio by Koutsoupias and Papadimitriou [16] to encompass interaction
graphs.

Graphs and Orientations. Some special classes of graphs we shall consider include
the cycle C.. on r vertices; the complete bipartite graph (or biclique) K, s which is
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a simple bipartite graph with partite sets of size r and s respectively, such that two
vertices are adjacent if and only if they are in different partite sets; the hypercube H,. of
dimension r whose vertices are binary words of length  connected if and only if their
Hamming distance is 1. For a graph G, denote A the maximum degree of G. A graph
is d-regular if all vertices have the same degree d. The graph consisting of 2 vertices
and 3 parallel edges will be called necklace. Also, for even n, G I (n) will denote the
parallel links graph, i.e., the graph consisting of %, necklaces.

An orientation of an undirected graph G results when assigning directions to its
edges. The makespan of a vertex in an orientation « is the in-degree it has in «. The
makespan of an orientation is the maximum vertex makespan. For any integer d, a d-
orientation is an orientation with makespan d in a graph G; denote d-or(G) the set of
d-orientations of G.

3 3-Regular Graphs

In this section, we consider the problem of determining the best-case d-regular graph
among the class of all d-regular graphs with a given number of vertices (and, therefore,
with the same number of edges), with respect to the Social Cost of the standard fully
mixed Nash equilibrium, where all probabilities are equal to 1/2.

A Rough Estimation. We start with a rough estimation of the Social Cost of any d-
regular graph GG, where d > 2. We first prove a technical lemma about the probability
that such a random orientation has makespan at most d — 1. Denote this probability

q4(G).

Lemma 1. Let I be an independent set of G. Then, q4(G) < (1 — 21d)|1|'.

We are now ready to prove:

Theorem 1. For a d-regular graph G with n vertices, SC(F, G) =d — f(n,d), where
f(n,d) = 0asn — oo

Cactoids and the Two-Sisters Lemma. The rest of our analysis will deal with 3-regular
graphs. We will be able to significantly strengthen and improve Theorem [I] for the
special case of 3-regular graphs. We define a structure that we will use in our proofs.

Definition 1 (Cactoids). A cactoid is a pair G = (V, E), where V is a set of vertices
and E is a set consisting of undirected edges between vertices, and pointers to vertices,
i.e., loose edges incident to one single vertex.

A cactoid is called 3-regular if each vertex is incident to three elements from E. A
cactoid may be considered as a standard multigraph if we add a special vertex and we
replace each pointer by an edge which connects the special vertex with the vertex the
pointer is incident to. N

Consider now any arbitrary but fixed orientation o of G. Call it standard orientation.
We will now define variables x,(e) for each e € F, which take values from {0, 1} in
each possible orientation o of G. The values are defined with reference to the standard
orientation . So, take any arbitrary orientation o of G. Foreach e € E, z,(e) = life
has the same direction in « and o, and 0 otherwise. Note that z,(e) = 1 forall e € E.
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We now continue with a lemma that estimates the probability that a random orienta-
tion is a 2-orientation in a 3-regular cactoid G. Consider two vertices u and v called the
two sisters with incident pointers 7, and 7,. Assume that in the standard orientation
o, m, and 7, point away from u and v, respectively. Denote Pg (i, j) the probability
that a random orientation « with z,(u) = i and z,(v) = j, where ¢,j € {0,1},is a
2-orientation. Clearly, by our assumption on the standard orientation o, P5(1, 1) is not
smaller than each of P5(0,0), Pz(0, 1) and Pz (1, 0). However, we prove that P5(1, 1)
is upper bounded by their sum.

Lemma 2 (Two Sisters Lemma). For any 3-regular cactoid G = (V, E> and any two
sisters u,v € V, it holds that Pz(0,0) + Pg(0,1) + P5(1,0) > P5(1,1).

