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Abstract. We study an intensively studied resource allocation game
introduced by Koutsoupias and Papadimitriou where n weighted jobs
are allocated to m identical machines. It was conjectured by Gairing et
al. that the fully mixed Nash equilibrium is the worst Nash equilibrium
for this game w.r.t. the expected maximum load over all machines. The
known algorithms for approximating the so-called “price of anarchy” rely
on this conjecture. We present a counter-example to the conjecture show-
ing that fully mixed equilibria cannot be used to approximate the price
of anarchy within reasonable factors. In addition, we present an algo-
rithm that constructs so-called concentrated equilibria that approximate
the worst-case Nash equilibrium within constant factors.

1 Introduction

A central problem arising in the management of large-scale communication net-
works like the Internet is that of routing traffic through the network. Due to the
large size of these networks, however, it is often impossible to employ a central-
ized traffic management. A natural assumption in the absence of central regula-
tion is to assume that network users behave selfishly and aim at optimizing their
own individual welfare. To understand the mechanisms in such non-cooperative
network systems, it is of great importance to investigate the selfish behavior of
users and their influence on the performance of the entire network.

In this paper, we investigate the price of selfish behavior under game theoretic
assumptions, that is, we assume that each agent (i.e., user) is aware of the
situation facing all other agents and aims at optimizing its own strategy. In
particular, we investigate the structure of the network in a Nash equilibrium,
i.e., a combination of mixed (randomized) strategies from which no users has an
incentive to deviate. It is well known that such equilibria may be inefficient and
do not always optimize the overall performance. We address the most basic case
of a routing problem, a network consisting of m identical parallel links from an
origin to a destination. There are n agents, each having an amount of traffic w;
to send from the origin to the destination. Each agent i sends the traffic using a

* Supported in part by the EU within the 6th Framework Programme under contract
001907 (DELIS) and by DFG grant Vo889/1-2.

X. Deng and Y. Ye (Eds.): WINE 2005, LNCS 3828, pp. 151160} 2005.
© Springer-Verlag Berlin Heidelberg 2005



152 S. Fischer and B. Vicking

possibly randomized mized strategy, with p{ denoting the probability that agent
i sends the entire traffic w; to a link j. We assume the agents are selfish in the
sense that each of them aims at minimizing its individual cost, i. e., the expected
load on the machine it selects.

Koutsoupias and Papadimitriou [10] proposed to investigate the price of un-
coordinated individual decisions in terms of the worst-case coordination ratio,
which is the ratio between the expected social cost in the worst possible Nash
equilibrium and in the social optimum. Here, we define social cost as the maximal
load of a machine. In [2] and [9] it has been shown that the coordination ratio for
a system of n weighted jobs and m identical machines is bounded by © (hllIl‘g”m).
However, for a given instance of the game, i.e., for a given vector of weights,
the ratio between worst social cost of a Nash equilibrium and the optimal social
cost may be significantly smaller. It is therefore an interesting question how the
cost of the worst Nash equilibrium can be computed for a given instance. It has
been conjectured that the fully mixed Nash equilibrium in which every agent
assigns the same probability to every machine is the worst possible [6L5,[4]. If
this conjecture was true, then computing the worst Nash equilibrium would be
a trivial task and its social cost could be approximated arbitrarily well using the
fully polynomial randomized approximation scheme (FPRAS) presented in [3].

In this paper, we show that the Fully Mixed Nash Equilibrium Conjecture
does not hold. In fact, the ratio between the social cost of the fully mixed Nash
equilibrium and the worst Nash equilibrium can be almost as bad as the coordi-
nation ratio. We then present a different kind of equilibrium that concentrates
the large jobs on a few machines. These concentrated equilibria are as bad as the
worst Nash equilibrium up to constant factors. They can be computed in linear
time and hence we obtain the first constant-factor approximation for worst-case
equilibria on identical machines.

