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Abstract. We introduce a new class of mechanism design problems called pre-
diction games. There are n self interested agents. Each agent i has a private input
xi and a cost of accessing it. Given are a function f(x1, . . . , xn) which predicts
whether a certain event will occur and an independent distribution on the agents’
inputs. Agents can be rewarded in order to motivate them to access their inputs.
The goal is to design a mechanism (protocol) which in equilibrium predicts f(.)
and pays in expectation as little as possible.

We investigate both, exact and approximate versions of the problem and pro-
vide several upper and lower bounds. In particular, we construct an optimal mech-
anism for every anonymous function and show that any function can be approxi-
mated with a relatively small expected payment.

1 Introduction

1.1 Motivation

Predictions of future events play an important role in our everyday life. Individuals
want for example to know whether it will rain tomorrow, and who will win the next
elections. Companies may be interested whether a marketing campaign will succeed.
Governments want to predict the usefulness of public projects, etc.

A powerful method of making accurate predictions is the usage of input provided by
multiple agents. Often, such predictions are more accurate than those performed by a
single agent, even an expert (see e.g [2, 3, 15, 16]). Currently, multi agent predictions
are mainly carried out by public opinion polls, phone surveys, and in a more limited
scale by future markets. Moreover, many organizations (e.g. governments, institutions,
companies) base predictions on input of external experts which do not necessarily share
the interest of the organization. A major difficulty in making such predictions is that
the participating agents have no incentive to spend the time and effort necessary for
providing their inputs (answering long questionnaires, perform costly checks, etc.).
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Naturally, mechanisms which ask costly inputs from the agents need also to reward
them. As we shall see, such rewards may need to be very high in order to ensure that
the agents are motivated and developing low payment prediction mechanisms is a non
trivial task. In order to demonstrate this, let us consider the following toy example.

Example (consensus). A company develops a new exciting product. It would like to
predict whether the product will be ready before the holiday season. Five managers are
involved in the development process. Each manager has information which indicates
the chances that the company’s deadline will be met. In view of the company’s past
experience the product is likely to be ready on time if and only if all managers predict
so. This is an example of a consensus function. The event that the company wants to
predict is whether the product will be ready on time and the inputs are the managers’
indications. Assume that each manager has a positive indication with probability 1/2
and that the time required for each manager to issue an estimation costs her $1, 000.

Lets examine a few intuitive methods by which the company can try to forecast
its success. One option is to ask every manager to predict whether the deadline will
be met and eventually reward only the managers that were correct. Consider one of
the managers. The probability that another manager will have a negative indication is
15/16. Thus, even when the manager’s input is positive, the probability of meeting
the deadline is only 1/16. Therefore, all managers are better off reporting a negative
estimation regardless of their actual information.

A better option is to ask each manager to report her own indication and reward all of
them if and only if their joint prediction is correct. Consider one of the managers, say
Alice. If another manager has a negative indication then Alice’s input does not matter to
the prediction. Thus, the probability that Alice’s input matters is 1/16. In addition, Alice
can guess her input with probability 1/2. Intuitively, the lower the chances that Alice’s
input is relevant, the less motivated will she be to invest the costly effort of performing
her evaluation. Indeed, we shall show later that unless a manager is rewarded by at
least $1,000

1/2·1/16 = $32, 000 she will be better off guessing her input. In such a case
the prediction of the company is arbitrary. Therefore, the intuitive mechanism which
simultaneously asks the participants to compute and report their inputs must pay a sum
of at least $160, 000, even though the actual cost of the managers is only $5, 000! We
will show later that it is possible to design a mechanism which predicts the consensus
function with an overwhelmingly smaller expected payment.

1.2 Our Contribution

We introduce a new class of mechanism design problems called prediction games.
There are n self interested agents. Each agent i holds a private input bit xi. The cost
for each agent of accessing its input is c. Given is a function f(x1, . . . , xn) → {0, 1}
which predicts whether a certain event will occur. The mechanism can pay the agents in
order to motivate them to access their inputs. Given an IID (Independent Identical Dis-
tribution) on the agents’ inputs, the goal is to design a mechanism which in equilibrium
predicts f(.) and pays in expectation as little as possible.

