
L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp. 361 – 372, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Formalization of fFSM Model and Its Verification

Sachoun Park1, Gihwon Kwon1, and Soonhoi Ha2

1 Department of Computer Science, Kyonggi University,
San 94-6, Yiui-Dong, Youngtong-Gu, Suwon-Si, Kyonggi-Do, Korea

{sachem, khkwon}@kyonggi.ac.kr
2 Department of Computer Engineering, Seoul National University,

Seoul, Korea 151-742
sha@iris.snu.ac.kr

Abstract. PeaCE(Ptolemy extension as a Codesign Environment) was developed
for the hardware and software codesign framework which allows us to express
both data flow and control flow. The fFSM is a model for describing the control
flow aspects in PeaCE, but it has difficulties in verifying their specifications due
to lack of their formality. Thus we propose the formal semantics of the model
based on its execution steps. To verify an fFSM model, it is translated into SMV
input language with properties to be checked, automatically. As a result, some
important bugs such as race condition, ambiguous transition, and circular
transition can be formally detected in the model.

Keywords: Finite state machine, Step semantics, Formal verification, Model
checking.

1 Introduction*

To make narrow the gap between design complexity and productivity of embedded
systems, hardware/software codesign has been focused as a new design methodology.
Various codesign procedures have been proposed, and formal models of computation
for system specification by using "correct by construction" principle make ease design
validation. The PeaCE[1] is the codesign environment to support complex embedded
systems. The specification uses synchronous dataflow (SDF) model for computation
tasks, extended finite state machine (FSM) model for control tasks and task-level
specification model for system level coordination of internal models (SDF and FSM).
It gives automatic synthesis framework from the proposed specification with good
results compared with hand-optimized code, and the automatic SW/HW synthesis
from extended FSM model, called fFSM(flexible FSM), and automatic SW synthesis
from task-model is developed. The synthesis framework generates architecture
independent code which can be used for functional simulation, design space
exploration, synthesis and verification steps by varying the definitions of APIs.

The fFSM is another variant of Harel’s Statecharts, which supports concurrency,
hierarchy and internal event as Statecharts does. Also it includes global variables as

* This work was supported in part by IT Leading R&D Support Project funded by Ministry of

Information and Communication, Republic of Korea.

362 S. Park, G. Kwon, and S. Ha

memories in a system. This model is influenced from STATEMATE of i-Logix inc.[2]
and the Ptolemy[3] approaches. But the formal semantics for internal models is not
defined explicitly. Especially, in the case of fFSM(flexible FSM), the absence of
formal semantics causes problems such as confidence for simulation, correctness of
code generation, and validation of a system specification. Since no formal semantics
exit, unexpected behavior may occur after system built and also it dilute original
purpose of codesign to produce complex embedded system cost-effectively

In this paper, we define the step semantics for fFSM model, which becomes
foundation about reliable code generation and formal verification. Step semantics or
operational semantics of an fFSM defines how the model changes state from one
configuration to another on the reception of some events, while it at the same time
executes actions consisting of emitting output and internal events and updating of
global variables. In this field, many works have proposed, but among these formal
semantics, we turned our attention to Erich Mikk’s hierarchical automata[4] and Lind-
Nielsen’s hierarchical state/event model[6].

Hierarchical automata semantics was defined to formally express the STATEMATE
semantics of Statecharts described by Harel and Naamad in 1996[5]. After he defined
pure hierarchal automata which have no inter-level transition, he described EHA
(extended hierarchical automata) to handle the inter-level transition. As the semantics
of EHA was presented in the Kripke structure, three rules at EHA were applied to:
progress rule, stuttering rule, and composition rule. If any enabled transition is
activated, sequential automaton takes progress rule. If an active sequential automaton
does not have an enabled transition and the active state is a basic state then the
automaton stutters and consumes events. And each automaton delegates its step to its
sub-automata with respect to the composition rule. But it wasn’t dealt with the delta-
delay and variables.

