
Inapproximability Results for Combinatorial
Auctions with Submodular Utility Functions

Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta

Georgia Institute of Technology, Atlanta GA 30332, USA
{khot, rjl, vangelis, aranyak}@cc.gatech.edu

Abstract. We consider the following allocation problem arising in the
setting of combinatorial auctions: a set of goods is to be allocated to a
set of players so as to maximize the sum of the utilities of the players
(i.e., the social welfare). In the case when the utility of each player is
a monotone submodular function, we prove that there is no polynomial
time approximation algorithm which approximates the maximum social
welfare by a factor better than 1 − 1/e � 0.632, unless P= NP. Our
result is based on a reduction from a multi-prover proof system for MAX-
3-COLORING.

1 Introduction

A large volume of transactions is nowadays conducted via auctions, including
auction services on the internet (e.g., eBay) as well as FCC auctions of spectrum
licences. Recently, there has been a lot of interest in auctions with complex bid-
ding and allocation possibilities that can capture various dependencies between
a large number of items being sold. A very general model which can express such
complex scenarios is that of combinatorial auctions.

In a combinatorial auction, a set of goods is to be allocated to a set of players.
A utility function is associated with each player specifying the happiness of the
player for each subset of the goods. One natural objective for the auctioneer
is to maximize the economic efficiency of the auction, which is the sum of the
utilities of all the players. Formally, the allocation problem is defined as follows:
We have a set M of m indivisible goods and n players. Player i has a monotone
utility function vi : 2M → R. We wish to find a partition (S1, . . . , Sn) of the set
of goods among the n players that maximizes the total utility or social welfare,∑

i vi(Si). Such an allocation is called an optimal allocation.
We are interested in the computational complexity of the allocation problem

and we would like an algorithm which runs in time polynomial in n and m.
However, one can see that the input representation is itself exponential in m for
general utility functions. Even if the utility functions have a succinct represen-
tation (polynomial in n and m), the allocation problem may be NP-hard [13, 1].
In the absence of a succinct representation, it is typically assumed that the auc-
tioneer has oracle access to the players’ utilities and that he can ask queries to
the players. There are 2 types of queries that have been considered. In a value
query the auctioneer specifies a subset S ⊆ M and asks player i for the value

X. Deng and Y. Ye (Eds.): WINE 2005, LNCS 3828, pp. 92–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inapproximability Results for Combinatorial Auctions 93

vi(S). In a demand query, the auctioneer presents a set of prices for the goods
and asks a player for the set S of goods that maximizes his profit (which is
his utility for S minus the sum of the prices of the goods in S). Note that if
we have a succinct representation of the utility functions then we can always
simulate value queries. Even with queries the problem remains hard. Hence we
are interested in approximation algorithms and inapproximability results.

A natural class of utility functions that has been studied extensively in the
literature is the class of submodular functions. A function v is submodular if
for any 2 sets of goods S ⊆ T , the marginal contribution of a good x �∈ T ,
is bigger when added to S than when added to T , i.e., v(S ∪ x) − v(S) ≥
v(T ∪ x) − v(T). Submodularity can be seen as the discrete analog of concavity
and arises naturally in economic settings since it captures the property that
marginal utilities are decreasing as we allocate more goods to a player.

1.1 Previous Work

For general utility functions, the allocation problem is NP-hard. Approxima-
tion algorithms have been obtained that achieve factors of O(1√

m
) ([14, 5], us-

ing demand queries) and O(
√

log m
m) ([12], using value queries). It has also been

shown that we cannot have polynomial time algorithms with a factor better
than O(log m

m) ([5], using value queries) or better than O(1
m1/2−ε) ([14, 19], even

for single minded bidders). Even if we allow demand queries, exponential com-
munication is required to achieve any approximation guarantee better than
O(1

m1/2−ε) [16]. For single-minded bidders, as well as for other classes of util-
ity functions, approximation algorithms have been obtained, among others, in
[2, 4, 14]. For more results on the allocation problem with general utilities, see [6].

