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Abstract. We study a model of interdomain routing in which autonomous sys-
tems’ (ASes’) routing policies are based on subjective cost assessments of al-
ternative routes. The routes are constrained by the requirement that all routes to
a given destination must be confluent. We show that it is NP-hard to determine
whether there is a set of stable routes. We also show that it is NP-hard to find
a set of confluent routes that minimizes the total subjective cost; it is hard even
to approximate minimum cost closely. These hardness results hold even for very
restricted classes of subjective costs.

We then consider a model in which the subjective costs are based on the rel-
ative importance ASes place on a small number of objective cost measures. We
show that a small number of confluent routing trees is sufficient for each AS to
have a route that nearly minimizes its subjective cost. We show that this scheme
is trivially strategyproof and that it can be computed easily with a distributed
algorithm that does not require major changes to the Border Gateway Protocol.
Furthermore, we prove a lower bound on the number of trees required to contain
a (1 + ε)-approximately optimal route for each node and show that our scheme
is nearly optimal in this respect.

1 Introduction

The Internet is divided into many Autonomous Systems (ASes). Loosely speaking, each
AS is a subnetwork that is administered by a single organization. The task of routing
between different ASes in the Internet is called interdomain routing.
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Currently, the only widely used protocol for interdomain routing is the Border Gate-
way Protocol (BGP). BGP allows an AS to “advertise” routes it currently uses to neigh-
boring ASes. An AS i with many neighbors may thus receive advertisements of many
different routes to a given destination j. It must then select one of these available routes
as the route it will use to send its traffic; subsequently, i can advertise this chosen route
(prefixed by i itself) to all its neighbors. Proceeding in this manner, every AS in the
Internet can eventually discover at least one route to destination j.

Thus, one of the key decisions an AS has to make is that of route selection: Given
all the currently available routes to destination j, which one is traffic sent on? At first
glance, it may seem as though ASes would always prefer the shortest route; in practice,
however, AS preferences are greatly influenced by other factors, including perceived
reliability and existing commercial relationships. For this reason, BGP allows ASes
complete freedom to pick a route according to their own routing policies. The resulting
routing scheme is called policy-based routing, or policy routing for short. However,
BGP does place one important constraint on routing: It stipulates that an AS can only
advertise a route that the advertising AS itself currently uses. This is because of the way
traffic is routed in the Internet: Routers examine the destination of incoming packets and
simply forward the packet to the next hop on the current route to that destination. At
a given time, each AS typically has exactly one active route to the destination. Thus,
the set of all ASes’ routes to a given destination AS j must be confluent, i.e., they must
form a tree rooted at j.

The policy-routing aspect of interdomain routing has recently received a lot of atten-
tion from researchers. Varadhan et al. [1] observed that general policy routing could
lead to route oscillations. Griffin, Shepherd, and Wilfong [2, 3] studied the following
abstract model of general policy routing: Each AS i’s policy is represented by a pref-
erence ordering over all possible routes to a given destination j. At any given time, i
inspects the routes all of its neighbors are advertising to j and picks the one that is
ranked highest. AS i then advertises this route (prefixed by i itself) to all its neighbors.
Griffin et al. proved that, in such a scenario, BGP may not converge to a set of stable
paths; the routes might keep oscillating as ASes continuously change their selection in
response to their neighbors’ changes. They further showed that, given a network and a
set of route preferences, it is NP-complete to determine whether a set of stable paths
exists. In recent work, Feamster et al. [4] showed that instability can arise even for
restricted routing policies.

Feigenbaum et al. [5] extended the model of [2] by including cardinal preferences
instead of preference orderings. Specifically, they assume that AS i conceptually assigns
each potential route a monetary value and then ranks routes according to their value. The
advantage of working with cardinal preferences is that a set of paths can be stabilized
by making payments to some of the ASes: Although the ASes’ a priori preferences
may have led to oscillation (in the absence of payments), ASes preferences can be
changed if they receive more money for using a less valuable route. This is the basis
for the mechanism-design approach to routing, which seeks to structure incentives so
as to achieve a stable, globally optimal set of routes; see [5] for further details. In the
context of policy routing, the most natural global goal is to select a set of confluent
routes that maximizes the total welfare (the sum of all ASes’ values for their selected
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routes). However, Feigenbaum et al. showed that, for general valuation functions, it is
NP-hard to find a welfare-maximizing set of routes; it is even NP-hard to approximate
the maximum welfare to within a factor of n

1
4−ε, where n is the number of nodes.