We show that it is possible to focus on a very specific class of mechanisms. These
mechanisms approach the agents serially (each agent at most once), do not reveal any
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information to the agents other than the fact that they are required to compute their
input, stop when f(.) is determined, and pay according to a specific scheme. In equilib-
rium, each agent approached computes its input and discloses it to the mechanism. We
call such mechanisms canonical.

Perhaps the most important prediction functions are anonymous (agent symmetric)
functions. These functions include majority, consensus, percentile, etc. We show that
the optimal mechanisms for anonymous functions are canonical mechanisms which
approach the agents in random order.

We show interesting connections between the expected payment of prediction mech-
anisms and the analysis of the influence of random variables. Using results from in-
fluence analysis, we construct upper bounds on the expected payment for both general
and anonymous functions. These results also bound the sum of utilities required for
computing a function in the model of [6, 7, 11].

The necessary expected payment for the exact prediction of many functions is very
high. Therefore, we study approximate prediction mechanisms. These are mechanisms
that allow a small probability of error. We show that every function can be approximated
with a relatively low expected payment.

Finally, several important prediction functions are analyzed in the paper.
Our setup is basic and there is a lot of room for extensions. Yet, we believe that the

insights gained in this paper apply to many real life prediction scenarios.

1.3 Related Work

Most of the vast literature on voting and group decision making assumes that the agents
have free access to their inputs. Several recent papers [6, 7, 11] analyze situations of
decision making with costly inputs. (A somewhat different setup was studied in [4, 5].)
In these papers each agent has a utility for every possible decision and payments are
not used by the mechanism. [6, 7] mainly focus on anonymous functions and [11] is
dedicated to majority rules. The main concern of these papers is to characterize the
functions which can be implemented in equilibrium.

Our model is similar to the model used in [6, 7, 11] but there are fundamental differ-
ences. Firstly, we allow the mechanism to pay the agents. Secondly, we assume that the
agents are indifferent about the prediction of the mechanism. The utility of an agent is
solely determined by its payment and the cost of accessing its input. Finally, correctness
of the prediction can be verified by the mechanism.

Therefore, in our model every function can be implemented, and our main concern
is how to minimize the expected payment of the mechanism.

Markets, and future markets in particular are known to be good predictors in cer-
tain situations. Recently, several artificial markets for forecasting have been established.
Among the examples are the IOWA electronic markets (http://www.biz.uiowa.edu/iem/),
Hollywood Stock Exchange (http://www.hsx.com/), and the Foresight Exchange site
(http://www.ideosphere.com/). Such markets were studied in several papers (e.g. [2, 3]).
A pioneering paper [1] provides a theoretical analysis of the power of future markets.
The paper shows that many functions can be predicted (under strong assumptions such
as myopic behavior of the agents) but others, such as parity, cannot.
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More empirical literature exists within the forecasting community. A comparison
between the game theoretic approach and other methods used in conflict forecasting can
be found in articles published in the International Journal of Forecasting (e.g. [14],[15]).

Our model is based on mechanism design, a subfield of game theory and micro eco-
nomics that studies the design of protocols for self interested parties. An introduction
to this field can be found in many textbooks (e.g. [13–chapter 23]).

We show connections between the payment that must be made to an agent and its in-
fluence on the prediction function (the probability that its input is necessary for making
the prediction). Since the seminal work of [8] influence analysis evolved significantly.
Its focus is usually on bounds on the aggregate and the maximum influence. While we
are usually interested in the harmonic mean, some of these results are still very helpful
to us. A recent survey on influence literature can be found in [10].

Note: Due to space constraints large parts of the article were omitted from the proceed-
ings. The full version can be found at http://iew3.technion.ac.il/ amirr/.

2 Preliminaries

2.1 The Model

In this section we introduce our model and notation. We have tried as much as possible
to adopt the standard approach of mechanism design theory.

There are n self interested agents. Each agent i holds a private input bit xi. The in-
put x = (x1, . . . , xn) is taken from a prior distribution φ which is common knowledge.
Each agent can access its input xi but this access is costly. For simplicity of the presen-
tation we assume that all agents have the same cost c. Our results hold when each agent
has a different (but known) cost as well. An agent can also guess its input. We assume
that guessing is free so the cost of an agent is either c in case it computed its input or
zero. We allow the mechanism to pay the agents (for otherwise none will access its in-
put) but not to fine them. The utility of each agent is the difference between its payment
and cost. Each agent selfishly tries to maximize its expected utility.