HSEM(Hierarchical State/Event Model), the variant of Statecharts in IAR
visualSTATE[7], is based on the Unified Modeling Language(UML) state diagram,
where again the UML is based on Harel’s Statecharts. Although HSEM has its origin
in Statecharts, its semantics is distinguishable. The behavior of the model described N
flat parallel machines, where the N is the number of Or-states: serial and history states.
Thus a configuration of HSEM consists of exactly one state per each Or-sate, so it
may include inactive states. This method is able to perform compositional model
checking which one of solution for state explosion problem. However, in the HSEM
semantics, there is only use of state reference to express guarding condition, without
event occurring.

Firstly, we define the step semantics with concept of the delta-delay, variables and
event. And then verifying some system properties, we automatically translate the
model to SMV input language with these properties. This translation is based on the
proposed step semantics and synchrony hypothesis.

In this paper, the semantics of the fFSM model in PeaCE approach is defined by
borrowing from EHA and HSEM semantics. In the next section, N flat parallel
machine of fFSM, pFSM, is defined with its example. The definition of step
semantics of pFMS is presented in section 3, our efforts for debugging a model is
described at section 4 and then we conclude the paper in section 5.

 Formalization of fFSM Model and Its Verification 363

2 Formal Definition of pFSM

2.1 Reflex Game: The Example of fFSM Model

This version of reflex game is used for describing formal model of fFSM. The set of
input events to the system are coin, ready, stop, and time. All but the last are user
inputs, while the last generated by system simply counts off time. The game scenario
is as follows: after a coin is inserted, ready signal becomes on after a randomly
distributed latency. When the ready signal is one, the player should put down the stop
button as quickly as possible. Then the output is produced to indicate the time
duration between the ready signal and the stopping action. To compute the time
duration, we use “remain” and “randn” as variable states. The resultant fFSM graph is
concurrent and hierarchical.

Fig. 1. fFSM example of reflex game

Initially, each atomic fFSM is triggered by input events and makes a transition
when its guard condition is satisfied. If the transition produces internal events,
transitions triggered by the internal events are made iteratively until there is no more
internal event. After every delta-delay, it clears all existing events and sets newly
produced internal events at the previous delta-delay. Briefly, an execution of an
atomic fFSM consists of a transition triggered by an input event and subsequent
transitions triggered by internal events produced by the previous transition. And
variable state and output events keep their values to make them persistent.

2.2 Syntax of pFSM

In this section, we introduce definitions about pFSM which is based on the thesis[8].
To define the step semantics of fFSM, we propose N flat parallel machine of fFSM,
pFSM. Like an fFSM, there exit events, global variables, states, and transition.

364 S. Park, G. Kwon, and S. Ha

I, O, and IT are sets of input events, output events, and internal events, respectively.
Unlike previous definition of the event of fFSM, these sets disjoint each other. Each

event ie in }...,,{ 1 neeITOI =∪∪ is composed of its domain iD and initial value id ,

and)(ieval denotes current value of the event. Simple FSM is defined by 4-tuples

),,,(0 scrTsS , where S is a set of states, s0 is the initial state, and T is set of transition

relations. In the PeaCE approach, dataflow models are controlled by external signals
generated by fFSM, which can be labeled at a proper state as a set of atomic
proposition. We call the labels scripts, and Script represents the set of all scripts
occurring in the fFSM. Thus, ScriptSscr 2: → is the label function to map a set of
scripts into a state.

fFSM has two types of composition like other variants of Harel’s Statecharts:
concurrent and hierarchical compositions. HSEM used N flat parallel machines for
describing its operational semantics, because BDD(Binary Decision Diagram) could
be easily represented and the compositional model checking applied. In this paper, we
refer to HSEM semantics to define the fFSM semantics.

Definition 1 (pFSM). Now, formal semantics of fFSM is defined as N flat parallel
machines pFSM.),,,,,(VMITOIpFSM γ= , where I, O, IT are set of events above, V

is a set of global variables, jv ∈(jD , jd) , and },...,{ 1 nmmM = is the set of simple

FSM. Let ∪
n

i
iS

1=

=∑ be the set of all states in M, hierarchical relation γ maps a state to

the set of machines which belong to the state: .2: M→∑γ

The hierarchical function γ has three properties: there exist a unique root machine,
every non-root machine has exactly one ancestor state, and the composition function
contains no cycles. Let ,2: ∑→∑sub and }')(|'{)(ii SssMsssub ∈∧∈= γ is another

function to relate between a super state and its sub states. sub+ denotes the transitive
closure of sub and sub* denotes the reflexive transitive closure of sub.