Proof. Denote by, bo and b3, by the other edges or pointers incident to the two sisters
u and v, respectively. Define the standard orlentatlon o so that these edges or pointers
point towards u or v, respectively. Denote G’ the cactoid obtained from G by deleting
the two sisters u and v and their pointers 7, and m,. Define PG, (x1,22,x3,24) the

probability that a random orientation « of the cactoid G’ with 2, (b;) = x; for 1 < i <
4 is a 2-orientation. Then,

1
Pé(l,l) = 16 Z P@(xl,xg,xg,m) ,

z1,r2,23,04€{0,1}

1
P5(0,0) = 16 Z Pgi(z1, 72,73, 24) ,

5131-5132:0,5133-14:()

1
Pé(()?l) = 16 Z P@($17$27$3,x4) 9
x1,22€{0,1},23-24=0
1
PG‘(170) = 16 Z P@($17$27$3,x4) .

x1~x2=0,x3,x46{0,1}

Setnow D = 16 - (P5(0,0) + P5z(0,1) 4+ P5(1,0) — P5(1,1)). It suffices to prove
that D > 0. Clearly,

D=2 Z P@($1,$2,$3,$4)_P(l,l,l,l)~

11-5132:0,5133-513410

Use now the cactoid G’ to define the probabilities Q(4, j) and R(i,j) where i,j €
{0,1} as follows: Q(i, ) is the probability that a random orientation « of the cactoid
G’ with Zq(b1) = i and xz,(b2) = j is a 2-orientation; R(i, j) is the probability that
a random orientation o of the cactoid G’ with z (bg) = i and z4(bs) = jis a 2-
orientation. Clearly,

Qé\/(h.]): Z Pé‘,(i,j,l‘g,l‘4),
x3,04€{0,1}

Rg(i,j)= Y,  Pgler,xa,6,]).
z1,r2€{0,1}
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We proceed by induction on the number of vertices of G. So, it suffices to assume the
claim for the cactoid G’ and prove the claim for the cactoid G. Assume inductively
that Q@(0,0) + Q@(O, 1)+ Q@(l,O) > Qé\,(l, 1) and R@(0,0) + R@(O, 1)+
Rz (1,0) > Rg(1,1). These inductive assumptions and the definitions of Q& and
Rz imply that

Z Pé\,(xl,xQ,l'S,l'zl) Z Z Pé\,(l,l,l’3,x4) P

z3,24€{0,1} z3,24€{0,1}
z1-w9=0
E P@($1,$2,$3,$4) Z E Pé\,(l‘l,xg,l,l) .
zq,22€{0,1} z1,22€{0,1}
23 w4=0

From the first inequality we obtain,

Z Pz (w1, 22,3, 24) > Z Pz (1,1, 23, 74) — Z Pz (w1, 22,1,1) .
1f1328 z3,24€{0,1} r1-w2=0

From the second inequality we get,

Z P@($1,$2,$3,$4)2 Z Pé‘,(l‘l,l‘gl,l)_ Z Pé\/(171ax37x4)~
e saaelo) i

This yields ZZml.wzg P (21,22, 23,24) > 2Pa~,(1, 1,1,1) by adding up the last
two inequalities, which implies D > 0, and the claim follows. O

Orientations and Social Cost. In this section, we prove a graph-theoretic result, namely
that the regular parallel links graph minimizes the number of 3-orientations among all
3-regular graphs with the same number of vertices.

Theorem 2. For every 3-regular graph G with n vertices it holds that |3-or(G)| >
|3-or(G|(n))].

Proof. In order to prove the claim, we start from the graph Gy = G = (V, Ey) and
iteratively define graphs G, = (V| E;), 1 < ¢ < r, for some r < n, in a way that G,.
equals G| (n) and |3-or(G;)| > |3-or(Gi41)| holds forall 1 < < r.

Note that in each 3-regular graph, each connected component is either isomorphic to
a necklace or it contains a path of length 3 connecting four different vertices, such that
only the middle edge of this path can be a parallel edge. If in GG; all connected compo-
nents are necklaces, than G is equal to G| (n), otherwise some connected component
of G; contains a path ¢, a, b, d with 4 different vertices a, b, ¢, d. In the latter case, con-
struct a new graph G, 11 = (V, E;11) by deleting the edges {a, ¢}, {b, d} from F; and
adding the edges {a, b}, {c, d} to the graph as described in the following paragraph.

As illustrated in Figure [1] the edges incident to vertices a, b, ¢, d are numbered by
some j, where 1 < j < 9. In this figure, all the edges are different. This does not
necessarily have to be the case. It may happen that e, = e resulting in two parallel
edges between ¢ and b in GG; and three parallel edges between a and b in G;41. It may
also happen that eg or ez is equal to eg or eg. It is not possible that eg or e7 is equal to
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eo (or that eg or eg is equal to e3) since we assumed that in the path c, a, b, d only the
middle edge may be a parallel edge. It may be also possible that e4 is equal to eg or

eg, and that e5 is equal to eg or e7. Note also that in each iteration step, the number of
single edges is decreased by at least 1. So the number of iteration steps is at most n.