1.1 The Game

Koutsoupias and Papadimitriou [10] introduced a resource allocation game in

which n jobs of size wy,...,w, > 0 shall be assigned to m identical machines.
Each job is managed by a selfish agent. The set of pure strategies for task i is
[m] :={1,...,m}. Let (j1,...,Jn) € [m]™ be a combination of pure strategies,

one for each task. The load of link j is defined as

)\j = Z Wk -
Je=J
The cost for agent ¢ is \j,. Every agent aims at minimizing her cost. The social
objective is to minimize the maximum cost over all agents or, equivalently, the
maximum load over all machines.

Agents may also use mized strategies, i. e., probability distributions on the set
of pure strategies. Let p! denote the probability that agent ¢ assigns its job to

link j. Then
E[\] = Zwipg .

1€[n]
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The social cost of a mixed strategy profile P = (pf ) is defined as

SC(P) = B x|

J€[m]

The expected cost of task i on link j is

cg = wi—l—Zwkpi = ]E[)\j]—&—(l—pg)w,- .
ki

A (mixed) strategy profile P defines a Nash equilibrium if and only if any
task ¢ will assign non-zero probabilities only to links that minimize ¢, that is,
(p{ ) > 0 implies CZ < ¢, for every g € [m]. A Nash equilibrium is called fully
mized if p] > 0 for all i € [n], j € [m]. The game under consideration admits
a unique fully mixed Nash equilibrium F in which each job is assigned with
probability ! to each machine [IT].

1.2 The Conjecture

Mavronicolas and Spirakis [I1] investigate the social cost of fully mixed Nash
equilibria. The motivation for their study is the hope that the techniques for the
analysis of fully mixed strategies can be appropriately extended to yield upper
bounds on the social cost for general equilibria. This hypothesis is formalized in
the following conjecture stated in [6} 5L 4].

Congecture 1 (FMNE conjecture). The fully mixed Nash equilibrium F is the
worst Nash equilibrium, that is,

SC(F) = SC(P) ,
for every Nash equilibrium P.

Several attempts have been made to prove the conjecture. For example, it was
shown that the conjecture is true for the case m = 2 [4] and for the case that P
refers only to pure equilibria [6]. Furthermore, it was shown that the conjecture
holds in an approximate sense if m = n [1L[6]. In [3], an FPRAS for the social cost
of the fully mixed Nash equilibrium is presented. Further interesting discussions
can be found in [6].

The FMNE conjecture seems to be intuitive and appealing since in case of
its validity it would allow for an easy identification of the worst-case mixed
Nash equilibrium, whereas the worst case pure Nash equilibrium is NP-hard to
compute.

1.3 Outline and Contribution

In Section 2l we give a counter-example to the FMNE conjecture that shows that
mixed Nash equilibria may have a social cost that is by a factor of (2 (lrllrl‘;”m)
worse than the social cost of the fully mixed Nash equilibrium. This is indeed
the worst possible.

In Section [3] we present a simple algorithm that constructs a constant factor

approximation of the worst Nash equilibrium in linear time.
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2 The Counterexample

We present a counterexample to the FMNE conjecture. More specifically, we
show that there is a family of simple instances of the game for which there exists
an equilibrium P with

SCP) = Q(SC’(F) lwm >

“Inlnm

Let us remark that this is the worst possible ratio as it follows from the analyses
in [2L[9] that the social cost of every Nash equilibrium can be at most O (lérll:;n)
times the optimal social cost.

Theorem 1. For every m, there exists an instance of the resource allocation
game with m machines admitting a Nash equilibrium P with

1 Inm
SC(P) = <4 - 0(1)> alnm SC(F) .
The instance consist of n = O(f(m) - mlnm) jobs whose weights differ at most
by a factor O(f(m) -Inm), where f denotes an arbitrary function in w(1).

Proof. The counterexample uses only two different kinds of jobs: Large jobs of
weight 1 and small jobs of weight i, k € N. Let ¢/ < m denote the number of
large jobs. The number of small jobs is k(m — £). Thus, the total weight is m
and the optimal assignment has social cost 1. We show that the fully mixed
equilibrium has social cost close to optimal if the parameters k and £ are chosen
appropriately.