Thus, in this model too, general routing policies lead to computationally intractable
problems.

The natural approach to get around the intractability results is to restrict either the
network or the routing policy. Restricting the network alone does not appear to be a very
promising direction, because the hardness results hold even for fairly simple networks
that cannot be excluded without excluding many “Internet-like” networks. This has led
researchers to turn to restricted classes of preferences that can express a wide class of
routing policies that ASes use in practice. Feigenbaum et al. [5] study next-hop prefer-
ences – preferences in which an AS i’s value for a path depends only on the next AS on
the path – and show that, in this case, a welfare-maximizing set of routes can be found
in polynomial time. Next-hop preferences can capture the effects of i’s having different
commercial relationships with neighboring ASes. Similarly, in the ordinal-preference
model, Gao and Rexford [6] show that, with the current hierarchical Internet structure,
BGP is certain to converge to a set of stable paths as long as every AS prefers a cus-
tomer route (i.e., a route in which the next hop is one of its customers) over a peer or
provider route; this can also be viewed as a next-hop restriction on preferences.

However, there are many useful policies that cannot be expressed in terms of next-
hop preferences alone. In this paper, we study other classes of routing policies that
capture realistic AS preferences. For example, an AS i might wish to avoid any route
that goes through AS k, either because it perceives k to be unreliable or because k
is a malicious competitor who would like to drop all of i’s traffic. This leads to the
forbidden-set class of routing policies: For each AS i, there is a set of ASes Si such that
i prefers any route that avoids Si over any route that uses a node in Si. We can then ask
the following questions: (1) If each node uses a forbidden-set routing policy, will BGP
converge to a set of stable paths?, and (2) Can we find a welfare-maximizing routing
tree, i.e., a set of confluent routes that maximizes the number of nodes i whose routes
do not intersect the sets Si? If the latter optimization problem were tractable, then this
class of routing policies would be a candidate for a mechanism-design solution as in [7].

Forbidden-set policies (and many others) can be framed in terms of subjective costs:
Each AS i assigns a cost ci(k) to every other AS k. Then, the “cost” perceived by AS k
for a route P is

∑
k∈P ci(k); AS i prefers routes with lower subjective cost. Subjective-

cost routing is a natural generalization of lowest-cost routing (in which there is a single
objective measure of cost that all ASes agree upon). It is well known that lowest-cost
routes can be computed easily, and hence we hope that some more general class of
subjective-cost routing policies will also be tractable.

However, we find that even very restricted subsets of subjective-cost policies lead
to intractable optimization problems: We show that, if all ASes rank paths based on
subjective-cost assignments, it is still possible to have an instance in which there is no
stable-path solution. Further, given a network and subjective costs, it is NP-complete to
determine whether there is a set of stable paths. Moreover, the NP-completeness reduc-
tion only requires subjective costs in the range {0, 1, 2} for each node. In the cardinal
utility model, the outlook is not much brighter: We show that, even if all subjective
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costs are either 0 or 1, it is NP-hard to find a set of routes that maximizes the over-
all welfare; indeed, it is NP-hard even to approximate maximum welfare to within any
factor. The forbidden-set routing policies can be formulated in terms of 0-1 subjective
costs, and hence optimizing for this class is also difficult. We then turn to subjective
costs with bounded ratios. We show that, if the subjective costs are restricted to lie in
the range [1, 2], the problem of finding a confluent tree with minimum total subjective
cost is APX-hard; thus finding a solution that is within a (1 + ε) factor of optimal is
intractable. In this case, however, an unweighted shortest-path tree provides a trivial
2-approximation to the optimization problem.