€2 €6 €6
es —()——(o) o) (o)
€7 €7

G e Gig e
€g €g

es —(b)——(a) es—1) (o)
€3 €9 €9

Fig. 1. Constructing the graph G;+1 from G;

First, we will show that |3-or(G;)| > |3-or(Gi+1)| holds if all the edges ey, ..., eg
are different. We will consider the more general case in which some of the ¢;’s are equal
at the end of the proof. To make the notation simpler, we set ¢ = 1, i.e., we consider
the graphs G; and G». Note that there is a one-to-one correspondence between edges in
(1 and edges in G. This implies that any arbitrary orientation in Gy can be interpreted
as an orientation in G5 and vice versa. Take the standard orientation of G1 to be the
one consistent with the arrows in Figure 2l The interpretation of this orientation for G
yields the standard orientation for G2 (also shown in Figure [2)).

€2 €6 €6
s (D=1 wm) (O
€7 €7

G, e G, elHez €3

€g €g
es —~(n)——(a) es—0b) (@)
€3 \99 €9

Fig. 2. The standard orientations in G and G2

We will prove our claim by defining an injective mapping F' : 3-or(G3) — 3-or(Gh).
We want to use the identity mapping as far as possible. We set Cy = {a; a € 3-or(G2)
a ¢ 3-or(G1)} and Cy = {a; « € 3-0or(G1) , a ¢ 3-or(G2)}, and we will define F'
such that F'(a) = « for a € 3-or(G2) \ C7 and that F' : C; — ()} is injective. Note
that a mapping F' : 3-or(G2) — 3-or(G1) defined this way is injective, since if 3 € C1,
then 3 ¢ 3-or(G2) and therefore 3 is not an image when using the identity function.

Let « be an arbitrary orientation. Note that all vertices u ¢ {a, b, ¢, d} have the same
makespan in G; and in G5 with respect to oe. We identify first the class C; and consider
the vertices a, b, ¢, d. We observe:

a has makespan 3 in G4 d has makespan 3 in G2
=T =To =24 =1 =>x3=0,z8 =29 =1
= a has makespan 3 in G = d has makespan 3 in G
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b has makespan 3 in G4 ¢ has makespan 3 in G2
=>x1=29=0, 25 =1 = r3=T5 =27 =1
x3 = 1 = b has makespan 3 in G 2 = 0 = ¢ has makespan 3 in Gy
3 =0, =29 =1 1 =0Az5=1
= d has makespan 3 in Gy = b has makespan 3 in G
Tz =x7=1 ro=1Azx1=24=1
= ¢ has makespan 3 in G = a has makespan 3 in G

Collecting this characterization, we construct the class C5 as

Cy={aé¢3-or(G1);x1=20=a3=0Ax5=1Azg 27 =25 29 =0}
Uf{aé¢3-or(Gy); zo=a3=a¢ =a7=1
Ax1 -4 =0 A ($1:1\/.’L‘5:0)}.

In a similar way, we construct the class C as

Ci={aé¢3-or(Gz); 21 =0Nzy =235 =25 =1 Awg - 27 =0}
U{a¢3-or(Ge); za=23=0ANag=x7=1
/\3’58~$920 /\(l‘1:1\/$5:0)}.
Now, to define F', we consider four cases about orientations o« € Cy:

(1) Consider o € C5 with
$2:Z3:Z6:1'7:1 A xl.x4:0 A 1’8%T9:0 A (:Ulzl \Vi 1.5:0)
SetF(l‘h1,1,%‘4,%‘5,1,1,%‘&%‘9,...):($1,0,0,$4,$5,1,1,1‘8,.%‘9,...).

. e
o in G, ‘ez €3 F(o) in Gy
Ly e o

Fig. 3. The mapping F'

Note that vertices from {a, b, ¢, d} have the same connections to vertices outside
{a,b,c,d}; therefore, o ¢ 3-or(Gy) implies that F'(a) ¢ 3-or(G2). This implies
that F(«) € C4.