We are given a boolean prediction function f : {0, 1}n → {0, 1} which given the
inputs of the agents predicts whether a certain event will occur.

A prediction mechanism is a communication protocol and a payment function. After
communicating with the agents the mechanism announces whether the event will occur.
It pays the agents after it is known whether the event occurred, i.e. after f(x) is revealed.
The mechanism is known to the participating agents.

A strategy for an agent is a function from its input to its behavior during the exe-
cution of the mechanism. A set of strategies s = (s1(x1), . . . , sn(xn)) is a Bayesian
equilibrium if each agent cannot improve its expected utility by unilaterally deviating
from its strategy. An agent can always obtain a non negative utility by guessing its in-
put. Therefore, any Bayesian equilibrium also guarantees an expected utility which is
non negative (individual rationality).

Definition 1. (Implementation) An implementation of a boolean function g(x) is a
pair (m, s) where m is a prediction mechanism and s = (s1(x1), . . . , sn(xn)) is a
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Bayesian equilibrium in this mechanism, such that for every input x, the mechanism
outputs g(x). An implementation is called exact if g(x) = f(x).

Note that the function g(.) which the mechanism implements needs not necessarily be
equal to f(.). This will play an important role later when we study approximation mech-
anisms. It is not difficult to see that implementation in dominant strategies is impossible.

Consider the example of Section 1.1. The input of each manager is whether she has a
positive indication that the deadline will be met. This input is uniformly distributed with
q = 1/2. The prediction function f(.) is consensus. The access cost c of each manager
is $1, 000. A possible mechanism m would be to simultaneously ask each manager to
evaluate her input and to reward it by $32, 000 iff the mechanism’s prediction is cor-
rect. A possible equilibrium s in this mechanism is the truthful equilibrium: each agent
submits a sincere estimation to the mechanism. In this equilibrium, each manager has
an expected utility of $31, 000. (m, s) is an implementation of the consensus function.

Definition 2. (Expected payment) Let (m, s) be an implementation. The expected
payment B(m) of the implementation is defined as the expected total payment of the
mechanism when the agents follow their equilibrium strategies and the input is drawn
from the underlying distribution φ. That is, B(m) = E[

∑
i vi(s(x))] where vi denotes

the payment of each agent i.

Similarly, the accuracy of the mechanism is defined as the probability that g(x) �= f(x).
The analysis of influence of random variables plays an important role in our work. Most
of the literature on this topic assumes that the input bits are drawn from an IID. We
therefore adopt this assumption in our paper. We denote by φq the product distribution
obtained when each input is independently set to 1 with probability q. We conjecture
that our results also hold when there exists a ∆ > 0 such that each agent has its own
probability ∆ < qi < 1−∆. However, this conjecture requires generalizations of basic
results in the analysis of the influence of random variables for this setup. We assume
w.l.o.g. that 0 < q < 1, otherwise the agent’s input is known to the mechanism and thus
the agent is redundant. We let qM = max(q, 1 − q) denote the maximal probability in
which an agent can guess its input successfully.

Notation: Let x be an n-tuple. We denote by x−i the (n − 1)-tuple
(x1, . . . , xi−1, xi+1, . . . , xn).

2.2 Influence of Random Variables

Definition 3. (Influence) Agent i is called pivotal for x−i if f(0, x−i) �= f(1, x−i).
The influence Ii of agent i is the probability that i is pivotal when x is chosen randomly
according to φq .

In other words, influence measures the extent of ’necessity’ of agent i for making the
prediction. We denote by Imax = maxi(Ii) the maximal influence of any agent.

Lemma 1. (Talagrand’s Inequality) [9] Let p denote the probability that f(x) = 1
when x is chosen according to φq . There exists a universal constant κ such that

n∑

i=1

Ii/ log(1/Ii) ≥ κp(1 − p)q(1 − q). (1)
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Lemma 2. (Maximum influence) Let p denote the probability that f(x) = 1 when x
is chosen according to φq . Then

Imax = Ω

(

p(1 − p)q(1 − q)
log n

n

)

. (2)

We often use the following well known mean inequality which states that the harmonic
mean is always dominated by the arithmetic one.