In light of all these hardness results, we consider a more restricted scenario in which
the differing subjective cost assignments arise from differences in the relative impor-
tance placed on two objective metrics, such as latency and reliability. Thus, we suppose
that every path P has two objective costs l1(P ) and l2(P ). We assume that AS i eval-
uates the cost of path P as the convex combination λil1(P ) + (1 − λi)l2(P ), where
λi ∈ [0, 1] reflects the importance i places on the first metric. Here, too, it is NP-hard
to find a routing tree that closely approximates the maximum welfare. However, if we
slightly relax the constraint that each AS stores only a single route to the destination,
we show that it is possible to find a nearly optimal route, as follows. Given any ε > 0,
we can find a set of O(log n) trees1 rooted at j with the following property: If each AS
i chooses the route it likes best among the O(log n) alternatives, the overall welfare is
within a (1 + ε) factor of optimal. This solution can be implemented by replacing each
destination with a set of O(log n) logical destinations and then finding a lowest-cost
routing tree to each of these logical destinations. The results generalize to the convex
combinations of d > 2 objective metrics; O(4d logd−1 n) trees are required in this
case.This scheme is trivially strategyproof, and, further, it can be implemented with a
“BGP-based” algorithm, i.e., an algorithm with similar data structures and communica-
tion patterns to BGP (cf. [7, 5]).

The rest of this paper is structured as follows: In section 2, we introduce the subjec-
tive-cost model of routing preferences. In section 3, we study the stable-paths problem
for path rankings based on subjective costs. In sections 4 and 5, we study the problem of
finding a routing tree that minimizes the total subjective cost. Due to space restrictions,
the proofs have been omitted from this extended abstract; they will appear in the final
version of the paper.

2 Subjective-Cost Model for Policy Routing

In this section, we present the subjective-cost model of AS preferences. The model
involves each AS i’s assigning a cost ci(k) to every other AS k. These costs are subjec-
tive, because there is no requirement that ci(.) and ck(.) be consistent. We assume that
each subjective cost ci(k) is non-negative. The total cost of an AS i for a route Pij to
destination j is

ci(Pij) =
∑

k∈Pij

ci(k) .

1 The dependence on ε is detailed in Section 5.
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Here, the notation k ∈ Pij is used to indicate that k is a transit node on the the path
Pij ; i and j are thus excluded from the summation. AS i wants to use a route Pij that
minimizes the cost ci(Pij).

The subjective-cost model can be used to express a wide range of preferences, but
it does place some restrictions on AS preferences. For instance, an AS i cannot prefer
a path P over a path P ′ whose nodes are a strict subset of P . The class of preferences
that can be expressed as subjective costs includes:

– Lowest-cost routing
If ci(k) is the actual cost of transiting AS k, minimizing the path cost is exactly
lowest-cost routing.

– Routing with a forbidden set
Let ci(.) take the following form: If k ∈ Si, ci(k) = 1, else ci(k) = 0. Then any
route that avoids ASes in Si is preferred by i over any route that involves an AS
in Si.

Subjective costs can form the basis for either ordinal preferences or cardinal utilities.
In section 3, we study the stable-paths problem for path rankings based on subjective
costs. In sections 4 and 5, we study the problem of finding a routing tree that minimizes
the total subjective cost.

3 Stable Paths with Subjective Costs

The Stable Paths Problem (SPP), introduced by Griffin et al. [3], is defined as follows.
We are given a graph with a specified destination node j. Each other node i represents an
AS; there is an edge between two nodes if and only if they exchange routing information
with each other. Thus, a path from i to j in the graph corresponds to a potential route
from AS i to the destination. Each AS i ranks all potential routes to destination j. A
route assignment is a specification of a path Pij for each AS i such that the union of
all the routes forms a tree rooted at j (i.e., the confluence property is satisfied). A route
assignment is called stable if, for every AS i, the following property holds: For every
neighbor a of i, AS i does not strictly prefer the path aPaj over the path Pij ; in other
words, i would not want to change its current route to any of the other routes currently
being advertised by its neighbors. The stable-paths problem is solvable if there is a
stable route assignment.

