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Abstract. We study the complexity issues for Walrasian equilibrium
in a special case of combinatorial auction, called single-minded auction,
in which every participant is interested in only one subset of commodi-
ties. Chen et al. [5] showed that it is NP-hard to decide the existence
of a Walrasian equilibrium for a single-minded auction and proposed a
notion of approximate Walrasian equilibrium called relaxed Walrasian
equilibrium. We show that every single-minded auction has a 2

3 -relaxed
Walrasian equilibrium proving a conjecture posed in [5]. Motivated by
practical considerations, we introduce another concept of approximate
Walrasian equilibrium called weak Walrasian equilibrium. We show it is
strongly NP-complete to determine the existence of δ-weak Walrasian
equilibrium, for any 0 < δ ≤ 1.

In search of positive results, we restrict our attention to the tollbooth
problem [15], where every participant is interested in a single path in
some underlying graph. We give a polynomial time algorithm to deter-
mine the existence of a Walrasian equilibrium and compute one (if it
exists), when the graph is a tree. However, the problem is still hard for
general graphs.

1 Introduction

Imagine a scenario where a movie rental store is going out of business and wants
to clear out its current inventory. Further suppose that based on their rental
records, the store has an estimate of which combinations (or bundles) of items
would interest a member and how much they would be willing to pay for those
bundles. The store then sets prices for each individual item and allocates bundles
to the members (or buyers) with the following “fairness” criterion— given the
prices on the items, no buyer would prefer to be allocated any bundle other than
those currently allocated to her. Further, it is the last day of the sale and it is
imperative that no item remain after the sale is completed. A natural way to
satisfy this constraint is to give away any unallocated item for free. This paper
looks at the complexity of computing such allocations and prices.

The concept of “fair” pricing and allocation in the above example is similar to
the concept of market equilibrium which has been studied in economics literature
for more than a hundred years starting with the work of Walras [27]. In this
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model, buyers arrive with an initial endowment of some item and are looking to
buy and sell items. A market equilibrium is a vector of prices of the items such
that the market clears, that is, no item remains in the market. Arrow and Debreu
showed more than half a century ago that when the buyers’ utility functions
are concave, a market equilibrium always exists [3] though the proof was not
constructive. A polynomial time algorithm to compute a market equilibrium for
linear utility functions was given last year by Jain [18]. We note that in this
setup the items are divisible while we will consider the case of indivisible items.

Equilibrium concepts [22] are an integral part of classical economic theory.
However, only in the last decade or so these have been studied from the compu-
tational complexity perspective. This perspective is important as it sheds some
light on the feasibility of an equilibrium concept. As Kamal Jain remarks in
[18]— “If a Turing machine cannot efficiently compute it, then neither can a
market”. A small sample of the recent work which investigates the efficient com-
putation of equilibrium concepts appears in the following papers: [8, 9, 18, 5, 24].

In this paper, we study the complexity of computing a Walrasian equilib-
rium [27], one of the most fundamental economic concepts in market conditions.
Walrasian equilibrium formalizes the concept of “fair” pricing and allocation
mentioned in the clearance sale example. In particular, given an input represent-
ing the valuations of bundles for each buyer, a Walrasian equilibrium specifies
an allocation and price vector such that any unallocated item is priced at zero
and all buyers are satisfied with their corresponding allocations under the given
price vector. In other words, if any bundle is allocated to a buyer, the profit1

made by the buyer from her allocated bundle is no less than the profit she would
have made if she were allocated any other bundle for the same price vector.

In the clearance sale example, we assumed that every buyer is interested in
some bundles of items— this is the setup for combinatorial auctions which have
attracted a lot of attention in recent years due to their wide applicability [26, 7].
In the preceding discussions, we have disregarded one inherent difficulty in this
auction model— the number of possible bundles are exponential and thus, even
specifying the input makes the problem intractable. In this paper, we focus on a
more tractable instance called single-minded auction [20] with the linear pricing
scheme2. In this special case, every buyer is interested in a single bundle. Note
that the inputs for these auctions can be specified quite easily. The reader is
referred to [2, 1, 23, 5, 13] for more detailed discussions on single-minded auctions.