(2) Consideraw € Co withaxy =29 =23 =0Ax5 =1Ax6 -7 =0A w829 =0.
Set F(0,0,0, 24,1, g, 7, T8, 9, ... ) = (0,1, 1, 24,1, 26, x7, 28, Tg, . . . ).
In a way similar to case (1), we conclude that F(«) € Cj.

After these two cases, any orientation o € Hy with

Hy={aecCyloy=a3=06=a7=1
Az1 x4 =0Ax8 =29 =1A (1 =1Va5=0)}
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has not been mapped by F’, and orientations 8 € H; with

Hi={feC|rm=23=0ANzs=x7=1Az1 =24 =1Axg- 29 =0}
U{ﬁeC’l|x1:0,xg:x3:x5:1/\xﬁ~x7:0/\x8:339:1}

are not images under F'. We continue with these orientations.
(3) Set

Hyy={ae€Cy;ay=a3=a6¢=a7r=a3 =79 = L Ax1 =1 x4 =0}
Hllz{ﬁeCl;xgzx3:0/\x1 :$4:$6:$7:1/\.’L‘8'$9:0}

We will show that | Hz; | < |Hq1] holds.

Consider the cactoids T»; and 77; obtained by omitting the vertices a, b, ¢, d
from Hy; and Hjp, respectively. 757 and T7; consist of edges and 6 pointers
ej,4 < j < 9. Fixing the directions of the pointers in the same way as in the defini-
tions of Hy; and Hii, respectively, the number of 2-orientations of 75 is equal to
| H21 | and the number of 2-orientations of 77 is equal to |H11|. See Figure[ for an
illustration. The pointers eg and e; have the same directions in 75; and 77; and e5
has no specified direction in both cases. Edge e4 has different directions in T5; and
T1,. Directing edge e4 in T5; towards vertex a would lead to an increased number of
2-orientations since the other vertex incident to e4 has in this case makespan 2 with

€6
es=(a) (9
€7

21 € €) €3 H

€g
es (&)
€9

Fig. 4. Orientations from the sets H21 and H11

a larger probability. Let fgl be the cactoid obtained from 751 by directing edge e4
towards a. Then T5; and 77, differ only in the directions given to edges eg and eg.
Let P(i Jj) be the probability of a 2-orientation in G if x5 = i and g = j. Set
m = 3n. Then, Lﬁ“l P(0,0)+ P(0,1) + P(1,0) > P(1,1) > |211213|7 because
of Lemma[Zl It follows that | Hoy| < |Hi1.

(4) To finish the first part of the proof, set

HQQZ{ﬂECQ;l‘Q:JJg:JJ(;:lW:l‘S21‘9:1/\.%‘1:.%‘5:0}
H12:{ﬂ€cl;l'1:O/\ZQ:$3:1’5:$8:$9:1/\l’6~$7:0}
See Figure[Albelow for an illustration. In the same way as in case (3), we show that

|Haz| < |Hial.

Since Hy = Hy; U Hos and H; = Hj; U Hio, there exists an injective mapping
F : 3-or(G2) — 3-or(G1) in the case that all edges eq, . . ., eg are different.
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€6
es () (o)
€7

€g
es=—1n) (@)
€9

Fig. 5. Orientations from the sets H22 and H12

Now we consider the case that some of these edges are equal. If e; = e; then in each
orientation « the variables z; and x; get opposite values. Recall that the construction
and proof of injectivity of the mapping F', which we described above, was done in 3
steps:

(i) We defined F(«) = a for all @ € 3-or(G3) \ Ca
(ii) In cases (1) and (2) for some well defined o = (z1, ..., g, ...), the value F(«)
is obtained by negating x2 and z3 and leaving the other directions unchanged.
(iii) |H2| < |Hi]is shown for the remaining cases.

Steps (i) and (ii) are not influenced by setting ; = Z; forsome 4, j € {4,...,9},4 # j.
So it remains to consider step (iii). If e; = ¢; fori € {6,7},j € {8,9}, then z; = Z;
holds and this implies that H> = (), since for all & € Hs it holds wg = 27 = xg =
x9 = 1. Clearly, this implies |Hz| < |Hy|.