Griffin et al. [2, 3] have shown that there are instances of SPP that are unsolvable,
and, further, that it is NP-complete to determine whether a given SPP is solvable. Their
constructions used preferences that cannot be directly expressed as subjective-cost pref-
erences. This leads us to hope that, for subjective-cost preferences, the stable-paths
problem might be tractable. Unfortunately, this is not the case. In this section, we prove
that these hardness results extend to subjective-cost preferences.

Assume that the rankings assigned by ASes are based on an underlying subjective-
cost assignment. Then, the stable paths problem can be viewed in terms of a strategic
game, as follows: The players of this game are the ASs. Given a graph G(V, E) with a
specific destination j and a subjective-cost function c : V (G) × V (G) → R, the next-
hop game is defined as follows. ASes correspond to the vertices of graph G. The strategy
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Fig. 1. A bad triangle

space for AS i is the set N(i) of neighboring nodes in the graph; thus, AS i’s picking
the route advertised by a neighboring AS a corresponds to i’s playing strategy a. Given
a vector of strategies (one for each player), the cost incurred by player i is the subjective
cost of its route to the destination; if there is no route from i to the destination, i’s cost is
∞. A vector of strategies is a pure-strategy Nash equilibrium if, given the strategies of
all the other ASes, no AS could decrease its subjective cost by changing its strategy. A
pure-strategy Nash-equilibrium strategy profile must result in every AS’s having some
route to j, and, hence, it must correspond to a valid route assignment. Thus, proving
that an SPP is solvable is equivalent to proving that the corresponding next-hop game
has a pure-strategy Nash equilibrium.

Definition 1. The bad triangle is defined as follows. It is a graph G with vertex set
{a, b, c, a′, b′, c′, r} and edge set {aa′, a′r, cc′, c′r, bb′, b′r, ab, bc, ca}. Set ca(c) =
ca(c′) = 0; cb(a) = cb(a′) = 0; and cc(b) = cc(b′) = 0. All other subjective costs
are set to 1. A bad triangle is shown in Figure 1. (This construction is based on the bad
gadget defined in [2].)

In the bad triangle, AS a prefers the path (a, b, b′, r) to the path (a, a′, r), AS b prefers
the path (b, c, c′, r) to the path (b, b′, r), and AS c prefers the path (c, a, a′, r) to the
path (c, c′, r). It follows from the arguments in [2] that this network is not solvable.

We now show that, as in the case of unrestricted routing policies, it is NP-complete
to determine if an SPP based on subjective-cost preferences is solvable.

Theorem 1. Given an instance of the next-hop game, it is NP-complete to decide
whether it has a pure Nash equilibrium or not.

The proof is based on the corresponding NP-completeness proof in [2].

4 The Minimum Subjective-Cost Tree (MSCT) Problem

In this section, we assume that the subjective cost ci(k) is an actual monetary amount
that is measured in the same unit across all ASes. A natural overall goal is then to
minimize the sum of subjective costs, i.e., to pick a set of routes {Pij} that minimizes∑

j

∑
i ci(Pij). However, there is a constraint that all the routes to a single destination

j must form a tree, because the packets are actually sent by forwarding. This constraint
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applies independently to each destination, and so we can consider the simpler problem
of routing to a single destination j.

Thus, we can frame the subjective-cost minimization problem as:

Subjective-cost minimization: We are given a graph G, a set of cost functions {ci(.)},
and a specific destination j. We want to find a set of routes {Pij} and payments pi

to each AS i such that:

1. The routes {Pij} form a tree rooted at j.
2. Among all such trees, the selected tree minimizes the sum

∑
i

∑
k∈Pij

ci(k).

We first prove that, for arbitrary cost functions, the MSCT problem is NP-hard to
approximate within any multiplicative factor. Let cmax = maxv,u∈V (G) cv(u) and
cmin = minv,u∈V (G) cv(u). Then, we have the following result:

Theorem 2. It is NP-hard to approximate the MSCT problem within a factor better
than cmax

cminn2 , where n is the number of vertices. In particular, it is NP-hard to approxi-
mate MSCT within any factor if cmin = 0 and cmax > 0.