If bundles can be priced arbitrarily, a Walrasian equilibrium always exists for
combinatorial auctions [6, 21]. However, if the pricing scheme is restricted to be
linear, a Walrasian equilibrium may not exist. Several sufficient conditions for
the existence of a Walrasian equilibrium with the linear pricing scheme have
been studied. For example, if the valuations of buyers satisfy the gross substi-
tutes condition [19], the single improvement condition [14], or the no comple-
mentarities condition [14] then a Walrasian equilibrium is guaranteed to exist.

1 The profit is the difference between how much the buyer values a bundle and the
price she pays for it.

2 The price of a bundle is the sum of prices of items in the bundle.
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Bikhchandani et al. [4] and Chen et al. [5] gave an exact characterization for the
existence of a Walrasian equilibrium— the total value of the optimal allocation
of bundles to buyers, obtained from a suitably defined integer program, is equal
to the value of the corresponding relaxed linear program. These conditions are,
however, not easy to verify in polynomial time even for the single-minded auc-
tion. In fact, checking the existence of a Walrasian equilibrium for single-minded
auctions is NP-hard [5].

The intractability result raises a couple of natural questions: (1) Instead of
trying to satisfy all the buyers, what fraction of the buyers can be satisfied ?
(2) Can we identify some structure in the demands of the buyers for which a
Walrasian equilibrium can be computed in polynomial time? In this paper we
study these questions and have the following results:

– Conjecture on relaxed Walrasian equilibrium. Chen et al. [5] proposed an ap-
proximation of Walrasian equilibrium, called relaxed Walrasian equilibrium.
This approximate Walrasian equilibrium is a natural approximation where
instead of trying to satisfy all buyers, we try to satisfy as many buyers as
we can. [5] gave a simple single-minded auction for which no more than 2/3
of the buyers can be satisfied. They also conjecture that this ratio is tight—
that is, for any single-minded auction one can come up with an allocation
and price vector such that at least 2/3 of the buyers are satisfied. In our first
result we prove this conjecture. In fact we show that such an allocation and
price vector can be computed in polynomial time.

– Weak Walrasian equilibrium. There is a problem with the notion of relaxed
Walrasian equilibrium— it does not require all the winners to be satisfied.
This is infeasible in practice. For instance in the clearance sale example, the
store cannot sell a bundle to a buyer at a price greater than her valuation. In
other words, at a bare minimum all the winners have to be satisfied. With
this motivation, we define a stronger notion of approximation called weak
Walrasian equilibrium where we try to maximize the number of satisfied
buyers subject to the constraint that all winners are satisfied. In our second
result we show that computing a weak Walrasian equilibrium is strongly NP-
complete. We achieve this via a reduction from the Independent Set problem.
Independently, Huang and Li [17] showed the NP-hardness result (but not
strongly NP-hard) by a reduction from the problem of checking the existence
of a Walrasian equilibrium.

– Tollbooth problem. With the plethora of negative results, we shift our atten-
tion to special cases of single-minded auctions where computing Walrasian
equilibrium is tractable. With this goal in mind, we study the tollbooth prob-
lem introduced by Guruswami et al. [15] where the bundle every buyer is
interested in is a path in some underlying graph. We show that in a general
graph, it is still NP-hard to compute a Walrasian equilibrium given that one
exists. We then concentrate on the special case of a tree, and show that we
can determine the existence of a Walrasian equilibrium and compute one
(if it exists) in polynomial time. Essentially, we prove this result by first
showing that the optimal allocation can be computed by a polynomial time
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Dynamic Program. In fact, the optimal allocation is equivalent to the max-
imum weighted edge-disjoint paths in a tree. A polynomial time divide and
conquer algorithm for the latter was given by Tarjan [25]. Another Dynamic
Program algorithm for computing edge-disjoint paths with maximum car-
dinality in a tree was shown by Garg et al. [12]. However, their algorithm
crucially depends on the fact that all paths have the same valuation while
our setup is the more general weighted case.