Definition 2 (Simple FSM).),,,(0
iiiii scrTsSm =

i. }...,,,{ 10 n
iiii sssS = is the finite set of states of mi,

ii. 0
is is a initial state,

iii.
iT is the set of transition of mi, and a transition)',,,(sAgsTt i =∈ is composed

of source and target states s, s′∈Si, guarding condition g which is Boolean
expression, and set of actions A,

iv. Script
ii Sscr 2: → is a function to map a set of script into a state.

Guards that include variables and events have the following minimal grammar.

ExpvExpvExpeExpeGGGtrueG =<=<∧¬= ||||||:: 21

21||:: ExpExpvnExp •= ,

where n is an integer constant, Vv ∈ is a global variable, •∈{+, −, ×, / } represents a
set of binary operators. To select some facts of a transition)',,,(sAgst = , following

projection functions are useful: source(t) = s, target(t) = s′, guard(t) = g, action(t) = A.

 Formalization of fFSM Model and Its Verification 365

Also, in a set of actions A, each action element a∈A consists of variable assignment
or event emission:

a ::= v:=Exp | e:=Exp.

For an action element, following three projection functions are used, because an
action set is composed of updating variables, emitting some output events, and
producing internal events.

}):.(|:{)(AExpvVvExpvAupdate ∈=∈∃==

}):.(|:{)(AExpeOeExpeAoutput ∈=∈∃==

}):.(|:{)(AExpeITeExpeAsignal ∈=∈∃==

Figure 2 shows pFSM corresponding to figure 1, and the below example presents the
definition of figure 2.

I = {coin, ready, stop, time}, O = {game_on, waitGo, waitStop, ringBell, tilt, game_over}
IT = {timeset, timeout, error, exit}, V = {randn, remain}
M = {m

1
, m

2
, m

3
, m

4
}, γ(m

1
) = {m

3
, m

4
}, γ(m

2
) = γ(m

3
) = γ(m

4
) = ∅,

),,,(11
0
111 scrTsSm = , S1 = {GameOff, GameOn}, 0

1s = GameOff,

T1 = {(GameOff, coin = 1, {game_on = 1, timeset = 1000}, GameOn),
 (GameOn, exit = 1, {game_over = 1, ringBell = 1}, GameOff),

(GameOn, error = 1, {game_over = 1, tilt = 1}, GameOff)}, scr1 = ∅
…

Fig. 2. Flatten machine pFSM

3 Semantics of pFSM

Step semantics or operational semantics of an fFSM defines how the model changes
state from one configuration to another on the reception of some events, while it at the
same time executes actions consisting of emitting output and internal events and
updating of global variables.

Definition 3 (Configuration). ∆ represents the whole configurations of pFSM model,
for each mi of pFSM, its formal definition is }0,|},...,{{ 1 niSsss iin ≤<∈∃=∆ .

∆∈0δ , },,{ 00
10 nss …=δ is an initial configuration.

Erich’s definition of a configuration is a set of active states, so the size of the set is
not fixed. But the size of a configuration δ is the same of the set of machines M, so we
need to define which state is active.

366 S. Park, G. Kwon, and S. Ha

Definition 4 (Active state). It can be defined that a state s is active in configuration δ
as follow:

s=|δ iff δ∈⇒∈∑∈∀ ')'(.' * sssubss .

Definition 5 (Satisfiability). To decide which transition is enabled, given the set of
events ITIE 22 ∪⊆ and the current configuration δ, configuration δ and events E

satisfies a guard g,)(|, tguardE =δ , is defined inductively.

trueifftrueE =|,δ

GEnotiffGE =¬= |,|, δδ

2121 |,|,|, GEandGEiffGGE ==∧= δδδ

)()(|, ExpvalevalandEeiffExpeE <∈<=δ

)()(|, ExpvalevalandEeiffExpeE =∈==δ

)()(|, ExpvalvvaliffExpvE <<=δ

)()(|, ExpvalvvaliffExpvE ===δ ,

where nnval =)(,)(eval denotes the current value of event e, and)(vval denotes

the current value of variable v.)()()(2121 ExpvalExpvalExpExpval •=• .

Definition 6 (Enabled transition). Through the definitions of active states and
satisfiability relation, we define a set of enable transitions for each active state.