For the class of submodular utility functions, the allocation problem is still
NP-hard. The following positive results are known: In [13] it was shown that
a simple greedy algorithm using value queries achieves an approximation ratio
of 1/2. An improved ratio of 1 − 1/e was obtained in [1] for a special case of
submodular functions, the class of additive valuations with budget constraints.
Very recently, approximation algorithms with ratio 1−1/e were obtained in [7, 8]
using demand queries. As for negative results, it was shown in [16] that an expo-
nential amount of communication is needed to achieve an approximation ratio
better than 1 − O(1

m). In [7] it was shown that there cannot be any polynomial
time algorithm in the succinct representation or the value query model with a
ratio better than 50/51, unless P= NP.

1.2 Our Result

We show that there is no polynomial time approximation algorithm for the al-
location problem with monotone submodular utility functions achieving a ratio
better than 1 − 1/e, unless P= NP. Our result is true in the succinct represen-
tation model, and hence also in the value query model. The result does not hold
if the algorithm is allowed to use demand queries.

A hardness result of 1 − 1/e for the class XOS (which strictly contains the
class of submodular functions) is obtained in [7] by a gadget reduction from the

94 S. Khot et al.

Table 1. Approximability results for submodular utilities

Algorithms Hardness
Value Queries 1/2 [13] 1 − 1/e

Demand Queries 1 − 1/e [8] 1 − O(1/m) [16]

maximum k-coverage problem. For a definition of the class XOS, see [13]. Similar
reductions do not seem to work for submodular functions. Instead we provide a
reduction from multi-prover proof systems for MAX-3-COLORING. Our result
is based on the reduction of Feige [9] for the hardness of set-cover and maximum
k-coverage. The results of [9] use a reduction from a multi-prover proof system
for MAX-3-SAT. This is not sufficient to give a hardness result for the allocation
problem, as explained in Section 3. Instead, we use a proof system for MAX-
3-COLORING. We then define an instance of the allocation problem and show
that the new proof system enables all players to achieve maximum possible utility
in the yes case, and ensure that in the no case, players achieve only (1 − 1/e)
of the maximum utility on the average. The crucial property of the new proof
system is that when a graph is 3-colorable, there are in fact many different proofs
(i.e., colorings) that make the verifier accept. This would not be true if we start
with a proof system for MAX-3-SAT. By introducing a correspondence between
colorings and players of the allocation instance, we obtain the desired result.
The idea of using MAX-3-COLORING instead of MAX-3-SAT in Feige’s proof
system to have instances with many “disjoint” solutions is not new. The same
approach is used in [10] (based on ideas of [11]) to prove a hardness result of
log n for the domatic number problem.

The current state of the art for the allocation problem with submodular util-
ities, including our result, is summarized in Table 1. We note that we do not
address the question of obtaining truthful mechanisms for the allocation prob-
lem. For some classes of functions, incentive compatible mechanisms have been
obtained that also achieve reasonable approximations to the allocation problem
(e.g. [14, 2, 4]). For submodular utilities, the only truthful mechanism known is
obtained in [7]. This achieves an O(1√

m
)-approximation. Obtaining a truthful

mechanism with a better approximation guarantee seems to be a challenging
open problem.

2 Model, Definitions and Notation

We assume we have a set of players N = {1, ..., n} and a set of goods M =
{1, ..., m} to be allocated to the players. Each player has a utility function vi, where
for a set S ⊆ M , vi(S) is the utility that player i derives if he obtains the set S.
We make the standard assumptions that vi is monotone and that vi(∅) = 0.

Definition 1. A function v : 2M → R is submodular if for any sets S ⊂ T and
any x ∈ M\T :

v(S ∪ {x}) − v(S) ≥ v(T ∪ {x}) − v(T)

Inapproximability Results for Combinatorial Auctions 95

An equivalent definition of submodular functions is that for any sets S, T :
v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T).

An allocation of M is a partition of the goods (S1, ..., Sn) such that
⋃

i Si = M
and Si ∩ Sj = ∅. The allocation problem we will consider is:

The allocation problem with submodular utilities: Given a mono-
tone, submodular utility function vi for every player i, find an allocation
of the goods (S1, ..., Sn) that maximizes

∑
i vi(Si).

To clarify how the input is accessed, we assume that either the utility functions
have a succinct representation1, or that the auctioneer can ask value queries to
the players. In a value query, the auctioneer specifies a subset S to a player i
and the player responds with vi(S). In this case the auctioneer is allowed to ask
at most a polynomial number of value queries.