Lemma 3. (Harmonic vs Arithmetic mean) Let a1, . . . , an be positive numbers. Then

n
∑

i 1/ai
≤ 1

n

∑

i

ai. (3)

3 Canonical Prediction Mechanisms

In this section we shall consider exact implementations and show that it is possible
to focus on a small class of mechanisms which we call canonical. This will provide
us tools for both, the construction of low payment mechanisms and for proving lower
bounds on the expected payment.

We start with a standard argument in mechanism design stating that it is possible to
focus on mechanisms which have a very simple communication structure.

Definition 4. (Truthful implementation) A truthful implementation is an implemen-
tation with the following properties:

– The mechanism communicates with each agent at most once asking it to report its
input. It can also pass additional information to the agent. The agent then replies
with either 0 or 1. We call such a mechanism revelation mechanism.

– In equilibrium, each agent approached computes its input and reveals it to the
mechanism. We call such an equilibrium truthful.

We say that two implementations are equivalent if for every input vector x they an-
nounce the same predictions and hand the same payments to the agents.

Proposition 1. (revelation principle for prediction mechanisms) For every imple-
mentation there exists an equivalent truthful implementation.

Note that there exist many truthful mechanisms. In particular, the mechanism can
choose what information to pass to an agent, the payment scheme, and the order of
addressing the agents.

Consider an agent which receives some information from the mechanism. The agent
can compute the likelihood of every input vector of the other agents given that the mech-
anism passed it this information. In other words, any information which the mechanism
passes to an agent defines a probability distribution on the input of the other agents. For
example, consider a mechanism for consensus in which each agent knows all the dec-
larations of the agents that were approached before it. The first agent approached has
an influence of 1/2n−1. However, if all the agents except one were already approached,
this agent knows that its declaration will determine the prediction. In other words, the
conditional influence of this agent is 1.
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Definition 5. (Conditional influence) We denote by Ii(ϕ−i) the conditional influence
of agent i. That is, the probability that agent i is pivotal given a distribution ϕ−i on the
others’ input (not necessarily the original distribution).

Remark. We assume w.l.o.g. that every approached agent has a strictly positive condi-
tional influence. Otherwise the mechanism does not need to approach the agent.

Before proceeding, let us recall a few notations that we shall use extensively. q =
Pr

[
xi = 1

]
for each i. We denote by qM = max(q, (1 − q)) the maximal probability

by which each agent can guess its input and by φq the product distribution on all the
agents. The constant c denotes the cost that each agent must incur in order to access its
input. We let vi denote the expected equilibrium payment of each agent i.

Theorem 1. (Payment characterization for exact implementation) Let m be a rev-
elation mechanism that implements f whenever the agents are truthful. Suppose that
m passes information to agent i which defines a probability distribution ϕ−i on the
inputs of the other agents. Suppose that the other agents are truthful. Let v0 ≥ 0 de-
note the expected payment of agent i in case of a wrong prediction. Truth telling is a
best response for agent i iff its expected payment in case of a true prediction is at least
vi ≥ v0 + c

(1−qM )·Ii(ϕ−i)
.

Proof : The only inputs that the mechanism has are the agents’ declarations and the
actual outcome (i.e. whether the event occurred). Agent i needs to decide whether to
guess its input or compute it and reveal it to the mechanism. (Since the others are
truthful, the best response strategy cannot be to compute the input and then misreport
it.) We need the following claim:

Claim. Under the conditions of Theorem 1:

1. The mechanism cannot distinguish between the case where agent i guesses its input
correctly and a the case where it computes it.

2. If the agent is not pivotal, the mechanism cannot distinguish between the case where
agent i guesses its input according to φq and the case where it computes it.

Proof : The first point is obvious as the inputs of the mechanism in both cases are iden-
tical. In the second point we use the fact that the input of the other agents is independent
of agent i. Since the agent is not pivotal, the actual outcome f(x) is also independent of
its input. Therefore, the distribution of the input of the mechanism is identical in both
cases. �

Thus, in equilibrium, the only situation in which the expected payment of the agent is
different from its payment when it is truthful, is when it guesses wrong and is pivotal.
In equilibrium, this happens if and only if the prediction of the mechanism is wrong.
Recall that the expected payment of the agent in this case is v0 and its expected payment
when the prediction is correct is vi. Recall also that the agent can guess its correct input
with probability qM . The following matrix summarizes the utility of guessing.