)}(|)(|,}.,...,1{|{ tsourcetguardETtnitET i =∧=∧∈∈∀= δδ

Definition 7 (Executable transition). The set of executable transitions are non-
conflicting set of transitions and every simple FSM must contribute at most one
transition. As fFSM model has no inter-level transition, the conflict only occurs
between two transitions which have different and comparable priorities.

))}'(()(.'|{ tsourcesubtsourceETtETtXT +∈∈¬∃∈= ,

1||. ≤∩∈∀ ii TXTMm

Definition 8 (LKS). Step semantics of pFSM is defined by LKS(Labeled Kripke
Structure).),,,(0 LRqQLKS = is defined:

},...,{ 0 nqqQ = is the finite set of states in LKS,

),,(000 cq ∅= δ is an initial state,

QQR Act ××⊆ 2 is the set of transitions with label as the set of actions,
ScriptQL 2: → is label function such that ∪

δ|
)()(

=∀

=
s

i sscrqL .

The step could be explained both micro step and macro step. The micro step stands
for one step triggered by input or internal events, and macro step is a finite sequence
of micro steps each of which is triggered by one input event or consequent internal
events until the produced internal event won’t exit any more.

 Formalization of fFSM Model and Its Verification 367

Definition 9 (Micro step).),,(),,(cEcE Act ′′′⎯→⎯ δδ

Given the current configuration δ and the set of events E, the next configuration δ′ is
defined as follow:

)}))(((

))())(((

))()(.(.|{

* sstsourcesubs

sresetstsourcesubs

tgettarstsourcesXTtss

=′⇒∉∨
=′⇒∈∨

=′⇒=∈∃∈∀′=′
+

δδ
 ,

where
iii Sssmssubsssreset ∈∧′′∈∧′′∈=)()(,)(0 γ

∪
XTt

tactionsignalE
∈∀

=′))((,

and)(qLc ′=′ ,

∪∪
XTtXTt

tactionupdatetactionoutputAct
∈∀∈∀

∪=))(())((

Definition 10 (Macro step). Step semantics of pFSM is represented by qq Exe ′⎯→⎯ ,

called an execution, which is triggered by input event and produces cascaded input
events. Thus one input event and consequent internal events make transitions until
any internal event cannot be produced. After each micro step, all previous events are
consumed by delta-delay. In the following definition, k > 1 is the first k which makes
Ei,k to ∅, and ∪

kj
ji ActExe

<<∀

=
0

 is a set of all actions during macro step.

),,(),,(11 ++ ∅⎯⎯ →⎯ ii
Exe

iii ccE i δδ iff),,(),,(,,1,1,1,
11

kiki
ActAct

iii ccE k ∅⎯⎯ →⎯⎯⎯→⎯ − δδ .

Fig. 3. Example of micro step(a) and macro step(b)

When input event “coin” occurs, control of the system is moved from the initial
configuration {GameOff, TimeInit, Ready, Rand} to {GameOn, wait, Ready, Rand}.
For error detection, we define three kinds of error: Race Condition(There can be
multiple writers for an output event or a variable state during an execution of fFSM

368 S. Park, G. Kwon, and S. Ha

model), Ambiguous transition(Multiple transitions from one state can be enabled
simultaneously), and Circular transition(There can be exist circular transitions by
cascaded transitions).

For example, if a snapshot of the system contains a configuration {GameOn, Wait,
Ready, Rand}, occurring event set is consist of user event “ready” and system event
“time”, and variable remain is zero, although it is a rare case, it breaks the output
constraint that output value must be persistent during one execution, since remain
have multiple assignments. Table 1 presents it.

Table 1. Violation of Race Condition for a variable “remain”

events Configuration Actions
{time, ready} {GameOn, Wait, Ready, Rand} {waitGo:=1, remain:=0}

{timeset, timeout} {GameOn, TimeInit, Go, Rand} {waitStop:=1, remain:=randn*128}

{timeset} {GameOn, Wait, Stop, Rand} { remain:=1000}

∅ {GameOn, Wait, Stop, Rand} −

4 Debugging fFSM Model

4.1 Stepper: Simulation Tool for fFSM Model

To debug a model, simulating a system model is widely used. In the PeaCE approach,
integrated simulation is provided. But it could not simulate control model only. Thus,
we develop a simulation tool for fFSM model with respect to our step semantics.
Figure 4 shows the framework of the Stepper.