Since the allocation problem is NP-hard, we are interested in polynomial time
approximation algorithms or hardness of approximation results: an algorithm
achieves an approximation ratio of α ≤ 1 if for every instance of the problem,
the algorithm returns an allocation with social welfare at least α times the
optimal social welfare.

3 The Main Result

In this Section we present our main theorem:

Theorem 1. For any ε>0, there is no polynomial time (1− 1
e+ε)-approximation

algorithm for the allocation problem with monotone submodular utilities, unless
P=NP.

For ease of exposition, we first present a weaker hardness result of 3/4. This
proof is provided here only to illustrate the main ideas of our result and to give
some intuition. At the end of this Section, we explain what modifications are
required to obtain a hardness of 1 − 1/e.

The reduction for the 3/4-hardness is based on a 2-prover proof system for
MAX-3-COLORING, which is analogous to the proof system of [15] for MAX-
3-SAT. In the MAX-3-COLORING problem, we are given a graph G and we
are asked to color the vertices of G with 3 different colors so as to maximize the
number of properly colored edges, where an edge is properly colored if its vertices
receive different colors. Given a graph G, let OPT (G) denote the maximum
fraction of edges that can be properly colored by any 3-coloring of the vertices.
We will start with a gap version of MAX-3-COLORING: Given a constant c, we
denote by GAP-MAX-3-COLORING(c) the promise problem in which the yes
instances are the graphs with OPT (G) = 1 and the no instances are graphs with
OPT (G) ≤ c. By the PCP theorem [3], and by [17], we know:
1 By this we mean a representation of size polynomial in n and m, such that given S

and i, the auctioneer can compute vi(S) in time polynomial in the size of the repre-
sentation. For example, additive valuations with budget limits [13] have a succinct
representation.

96 S. Khot et al.

Proposition 1. There is a constant c<1 such that GAP-MAX-3-COLORING(c)
is NP-hard, i.e., it is NP-hard to distinguish whether
YES Case: OPT (G) = 1, and
NO Case: OPT (G) ≤ c.

Let G be an instance of GAP-MAX-3-COLORING(c). The first step in our proof
is a reduction to the Label Cover problem. A label cover instance L consists of
a graph G′, a set of labels Λ and a binary relation πe ⊆ Λ × Λ for every edge e.
The relation πe can be seen as a constraint on the labels of the vertices of e. An
assignment of one label to each vertex is called a labeling. Given a labeling, we
will say that the constraint of an edge e = (u, v) is satisfied if (l(u), l(v)) ∈ πe,
where l(u), l(v) are the labels of u, v respectively. The goal is to find a labeling
of the vertices that satisfies the maximum fraction of edges of G′, denoted by
OPT (L).

The instance L produced from G is the following: G′ has one vertex for every
edge (u, v) of G. The vertices (u1, v1) and (u2, v2) of G′ are adjacent if and
only if the edges (u1, v1) and (u2, v2) have one common vertex in G. Each vertex
(u, v) of G′ has 6 labels corresponding to the 6 different proper colorings of (u, v)
using 3 colors. For an edge between (u1, v1) and (u2, v2) in G′, the corresponding
constraint is satisfied if the labels of (u1, v1) and (u2, v2) assign the same color
to their common vertex. From Proposition 1 it follows easily that:

Proposition 2. It is NP-hard to distinguish between:
YES Case: OPT (L) = 1, and
NO Case: OPT (L) ≤ c′, for some constant c′ < 1

We will say that 2 labelings L1, L2 are disjoint if every vertex of G′ receives
a different label in L1 and L2. Note that in the YES case, there are in fact 6
disjoint labelings that satisfy all the constraints.

The Label Cover instance L is essentially a description of a 2-prover 1-round
proof system for MAX-3-COLORING with completeness parameter equal to 1
and soundness parameter equal to c′ (see [9, 15] for more on these proof systems).

Given L, we will now define a new label cover instance L′, the hardness of
which will imply hardness of the allocation problem. Going from instance L to
L′ is equivalent to applying the parallel repetition theorem of Raz [18] to the
2-prover proof system for MAX-3-COLORING.