The paper is organized as follows. In Section 2, we review the basic properties
of Walrasian equilibrium for single-minded auctions. In Section 3, we study two
different type of approximations— relaxed Walrasian equilibrium and weak Wal-
rasian equilibrium. In Section 4, we study the tollbooth problem— for the differ-
ent structure of the underlying graphs, we give different hardness or tractability
results. We conclude our work in Section 5. Due to space limitations, we omit
the proofs in this paper. The proofs will appear in the full version of the paper.

2 Preliminaries

In a single-minded auction [20], an auctioneer sells m heterogeneous commodities
Ω = {ω1, . . . , ωm}, with unit quantity each, to n potential buyers. Each buyer
i desires a fixed subset of commodities of Ω, called demand and denoted by
di ⊆ Ω, with valuation (or cost) ci ∈ R

+. That is, ci is the maximum amount
of money that i is willing to pay in order to win di.

After receiving the submitted tuple (di, ci) from each buyer i (the input), the
auctioneer specifies the tuple (X, p) as the output of the auction:

– Allocation vector X = (x1, . . . , xn), where xi ∈ {0, 1} indicates if i wins di

(xi = 1) or not (xi = 0). Note that we require
∑

i: ωj∈di
xi ≤ 1 for any

ωj ∈ Ω. X∗ = (x∗
1, . . . , x

∗
n) is said to be an optimal allocation if for any

allocation X , we have

n∑

i=1

ci · x∗
i ≥

n∑

i=1

ci · xi.

That is, X∗ maximizes total valuations of the winning buyers.
– Price vector p = (p(ω1), . . . , p(ωm)) (or simply, (p1, . . . , pm)) such that

p(ωj) ≥ 0 for all ωj ∈ Ω. In this paper, we consider linear pricing scheme,
i.e., p(Ω′) =

∑
ωj∈Ω′ p(ωj), for any Ω′ ⊆ Ω.

If buyer i is a winner (i.e., xi = 1), her (quasi-linear) utility is ui(p) = ci −p(di);
otherwise (i.e., i is a loser), her utility is zero.

We now define the concept of Walrasian equilibrium.

Definition 1. (Walrasian equilibrium) [14] A Walrasian equilibrium of a
single-minded auction is a tuple (X, p), where X = (x1, . . . , xn) is an allocation
vector and p ≥ 0 is a price vector, such that
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1. p(X0) = 0, where X0 = Ω \
(⋃

i: xi=1 di

)
is the set of commodities that are

not allocated to any buyer.
2. The utility of each buyer is maximized. That is, for any winner i, ci ≥ p(di),

whereas for any loser i, ci ≤ p(di)

Chen et al. [5] showed that checking the existence of a Walrasian equilibrium in
general is hard.

Theorem 1. [5] Determining the existence of a Walrasian equilibrium in a
single-minded auction is NP-complete.

Lehmann et al. [20] showed that in a single-minded auction, the computation of
the optimal allocation is also NP-hard. Indeed, we have the following relation
between Walrasian equilibrium and optimal allocation.

Theorem 2. [5] For any single-minded auction, if there exists a Walrasian equi-
librium (X, p), then X must be an optimal allocation.

Due to the above theorem, we know that computing a Walrasian equilibrium is
at least as hard as computing the optimal allocation. However, if we know the
optimal allocation X∗, we can compute the price vector by the following linear
program:

∑

j: ωj∈di

pj ≤ ci, ∀ x∗
i = 1

∑

j: ωj∈di

pj ≥ ci, ∀ x∗
i = 0

pj ≥ 0, ∀ ωj ∈ Ω

pj = 0, ∀ ωj ∈ Ω \

⎛

⎝
⋃

i: x∗
i =1

di

⎞

⎠

Any feasible solution p of the above linear program defines a Walrasian equilib-
rium (X∗, p). In fact, note that if a Walrasian equilibrium exists, we can compute
one which maximizes the revenue by adding the following objective function to
the above linear program

max
∑

j: ωj∈Ω

pj

Thus, we have the following conclusion:

Corollary 1. For any single-minded auction, if the optimal allocation can be
computed in polynomial time, then we can determine if a Walrasian equilibrium
exists or not and compute one (if it exists) which maximizes the revenue in
polynomial time.
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3 Approximate Walrasian Equilibrium