Pivotal Not Pivotal
Correct guess qM · Ii(ϕ−i)vi qM (1 − Ii(ϕ−i))vi

Wrong guess (1 − qM )Ii(ϕ−i)v0 (1 − qM )(1 − Ii(ϕ−i))vi
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Thus, the agent’s strategic considerations are expressed in the following payments ma-
trix.

Strategy/Prediction Correct Wrong
Compute vi − c v0 − c

Guess [qMIi(ϕ−i) + (1 − Ii(ϕ−i))] vi (1 − qM )Ii(ϕ−i)v0

This matrix shows the utility of the agent according to the correctness of the pre-
diction of the mechanism. For example, if the agent chose to compute its input and
the prediction was correct its utility is vi − c, since it invested c in the computation
and was rewarded vi for the correct prediction. Note that in a truthful equilibrium, it is
impossible that the agent computed its input but the prediction was wrong.

Thus, a necessary and sufficient condition for an agent to compute its input is that
the following inequality is satisfied,

vi − c ≥ (1 − qM )Ii(ϕ−i)v0 + [Ii(ϕ−i)qM + (1 − Ii(ϕ−i))]vi (4)

We call this inequality Incentive Elicitation Condition (IEC).
The bound v0 + c

(1−qM )·Ii(ϕ−i)
is then obtained by a simple calculation.

This completes the proof of Theorem 1. �

Corollary 1. Under the conditions of Theorem 1. For every exact truthful implementa-
tion m there exists another exact truthful implementation m̃ with an expected payment
B(m̃) ≤ B(m) which rewards the agents an amount of c

(1−qM )·Ii(ϕ−i)
iff f(.) is pre-

dicted correctly.

We call the payment scheme described in Corollary 1 canonical. The corollary states
that w.l.o.g. we can focus on such schemes. Two important issues which the mechanism
designer needs to address are what additional information to transfer to each agent and
when to stop the computation.

Definition 6. (Canonical mechanisms) A canonical mechanism is a truthful imple-
mentation with the following properties:

– The mechanism approaches the agents serially and reveals no additional informa-
tion to them.

– The mechanism never performs redundant computations.
– The payment scheme is canonical. The payment vi offered to agent i in case of

a correct prediction equals c
(1−qM )·Îi

where Îi denotes the influence of agent i

conditional on the fact that it is approached.

Theorem 2. (Optimality of a canonical mechanism) For every function f(.) there
exists a canonical implementation of it with an optimal expected payment among all the
exact implementations of f(.).

The theorem’s proof and some other results of this section can be found in the full
version of this paper.

From now on we can therefore limit ourselves to canonical mechanisms and the only
decision we need to take is the order in which the agents are approached.
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4 Exact Predictions

In this section we consider exact implementations. These are implementations which in
equilibrium always issue a correct prediction.

4.1 Budget Estimations

This section is omitted due to lack of space.

4.2 Optimal Mechanisms for Anonymous Functions

This subsection characterizes the optimal mechanism for anonymous functions. The-
orem 2 implies that the only decision left when designing a mechanism is the order in
which the agents are approached. We will show that for anonymous functions random
order is best.

Definition 7. (Anonymous functions) Anonymous functions are functions of which the
value depends only on the sum of inputs.

In other words, anonymous functions are invariant to input permutations. These func-
tions include majority, percentile, consensus, etc.

Definition 8. (Equal opportunity mechanism for anonymous functions) Let f(.) be
an anonymous function. An equal opportunity mechanism for f(.) is a canonical mech-
anism which approaches the agents according to a random order.

The equal opportunity mechanism can be computed in polynomial time provided that it
is possible to decide in polynomial time whether f(.) has already been determined.

Theorem 3. If f(.) is anonymous, the equal opportunity mechanism is an optimal im-
plementation of it.

From the above theorem we can get precise lower bounds on the expected payment
of various anonymous functions. Our bounds imply bounds on the sum of the utilities
required for computing a function in the model of [6, 7, 11]. We now analyze the optimal
mechanisms for two important functions, majority and consensus.

Theorem 4. (Lower bound for majority) An exact prediction of majority requires
an expected payment of at least Ω(cn3/2). The payment increases exponentially with
|q − 1/2|.