We will denote by H the graph in the new label cover instance L′. A vertex
of H is now an ordered tuple of s vertices of G′, i.e., it is an ordered tuple of
s edges of G, where s is a constant to be determined later . We will refer to
the vertices of H as nodes to distinguish them from the vertices of G. For 2
nodes of H , u = (e1, ..., es) and v = (e′1, ..., e

′
s), there is an edge between u and

v if and only if for every i ∈ [s], the edges ei and e′i have exactly one common
vertex (where [s] = {1, ..., s}). We will refer to these s common vertices as the
shared vertices of u and v. The set of labels of a node v = (e1, ..., es) is the set
of 6s proper colorings of its edges (Λ = [6s]). The constraints can be defined
analogously to the constraints in L. In particular, for an edge e = (u, v) of H ,

Inapproximability Results for Combinatorial Auctions 97

a labeling satisfies the constraint of edge e if the labels of u and v induce the
same coloring of their shared vertices.

By Proposition 2 and Raz’s parallel repetition theorem [18], we can show that:

Proposition 3. It is NP-hard to distinguish between:
YES Case: OPT (L′) = 1, and
NO Case: OPT (L′) ≤ 2−γs, for some constant γ > 0.

Remark 1. In fact, in the YES case, there are 6s disjoint labelings that satisfy
all the constraints.

This property will be used crucially in the remaining section. The known reduc-
tions from GAP-MAX-3-SAT to label cover, implicit in [9, 15], are not sufficient
to guarantee that there is more than one labeling satisfying all the edges. This
was our motivation for using GAP-MAX-3-COLORING instead.

The final step of the proof is to define an instance of the allocation problem
from L′. For that we need the following definition:

Definition 2. A Partition System P (U, r, h, t) consists of a universe U of r
elements, and t pairs of sets (A1, Ā1), ...(At, Āt), (Ai ⊂ U) with the property
that any collection of h′ ≤ h sets without a complementary pair Ai, Āi covers at
most (1 − 1/2h′

)r elements.

If U = {0, 1}t, we can construct a partition system P (U, r, h, t) with r = 2h and
h = t. For i = 1, ..., t the pair (Ai, Āi) will be the partition of U according to
the value of each element in the i-th coordinate. In this case the sets Ai, Āi have
cardinality r/2.

For every edge e in the label cover instance L′, we construct a partition system
P e(Ue, r, h, t = h = 3s) on a separate subuniverse Ue as described above. Call
the partitions (Ae

1, Ā
e
1),, (A

e
t , Ā

e
t).

Recall that for every edge e = (u, v), there are 3s different colorings of the s
shared vertices of u and v. Assuming some arbitrary ordering of these colorings,
we will say that the pair (Ae

i , Ā
e
i) of P e corresponds to the ith coloring of the

shared vertices.
We define a set system on the whole universe

⋃
Ue. For every node v and

every label i, we have a set Sv,i. For every edge e incident on v, Sv,i contains
one set from every partition system P e, as follows. Consider an edge e = (v, w).
Then Ae

j contributes to all the sets Sv,i such that label i in node v induces the
jth coloring of the shared vertices between v and w. Similarly Āe

j contributes
to all the Sw,i such that label i in node w gives the jth coloring to the shared
vertices (the choice of assigning Ae

j to the Sv,i’s and Āe
j to the Sw,i’s is made

arbitrarily for each edge (v, w)). Thus

Sv,i =
⋃

(v,w)∈E

B
(v,w)
j

where E is the set of edges of H , B
(v,w)
j is one of A

(v,w)
j or Āj

(v,w), and j is the
coloring that label i gives to the shared vertices of (v, w).

98 S. Khot et al.

We are now ready to define our instance I of the allocation problem. There
are n = 6s players, all having the same utility function. The goods are the sets
Sv,i for each node v and label i. If a player is allocated a collection of goods
Sv1,i1 ...Svl,il

, then his utility is

|
l⋃

j=1

Svj ,ij |

It is easy to verify that this is a monotone and submodular utility function. Let
OPT (I) be the optimal solution to the instance I.

Lemma 1. If OPT (L′) = 1, then OPT (I) = nr|E|.