Stepper receives textual description of fFSM model written by design tool in the
PeaCE framework. Then, it presents a model like a tree structure and input event
generator. Input events generated by a user execute one macro step. The Stepper,
then, shows all micro steps during one execution. Also it provides translation from
fFSM to SMV, with some important properties to be checked automatically. In figure
5, as you can see, after “time” and “ready” events occur, the variable remain is
updated in twice 999, 384 at the macro step, STEP[2].

Fig. 4. Framework of the Stepper

 Formalization of fFSM Model and Its Verification 369

Fig. 5. Detecting a race condition violation via simulation in Stepper

4.2 Model Checking fFSM Model

Simulation is very useful tool to present an error in a model, tracing an execution path
step by step. But by simulation, it is apt to spend much time or in some cases may be
impossible to detect an error. So more efficient debugging, automatic and formal
technique is required. Our tool provides formal verification which is implemented by
translating fFSM into SMV. Figure 6 shows the result of detecting a race condition
violation via model checking and the result is the same of simulator’s.

Fig. 6. Detecting a race condition violation via model checking

4.3 Translation fFSM Model to SMV

Our translation rules are based on Chan[10] and Clarke[11]. Following translation
rules are based on the step semantics defined in the previous section.

Rule 1 (Machine and states). For each machine,),,,(0
iiiii scrTsSm = , machine and

its states are encoded as ;)(;: 0
iiii sminitASSIGNSmVAR = .

370 S. Park, G. Kwon, and S. Ha

Rule 2 (Transitions). Transition relations can be expressed in SMV through the
definition 6. For),,,(0

iiiii scrTsSm = and
iTt ∈ , each transition t in mi is encoded as

);(&))((:_ * tguardtsourceuptmDEFINE i = , where })'(|'{)(ii SssMssup ∈∧∈= γ is

the function to return a super-state of s and up* is transitive reflexive closure of up.

DEFINE
 Machine1_t1 := Machine1 = GameOn & error=1;

VAR
 Machine1 : {GameOff, GameOn};
ASSIGN
 init(Machine1) := GameOff;
 next(Machine1) :=
 case
 Machine1_t1 : GameOff;

 1 : Machine1;

 esac;

Rule 3 (Synchrony hypothesis). To express synchrony hypothesis in SMV, we
define a particular variable stable, which means that a system stays in stable state
where any events does not occur. stable is also used in formulating circular transition
and race condition. When sets of internal events, input events and variables are
respectively {internal1, …, internall}, {input1, …, inputm} and {variable1, …,
variablen}, the translation rule is:

VAR
 stable : boolean;
ASSIGN
 init(stable) := 1;
 next(stable) :=
 case
 !(valued1 = next(valued1)) : 0;

!(valuedn = next(valuedn)) : 0;
 next(input1) | … | next(inputm) : 0;
 (internal1=0) & … & (internall=0) : 1;
 1 : 0;
 esac;

Rule 4 (Input event). Every input event e whose initial value is d and domain D is
[min, …, max] can be translated as follow:

VAR
 e : min .. max;
ASSIGN
 init(e) := d ;
 next(e) :=
 case
 stable : min .. max;
 1 : 0;
 esac;

 Formalization of fFSM Model and Its Verification 371

Rule 5 (Output event and internal event). For a transition)',,,(sAgst = and each

output or internal event e whose initial value is d, through a set of transitions {t1, …,
tn}, a set of expressions {exp1, …, expn} and }):.(|:{ AExpeITOeExpe ∈=∪∈∃= ,
the translation rule can be expressed as follow:

VAR
 e : min .. max;
ASSIGN
 init(e) := d ;
 next(e) :=
 case
 t1 : 1Exp ;

 tn : nExp ;
 1 : 0;
 esac;

Rule 6 (Variable). While default value of event e is 0 because of delta-delay, each
variable v stores its previous value. This rule of variable is similar with Rule 5.