Consensus Revisited. Let us reconsider consensus when q = 1/2. The expected pay-
ment (obtained according to Theorem 1) of the intuitive simultaneous mechanism is
cn2n since each agent’s influence is 21−n which is the probability that all the other
agents declared 1. Consider the equal opportunity mechanism for consensus. The prob-
ability that an agent is approached and pivotal equals: Let k be an agent.

∑

i

(Pr
[
k’s place is i

]
· Pr

[
k is approached in the i-th place

]
· Pr

[
k is pivotal

]
.
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This equals 1
n

∑
i 1/2i−1 · 1/2n−i = 1/2n−1. The probability that an agent is ap-

proached is 1
n

∑
i 1/2i−1 < 2

n . Therefore, the agent’s conditional influence is at least
n/2n. According to the payment characterization lemma, each agent approached re-
ceives a payment of vi < c2n+1/n. Thus, the expected payment of each agent is
bounded by c2n+2/n2 and the overall expected payment is bounded by c2n+2/n. This
is an improvement by a factor of Θ(n2) over the intuitive simultaneous mechanism.
Reverting to example of section 1.1 the expected payment decreases from $160, 000 to
less than $26, 000!

5 Approximate Predictions

We saw that exact predictions of functions like consensus or majority may require very
large payments. An approximation mechanism for f(.) is a mechanism which gets an
accuracy parameter ε and in equilibrium predicts f(.) with accuracy of at least 1 −
ε. This section shows that every function can be approximated using a relatively low
expected payment. The main problem that needs to be overcome is that when f(.) is
almost determined, agents will have very small influence. Avoiding this requires a little
care. Due to space constraints we leave only the definition and the main theorem.

Definition 9. (ε-Implementation) Let ε ≥ 0. A (truthful) implementation is called an
ε-implementation of f(.), if Pr

[
f(x) �= g(x)

]
< ε where g(x) is the actual function that

the mechanism implements and the probability is taken over the input distribution φq .

Theorem 5. (Approximate predictions of general functions) Let ε < 1/2. Every
prediction function f(.) can be ε-approximated with the following expected payment:

B(f, ε) = O

(
cn2

ε(1 − 2ε)(1 − qM ) log n

)

.

6 Weighted Threshold Functions

The design of low payment mechanisms for non-anonymous functions is an intriguing
challenge. A particularly interesting class of functions is the class of weighted threshold
functions. These are functions of the form:

fw,θ(x) =
{

1 if
∑n

i=1 wixi ≥ θ
0 otherwise

where w is a vector of non negative numbers and θ a positive threshold. These functions
are natural to use in many prediction scenarios. For example when forming an expert
committee one could set the experts’ weights according to their reputation. We will
show that for every two agents, and for every input vector of the other agents, the agent
with the higher weight always has higher influence. This property indicates that charac-
terize the optimal mechanism for weighted threshold functions may be easier than the
general case.

We show that among all the mechanisms which approach the agents in a fixed order,
the mechanism which approaches the agents by the order of their weights is the best.
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Surprisingly, we demonstrate that this is not always the best deterministic mechanism.
We do so by introducing a generic de-randomization technique.

Due to space constraints we leave only the definition and the main theorem.

Definition 10. (DWO mechanisms) A descending weight order (DWO) mechanism
is a canonical mechanism which approaches the agents serially by a fixed order de-
termined by a descending order of their weights. (The mechanism chooses arbitrarily
between agents with the same weight.)

Theorem 6. The DWO mechanism dominates every other fixed order mechanism.

7 Future Research

In this paper we studied a basic class of prediction problems. Real life prediction scenar-
ios are likely to be more complicated. Nevertheless, we believe that the insights we gained
here (e.g. the usefulness of a serial approach, randomization, and zero information) are
very useful for making such predictions. It would be interesting to extend our setup to
several directions: in particular consideration of probabilistic prediction functions, gen-
eral independent distributions, and general decision making in verifiable situations.

In this paper we assumed that the agents’ inputs are independent. An important case
is conditionally independent inputs. In this case, the mechanism may be able to use
the fact that the agents’ inputs are correlated in order to reduce its payment. Another
important case is when inputs can be verified at least partially.

When f(.) is polynomially computable, the greedy mechanism can be approximated
in polynomial time. Devising polynomial time mechanisms with smaller payment for
non anonymous functions is an intriguing challenge.

Finally, it will be interesting to study repeated prediction games where the function
f(.) is unknown to the mechanism but can be learnt over time.
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