So we can assume now that e; # e; for ¢ € {6,7},5 € {8,9} and we consider the
case e4 = e5. We will show first that |Ho1| < |H11]| holds also in this case. Consider
the cactoids 75 and 77, obtained by deleting the vertices a, b, ¢, d from Hy; and Hi;.
Since edge e4 = e5 connects vertices a and b, it is also deleted when the cactoids are
formed. Each of the cactoids 771 and T5; has now only the 4 pointers ¢;,6 < j < 9. A
simple inspection of the proof given above shows that | Ha1| < |H11] holds also in this
case. Furthermore, | Ha2| < |Ha1| can be shown in the same way. The cases e4 = eg and
e5 = eg can be handled in a very similar way. This completes the proof of the claim. O

Our main result follows now as an immediate consequence of Theorem 2]

Corollary 1. For a 3-regular graph G with n vertices, SC(G,F) > SC(G(n), F) =
3\n/2

3- (4) :

We can also show that equality does not hold in Corollary [1l

Example 1. There is a 3-regular graph for which the Social Cost of the standard fully
mixed Nash equilibrium is larger than for the corresponding parallel links graph.

4 Coordination Ratio

In this section, we present a bound on the Coordination Ratio for pure Nash equilibria.

Theorem 3. Restricted to pure Nash equilibria, CR = © (log)ﬁ) gn)

Observation 1. Restricted to pure Nash equilibria, for any interaction graph G,
CR¢g < Ag, and this bound is tight.
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S The Fully Mixed Nash Equilibrium

In this section, we study the fully mixed Nash equilibrium. For a graph G = (V, E), for
each edge jk € E, denote jk the user corresponding to the edge jk. Denote pj, and Di;
the probabilities (according to P) that user jk chooses machines j and k, respectively.
For each machine j € V, the expected load of machine j excluding a set of edges E,
denoted 7p(j) \ E, is the sum ij cB\B Dkj- As a useful combinatorial tool for the
analysis of our counterexamples, we prove:

Lemma 3 (The 4-Cycle Lemma). Take any 4-cycle Cy in a graph G, and any two
vertices u,v € Cy that are non-adjacent in Cy. Consider a Nash equilibrium P for G.
Then, 7Tp(7.L) \ C4 = WP(U) \ C4.

Non-Existence Results. We first observe:
Counterexample 1. There is no fully mixed Nash equilibrium for trees and meshes.

We remark that the crucial property of trees that was used in the proof of Counterex-
ample [T is that each tree contains at least one leaf. Thus, Counterexample [l actually
applies to the more general class of graphs with no vertex of degree 1. We continue to
prove:

Counterexample 2. For each graph in Figurel6| there is no fully mixed Nash equilib-
rium.

Our six counterexample graphs suggest that the existence of 4-cycles across the “bound-
ary” of a graph or 1-connectivity may be crucial factors that disallow the existence of
fully mixed Nash equilibria. Of course, this remains yet to be proved.

AN

Uniqueness and Dimension Results. For Complete Bipartite Graphs, we prove:

Fig. 6. Six counterexample graphs

Theorem 4. Consider the complete bipartite graph K, s, where s > r > 2 and s > 3.
Then, the fully mixed Nash equilibrium ¥ for K, s exists uniquely if and only if r > 2.
Moreover; in case v = 2, the fully mixed Nash dimension of K, s is s — 1.
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Hypercube Graphs. Observe first that, in general, any point in (0, 1)" is mapped to a
fully mixed Nash equilibrium with equal Nash probabilities on all edges of the same
dimension (and “pointing” to the same direction). This implies:

Observation 2. Consider the hypercube H,., for any v > 2. Then, the fully mixed Nash
dimension of H, is at least r.

To show that r is also an upper bound, we need to prove that no other fully mixed Nash
equilibria exist. We manage to do this only for r € {2, 3}.

Theorem 5. Consider the hypercube H,, for r € {2,3}. Then, the fully mixed Nash
dimension is r.

Worst-Case Equilibria. We present two counterexamples to show that a fully mixed
Nash equilibrium is not necessarily the worst-case Nash equilibrium, but it can be.

Counterexample 3. There is an interaction graph for which no fully mixed Nash equi-
librium has worst Social Cost.

Counterexample 4. There is an interaction graph for which there exists a fully mixed
Nash equilibrium with worst Social Cost.

Acknowledgments. We thank Paul Spirakis and Karsten Tiemann for helpful discus-
sions on the topic of our work.
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