Theorem 1 says that in general computing a Walrasian equilibrium is hard. In
this section, we consider two notions of approximation of a Walrasian equilib-
rium. The first one called relaxed Walrasian equilibrium, due to Chen et al.
[5], tries to maximize the number of buyers for which the second condition of
Definition 1 is satisfied. We also introduce a stronger notion of approximation
called weak Walrasian equilibrium that in addition to being a relaxed Walrasian
equilibrium has the extra constraint that the second condition of Definition 1 is
satisfied for all winners. We now define these notions and record some of their
properties.

For any tuple (X, p), we say buyer i is satisfied if her utility is maximized. That
is, if xi = 1, then p(di) ≤ ci; if xi = 0, then p(di) ≥ ci. For any single-minded
auction A, let δA(X, p) denote the number of satisfied buyers under (X, p). In
the following discussion, unless specified otherwise, we assume all unallocated
commodities are priced at zero.

3.1 Relaxed Walrasian Equilibrium

We first define the notion of relaxed Walrasian equilibrium [5].

Definition 2. (relaxed Walrasian equilibrium) Given any 0 < δ ≤ 1, a δ-
relaxed Walrasian equilibrium of single-minded auction A is a tuple (X, p) that
satisfies the following conditions:

– p(X0) = 0, where X0 = Ω \
(⋃

i: xi=1 di

)
.

– δA(X,p)
n ≥ δ, where n is the number of buyers in A.

Note that a Walrasian equilibrium is a 1-relaxed Walrasian equilibrium. Theorem
1 implies that it hard to maximize 0 < δ ≤ 1 such that δ-relaxed Walrasian
equilibrium exists for a single-minded auction. We now consider the following
example which is due to Chen et al. [5].

Example 1. Consider the following single-minded auction A: Three buyers bid
for three commodities, where d1 = {ω1, ω2}, d2 = {ω2, ω3}, d3 = {ω1, ω3}, and
c1 = 3, c2 = 3, c3 = 3. Note that there is at most one winner for any allocation,
say buyer 1. Thus, under the condition of p(ω3) = 0 (since ω3 is an unallocated
commodity), at most two inequalities of p(ω1ω2) ≤ 3, p(ω2ω3) ≥ 3, p(ω1ω3) ≥ 3
can hold simultaneously. Therefore at most two buyers can be satisfied.

Chen et al. conjectured that this ratio δ = 2
3 is tight [5]. We prove this conjecture

in the following theorem.

Theorem 3. Any single-minded auction has a 2
3 -relaxed Walrasian equilibrium,

and thus δ = 2
3 is a tight bound. Further, a 2

3 -relaxed Walrasian equilibrium can
be computed in polynomial time.
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Buyer  2

Buyer  1

w1 w3w2 valuation

3

Buyer  3 3

3
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+

Fig. 1. An example of single-minded auction where at most 2/3 buyers can be satisfied

3.2 Weak Walrasian Equilibrium

The notion of relaxed Walrasian equilibrium does not require all the winners to
be satisfied. Indeed, in our proof of Theorem 3, to get a higher value of δA(X, p),
we may require some winner to pay a payment higher than her valuation. This
is infeasible in practice: the auctioneer cannot expect a winner to pay a price
higher than her valuation. Motivated by this observation, we introduce a stronger
concept of approximate Walrasian equilibrium.

Definition 3. (Weak Walrasian Equilibrium) Given any 0 < δ ≤ 1, a δ-
weak Walrasian equilibrium of single-minded auction A is a tuple (X, p) that
satisfies the following conditions:

– p(X0) = 0, where X0 = Ω \
(⋃

i: xi=1 di

)
.

– The utility of each winner is maximized. That is, for any winner i, ci ≥ p(di).
– δA(X,p)

n ≥ δ, where n is the number of buyers in A.

Unfortunately, this extra restriction makes the problem much harder as the
following theorem shows.

Theorem 4. For any 0 < δ ≤ 1, checking the existence of a δ-weak Walrasian
equilibrium problem is strongly NP-complete.