Proof. From Remark 1, there are n = 6s disjoint labelings that satisfy all the
constraints of L′. Consider the ith such labeling. This defines an allocation to
the ith player as follows: we allocate the goods Sv,l(v) for each node v, to player
i, where l(v) is the label of v in this ith labeling. Since the labeling satisfies all
the edges, the corresponding sets Sv,l(v) cover all the subuniverses. To see this,
fix an edge e = (v, w). The labeling satisfies e, hence the labels of v and w induce
the same coloring of the shared vertices between v and w, and therefore they
both correspond to the same partition of P e, say (Ae

j , Ā
e
j). Thus Ue is covered

by the sets Sv,l(v) and Sw,l(w) and the utility of player i is r|E|. We can find
such an allocation for every player, since the labelings are disjoint.

For the No case, consider the following simple allocation: each player gets exactly
one set from every node. Hence each player i defines a labeling, which cannot
satisfy more than 2−γs fraction of the edges. For the rest of the edges, the 2 sets
of player i come from different partitions and hence can cover at most 3/4 of
the subuniverse. This shows that the total utility of this simple allocation is at
most 3/4 of that in the Yes case. In fact, we will show that this is true for any
allocation.

Lemma 2. If OPT (L′) ≤ 2−γs, then OPT (I) ≤ (3/4+ ε)nr|E|, for some small
constant ε > 0 that depends on s.

Proof. Consider an allocation of goods to the players. If player i receives sets
S1, ..., Sl, then his utility pi can be decomposed as pi =

∑
e pi,e, where

pi,e = |(∪jSj) ∩ Ue|

Fix an edge (u, v). Let mi be the number of goods of the type Su,j for some j. Let
m′

i be the number of goods of the type Sv,j for some j, and let xi = mi +m′
i. Let

N be the set of players. For the edge e = (u, v), let Ne
1 be the set of players whose

sets cover the subuniverse Ue and Ne
2 = N\Ne

1 . Let ne
1 = |Ne

1 | and ne
2 = |Ne

2 |.
Note that for i ∈ Ne

1 , the contribution of the xi sets to pi,e is r. For i ∈ Ne
2 , it

follows that the contribution of the xi sets to pi,e is at most (1 − 1
2xi

)r by the

Inapproximability Results for Combinatorial Auctions 99

properties of the partition system of this edge2. Hence the total utility derived
by the players from the subuniverse Ue is

∑

i

pi,e ≤
∑

i∈Ne
1

r +
∑

i∈Ne
2

(1 − 1
2xi

)r

In the YES case, the total utility derived from the subuniverse Ue was nr.
Hence the loss in the total utility derived from Ue is

∆e ≥ nr −
∑

i∈Ne
1

r −
∑

i∈Ne
2

(1 − 1
2xi

)r = r
∑

i∈Ne
2

1
2xi

By the convexity of the function 2−x, we have that

∆e ≥ r ne
2 2

−
�

i∈Ne
2

xi

ne
2

But note that
∑

i∈Ne
1

xi ≥ 2ne
1, since players in Ne

1 cover Ue and they need at
least 2 sets to do this. Therefore

∑
i∈Ne

2
xi ≤ 2ne

2 and ∆e ≥ r ne
2/4. The total

loss is ∑

e

∆e ≥ r/4
∑

e

ne
2

Hence it suffices to prove
∑

e ne
2 ≥ (1 − ε)n|E|, or that

∑
e ne

1 ≤ εn|E|.
For an edge (u, v), let Ne,≤s

1 be the set of players from Ne
1 who have at most

s goods of the type Su,j or Sv,j . Let Ne,>s
1 = Ne

1\Ne,≤s
1 .

∑

e

ne
1 =

∑

e

|Ne,>s
1 | + |Ne,≤s

1 | ≤ 2n|E|
s

+
∑

e

|Ne,≤s
1 |

where the inequality follows from the fact that for the edge e we cannot have
more than 2n/s players receiving more than s goods from u and v.

Claim.
∑

e |Ne,≤s
1 | < δn|E|, where δ ≤ c′s2−γs, for some constant c′.

Proof. Suppose that the sum is δn|E| for some δ ≤ 1. Then it can be easily seen
that for at least δ|E|/2 edges, |Ne,≤s

1 | ≥ δn/2. Call these edges good edges.
Pick a player i at random. For every node, consider the set of goods assigned

to player i from this node, and pick one at random. Assign the corresponding
label to this node. If player i has not been assigned any good from some node,
then assign an arbitrary label to this node. This defines a labeling. We look at
the expected number of satisfied edges.