Lemma 1. Ifk = 2(f(m)-lnm) and £ = O(y/n/ f(m)) then SC(F) < 2+o0(1).

Proof. Recall that F assigns each job with probability 1L to each of the machines.

v

— The assignment of the large jobs corresponds to a balls-and-bins experiment
in which ¢ = O(y/m/f(m)) balls are assigned uniformly at random to m
bins. Fact [Il from the Appendix yields that for this experiment the expected
number of balls in the fullest bin is 1 + o(1). Thus, the expected maximum
load due to the large jobs is 1 + o(1), too.

— The assignment of the small jobs corresponds to a ball-and-bins experiment
in which k(m — ¢) balls are assigned uniformly at random to m — ¢ bins
for k = 2(f(m) - lnm). Fact [2] shows that for this experiment the expected
number of balls in the fullest bin is (1+0(1)) - k. Since each ball corresponds
to a job of weight ,lﬂ, the expected maximum load due to the small jobs is
thus 1+ o(1) as well.

Combining the upper bounds for the small and the large jobs yieds that the
maximum load over all machines is at most 2 + o(1) when taking into account
all the jobs. a
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Next we present a mixed Nash equilibrium whose maximum load is lower-
bounded by a function in /.

Lemma 2. There exists a Nash equilibrium P with SC(P) > (1 —o(1)) - 1r111111fe'

Proof. We construct P in the following way. The small jobs are assigned using
pure strategies. They are distributed evenly among the machines 1,...,m —/
such that each machine receives k small jobs. Hence, their load is fixed to 1. The
large jobs are assigned to each of the remaining ¢ machines with probability 1/¢.
Again, the expected load of these machines is 1. This is a Nash equilibrium since
no job can improve by an unilateral move:

— For a small job i assigned to machine j;, we have cf =1 and CZ =1+4+1/k
for j # ji. ] ]
— For a large job i, we have ¢! =2 —1/kif j >m—Land ¢, =2if j <m — /.

The social cost of this equilibrium equals the maximum occupancy of the balls-
and-bins experiment where £ balls are assigned uniformly at random to £ bins. It
is well-known that the maximum occupancy of this assignment is (1£0(1))- f P
(see, e.g. [M]). |

The ratio between the bounds in Lemma [I] and 2] is maximized by choosing ¢
as large as possible under the constraints specified in Lemma [Il W.l.o.g., let
f(n) = O(Inn). We set £ = O(y/m/ f(m)). This way, SC(P) > (5 —o(1))- "
and SC(F) < 24 o(1). This completes the proof of Theorem [Il

Let us remark that we can fine-tune the above example such that for m = 14
machines and ¢ = 3 large jobs the expected maximum load of P is 17/9 and the
expected maximum load of F is 15/9+ 3/14 + € < 17/9, where € > 0 can be
made arbitrarily small by increasing the number of small jobs. Thus there is a
counterexample to the FMNE conjecture with only 14 machines.

3 Approximating Worst-Case Equilibria

In this section we assume that jobs are ordered such that wy > --- > w,. Also,
w.l. 0. g., we assume that the average load is 1,i.e. i~ ; w; = m. Now, we define
the quantities

Moo= © +w; In(e + z)- and M := max M;, (1)
In(e + w; In(e + 1)) i€[n]

where e = 2.71 ... is the Eulerian constant. We will see that the social cost of
the worst Nash equilibrium of a given instance is ©(M). In the next subsection
we establish a lower bound by specifying an algorithm that outputs a Nash
equilibrium of value 2(M). Subsequently, we prove that an upper bound O(M)
on the social cost of any equilibrium.
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3.1 The Algorithm

We present an algorithm that constructs a Nash equilibrium that favors collisions
between large jobs on few machines. It proceeds by partitioning the set of jobs
into ¢ large jobs and n — 7 small jobs for a suitable index i. Then, all large jobs
are assigned to machines {1,...,k} for a minimal & such that these machines
are not overloaded, that is, the average load on these machines is at most 1.
Additionally, small jobs are moved to machines {1,...,k} in order to guarantee
that this produces a Nash equilibrium. The index ¢ is chosen such that M; is
maximized. The pseudocode of algorithm GREEDY-NASH is given below.