We use a reduction from the Independent Set problem in the proof of the above
result. If we regard Independent Set and weak Walrasian equilibrium as optimiza-
tion problems, then our reduction is a gap-preserving reduction [16]. Therefore
we have the following conclusion:

Corollary 2. There is an ε > 0 such that approximation of weak Walrasian
equilibrium problem within a factor nε is NP-hard, where n is the number of
buyers.

4 The Tollbooth Problem

As we have seen in the preceding discussions, in general the computation of a
(weak) Walrasian equilibrium in a single-minded auctions is hard. In search of
tractable instances, we consider a special case of single-minded auctions where
the set of commodities and demands can be represented by a graph. Specifically,



148 N. Chen and A. Rudra

we consider the tollbooth problem [15], in which we are given a graph, the com-
modities are edges of the graph, and the demand of each buyer is a path in the
graph. For the rest of this section, we will use the phrase tollbooth problem for
a single-minded auction where the input is from a tollbooth problem.

4.1 Tollbooth Problem in General Graphs

For the general graph, as the following theorem shows, both the computation of
optimal allocation and Walrasian equilibrium (if it exists) are difficult.

Theorem 5. If a Walrasian equilibrium exists in the tollbooth problem, it is
NP -hard to compute one.

4.2 Tollbooth Problem in a Tree

In this subsection, we consider the tollbooth problem in a tree. Note that even
for this simple structure, Walrasian equilibrium may not exist, as shown by
Example 1. In this special case, however, we can determine whether Walrasian
equilibrium exists or not and compute one (if it exists) in polynomial time. Due
to Corollary 1, we only describe how to compute an optimal allocation efficiently.
To this end, we give a polynomial time Dynamic Program algorithm (details are
deferred to the full version). We note that computing an optimal allocation is
the same as computing the maximum weighted edge-disjoint paths in a tree for
which a polynomial time algorithm already exists [25]. Therefore, we have the
following conclusion:

Theorem 6. For any tollbooth problem in a tree, it is polynomial time to com-
pute an optimal allocation, determine if a Walrasian equilibrium exists or not
and compute one (if it exists).

5 Conclusion

In the notions of approximate Walrasian equilibrium that we studied in this
paper, we are concerned with relaxing the second condition of Walrasian equi-
librium (Definition 1). That is, we guarantee the prices of the two approximate
Walrasian equilibria clear the market (Definition 2, 3). Relaxing of the first con-
dition is called envy-free auction and is well studied, e.g., in [15]. Unlike the
general Walrasian equilibrium, an envy-free pricing always exists, and thus, a
natural non-trivial goal is to compute an envy-free pricing which maximizes the
revenue [15]. Similarly, trying to compute a revenue maximizing Walrasian equi-
librium is an important goal. However, even checking if a Walrasian equilibrium
exists is NP-hard [5] which makes the task of finding a revenue maximizing Wal-
rasian equilibrium an even more ambitious task. Corollary 1 shows that it is as
hard as computing an optimal allocation.

Our polynomial time algorithm for determining the existence of a Walrasian
equilibrium and computing one (if it exists) in a tree generalizes the result for the
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line case, where Walrasian equilibrium always exists [4, 5] and can be computed
efficiently.

Our work leaves some open questions. For relaxed Walrasian equilibrium, we
showed δA(X, p) ≥ 2/3 for some (X, p) in any single-minded auction A. An
interesting question is how to approximate max(X,p) δA(X, p) within an approx-
imation ratio better than 2/3. In addition, we showed that for the tollbooth
problem on a general graph, it is NP-hard to compute the optimal allocation,
which implies that given that a Walrasian equilibrium exists, computing one is
also hard. A natural question is to resolve the complexity of determining the
existence of a Walrasian equilibrium (as opposed to computing one if it exists)
in a general graph.
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	Introduction
	Preliminaries
	Approximate Walrasian Equilibrium
	Relaxed Walrasian Equilibrium
	Weak Walrasian Equilibrium

	The Tollbooth Problem
	Tollbooth Problem in General Graphs
	Tollbooth Problem in a Tree

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