For every good edge e = (u, v), the probability that e is satisfied is at least
δ/2s2, since e has at least δn/2 players that have covered Ue with at most

2 To use the property of P e, we need to ensure that xi ≤ 3s. However since i ∈ Ne
2 ,

even if xi > 3s, the distinct sets Ae
j or Āe

j that he has received through his xi goods
are all from different partitions of Ue and hence they can be at most 3s.

100 S. Khot et al.

s goods. Since there are at least δ|E|/2 good edges, the expected number of
satisfied edges is at least δ2|E|/4s2. This means that there exists a labeling
that satisfies at least δ2|E|/4s2 edges. But, since OPT (L′) ≤ 2−γs, we get δ ≤
c′s2−γs, for some constant c′.

We finally have
∑

e

ne
1 ≤ 2n|E|

s
+ δn|E| ≤ εn|E|

where ε is some small constant depending on s. Therefore the total loss is

∑

e

∆e ≥ 1
4
(1 − ε)nr|E|

which implies that OPT (I) ≤ (3/4 + ε)nr|E|.

Given any ε > 0, we can choose s large enough so that Lemma 2 holds. From
Lemmas 1 and 2, we have:

Corollary 1. For any ε>0, there is no polynomial time (3/4+ε)-approximation
algorithm for the allocation problem with monotone submodular utilities, unless
P = NP.

To strengthen the hardness to 1−1/e, we use a different reduction from a multi-
prover proof system, using the construction of Feige [9]. The new Label Cover
instances that arise in this reduction are defined on a hypergraph instead of a
graph. We also need to use a more general version of partition systems, as in [9].
Due to lack of space, we omit the proof for the full version of the paper.

Acknowledgements

We would like to thank Amin Saberi and Vahab Mirrokni for useful discussions
and Shahar Dobzinski for comments.

References

1. N. Andelman and Y. Mansour. Auctions with budget constraints. In SWAT, 2004.
2. A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. An approximate truthful

mechanism for combinatorial auctions with single parameter agents. In SODA,
pages 205–214, 2003.

3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
hardness of approximation problems. In FOCS, pages 14–23, 1992.

4. Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial
auctions. In TARK, pages 72–87, 2003.

5. L. Blumrosen and N. Nisan. On the computational power of ascending auctions 1:
Demand queries. In ACM Conference on Electronic Commerce, 2005.

6. P. Cramton, Y. Shoham, and R. Steinberg(editors). Combinatorial Auctions. MIT
Press, Forthcoming (2005).

Inapproximability Results for Combinatorial Auctions 101

7. S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combina-
torial auctions with complement-free bidders. In STOC, 2005.

8. S. Dobzinski and M. Schapira. An improved approximation algorithm for combi-
natorial auctions with submodular bidders. Working paper, 2005.

9. U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

10. U. Feige, M. M. Halldorsson, G. Kortsarz, and A. Srinivasan. Approximating the
domatic number. SIAM Journal of Computing, 32(1):172–195, 2002.

11. U. Feige and J. Kilian. Zero knowledge and the chromatic number. JCSS, 57:187–
199, 1998.

12. R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Bundling equi-
librium in combinatorial auctions. Games and Economic Behavior, 47:104–123,
2004.

13. B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. In ACM Conference on Electronic Commerce, 2001.

14. D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. In ACM Conference on Electronic Commerce,
1999.

15. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, 1994.

16. N. Nisan and I. Segal. The communication requirements of efficient allocations and
supporting lindahl prices. To appear in Journal of Economic Theory, preliminary
version available at http://www.cs.huji.ac.il/ noam/mkts.html, 2004.

17. C. Papadimitriou and Yannakakis. Optimization, approximation and complexity
classes. Journal of Computer and System Sciences, 43:425–440, 1991.

18. R. Raz. A parallel repetition theorem. SIAM Journal of Computing, 27(3):763–803,
1998.

19. T. Sandholm. An algorithm for optimal winner determination in combinatorial
auctions. In IJCAI, 1999.

	Introduction
	Previous Work
	Our Result

	Model, Definitions and Notation
	The Main Result

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