Note that the above theorem does not show hardness for the special cases in which
cmax
cmin

is not large. This may be a reasonable restriction; however, we now show that this
also yields an intractable optimization problem. In particular, we study the special case
in which all subjective costs are either 1 or 2. We call this problem the (1, 2)-MSCT
problem. In the following, we give a hardness result for the (1, 2)-MSCT problem.

Theorem 3. The (1, 2)-MSCT problem is APX-Hard.

Theorem 3 shows that, for sufficiently small ε, it is hard to find a (1+ ε)-approximation
for the (1, 2)-MSCT problem. However, we note that finding a 2-approximation is easy:
Simply ignore the costs, and construct an unweighted shortest-path tree with destination
j. This is optimal to within a factor of 2, because the number of nodes on the shortest
path from i to j is a lower bound on the subjective cost ci(Pij) for any path Pij from i
to j.

5 An Alternative Model: Subjective Choice of Metrics

In this section, we consider a more restricted preference model. We assume that there
are multiple objective metrics on routes (e.g., cost and latency), and ASes’ preferences
differ only in the relative importance they accord to different metrics. This is a non-
trivial restriction only when the number of objective metrics is small; here, we first
consider the case in which there are only two objective metrics on a route. The results
are generalized to d > 2 objective metrics in Section 5.1.

Formally, suppose that any transit AS k has two associated objective “length” values
l1(k) and l2(k). Both the length values can be extended to additive path metrics, i.e.,
we can define l1(Pij) =

∑
k∈Pij

l1(k) and l2(Pij) =
∑

k∈Pij
l2(k). Note that we use

the term “metric” for the ease of presentation and that we do not impose the triangle
equality on the length functions l1 and l2.
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Each AS i has a private parameter λi, 0 ≤ λi ≤ 1. AS i’s subjective cost for the
route Pij is given by ci(Pij) = λil1(Pij)+ (1 − λi)l2(Pij), i.e., AS i’s preferences are
modeled as a convex combination of the two path metrics.

It is easy to show that the APX-hardness proof for the (1, 2)-MSCT problem (Theo-
rem 3) can be adapted to the two-metric routing problem as well:

Theorem 4. In the subjective-metric model, it is APX-hard to find a tree T that mini-
mizes total subjective cost.

We now investigate whether relaxing the confluent-tree routing constraint would lead
to stronger results. If we allowed the routes to be completely arbitrary, then clearly
we could have optimal routing: Each AS could simply use the route it liked the best.
However, supporting these routes would either require source routing (i.e., the packet
header contains a full path) or a massive increase in storage at each router to record the
forwarding link for each source and destination. Instead, we ask whether we can get
positive results with only a small growth in routers’ space requirements.

Our approach is to use a small number r of confluent routing trees T1, T2, · · ·Tr to
each destination j. Then, each AS i evaluates its subjective cost to j in each of the
routing trees and picks a tree Tti that minimizes this subjective cost. AS i then marks
each packet it sends with the header < j, ti >. Each AS en route stores its route to j
along each tree Tj; thus, it can inspect the header of each incoming packet and forward
along the appropriate route.

We can prove the following result:

Theorem 5. Suppose that, for transit AS k , l1(k) and l2(k) are integers bounded by a
polynomial, i.e., l1(k), l2(k) < nc for some constant c. Then, for any given ε > 0, there
is a set of routing trees T1, T2, · · ·Tr with r = O(1

ε [log n + log(1
ε )]) such that:

For each AS i, there is a tree Tti such that ci(Tti) ≤ (1 + ε)ci(P ∗
ij), where

P ∗
ij is the minimum-subjective-cost route from i to j.

Further, this set of trees can be constructed in polynomial time.

We now sketch the tree construction used in the proof.
Let α = (1 + ε). Each tree Tt in our collection is the shortest-path tree for a spe-

cific convex combination of the two metrics. We name the trees after the metrics they
optimize:

T∞: l1(·), with ties broken by minimum l2(·).
T−∞: l2(·), with ties broken by minimum l1(·).
Tt: lt(·) = αt

1+αt l1(·) + 1
1+αt l2(·) for t ∈ {−k, −(k − 1) . . . , − 1, 0, 1, · · ·k}, where

k = �logα(2ε−1nc+1)�.