Algorithm 1. The GREEDY-NASH algorithm
// find suitable threshold that separates large from small jobs
Choose 7 € [n] such that it maximizes M;.
// distribute largest jobs on first machines
Let W « 22:1 wj.
Choose k = [W].
pé —1/kfor je{l,...,i} andl € {1,...,k}
// ensure that smaller jobs are satisfied, too
for all jobs j € {i +1,...,n} in weight-decreasing order do
it W< Mo then
pé- —1/kforl e {1,...,k}
W — W 4+ wj.
else
pé- —1/(m—k)forle{k+1,...,m}
end if
end for

return ((p])ie(m).je(m), M:)

Note that the output of algorithm GREEDY-NASH as described in the pseu-
docode has size n - m. It can be represented in a compact way by specifying k
and the set of jobs assigned to machines {1,...,k}. This way, the algorithm has
linear running time.

Intuitively, the proof of our lower bound M; proceeds by merging the jobs
such they have equal size and applying a Lemma on throwing ©(k/w;) balls
with weight w; into k bins.

Theorem 2. Let M be defined as in Equation {d)). A Nash equilibrium with
expected maximal load 2(M) can be constructed in time O(n) provided that the
jobs are given in non-increasing order of weight.

Proof. We first prove that the algorithm constructs a Nash equilibrium. We call
the machines 1, .. ., k left machines and the machines k+1, ..., m right machines.
Suppose that at the beginning of the for-loop all jobs i + 1,...,n are assigned
to the machines on the right with uniform probability 1/(m — k). Subsequently
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the algorithm may shift some of these jobs to the machines on the left. Before
the loop starts, all jobs in 1,...,7 are satisfied because they only use the left
machines and the expected load on every left machine is W/k whereas the loads
on every right machine is (Wi — W)/(m — k) > W, /k by our choice of k.

Note that it is an invariant of the loop that the total weight of jobs on left
machines equals the value of the variable W. We have to show that after one pass
of the loop job j is satisfied and no jobs in {1,...,5 — 1} become unsatisfied.
Since job j goes to the group of machines on which all other jobs induce the
smaller expected load, job j is obviously satisfied. If job j is assigned to the right
machines the situation does not change and no other job can become unsatisfied.
If job j is assigned to the left machines only other jobs on left machines can get
unsatisfied. Assume that job j° < j becomes unsatisfied. This job has weight
wjs > w; and this job being unsatisfied means that

Wtot—W—wj < W—I—wj—wj/ < w
m—k k -k
However, if this is the case, then job j would have been assigned to the right
machines. Hence, the assignment returned by the algorithm is a Nash equilib-
rium.

We now show that this assignment has a social cost of at least 2(M;). For
the time being, assume that 23:1 w; > 1, that is k¥ > 2 and the average load
induced by jobs 1,...,7 on the left machines is at least 1/2. For the purpose of
the analysis we repeatedly split the jobs 1,...,7—1 into halves until their weight
is in the range [w;, 2w;]. This way, the number of jobs with weight in [w;, 2w;]
is some number ¢’ > 4. In [9] it was shown that this inverse ball fusion does not
increase the expected maximum load on the left machines. Finally, we reduce all
job weights down to w; again not increasing the expected maximum load. The
average load on the left machines is still at least 1/4. Then it follows from Fact Bl
in the appendix, that now the expected maximum load is at least

« <1n(ze++w1;j lllr(jeik/i)) )

This term gives a lower bound of £2(M;) if we assume that w; > 1/k as, in this
case, i'-w; < k implies k& > /i’ which gives In(e+k) = 2(In(e+i")) = 2(In(e+1)).
We are left with two special cases in both of which we show that M; = O(1)

and hence is a trivial lower bound.

— 22:1 w; < 1. In that case, our constructed Nash equilibrium has a trivial
lower bound of 1. Furthermore,

M; <e+w;lnle+i)<e+w;In(e+2/w;) <e+2+w(e—1)=0()

since In(1 + €) < € for any € > 0.
— w; < 1/k. Since w; < k/i we have i < k/w; < 1/w? and hence w; < 1/\/1

Substituting this into M; yields M; = O(1).