VAR
 v : min .. max;
ASSIGN
 init(v) := d ;
 next(v) :=
 case
 t1 : 1Exp ;

 tn : nExp ;
 1 : v ;
 esac;

Table 2 shows CTL templates for some important properties which can be
automatically generated for user’s convenience. The first three are trivial, but the rest
are more complex.

Table 2. Built-in properties and its CTL formulae

Properties CTL formulae
No unused

components EF component1 ∧ ... ∧ EF componentn

No unreachable
guard EF (si ∧ EX sj), source(t) = si and target(t) = sj

No unambiguous
transitions

AG ¬((t1 ∧ t2) ∨ (t2 ∧ t3) ∨ (t1 ∧ t3)),
where {t1, t2, t3} is a set of outgoing transition from the same state.

No deadlocks
¬EF AG Deadlock(fT),

where Deadlock(fT) = ¬⎝⎠t∈fT tn
No divergent

behavior AG(¬stable ⇒ A[¬ stable U stable])

Race condition
violation

AG ((update(v) ∧ ¬stable) ⇒ AX A[¬update(v) U stable])
AG ((emit(o) ∧ ¬stable) ⇒ AX A[¬emit(o) U stable])

372 S. Park, G. Kwon, and S. Ha

In below table, components might be all states, events and variables. Checking
about a guard is replaced with whether the transition labeled by the guard is enabled
or not. Ambiguous transitions must be checked in all states with their possible
transitions. In the formula encoding the deadlock, fT denotes a set of all transitions of
a model. The formula to detect circular transition, “AG(¬stable ⇒ A[¬ stable U
stable])”, means “whenever the system is in an unstable state, eventually it must reach
a stable state.” To formulate the race condition, the additional functions update and
emit are introduced. Encoding update or emit for each output event or variable could
be implemented by a new Boolean variable. Thus, user can select some properties or
type in CTL properties.

5 Conclusions

fFSM is a model for describing the control flow aspects in PeaCE, but due to lack of
their formality, it has difficulties in verifying the specification. In this paper, for
lifting the reliability for code generation in the codesign framework and enabling
formal verification of the control model, we defined the step semantics for the fFSM
model. And we implemented tool to simulate and verify an fFSM model. As a result,
some important bugs such as race condition, ambiguous transition, and circular
transition can be formally detected in the model. Especially, to obtain the convenience
of user to check properties, we constructed some templates for automatic generation
of specifications. Now we are developing a specific model checker for fFSM and
researching an effective abstraction technique to be applied in the new model checker.

References

1. D. Kim, S. Ha, "Static Analysis and Automatic Code Synthesis of flexible FSM Model",
ASP-DAC 2005 Jan 18-21, 2005

2. iLogix: http://www.ilogix.com/
3. http://ptolemy.eecs.berkeley.edu/
4. E. Mikk, Y. Lakhnech, M. Siegel, "Hierarchical automata as model for statecharts", LNCS

Vol. 1345, Proceedings of the 3rd ACSC, pp. 181-196, 1997.
5. D. Harel, A. Naamad, "The STATEMATE semantics of statecharts", ACM Transactions

on Software Engineering Methodology, 5(4), October 1996.
6. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. J. Kristoffersen, K. G.

Larsen, "Verification of Large State/Event Systems Using Compositionality and
Dependency Analysis", FMSD, pp. 5-23, 2001.

7. IAR: http://www.iar.com/products/vs/
8. D. Kim, "System-Level Specification and Cosimulation for Multimedia Embedded

Systems," Ph.D. Dissertation, Computer Science Department, Seoul National University,
2004.

9. J. B. Lind-Nielsen, "Verification of Large State/Event Systems," Ph.D. Dissertation,
Department of Information Technology, Technical University of Denmark, 2000.

10. W. Chan, “Symbolic Model checking for Large software Specification,” Dissertation,
Computer Science and Engineering at University of Washington, pp. 13-32, 1999.

11. E. M. Clarke, W. Heinle, “Modular translation of Statecharts to SMV,” Technical Report
CMU-CS-00-XXX, CMU School of Computer Science, August 2000.

	Introduction
	Formal Definition of pFSM
	Reflex Game: The Example of fFSM Model
	Syntax of pFSM

	Semantics of pFSM
	Debugging fFSM Model
	Stepper: Simulation Tool for fFSM Model
	Model Checking fFSM Model
	Translation fFSM Model to SMV

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