There are several points worth noting about this scheme: (1) It achieves a result that
is slightly stronger than our initial goal – it approximately maximizes each individual
node’s welfare, not just the sum of all nodes’ welfare. (2) The computation of the trees
is oblivious to the nodes’ preference information. Thus, if we assume that the objec-
tive costs are common knowledge (or verifiable), this scheme is trivially a strategyproof
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mechanism. (3) Each tree computation involves computing lowest-cost routes for a spe-
cific objective metric. Thus, it is easily computed within the framework of BGP itself.
(In the terminology of Feigenbaum et al. [7, 5], there is a natural BGP-based distributed
algorithm for this scheme.)

We now prove a corresponding lower bound that shows that Theorem 5 is nearly
optimal.

Theorem 6. Let ε > 0 be given. There is a family of instances of the subjective-metric
routing problem, with all weights in [0, nc] for some constant c, such that the following
property holds:

Any set of routing trees that contains a (1 + ε)-approximately optimal path
Pij for each i must have Ω(log n/ε) trees.

(Here, n is the number of nodes of the network.)

5.1 Generalization to More Than 2 Metrics

In this section, we show that Theorems 5 and 6 generalize to the case in which there are
d > 2 objective metrics, and an AS’s subjective cost is a convex combination of these
metrics.

Theorem 7. Suppose that, for transit AS k , all lengths l1(k), l2(k) . . . , ld(k) are inte-
gers bounded by a polynomial, i.e. , lj(k) < nc for some constant c. Then, for any given

ε > 0, there is a set of routing trees T1, T2, · · ·Tr with r = O(4d[ (c+1) log n+log( 2
ε )

log(1+ε) ]d−1)
such that:

For each AS i, there is a tree Tti such that ci(Tti) ≤ (1 + ε)ci(P ∗
ij), where

P ∗
ij is the minimum-subjective-cost route from i to j.

Further, this set of trees can be constructed in polynomial time for any constant d.

Theorem 8. Let ε > 0 be given and d > 2 be given. There is a family of instances of
the subjective-metric routing problem, with all weights in [0, nc] for some constant c,
such that the following property holds:

Any set of routing trees that contains a (1 + ε)-approximately optimal path
for each i must have Ω(( log n

d log d+d log(1+ε))
d−1) trees.

(Here, n is the number of nodes of the network.)

6 Conclusion

In this paper, we have studied classes of ordinal and cardinal preferences based on
subjective costs. The subjective-cost preference model is intuitively appealing, and it is
very expressive. However, our results show that, even if the costs are restricted to a very
small range, unstructured subjectivity leads to intractable problems in both models: NP-
completeness of the stable paths problem for ordinal preferences and APX-hardness of
the minimum subjective-cost tree problem for cardinal preferences.
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The root cause of these hardness results appears to be the high dimension of the
space of AS preferences. Thus, it is necessary to work with models that provide a more
consistent global structure. In Section 5, we consider the case in which there are two
objective cost metrics, and ASes differ in the relative importance they place on the first
metric. For example, ASes may agree on the latency and packet-loss rate of each node
in the network but have subjective opinions about the relative importance of latency
and loss rate. Thus, in this model, the space of all AS types is one-dimensional. We
showed that it is possible to select a small number (O(1

ε [log n + log(1
ε )]) for a (1 + ε)-

approximation) of representative types such that every ASes’ preferences are closely
approximated by one of the representatives; then, by picking a set of routing trees, each
of which is optimized for a specific representative type, we can guarantee each AS a
route that (1 + ε)-approximately minimizes its subjective cost. Further, this scheme is
easy to implement, even in the distributed-computing context: Each destination can be
replaced by a small number of logical destinations, and a lowest-cost routing algorithm
(e.g., the Bellman-Ford algorithm) can be used for each logical destination.

It is also possible that other models that restrict the subjectivity of the costs in some
way may yield positive results. For example, the nodes’ subjective costs for a given
transit node k are random variables drawn from a specific distribution. Finding such
models that are both realistic and tractable is an interesting avenue for future research.
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