Thus in all cases, the social cost is lower bounded by §2(M;). Since 4 is chosen
to maximize M;, it is also lower bounded by 2(M). ]
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3.2 Upper Bound

The maximum load over all machines is equal to the maximum height over all
jobs where the height of a job is defined as follows. We assume that jobs are
thrown into the machines according to the Nash probability distribution one
after another in non-increasing order of weight. The height of job 7 is the total
weight of jobs on its machine at its insertion time. The important property of
this definition is that the height of job i does not depend on the assignments of
the jobs 1,...,7—1. More formally, we define indicator variables I/ where I} =1
if and only if ball i € [n] is assigned to machine j € [m]. For any job i € [n], let
ji denote the machine that job i is assigned to and let

n
Xi=> L
k=1

denote the height of this job. Obviously H = max;{X;}, the maximal height
over all jobs, is equivalent to the maximum load over the machines.

Theorem 3. Let M be defined as in Equation (). For any Nash equilibrium,
it holds that E[H] < M.

Proof. Consider job i. For a > 1, let ¢ = 2ea M;. On every machine that
job 7 assigns positive probability to, the expected total load induced by jobs
i+ 1,...,n is upper bounded by 1 since we are at a Nash equilibrium, that is,
E[X; —w;] < 1. Applying a weighted Chernoff bound yields

e Q/wi
P[Xiwz'ZQ]S() .
q

Observe that ¢ > e\/e + w; In(e +14) as ¢/ Inx > /x for any = > e. Hence,

1
Ve +w;In(e + 1)

1)\ €@ In(e+1)
-()

1
Z’ea
1
— 422«

2ea In(e+1)/ In(e+w; In(e+1))
PPQ-WZQ]S( )

<

for ¢ > 2. Applying a union bound we see that

n
[P[X—wlzaM}gP[Hi:Xi—wiza~Mi}§2*“Z, <27«
i=1
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and hence

]E[X]§w1+/OOOIP’[Xwlth](Mwl)dt

1 o)
§w1+(Mw1)(/ P[Xfwlth]dt+/ P[leth]dt>
0 1

< wy + (M —wy) - (1+ﬂ; /oo2tdt>
= O(M) 1

This finishes the proof of the theorem. a

4 Conclusions

We have shown that the fully mixed Nash equilibrium is not the worst-case
equilibrium and does not even give a good approximation. In contrast, we have
shown that concentrating large jobs on a few machines yields equilibria that
approximate the worst-case within a constant factor. As these equilibria can be
constructed in linear time we obtained the first constant factor approximation
for the worst-case Nash equilibrium.

Our analysis is restricted to identical machines. The question whether worst-
case equilibria can be approximated for the case of uniformly related machines
remains open and is a challenging problem.

Acknowledgements. We thank Andreas Baltz for helpful comments on an early
version of this manuscript.
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Appendix

The following facts about balls and bins processes have almost surely been shown
somewhere else before. Due to space limitations, we leave the proofs for the full
version.

Fact 1. Let f denote any function in w(1). If n < y/m/f(m) balls are assigned
independently and uniformly at random to m bins. Then the expected number of
balls in the fullest bin is 14 o(1).

Fact 2. Let f denote any function in w(l). If n < m - f(m) - Inm balls are
assigned independently and uniformly at random to m bins. Then the expected
number of balls in the fullest bin is f(m)-Inm+O(\/f(m)-Inm) = (1+o(1)) -
f(m) - lnm.

Fact 3. When n balls are thrown into m bins independently, uniformly at ran-
dom, the expected number of balls in the fullest bin is

n/m + In(e +m)
o (1n<e+ (m/n) 1n<e+m>>> |

Thus, if the balls have weight w = m/n, so that the average load is 1, then the
mazimum weight over all bins is

Q( 1 +wln(e +m) )

In(e + wln(e + m))
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